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Konzepte zur effizienten Implementierung von Mehrgittermethoden 

auf SUPRENUM-ähnlichen Architekturen 

Zusammenfassung~ 

Bei der Implementierung von Algorithmen auf Parallelrechnern mit verteiltem 

Speicher ist es erforderlich, daß die parallelen Prozesse regelmäßig gewisse 

Zwischenergebnisse untereinander austauschen. Die Parallelisierung ist umso 

effizienter, je weniger Datenaustausch durchzuführen ist. 

ln diesem Bericht werden am Beispiel einer Implementierung für SUPRENUM 

verschiedene Konzepte vorgestellt, wie bei der Parallelisierung von Mehrgitter­

methoden der Kommunikationsaufwand gesenkt werden kann. 

Concepts for Efficient lmplementation of Multigrid Methods 

on SUPRENUM-Like Architectures 

Summary: 

The implementation of algorithms on distributed-memory multiprocessors 

requires regular exchange of certain provisional results between the parallel 

processes. The less data have tobe moved the more efficient is the parallelization. 

ln this report some concepts are presented, how the communication overhead can 

be reduced when multigrid methods are parallelized on SUPRENUM. 
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1. lntroduction 

The numerical simulation of many technical and scientific processes gains 

increasing importance. An example is the development of pulsed power ion 

diodes generating focused Iight-ion beams with high particle energy. The physical 

problern is to find a geometry in which the ion beams are optimally focused. 

ln order to obtain a better understanding of the underlying physical phenomena 

and to optimize the geometry of rotationally symmetric diodes, the two­

dimensional quasistationary code BFCPIC - a particle-in-cell (PIC) code based on 

boundary-fitted coordinates (BFC) with a logical reetangular structure - has been 

developed [1,2]. 

Because the simulations require extremely !arge computation times, the most 

time consuming modules have been parallelized and prepared for the 

implementation on the distributed-memory multiprocessor SUPRENUM [3- 5]. 

(See [6- 9] for more detailed informations about the hardware of the SUPRENUM 

computer system, [8, 10,11] for application software on SUPRENUM.) 

One of the main components of this code is the computation of the potential of 

the electrostatic fields in the diode. For that purpese the Poisson equation is 

discretized in the boundary-fitted grid by an 9-point approximation and solved 

using multigrid methods. This module is performed thousands of times during a 

single run of the code [12]. 

ln this report, different possibilities for implementation of this module on 

SUPRENUM are examined. ln principle, these ideas are (with certain changes) valid 

also for other (2D or 3D) multigrid methods as weil as for implementations on 

similar distributed-memory multiprocessors. 
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2. Problem 

The potential of an electrostatic potential is determined by the Poisson equation 

Litt> = - pje 

(p: charge density, e: dielectric constant). 

Because of the rotationally symmetric description of the diades (no 8-

dependency) cylindrical coordinates are introduced, and 4> can be computed in 

the two dimensional (r,z)~space. 

ln order to obtain a proper description of the boundary conditions, the 

computations are performed in a boundary-fitted grid with a logical reetangular 

structure [12- 16]. This results in the necessity of an operator with at least 9 points 

for the discretization of the Poisson equation. The resulting problern is solved 

using multigrid methods [17- 19; 10- 12]. 

ln this report, only the concepts underlying the implementation on SUPRENUM 

are investigated. Foramore detailed discussion of the numerical background see 

[ 12]. 
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3. Performance Model 

Every computation on a distributed-memory multiprocessor requires certain 

additional activities, compared with a corresponding scalar run: at least, the input 

data must be distributed among all parallel processes, and the results must be 

gathered. Further communication is necessary, if a process needs provisional 

results from another one. ln this case, a message containing these data is 

exchanged between the two processes. 

The efficiency of a computation using several computing nodes is determined by 

this communication as weil as by the load-balancing of the parallel processes. 

The performance model used for all estimations in this report is based on the one 

introduced by 0. Kolp and H. Mierendorff [20, 21 ]. The idea is to Iook for the 

amount of work for the following system components: 

1. Arithmetic operations (TA) 

2. Messagetransfer (communication) (Tc= TcN +Tee+ Tcs) 

composed of the following parts: 

• lnitialization of the message by the computing .o.ode (T cN) 

• Messagetransfer through the ~lusterbus (Tee) 

• lf the message is sent to another duster of nodes, 

the additional time needed by the ~UPRENUMbus and the 

communication nodes of the source and destinationduster (Tcs) 

Each element Ti is summarized over a complete multigrid cyde. lt consists of a 

time component Ti, 1 needed for a single vector or message element, multiplied by 

the number and the lengths of the vectors or messages, and of a time amount Ti,2 

needed for the initialization of the vector instructions or messages (start-up 

times). All Ti have been computed using a simplified model of the control section 

ofthe original program. 



- 4 -

The following data have been used for the performanee estimations: 

• The number of vector instruetions per grid line for the main multigrid 

components, relaxation, fine-to-eoarse grid transfer (restriction), and eoarse­

to-fine grid transfer (interpolation) (table 3.1). Beeause the first relaxation 

sweep after eaeh restrietion will start with zeros as an initial guess, it requires 

less work. 

• The number of messages du ring one of the above multigrid eomponents (table 

4.2.4, see seetion 4.2). 

• The number of relaxation sweeps, restrietions or interpolations per grid Ievei 

du ring one V-, W- or F-eyele (table 3.2) [12]. 

• The time needed for one vector or message element (independent of the 

length of the eorresponding vector or message) and the start-up times (table 

3.3 [21 ]). 

Relaxation Inter-Restrietion 
after restr. rest polation 

Veetor instruetions 
per grid line of the stripe 
assigned to the eonsidered 12.25 22.00 19.50 3.25 
proeess *) *) 
*) treating just every 

seeond grid point 

Tab/e 3.1: Number of vector instructions per grid line du ring one relaxation 
sweep, restriction or interpolation; data for restriction and 
interpolation are per grid line of the finer grid 

Number of ... V-eycle W-eycle F-eycle 

Relaxation sweeps immediately 
after restrietion 

1 2i-2 i-1 

Other relaxations (finest grid) i-1 y·i y y·2 

Other relaxations (eoarse grids) y-1 i-1 i-2 y·2 -2 y·i-(i-1) 

Restrietions and interpolations 1 2i-1 I 

Table 3.2: Number of relaxation sweeps, restrictions and interpo/ations per grid 
Ievel i of a V-, W- or F-cyc/e of the multigrid method; y is the sum of 
the number of relaxation sweeps before and after each coarse-grid 
treatment 
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Timeper ... TA TcN Tee Tcs 

Vector or message element 0.1 0.6 0.031 0.8 

Vector or message, independent 
of its length (start-up time) 2.25 600 1.25 60 

Tab/e 3.3: firnes reqired for one unit of vector instructions or messages (in ps) 

lt will be assumed that all vector instructions and messages are performed 

sequentially within each parallel process. ln this (worst) case the total time T 

needed for one V-, W- or F-cycle of the multigrid method is the sum 

T = TA+ Tc = TA+ TcN +Tee+ T CS· 

The amount of work necessary for 110, creation and termination of the processes, 

and so on will not be investigated in this report. This work can be neglected for 

sufficiently !arge problems. 

Let T(N) be the time needed by a certain algorithm using N computing nodes. 

Then S(N) = T(1) I T(N) is the speedup and E(N) = S(N) IN is the efficiency of the 

parallel computation. 

For simplicity, the following assumptions are made: 

• The number of grid points Nx, Ny is equal in both directions, and 

Nx =Ny= 2n + 1 with an integer number n. 

• The number of parallel processes equals the number N of nodes and isapower 

of 2, and the computational grid is mapped onto the processes by splitting it 

into subgrids with the number of grid points asequalas possible. 

• All boundary conditions are of Dirichlet type. 

• Triads are considered tobe one vector instruction. 

• The vector start-up time is assumed to be equal to the time for arithmetic 

operations of about 20- 25 vector elements. 
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4. Parallelization Strategies 

4.1 Domain Splitting 

The parallelization is done by splitting the grid into subgrids which are assigned 

to the parallel processes, with the respective CPU-times asequalas possible. 

Essentially, there are two alternatives: 

• division into squares or square-like rectangles (fig. 4.1.1), which means that 

splitting is in both directions, or 

• partitioning into stripes, i.e. in one direction only (fig. 4.1.2). 

After each relaxation sweep and during the fine-to-course grid transfer 

(restriction using "full weighting "), the processes have to exchange certain results 

with the neighboring processes in the vicinity of their boundaries (see the 

textured areas in figures 4.1.1 and 4.1.2). The efficiency of the parallelization is 

essentially influenced by the communication overhead, compared with the 

arithmetic work. 

There are considerable differences between the two cases in the amount of work 

required for this communication: 

The advantages of the first strategy are that the message lengths due to the small 

boundary sizes are shorter, and that the Ioad-baiance of the processes especially 

during the treatment of the coarser grids is a little more favorable than in the 

other case. On the other hand, splitting into stripes minimizes the number of 

communications because each process has a maximum number of only two 

instead of eight neighbors. Furthermore, the vector lengths are a multiple of the 

vector lengths in the first case. Which of the two strategies is favorable depends 

upon the parameters of the system, especially whether the nodes of the machine 

are provided with vector processors, the start-up times, and the speed of the 

buses. 

On the basis of the parameters of the SUPRENUM system and the performance 

model described in chapter 3 there is an obvious advantage for the second 

strategy, as long as the size of the problern is not extremely I arge- but in that case 

both, start-up as weil as message transfer times, can be neglected compared with 

the amount of arithmetic work. 
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Fig.4.1.1: 

Domain 
splitting in 
both 
directions: 

Every process 
hasto 
exchange 
results with up 
to 8 neighbors 
for each update 

Fig.4.1.2: 

Domain 
splitting in one 
direction only: 

There is 
communication 
with only up to 
2 neighbors 

(fn both figures 
arrows show 
communication 
paths) 
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4.2 Multi~Color Relaxation Schemes 

The standard relaxation method (also on scalar computers) for 9-point 20-

difference operators is the so-called "four-color" relaxation scheme. The grid is 

divided into four regular subgrids "A"- "D" (figure 4.2.1), and one full relaxation 

sweep consists of four partial steps, each of them treating exactly the points of 

one subgrid ("color"). The advantage of this scheme isthat each "color" can be 

treated in parallel because the 9-point operator requires only data of the other 3 

colors (see fig. 4.2.1). 

The most interesting question is now: What is (are) the best sequence(s) to 

perform this four steps, out of the 4! = 24 possibilities? 

One strategy is shown in figure 4.2.2: First, subgrid "A" is treated, then "D", "B ", 

and finally "C". Butthis method has a serious disadvantage: if it is parallelized in 

the manner described in section 4.1, and there are two parallel processes named 

PA (above) and PB (below) treating the subdomain above or belowthe dashed line 

in figure 4.2.2, the following communication is necessary between these two 

processes: After the first partial relaxation step, PB has to send a message of 

Fig. 4.2.1: Splitting ofthe grid into four "colors" 
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Fig. 4.2.2: Standard "four-color" relaxation scheme 

length Nx/2 to PA containing the recomputed results in the grid points "1" 

marked by darkened circles, where Nx is the number of grid points in this 

direction. PA has to wait for this data required for the following computations in 

points "2". After the second step, PA sends Nx/2 data to Pa, and so on. Until the 

full relaxation sweep has finished, there have been 2 single messages of length 

Nx/2 from PA to Ps and another 2 ofthe same length in the opposite direction. 

Another possibility is shown in figure 4.2.3, which differs only slightly from the 

first one. But now, there is only one message from Ps to PA with Nx data elements 

after the secend and another one back after the fourth relaxation step. (This is 

valid also for certain variations: either one of the "colors" 1 and 2 or 3 and 4 may 

be changed.) 

Compared with the first strategy, the total number of data to be transferred 1s 

exactly the same - but this strategy economizes two start-up times. This is a big 

advantage especially if the message lengths are very short (when treating coarse 

grids of the multigrid method). ln this case, the cost of a single message start-up 

may be a multiple of the cost for data transfer. As can be seen later, this start-up 

costs can outweigh the other components (computations, start-ups of the vector 

pipe, message transfer), particularly if W-cycles are performed. 

The numerical properties like the convergence rates of the multigrid method only 

differ slightly. But one has to pay attention to the weighting operator used for 

the fine-to-coarse grid transfer of residuals (restriction): No problemswill appear, 
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Fig. 4.2.3: Optimized "four-color" relaxation scheme 

when using the "full weighting" operator because it takes the complete fine-grid 

residuals into consideration, and therefore the result will be an optimal average 

ofthem. However, the "halfweighting" operator hasto be modified according to 

the three colors included. 

The data important for the performance estimations are listed in tables 3.1 - 3.3 

(see chapter 3) and table 4.2.4. 

The resulting efficiency rates are shown in tables 4.2.5- 4.2.6: above all, there is a 

high increase of efficiency if W-cycles are performed. Also for V- and F-cycles an 

evident speed-up can be achieved if the problem size is not "too !arge". 

Relaxation Inter-Restrietion 
after restr. others polation 

Messagesper boundary 
surface of the process 2.00 2.00 1.00 --
(standard relax. scheme) 

Messagesper boundary 
surface of the process 1.00 1.00 1.00 --
(optimized relaxation) 

Table 4.2.4: Number of messagesperparallel process 
(if the process contains j'ust one grid line, there are additional 
messages, see section 4.3 
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V-cycle W-cycle F-cycle 

standard optimized standard optimized standard optimized 
NX relaxation relaxation relaxation relaxation relaxation relaxation 

33 3.6 6.2 1.0 1.8 2.2 3.9 

65 12.3 20.4 1.9 3.5 5.4 9.3 

129 23.5 36.3 2.6 4.6 9.8 16.3 

257 44.3 59.8 3.8 6.8 19.7 30.6 

513 70.5 81.7 6.2 10.9 39.4 53.8 

1025 88.7 93.4 10.7 17.9 65.9 77.4 

2049 96.3 97.8 18.3 29.1 85.9 91.4 

4097 98.8 99.3 3.02 44.2 95.2 97.1 

8193 99.6 99.7 45.9 60.8 98.5 99.1 

16385 99.9 99.9 62.7 75.4 99.5 99.7 

32769 99.9 100.0 77.0 85.9 99.8 99.9 

65537 100.0 100.0 86.9 92.4 99.9 100.0 

Tab. 4.2.5: Efficiencies estimated for computations using one duster (16 nodes); 
/eft column: standard, right: optimized (4-co/or) relaxation scheme 

V-cycle W-cycle F-cycle 

standard optimized Standard optimized standard optimized 
NX relaxation relaxation relaxation relaxation relaxation relaxation 

33 0.2 0.5 0.0 0.1 0.1 0.2 

65 0.6 1 . 1 0.1 0.2 0.3 0.5 

129 1.3 2.1 0.1 0.3 0.5 0.9 

257 2.9 4.7 0.2 0.4 1 . 1 1.9 

513 7.8 11.9 0.4 0.6 2.7 4.5 
' 

1025 21.2 29.5 0.6 1.1 7.5 11.8 

2049 46.5 56.0 1.2 2.1 19.9 28.7 

4097 72.8 78.4 2.3 4.0 44.0 55.1 

8193 88.3 90.4 4.3 7.5 71.1 78.5 

16385 95.1 95.7 8.2 13.9 88.1 91.2 

32769 97.9 98.0 15.1 24.3 95.5 96.5 

65537 99.0 99.1 26.2 38.9 98.2 98.5 

Tab. 4.2.6: Efficiencies estimated for computations using 16 c/usters (256 nodes) 
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4.3 Agglomeration of Processes 

Du ring the treatment of the coa rsest I eve ls of multi g rid meth ods the 

communication cost may outweigh the arithmetic work because the number of 

messages necessary will not decrease as the number of grid points does. 

Therefore, it may be economical to accumulate the coarse subgrids of some or all 

processes by having only one remaining process treating the complete coarsest 

grid(s) (agglomeration). The advantage lies in the fact that in this Ievei the 

communication overhead can be totally avoided. But on the other hand, the 

parallelization speed-up will decrease because of the poor Ioad balancing. 

The problern is to find an agglomeration scheme minimizing the communication 

cost with a minimum of additional work. 

Basic Agglomeration Technique 

The multi-color relaxation scheme discussed in section 4.2 has one characteristic 

property: if the stripes assigned to the parallel processes contain just one grid 

line, the following will happen (figure 4.3.1): 

During the first two partial relaxation steps, only every second process will be 

busy. After they have finished, they must send their results simultaneously to both 

neighbors who are waiting for these data needed for the completion of the 

relaxation sweep. Also the restriction requires two messages instead of only one. 

Combining the computations of all pairs of neighboring processes into only one 

remaining process (figure 4.3.2) will result in no more computation time because 

the remaining processes perform their additional computations in exactly the 

same time they would have to wait for results in the other case. But one of the 

two messages per relaxation sweep and per restriction can be economized! 

On the other hand, there are two additional messages: first, the stopping process 

has tosend its right hand side to the remaining one and finally receive the result. 

But because a mu!tigrid cyc!e consists of at least two relaxation sweeps on each 

Ievei, there will be a cut of at least one message. 

Tables 4.3.3- 4.3.4 show the estimated performance data in the case y = 2; the 

efficiencies are improved for all cycle types. 



KZ\21 

~ 13 

Process is busy 

Process is waiting for a message 

Process is receiving a message 

Process is sending a message 

Fig. 4.3.1: Multiple communication and bad load-balancing, 
if the stripes contain only one grid line 

time 

Fig. 4.3.2: Basicagglomeration technique- each black circle stands for a grid line 
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V-cycle W-cycle F-cycle 

without basic without basic without basic 
NX agglom. agglom. agglom. agglom. agglom. agglom. 

33 6.2 7.7 1.8 2.7 3.9 5.4 

65 20.4 24.3 3.5 5.1 9.3 12.1 

129 36.3 41.1 4.6 6.7 16.3 20.4 

257 59.8 64.2 6.8 9.7 30.6 36.2 

513 81.7 84.0 10.9 15.2 53.8 59.5 

1025 93.4 94.3 "i/.9 24.3 77.4 80.9 

2049 97.8 98.1 29.1 37.6 91.4 92.8 

4097 99.3 99.3 44.2 53.7 97.1 97.6 

8193 99.7 99.7 60.8 69.5 99.1 99.2 

16385 99.9 99.9 75.4 81.8 99.7 99.7 

32769 100.0 100.0 85.9 89.9 99.9 99.9 

65537 100.0 100.0 92.4 94.7 100.0 100.0 

Tab. 4.3.3: Efficiencies estimated for computations in one duster (16 nodes); 
left column: without, right: with basic agglomeration technique 

V-cycle W-cycle F-cycle 

without basic without basic without basic 
NX agglom. agglom. agglom. agglom. agglom. agglom. 

33 0.5 0.8 0.1 0.2 0.2 0.4 

65 1 . 1 1.4 0.2 0.3 0.5 0.7 

129 2.1 2.6 0.3 0.4 0.9 1.2 

257 4.7 5.8 0.4 0.6 1.9 2.5 

513 11.9 14.4 0.6 1.0 4.5 6.1 

1025 29.5 33.5 1.1 1.7 11.8 15.2 

2049 56.0 59.6 2.1 3.1 28.7 34.5 

4097 78.4 80.1 4.0 5.9 55.1 60.8 

8193 90.4 91.0 7.5 10.9 78.5 81.6 

16385 95.7 95.9 13.9 19.4 91.2 92.3 

32769 98.0 98.1 24.3 32.4 96.5 96.8 

65537 99.1 99.1 38.9 48.8 98.5 98.6 

Tab. 4.3.4: Efficiencies estimated for computations using 16 clusters (256 nodes) 
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lmproved Agglomeration Scheme 

The basic agglomeration technique desribed above only prevents that the 

communication overhead increases if there are processes treating a single grid 

line. 

But of course, there remains a rest of communication. On certain coarse grid Ieveis 

this communication can add up to a multiple of the arithmetic work. Therefore, 

an additional agglomeration may be suitable combining the computations - in 

one or several steps- in only one remaining node. 

The performance estimations have shown that the best agglomeration strategy 

maps the two or three coarsest grids into one computing node and splits them 

into four processes treating the next finer grid, and so on, until a Ievei containing 

just two grid lines is reached (figure 4.3.5). Then the agglomeration may continue 

using the basic technique. 

The estimated performance data are listed in tables 4.3.6- 4.3.7. As can be seen 

from these tables, a further improvement of the efficiencies can be achieved for 

all types of multigrid cycles. 

Fig. 4.3.5: lmproved agglomeration scheme (principle) 
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V-cycle W-cycle F-cycle 

NX basic optimized basic optimized basic optimized 
agglom. agglom. agglom. agglom. agglom. agglom. 

33 7.7 10.3 2.7 6.5 5.4 9.0 

65 24.3 30.5 5.1 11.9 12.1 18.3 

129 41.1 47.9 6.7 15.1 20.4 28.1 

257 64.2 69.6 9.7 20.8 36.2 45.2 

513 84.0 86.7 15.2 30.3 59.5 67.2 

1025 94.3 95.2 24.3 43.6 80.9 85.1 

2049 98.1 98.3 37.6 59.1 92.8 94.4 

4097 99.3 99.4 53.7 73.6 97.6 98.0 

8193 99.7 99.8 69.5 84.5 99.2 99.3 

16385 99.9 99.9 81.8 91.5 99.7 99.8 

32769 100.0 100.0 89.9 95.5 99.9 99.9 

65537 100.0 100.0 94.7 97.7 100.0 100.0 

Tab. 4.3.6: Efficiencies estimated for computations in a singleduster (16 nodes); 
fett column: basic, right: optimized agglomeration scheme 

V-cycle W-cycle F-cycle 

NX basic optimized basic optimized basic optimized 
agglom. agglom. agglom. agglom. agglom. agglom. 

33 0.8 0.8 0.2 0.5 0.4 0.7 

65 1.4 1.7 0.3 0.7 0.7 1.1 

129 2.6 3.1 0.4 0.9 1.2 1.7 

257 5.8 6.7 0.6 1.3 2.5 3.4 

513 14.4 16.0 1.0 2.2 6.1 7.7 

1025 33.5 35.7 1. 7 3.8 15.2 18.2 

2049 59.6 61.3 3.1 6.8 34.5 38.8 

4097 80.1 80.9 5.9 12.4 60.8 64.4 

8193 91.0 91.2 10.9 21.6 81.6 83.4 

16385 95.9 96.0 19.4 35.2 92.3 92.9 

32769 98.1 98.1 32.4 51.8 96.8 97.0 

65537 99.1 99.1 48.8 68.0 98.6 98.7 

Tab. 4.3. 7: Efficiencies estimated for computations in 16 clusters (256 nodes) 
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General Remarks about Agglomeration Schemes 

ln both agglomeration techniques described above, there are two fundamental 

possibilities: 

• Mapping the coarsest Ieveis into just one remaining process, while the other 

processes are idle. 

• Solving the coarsest-level problems by ~ processes at the same time, each of 

them treating the whole coarse grids. 

There are no considerable differences between these two strategies with respect 

to the communication overhead: ln the first case, the right hand sides must be 

collected by only one process, and by all processes in the other case. This will result 

in a disadvantage for the second strategy. But on the other hand, the first case 

requires the distribution of the result among all processes, so that altogether 

there will be nearly the same amount of work in both cases. 

(lt should be mentioned that the agglomeration technique is supported by the 

communication library available for SUPRENUM [22].) 
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4.4 Other Possibilities 

Overlapping of Computations and Communications 

The efficiency of the parallel computation might be improved a bit, if first of all 

the computations in the vicinity of the boundaries are performed. After these 

data have been sent to the neighboring processes, the computations continue in 

the interior region. 

The increase of performa nce resu lti ng from th is p roced u re h as not be 

in vesti g ated. 

Using Larger Overlap Areas 

lt may be useful to assign a larger subdomain to each process than described in 

section 4.1. The idea is that more than one relaxation step can be performed 

before any exchange of data becomes necessary [ 1 0]. But the performance 

estimations showed that the multi-color relaxation scheme (see section 4.2) is the 

morefavorable way to achieve this. 

The disadvantages ofthelarger overlap areas are: 

• Due to the larger number of grid points there are additional arithmetic 

operations, and the messages being exchanged are longer. 

• The right-hand sides in the overlap areas also have to be exchanged after 

each restriction. 

Furthermore, a combination of both techniques is not profitable. 
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4.5 Results of Performance Estimations 

The estimations discussed in this chapter show that the efficiency can be improved 

by the optimized parallelization strategies. One has to distinguish between the 

different types of multigrid cycles: 

The efficiency of V- and F-cycles (figures 4.5.1 and 4.5.3) can be improved by an 

increment of about 10- 30 % until the peakrate of 100% is reached. 

When using W-cycles, a much higher increase can be obtained (figure 4.5.2). ln 

this case, the rates of efficiency are up to 40% better. 

The efficiency of the optimized algorithm equals that of the standard one applied 

to larger problems, or to the sameproblern size using more computing nodes. 

Figures 4.5.1 - 4.5.3 show the estimated differences between standard (standard 

relaxation as shown in figure 4.2.3, no agglomeration; dashed lines) and 

optimized algorithms. 

The time components are shown in figures 4.5.4 (V-cycles), 4.5.5 (W-cycles), and 

4.5.6 (F-cycles). The efficiency of the standard algorithm is determined by the 

portion of the nodes of the message start-up times (TcN,2). ln contrast, the 

amount of arithmetic operations (TA, 1, T A,2) and of element-wise message 

transfer (especially T cN, 1 and T es, 1) is increased in the optimized version, because 

more data have tobe transferred due to the agglomeration. 

ln figure 4.5.7 the resulting MFLOPS-rates (million floating-point operations per 

second) are presented. 
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Fig. 4.5.2: Performance increase by optimized parallelization techniques 
(efficiencies for W-cycles using 16 or 256 computing nodes) 
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Fig. 4.5.3: Performance increase by optimized parallelization techniques 
(efficiencies for F-cycles using 16 or 256 computing nodes) 
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Fig. 4.5.6: Time components estimated for F-cyc/es (256 nodes) 
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5. Application to General Multigrid Methods 

ln principle, the concepts described above are valid also for other (standard or 

irnproved [23, 24]) rnultigrid irnplernentations on distributed-rnernory rnulti­

processors like SUPRENUM. The expected speed-up will be the better the srnaller 

the arnount of arithrnetic work between two cornrnunications is. Especially, the 

application of these ideas to 20 and 3D rnultigrid methods for solving the Poisson 

equation (or sirnilar problerns) in standard grids is very prornising because there 

are much less arithmetic operations between two cornrnunications than in the 

problern described in this report. 

But on the other hand, there will be additional arithmetic work: ln many multi­

grid algorithrns, "red-black" relaxation is used as the srnoothing operator, com­

bined with "half weighting" of residuals - which is sirnplified to "half injection" 

because of the special relaxation scherne. ln cornbination with the multi-color 

relaxation scherne, the full "halfweighting" operator requiring additional 

operations and cornmunication must be used. (There is another, nurnerical, 

problern: und er certain circurnstances, the weighting operator has to be slightly 

rnodified in order to obtain proper results. This depends upon the sequence in 

which the four relaxation "colors" are perforrned. lndeed, best convergence rates 

can be obtained by "full weighting".) 

These additional arithrnetic operations increase proportionally, whereas the 

cornrnunication overhead only grows slowly and can be neglected for !arger 

problerns. 

For this reason, the rnodified relaxation scherne is even less efficient, if the 

problern size is solarge that the standard algorithrn already reaches the peakrate 

of efficiency. 
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6. Condusions 

The efficiency of the implementation of multigrid methods on distributed­

memory multiprocessors like SUPRENUM is determined by the amount of work 

necessary for communication activities required by the relaxation sweeps and by 

the fine-to-coarse transfers of the residuals (restrictions). 

This communication overhead obviously can be reduced by a few changes in the 

parallelized algorithm, namely by simple modifications of the relaxation method 

and by optimized agglomeration schemes. 

Especially if W-cycles are required for numerical reasons, these algorithmical 

changes result in an improved performance of the parallel computations. But also 

if V-or F-cycles are sufficient, there is an increase of efficiency. 

With small limitations, the ideas described above apply also to general multigrid 

methods, as weil as to other distributed-memory multiprocessors. 
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