
KfK 4614
Oktober 1989

Concepts for Efficient
lmplementation of Multigrid

Methods on SUPRENUM-Like
Architectures

M. Alef
Institut für Datenverarbeitung in der Technik

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Datenverarbeitung in der Technik

KfK4614

Concepts for Efficient lmplementation of Multigrid Methods
on SUPRENUM-Like Architectures

Manfred Alef

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

The werk desribed in this report was funded by the Federal Ministry for Research
and Technology (BMFT), Fed. Rep. Germany, under the grant number ITR8502K/4.

The author assumes all responsibility for the contents of this report.

Als Manuskript vervielfältigt
Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH
Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

Konzepte zur effizienten Implementierung von Mehrgittermethoden

auf SUPRENUM-ähnlichen Architekturen

Zusammenfassung~

Bei der Implementierung von Algorithmen auf Parallelrechnern mit verteiltem

Speicher ist es erforderlich, daß die parallelen Prozesse regelmäßig gewisse

Zwischenergebnisse untereinander austauschen. Die Parallelisierung ist umso

effizienter, je weniger Datenaustausch durchzuführen ist.

ln diesem Bericht werden am Beispiel einer Implementierung für SUPRENUM

verschiedene Konzepte vorgestellt, wie bei der Parallelisierung von Mehrgitter­

methoden der Kommunikationsaufwand gesenkt werden kann.

Concepts for Efficient lmplementation of Multigrid Methods

on SUPRENUM-Like Architectures

Summary:

The implementation of algorithms on distributed-memory multiprocessors

requires regular exchange of certain provisional results between the parallel

processes. The less data have tobe moved the more efficient is the parallelization.

ln this report some concepts are presented, how the communication overhead can

be reduced when multigrid methods are parallelized on SUPRENUM.

Contents:

1. lntroduction . 1

2. Problem . 2

3. Performance Model . 3

4. Parallelization Strategies . 6

4.1 Domain Splitting . 6

4.2 Multi-Color Relaxation Schemes . 8

4.3 Agglomeration of Processes . 12

4.4 Other Possibilities . 18

4.5 Results of Performance Estimations . 19

5. Application to General Multigrid Methods . 27

6. Conclusions . 28

7. Literature . 29

1. lntroduction

The numerical simulation of many technical and scientific processes gains

increasing importance. An example is the development of pulsed power ion

diodes generating focused Iight-ion beams with high particle energy. The physical

problern is to find a geometry in which the ion beams are optimally focused.

ln order to obtain a better understanding of the underlying physical phenomena

and to optimize the geometry of rotationally symmetric diodes, the two­

dimensional quasistationary code BFCPIC - a particle-in-cell (PIC) code based on

boundary-fitted coordinates (BFC) with a logical reetangular structure - has been

developed [1,2].

Because the simulations require extremely !arge computation times, the most

time consuming modules have been parallelized and prepared for the

implementation on the distributed-memory multiprocessor SUPRENUM [3- 5].

(See [6- 9] for more detailed informations about the hardware of the SUPRENUM

computer system, [8, 10,11] for application software on SUPRENUM.)

One of the main components of this code is the computation of the potential of

the electrostatic fields in the diode. For that purpese the Poisson equation is

discretized in the boundary-fitted grid by an 9-point approximation and solved

using multigrid methods. This module is performed thousands of times during a

single run of the code [12].

ln this report, different possibilities for implementation of this module on

SUPRENUM are examined. ln principle, these ideas are (with certain changes) valid

also for other (2D or 3D) multigrid methods as weil as for implementations on

similar distributed-memory multiprocessors.

- 2 -

2. Problem

The potential of an electrostatic potential is determined by the Poisson equation

Litt> = - pje

(p: charge density, e: dielectric constant).

Because of the rotationally symmetric description of the diades (no 8-

dependency) cylindrical coordinates are introduced, and 4> can be computed in

the two dimensional (r,z)~space.

ln order to obtain a proper description of the boundary conditions, the

computations are performed in a boundary-fitted grid with a logical reetangular

structure [12- 16]. This results in the necessity of an operator with at least 9 points

for the discretization of the Poisson equation. The resulting problern is solved

using multigrid methods [17- 19; 10- 12].

ln this report, only the concepts underlying the implementation on SUPRENUM

are investigated. Foramore detailed discussion of the numerical background see

[12].

...,
- ;:) -

3. Performance Model

Every computation on a distributed-memory multiprocessor requires certain

additional activities, compared with a corresponding scalar run: at least, the input

data must be distributed among all parallel processes, and the results must be

gathered. Further communication is necessary, if a process needs provisional

results from another one. ln this case, a message containing these data is

exchanged between the two processes.

The efficiency of a computation using several computing nodes is determined by

this communication as weil as by the load-balancing of the parallel processes.

The performance model used for all estimations in this report is based on the one

introduced by 0. Kolp and H. Mierendorff [20, 21]. The idea is to Iook for the

amount of work for the following system components:

1. Arithmetic operations (TA)

2. Messagetransfer (communication) (Tc= TcN +Tee+ Tcs)

composed of the following parts:

• lnitialization of the message by the computing .o.ode (T cN)

• Messagetransfer through the ~lusterbus (Tee)

• lf the message is sent to another duster of nodes,

the additional time needed by the ~UPRENUMbus and the

communication nodes of the source and destinationduster (Tcs)

Each element Ti is summarized over a complete multigrid cyde. lt consists of a

time component Ti, 1 needed for a single vector or message element, multiplied by

the number and the lengths of the vectors or messages, and of a time amount Ti,2

needed for the initialization of the vector instructions or messages (start-up

times). All Ti have been computed using a simplified model of the control section

ofthe original program.

- 4 -

The following data have been used for the performanee estimations:

• The number of vector instruetions per grid line for the main multigrid

components, relaxation, fine-to-eoarse grid transfer (restriction), and eoarse­

to-fine grid transfer (interpolation) (table 3.1). Beeause the first relaxation

sweep after eaeh restrietion will start with zeros as an initial guess, it requires

less work.

• The number of messages du ring one of the above multigrid eomponents (table

4.2.4, see seetion 4.2).

• The number of relaxation sweeps, restrietions or interpolations per grid Ievei

du ring one V-, W- or F-eyele (table 3.2) [12].

• The time needed for one vector or message element (independent of the

length of the eorresponding vector or message) and the start-up times (table

3.3 [21]).

Relaxation Inter-Restrietion
after restr. rest polation

Veetor instruetions
per grid line of the stripe
assigned to the eonsidered 12.25 22.00 19.50 3.25
proeess *) *)
*) treating just every

seeond grid point

Tab/e 3.1: Number of vector instructions per grid line du ring one relaxation
sweep, restriction or interpolation; data for restriction and
interpolation are per grid line of the finer grid

Number of ... V-eycle W-eycle F-eycle

Relaxation sweeps immediately
after restrietion

1 2i-2 i-1

Other relaxations (finest grid) i-1 y·i y y·2

Other relaxations (eoarse grids) y-1 i-1 i-2 y·2 -2 y·i-(i-1)

Restrietions and interpolations 1 2i-1 I

Table 3.2: Number of relaxation sweeps, restrictions and interpo/ations per grid
Ievel i of a V-, W- or F-cyc/e of the multigrid method; y is the sum of
the number of relaxation sweeps before and after each coarse-grid
treatment

- 5 -

Timeper ... TA TcN Tee Tcs

Vector or message element 0.1 0.6 0.031 0.8

Vector or message, independent
of its length (start-up time) 2.25 600 1.25 60

Tab/e 3.3: firnes reqired for one unit of vector instructions or messages (in ps)

lt will be assumed that all vector instructions and messages are performed

sequentially within each parallel process. ln this (worst) case the total time T

needed for one V-, W- or F-cycle of the multigrid method is the sum

T = TA+ Tc = TA+ TcN +Tee+ T CS·

The amount of work necessary for 110, creation and termination of the processes,

and so on will not be investigated in this report. This work can be neglected for

sufficiently !arge problems.

Let T(N) be the time needed by a certain algorithm using N computing nodes.

Then S(N) = T(1) I T(N) is the speedup and E(N) = S(N) IN is the efficiency of the

parallel computation.

For simplicity, the following assumptions are made:

• The number of grid points Nx, Ny is equal in both directions, and

Nx =Ny= 2n + 1 with an integer number n.

• The number of parallel processes equals the number N of nodes and isapower

of 2, and the computational grid is mapped onto the processes by splitting it

into subgrids with the number of grid points asequalas possible.

• All boundary conditions are of Dirichlet type.

• Triads are considered tobe one vector instruction.

• The vector start-up time is assumed to be equal to the time for arithmetic

operations of about 20- 25 vector elements.

- 6 -

4. Parallelization Strategies

4.1 Domain Splitting

The parallelization is done by splitting the grid into subgrids which are assigned

to the parallel processes, with the respective CPU-times asequalas possible.

Essentially, there are two alternatives:

• division into squares or square-like rectangles (fig. 4.1.1), which means that

splitting is in both directions, or

• partitioning into stripes, i.e. in one direction only (fig. 4.1.2).

After each relaxation sweep and during the fine-to-course grid transfer

(restriction using "full weighting "), the processes have to exchange certain results

with the neighboring processes in the vicinity of their boundaries (see the

textured areas in figures 4.1.1 and 4.1.2). The efficiency of the parallelization is

essentially influenced by the communication overhead, compared with the

arithmetic work.

There are considerable differences between the two cases in the amount of work

required for this communication:

The advantages of the first strategy are that the message lengths due to the small

boundary sizes are shorter, and that the Ioad-baiance of the processes especially

during the treatment of the coarser grids is a little more favorable than in the

other case. On the other hand, splitting into stripes minimizes the number of

communications because each process has a maximum number of only two

instead of eight neighbors. Furthermore, the vector lengths are a multiple of the

vector lengths in the first case. Which of the two strategies is favorable depends

upon the parameters of the system, especially whether the nodes of the machine

are provided with vector processors, the start-up times, and the speed of the

buses.

On the basis of the parameters of the SUPRENUM system and the performance

model described in chapter 3 there is an obvious advantage for the second

strategy, as long as the size of the problern is not extremely I arge- but in that case

both, start-up as weil as message transfer times, can be neglected compared with

the amount of arithmetic work.

- 7 -

Fig.4.1.1:

Domain
splitting in
both
directions:

Every process
hasto
exchange
results with up
to 8 neighbors
for each update

Fig.4.1.2:

Domain
splitting in one
direction only:

There is
communication
with only up to
2 neighbors

(fn both figures
arrows show
communication
paths)

- 8 -

4.2 Multi~Color Relaxation Schemes

The standard relaxation method (also on scalar computers) for 9-point 20-

difference operators is the so-called "four-color" relaxation scheme. The grid is

divided into four regular subgrids "A"- "D" (figure 4.2.1), and one full relaxation

sweep consists of four partial steps, each of them treating exactly the points of

one subgrid ("color"). The advantage of this scheme isthat each "color" can be

treated in parallel because the 9-point operator requires only data of the other 3

colors (see fig. 4.2.1).

The most interesting question is now: What is (are) the best sequence(s) to

perform this four steps, out of the 4! = 24 possibilities?

One strategy is shown in figure 4.2.2: First, subgrid "A" is treated, then "D", "B ",

and finally "C". Butthis method has a serious disadvantage: if it is parallelized in

the manner described in section 4.1, and there are two parallel processes named

PA (above) and PB (below) treating the subdomain above or belowthe dashed line

in figure 4.2.2, the following communication is necessary between these two

processes: After the first partial relaxation step, PB has to send a message of

Fig. 4.2.1: Splitting ofthe grid into four "colors"

- 9 -

Fig. 4.2.2: Standard "four-color" relaxation scheme

length Nx/2 to PA containing the recomputed results in the grid points "1"

marked by darkened circles, where Nx is the number of grid points in this

direction. PA has to wait for this data required for the following computations in

points "2". After the second step, PA sends Nx/2 data to Pa, and so on. Until the

full relaxation sweep has finished, there have been 2 single messages of length

Nx/2 from PA to Ps and another 2 ofthe same length in the opposite direction.

Another possibility is shown in figure 4.2.3, which differs only slightly from the

first one. But now, there is only one message from Ps to PA with Nx data elements

after the secend and another one back after the fourth relaxation step. (This is

valid also for certain variations: either one of the "colors" 1 and 2 or 3 and 4 may

be changed.)

Compared with the first strategy, the total number of data to be transferred 1s

exactly the same - but this strategy economizes two start-up times. This is a big

advantage especially if the message lengths are very short (when treating coarse

grids of the multigrid method). ln this case, the cost of a single message start-up

may be a multiple of the cost for data transfer. As can be seen later, this start-up

costs can outweigh the other components (computations, start-ups of the vector

pipe, message transfer), particularly if W-cycles are performed.

The numerical properties like the convergence rates of the multigrid method only

differ slightly. But one has to pay attention to the weighting operator used for

the fine-to-coarse grid transfer of residuals (restriction): No problemswill appear,

- 10 -

Fig. 4.2.3: Optimized "four-color" relaxation scheme

when using the "full weighting" operator because it takes the complete fine-grid

residuals into consideration, and therefore the result will be an optimal average

ofthem. However, the "halfweighting" operator hasto be modified according to

the three colors included.

The data important for the performance estimations are listed in tables 3.1 - 3.3

(see chapter 3) and table 4.2.4.

The resulting efficiency rates are shown in tables 4.2.5- 4.2.6: above all, there is a

high increase of efficiency if W-cycles are performed. Also for V- and F-cycles an

evident speed-up can be achieved if the problem size is not "too !arge".

Relaxation Inter-Restrietion
after restr. others polation

Messagesper boundary
surface of the process 2.00 2.00 1.00 --
(standard relax. scheme)

Messagesper boundary
surface of the process 1.00 1.00 1.00 --
(optimized relaxation)

Table 4.2.4: Number of messagesperparallel process
(if the process contains j'ust one grid line, there are additional
messages, see section 4.3

- 11 -

V-cycle W-cycle F-cycle

standard optimized standard optimized standard optimized
NX relaxation relaxation relaxation relaxation relaxation relaxation

33 3.6 6.2 1.0 1.8 2.2 3.9

65 12.3 20.4 1.9 3.5 5.4 9.3

129 23.5 36.3 2.6 4.6 9.8 16.3

257 44.3 59.8 3.8 6.8 19.7 30.6

513 70.5 81.7 6.2 10.9 39.4 53.8

1025 88.7 93.4 10.7 17.9 65.9 77.4

2049 96.3 97.8 18.3 29.1 85.9 91.4

4097 98.8 99.3 3.02 44.2 95.2 97.1

8193 99.6 99.7 45.9 60.8 98.5 99.1

16385 99.9 99.9 62.7 75.4 99.5 99.7

32769 99.9 100.0 77.0 85.9 99.8 99.9

65537 100.0 100.0 86.9 92.4 99.9 100.0

Tab. 4.2.5: Efficiencies estimated for computations using one duster (16 nodes);
/eft column: standard, right: optimized (4-co/or) relaxation scheme

V-cycle W-cycle F-cycle

standard optimized Standard optimized standard optimized
NX relaxation relaxation relaxation relaxation relaxation relaxation

33 0.2 0.5 0.0 0.1 0.1 0.2

65 0.6 1 . 1 0.1 0.2 0.3 0.5

129 1.3 2.1 0.1 0.3 0.5 0.9

257 2.9 4.7 0.2 0.4 1 . 1 1.9

513 7.8 11.9 0.4 0.6 2.7 4.5
'

1025 21.2 29.5 0.6 1.1 7.5 11.8

2049 46.5 56.0 1.2 2.1 19.9 28.7

4097 72.8 78.4 2.3 4.0 44.0 55.1

8193 88.3 90.4 4.3 7.5 71.1 78.5

16385 95.1 95.7 8.2 13.9 88.1 91.2

32769 97.9 98.0 15.1 24.3 95.5 96.5

65537 99.0 99.1 26.2 38.9 98.2 98.5

Tab. 4.2.6: Efficiencies estimated for computations using 16 c/usters (256 nodes)

- 12 -

4.3 Agglomeration of Processes

Du ring the treatment of the coa rsest I eve ls of multi g rid meth ods the

communication cost may outweigh the arithmetic work because the number of

messages necessary will not decrease as the number of grid points does.

Therefore, it may be economical to accumulate the coarse subgrids of some or all

processes by having only one remaining process treating the complete coarsest

grid(s) (agglomeration). The advantage lies in the fact that in this Ievei the

communication overhead can be totally avoided. But on the other hand, the

parallelization speed-up will decrease because of the poor Ioad balancing.

The problern is to find an agglomeration scheme minimizing the communication

cost with a minimum of additional work.

Basic Agglomeration Technique

The multi-color relaxation scheme discussed in section 4.2 has one characteristic

property: if the stripes assigned to the parallel processes contain just one grid

line, the following will happen (figure 4.3.1):

During the first two partial relaxation steps, only every second process will be

busy. After they have finished, they must send their results simultaneously to both

neighbors who are waiting for these data needed for the completion of the

relaxation sweep. Also the restriction requires two messages instead of only one.

Combining the computations of all pairs of neighboring processes into only one

remaining process (figure 4.3.2) will result in no more computation time because

the remaining processes perform their additional computations in exactly the

same time they would have to wait for results in the other case. But one of the

two messages per relaxation sweep and per restriction can be economized!

On the other hand, there are two additional messages: first, the stopping process

has tosend its right hand side to the remaining one and finally receive the result.

But because a mu!tigrid cyc!e consists of at least two relaxation sweeps on each

Ievei, there will be a cut of at least one message.

Tables 4.3.3- 4.3.4 show the estimated performance data in the case y = 2; the

efficiencies are improved for all cycle types.

KZ\21

~ 13

Process is busy

Process is waiting for a message

Process is receiving a message

Process is sending a message

Fig. 4.3.1: Multiple communication and bad load-balancing,
if the stripes contain only one grid line

time

Fig. 4.3.2: Basicagglomeration technique- each black circle stands for a grid line

- 14 -

V-cycle W-cycle F-cycle

without basic without basic without basic
NX agglom. agglom. agglom. agglom. agglom. agglom.

33 6.2 7.7 1.8 2.7 3.9 5.4

65 20.4 24.3 3.5 5.1 9.3 12.1

129 36.3 41.1 4.6 6.7 16.3 20.4

257 59.8 64.2 6.8 9.7 30.6 36.2

513 81.7 84.0 10.9 15.2 53.8 59.5

1025 93.4 94.3 "i/.9 24.3 77.4 80.9

2049 97.8 98.1 29.1 37.6 91.4 92.8

4097 99.3 99.3 44.2 53.7 97.1 97.6

8193 99.7 99.7 60.8 69.5 99.1 99.2

16385 99.9 99.9 75.4 81.8 99.7 99.7

32769 100.0 100.0 85.9 89.9 99.9 99.9

65537 100.0 100.0 92.4 94.7 100.0 100.0

Tab. 4.3.3: Efficiencies estimated for computations in one duster (16 nodes);
left column: without, right: with basic agglomeration technique

V-cycle W-cycle F-cycle

without basic without basic without basic
NX agglom. agglom. agglom. agglom. agglom. agglom.

33 0.5 0.8 0.1 0.2 0.2 0.4

65 1 . 1 1.4 0.2 0.3 0.5 0.7

129 2.1 2.6 0.3 0.4 0.9 1.2

257 4.7 5.8 0.4 0.6 1.9 2.5

513 11.9 14.4 0.6 1.0 4.5 6.1

1025 29.5 33.5 1.1 1.7 11.8 15.2

2049 56.0 59.6 2.1 3.1 28.7 34.5

4097 78.4 80.1 4.0 5.9 55.1 60.8

8193 90.4 91.0 7.5 10.9 78.5 81.6

16385 95.7 95.9 13.9 19.4 91.2 92.3

32769 98.0 98.1 24.3 32.4 96.5 96.8

65537 99.1 99.1 38.9 48.8 98.5 98.6

Tab. 4.3.4: Efficiencies estimated for computations using 16 clusters (256 nodes)

- 15 -

lmproved Agglomeration Scheme

The basic agglomeration technique desribed above only prevents that the

communication overhead increases if there are processes treating a single grid

line.

But of course, there remains a rest of communication. On certain coarse grid Ieveis

this communication can add up to a multiple of the arithmetic work. Therefore,

an additional agglomeration may be suitable combining the computations - in

one or several steps- in only one remaining node.

The performance estimations have shown that the best agglomeration strategy

maps the two or three coarsest grids into one computing node and splits them

into four processes treating the next finer grid, and so on, until a Ievei containing

just two grid lines is reached (figure 4.3.5). Then the agglomeration may continue

using the basic technique.

The estimated performance data are listed in tables 4.3.6- 4.3.7. As can be seen

from these tables, a further improvement of the efficiencies can be achieved for

all types of multigrid cycles.

Fig. 4.3.5: lmproved agglomeration scheme (principle)

- 16

V-cycle W-cycle F-cycle

NX basic optimized basic optimized basic optimized
agglom. agglom. agglom. agglom. agglom. agglom.

33 7.7 10.3 2.7 6.5 5.4 9.0

65 24.3 30.5 5.1 11.9 12.1 18.3

129 41.1 47.9 6.7 15.1 20.4 28.1

257 64.2 69.6 9.7 20.8 36.2 45.2

513 84.0 86.7 15.2 30.3 59.5 67.2

1025 94.3 95.2 24.3 43.6 80.9 85.1

2049 98.1 98.3 37.6 59.1 92.8 94.4

4097 99.3 99.4 53.7 73.6 97.6 98.0

8193 99.7 99.8 69.5 84.5 99.2 99.3

16385 99.9 99.9 81.8 91.5 99.7 99.8

32769 100.0 100.0 89.9 95.5 99.9 99.9

65537 100.0 100.0 94.7 97.7 100.0 100.0

Tab. 4.3.6: Efficiencies estimated for computations in a singleduster (16 nodes);
fett column: basic, right: optimized agglomeration scheme

V-cycle W-cycle F-cycle

NX basic optimized basic optimized basic optimized
agglom. agglom. agglom. agglom. agglom. agglom.

33 0.8 0.8 0.2 0.5 0.4 0.7

65 1.4 1.7 0.3 0.7 0.7 1.1

129 2.6 3.1 0.4 0.9 1.2 1.7

257 5.8 6.7 0.6 1.3 2.5 3.4

513 14.4 16.0 1.0 2.2 6.1 7.7

1025 33.5 35.7 1. 7 3.8 15.2 18.2

2049 59.6 61.3 3.1 6.8 34.5 38.8

4097 80.1 80.9 5.9 12.4 60.8 64.4

8193 91.0 91.2 10.9 21.6 81.6 83.4

16385 95.9 96.0 19.4 35.2 92.3 92.9

32769 98.1 98.1 32.4 51.8 96.8 97.0

65537 99.1 99.1 48.8 68.0 98.6 98.7

Tab. 4.3. 7: Efficiencies estimated for computations in 16 clusters (256 nodes)

- 17 -

General Remarks about Agglomeration Schemes

ln both agglomeration techniques described above, there are two fundamental

possibilities:

• Mapping the coarsest Ieveis into just one remaining process, while the other

processes are idle.

• Solving the coarsest-level problems by ~ processes at the same time, each of

them treating the whole coarse grids.

There are no considerable differences between these two strategies with respect

to the communication overhead: ln the first case, the right hand sides must be

collected by only one process, and by all processes in the other case. This will result

in a disadvantage for the second strategy. But on the other hand, the first case

requires the distribution of the result among all processes, so that altogether

there will be nearly the same amount of work in both cases.

(lt should be mentioned that the agglomeration technique is supported by the

communication library available for SUPRENUM [22].)

- 18 -

4.4 Other Possibilities

Overlapping of Computations and Communications

The efficiency of the parallel computation might be improved a bit, if first of all

the computations in the vicinity of the boundaries are performed. After these

data have been sent to the neighboring processes, the computations continue in

the interior region.

The increase of performa nce resu lti ng from th is p roced u re h as not be

in vesti g ated.

Using Larger Overlap Areas

lt may be useful to assign a larger subdomain to each process than described in

section 4.1. The idea is that more than one relaxation step can be performed

before any exchange of data becomes necessary [1 0]. But the performance

estimations showed that the multi-color relaxation scheme (see section 4.2) is the

morefavorable way to achieve this.

The disadvantages ofthelarger overlap areas are:

• Due to the larger number of grid points there are additional arithmetic

operations, and the messages being exchanged are longer.

• The right-hand sides in the overlap areas also have to be exchanged after

each restriction.

Furthermore, a combination of both techniques is not profitable.

- '19 -

4.5 Results of Performance Estimations

The estimations discussed in this chapter show that the efficiency can be improved

by the optimized parallelization strategies. One has to distinguish between the

different types of multigrid cycles:

The efficiency of V- and F-cycles (figures 4.5.1 and 4.5.3) can be improved by an

increment of about 10- 30 % until the peakrate of 100% is reached.

When using W-cycles, a much higher increase can be obtained (figure 4.5.2). ln

this case, the rates of efficiency are up to 40% better.

The efficiency of the optimized algorithm equals that of the standard one applied

to larger problems, or to the sameproblern size using more computing nodes.

Figures 4.5.1 - 4.5.3 show the estimated differences between standard (standard

relaxation as shown in figure 4.2.3, no agglomeration; dashed lines) and

optimized algorithms.

The time components are shown in figures 4.5.4 (V-cycles), 4.5.5 (W-cycles), and

4.5.6 (F-cycles). The efficiency of the standard algorithm is determined by the

portion of the nodes of the message start-up times (TcN,2). ln contrast, the

amount of arithmetic operations (TA, 1, T A,2) and of element-wise message

transfer (especially T cN, 1 and T es, 1) is increased in the optimized version, because

more data have tobe transferred due to the agglomeration.

ln figure 4.5.7 the resulting MFLOPS-rates (million floating-point operations per

second) are presented.

- 20 -

16 computing nodes (1 duster)

100%

90%
~ ~Efficiency ~

;;...-

/ ,;

80%

70%

I
/ i

I

1/
,

I ,

60%

50%

I I
I

I I
I

40%

30%

20%

10%

0%

I
[I

I I
I

I I
/

V ~/

,;'
1<- Grid points per directio~ ...

65 257 1025 4097 16385 65537

256 computing nodes

100%

90%

80%

70%

60%

50%

40%

Efficiency ~--
~

V
/1

/j I
V/

L
,

I
I

1~
I ,

30%

20%

I I
I

I I
I

!/ /
/

10% "
0% Grid points per direct~~n ..

1025 4097 16385 65537 262145 1048577

Fig. 4.5.1: Performance increase by optimized parallelization techniques
(efficiencies for V-cycles using 16 or 256 computing nodes)

- 21 -

16 computing nodes (1 cluster)

100%

90%
A,..Efficiency ~ f--

~--

80%

70%

60%

50%

V ,~
~"

L
/ "' L /

_L

V /
lf

I I
I

L

40%

30%

20%

10%

0%

V lf

.I /

V /
/

lf

V //

/

v-1./ ,·
-""'

,;

V
~--

~-"'"

~---~-----
I---- Grid points per direct~n

...
65 257 1025 4097 16385 65537

256 computing nodes

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

'" Efficiency -
./ ~

V /~
~

/ /
)1

I
/ ..

/

V ,'
/ I"

I

V I

/ I

V y
/

/ ~,

/ ;"

~ V
~--

~,.-~-"
Grid points per directiq,n - ~---- ...

1025 4097 16385 65537 262145 1048577

Fig. 4.5.2: Performance increase by optimized parallelization techniques
(efficiencies for W-cycles using 16 or 256 computing nodes)

- 22 -

16 computing nodes (1 duster)

100%

90%
Al!lEfficiency ~ ~-----

/ /

/ f>,

80%

70%

I .I

/ I
I

L_

60% I
l>t

/_

50% I I
I

40%
I f

/ I

30% / I
I

20% / I
I

10% / /,;

/

0% ---~ Grid points per directiq_n
...

65 257 1025 4097 16385 65537

256 computing nodes

100%

90%

• •Efficiency ~ ~--/ -"'-

,V/
80%

70% I /,

II

I I

60%

50%

40%

30%

20%

10%

I I

I I
I

1/ I

I

I
I

I
II

I
.

I
~

/
/,

/

0%

..,.
Grid points per directiq,_n ~

...
1025 4097 16385 65537 262145 1048577

Fig. 4.5.3: Performance increase by optimized parallelization techniques
(efficiencies for F-cycles using 16 or 256 computing nodes)

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
513

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
513

- 23 -

Standard algorithm

1025 2049 4097 8193
Grid points per direction

Optimized algorithm

1025 2049 4097 8193
Grid points per direction

~ TcN,1 ~ TcN,2 IJ]]] T es, 1 Tcs 2 I D Rest

Fig. 4.5.4: Time components estimated for V-cycles (256 nodes)

.. 24 ~

Standard algorithm

100%

90%

80%

70%

60%

SO%

40%

30%

20%

10%

0%
S13 102S 2049 4097 8193

Grid points per direction

Optimized algorithm

100%

90%

80%

70%

60%

SO%

40%

30%

20%

10%

0%
S13 102S 2049 4097 8193

Grid points per direction

~TA,1

Fig. 4.5.5: Time components estimated for W-cycles (256 nodes)

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
513

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
513

- 25 -

Standard algorithm

1025 2049

Optimized algorithm

1025 2049

~ TcN,1 ~ TcN,2 [[I] Tcs,1

4097 8193
Grid points per direction

4097 8193
Grid points per direction

Tcs,2 D Rest

Fig. 4.5.6: Time components estimated for F-cyc/es (256 nodes)

2560

1280

0

2560

1280

0

2560

1280

0

26 -

MFLOPS

Ideal performance
1

1 Grid
without chainin91 points per

1 dimension

II 16385

~------~----~------~~~--~~4097

16 32

A ~MFLOPS

.........

--- ,p -
16 32

16 32

64 128

I I

1025

Number
256 of nodes

! I 7

Ideal performance1
1

without chainin91
I

I
I

./
....

/
/

;
/

Grid
points per

imension d

."". ...

1 6385

4097
025

64 128

Ideal performance1
1

without chainin91

64

I
I

128

I
I

~1

256 Number
of nodes

Grid
points per
dimension

16385

4097

Fig. 4.5.7: Performance (MFLOPS-rates) estimated for V-, W-, and F-cycles of the
optimized program, dependent of the number of nodes

- 27 -

5. Application to General Multigrid Methods

ln principle, the concepts described above are valid also for other (standard or

irnproved [23, 24]) rnultigrid irnplernentations on distributed-rnernory rnulti­

processors like SUPRENUM. The expected speed-up will be the better the srnaller

the arnount of arithrnetic work between two cornrnunications is. Especially, the

application of these ideas to 20 and 3D rnultigrid methods for solving the Poisson

equation (or sirnilar problerns) in standard grids is very prornising because there

are much less arithmetic operations between two cornrnunications than in the

problern described in this report.

But on the other hand, there will be additional arithmetic work: ln many multi­

grid algorithrns, "red-black" relaxation is used as the srnoothing operator, com­

bined with "half weighting" of residuals - which is sirnplified to "half injection"

because of the special relaxation scherne. ln cornbination with the multi-color

relaxation scherne, the full "halfweighting" operator requiring additional

operations and cornmunication must be used. (There is another, nurnerical,

problern: und er certain circurnstances, the weighting operator has to be slightly

rnodified in order to obtain proper results. This depends upon the sequence in

which the four relaxation "colors" are perforrned. lndeed, best convergence rates

can be obtained by "full weighting".)

These additional arithrnetic operations increase proportionally, whereas the

cornrnunication overhead only grows slowly and can be neglected for !arger

problerns.

For this reason, the rnodified relaxation scherne is even less efficient, if the

problern size is solarge that the standard algorithrn already reaches the peakrate

of efficiency.

- 28 -

6. Condusions

The efficiency of the implementation of multigrid methods on distributed­

memory multiprocessors like SUPRENUM is determined by the amount of work

necessary for communication activities required by the relaxation sweeps and by

the fine-to-coarse transfers of the residuals (restrictions).

This communication overhead obviously can be reduced by a few changes in the

parallelized algorithm, namely by simple modifications of the relaxation method

and by optimized agglomeration schemes.

Especially if W-cycles are required for numerical reasons, these algorithmical

changes result in an improved performance of the parallel computations. But also

if V-or F-cycles are sufficient, there is an increase of efficiency.

With small limitations, the ideas described above apply also to general multigrid

methods, as weil as to other distributed-memory multiprocessors.

- 29 -

7. Literature

[1] T. Westermann:
A Particle-in-Cell Method as a Tool for Diode Simulations.
Nucl.lnstr. Meth. A263 (1988), pp. 271-279

[2] T. Westermann:
Numerische Simulationen von technisch relevanten Ionen-Dioden mit der
Particle-in-Cell Methode.
Nuclear Research Center Karlsruhe, report no. KfK 4510, January 1989

[3] M. Alef, D. Seldner, T. Westermann:
Numerische Algorithmen für elektrodynamische Modelle und ihre
Implementierung auf Supercomputern.
Informatik-Fach berichte 150 (J. Hai in, ed.), Springer 1987, pp. 298-305

[4] D. Seldner, M. Alef, T. Westermann, E. Halter:
Parallel Particle Simulation in High Voltage Diodes
(Aigorithms and Concepts for lmplementation on SUPRENUM).
ln [8]

[5] D. Seldner:
Modelle zur Parallelisierung der Teilchenbehandlung in Particle-in-Cell
Codes auf MI MD-Rechnern mit lokalem Speicher am Beispiel SUPRENUM.
Nuclear Research Center Karlsruhe, report no. KfK 4495, January 1989

[6] U. Trottenberg:
On the SUPRENUM Conception (version 2).
SUPRENUM report 1, SUPRENUM GmbH, Bonn, Jan. 1987

[7] U. Trottenberg:
SUPRENUM- a MIMD System for Multilevel Scientific Supercomputing.
SUPRENUM report 2, SUPRENUM GmbH, Bonn, Feb. 1987

[8] U. Trottenberg (ed.):
Proceedings of the 2nd International SUPRENUM Colloquium
"Supercomputing Basedon Parallel Computer Architectures".
Special issue, Parallel Computing 7, 1988

[9] W.K. Giloi:
SUPRENUM: A Trendsetter in Modern Supercomputer Development.
ln [8]

[1 0] K. Solchenbach:
Grid Applications on Distributed Memory Architectures:
lmplementation and Evaluation.
ln [8]

[11] K. Solchenbach, C.A. Thole, U. Trottenberg:
Parallel Multigrid Methods:
lmplementation on SUPRENUM-Iike Architectures and Applications.
SUPRENUM report 4, SUPRENUM GmbH, Bonn, Aug. 1987

[12] M. Alef:
Effiziente Berechnung elektrostatischer Potentiale mit
Mehrgittermethoden in technischen Geometrien.
Nuclear Research Center Karlsruhe, report no. KfK 4613, 1989

- 30 -

[13] J.F. Thompson, Z.U.A. Warsi, C.W. Mastin:
Boundary-Fitted Coordinate Systems for Numerical Solution of Partial
Differential Equations- A Review.
J. Comp. Phys. 47, 1982, pp. 1-108

[14] S. Ohring:
Application of the Multigrid Method to Poisson's Equation in Boundary­
Fitted Coordinates.
J. Comp. Phys. 50,1983, pp. 307-315

[15] E. Halter:
Die Berechnung elektrostatischer Felder in Pulsleistungsan lagen.
Nuclear Research Center Karlsruhe, report no. KfK 4072, April 1986

[16] M. Alef, T. Westermann:
Unpublished report, KfK, Juni 1989

[17] A. Brandt:
·Multi-Level Adaptive Salutions to Boundary-Value Problems.
Mathematics of Computation Vol. 31 No. 138, 1977, pp. 333-390

[18] W. Hackbusch, U. Trottenberg (Hrsg.):
Multi-Grid Methods.
Lecture Notes in Mathematics 960, Springer-Verlag, 1981

[19] W. Hackbusch:
Multi-Grid Methods and Applications.
Springer Series in Computational Mathematics Vol. 4, Springer-Verlag,
1985

[20] 0. Kolp, H. Mierendorff:
Performance Estimations for SUPRENUM Systems.
ln [8]

[21] H. Mierendorff, U. Trottenberg:
Performance Estimations for SUPRENUM Systems.
Proc. UNICOM Seminaron Evaluating Supercomputers, 1-3 June 1988,
London

[22] R. Hempel, A. Schüller:
Vereinheitlichung und Portabilität paralleler Anwendersoftware durch
Verwendung einer Kommunikationsbibliothek.
Arbeitspapiere der GMD 234, St. Augustin, November 1986

[23] P. 0. Frederickson, 0. A. Mc Bryan:
Parallel Superconvergent Multigrid.
Cornell Theory Center, lthaca (NY), Technical Report, July 1987

[24] W. Hackbusch:
Robust Multi-Grid Methods.
Institut für Informatik und Praktische Mathematik der Christian-Aibrechts­
University of Kiel, report no. 8708, July 1987

- 31 -

Acknowledgement

I would like to mention the helpful discussions and support by the members of the

SUPRENUM project, especially U. Trottenberg, U. Brass, R. Hempel,

H. Mierendorff, C.A. Thole, R. Vogelsang, and K. Witsch, and by my colleagues

D. Seldner and T. Westermann.

