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ENGINEERING COMPONENTS GROW LIKE TREES 

Summary 

Biological structures consist of mechanical load carriers, which are highly 

optimized in terms of mechanical strength and minimum weight. It is demon

strated on some selected examples that a constant Mises-stress at the surface 

of the biological component can be accepted as a significant biological 

design rule. However, a general proof of this hypothesis seems to be impos

sible. It is discussed how ready-grown biological designs can be transferred 

to engineering applications. A new method of structural shape optimization 

was developed because biological 'components' do not always exist exactly 

in a shape ready to be copied for engineering use. The method is based on 

the computcr-~imulaticn cf tree gro~·Jth ~~Jhich ls perform~rl hy nsP of the 

'volumetric swelling' option or alternatively by stress-controlled thermal 

expansion in the FEM-eode ABAQUS. A ~umher of examples show that the growth 

of biological structures can be computer-simulated very well and incidentally 

the 'natural' loading case can be defined precisely. Technical applications 

show that the method is very efficient in structural shape optimization of 

2D and 3D engineering structures. It is compared with other methods of 

structural optimization found in the literature. 

BAUTEILE WACHSEN WIE BÄUME 

Zusammenfassung 

Biologische Strukturen bestehen aus Kraftträgern, die hochgradig gewichts

und festigkeitsoptimiert sind. An ausgewählten Beispielen wurde gezeigt, daß 

eine konstante v. Mises-Spannung an der Oberfläche der biologischen 'Kompo

nente' durchaus als wesentliches Konstruktionsmerkmal akzeptiert werden 

kann, wenngleich ein allgemeiner Beweis dieser Hypothese wegen der Vielfalt 

biologischer Konstruktionen wohl unmöglich sein dürfte. Es wird diskutiert, 

wie biologische Konstruktionen durch einfaches Kopieren in den Maschinenbau 

überführt werden können. Da allerdings nicht immer eine fertige, gewachsene 

'Vorlage' unter entsprechender Betriebsbelastung in der Natur vorliegt, 

wurde eine neue Methode der Gestaltoptimierung entwickelt, die auf biolo

gischem Wachstum basiert und ziemlich genau das Wachstum der Bäume mit der 

Option 'volumetrisches Schwellen' oder alternativ mit spannungsgesteuerter 

Wärmeausdehnung im FEM-Code ABAQUS simuliert. Eine Reihe von Beispielen 

zeigt, daß das Wachstum biologischer Strukturen sehr gut vorausgesagt werden 

kann und dabei auch Aussagen über die natürliche Belastung gemacht werden 

können. Technische Anwendungen zeigen, daß die Methode sehr effektiv zwei

und dreidimensionale Maschinenbauteile gestaltoptimieren kann. Das Verfahren 

wird mit anderen Methoden zur Gestaltoptimierung vergleichend bewertet. 
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PREFACE 

The method of structural shape optimization described in this report is the 

computer simulation of a procedure of biological self-optimization developed 

and improved in millians of years by evolution. 

The fate of this development is characterized by compromise-less selective 

brutality leading not only to perfectly optimized biological constructions 

but also to an effective mechanism which models the design of them: 

THE MECHANISM OF ADAPTIVE GROWTH 

1. iNTR.ODUCTiON 

Looking at biological load carriers found in animals or plants one does not 

need much fantasy to believe that they are functionally optimized in a gen

eral sense. This means that they are highly adapted to all boundary and 

loading conditions defined by their environment. In the hard competition for 

energy and living space only the most economically working construction is 

able to survive. 

Especially for mechanical components the ward 'optimum' means: 

" sufficient strength for all relevant loading cases, 

" minimum weight. 

On account of bending stresses and small defects present frequently, the 

failure of a component often starts at its surface. It, therefore, has to 

be stated that a good mechanical design is characterized by a homogeneaus stress 

distribution at its surface. Only in this case there is no point at which failure 

more probably occurs than at another po.int subj ected to lower stresses. 

Because of the possibility of three-dimensional stress states this hypothesis 

of constant surface stress has to be specified to the requirement of a constant 

Mises-stress at the surface of a mechanically optimized structure. (The Mises stress 

has been used because it gives good results in practical growth prediction 

as it will be shown later.) 

It is, of course, clear that this requirement cannot always be satisfied in 

biological structures with respect to all possible load cases which can be 

imagined. Therefore, it has to be expected that the optimized design is a 

compromise well adapted to the most important load cases and, to a lesser 

degree to the less important load cases. 
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Example: If a tree is loaded by wind mainly in a certain direction, its stem 

will ovalize in that direction producing increased bending stiffness. In the 

direction perpendicular to the main wind activities the stem will not build 

up so much wood. If the wind blew in that direction (where the stem is weak), 

the tree would, evidently, be less well adapted to that load case. 

This simple example is to illustrate that biological components are a com

promise design best adapted to the most important (e.g. most dangerous) load 

cases. For this most important load case the biological load carrier is 

expected to grow into a state of constant Mises-stress at its surface. The 

structure will at least try to avoid any localized stress peaks (notch 

stre.sse.s). This plausible mecliOIIi5m will ult.imately lead autowatically to a 

constant stress state at the surface of the biological load carrier and to 

a minimum weight design which will be illustrated by a number of examples 

in the next chapter. 

The reader who wants to know more details on the biological background should 

read in [3] on the mechanics of trees. 

Furthermore, a very good overview on adaptive growth in bony structures in 

the sense of a qualitative description is given by Currey [22]. 

In this report only some selected biological examples are described just to 

give an idea on the biomechanical background of the optimization method. 
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2. EXAMPLES OF A CONSTANT STRESS STATE IN BIOLOGICAL STRUCTURES 

2.1 TREE STEMS 

In [1] it is discussed qualitatively that trees have to grow into a slender 

shape because of the competition for light in tree groups. On the other hand, 

the tree has to be thick enough to withstand breakage due to wind loading. 

Whilst Alexander [1] discussed only the thickness of the tree butt in [2] a 

similar relation was derived in order to predict the relation between the 

tree radius and the height where this radius has actually been measured. In 

[3] it was stated that all the applicable equations are expected to depend 

thc trcc crcwn. Only for a crown localized a~ ~hR vRry top 

of an otherwise leafless tree the force of the wind can be modelled by a 

single force acting laterally at the tree top and causing a linear bending 

moment distribution downward along the stem. In that case, the requirement 

of constant surface stress along the stem would lead to the equation 

(1) 

which was found experimentally in some cases [2]. Of course, for other types 

of trees as Sitka spruce-like trees with crowns distributed nearly all over 

the stem length a different relation has to be expected to hold. 

However, in a qualitative way the adaption of the tree stem diameter to wind 

loading is evident to everybody. The butt of the tree where highest bending 

moments are acting is thickest and the very top of the tree has a thickness 

tending toward zero as does the bending moment (Figure 1). The same holds 

for the branches, which are thickest near the stem, agairr where the highest 

bending moments due to wind loading and in this case also due to gravity are 

acting. The next question is how the joint between the branch and stem is 

optimized to avoid notch stresses caused by localized redirectioning of the 

force flow. 

2.2 BRANCH-STEM JOINTS 

Figure 2 shows a Finite-Element calculation using a simplified plane-strain 

model [4,5]. The upper side of the branch is most exposed to the danger of 

failure. Therefore, the main tensile stresses along its contour in the range 

of the joint are plotted. The load applied consists in downward bending of 

the branch and bending of the stem with different bending moments. It is 

amazing that the stress distribution is not much effected by the bending of 
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the stern. In all cases a nearly constant norrnalized stress without any notch 

stresses can be seen which indicates a perfect shape optirnization of the 

joint. Sirnilarly designed joints rnay be seen also in bony structures as for 

exarnple in deer antlers [6]. 

2.3 RED DEER ANTLERS 

In Figure 3 sorne antler spikes are shown with the FEM-structures related and 

again the tensile stresses along the upper contour line of the spike joint. 

Sirnilar to the branch joints the antler design is very well shape optirnized 

with respect to bending loads and, as branches have been, the spikes are not 

optirnurn designed for axial tension. These results indicate that shape 

adaption has to focus on the rnost irnportant load case. It is interesting that 

the antler spikes are best adapted to a lateral single load acting at the 

end of the spike and less adapted to distributed loads acting along the 

spike. This is also plausible in the sense of a design resistant to the warst 

load case. 

2.4 THE BAUD CURVE- A BIOLOGICAL DESIGN RULE 

Already in 1934 an exarnple of ernpirical shape optirnization has been published 

[7] with the transition contour line of a bearn with narrowing cross-section 

recornrnended for tensile and bending loads, respectively. The rnethod used 

[7] was rnore or less ernpirica,l because a celluloid strip was filed by hand 

and the stress state was checked continuously with respect to its local 

hornogeneity. Finally, a state of hornogeneously distributed stresses could 

be verified by optical rnethods. Two different contour lines were found cor

responding to tensile and bending loads, respectively (Figure 4). Whilst Baud 

[7] carried out his investigations for reetangular bearn joints only, it was 

shown in [5] that slanted joints of bearns, hollow bearns and other variations 

of the original 'Baud-curve' do not disturb very rnuch the shape optirnized 

state of the design. The rnain requirernent is that the transition contour line 

is at least partially described by a Baud-curve or consists of two rnirrored 

Baud-curves. A nurnber of exarnples are shown in Figure 5. With this knowledge 

it is rnore than plausible to look into the nature for designs characterized 

by original [7] or rnodified [5] Baud-curve contour lines. Going back to Fig

ures 2 and 3 it can easily be checked that branch joints as well as antler 

joints obey the law of a rnodified Baud-curve design [5,6]. 
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What other behaviour should be expected? If it is true that biological 

structures grow into a shape without notch stresses and the Baud-curve [7] 

and their variations [5] are such curves, it is plausible enough that the 

contours are at least very similar to each other. Of course, it is impossible 

to prove the validity of this 'Baud-curve' hypothesis in a general way for 

all joints grown in nature. However, in Figure 6 it is shown for a numher 

of examples that the modified Baud-curves can be found in a wide variety of 

biological specimens. Even the larger bones of different mammals are char

acterized by this design. In Figure 7 a plot of the Mises-stresses acting 

in a human tibia under physiological loading shows an excellent constant 

stress behaviour of this design. Although the Baud-curve actually seems to 

bö a geueral desigTI rulc for biological b2nms with n3rro~ing cross=8cctions, 

the reader should be careful not to make a mistake when very short beams are 

considered. There is at least one other design law for the case of pure 

bending which will be the subject of the next chapter. 

2.5 THE LOGARITHMIC SPIRAL- ANOTHER BIOLOGICAL DESIGN RULE 

Short beams loaded by pure bending and clamped at the opposite end are 

exposed to steep gradients of bending moment if a single lateral force is 

acting at the free end of the beam. This gradient of the bending moment is 

the reason why a Baud-curve design cannot be expected for short beams. In 

[8] it was stated that some biological structures growing into a curved beam 

design are characterized by the logarithmic spiral which could be verified 

here (Figure 8). Although this statement in [8] was a great success and a 

welcomed first step, nothing has been said in [8] about the mechanical reasons 

for the formation of this shape. Therefore, the design of a tiger claw as 

one typical design characterized by the logarithmic spiral was analysed by 

FEM-calculations [9]. The result is shown in a self-explaining way in 

Figure 9. The isolines of constant Mises-stresses run very closely parallel 

to the border of the claw. (Because of the uni-axial force flow the Mises 

stress is practically identic with the main normal stresses on the tensile 

side of bending.) It should be noted that the FEM-model was three-dimensional 

regarding the 'profile' of the claw (Figure 9). However, no effort was made 

to simulate the effect of the internal material of the U-shaped cross-sec

tion, which is expected to carry some part of the load, too. On the other 

band, the horny part of the claw seems to do the main job because of the 

load-adapted fibre orientation in this part. It should be admitted that near 

the clamping of the claw reality is probably not simulated very well. How

ever, looking at the stress distribution in the part of the claw situated 
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between its tip and 3/4 of its length from the tip, one should observe a 

stress distribution very close to reality. This example is another proof of 

the validity of constant stress hypothesis in living structures. 

2.6 RESTORATION OF DISTURBED STATES OF CONSTANT STRESS IN BIOLOGICAL 

STRUCTURES 

2.6.1 WOUND HEALIN·G IN TREES 

In preceding chapters it was argued that trees always try to grow into a state 

u[ L:uu::; LäuL ::; LLe::;::;. Iu uLheL wunl::;, Lhe LL·ee i::; feeliug well .LL .1.1.. .LHL:uLpu

rates with a constant stress distribution at its surface. If by accident or 

on purpose the tree is wounded and in this way some notch stresses are caused 

at the border of the wound (notch), it is plausible that the tree will hurry 

to restore its original state of homogeneaus stresses. This procedure is 

called wound healing and it is fastest at places where highest stress peaks 

are found. In Figure 10 the normal way of wound healing is shown for branch 

holes. The notch stresses due to redirectioning of the force flow are highest 

beside the hole, and indeed at these places wound healing is fastest 

[10, 11]. This example will be computer-simulated later-on when the compu

ter-aided shape optimization is introduced. More details on normal healing 

are given in [3,10], where also notches are considered with special notch

stress distributions related to more sophisticated notch shapes (triangular, 

etc.). 

In [11] another proof of the stress stimulation of wound healing is given 

for a London plane (Platanus acerifolia) whose branch holes healed at a 

certain angle with respect to the vertical stem because the flow of forces 

was slanted in the same way as the main stress trajectories indicate in 

Figure 11. All this suggests that wound healing in trees is the restoration 

of the state of constant surface stress. 

2.6.2 REDUCTION OF CONTACT STRESSES BY ADAPTIVE GROWTH 

It has been qualitatively discussed that wound healing in trees reduces the 

notch stresses beside a wound (notch) and restores the state of constant 

stress which is believed to be the most general design rule [3] in biological 

load carriers. However, this ideal state cannot be disturbed by wounding 

only, but also by applying a mechanical contact load as the stone in Figure 

12a does. As in the case of wound healin~, the tree reacts by adaptive growth 
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in order to reduce the localized stress peak. This adaptive growth leads to 

an increase in the contacting area and in this way it reduces the contact 

stress because the contact force is not altered [12]. The stress-reducing 

effect of this 1 overgrowth 1 is calculated by FEM [12] and a summary is given 

in Figure 12b. The stress reduction is evident. In Figure 13 another example 

is shown where the same mechanism was acting successfully. 

2.6.3 FüRGOTTEN TREES ATTACHED TO STAKES 

When a tree is attached to stakes in order to limit movements under wind 

lcading l~ fcrgctten, the tree adapts 

(Figure 14). It is obvious that increased stresses have to Le expected at 

the place where the stakes are attached to the tree because at those points 

the effective cross-section of the whole construction 1 jumps 1 from the 

stake-tree composite to the stem alone. Although the shape of the adapted 

tree in Figure 14 looks a little curious, there is no doubt that the tree 

has grown into this optimized shape in order to restore the state of constant 

stress along the whole stem. If these stakes are removed the tree feels 
1 irritated 1 agairr by the presence of a new notch just below the increased 

girth. This notch has been unactivated before by the presence of the stakes. 

The tree will grow with the time into its 1 normal shape 1 as any other 

unsupported tree. That means it will adapt to its new unsupported situation. 

2.6.4 BONY PLUGS BELOW THE SHAFT TIP OF HIP ENDOPROSTHESES 

The force flow running downward from the hip joint through the stem of a hip 

endoprosthesis is redirected at the deepest point out of the stem into the 

bony surrounding. This may lead to local stress peaks and, therefore, to an 

increase in wall thickness of the cortical bone just below the prosthesis 

stem and a diminution of the proximal cortical bone, which is to reduce these 

notch stresses (Figure 15). It is obvious that this example is equivalent 

to the adaptive tree growth in Figure 14 except that the tree stem was 

externally supported by stakes whilst the bone is supported ( or better 

unloaded) internally by the stem of the prosthesis. The common behaviour is 

that both biological 1 composite 1 slructures react by growth to restore a fair 

distribution of internal stresses disturbed by these supporting effects. 
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2.7 FINAL REMARKS ON THE CONSTANT STRESS DESIGN RULE 

A number of different biological structures have been introduced to the 

reader in order to give him a 1 taste 1 of the general validity of the 

hypothesis of constant surface stress. However, a general proof seems to be 

impossible to the author 1 s knowledge. On the other hand, this proof is per

haps not really necessary. Without doubt, a good mechanical design has to 

satisfy the requirement that no part of it is exposed to higher stresses and 

by that way prone to the danger of failure than any other part. Only in this 

way pre-defined points of failure can be avoided which are characteristic 

of most misconstructions. In this sense, the present findings regarding a 

t.:uu::sLe:mL ::surface-stress hypothesis for biological structures are jus1: what 

every engineer would have expected from an optimized structure grown into 

its own perfection in a process of evolution extending over thousands of 

years. Knowing now that biological components are mechanically optimized, 

it is an obvious step to copy these living designs. This method is known by 

the name 'bionics' and has been very successful in the past. However, it is 

limited to constructions which are readily available in nature and should 

be known to the designer who looks for them. 

Another more general way would be to improve a first design proposal by 

systematic optimization. This will be considered in the next chapters. 
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3. METHODS OF STRUCTURAL SHAPE OPTIMIZATION KNOWN FROM THE LITERATURE 

Many attempts of structural optimization are reported in the literature and 

it would take a lot of time to review all of them. Therefore, this chapter 

will be restri.cted giving just an impression of what other authors are doing. 

There are two works which should be mentioned, because they come very close 

to the method proposed in this paper. Umetanu and Hirai [13] in 1975 also 

tried to copy biological growth for structural optimization purposes. Huiskes 

et al. [14] rediscovered that method or even developed it independently 
,--.J +-1-. ~-"-.-.+
W..L\...U_VUL. hav·i:ng knowlc.dgc. ,......f= r1 ~1 

......,...._ L ..L..., J • Both procedures consist 

FEM-run whereby according to a distribution of stress components or elastic 

energy densities [14] the surface of the design proposal is shifted normal 

to the initial surface. This will lead to an improved design which may be 

subjected to another elastic analysis and so on. In both references [13,14] 

some modifications are discussed which are not related very much to the 

present paper and, therefore, they are not outlined here. As the reader will 

see later-on, the papers are close to the present method. However, they still 

have some disadvantages. 

In both papers [13, 14] growth is proceeding in a direction normal to the 

surface of the design proposal. This means that the normal vector has to be 

known and, hence, to be computed. This alone is very difficult for the case 

of 2D- and 3D-structures. Although it might help to cover the contour line 

of 2D-structures with 'soft' beams and the surface of 3D-structures with 

'soft' shell elements which calculate their own normal vectors by themselves 

in most FEM-eades, the attachement of these additional elements means a 

non-negligible effort and frustration to the engineer who has to do it. This 

problern does not occur in our method proposed later-on and is one of the 

improvements with respect to [13,14]. Another disadvantage of [13,14] isthat 

the 'growth step' has tobe programmed individually in a second program in 

addition to the FEM-code. Additional users of these methods have to buy new 

'growth'-programs or write them themselves. None of these two possibilities 

makes these methods more attractive. 

Jancu and Schnack [15] try to obtain a homogeneaus state of Mises-stresses 

on the surface of the structure considered which is perhaps Lhe best crite

rion of structural shape optimization. By use of small perturbations of the 

contour line of the design proposal it is tried to reduce the maximum Mis

es-stress and to increase the minimum Mises-stress in order to get a more 

homogeneaus Mises-stress distribution. This method also requires compatible 
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software packages in addition to the FEM-program. Although the method is 

successfully verified on a nurober of 2D-examples, its effective application 

to 3D-structures seems to be difficult. The only 3D-example [15] known to 

the author which was treated with this method was not very convincing. After 

a nurober of 24 iterations the stress magnification factor was reduced from 

3.36 to only 2.70, whilst with the method presented in this paper the maximum 

Mises-stress in a 3D-structure was reduced down to SO% in one cycle only. 

However, in the Iiterature not many other papers have been found where shape 

optimization of a 3D-problem is even reported. A method, which is frequently 

reported, is called 'decomposition method'. In [16] it is used for shape 

optimization. Eschenauer et al. [23] are able to report a 1arge nurober of 

successtul examples. They did not focus on shape optimization alone as dor1e 

in this paper. 

The decomposition methods admitted there have also a nurober of disadvantages, 

because the procedure consists in a decomposition of the main structure into 

a number of substructures which are optimized more easily. By the way the 

'shape functions' (splines) describing the varied contour line are of a 

simpler type. However, one disadvantage is that the choice of the shape 

functions influences the optimized shape. Because the selection of these 

shape functions is an 'individual decision', it has little to do with the 

physics of the problem. Other weak points of the method admitted in [16] are, 

for example, the decreasing convergency of the method with increasing cou

pling of the subsystems and the fact that the sum of all the 'suboptimums' 

is in general not the global optimum. It is very doubtful to the author 

whether the method can be managed with reasonable effort in case of 

3D-structures with a number of interacting notches. 

Other methods of shape optimization have been published. However, the 

interested reader will find a more general review for example in [17]. 

In this paper a new type of shape optimization will be described which seems 

to be useful, especially for practical applications. 
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4. COMPUTER AIDED SHAPE OPTIMIZATION (CAO) BASED ON BIOLOGICAL GROWTH 

In the preceding chapter a nurober of optimization methods have been reviewed. 

All of them seem to be able to optimize frame works or some of them also 

2D-structures, with some effort. However, to the author's knowledge, none 

of them has shown to be appropriate for optimizing 3D-shapes with reasonable 

effort. A more effective method was, therefore, looked for which should work 

well in both 2D- and 3D-shape optimization with acceptable effort and which 

would not require much individual and problem-specific programming and 

'adjustment' beyond the FEM-mesh generation, which is admitted tobe indis

pensible if the FEM is used. 

As we have seen that biological structures self-optimize in a perfect way, 

the suggestion is not far-fetched that the mechanism of biological growth 

itself could be simulated as a procedure of optimization. Furthermore, it 

can be expected that the biological structures optimize themselves in an 

effective way. ln other words, not only the product of biological optimization is opti

mum, but also the way to achieve it. 

Let us have a look at what happens if a tree is growing (Figure 16). Only 

the outermost growth ring adapts by reactive growth to external loading. This 

mechanism of tree growth can be computer simulated by the following steps 

[4,19,20,21]: 

1. Generate a design proposal (FEM-mesh) of your mechanical component to 

be optimized. 

(If this isabad misconstruction you will need more computer time!) 

2. Cover its surface with a thin layer of finite elements having the same 

thickness everywhere and having a Young's modulus which is very small 

compared to the rest of the structure below this layer. This surface 

layer is equivalent to the outermost growth ring in trees. 

3. Perform an elastic FEM-run from which you will get the distribution of 

the Mises-stresses in the structure and, by the way, also in the soft 

surface layer. 

4. üsing the option of 'volumetric swelling' in ABAQUS [18], the soft surface 

is allowed to swell now according to the law for the volumetric strain 

rate: 

(1) 
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where k constant. (If no swelling option is available in your 

FEM-program, this step can also be performed by heating up the surface 

layer, with the temperature distribution set formally equal to the Mis

es -stress distribution calculated in step 3. In this case the heat 

expansion coefficient in the soft surface layer has to be non-zero whilst 

the stiffer material below has a zero coefficient ofthermal expansion.) 

5. The irreremental displacements due to swelling or thermal expansion cal

culated in step 4 are now scaled up by a 'reasonable' factor in order 

to get visible displacements which are added to the nodal point coordi

nates of the undeformed mesh. 

6. Now the disturbed mesh is corrected in order to restore everywhere the 

same thickness of the thin soft surface layer. 

7. This improved mesh will be the input for another elastic run starting 

again at point 3 of the procedure. 

8. The optimization has to be stopped if design limitations derived from 

functional reasons are reached or if all notch stresses have completely 

disappeared which would be the ideal case. 

9. Finally an optional elastic run can be performed in which the Young's 

modulus of the surface layer should have the same value as the basic 

material below. This run allows to assess the stress reduction by shape 

optimization in comparison to the design proposal. 

The procedure described here is sketched schematically in Figure 17. 

One important advantage of the method seems to be that no additional effort 

has to be made for 3D-shape optimization beyond the 3D-mesh generation. The 

success and efficiency of this CAO-method will be demonstrated below by a 

nurober of examples. 
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5. APPLICATION OF THE NEW CAO-METHOD TO BIOLOGICAL AND ENGINEERING 

STRUCTURES 

In order to facilitate understanding of the examples, the non-optimized 

structure is arranged on one page tagether with the optimized design, and 

the related stress distributions are plotted. This will illustrate in a very 

condensed way the success of the optimization. A text description is also 

given. Thus, the examples are arranged in a self-explaining way (Figures 

18-36) and there is no need for further text description in this chapter. 

ü. COf~CLUSiOt~S 

The main results of this study can be summarized in the following statements. 

• Bio1ogical 1oad carriers se1f-optimize by growth, during that process 

they always try to adapt a state of constant stress at their surfaces. 

This is the optimum mechanical state with minimized danger of failure 

and fairly distributed stresses, where no point of the surface is loaded 

higher than another. 

• If this optimum state is disturbed in trees ( or bones) they try to 

restore the optimum state by attachment of more material (e.g. faster 

growth) at overloaded points. 

• In trees only the outermost growth ring adapts to mechanical loading by 

reactive growth. 

• This behaviour can easily be computer-simulated by use of the option of 

'volumetric swelling' or by stress-controlled thermal expansion in the 

FEM- code ABAQUS [ 18]. 

• Design proposals of engineering components can be improved by growth as 

a tree would grow if it had the shape of the design proposal. 

• The surface of a design proposal of the structure to be optimized has 

to be covered with a soft surface layer which is allowed to swell 

according to the distribution of Mises-stresses taken from an earlier 

elastic calculation. The related swelling law (growth law) is 

This procedure can be repeated, if necessary. 
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• The procedure of optimization is either completed if an entirely homo

geneous stress state is reached or if further growth is limited by 

dimensional restrictions derived from functional reasons. 

• The method works well for 2D- and 3D-structures. It is appropriate to 

reduce notch stresses even in complex structures with many interacting 

notches. 

• If the 3D-structures consume much computer time even one growth cycle 

can lead to a striking reduction of notch stresses. 

"' The new CAO method is a very helpful tool in practical design improvement. Fur

thermore, it is a powerful method for the 'design of notches without notch stressEs' 

successfully tested on a large number of 20- and 30-examples. 

"' CAO can also be used for studies in biological structures in order to predict growth 

or to characterize the type of natural loading which is related to the special shape 

of the grown structure. The question to be answered in this case is: Which external 

(natural) loading stimulates the design proposal to grow into the shape of the real 

biological structure? 

7. Advantages of CAO 

• CAO as a shape optimization method is as generally applicable as the FEM 

itself. 

• You need an FEM-program and nothing else. 

" No problem-specific modifications of the method are necessary. Just 

generate your FEM-mesh with the important soft surface layer. 

• CAO works well for 2D- and 3D-structures even if there are many inter

acting notches. 

• Even a cheap one-cycle-optimization can result in significant notch 

stress reduction. 
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D = D(h) 

Fig.1 Thickness of tree stems varies along the stem according to the 
variation of the bending moment due to wind loading 
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Fig.2 FEM-analysis of a branch stem joint shows excellent shape 
optimization for bending Ioads by growth because any notch 
stress peaks are avoided 
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shape optimization with respect to bending Ioads 

- 23 -

s 



bending curve 

tensile curve 

Fig.4 The original Baud curves [7] for tension and bending 
Imids are notches without notch stresses 
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Fig.5 Modified Baud curves after [5] 
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Fig.6 Examples illustrating the existance of the Baud curve in 
different biological structures 
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tiger black bear 

Fig.8 Same biological designs characterized by the contour line of the 
logarithmic spiral 

nx 
LI 

1.00 

HOO.<J. VOMJrScs s mcss 
t<CSUI.T'S Wt:RE C'.LCVU.rCD 

Uoi.K - 557. 11/H - I :J. I 

F 479. 
E 401. 
0 324. 
c 246. 
B 168. 
A 90.7 

Fig.9 FEM-analysis of a tiger claw showing very good constant-stress
behaviour of von Mises stresses along the logarithmic spiral 
contour line 
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Fig.10 Normal wound healing of br<;~nch holes ~n trees is most active at 
places of highest notch stresses 
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Fig.11 The long axis of partially healed wounds coincides weil with 
main stress trajectories also slanted to the vertical axis 
(Photo: W. Eisele) 
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Fig.12a A heavy stone contacts a tree causing high localized contact 
stresses which are reduced by 'overgrowth', e.g. by increase 
of the contacting area. The main stress trajectories coincide 
with the axial direction of growth rings in order to avoid shear 
between them. 
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Fig.12b Reduction of maximum contact stresses. by increase of the 
contact area due to adaptive growth 
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Fig.13 'The Baizer Lord' as a spectacular example of 'overgrowth' 
reducing contact stresses (Photo: Reinhard) 
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Fig.14 Adaptive growth of a tree tries to compensate increased stresses 
above 'forgotten' supporting stakes. 
Note the increase in growth ring width above the notch! 
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Fig.15 Formation of a bony plug just below the stem of a hip endoprosthesis 
in order to compensaie iocaiiy increased stresses 
a) Global view 
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b) Details of other prosthesis tips surrounded by bony plugs 
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increased 
ring thickness 

Fig.16 ln trees only the outermost growth ring is active and only 
this ring is able to react to external Ioads. 
This tree was wounded and the wound acts as a notch inducing 
notch stresses at its border. Only growth rings produced after 
the time of wounding react by adaptive growth. 

Design proposal ~ Elastic FEM-calculation 

1_ 
;> Swelling (growth) especially at 

highly stressed regions 

\7 
Elastic calculation with 

"growth-improved" ~ Mesh correction 
FEM-structure 

\7 

I Optional FEM-control-run 
to assess the degree oi 

optimization 

Fig.17 Flow chart of the CAO-procedure 
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Fig. 18 

Framewerk tree 

This beech tree found near Lyon la Foret in France has formed a lateral bridge 

(framework) from one stem of a tree fork to the other. The branch that is 

forming the bridge was completely integrated in the other stem. The edges 

(notches) of the joint· are smoothed by adaptive growth. Most impressive at 

first sight is that the left stem only increases its girth above the bridge. 

No further growth can be seen within the framewerk below the lateral joint, 

because there are reduced stresses which do not stimulate further growth. 
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Fig. 19 

H-shaped tree 

This tree had a fate similar to that of the framework tree described before. 

The left internal notch, however, has also healed into a 1 rounded 1 contour 

(photo) which could not be computer simulated. Looking at the saw cut (photo) 

the reason becomes clear. At first the tree in reality also healed into a 

narrow peak-like notch (see growth rings!) whose surfaces then touched each 

other, came into contact, were 1 welded 1 tagether and made the contour 

smoother. This could be simulated only by use of interface elements which 

hAuP nn~ been used here. Looking at the tree growth rings ral3tcd to thc 

stage of integration of the bridging branch the agreement between theory and 

real growth is found to be satisfactory, also at that critical point [21]. 
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Fig.20 

Healing of branch holes 

When a branch is pruned at its base it will dry or be destroyed by decay. 

Beside the wound notch stresse<; will occur even if the branch 1 hole 1 is 

filled with the sturnp of the branch. Tensile stresses are acting at the 

periphery of a tree. The tree tries to restorate a state of constant stress 

which had been disturbed by the wound. Therefore, wound healing is fastest 

at places of highest stresses, leading to the vertical spindle shape which 

can be seen on the photo. 



Circular hole in tensile plate growing into a spindie shape 
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Fig.21 

Hole in tensile plate kept in circular shape 

If a hole is not allowed to heal into a spindle shape as discussed earlier 

for branch holes, the solution is to allow growth out-of-plane. This will 

lead to the formation of some ridges directed parallel to the externally 

applied tension. The force flow stopped at the upper and lower borders of 

the hole is now redirected into the ridges where lower or no notch stresses 

are caused because of the increased volume. The photo shows that this phe

nomenon can be seen also at branch holes with old brauch stumps situated low 

at the stem. The optimization has been clone in a very cost-effective way by 

a one-cycle run. 
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Tensile plate with circular hole 
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Fig.22 

Claw of a tiger 

The tiger claw has the shape of a logarithmic spiral. In order to check its 

degree of shape optimization a design proposal was made with two intersecting 

circular contours, which lead to high notch stresses. After application of 

CAO the claw contours are logarithmic spirals as expected having a much more 

homogeneaus distribution of Mises-stresses along the contour lines. 
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Fig.23 

Bending bar with narrowing cross-section 

The design proposal agairr has a narrowing cross-section described by a cir

cular contour line which leads to a stress magnification factor of 1. 8. 

Shape optimization successfully reduces the notch stresses. The notch con

centration factor k = ojoa 1 is decreased down to 1.1. The design is nearly 
PP · 

identical to the Baud curve [7] which may be found frequently in nature in 

both the original and the modified versions (Figures 4, 5, 6). 
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Fig.24 

Tensile bar with narrowing cross-section 

The FEM-structure is only half of the real structure because of symmetry. 

The design proposal has a quartRr circle as transition contour line leading 

to a magnification of applied stress by the factor 1.7. This is reduced to 

1.1 by shape optimization. 
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Fig.25 

Tensile strip with a knee 

The upper part of the design proposal is homogeneously stressed by the axi

ally appljed tensile stress. The lower part is subjected to the same axial 

force superimposed to some bending stresses caused by the lateral lever arm. 

It is plausible that the lower half of the structure increases by growth, 

where especially the initially circular-shaped lower notch is smoothed where 

the highest stress acts in the design proposal. 
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Fig.26 

Bending bar with a knee 

The same design proposal as used for the tensile strip before has been loaded 

by a constant bending moment at the upper end. Because in this case the 

bending moment is constant over the entire length, the width of the optimized 

design is the same everywhere. The outermost parts of the knee are nearly 

unloaded and, therefore, they shrink leading to this smoothly curved design 

with constant axial stresses at the surface. 
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Fig.27 

Bending bar with a knee loaded by a lateral end force 

The design proposal was defined to be thinner at the top because of the 

vertical gradient of the bending moment. Again, the outermost parts of the 

knee shrinked leading to a smoothly curved upward narrowing optimized design 

of nearly constant surface stresses. 

- 56 -



laterally loaded strip with knee 

non-optimized 

F 
0 0 

Mises 

.5 1.0 1.5 2.0 2.5 

optimized 

.25 

non-optimized 
.50 

s 

.75 

s 1.Q....L_ _ ___L_ ___ ___,__ ___ _j 

v. Mises-stress distribution 

non~optimized 

- 57 -

I 2.40 
2.18 
1.96 

I 1.75 
1.53 

. 1.31 
1.09 
.873 

I .655 
R .436 
I .218 
B o 

optimized 

FEM: Lothar Harzheim 



Fig.28 

Frame 

The quarter structure of a frame, which was designed for an autoclave, had 

sharp notch stresses at the circularly designed notch. The frame is partially 

loaded by internal pressure. In a first shape optimization the shape of the 

corner was improved which led to a significant notch stress reduction down 

to nearly 50%. In a second step, the right part of the design was removed 

partially in order to reduce weight, because it was obviously not load 

bearing. The stress distribution remained practically unchanged by weight 

reduced notch stresses. 

- 58 -



Frame 

Ci c. 
"' "' ' 

2.0 
optimized and 
reduced weight 

opt!m!zed 

' 

...---

I "' 1.oG:--L----o-....... J..-

~ 
'---1-non-optim 

0.0 

-1 .0 LJ..J... ................... .L.L.o... .................. L.,LL .................. .........,.Lu., ................... L.LJ... ........ u..L.u..J..L..L..I.JU..U.....:I 
0. 20. 40. 60. 80. 100. s 120. 

non-optimized 

I 492. 
459. 
427. 
394. 
329. 
296. 
264. 
231. 

Mises-stress distribution 

optimized 

- 59 -

optimi z 
I I 

optimized and 
reduced weight 

FEM: Gabriele Korseska 



Fig.29 

Prosthesis surface with spikes 

Cemented prosthesis designs are being replaced at present by cementless 

prosthesis designs which call for a certain roughness to improve bone 

ingrowth in order to minimize micro-movements and loosening. However, non

optimized roughness may be accompanied by high notch stresses. The goal was 

the design of well-defined roughness, where spikes are separated from each 

other by grooves. But, of course, grooves are notches. However, these notches 

have been shape optimized here to become notches not causing notch stresses 

which allow good bone ingi·owLh and, aL Lhe ~ame Li.me avui.J [aL.i.gue fallu.c.;:,, 

because all notch stresses are reduced by shape optimization based on 

biological growth, e.g. application of CAO. 
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Fig.30 

Chain link 

The traditional chain link (1) is as old as it is disadvantageaus because 

of the magnification of wear acting, unfortunately, just at the place where 

the highest notch stresses are active (sketch below!). In a first approach 

the CAO was not used. Just the notch was separated from the wear zone giving 

an intermed1ate design U) still having notch stresses, but they are well 

separated from the action of the wear zone. Afterwards, this design (2) has 

been improved by growth. By the way, the notch stre~s completely disappeared 

leading to design (3). 

maximum stress 
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Fig.31 

Crane hook 

This crane hook is loaded by hole bearing, e. g. Hertz' contact stresses 

inside. The increase by growth .i.s very much limited from functional reasons, 

because the hook has to bear the 'shadded' cylinder. However, even this small 

amount of well-defined attachment of more material at the very right places 

reduced the notch stresses. For further improvements growth out of plane is 

recommened. 
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Fig.32 

Rubber bearing 

A rubber bearing is compressed between two conical steel tubes. 

Due to the large deflections locqlized squeezing causes a folding notch which 

may lead to failure during the service. It is no accident that this folding 

notch is formed just at that place where even for small deformations a 

localized stress peak occurs. Therefore a linear elastic optimization was 

carried out to reduce this stress peak which was successful after four cycles 

of optimization. In a following test run with rubber elements and large 

displA~ements no squeezing fald did accur furthcrmcrc. ThiG GhoWG that the 

squeezing fold was a consequency of the localized notch stresses which 

occured even for small displacements. 
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Fig.33 

Pipe with narrowing wall thickness 

A pipe has a wall thickness which changes locally in a flat circular manner. 

Although the tram;ition radius was very large there is a notch stress in this 

area which could be potential dangeraus under service conditions. 

After optimization the notch stress peak is nearly completely reduced. The 

example shows that even circular notches which seem to be smooth are worth 

the effort of structural shape optimization. 
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Fig.34 

Vertebral arch 

The vertebral arch is a gate necessary for the nerves leaving the spine at 

this place. However, such a deep notch at a highly loaded element of the spine 

looks like sabotage in a first impression. Therefore it was checked how the 

nature has fine-tuned the shape of the notch in order to reduce notch 

stresses. Even a rough 2D-FEM-model shows that the non-symmetric optimized 

shape of the vertebral arch agrees well with a photo of the real design. This 

illustrates that not only tree structures but also bony constructions can 

be pr~dictcd and asscsscd by usc cf thc CAO~mcthcd. 
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Fig.35 

Triangular window cut into a tree 

Trees restorate the optimum state of homogeneaus surface stress fastest at 

places with mqximum strcss peaks disturbing the optimum. This triangular 

wound was cut into a tree and has the highest stress peak at the left corner 

where fästest wound healing can be seen in both the photo and the CAO-pred

iction showing good agreement. 
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Fig.36 

Fish-shaped window cut into a tree 

Here the highest stresses are again at the left narrow notch which heals 

fastest as it can be seen as well at the photo as at the CAO-prediction. The 

main difference to the triangular window shown before is that the maximum 

callus formation is on the symmetry axis also at the right side of the window, 

whilst the triangular notch heals faster at the very top and the bottarn of 

the right border of the wound and it heals more slowly at the middle of the 

right wound edge according to the stress distribution different from the fish 
!- ··-- --- "--- -L _L ---- L ~ --·-
~y}Jt 11UL,.L..U .::tllVWU Ht:..Lt:o 
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