The Karlsruhe 4π Barium Fluoride Detector

K. Wisshak, K. Guber, F. Käppeler, J. Krisch,
H. Müller, G. Rupp, F. Voß
Institut für Kernphysik Hauptabteilung Ingenieurtechnik

$!$
\qquad

KERNFORSCHUNGSZENTRUM KARLSRUHE
 Institut für Kernphysik
 Hauptabteilung Ingenieurtechnik

KfK 4652

THE KARLSRUHE 4π BARIUM FLUORIDE DETECTOR

K. Wisshak, K. Guber, F. Käppeler, J. Krisch, H. Müller, G. Rupp, and F. Voß

Als Manuskript vervielfältigt
Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH
Postfach 3640, 7500 Karlsruhe 1
ISSN 0303-4003

ZUSAMMENFASSUNG

DER KARLSRUHER 4π BARIUM FLUORID DETEKTOR

Es wurde eln neuartiges Experiment aufgebaut, um Wirkungsquerschnitte fur Neutronenelnfang im Energleberelch von 5 bls 200 keV sehr genau zu bestimmen. Der Karlsruher 4π Barium Fluorld Detektor besteht aus 42 Kristallen in der Form von funf- und sechseckigen Pyramidenstumpfen. Sie bllden eine Kugelschale mit 10 cm Innenradius und 15 cm Dicke. Jeder Kristall ist mit Reflektor und Photomultiplier ausgerlistet und stellt elnen unabhängigen Detektor fur Gammastrahlung dar. Jedes Modul erfaBt von einer Garmmaquelle im Zentrum des Detektors den glelchen Raumwinkel.
Dle Energleauflösung des 4π Detektors beträgt 14% bel 662 keV und 7% bel 2.5 MeV Gammaenergle. Dle Zeltauflösung ist 500 ps und dle Nachwelswahrscheinlichkeit fur die volle Energie der Gammaquanten 90% bel 1 MeV . Diese elnmallge Kombination von Eigenschaften wurde jetzt bel einem Detektor fur Gammastrahlen ermöglicht, da selt kurzem Barium Fluorld Kristalle mit einem Volumen bls zu 2.51 erhältlich sind. Mit dem Detektor kann die Gamma-Kaskade nach Neutroneneinfang mit 95\% Wahrscheinllchkelt oberhalb elner Schwelle von 2.5 MeV nachgewiesen werden.
Die Neutronen werden mit dem gepulsten Protonenstrahl elnes Van de Graaff Beschleunigers Uber die ${ }^{7}$ Li(p,n) ${ }^{7}$ Be Reaktion erzeugt. Durch geelgnete Wahl der Protonenenergie läBt slch das Neutronenspektrum Im Energlebereich von 5 bls 200 keV an dle experimentellen Anforderungen anpassen. Eln gebuindelter Neutronenstrahl geht durch den Detektor und trifft die Probe in seinem Zentrum. Die Energle der eingefangenen Neutronen wird Uber ihre Flugzeit bestimmt, der Flugweg beträgt 77 cm .
Dle Kombination aus kurzem Flugweg, 10 cm Innenradius der BaF_{2} Kugelschale und dem geringen Einfangquerschnitt von Barlum erlaubt es, den Untergrund durch Einfang gestreuter Neutronen im Szintillatormaterlal auf Grund seiner Zeitstruktur vom Messeffekt zu unterscheiden. Dlese Eigenschaft, zusammen mit der guten Energleauflösung und der hohen Ansprechwahrscheinlichkeit, ermöglicht es, dle verschiedenen Komponenten des Untergrundes so gut vom Messeffekt zu trennen, daB das Verhäl'nlis der Wirkungsquerschnitte zweler Isotope milt einer Genauigkeit $\leq 1.2 \%$ bestimmt werden kann.

Der Detektor wird fur astrophysikalische Untersuchungen, die der Erforschung des Ursprungs der schweren Elemente dienen, eingesetzt.

Abstract

A new experimental approach has been implemented for accurate measurements of neutron capture cross sectlons in the energy range from 5 to 200 keV . The Karlsruhe 4π Barium Fluoride Detector consists of 42 crystals shaped as hexagonal and pentagonal truncated pyramids forming a spherical shell with 10 cm inner radius and 15 cm thickness. All crystals are supplied with reflector and photomultiplier, thus representing independent gamma-ray detectors. Each detector module covers the same solid angle with respect to a gamma-ray source located in the centre.

The energy resolution of the 4π detector is 14% at 662 keV and 7% at 2.5 MeV gamma-ray energy, the overall time resolution is 500 ps and the peak efficiency 90% at 1 MeV . This unique combination of attractive features for a gamma-ray detector became possible by the recent availability of large barium fluoride crystals with volumes up to 2.5 I . The detector allows to register capture cascades with 95% probability above a threshold energy of 2.5 MeV in the sum energy spectrum.

Neutrons are produced via the ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{n})^{7}$ Be reaction using the puised proton beam of a Van de Graaff accelerator. The neutron spectrum can be taylored according to the experimental requirements in an energy range from 5 to 200 keV by choosing appropriate proton energles. A collimated neutron beam is passing through the detector and hits the sample in the centre. The energy of captured neutrons is determined via time of flight, the primary flight path being 77 cm .

The combination of short primary flight path, a 10 cm inner radius of the spherical BaF_{2} shell, and the low capture cross section of barium allows to discriminate background due to capture of sample scattered neutrons in the scintillator by time of flight, leaving part of the neutron energy range completely undisturbed. This feature together with the high efficiency and good energy resolution for capture gamma-rays allows to separate the various background components reliably enough, that the capture cross section ratio of two isotopes can be determined with an accuracy of $\leq 1.2 \%$.

The detector will be used for nuclear astrophysics to investigate the origin of the heavy elements in the slow neutron capture process.

CONTENTS

1 INTRODUCTION 1
2 DESIGN STUDIES FOR A NEUTRON CAPTURE DETECTOR
2.1 Basic requirements 3
2.2 Detector material 7
2.3 Design studies and Monte Carlo simulations 8
2.4 Shielding of scattered neutrons 19
3 DESIGN OF THE KARLSRUHE 4π BARIUM FLUORIDE DETECTOR
3.1 Detector geometry 21
3.2 Mechanical setup 22
4 THE INDIVIDUAL DETECTOR MODULES
4.1 Crystal handling 30
4.2 Reflector, photomultiplier, and voltage divider 30
4.3 Pulse shape 32
4.4 Energy and time resolution 35
4.5 Linearlty 37
4.6 Background 37
4.7 Long term stability 40
5 DETECTOR ELECTRONICS
5.1 General aspects 43
5.2 Signal processing 44
5.3 Control electronics 50
5.4 Electronics for data acquisition 51
6 SETTING, CONTROL, AND STABILIZATION OF THE 4π DETECTOR
6.1 Setting of individual parameters 53
6.2 Automatic adjustment and gain stabilization 53
7 PERFORMANCE OF THE 4π DETECTOR
7.1 Energy resolution 57
7.2 Detector efficiency 59
7.3 Time resolution 61
7.4 Stabillity 64
8 RECISTRATION OF NEUTRON CAPTURE EVENTS
8.1 Neutron source 65
8.2 Measurements and data evaluation 66
9 CONCLUSIONS
9.1 Improvements 76
9.2 Summary 77
10 REFERENCES 78
11 APPENDICES
11. A A FORTRAN code for Monte Carlo simulation of neutron 81 scattering from the capture sample
11.B Tables of coordinates for a spherical shell of 12 pentagons 100 and 30 hexagons
11.C Mechanical construction 105
12 ACKNOWLEDGEMENTS 115

1 INTRODUCTION

One of the main topics of nuclear astrophysics is the origin of the chemical elements and of their isotopes $[1,2,3]$. It is generally accepted that only the lightest nuclei are produced in the big bang, l.e. H, He and small amounts of Li . All other elements are built up in stars. While elements lighter than iron $(Z<26)$ are produced in fusion reactions, all heavier elements from zink up to uranium can only be synthesized by successive neutron capture reactions.

According to the time scale for neutron capture, two nucleosynthesls processes can be distingulshed. The slow neutron capture process (s-process) occurring at a neutron density of some $10^{8} \mathrm{~cm}^{-3}$ is characterized by time intervals of 1 to 10 y between successive capture events. The rapid neutron capture process (r-process) is realized in szenarios with much higher neutron densities of $>1020 \mathrm{~cm}^{-3}$ leading to capture times of the order of milliseconds.

For any quantitative s-process model the neutron capture cross sections of the involved isotopes are the most important input data [4]. Due to the comparably long time scale, the nuclel synthesized in the s-process are located in the valley of β-stabllity, and are thus accessible to laboratory experiments. As the s-process occurs in stars during helium burning (i.e. during the late stages of stellar evolution) at typical temperatures of 200-300 million K, the corresponding neutron spectrum represents a Maxwell-Boltzmann distribution with a thermal energy around $\mathrm{kT}=25 \mathrm{keV}$. Hence, experimental determinations of the relevant capture cross section have to cover the energy range up to 200 keV .

Many investigations during the last years showed [4] that the accuracy of 5-10\% that can be achleved for the neutron capture cross sections with established techniques is not sufficient to constrain the physical conditions during the s-process reliably. This would require an accuracy of the order of 0.5 to 1%. In that context, it is sufficient to know the neutron capture cross section ratio relative to the standard cross section of gold with that precision. Therefore, it was our aim to implement a new and precise technique for the determination of neutron capture cross sections in the neutron energy range from 5 to 200 keV .

Detailed design studies resulted in a $4 \pi \mathrm{BaF}_{2}$ detector with about 100% efficiency for gamma-rays in the energy range up to 10 MeV . It is the first spherical symmetric 4π detector made from this material, which shows outstanding features for gamma-ray detection [5]. The Karlsruhe 4π detector is the second approach of a large BaF_{2} array after the Crystal Castle [6] that was constructed for investigating heavy ion reactions and has a geometry symmetric to the horizontal plane.

The detector consists of 42 crystals shaped as hexagonal or pentagonal truncated pyramids forming a spherical shell with 10 cm inner radius and 15 cm thickness. The spectrometer is a versatile instrument not only suited for neutron capture cross section measurements. It allows for the simultaneous determination of gamma-ray multiplicitles, angular distributions, and gamma-ray spectra. In connection with the 3 MV Van de Graaff accelerator, the experimental setup can also be used to measure (p, γ) and (α, γ) reactions, which are of interest for the nucleosynthesis of light elements. If used as a multiplicity spectrometer, the determination of the fission to capture cross section ratio of actinide isotopes, which is of importance for reactor applications is also possible.

The first attempt to measure neutron capture events with a 4π detector of good energy resolution and high efficiency was made by Muradyan et al. [7]. However, the use of $\mathrm{NaI}(\mathrm{TI})$ as detector material did not allow for very accurate measurements in the $k e V$ neutron energy range ($\$ 2.2$). The same holds for a significantly smaller spectrometer described by Block et al. [8]. Both instruments are well suited for measurements below 1 keV neutron energy, where the detector can easily be shielded from scattered neutrons. BGO as detector material was used by Yamamoto et al. [9]; however, their design is simpler and less efficient, and hence not suited for the accuracy almed at in our approach. Presently, a $4 \pi \mathrm{BaF}_{2}$ detector is under construction at the LANSCE facility in Los Alamos [10]. It has about the same efficiency as the Karisruhe detector, but an important feature of the present setup is lost: because the scintillator is immediately surrounding the sample, it does not allow for the dlscrimination of background due to sample scattered neutrons by time of flight (\S 2.3).

The first proposal for the present detector was still based on BGO as scintillator [11]. The gamma-ray efficlency of a spherical shell of BaF_{2} and BGO for monoenergetic
gamma-rays and neutron capture cascades has been calculated by Wisshak et al. [12]. The properties of large BaF_{2} crystals for the detection of energetic photons and the first tests of prototype modules for the present design are documented in refs. [13, 14, 15].

In the present paper we summarize in 52 the basic requirements, which have to be met by a detector for the precise determination of neutron capture cross sections as well as the corresponding design studies. The mechanical construction of the 4π detector and the features of the individual detector modules are given in $\delta \xi 3$ and 4. The subsequent $\S \S 5$ and 6 describe the electronics, and the detector operation, while the detector performance is presented in $\$ 7$. Finally, first results from neutron capture measurements are discussed in 98 , and further improvements are considered in 59.

2 DESIGN STUDIES FOR A NEUTRON CAPTURE DETEGTOR

2.1 BASIC REQUIREMENTS

The unambiguous registration of a neutron capture reaction, which is required for the accurate determination of the cross section is hampered by the fact that there is a more complex signature in the exit channel as, e.g. in (n, p) or (n, α) reactions. Neutron capture events are characterized by a cascade of prompt gamma-rays. The multiplicity and the energies of the individual gamma quanta are determined by the transition probabilities to a great variety of accessible nuclear levels. The only fixed quantity is the sum energy of the cascade that corresponds to the binding energy of the captured neutron ($6-8 \mathrm{MeV}$ for most of the isotopes of interest for s-process studies) increased by the kinetic energy of the captured neutron. For isotopes with Z larger than ~ 26, the level density at excitation energies of several MeV is so large that the capture cross section is composed of contributions from many possible cascades as indicated schematically in fig.1. According to statistical model calculations for neutron captures in gold [16], more than 4000 possible cascades have to be considered in order to cover 95% of the cross section. For medium weight isotopes like ${ }^{56} \mathrm{Fe}$, the respective number is still 300 [12,17]. The average gamma-ray multiplicity of the cascades is 3-4 with maximum values up to 10 .

Therefore, the essential requirements of an improved detector for neutron capture cross section measurements are the following:
(i) Efficiency of about 100% for gamma-ray energies up to 10 MeV .
(ii) Good energy resolution (10% at 1 MeV).
(iii) Good time resolution ($\Delta t=1 n s$).
(iv) Low sensitivity for the detection of neutrons scattered into the detector material.

The first feature guarantees that all gamma-rays of the capture cascade are registered in the detector; their sum corresponds to the total gamma-ray energy, which is the only true signature of a capture event. This feature is also important as it makes the detector efficiency independent of gamma-ray multiplicity.

If the second requirement can be realized simultaneously, the capture events show up in the sum energy spectrum as a sharp line Indicated schematically in fig. 1. Hence, they appear well separated from the expected gamma-ray background at low energies, resulting in favorable signal to background ratios. A good time resolution is essential as the energy of the captured neutron has to be determined by the time of flight (TOF) technique. In the present application, it is also useful for the TOF discrimination of background due to sample scattered neutrons (5 2.3).

The last requirement is of key importance for the neutron energy range above $\sim 1 \mathrm{keV}$, where the cross sections for neutron scattering are typically 10 to 100 times larger than for capture. If these scattered neutrons are captured in the detector material, it is very difficult to distinguish this background from true capture events in the sample.

Historically, the first approach to measure neutron capture cross sections by the TOF technique was to use large liquid scintillator tanks for the detection of capture gamma-rays [18,19]. The main disadvantage of these detectors is their poor energy resolution, which does not allow to separate capture events sufficiently well from the background due to the 2.2 MeV gamma-ray line from neutron captures in the hydrogen of the scintillator. In addition, the 60% efficiency of a 800 I tank for gamma-rays of 6 MeV is too low to ensure that the detection of a capture cascade does not depend on the multiplicity. As these problems cause systematic uncertainties of about 10%, this method was abandoned some ten years ago.

Fig. 1 Left: The exclted states in the compound nucleus that are populated by neutron capture can decay via many different gamma-ray cascades.
Right: A 4π detector with 100\% efficiency adds these cascades in an isolated line at the binding energy of the captured neutron, well separated from most of the background.

Fig. 2 Schematic setup of the Karlsruhe $4 \pi \mathrm{BaF}_{2}$ detector for the determination of neutron capture cross sections in the energy range from 5 to 200 keV .

A completely different approach was introduced by Moxon and Rae [20]; the absolute efficiency of their detector is small, but increases linearly with gamma-ray energy. The combination of these features yields a detection probability for capture events independent of gamma-ray multiplicity. The efficiency for a capture cascade is given as the sum over the individual cascade gamma-rays

$$
\varepsilon_{\text {capt }}=\sum \varepsilon\left(E_{\gamma}\right)=\sum k E_{\gamma}=k E_{\gamma, \text { tot }}
$$

and is thus proportional to the total gamma-ray energy after averaging over a sufficient number of events. Obviously, the detection probability for a cascade of 6 gamma-rays of 1 MeV is the same as for a single gamma-ray of 6 MeV provided that gamma-rays of the first cascade are not detected simultaneously. The main disadvantage of this method is the low efficlency of about 1% at 1 MeV . In practice, there are also deviations from the ideal shape of the efficiency causing systematic uncertainties of 3 - 10% depending on the capture gamma-ray spectrum $[17,21]$.

The third method, which was most widely used in the last years [22,23] takes an intermediate position between the two extremes described above. A hydrogen-free liquid scintillator like $C_{6} D_{6}$ or $C_{6} F_{6}$ of about 11 volume is used for the detection of capture gamma-rays. It combines an efficlency of about 20% for capture cascades with a very low sensitivity to capture of scattered neutrons. For these detectors, a linear increase of the efficlency with gamma-ray energy can only be achieved by means of a so called weighting function: each measured pulse height is multiplied with the corresponding value of the weighting function, such that the inherent efficiency is properly corrected. Traditionally, the weighting function was calculated by considering the response of the scintlllator for gamma-rays, but also the influence of detector canning, sample and all surrounding materials of the experimental setup. Recently, the weighting function was determined experimentally [24], showing severe discrepancies to previous calculations at high gamma energies. This implies that the detection of energetic Compton electrons produced outside of the scintillator were probably not correctly treated in the earlier calculations, and may explain large discrepancies in experimental results obtained with different setups [21, 25, 26]. This problem being often not sufficiently considered, casts some doubt on the optimistic uncertainties, that are sometimes claimed for cross sections determined with this method.

In summary, the existing experimental techniques are not suited for obtaining the
accuracy required in analyses of the astrophysical s-process. The present approach returns to the old concept of 100% efficiency for all gamma-rays, but replacing the liquild scintlllator by scintllator crystals with good energy resolution. This became possible with the advent of scintillators showing low sensitivity to capture of scattered neutrons.

The design criteria for the new $4 \pi \mathrm{BaF}_{2}$ detector are closely related to the experimental conditions at Karlsruhe. Accordingly, flg. 2 shows the schematic setup for measurements using a Van de Graaff accelerator. Neutrons are produced via the ${ }^{7}$ LI $(p, n){ }^{7}$ Be reaction with a pulsed proton beam of 250 kHz repetition rate and 0.7 ns pulse width. At proton energles of $\sim 2 \mathrm{MeV}$, continuous neutron spectra in the required energy range from 5 to 200 keV are obtalned. A well collimated neutron beam is produced by a carefully deslgned shield around the llthlum target, and hits the sample In the center of the capture gamma-ray detector at a fllght path of about 1 m . The complete gamma-ray cascade is registered in the detector, and the energy of the captured neutron is determined via TOF (typlcally 100-500 ns depending on neutron energy).

The maln sources of background in such an experiment are the following:
(i) Time independent gamma-rays from natural radloactivity of the scintillator crystal, surrounding materlals, cosmic-rays, etc;
(II) Time dependent and time independent background produced by fast and moderated neutrons escaping from the shlelding;
(iii) Time dependent background caused by neutrons scattered in the sample and captured In the scintillator or nearby.

The first two components can be minimized by the design of collimator and shielding, whereas the third one depends on the scintillator and canning materlals.

2.2 DETECTOR MATERIAL

Application of the four criterla listed in $\$ 2.1$ to those seintillator crystals that are avallable in approprlate sizes for the 4π detector, l.e. to $\mathrm{NaI}(\mathrm{TI}), \mathrm{BGO}, \mathrm{CsI}(\mathrm{TI})$ and BaF_{2} rules out all materials containing lodine as 127 has a large neutron capture cross section of 635 mb at 30 keV [27]. Consequently, scattered neutrons are
immediately captured in the scintillator material, giving rise to unacceptable backgrounds. In the energy range of interest, shielding the detector from scattered neutrons would require thick layers of ${ }^{10} \mathrm{~B},{ }^{6} \mathrm{Li}$ and H (see $\S 2.4$), which in turn would degrade the capture gamma-ray spectrum significantly, thus destroying the advantage of the good energy resolution. Below $\sim 1 \mathrm{keV}$ neutron energy, however, a thin layer of ${ }^{10 \mathrm{~B}}$ is sufficient to absorb scattered neutrons, and therefore $\mathrm{NaI}(\mathrm{TI})$ can be used as suggested in refs. [7,8].

Compared to $\mathrm{NaI}(\mathrm{TI}), \mathrm{BaF}_{2}$ and BGO are significantly less sensitive to keV neutrons. The neutron magic isotope ${ }^{138} \mathrm{Ba}$ makes up for 72% of the natural barium abundance; due to its small capture cross section of 3.9 mb at 30 keV [27] the elemental barium cross section is only 50 mb . The respective value for the monotoplc element Bi is 11 mb , while the elemental cross sectlon for germanium is 76 mb . The neutron sensitivity of the detector materials can roughly be estimated as the product of the thickness in molecules per cm^{2} of a spherical shell with comparable efficlency and the capture cross section at 30 keV . For the scintillator materials $\mathrm{NaI}(\mathrm{TI}), \mathrm{BaF}_{2}$, and BGO it scales as $15: 1: 0.6$, suggesting BGO to be the best cholce. However, the binding energles of ${ }^{135} \mathrm{Ba}$ and ${ }^{137} \mathrm{Ba}$ are 9.1 and 8.6 MeV , with both isotopes accounting for 75% of the elemental capture cross section, whereas the respective values for the even germanium isotopes range between 6.5 and 7.4 MeV , contributing 85%. As most of the isotopes of interest for nuclear astrophysics have binding energles between 6 and 8 MeV a significant fraction of this background can be discriminated in BaF_{2} detectors by an upper threshold in the sum energy (see § 8). In this way, the neutron background in an actual experiment will be lower for BaF_{2}.

Other important aspects in favor of BaF_{2} compared to BGO are the superior resolution in gamma-ray energy and, especially, in time. In energy resolution, the difference for large crystals is about a factor of two [14, 28, 29, 30], while the time resolution is at least four times better [14, 31]. The only drawback of BaF_{2} crystals is the unavoidable contamination with radlum, the chemically homologous element to barium, which causes a relatively high time independent background ($\S 4.6$)

2.3 DESIGN STUDIES AND MÖNTE CARLO SIMULATIONS

The two most important features of a 4π detector for the detection of neutron
capture events, the efficiency for neutron capture cascades and the background due to sample scattered neutrons, have been simulated on the computer.

The efficiency of a spherical shell of BGO or BaF_{2} for monoenergetic gamma-rays in the energy range up to 10 MeV has been calculated by Schatz and Oehlschläger [32] using analytical methods. Capture cascades for neutron capture in ${ }^{56} \mathrm{Fe},{ }^{197} \mathrm{Au}$, and ${ }^{24.1} \mathrm{Am}$, three isotopes with widely different capture gamma-ray spectra, have been calculated previously with the statistical and optical model $[16,17,33]$. The combination of both informations allows to determine the pulse height spectra for the expected sum energies of the respective capture reactions [12]. The essential results are plotted in fig. 3 showing the shape of the capture gamma-ray spectra, and In fig. 4 , where the corresponding sum energy spectra are displayed for a spherical shell of BaF_{2} with 10 cm inner radius and 15 cm thickness. One finds that roughly 95% of the capture events are registered with a sum energy of more than 2.5 MeV . For the cross section ratios $\sigma(\mathrm{Fe}) / \sigma(\mathrm{Au})$ or $\sigma(\mathrm{Am}) / \sigma(\mathrm{Au})$, the correction due to differences in efficiency is of the order of only 1%, with the respective systematic uncertaintles being well below 0.5%. This holds the more for measurements on nelghboring Isotopes, e.g. for the important ratio $\sigma\left({ }^{148} \mathrm{Sm}\right) / \sigma\left({ }^{150} \mathrm{Sm}\right)$, where only small differences in the shapes of the two gamma-ray spectra are expected.

The background due to neutrons scattered from the sample in the centre of the detector was determined by Monte Carlo calculations; the code (appendix A) follows each neutron until it is either captured in the scintillator or it escapes from the detector. For each possibility the time since ernission from the sample, the number of scattering interactions, and the final neutron energy were calculated. For neutron captures, the respective position in the scintillator (radius from the centre) was stored as well. The capture and scattering cross sections of up to three materials were used as input to determine the respective reaction probabilities. For scattering events, the scattering angles were randomly selected according to the angular distributions, and the respective energy losses were considered. In this way, the neutrons were followed for up to 100 interactions. If the randomly selected interaction point was located inside the Inner sphere, the next interaction was transferred to the opposite part of the spherical shell following a straight line.

Fig. 3 Gamma-ray spectra calculated for neutron capture in ${ }^{241} \mathrm{Am},{ }^{197} \mathrm{Au}$, and ${ }^{56} \mathrm{Fe}$ at a neutron energy of $30 \mathrm{keV}[16,17]$.

Fig. 4 Calculated pulse height spectra for neutron captures in ${ }^{56} \mathrm{Fe},{ }^{197} \mathrm{Au}$, and ${ }^{241} \mathrm{Am}$ for a spherical shell of BaF_{2} crystals $\left(\mathrm{R}_{\mathrm{i}}=10 \mathrm{~cm}, \mathrm{R}_{\mathrm{O}}=25 \mathrm{~cm}\right)$.

Table 1. Capture and escape probabilities for neutrons emitted from the centre of spherical scintillator shells with about equal gamma-ray efficiency. The fourth column denotes the probability for hitting the sample agaln.

Initial neutron energy (keV)	Prob escape	bability capture	sample	Average n escape	number of capture	iteractions sample
BaF_{2} (inner radius 10 cm , thickness 15 cm)						
95	93.5	6.5	2.8	19.7	23.3	5.5
85	93.3	6.7	2.5	17.8	21.9	4.8
75	94.0	6.0	1.9	16.0	21.8	5.5
65	93.9	6.1	1.3	16.1	19.9	5.9
55	92.2	7.8	1.8	17.8	21.0	6.6
45	92.1	7.9	1.8	15.8	19.5	5.0
35	91.8	8.2	1.6	15.8	19.3	7.2
25	91.3	8.7	2.2	13.9	19.3	4.4
17.5	89.3	10.7	1.8	13.9	19.1	4.2
12.5	87.2	12.8	2.1	14.0	19.0	4.5
7.5	82.3	17.7	2.1	13.9	17.4	5.0
BGO (inner radius 10 cm , thickness 10 cm)						
95	95.7	4.3	2.0	17.1	26.5	6.7
85	95.3	4.7	2.4	17.5	25.1	6.4
75	94.9	5.1	1.8	17.3	26.9	6.4
65	94.9	5.1	2.3	17.6	27.0	6.1
55	93.8	6.2	2.3	18.0	26.9	6.4
45	93.5	6.5	2.0	18.2	25.8	7.4
35	92.5	7.5	2.2	18.6	27.2	7.0
25	90.6	9.4	2.0	19.0	25.6	7.6
17.5	89.5	10.5	2.0	19.6	26.9	8.5
12.5	85.7	14.3	3.0	23.1	28.2	7.0
7.5	84.5	15.5	2.0	18.9	24.3	6.5

Table 1 continued

Initial neutron energy (keV)	Probability (\%)			Average number of interactions escape capture sample		
$\mathrm{Nal}(\mathrm{TI})$ (inner	10 cm ,	thickness	25 cm)			
95	59.3	40.7	1.5	9.5	9.3	3.2
85	56.6	43.4	1.5	9.5	9.2	2.9
75	53.7	46.3	1.5	9.7	8.9	2.9
65	51.5	48.5	1.0	9.4	8.9	3.3
55	43.3	56.7	2.2	11.2	9.3	2.7
45	46.0	54.0	1.5	8.6	7.7	2.7
35	41.5	58.5	1.5	8.3	7.4	2.8
25	35.3	64.7	1.4	8.0	7.4	3.2
17.5	28.9	71.1	2.0	8.0	7.0	2.8
12.5	22.6	77.4	1.4	7.7	7.5	2.8
7.5	11.9	88.1	1.5	10.9	10.2	3.4

The resulting time and energy spectra for captured and escaping neutrons were calculated as a function of the initial neutron energy, using the data of spherical shells of $\mathrm{BaF}_{2}, \mathrm{BGO}$, and $\mathrm{Nal}(\mathrm{TI})$ as input. The probabilities for capture in or escape from the detector are compiled in table 1 for neutrons in the energy range from 5 to 100 keV . The fourth column in table 1 gives the probability that the neutron hits the sphere with 1 cm radius around the centre, showing that the chance for delayed capture events is very small. The dimenslons of the detectors were such as to obtain about equal efficiency. The columns 5 to 7 present the respective average number of interactions in the scintillator. The probability for a neutron to escape from the scintillator shows little difference for BaF_{2} (91%) and BGO (92\%), while it is only 41% for $\mathrm{NaI}(\mathrm{TI})$. Note, that neutron captures in the first two materials occur on average only after 20 to 25 scattering interactions; this means that these events are strongly delayed in time with respect to the primary interactions. In $\mathrm{NaI}(\mathrm{TI})$ neutrons are already captured after 8 interactions. The time and energy spectra for incident neutron energies of 100 and 25 keV and the number of scattering interactions are plotted in fig. 5 for the BaF_{2} scintillator. The total number of Monte Carlo histories is 10000 .

Fig. 5 a) Monte Carlo calculations of the energy and time distributions of neutrons escaping from or being captured in the spherical BaF_{2} shell $\left(\mathrm{R}_{\mathrm{i}}=10 \mathrm{~cm}, \mathrm{R}_{\mathrm{O}}=25\right.$ cm), assuming that 100 keV neutrons start at time zero from the centre. The number of interactions are shown on top.

Fig. 5 b) as flg. 5.a, but for 25 keV neutrons.

The situation of an actual experiment is simulated according to the following assumptions:
(i) The shape of the neutron energy spectrum is that of the ${ }^{7 L I}(p, n)^{7} \mathrm{Be}$ reaction at a proton energy 30 keV above threshold ranging from 5 to 100 keV ($\S 8$).
(ii) The capture cross section of the sample follows the $1 / v$ law.
(iii) The scattering cross section is ten times larger than the capture cross section.
(iv) The primary flight path is 80 cm .
(v) The 4π detectors have 10 cm inner radius and about equal gamma- ray efficiency.

The result of this calculation is given in fig.6, which compares the TOF spectra of the capture events in the sample with the background due to neutrons scattered in the sample and captured in the scintillator. While captures in the sample are concentrated in a time interval of about 200 ns , events due to capture of scattered neutrons are spread out in time over more than $2 \mu \mathrm{~s}$. Therefore, the pulse repetition rate of the accelerator has to be smaller than 500 kHz to ensure that all neutrons of the previous pulse have escaped the scintillator or are captured ($\varsigma 8$). Then, most of the related background falls outside the time interval used for data evaluation.

In case of BaF_{2} and BGO the number of true capture events is slightly larger than the total number of background events. This confirms again the $>90 \%$ escape probability for the scattered neutrons that compensates for the ten times larger scattering cross section. Note also that there is a neutron energy interval from 100 to 60 keV , which is almost undisturbed by capture of sample scattered neutrons due to the additional 10 cm flightpath between sample and the inner radius of the spherlcal shell. This region of optimum signal to background ratio will be important for the normalization of the cross section ($\$ 8$). The results for $\mathrm{Nal}(\mathrm{TI})$ show a much larger background due to the capture cross section of lodine. As the binding energy of iodine is 6.8 MeV and thus very close to the isotopes to be investigated, there is no chance to reduce this background by cuts in the sum energy spectrum (see below).

As an additional information, the radial distribution of neutron captures in the BaF_{2} scintillator was determined for the first 200 ns after scattering in the sample. The results are plotted in fig. 7 for three neutron energles. As most of these events are

Fig. 6 Time distribution of capture events and background due to sample scattered neutrons, calculated for a neutron spectrum with 100 keV maximum energy, a flight path of 80 cm , a capture to scattering ratio of $1: 10$. The data are given for scintillator shells of about equal gamma-ray efficiency.

Fig. 7 Radial distribution of capture events in a spherical shell of BaF_{2} caused by neutrons starting with different energies from the centre.
concentrated near the inner surface of the detector, there is a high probability for observing the full capture cascade. This offers the possibility to discriminate these events by selecting approprlate energy windows in the sum energy spectra if the binding energy of the measured isotope differs from that of ${ }^{135} \mathrm{Ba}$ and ${ }^{137} \mathrm{Ba}(\S 8)$.

The above calculations clearly reveal two restrictions for the suggested experimental setup:
(i) $\mathrm{NaI}(\mathrm{TI})$ cannot be used as detector material for accurate measurements of neutron capture cross sections in the keV range.
(ii) The TOF discrimination of background from sample scattered neutrons is lost if the primary flight path between neutron source and sample is much longer than the inner radius of the detector. For example, in LINAC experiments the minimum primary flightpath is 10 m . Correspondingly, the above neutron spectrum between 10 and 100 keV covers a time interval of $5 \mu \mathrm{~s}$ in the primary beam. This means that the additional time spread of 2μ sor the sample scattered events does no longer allow to discriminate this type of background; the background spectrum has the same shape and the same size as the measured effect, resulting in a signal to background ratio of unity. The present design is therefore particularly sulted for the short flight paths of Van de Graaff experiments.

2.4 SHIELDING OF SCATTERED NEUTRONS

The Monte Carlo code described above can also be used to calculate the effect of a neutron shleld around the sample, if the cross sections for the scintillator are replaced by the respective values for the shielding materials. Efficient shieldings can be constructed using mixtures of boron and hydrogen in the atomic ratios 1:1 or 1:2. Calculations were made for $\mathrm{B}_{10} \mathrm{H}_{14}$ assuming 100% enrichment in ${ }^{10} \mathrm{~B}$ (and neglecting that this compound is an explosive). The results for a spherical shell with 2 and 4 cm thickness are compiled in table 2. Even a thickness of 4 cm is found to reduce the flux at 100 keV only by a factor of 10 . These results confirm again that $\mathrm{NaI}(\mathrm{TI})$ is not a suited scintillator for the present setup even with the best shielding against scattered neutrons. Apart from the fact that the neutron flux at 100 keV is not sufficiently reduced, such shleldings around the sample are severely degrading the gamma-ray spectra by Compton scattering and cannot be used for this reason as well.

Table 2. Capture and escape probabilities for neutrons emitted from the centre of a spherical $\mathrm{B}_{10} \mathrm{H}_{14}$ shell enriched to 100% in ${ }^{10} \mathrm{~B}$. The fourth column denotes the probability for hitting the sample again.

Initial neutron energy (keV)	escape	obability capture	(\%) sample	Average escape	number of capture	interactions sample
$\mathrm{B}_{10} \mathrm{H}_{14}$ (inner radius 6 cm , thickness 4 cm)						
100	10.7	89.3	0.3	3.6	4.2	2.6
90	9.5	90.5	0.4	3.8	4.1	2.5
80	8.8	91.2	0.4	3.8	4.1	2.6
70	7.2	92.8	0.3	3.9	4.1	2.9
60	7.1	92.9	0.3	3.8	4.0	2.7
50	6.0	94.0	0.3	3.9	3.9	2.2
40	4.3	95.7	0.3	4.0	3.8	2.7
30	3.6	96.4	0.3	3.9	3.6	3.1
20	2.8	97.2	0.1	4.2	3.5	2.6
10	1.3	98.7	0.2	3.6	3.1	2.5
$\mathrm{B}_{10} \mathrm{H}_{14}$ (inner radius 8 cm , thickness 2 cm)						
100	40.0	60.0	0.4	2.5	3.7	2.5
90	37.1	62.9	0.2	2.6	3.7	2.9
80	35.5	64.5	0.2	2.6	3.7	2.7
70	34.6	65.4	0.3	2.7	3.6	2.6
60	32.9	67.1	0.2	2.7	3.6	3.0
50	29.6	70.4	0.2	2.7	3.5	2.4
40	26.2	73.8	0.1	2.8	3.4	3.7
30	23.0	77.0	0.2	2.8	3.3	2.6
20	21.3	78.7	0.2	2.8	3.2	2.8
10	15.3	84.7	0.1	2.7	2.9	2.8

3 DESIGN OF THE KARLSRUHE 4π BARIUM FLUORIDE DETECTOR

3.1 DETECTOR GEOMETRY

For the design of the detector geometry the following aspects have been considered:
(i) Maximum efficiency for capture gamma-rays with minimum scintillator volume.
(II) The efficiency for gamma-rays should be sufficient to register 95% of the capture events above a threshold energy of 2.5 MeV in the sum energy spectrum.
(iii) The distance between sample and scintillator should be as large as possible for optimum TOF discrimination of events due to sample scattered neutrons.
(!u) To minimize the number of modules, the detector should be built from the largest commercially available BaF_{2} crystals; at the time of ordering these were rough crystals of 14 cm dlameter and 17.5 cm length.

The first item stands for a maximum signal to background ratio with respect to background caused by natural radioactivity in the scintillator and its environment, as well as by moderated neutrons escaping from the collimator. The second feature can be satisfled by a BaF_{2} thickness of 15 cm according to ref. [12]. The contradictory points (i) and (iii) were compromised by choosing an inner radius of 10 cm for the spherical shell. Then, the scintillator volume is about 60 l , four times larger than the minimum value for zero inner radius. On the other hand, an inner radlus of 10 cm together with the minimum flightpath of 77 cm (§8) offers a sufficiently wide region in the TOF spectra free of events from scattered neutrons; this last feature is important for the success of the proposed method ($\S \S 2,8$).

The problem of subdividing a spherical shell into individual crystals has previously been studled for the $4 \pi \mathrm{NaI}(\mathrm{TI})$ detectors, e.g. the spin spectrometer [34] or the Heidelberg Crystal Ball [35]. Under the constraints of symmetry, ease of construction and minimum cross talk between individual detector modules it was shown that the class of optimum polyhedra always has 12 pentagons and a varying number of hexagons. The configurations can be derlved from the classical regular polyhedrons by subdividing the triangle of the icosahedron or the five triangles forming the pentagon of the dodecahedron in an increasing number of new triangles, which are then recombined to pentagons and hexagons. This yields new polyhedra with discrete "magic" numbers of elements, i.e. $32,42,72,92,122,132,162$ etc.

Abstract

A detector for neutron cross section measurements should consist of as few elements as possible, in order to avoid losses in gaps. For the investigation of individual capture cascades and angular distributions, the granularity should be ~ 5 times larger than the expected average cascade multiplicity of 3 to 4 with only a small fraction being above 6. While an array of 32 elements would be sufficient in this respect, the next "magic" number 42 had to be chosen because of the limited size of the avallable BaF_{2} crystals.

As shown in fig. 8, this configuration is constructed by dividing each of the five triangles forming the pentagon of the dodecahedron into four new triangles. The upper of these triangles together with its neighbors form the new pentagon, while the three lower ones are combined with the respective three of the next triangle to the new hexagon. The arc lengths of the hexagons and pentagons inscribing a touching sphere of unity radius are also given in fig. 8. These values were calculated with the boundary condition that both elements cover the same solid angle. The coordinades of the centres, corners and mid points of the edges of all 42 hexagons and pentagons forming the spherical supporting structure of the detector with 430 mm radius ($\S 3.2$) are given in Cartesian and polar coordinates in appendix B.

3.2 MECHANICAL SETUP

The final shape of the two types of BaF_{2} crystals ordered from the manufacturer (Merck, Darmstadt, Fed. Rep. of Germany) is shown in fig. 9. (A more detailed drawing can be found in appendix C). Each crystal is cut from a cylindrical rough slug of 14 cm diameter and 15 cm thickness, so that at the base about 6% of the truncated pyramids are not filled with BaF_{2}; this part is used for fixing the crystals in the supporting structure. The volume of the real crystals is compared in table 3 with the volume of perfect truncated pyramids. It is shown that the real volume is practically the same as that of the intended spherical shell with 10 cm inner radius and 15 cm thickness.

Each crystal is wrapped in a reflector and supplled with an own photomultiplier, thus representing an independent gamma-ray detector. The mechanical construction is illustrated in fig. 10. The crystal is fixed in a cylindrical glass fibre tube by a metal ring lock. The front end of this tube is shaped such as to use that volume of the

$$
\begin{array}{ll}
A=0.35282 & D=0.36486 \\
B=0.40906 & E=0.33252 \\
C=0.29954 &
\end{array}
$$

Fig. 8 Arclengths of hexagons and pentagons forming a polyhedron with 42 elements with an inscribed touching sphere of unit radius.

Hexagonal Crystal

Pentagonal Crystal

Fig. 9 Shape of the hexagonal and pentagonal BaF_{2} crystals for the Karlsruhe 4π detector (for details see appendix B).

Fig. 10 Cut through one detector module and its mounting in the supporting structure.
truncated pyramid that is not covered by BaF_{2} scintillator. The rear end of the tube is glued into a triangular aluminum flange, which is fixed and adjusted in the supporting honeycomb structure. The crystals are covered on all sides with a reflector for the scintillation light leaving only a circular hole of 12 cm diameter for connection of the photomultiplier.

The reflector consists of two layers of 0.1 mm thick unsintered PTFE tape followed by an 0.1 mm polished aluminum foil, and an outer layer of black tape. The photomultipliers (EMI 9823 QKA) are optically coupled to the crystal using silicon oll (Baisilone) with a viscosity of 500000 cst. A rubber O-ring is used to prevent the silicon oll from creeping into the reflector. The photomultipliers are magnetically shlelded by three layers of 0.1 mm thick μ-metal sheets; optionally this shield can be connected with the negative cathode potential to eliminate the influence of external electric fields. The cross hatched parts in fig. 10 are made from insulating synthetic material, while the hatched parts are from aluminum.

The individual detector modules are fixed in the spherical honeycomb structure consisting of aluminum frames by means of three bolts. A set of elastic springs on each side of the flange provides a flexible mounting. The bolts are subdivided into two parts connected by a thread; continuous variation of their length enables the accurate adjustment of the detector modules.

The hexagonal and pentagonal frames of the honeycomb structure form a sphere with 860 mm diameter. The construction of this sphere as well as of the mounting bolts followed closely the example of the Heidelberg Crystal Ball detector [36]. The sphere is subdivided into two parts with 25 and 17 modules, respectively, which are fixed in octagonal stands as shown in fig. 11. Each stand is mounted on a slide and can be moved separately on rails over a distance of $\sim 1 \mathrm{~m}$. This allows to change the experimental flight path between neutron target and sample and to open the detector for access to the samples. Details of the mechanical construction can be found in appendix C .

The neutron beam passes the detector horizontally through two opposite hexagonal frames. Perpendicular to the beam axis, a sample changer passes through a rectangular grove of $30 \times 10 \mathrm{~mm}$ in two opposite crystals; it carries up to eight samples,

Fig. 11 The supporting honeycomb structure for the detector modules; the octagonal stands move on rails for opening the detector.

Fig. 12 The neutron target and the central part of the neutron collimator (hatched parts are made from lead and cross hatched parts from a mixture of boron carbide and araldite).

Table 3. Volume of the truncated hexagonal and pentagonal pyramids and the real crystals (liter).

	Hexagon	Pentagon
Truncated pyramid:	1.573	1.571
Real crystal:	1.472	1.484
Difference:	6.4%	5.5%

Volume of a spherical shell with $R_{i}=10 \mathrm{~cm}$ and $R_{0}=25 \mathrm{~cm}$: 61.3 ।
Volume of 12 pentagonal and 30 hexagonal truncated pyramids : 66.01
Volume of 12 pentagonal and 30 hexagonal crystals : 62.0 ।
which can be cycled into the measuring position by means of a computer controlled stepping motor. The samples are fixed on two 0.1 mm thick steel wires at selectable distances of up to 10 cm .

For the passage of the neutron beam two special crystals have been ordered with a central hole of 50 mm diameter. Each of these crystals will be equipped with six 1.5 inch photomultipliers (EMI 9902 QKA).

The water cooled lithium target for neutron production and the central part of the neutron collimator are shown in fig. 12. The first measurements will be performed with the minimum possible flightpath in order to obtain maximum neutron flux at the sample position. For this purpose the hexagonal crystal at the entrance of the neutron beam was removed using the free space for the collimator. The collimator is bulld in modular form using individual blocks made from natural boron carbide and araldite mixed in a ratio of 5:4 by welght. The inner cylinder can be replaced separately in order to change the beam dlameter at the sample position, which is 24 mm In the present design. For the central part, collimator pleces from Isotoplcally enriched ${ }^{6} \mathrm{LI}$ carbonate can optionally be used, offering radiationless neutron absorption and somewhat reduced neutron scattering. Towards the detector, the outer part of the collimator is made from antimony free lead to absorb the 478 keV gamma-rays from neutron capture in boron. On all other sides, the collimator is surrounded by at least 25 cm of boron loaded paraffin.

First measurements showed a significant background from neutrons scattered in the air along their flightpath through the detector. For the future it is planned to install an evacuated neutron flight tube with thin steel walls and windows from $\sim 2.5 \mathrm{mg} / \mathrm{cm}^{2}$ KAPTON foll.

Flg. 11 shows the supporting honeycomb structure for the detector modules flxed in the octagonal stands. The overall dimensions of the ground frame are 3.5 times 2 m . The completed detector opened for mounting of the samples is shown in fig. 13.

Flg. 13 The completed detector opened for mounting of the samples.

4. THE INDIVIDUAL DETECTOR MODULES

4.1 CRYSTAL HANDLING

The essential features of prototype crystals for the Karlsruhe $4 \pi \mathrm{BaF}_{2}$ detector have been published elsewhere [14]. Here, we present more details and describe the modifications that have been made since as well as the properties of all 42 detector modules.

The ultraviolet scintillation light of BaF_{2} at wavelengths between 190 and 410 nm is easily absorbed if the crystal surface is contaminated by grease. Therefore, it is strongly recommended to hande crystals with rubber gloves, which are carefully cleaned with ethanol or a compatible solvent. The crystals delivered by the manufacturer (Dr. Karl Korth, Am Jägersberg 9, 23 Kiel 17. Federal Republic of Germany) were reground by hand to remove possible absorbing impurities from the surface using grinding paper of increasing mesh numbers 350, 600, and 800. A significant amount of material was removed in this process using two sheets of the coarse and one sheet of the two fine mesh sizes for each crystal. Grinding was continued until the papers were saturated. The success of this procedure is demonstrated in fig. 14 showing an improvement in energy resolution for the ${ }^{137} \mathrm{Cs}$ line from 11.4 to 10.0%. It has been argued by Anderson et al. [37] that for small BaF 2 crystals this improvement is achieved by simply removing adsorbed humidity from the surface, and that the resolution again deteriorates rapidly afterwards. Our experience is different: at least $2 / 3$ of the observed improvement was permanent. As a general rule, we find that only about 0.5% energy resolution are lost during the first week after grinding.

In handling. BaF_{2} crystals one should keep in mind that fluorides in general are poisonous. In addition, the non negligible solubility of BaF_{2} in water may facilitate the intake of the heavy metal barium. As informations about the real risk of ingested or inhalated BaF_{2} are widely discrepant, all grinding was carried out in a chemistry laboratory under an exhaust.

4.2 REFLECTOR, PHOTOMULTIPLIER, AND VOLTAGE DIVIDER

Reflector and optical coupling between crystal and photomultiplier are as described in §3.2 and ref. [14].

Chamel Number

Fig. 14 Gamma-ray spectra from ${ }^{137} \mathrm{Cs}$ and ${ }^{60} \mathrm{Co}$ sources measured with a new BaF_{2} crystal before and after manual regrinding.

Voltage Divider for PM THORN EMI 9823

Fig. 15 Optimized voltage divider chain for the EMI 9823 QKA phototube.

To our knowledge, the EMI 9823 QKA is the only available photomultiplier by which good time and energy resolution can be obtained from large BaF_{2} crystals simultaneously. Its relevant features are 5 inch diameter, fast rise time, and quartz window. Recently, however, the design of the tube was changed by replacing the conical edges of the quartz window by rectangular ones. These new tubes gave rather poor results with our oversize crystals, probably because the outer, less homogeneous part of the photocathode is more strongly illuminated in the modified version. Even with the outer regions of the cathode covered by inserting a thin ring of aluminum foil with an inner diameter of 12 cm between phototube and crystal, the energy resolution is degraded by at least 1% absolute (e.g. 11 instead of 10% for ${ }^{137} \mathrm{Cs}$). Therefore, this new type of photomultipliers was not used in our detector.

For optimum energy and time resolution the voltage divider shown in fig. 15 was carefully adapted to the photomultiplier. Fast and slow outputs are provided for timing and energy measurements, respectively. The resistor chain is enclosed in an aluminum housing of $350 \mathrm{~cm}^{3}$ and produces about 4 W at 2.3 kV cathode voltage. The potentials of the first and last dynodes are fixed by temperature compensated Zener diodes. As these diodes are available with a maximum voltage of only 33 V , each divider contains about 50 diodes. The potential of the focus electrode and the first dynode are adjustable to optimize signal output. All measurements were made with the slow energy signal adjusted for maximum pulse height. The inductances of the connections between dynodes are neutralized to reduce oscillations and to improve the signal rise time. All parts are on printed circuit and are arranged concentrically around the photomultiplier socket, thus minimizing the connection lengths. The voltage divider exhibits good temperature stability and resolution over long periods of time. The final design shown in fig. 15 was slightly modified compared to the version given in ref. [14] to obtain sufficient linearity for the fast component as well (see \S 4.5); this improvement resulted in a reduction of the energy resolution, which amounts to $\sim 0.4 \%$ absolute for the 662 keV line of ${ }^{137} \mathrm{Cs}$.

4.3 PULSE SHAPE

The pulse shape of the fast signais from a detector module is shown in figs. $16,17$. Figure 16 has been recorded with a ${ }^{137} \mathrm{Cs}$ source using a fast digital oscilloscope (LeCroy model 4300) with pulse weighting option. As a criterion for the crystal

$\xrightarrow[i]{>}$

$$
10 \mathrm{~ns} / \mathrm{div}
$$

$20 \mathrm{mV} / \mathrm{div}$

$500 \mathrm{~ns} / \mathrm{div}$

Fig. 16 Signal shape from a detector module for 662 keV gamma-rays from a ${ }^{137} \mathrm{Cs}$ source recorded by a digital oscilloscope with pulse averaging option.

Fig. 18 The fast/slow ratio as defined in fig. 16 plotted for the 42 detector modules
quality a fast/slow ratio is defined by comparing the pulse height maximum with the respective value $20 n s$ after the pulse has passed a threshold corresponding to the height of the slow component as indicated in fig. 16. This ratio was found to range between 8.4 and 12.0 for the 42 crystals of the 4π detector (fig. 18). The lower part of fig. 16 shows that the 600 ns decay time of the slow component requires an integration time of $\geq 3 \mu \mathrm{~s}$ for accurate energy determination.

Fig. 17 presents single pulses photographed from the screen of a fast oscilloscope with micro channel plate amplification (Tektronix model 2467) for 662 keV gamma rays, 7.7 MeV alpha particles, and cosmic μ-mesons deposing $7 \mathrm{MeV} / \mathrm{cm}$ in the crystal [38]. Note the absence of a fast component in the scintillation light induced by alpha particles. As the upper pictures were taken at equal blas voltage, the significant quenching of the alpha Induced signals relative to those from gamma-rays can directly be estimated.

4.4 ENERGY AND TIME RESOLUTION

The energy resolution of all crystals was determined in a reference measurement using always the same photomultiplier and voltage divider. In a second series of measurements, the assembled detector modules were tested with the new voltage divider before mounting in the 4π detector. Fig. 19 shows the pulse height spectra from the best detector module for three gamma-ray energies. The measured energy resolution as a function of gamma-ray energy is given in the inset, indicating a clear correlation with photon statistics up to 6 MeV [14]. For all crystals, fig. 20 presents the energy resolution at 662 keV measured in the optimized reference setup and after assembling of the detector modules, the differences beling mainly due to the qually of the photomultipliers, and the 0.4% degradation caused by the new voltage divider (§ 4.2). Recently, the energy resolution was remeasured after the modules were assembled for 1.5 to 2 y ; only the eight crystals with the highest radium content had been exchanged 3 months before. Within the experimental accuracy, no changes in energy resolution were observed.

As a caveat it should be noted that the energy resolution of BaF_{2} crystals is temperature dependent [15]. Therefore, values for the energy resolution should always be given together with the respective temperature. All measurements quoted in this work have been made between 20 and $25^{\circ} \mathrm{C}$.

Fig. 19 The energy resolution of one detector module for gamma-rays in the range from 0.6 to 6.1 MeV .

Fig. 20 Energy resolution measured for the 662 keV gamma-rays from a ${ }^{137} \mathrm{Cs}$ source during crystal testing and for the final detector modules. The difference is malnly due to the scatter of the photomultiplier quality.

The spectrum of fig. 21 shows the experimental time resolution relative to a fast plastic scintillator [14]. The results for 41 detector modules (fig. 22) have been determined from the completed 4π detector using one module as a start and all other modules as stop detectors. Both, start and stop detectors are connected to the electronics via 50 m long cables (see § 5); home made CAMAC controlled constant fraction discriminators (CFD) were used for the time signals. The so obtained results are slightly worse compared to the laboratory setup used for fig. 21 [14]. The values in fig. 22 represent the combined time resolutions of start and stop detectors, adjusted to the same threshold energy. All observed time peaks are symmetric as in fig. 21; hence, the full width at tenth of the maximum is also ~ 2 times larger than the FWHM.

4.5 LINEARITY

During the neutron capture experiments, a fast decision on the sum energy of an event is made by setting a threshold on a signal obtained by adding only the fast components of the scintillation light from all 42 modules ($\S 5.2$). This procedure requires a good linearity of the fast component at least up to energies of about 6 MeV . As described in § 4.2, the corresponding change of the voltage divider resulted in a slightly reduced energy resolution. In fig. 23 the energy callbrations for the fast and slow component are plotted for a typical bias voltage. At 6.1 MeV gamma-ray energy, the deviations from linearity are 2.6 and 7% for slow and fast component, respectively.

4.6 BACKGROUND

The only essential drawback of BaF_{2} crystals is the background caused by radium impurities, which are always present as radium and barium are homologuous elements. The contributions from the decay chains of ${ }^{226} \mathrm{Ra}$ and ${ }^{228} \mathrm{Ra}$ are indicated in the spectrum of fig. 24 , which was taken with a test crystal cooled to $-30^{\circ} \mathrm{C}$. At present, the ${ }^{228 R a}$ contribution is ~ 4 times smaller than that of ${ }^{226} \mathrm{Ra}$ and decreases due to the short ${ }^{228}$ Ra half-life of 5.8 y . The spectrum is dominated by the four alpha lines from the decay chain of ${ }^{226} \mathrm{Ra}$. In the present application, however, these lines can easily be discriminated; according to fig. 17, a gamma-ray threshold of $\sim 700 \mathrm{keV}$ is sufficient to eliminate them completely, and in actual experiments a threshold of

Fig. 21
Time resolution measured with one detector module.

Fig. 22 Time resolution measured in a coincidence experiment with a ${ }^{60} \mathrm{Co}$ source using one fixed detector module as start detector and successively all other 41 detector modules as stop detectors. The quoted numbers represent the combined time resolution of start and stop detectors.

Fig. 23 Pulse heights of the fast and slow component in the scintillation light as a function of gamma-ray energy.

Fig. 24 Background spectrum measured with a cooled test crystal.
2.5 MeV wlll be used in the fast sum energy signal ($\S 5.2$). More disturbing is the background due to beta decay, giving rise to electrons and coincident gamma-rays (fig. 25). The decay chain of ${ }^{226 R a}$ yields a contribution with a maximum energy of 3.2 MeV , while two components with a maximum energy of 5 and 5.6 MeV are related to the decay chain of ${ }^{228} \mathrm{Ra}$. In the latter case, the decay of ${ }^{208} \mathrm{TI}$ produces electrons and gamma-rays in prompt coincidence, whereas the decay of ${ }^{212} \mathrm{BI}$ occurs as a delayed coincidence between an electron and an alpha particle from ${ }^{212}$ Po. Consequently, the second background contribution can also be eliminated by a 2.5 MeV threshold on the fast sum energy, since the alpha induced signal is delayed in time and does not exhibit a fast component.

For characterizing the radium background, the integral count rate of the four strong alpha lines is plotted in fig. 26 for each crystal. The crystals are numbered according to their production date. After this problem was recognized by the manufacturer, the background rate could be reduced to $\sim 200 \mathrm{~s}^{-1}$ per crystal ($7.2 \mathrm{~kg} \mathrm{BaF}_{2}$) .

In table 4, intrinsic and external background rates are compared for different threshold energles. For crystals with low radium content one finds that the countrate above 1 MeV is already dominated by room background. The values of table 4 were determined with the modules mounted in the completed 4π detector, and are representative for the experimental environment (including self-shielding of the modules by themselves against the room background from 2 m thick concrete walls).

4.7 LONG TERM STABILITY

The long term stability of the detector modules was followed over 2.5 y . The energy resolution of a module that was recently removed from the 4π detector was found almost unchanged since it was assembled 1.5 y ago (10.7 instead of 10.3%). However, in the same time the fast component decreased by 20%. After the phototube was disassembled, cleaned, and remounted, the original performance could be completely restored. Obviously, the UV transmission of the optical coupling between crystal and photomultiplier decreases with time so that it may be necessary to replace the silicon oil after several years of operation.

High energy background reactions

From decay of ${ }^{226} \mathrm{Ra}$

From decay of ${ }^{228} \mathrm{Ra}$

Fig. 25 The radium decay channels giving rise to energetic background.

Fig. 26 Background countrate of the 42 crystals integrated over the four prominent alpha lines, and including the contribution from ${ }^{40} \mathrm{~K}$.

Table 4. Background countrates of crystals with high and low radium impurities.

Gamma-ray threshold (keV)	Room background gamma-rays (counts/s)	Radium Impurities α-particles (counts/s)	 $\beta+\gamma$ (counts/s)
50	low	256	200
	high	256	1000

5 DETECTOR ELECTRONICS

5.1 GENERAL ASPECTS

In the first stage of development the 4π detector is used as a calorimeter. For each accepted event the sum energy and the time of flight is stored together with the gamma-ray multiplicity. The multiplicity is determined by recording a 42 bit pattern indicating those detector modules that have fired. This three-dimensional information E×TOF \times MULT is sufficient for the determination of neutron capture cross sections.

In a second stage a multi ADC/TDC system will be installed for recording pulse helght and time of flight separately for each detector module. This will improve the gamma-ray energy resolution by eliminating small differences in the response of the Individual modules, and will yield additional information on capture gamma-ray spectra and angular distributions.

As typical measuring periods of ~ 2 weeks per sample are expected, a reliable and stable long term operation of the complex 4π detector is required. At present, about 50% of the electronics is used for this purpose. All relevant signals are doubled by fan-out units. Via multiplexers with 42 inputs and one output these signals can be displayed on oscilloscope, or can be used for determination of count rates and for automatic stabilization and adjustment procedures.

As, at present, the slgnals of the individual modules are added on-line for deriving the sum energy, it is important to maintain equal response for all modules, because later corrections are impossible. Therefore, gain shifts and day-night differences due to temperature changes have to be compensated. The required long term stability of the 42 modules is achieved via the outstanding 7.7 MeV alpha line in the background spectrum (fig. 24) which is used as an internal callbration standard.

Most of the electronics consist of commercial NIM and CAMAC units. The CAMAC discriminators and multiplexers have been copied from the Heidelberg Crystal Ball project. A CAMAC controlled linear gate, a programmable 16db attenuator, a fast 42-fold OR unit, as well as fast and slow preamplifiers for driving the relatively long cables between detector and electronics have been specifically developed for the
present setup. A NOVA4 computer serves for adjustment, control, and permanent stabilization of the 4π detector, and a Data General MV4000 computer is used for data acquisition.

The electronics used with the 4π detector is described in the following subsections, separated according to the aspects of signal processing, detector control, and data acquisition.

5.2 SIGNAL PROCESSING

The electronics for signal processing is illustrated in the block diagram of fig. 27. From the voltage divider of each detector module a fast and a slow signal with a 500 ns time constant are derived. The slow signal is amplified by a factor of 2.5 using a cable driver circult as shown in fig. 28. The amplifier is separated from the voltage divider by a 10 cm long cable in order to reduce the thermal load of the voltage divider. The signal amplitudes obtained with the 662 keV gamma-rays from a ${ }^{137} \mathrm{Cs}$ source are adjusted to 200 and 600 mV for slow and fast pulses, respectively. The detector in the strongly shielded experimental area is connected with the subsequent electronics by $\sim 50 \mathrm{~m}$ long cables. On this way, fast signals loose $\sim 20 \%$ in amplitude though cables with low damping (RG 213) are used, whereas slow slgnals (RG 58 cables) remain practically unchanged.

At present, fast and slow signals are not completely decoupled; this leads to an increase in the noise level of the slow signal from 2 to about 15 mV , changing the resolution for the 662 keV gamma line of ${ }^{137} \mathrm{Cs}$ from 10 to $\sim 12 \%$. This problem will be solved in the near future by a 1:1 cable driver for the fast signal.

The fast signals pass a CAMAC delay unit (SEN FE292C; 64 steps of 250 ps), by which differences in cable length and electronic transit times are compensated in order to obtain a well defined timing signal for the TOF measurement. The following CAMAC attenuator (16 steps from 0 to 15 db) adapts the pulse height to the input requirements of the following units, and adjusts the fast component of the signals to equal amplitude for all detector modules. By this attenuator, any variations of the fast component with time (see $\S 4.7$) can be compensated.

ELECTRONICS FOR SIGNAL PROCESSING

Fig. 27 Electronics for signal processing (modules with 42 Inputs or outputs are marked accordingly).

The input of the following fan-out (LeCroy 429A) being limited to -2 V means that fast signals up to 6 MeV gamma-ray energy can be processed linearly in the fast branch of the electronics using attenuation factors of typically 10 db . The respective output signals are used to feed various branches:
(i) In the first branch, the signals are clipped by 2 m long delay cables to remove the slow component. The outputs of all 42 detector modules are then added (LeCroy 429A) to obtain a fast sum energy signal of only 10 ns width, which still ylelds an energy resolution of $\sim 20 \%$ at 1 MeV gamma energy. Only if this fast sum energy signal exeeds a certain threshold, the correlated event might be due to neutron capture and ls processed further. In this way, background from low energy gamma-rays, alpha particles, and part of the background from beta decay of radium impurities ($(\underline{6} 4.6)$ is eliminated. In principle, this threshold should be kept as low as possible because the pulse height distribution of capture events reaches down to the 2 to 3 MeV range ($\xi 8$). In practice, the accepted event rate is limited by the capacity of the magnetic tapes; this implies a threshold of $\sim 2.5 \mathrm{MeV}$.
(ii) Another output is fed through the bridged input of a leading edge discriminator (LED) to a constant fraction discriminator (CFD), which creates the logic time signals for the TOF measurement; simultaneously, it is used (in coincidence with the main trigger slgnal) to open the linear gates for the slow energy signals. To avoid multiple triggering from the slow component of the scintillation light a dead time up to $3 \mu \mathrm{~s}$ can be selected. This can be tolerated in the present application where the integral countrates of the detector modules are well below 5 kHz . It is possible to block the output via CAMAC command, a feature that is important for adjusting the 4π detector ($\$ 6.2$). The logic time signals of all detector modules are combined in a home made 42-fold OR to derive the final start signal for the time to amplitude converter (TAC). The OR unit is designed in SMD technique; it yields an output signal almost independent of the multiplicity pattern at the input (jitter less than 200 ps ; see § 7.3). The stop slgnals for the TAC (Ortec 457) are derived from the accelerator pulses by a pickup electrode.
(iii) in a third branch of the fast signal, a 42 bit pattern is produced for the identification of those detector modules that have fired. The output signals of the LEDs are sent to a home made channel identifler, which adds the digitized information on the

Wideband Amplifier

Fig. 28 Wideband amplifier for the slow energy signals.

Fig. 29 Schematic diagram of the CAMAC controlled linear gates.

Fig. 30 Electronics for detector control (modules with 42 inputs or outputs are marked

ALPHA SPECTRUM
FOR DETECTOR STABILIZATION
ENERGY SPECTRUM
FOR GATE RDJUST
accordingly).
contributing modules to the bit pattern from pulse height and TOF analysis for final storage in the data acquisition computer. Note, that the use of separate discriminators allows to set different thresholds for the sum energy and the multiplicity pattern.

Processing of the slow signals is rather straightforward as indicated in fig. 27; after passing a fixed attenuator (6 db) they are multiplied in a linear fan-out (LeCroy 429A). The adjustments are such that gamma-ray signals up to 12 MeV can be accepted without saturation effects.

The following linear gates are home made CAMAC units (see fig. 29 for a schematic wiring diagram); apart from the possibility to select the gate width between 0.5 and $5 \mu \mathrm{~s}$, these units allow to change the input pulse height by $\pm 20 \%$ and the offset by $\pm 10 \mathrm{mV}$ via CAMAC commands. In thls way, gain and offset of each detector module can be adjusted independently, without changing the bias voltage and thus the pulse height of the fast signal. This is an important feature as the fast/slow ratio can be different for different crystals (fig.18), and may also change with time (§ 4.7).

The output pulses of the 42 linear gates are added by means of linear fan-in modules (LeCroy 429A) to a sum signal with good energy resolution that is sent to an ADC for final data acquisition. The use of linear gates ensures that only those modules contribute to the final sum signal that have fired in the particular event, thus minimizing the effect of multiplier noise in the summation.

5.3 CONTROL ELECTRONICS

The large fan-out capacity together with a set of six multiplexer units allows to observe all Important branches in the electronics on oscilloscope or to handle the respective pulses in further electronics. By means of the home made CAMAC multiplexers any one of the 42 input signals can be selected to appear on output by means of micro relais. As indicated in fig. 30, the following signals are accessible in thls way: slow, fast, CFD output, CFD monitor output, LED output, and GATE output.

Two sets of 42 CAMAC scalers (LeCroy 2551) are used for continuous control of the output rate of coincidences and LED discriminators. Four additional scalers are used to monitor the multiplexer outputs; this allows to record the respective count
rates of all 42 detector modules by a computer routine. Two other scalers serve for counting the integral rate of the 42-fold OR and of the CFD in the fast sum signal (fig.30). Other aspects will be discussed in $\S 6$.

With these features, the operation of the 4π detector can be. surveyed without disturbing data acquisition, even without removing a single cable connection.

5.4 ELECTRONICS FOR DATA ACQUISITION

The electronics for data acquisition is shown in flg. 31. Only events from an appropriate time window between successive accelerator pulses are accepted in the TOF measurement, and a common dead time for TOF and energy branch is introduced after each valid event. This is achieved by means of two gate generators in combination with two updating discriminators and suited delays. The output of the second updating discriminator is also used to ensure that an event is only recorded if both, TOF and sum energy signals are available, and to start the transfer of the 42 bit pattern for Identification of the contributing detector modules.

The 64 bit word containing sum energy, TOF, and detector multiplicity is stored in list mode on magnetic tape. Simultaneously, two-dimenslonal spectra without multiplicity information are accumulated in a megastore in 128 energy times 2048 TOF channels. In addition, up to four single spectra for monitoring the neutron flux or the pulse width of the accelerator are recorded as well. Up to 8 samples are cycled into the neutron beam in intervals (typically 10 min), which are defined by integrating the proton beam current to a preselected charge. During each sample change, the twodimensional spectrum is added to a respective sum file on magnetic disk. In this way, the accumulated sum spectra of all samples can be followed directly throughout the experiment.

Data acquisition is performed by a 32 bit multi-user computer (Data General MV4000) with 8 Mbyte memory, 760 Mbyte disk, and two high density tapes. A 1 Mbyte megastore and an increment unit with 3 independent 32 bit input channels selectable for list and increment mode is used for data input.

ELECTRONICS FOR DATA ACQUISITION

Fig. 31 Electronics for data acquisition.

6. SETTING, CONTROL, AND STABILIZATION OF THE 4π DETECTOR

6.1 SETTING OF INDIVIDUAL PARAMETERS

The detector electronics is controlled by a separate computer (Data General NOVA 4 with 1 Mbyte memory, 73 Mbyte disk, 1600 bpi magnetic tape, and an increment unit for acquisition of single spectra into 32 K of memory) via CAMAC branch driver. The main input-output device is a touch panel display (Kinetic systems). A Silent terminal with paper output is avallable for documentation. For each detector module a set of 256 parameters is stored on disk; an additional set contains the global parameters of the setup. For all relevant settings, i.e. bias voltage, delay, discriminator thresholds, gain, offset, and gate width, the actual value, a standard value as well as upper and lower limits can be stored simultaneously. This allows to exclude unphysical settings and offers an easy recall of old settings after unsuccessful readjustments. All inputs for individual detector modules are made via touch panel display. There are also routines to set one parameter for all 42 detector modules at a time; this is convenient for fast readjustments of the detector after a power failure or when CAMAC crates have to be modified. Fast changes in the parameter sets can also be made by special editing features.

6.2 AUTOMATIC ADJUSTMENT AND GAIN STABILIZATION

The time consuming energy calibration of the individual detector modules and the adjustments for optimum time resolution are performed by automatic routines.
(i) Adjustment of gain and offset of the linear gates: For obtaining a sum signal with good energy resolution it is important that all detector modules are callbrated to equal values for gain and offset. For this purpose, the sum energy spectrum is measured with a mixed gamma-ray source containing ${ }^{60} \mathrm{Co}$ and ${ }^{137} \mathrm{Cs}$ according to fig. 30. If all but one of the CFDs are blocked by CAMAC commands, the observed "sum" spectrum represents only the single spectrum of the unblocked detector module. After a preselected number of counts are accumulated, the positions of the three prominent gamma-ray lines are roughly obtained by a peaksearch routine, and the exact positions are determined by a gaussian fit of each peak. Fitting the three positions by a straight line according to their energies yields the energy calibration
of the spectrum. By an automatic procedure, gain and offset of the linear gate are changed stepwise until the energy callbration agrees with a preselected standard within specified limits. This procedure can be repeated automatically either for all or for a selected number of detector modules.
(ii) Adjustment of the delay for the fast signals: For optimum time resolution, the fast signals have to be adjusted to equal transit times between detector and the 42-fold OR that defines the timing signal for the TOF measurement. This procedure is performed with a ${ }^{60} \mathrm{Co}$ source inside the detector. Via multiplexer, the fast signal of a selected reference module is switched to a separate CFD, which yields the start signal for a TAC; the stop signal is provided by the 42-fold OR. Blocking the CFDs of all 42 detector modules except of the reference module means that the TAC is started and stopped by pulses from the same origin; the position of the resulting peak in the time spectrum can be taken as a reference for all other detector modules. By an automatic procedure, each detector module can successively be combined with the reference module by blocking the CFDs of all other detectors. The position of the corresponding time peak is determined by a gausslan fit; it is then shifted to the correct position by an appropriate delay that can be derived from the known time calibration of the TAC.
(iii) Stabillzation of the detector: Compensation for long term variations of the photomultiplier gain and for temperature dependent variations of the light output ($\Delta \mathrm{T}=1 \mathrm{~K}$ changes the pulse height by $\sim 2 \%$) requires a stabilization procedure working on the time scale of hours. For this purpose, the alpha lines of the radium impurities are used as internal standards. The fact that signals from alpha particles do not show a fast component can be used for separating them by pulse shape discrimination. The fast and slow signals of a detector module are selected via multiplexer; the slow slgnal is transfered to a separate ADC, while the fast signal is fed into two CFDs with high and low threshold, respectively. The output of these discriminators are used to start and stop a TAC as shown in fig. 30. The upper threshold corresponds to the pulse height of the fast component for $\sim 600 \mathrm{keV}$ gamma-rays. Gamma-rays with higher energles exceed both thresholds with very short time difference, giving rise to a sharp peak in the observed time spectrum. The pulses from alpha particles either fall below the upper threshold or pass it with a slgnificant time delay compared to gamma-rays. Hence, the sharp peak due to gamma-rays can be selected by a
single-channel-analyser. If the energy spectrum of the detector module is observed in anticolncidence with these gamma-ray signals, an almost background-free alpha particle spectrum is obtalned. This is illustrated in fig. 32 showing the spectrum of the mixed ${ }^{60} \mathrm{Co}+{ }^{137} \mathrm{Cs}$ source with and without the anticoincidence condition.

From this alpha particle spectrum, the well isolated 7.7 MeV line from the decay of ${ }^{214} \mathrm{Po}$ is used for stablisation of the 4π detector. Immediately after the settings for gain and offset are found for a particular detector module, the automatic routine described above also records the alpha spectrum for this module, and the position of the 7.7 MeV line is stored. In this way, a definite correlation between the correct gain adjust for the sum energy spectrum and the position of the 7.7 MeV alpha peak Is established.

During neutron capture cross section measurements, the alpha spectra of the 42 detector modules are inspected sequentially. If the position of the 7.7 MeV alpha line starts to deviate by more than the shift corresponding to a change of 0.5 V in blas voltage, the setting is changed accordingly. The gain shift as a function of bias voltage has to be determined once by another automatic procedure, and is then stored as a detector parameter. If the determination of the alpha line fails, the change in blas voltage is limited to $\pm 5 \mathrm{~V}$ in order to avoid dangerous misadjustments. As a 1 V change of the bias voltage modifies the pulse helght by approximately 2% ($\S 7.4$), the energy resolution in the sum spectrum is slightly degraded by this procedure for gain stabllization; smaller voltage steps would require a modification of the respective CAMAC controlled power supplies. Counting times of 5 min are required per detector module to achieve sufficient statistical accuracy for a reliable analysis of the alpha spectra, so that each detector module can be checked every 4 hours.

Fig. 32 Spectrum of a mixed ${ }^{137} \mathrm{Cs}+{ }^{60} \mathrm{Co}$ source used for callbration of the linear gates (top); the same spectrum taken with pulse shape discrimination (bottom) illustrates the perfect separation of alpha particles.

7. PERFORMANCE OF THE 4π DETECTOR

7.1 ENERGY RESOLUTION

The energy resolution obtained in the sum spectra of the 4π detector including 42 detector modules is documented in fig. 33. Gamma-ray sources of ${ }^{137} \mathrm{Cs},{ }^{54} \mathrm{Mn},{ }^{65} \mathrm{Zn}$, ${ }^{60} \mathrm{Co}$, and ${ }^{88 Y}$ as well as the 6.1 MeV gamma-ray line from a $\left.{ }^{13} \mathrm{C}+\mathrm{Pu}\right)$ source were used in these measurements. The spectra were obtained by summation of the signals from all detector modules as described in $\S 5.2$. The sum energy signal was amplified in a maln amplifler (Ortec 572) that was modifled by bridging the second differentlation stage and operating with a shaping time of $3 \mu \mathrm{~s}$. A pulse stretcher is used to adapt the pulse shape to the ADC (Nuclear Data 582; flxed conversion time $5 \mu \mathrm{~s}$).

The energy resolution is plotted in the insert of fig. 33 , showing a linear $E^{-1 / 2}$ dependence with a small devlation at 6.1 MeV . In general, the resolution is worse compared to the mean of the individual detector modules (fig.20), where 11.3, 6, and $\sim 5 \%$ were obtained at gamma-ray energies of $0.662,2.5$, and 6.1 MeV , respectively. This difference is due to the following reasons:
(i) In general, the linear gates tend to slightly degrade the energy resolution; this effect is enhanced because about 10% of the integrated slow signals are lost due to the gate width of only $3 \mu \mathrm{~s}$ (fig. 16).
(iI) The gated pulses are affected by the constant noise level of 10 mV due to the incomplete decoupling of fast and slow pulses ($\varsigma 5.2$). This reduces the resolution for the ${ }^{137} \mathrm{Cs}$ line by $\sim 2 \%$, while it is of minor importance at higher energies.
(iii) The detector stabilization operates by changing the blas voltage in steps of $\pm 1 \mathrm{~V}$; this implies a minimumpulse height change of 1.5% on average.
(iv) The energy resolution at high gamma-ray energies suffers also from nonlinearities in the energy calibration, which can be different for individual detector modules. In general, the nonlinearity increases with increasing voltage, and values between 2100 and 2400 V are necessary for achieving equal pulse heights.
(v) The high overall detector efficiency results in high count rates even if relatively weak gamma-ray sources are used. Therefore, pile-up effects start to deteriorate the energy resolution.

Fig. 33 Energy resolution of the 4π detector in the range from 0.6 to 6.1 MeV (the large background in the lower spectrum is caused by neutrons from the (α, n) reaction).

Further improvements of the energy resolution are expected by decoupling fast and slow signals with additional amplifiers, and by introducing an ADC system for individual pulse height analysis of all detector modules. It is also planned to improve the stability by tuning the gain of the linear gates instead of the bias voltage. A significantly better resolution could finally be achieved by cooling the entire detector to temperatures around $5^{\circ} \mathrm{C}$.

7.2 DETECTOR EFFICIENCY

As all capture cross sections are measured relative to the standard gold cross section, only cross section ratios have to be determined experimentally. Therefore, the absolute detector efficiency is not required with high precision. An absolute calibration of the efficlency were possible, e.g. by observing the gamma-ray lines of very weak sources in colncldence with a well calibrated Ge detector. With the present setup, this would be complicated as long as a single ADC is used for analysing all events from the 4π detector. As low thresholds have to be used for the sum energy, alpha particles cannot not be discriminated, leading to a background rate of about 20 kHz .

Sufflciently preclse information on the absolute efficiency could be obtained by means of calibrated gamma-ray sources. The spectra shown in fig. 34 were measured with 65 Zn and ${ }^{88 Y}$ sources of about 4 kBq , and with a ${ }^{60} \mathrm{Co}$ source of 37 kBq , all located in the centre of the 4π detector. Starting with the ${ }^{60}$ Co spectrum, one finds significant pile-up due to the higher activity. Assuming that all events above the sum energy peak at 2.50 MeV are due to plle-up of full energy signals, a 68% probability for detecting the sum energy of the ${ }^{60} \mathrm{Co}$ cascade is achieved. This corresponds to a peak efficlency of about 82% for 1.25 MeV photons (which is the mean of the two ${ }^{60} \mathrm{Co}$ energles). The full energy peaks of the individual gamma-rays are observed with an Intenslty of 1.8%, corresponding to a probability of 2% for detecting only one of the transitlons. Hence, there is a 2% probability for photons of 1.17 and 1.33 MeV for leaving the detector without interaction. Assuming the same escape probability for the 65 Zn source, the upper spectrum of fig. 34 ylelds a peak efficiency of 89%. In the same way, a peak efficiency of 93% was obtained for 0.66 and 0.83 MeV gamma-rays via ${ }^{137} \mathrm{Cs}$ and 54 Mn sources.

Fig. 34 Pulse height spectra of various gamma-ray sources taken with the 4π detector for determination of the efficiency (the spectra were measured with 42 detec-. tor modules covering the full solid angle of 4π).

The sum energy peak in the 88 Y spectrum has an intensity of 68%, corresponding to a 74% peak efficiency for 1.84 MeV photons. According to the decay scheme indicated in the insert of fig. 34 [39], 5.6% of all 88 Y decays feed the level at 1.84 MeV . The related gamma-rays being not part of a cascade means that they are expected to contribute 4.1% to the 1.84 MeV peak in the spectrum. The observed intensity of 5% then implies an escape probability of 1% for the 0.89 MeV photons in the cascade. Finally, the observed 4% intensity of the 0.89 MeV peak yields directly a 4% escape probability for the 1.8 MeV photons.

These results are plotted in fig. 35 together with the calculated efficiency values from the design studies (§ 2.3). The peak efficiency was calculated [32] with an optimistic and a pessimistic assumption for treating triple compton scattering events (open circles and triangles in fig. 35). The present results fall between these extremes, but are closer to the optimistic case. The escape probabilities are plotted in the lower part of the figure.

More detailed investigations of the absolute efficlency and the line shape for monoenergetic gamma-rays are planned with a germanium detector for coincidence measurements and using gamma-ray cascades from (p, γ) reactions, which cover a larger energy range.

7.3 TIME RESOLUTION

The time resolution of the detector has been measured with a ${ }^{60} \mathrm{Co}$ source as described in $\S 6.2$ using two different versions of the 42 -fold OR. Our first design gave optimal results for two-fold coincidences, but events of higher multiplicity appeared to be systematically shifted in time. As the event multiplicity is recorded as well, this constant shift could later be corrected off-line. In practice, however, it is more convenient to avoid this shift, which was practically eliminated in a second version of the 42-fold OR.

The measured time spectrum is shown in fig. 36, and the measured time resolution is plotted in fig. 37 as a function of the gamma-ray threshold. An optimum resolution of about 650 ps is obtained for threshold energies above 300 keV (fig. 37). The 650 ps represent the total time resolution of the experiment. If the time resolution of

Fig. 35 Measured peak efficiencies and escape probabilities of the 4π detector compared to the calculations of ref.[32]; for detalls see text.

Fig. 36 Optimum time resolution of the 4π detector for two-fold coincidences measured with a ${ }^{60}$ Co source (start: detector module 1, stop: detector modules 2-42 combined via 42-fold OR).

Fig. 37 Time resolution of the 4π detector for two-fold coincidences as well as for all possible multipllcitles measured with a ${ }^{60} \mathrm{Co}$ source for different threshold energles in the same way as in fig. 36.

Fig. 38 Offset and gain of the linear gates immediately after adjustment, after a stabilization period of 1 day, and after a measuring period of 1 month; during that time the detector was stabillzed via the 7.7 MeV alpha line from radium decay.
the start detector is unfolded, one obtains an overall time resolution of less than 500 ps for the remaining 41 detector modules, an impressive result in view of the $60 \mid \mathrm{BaF}_{2}$ volume.

The results presented in this section demonstrate the attractive features of BaF_{2} for gamma-ray detection. For the first time, a 4π detector could be bult that combines 7% energy resolution at $2.5 \mathrm{MeV}, 500$ ps time resolution, and nearly 100% efficlency for gamma-rays up to 10 MeV .

7.4 STABILITY

The stability of the detector settings is demonstrated in fig. 38 showing offset and gain of the 42 detector modules immediately after adjustment, after a stabilization time of 1 day, and after a measuring perlod of 1 month. During this time, the detector was stabilized by changing the bias voltage as to maintain the position of the 7.7 MeV alpha line ($\xi_{6} 6.2$). The gain changes during the first day are due to the fact that the bias voltage can only be changed in steps of $\pm 1 \mathrm{~V}$. The additional spread during the four weeks of experiment caused only a small reduction in energy resolution (e.g. from 7.3 to 7.8% for the $2.50 \mathrm{MeV}{ }^{60} \mathrm{Co}$ sum peak), which can easily be tolerated.

Table 5. Energy range of continuous neutron spectra produced via the ${ }^{7} \mathrm{Li}(p, n)^{7} \mathrm{Be}$ reaction as a function of proton energy above the reaction threshold at $E_{p}=1881 \mathrm{keV}$, and related informations.

Proton energy above threshold $[k e V]$	Range of neutron spectrum $[k e V]$	Opening angle of neutron cone [deg]	Energy range undisturbed by scattered neutrons $[k e V]$
0	31	0	31
1	$20-40$	5	$31-40$
10	$5-68$	30	$53-68$
20	$5-88$	45	$69-88$
30	$5-150$	60	$82-105$
60	$5-210$	4π	$117-150$
100	4π	$164-210$	

8. REGISTRATION OF NEUTRON CAPTURE EVENTS

8.1 NEUTRON SOURCE

The setup for the determination of neutron capture cross sections is briefly described in $\S 2.1$, and a schematic view is given in fig. 2. Neutrons are produced via the ${ }^{7} \mathrm{LI}(p, n) 7$ Be reaction, which indeed is well suited for s-process studies. At the reaction threshold of $E_{p}=1.881 \mathrm{MeV}$ almost monoenergetic neutrons are emitted with an energy of 31 keV , corresponding to the velocity of the compound nucleus. In the centre of mass system, neutrons with practically zero energy are emitted isotropically. Consequently, in the laboratory system all neutrons are emitted in a very narrow forward cone. Rising the proton energy above the reaction threshold yields continuous neutron spectra in an increasingly broader energy range around 31 keV (table 5). Simultaneously, the opening angle of the neutron cone increases, reaching 4π when the proton energy exceeds the reaction threshold by 40 keV .

Energies around 30 keV are also characteristic of the neutron spectrum prevalling during the s-process, which occurs in the helium burning zones of red giant stars. Typical temperatures of these regions are between 200 and 300 million K , corresponding to thermal energles around 25 keV . Neutrons are easily thermalized in the stellar plasma, exhibiting a Maxwellian energy distribution ranging from zero to $\sim 200 \mathrm{keV}$. Capture cross section measurements should cover this entire range; folding with the stellar spectrum then yields the effective stellar cross section [4]. With the ${ }^{7} \mathrm{Li}(p, n)^{7}$ Be reaction it is possible to produce neutron spectra in exactly that energy range.

As was shown in § 2.3, the additional 10 cm flight path from the sample to the inner radius of the BaF_{2} shell always provides a region at the high energy end of the neutron spectrum that is completely undisturbed by background from sample scattered neutrons. For a flightpath of 77 cm (the minimal flight path that can be presently used) this part of the spectrum is given in the last column of table 5. Obviously, it is possible to move this region over the full spectrum range from 30 to 200 keV by repeated runs at different proton energles. In practice, proton energies should be kept 10 keV above threshold as the neutron yield drops rapidly for lower proton energles, and measurements would be too time consuming.

The possibility to taylor the shape of the neutron spectrum in exactly the energy range that is needed for s-process studies $(5-200 \mathrm{keV})$ is a considerable advantage compared to LINAC sources, where most neutrons are produced at lower and higher energies, so that the related backgrounds disturb the energy range of interest. Moreover, the TOF discrimination of sample scattered neutrons is not possible, as primary flight paths of at least 10 m have to be used in LINAC experiments due to the heavy shleld around the neutron target. Hence, the combination of favorable background conditions, short flight paths, and the sulted time structure available at Van de Graaff accelerators more than compensate for the lower integral neutron yield. This holds in particular if neutron capture cross sections are to be measured with high precision.

The main parameters of the accelerator are complled in table 6. The repetition rate of 250 kHz is required to avoid overlap of delayed background events with subsequent pulses.

8.2. MEASUREMENTS AND DATA EVALUATION

Data evaluation and the determination of neutron capture cross sections will be discussed in detail in a forthcoming paper on first measurements with the 4π detector. Here, the relevant features will be presented brlefly.

For the determination of neutron capture cross sections relative to a standard, at least four "samples" have to be used in the measurements:
(i) The Isotope under Investigation: As the neutron capture cross section is characteristic for each Isotope, isotopically enriched samples have to be used in order to achieve good accuracy.
(II) The gold sample: In most cases, the well known neutron capture cross section of gold is used as a standard. However, for some astrophysical problems, it is sufficient to measure the cross section ratio of two neighboring lsotopes, e.g. for ${ }^{148} \mathrm{Sm}$ and ${ }^{150} \mathrm{Sm}$.
(iii) The carbon sample: As neutron capture in carbon is negligible, this sample can be used to simulate the effect of sample scattered neutrons.
(iv) No sample: With an empty sample position, the time independent background due
to the radium impurities in BaF_{2} and from natural radioactivity is determined together with the backgrounds caused by the neutron beam and by neutrons escaping from the target shield.

The samples are mounted on a sample changer and cycled automatically into the measuring position by a computer controlled stepping motor. Up to 8 samples are flxed on two 0.1 mm thick steel wires to minimize disturbing materials in the neutron beam. The distance between the samples is not flxed, but values between 5 and 10 cm are most appropriate. During the experiments, the samples are changed in intervals of $\sim 10 \mathrm{~min}$, defined by integration of the proton beam current to a preselected charge.

As a rule of thumb, a sample mass of 1 g is required if the 30 keV cross section is $\sim 500 \mathrm{mb}$; this is considerably less than is normally used in comparable TOF measurements. Correspondingly, sample related uncertainties, e.g. neutron multiple scattering and self-shielding or gamma-ray self-absorption are significantly reduced. Further improvements of the 4π detector ($\S 9$) will probably allow to use about two times smaller samples.

In the measurements, each event is characterized by a 64 bit data word, containing sum energy, flight time and the detector identification, and is stored in list mode on magnetic tape. Simultaneously, a two-dimensional spectrum of 2048 TOF versus 128 pulse height channels is accumulated in a megastore (without multiplicity information), and up to 4 different control spectra are recorded by a separate increment unit. During the sample change, a new file for the list mode data of the next sample is created on the magnetic tape, and the two-dimenslonal spectrum is added to a sum file that is stored on disk for each sample separately. The control spectra are also stored on disk for later evaluation. In this way, a two-dimensional spectrum is avallable for each sample that represents the actual status and that can be used for inspection and control of the ongoing experiment.

Sufficient statistical accuracy is achleved within about 1 to 2 weeks of measuring time for a particular proton energy. The definition of the sample changer intervals by integration of the proton beam current may cause a systematic effect if the neutron yield decreases with time. Then, the first sample in the cycle receives a higher
exposure than the last one. This effect can be corrected by means of two control spectra recorded with ${ }^{6}$ Li glass neutron detectors:
(i) The pulse height spectrum of the first ${ }^{6} \mathrm{LI}$ glass detector (located at a distance of about 20 cm from the lithium target perpendicular to the beam axis) monitors the total neutron yleld.
(ii) The second 6 Li glass detector (located In the neutron beam behind the 4π detector at a flight path of 2.5 m) is used for taking a TOF spectrum. As this detector is looking at the neutron target through the sample, the recorded spectra have to be corrected for the respective sample transmissions, which are usually larger than 98%. By this spectrum, neutrons in the direct beam can be distingulshed from moderated ones.
The two spectra offer a completely independent normallzation for the neutron exposure per sample. The respective corrections are typically $\sim 1 \%$ and can be determined with an accuracy of better than 0.2\%.

For each sample, the list mode data are sorted off-line into two-dimensional spectra according to multiplicity. In general, five spectra per sample containing multiplicities 1 to 4 and ≥ 5 were found to be sufficient; these spectra differ widely in their signal to background ratios. If necessary, also higher multiplicitles can be treated, at the expense of increasing computing time and storage requirements.

The different steps of background subtraction are illustrated in fig. 39. The spectrum on top shows the uncorrected data obtained with a gold sample containing only events with multiplicities larger than two. At low sum energies, the time independent background is malnly due to the radium Impuritles of the BaF_{2} crystals. Capture events in the gold sample are concentrated around 6.5 MeV , while the background due to sample scattered neutrons, which are ultimately captured in barium is mainly located at sum energles of 9 MeV . It is easy to see that the latter component is more strongly spread in time compared to capture events in the gold peak; even after $3 \mu s$ this background is still significant. Consequently, accelerator repetition rates of 250 kHz or even lower should be used in actual experiments.

The background from scattered neutrons falls into three components, a constant part due to moderated neutrons escaping from the shield around the target, and two

Fig. 39 Two-dimensional spectra of sum energy versus time of flight measured with à gold sample; the various steps of background subtraction are illustrated from top to bottom.
time-dependent parts due to neutrons scattered from the sample or in the air along the flight path through the detector.

The spectrum in the mid part of fig. 39 is obtained after subtraction of background measured without sample, containing only events that are correlated with the sample, l.e. the true capture events around 6.5 MeV sum energy and background due to sample scattered neutrons. The latter component can be accounted for by the properly normalized spectrum measured with the carbon sample, that has been subtracted in the lower part of fig. 39. There, only the true capture events at the 6.5 MeV blnding energy of gold are left, which fall In a TOF Interval of about 500 ns according to the Investigated neutron energy range from 10 to 200 keV (for 77 cm flight path).

The difference in background due to scattered neutrons around 9 MeV , that is observed between the upper and the mid part of fig. 39, Indleates that the contributions from scattering in alr and in the sample are about equal. Therefore, in future experiments the neutron beam will be guided through the detector in an evacuated flight tube, in order to eliminate air scattering.

The projected sum energy spectrum obtained with the carbon sample is shown in flg. 40. Neutron capture in BaF_{2} is dominated by ${ }^{137} \mathrm{Ba}$ and ${ }^{135} \mathrm{Ba}$ with binding energies of 8.6 and 9.1 MeV , respectively. A smaller part due to capture in ${ }^{134} \mathrm{Ba}$ and ${ }^{136} \mathrm{Ba}$ peaks at 6.9 MeV , whereas capture in ${ }^{138} \mathrm{Ba}$ and ${ }^{19 \mathrm{~F}}$ is almost negligible due to the low capture cross sections of both isotopes. The latter components are problematic as they fall in a sum energy range, where one expects the capture events of gold and of most isotopes of astrophysical interest.

The TOF spectrum of fig. 41 was obtained from the two-dimenslonal distribution of the gold sample (bottom part of fig. 39) by summation over the energy range around the maximum at 6.5 MeV . The corresponding background due to sample scattered neutrons is included for comparison. Fig. 41 verifies two important features:
(i) The energy range from 150 to 200 keV is free of background (see § 2.3 and table 5).
(ii) Sample scattered background is strongly spread in time, confirming the previous calculation (fig.6).

Fig. 40 Sum energy spectrum due to neutron captures in the BaF_{2} crystals as measured with a carbon sample. The various components are easily attributed to capture in different barium isotopes.

Table 6. Parameters of the neutron source.

Accelerator:
Proton energy:
Repetition rate:
Pulse width:
Beam intensity:
Neutron target:

Neutron spectrum:

Flight path:
3.75 MV Van de Graaff

10-100 keV above ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{n})^{7} \mathrm{Be}$ threshold
250 kHz
$<1 \mathrm{~ns}$
$2 \mu \mathrm{~A}$
$\sim 1.8 \mathrm{mg} / \mathrm{cm}^{2}$ metallic lithlum on water cooled copper or silver backing continuous, ranging in energy from 5 keV to an upper limit between 70 and $\sim 210 \mathrm{keV}$.

77 cm

Fig. 41 The net TOF spectrum recorded with a 29 gold sample in a neutron spectrum ranging from 5 to 200 keV . The background due to sample scattered neutrons that was subtracted before is shown separately. The spectrum was obtained by summation of the pulse height channels around the binding energy (see fig. 42).
(iii) Selecting distinct channels in the sum energy spectrum around the binding energy eliminates most of the background (the calculation in flg. 6 was performed without such selection).

Despite the fact that the cross section ratio for capture and scattering in gold is $\sim 1: 20$, the measured signal to background ratio is very favorable; even at 10 keV it is stlll $2: 1$. Nevertheless, only the energy range above 20 keV will be evaluated from this spectrum, as better signal to background ratios can be obtained at low energies in runs where the maximum neutron energy is restricted to $\leq 100 \mathrm{keV}$.

From the spectrum of fig. 41 only the cross section shape can be evaluated. For normalization, sum energy spectra are calculated by adding the TOF channels in the neutron energy range from 150 to 200 keV , the region with the best signal to background ratio. The resulting spectra for gold and rhodium are shown in fig. 42. In both spectra about 95% of all capture events are observed above the experimental

Flg. 42 Sum energy spectra for neutron capture in gold and rhodium. The spectra were obtained by adding the time of flight channels in the neutron energy range from 150 to 200 keV (see fig. 41).

Fig. 43 Sum energy spectra for neutron capture in gold and rhodlum for different multiplicities.

Fig. 44 The uncorrected experimental multiplicity distribution for neutron capture in gold (squares) compared to a previous calculation [16].
threshold of 2.5 MeV . The correction for the cross section ratio $\sigma(R h) / \sigma(A u)$, which results from extrapolation to lower energies is 0.98 with an absolute uncertainty of $\pm 0.6 \%$.

The dependence of the observed effect on event multiplicity is shown in fig. 43 for gold and rhodium. About 50% of all events exhibit multiplicities of five or more, while only 1 to 2% are observed with multiplicity one. For the gold sample, the measured neutron capture multiplicities are compared in fig. 44 to a theoretical calculation [16]. Reasonable agreement is found if one considers that the experimental results are not yet corrected for detector-detector scattering, for the limited solld angle of that experiment (95% of 4π), and for the threshold energy of about 60 keV in the gamma-ray detectors that cuts off transitions between the first excited states in gold frequently populated in the calculations.

As discussed in detail [40], the overall accuracy obtained in first cross section measurements on samples of niobium, tantalum, and rhodium is about $\pm 1.2 \%$. Several improvements ($\varsigma 9$) that are realized meanwhile or are under development will allow to exceed this result in the future.

9. CONCLUSIONS

9.1 IMPROVEMENTS

During the first capture cross section measurements on samples of nioblum, tantalum, and rhodium relative to a gold standard, the experimental method was studied in detail and several possible improvements were persued for future Implementation.

At present, the achieved uncertainty of $\pm 1.2 \%$ is mainly due to the absolute normallzation of the cross section shape. In this step of data analysis, the number of events above the experimental threshold of 2.5 MeV has to be determined including all multiplicities, e.g. from the spectra shown in fig. 43. Although the number of true events with multiplicities 1 or 2 is small, an exact analysis is difficult because of significant statistical fluctuations; these are due to the subtraction of sizeable background from radium impurities in the BaF_{2} crystals.

In view of this situation, the following improvements are planned or already realized: (i) The spectra shown in fig. 43 have been measured with 40 detector modules covering 95% of the full solid angle; two positions were left open for the neutron beam to pass. This means for a capture cascade of multiplicity 4 that there is already a 20% probability that one of the gamma-rays escapes from the detector without hitting a BaF_{2} crystal at all. Hence, the number of events in the full energy peak is reduced and the average multiplicity appears too low. A slgnificant fraction of the missing solid angle presently not filled with BaF_{2} will be covered in the future by crystals with a central hole of 50 mm diameter for the neutron beam.
(ii) The background from radium impurities was reduced meanwhile by 40% as the eight crystals with the largest radium content were replaced. These new crystals are already included in fig. 26; the two modules with decay rates above $1000 \mathrm{~s}^{-1}$ shown there will not be used furtheron.
(iii) The pulsing system of our accelerator is presently modifled with the aim to improve the intensity per pulse in the extracted proton beam. Any such improvement will translate linearly in an improved signal to background ratio for that component which is not correlated with the neutron beam.
(iv) Neutron scattering in the air along the 50 cm flight path through the detector will be eliminated by evacuated flight tubes for the neutron beam, thus reducing the respective background significantly.

9.2 SUMMARY

After 30 years of neutron capture cross section measurements with liquid scintillator tanks, Moxon-Rae detectors, and total energy detectors, the potential of these methods seems to be exhausted. Any further improvement can only be achieved by new techniques. An attempt for establishing such a technique was made with the 4π BaF_{2} detector using the impressive features of BaF_{2} for gamma-ray detection discovered six years ago.

The favorable combination of a Van de Graaff accelerator and the $4 \pi \mathrm{BaF}_{2}$ detector for measurements in the keV neutron energy range was discussed in detall. With the ${ }^{7} \mathrm{LI}(\mathrm{p}, \mathrm{n})^{7} \mathrm{Be}$ reaction as an efficient source of keV neutrons and with flight paths of less than 1 m , it is well sulted for the intended application as neutron production can be restricted exactly to the energy range of astrophysical interest. The setup offers a number of possibilities for background suppression, and the remaining backgrounds can be studied quantitatively. Barlum fluoride proved to be the best avallable scintillator, combining high efficiency, good energy resolution, and excellent timing with a low sensitivity to capture of keV neutrons.

The new method required significant investments for scintillator, electronics, and computers; large amounts of data have to be handled, and painstaking procedures had to be worked out in order to verlfy each step of data analysls. However, already the first results confirmed that it was worth this effort, and that data with significantly improved accuracy can be expected in the near future.

REFERENCES

[1] C. Chiosi and A. Renzini, eds., Stellar Nucleosynthesis, Proc. of the Third Workshop of the Advanced School of Astronomy of the Ettore Majorana Centre Erice, Italy, May 11-21, 1983 (Reldel, Dordrecht, 1983).
[2] A. Faessler, ed., The Early Universe and its Evolution, Proc. of the Int. School of Nuclear Physics, Erice, Italy, April 2-14, 1986, Progress in Particle and Nuclear Physics, Vol. 17 (Pergamon Press, Oxford, 1986).
[3] C.E.Rolfs and W.S.Rodney, Cauldrons in the Cosmos (University of Chicago Press, Chicago, 1988).
[4] F. Käppeler, H. Beer and K.Wisshak, Rep. Prog. Phys. 52 (1989) 945.
[5] M. Laval, M. Moszynski, R. Allemand, E. Cormoreche, P. Guinet, R. Odru and J. Vacher, Nucl. Instr. and Meth. 206 (1983) 169.
[6] F. A. Beck, Proc. of the Int. Conf. on Instrumentation for Heavy lon Nuclear Research, Oak Ridge,TN, October 22-25, 1984, D. Shapira, ed. (Harwood Academic ,1985) p. 129.
[7] G. V. Muradyan, Yu. V. Adamchuk, Yu. G. Shchepkin and M. A. Voskanyan, Nucl. Scl. Eng. 90 (1985) 60 .
[8] R. C. Block, P. J. Marano, N. J. Drindak, F. Feiner, K. W. Seeman and R. E. Slovacek, Proc. Int. Conf. on Nuclear Data for Science and Technology, May 30-June 3, 1988, Mito, Japan, S. Igarasi, ed. (Saikon, Tokyo, 1988) p. 383.
[9] S. Yamamoto, K. Kobayashi and Y. Fujita, Proc. Int. Conf. on Nuclear Data for Science and Technology, May 30-June 3 , 1988, Mito, Japan, S. Igarasi, ed. (Saikon, Tokyo, 1988) p. 375. and S. Yamamoto, Y. Fujita, T. Shibata and S. Selvi, Nucl. Instr. Meth. A249 (1986) 484.
[10] P. E. Koehler and H. A. O'Brien, Proc. Int. Conf. on Nuclear Data for Science and Technology May 30-June 3, 1988, Mito, Japan, S. Igarasl, ed. (Salkon, Tokyo, 1988) p. 1101.
[11] F. Käppeler, G. Schatz and K. Wisshak, Vorschlag zum Bau eines Wismuth-Germa-nat-Detektors fur Präzisionsmessungen zur Elementsynthese im s-Prozess, report. KfK-3472, Kernforschungszentrum Karlsruhe (1983) .
[12] K. Wisshak, F. Käppeler and G. Schatz, Nucl. Instr. and Meth. 221 (1984) 385, and K. Wisshak, F. Käppeler and G. Schatz, Calculated Efficiency of a 4π Detector of BGO or BaF_{2} for Monoenergetlc Gamma-Rays and Gamma Cascades Following Neutron Capture, report KfK-3580, Kernforschungszentrum Karlsruhe (1983).
[13] K. Wisshak and F. Käppeler, Nucl. Instr. and Meth. 227 (1984) 91.
[14] K. Wisshak, F. Käppeler and H. Muller, Nucl. Instr. and Meth. A251 (1986) 101.
[15] K. Wisshak, K. Guber and F. Käppeler, Nucl. Instr. and Meth. A259 (1987) 583.
[16] G. Reffo, F. Fabbri, K. Wisshak and F. Käppeler, Nucl. Sci. Eng. 80 (1982) 630.
[17] K. Wisshak, F. Käppeler, G. Reffo and F. Fabbri, Nucl. Sci. Eng. 86 (1984) 168.
[18] B. C. Diven, J. Terrell and A. Hemmendinger, Phys. Rev. 120 (1960) 556.
[19] D. Kompe, Nuel. Phys. A133 (1969) 513.
[20] M. C. Moxon and E. R. Rae, Nucl. Instr. and Meth. 24 (1963) 445.
[21] F. Corvi, C. Bastian and K. Wisshak, Nucl. Sel. Eng. 93 (1986) 348.
[22] R. L. Macklin and J. H. Gibbons, Phys. Rev. 159 (1967) 1007.
[23] F. Käppeler, K. Wisshak and L. D. Hong, Nucl. Sci. Eng. 84 (1983) 234.
[24] F. Corvi, A. Prevignano, H. Liskien and P. B. Smith, Nucl. Instr. and Meth. A265 (1988) 475.
[25] R. L. Macklin, Nucl. Scl. Eng. 83 (1983) 309.
[26.] R. L. Macklin, Nucl. Sel. Eng. 95 (1987) 200.
[27] Z. Y. Bao and F. Käppeler, Atomic Data and Nuclear Data Tables 36 (1987) 411.
[28] M. Yoshimori, H. Watanabe and F. Shiraishi, Nucl. Instr. and Meth. A245 (1986) 191.
[29] D. J. Wagenaar, N. R. Roberson, H. R. Weller and D. R. Tilley, Nucl. Instr. and Meth. A234 (1985) 109.
[30] P. E. Koehler, S. A. Wender and J. S. Kapustinsky, Nucl. Instr. and Meth. A242 (1986) 369.
[31] D. J. Morrissey, S. H. Wernig and R. A. Blue, Nucl. Instr. and Meth. 221 (1984) 641.
[32] G. Schatz and J. Oehlschläger, Ein Programm zur Berechnung der Ansprechwahrscheinlichkeit eines 4π-Szintillationszählers, report KfK-3710, Kernforschungszentrum Karlsruhe (1984).
[33] K. Wisshak, J. Wickenhauser, F. Käppeler, G. Reffo and F. Fabbri, Nucl. Sci. Eng. 81 (1982) 396.
[34] M. Jääskeläinen, D. G. Sarantites, R. Woodward, F. A. Dilmanian, J. T. Hood, R. Jääskeläinen, D. C. Hensley, M. L. Halbert and J. H. Barker, Nucl. Instr. and Meth. 204 (1983) 385.
[35] D. Habs, F. S. Stephens and R. M. Diamond, A proposal for a Crystal-Ball Detector System, report LBL-8945, Lawrence Berkeley Laboratory (1979).
[36] E. Malwitz, Crystalball-Trägerkugel Konstruktion und Fertigung, report GSI 80-6, Gesellschaft fur Schwerionenforschung, Darmstadt (1980).
[37] D. F. Anderson and D. C. Lamb, Nucl. Instr. and Meth. A260 (1987) 377.
[38] R. Novotny, R. Riess, R. Hingmann, H. Ströhner, R.D. Fischer, G. Koch, W. Kühn, V. Metag, R. Mühlhans, U. Kneissl, W. Wilke, B. Hans, J.P. Vivien, R. Beck, B. Schoch and Y. Schulz, Nucl. Instr. and Meth. A262 (1987) 340.
[39] H.-W. Muiller, Nuclear Data Sheets 54 (1988) 1.
[40] K. Wisshak et al., in preparation.

APPENDIX A

A FORTRAN code for Monte Carlo simulation of neutron scattering from the capture sample

```
//IAK554F4 JOB (0554,145,P0AOB),WISSHAK,NOTIFY=IAK554,TIME=5
// EXEC F7CLG,PLOT=VERSATEC
//C.SYSPRINT DD DUMMY
//C.SYSIN DD DISP=SHR,DSN=TSO554.WBALL4.FORT
// DD DISP=SHR,DSN=TSO554.PLOT2.CNTL
//L.SYSPRINT DD DUMMY
//L.SYSIN DD *
    ENTRY MAIN
//G.SYSIN DD *
\begin{tabular}{lclll}
\multicolumn{5}{c}{} \\
10. & 9 & 10000 & 0 & 0 \\
0. & 25. & 1. & & \\
\(1.680 \mathrm{E}+22137\). & 19.0 & 0. & 1. \\
25. & 19. & 0. & & \\
80. & & & & \\
70. & 80. & 5. & 1.126 & 10. \\
60. & 70. & 50. & 1.209 & 10. \\
50. & 60. & 100. & 1.314 & 10. \\
40. & 50. & 100. & 1.453 & 10. \\
30. & 40. & 100. & 1.647 & 10. \\
20. & 30. & 83. & 1.949 & 10. \\
15. & 20. & 57. & 2.330 & 10. \\
10. & 15. & 40. & 2.757 & 10. \\
5. & 10. & 26. & 3.559 & 10.
\end{tabular}
```

0.1	1.535	6.5
0.103	1.535	100.
0.106	1.535	6.5
0.273	0.82	6.4
0.283	0.80	50.
0.293	0.78	6.4
0.40	0.64	7.0
0.419	0.62	40.
0.437	0.60	8.0
1.0	0.36	8.0
5.0	0.13	7.7
10.0	0.086	7.4
15.0	0.067	7.0
20.0	0.060	6.8
31.6	0.049	5.5
32.4	0.048	20.
33.2	0.047	8.0
50.	0.039	5.0
51.8	0.038	15.
52.7	0.037	7.0
70.	0.0325	6.5
71.7	0.032	15.
73.4	0.0315	6.5
100.	0.027	6.0
120.	0.025	5.5
0.1	0.001	3.9
0.5	0.0006	3.75
1.0	0.0003	3.7
5.0	0.0002	3.6
10.0	0.0001	3.5
20.0	0.0004	3.5
25.0	0.002	4.0
27.5	0.2 .00	50.0
30.0	0.001	4.0
40.0	0.0005	3.5
42.5	0.03	4.0
45.0	0.002	4.5
50.0	0.04	40.0
55.0	0.0007	4.5
60.0	0.0005	3.3
75.0	0.0005	3.3
90.0	0.002	10.
100.0	0.006	25.0
115.0	0.001	7.0
0.1	0.0	0.0
11.0		
0.0		

//PLOTPARM DD *
\&PLOT MODE=0, IOMASK=10 \&END
//PL EXEC SVPLOT

C
C PROGRAMM ZUM BERECHNEN DER NEUTRONENEMPFINDLICHKEIT

COMMON NUNT, NOB, N,M,IY,DENSTY,ESIG,SIGC,SIGN,AI1,AI2,AI3
DIMENSION NOUT (100), NCAP (100), NIN(100),
$1 \operatorname{ESIG}(3,100), \operatorname{SIGC}(3,100), \operatorname{SIGN}(3,100)$,
$2 \mathrm{E}(100), \mathrm{XX}(100), \mathrm{YY}(100), \mathrm{ZZ}(100), \operatorname{TT}(100), \mathrm{SS}(100)$,
3STETA (100), SPHI (100), R(100),
4RMATRX $(3,3)$, SIGANZ (3),
5NTIMEI (200) , NTIMEO (200) , NTIMEC (200) , NENOUT (100) , NENIN(100), 6NENCAP (100), $\operatorname{IFELD}(10,12), \operatorname{OFELD}(20,5), \operatorname{ENEIN}(200)$
DIMENSION ENECAP (1000), ENEOUT (1000), UNTCAP (200), EFFEKT (200), 1ELOWER (20) , EUPPER (20), FLUSS (20) , SIGMAG (20) ,FAKTOR (20), 2TIMELO (20), TIMEUP (20), UNTOUT (200),
3MTIMEO $(20,200), \operatorname{MTIMEC}(20,200), \operatorname{MENOUT}(20,100), \operatorname{MENCAP}(20,100)$
DIMENSION XXX (200), IBUF (8000), YYY(200)
C.... DIMENSION PPS2(100), PPTETA(100), PPPHI (100), PPAAA(100)

C
C EINLESEN DER ANFANGSWERTE
C
READ (5, 400) NENER, NEUTRS, NUNT, NOB
READ (5,401)RIN, ROUT, RPROB
READ (5, 401) GRENZ 1 , GRENZ2
$\operatorname{READ}(5,402)$ DENSTY, AA1, AA2 , AA 3, AI1, AI2 , AI3
$\operatorname{READ}(5,401)$ SIGANZ (1), SIGANZ (2), SIGANZ (3)
WRITE $(6,403)$ NENER, NEUTRS, NUNT, NOB
WRITE $(6,404)$ RIN; ROUT, RPROB
WRITE $(6,405)$ GRENZ1, GRENZ2
$\operatorname{WRITE}(6,406)$ DENSTY, AA1, AA $2, \mathrm{AA} 3, \mathrm{AI} 1, \mathrm{AI} 2, \mathrm{AI} 3$
WRITE $(6,407)$ SIGANZ (1) , SIGANZ (2), SIGANZ (3)
400 FORMAT (4I10)
401 FORMAT (3F10.5)
402 FORMAT (E10.3, 6F10.2)
403 FORMAT ('1 ANZENERGIE, ANZNEUTRONEN, FLAGN, FLAGM' , 4I10)
404 FORMAT (' RIN,ROUT, RPROB ', 3F10.2)
405 FORMAT(${ }^{\prime}$ GRENZE FUER ZUFALLSZAHLEN ',2F10.4)
406 FORMAT(' MOLEK/CM3,MASSE1,2,3,HAUFIGKEIT1, 2,3 ',E10.3,6F10.2)
407 FORMAT(' ANZAHL DES STUETZSTELLEN FUER SIGMA ',3F10.2)

EINLESEN DER ENERGIEBEREICHE ETC

DO $124 \mathrm{I}=1,10$
TIMELO (I) $=0$.
$\operatorname{TIMEUP}(\mathrm{I})=0$.
ELOWER $(I)=0$.
EUPPER (I) $=0$.
FLUSS (I)=0.
$\operatorname{FAKTOR}(I)=0$.
$\operatorname{SIGMAG}(I)=0$.
124 CONTINUE
$\operatorname{READ}(5,401)$ FLUGW
WRITE $(6,513)$ FLUGW
513 FORMAT(' FLUGWEG IN CM ',F10.5)
D0110 K=1, NENER
$\operatorname{READ}(5,510) \operatorname{ELOWER}(K), \operatorname{EUPPER}(K), \operatorname{FLUSS}(K), \operatorname{SIGMAG}(K), F A K T O R(K)$

00000100
00000200
00000300
00000400
00000500
00000600
00000700
00000800
00000900
00001000
00001100
00001200
00001210
00001220
00001230
00001240
00001250
00001300
00001400
00001500
00001600
00001700
00001800
00001900
00002000
00002100
00002200
00002300
00002400
00002500
00002600
00002700
00002800
00002900
00003000
00003100
00003200
00003300
00003400
00003410
00003420
00003430
00003431
00003432
00003433
00003434
00003435
00003436
00003437
00003438
00003439
00003440
00003450
00003460
00003470
00003480

```
    lloll
    lloll
    lloll
    lloll
C
    lloll
    lloll
C
    lloll
    lloll
C
    lloll
C
    lloll
    lloll
```

```
C 00008400
C EINLESEN DER ZUFALLSZAHLEN
C
C READ (5,502)(PPS2(K),K=1,10)
C READ (5,502)(PPTETA (K),K=1,10)
C READ (5,502)(PPPHI (K),K=1,10)
C READ (5,502)(PPAAA (K),K=1,10)
502 FORMAT(10F7.5)
    WRITE (6,504)
    504 FORMAT(' EINGEGEBENE ZUFALLSZAHLEN ')
    WRITE (6,503)(PPS2(K),K=1,10)
    WRITE (6,503) (PPTETA (K),K=1,10)
    WRITE (6,503) (PPPHI (K), K=1,10)
    WRITE (6,503)(PPAAA (K),K=1,10)
    503 FORMAT(' ', 10F10.5)
    C
    C
    C
    DO 4444 L=1,NENER
    ENO=(ELOWER(L)+EUPPER(L))/2.
    WRITE (6,512)L,ENO
    512 FORMAT('1'/' L NEUTRONENENERGIE ',I10,F10.5)
    NNN=0
    D01 K=1,100
    NOUT(K)=0
    NCAP(K)=0
    NIN(K)=0
    NTIMEO(K)=0
    NTIMEC (K)=0
    NTIMEI (K)=0
    NTIMEO}(100+K)=
    NTIMEC (100+K)=0
    NTIMEI (100+K)=0
    NENOUT(K)=0
    NENCAP (K)=0
    1 NENIN (K)=0
C
C
    C
    BEGINN DER DO SCHLEIFE UBER DIE ANZAHL DER NEUTRONEN
    DO 1000 N=1,NEUTRS
    KCC=0
    KKK=0
        KPP=0
        MMM=0
        DO }5\textrm{K}=1,10
        E (K)=0.
        XX(K)=0.
        YY(K)=0.
        ZZ(K)=0.
        TT(K)=0.
        SS}(K)=0
        STETA(K)=0.
        SPHI (K)=0.
        5 R(K)=0.
```

C UND WECHSELWIRKUNGSWARSCHEINLICHKEITEN FUER DIE ERSTE WW
C
CALL B10H14(ENO,PATH0,PS1,PS2,PS3)
CC....FUER TESTZWECKE FREIE WEGLAENGE FIX
CC PATHO=2.
CC.....
IF(N.LE.NOB.AND.N.GE .NUNT)WRITE (6, 671)EN0,PATH0, PS1, PS2 , PS3
671 FORMAT(' ENO,PATHO,PS1,PS2,PS3 ',5F10.3)
C
C BERECHNUNG DES ORTES DER ERSTEN WW
C
C.....TEST OB S2 WIRKLICH EXPONENTIELL VERTEILT IST
C DO 6 K=1,100
C E(K)=-PATH0*ALOG(RANDOM(0.))
C }6\mathrm{ CONTINUE
C WRITE (6, 410)(E (K),K=1, 100)
C 410 FORMAT(' ',10F10.5)
C DO }7\textrm{K}=1,10
C T E(K)=u.
C.....TEST ENDE
PPP=RANDOM(0.)
CC. . PPP=PPS2(1)
IF(PPP.LT.GRENZ1)PPP=GRENZ1
IF(PPP.GT.GRENZ2)PPP=GRENZ2
S2=-PATHO*ALOG(PPP)
IF(N.GE.NUNT.AND.N.LE.NOB)WRITE (6,411)PPP,S2
411 FORMAT(' ZUFALLSZAHL UND ERSTES S2 ',2F10.5)
411 FORMAT(ZUFALLSZAHL UND ERSTES S2 ,2F10.5)
Y2=0.
Z2=RIN+S2
E(1)=ENO
XX(1)=0.
YY(1)=0.
ZZ(1)=RIN+S2
TT(1)=TTT*ZZ(1)/SQRT(E (1))
R(1)=RIN+S2
SS(1)=S2
STETA(1)=0.
SPHI (1)=0.
IF(S2.LE.(ROUT-RIN))GOTO 12
C
C UBERHAUPT KEINE WW IN KUGEL
C
NOUT(1)=NOUT(1)+1
TT (1)=TTT*ROUT/SQRT (E (1))
M=1
KKK=1
MMM=1
IF (N.GE.NUNT.AND.N.LE.NOB)WRITE (6,409)TT(1)
409 FORMAT(' NEUTRON HAT KUGEL VERLASSEN VOR ERSTER WW,ZEIT:',F10.5)
GOTO 1:111
C
C AUSWUERFELN OB ERSTE WW STREUUNG ODER CAPTURE
C
12 PPP=RANDOM(0.)
IF (PPP.LT.GRENZ1)PPP=GRENZ1
00012000
00012100
00012200
00012300
00012400
00012500
00012600
00012700
00012800
00012900
00013000
00013100
00013200
00013300
00013400
00013500
00013600
00013700
00013800
00013900
0 0 0 1 4 0 0 0
00014100
00014200
00014300
00014400
00014500
00014600
00014700
00014800
00014900
00015000
00015100
00015200
00015300
00015400
00015500
00015600
00015700
00015800
00015900
00016000
00016100
C C
00016200
00016300
00016400
00016500
00016600
00016700
00016800
00016900
00017000
00017100
00017200
00017300
00017400
00017500

```
```

 IF(PPP.GT.GRENZ2)PPP=GRENZ2 00017600
 CC. 12 PPP=PPAAA(1)
00017700
IF (N.GE.NUNT.AND.N.LE .NOB)WRITE (6,412)PPP
00017800
412 FORMAT(' ZUFALLSZAHL FUER ERSTE WW ',F10.5)
IF(PPP.LE.PS1)GOTO 15
IF(PPP.LE.PS2)GOTO 16
IF(PPP.LE.PS3)GOTO 17
C
C EINFANG NACH ERSTER WW
C
NCAP(1)=NCAP(1)+1
KCC=1
MMM=1
M=1
GOTO 11111
15 AAA=AA1
GOTO 20
16 AAA=AA2
GOTO 20
17 AAA=AA3
20 DO 31 I=1,3
DO 31 J=1,3
31 RMATRX(I,J)=0.
DO 32 I=1,3
32 RMATRX(I,I)=1.
C
C BEGIN DER DOSCHLEIFE UBER BIS ZU 100 STREUUNGEN
C
DO 2222 M=2,100
X1=XX(M-1)
Y1=YY(M-1)
Z1=ZZ(M-1)
PPP=RANDOM(0.)
IF (PPP.LT.GRENZ1)PPP=GRENZ1
IF(PPP.GT.GRENZ2)PPP=GRENZ2
CC. . . PPP=PPTETA(M)
THETA=PIPI*PPP
IF(N.GE.NUNT.AND.N.LE.NOB)WRITE (6,413)N,M, PPP,THETA
43 FORMAT(' ',2I10,' ZUFALLSZAHL UND THETA ',2F10.5)
PPP=RANDOM(0.)
IF (PPP.LT.GRENZ1)PPP=GRENZ1
IF(PPP.GT.GRENZ2)PPP=GRENZ2
CC... PPP=PPPHI (M)
PHI=2.*PIPI*PPP
IF(N.GE.NUNT.AND.N.LE.NOB)WRITE (6,414)N,M,PPP,PHI
414 FORMAT(' ',2I10,' ZUFALLSZAHL UND PHI ',2F10.5)
EN=E (M-1)
C
C BERECHNUNG DER ENERGIE NACH DEM STOSS UND THETA IM LAB SYSTHEM
C
CALL CMLAB(EN,THETA,AAA)
C
C INTERPOLATION DER QUERSCHNITTE UND FREIEN WEGLAENGE FUER NAECHSTE 00022800
C WW (
CALL B10H14(EN,PATH0,PS1,PS2,PS3)
00022900
00023000
CC....
CC FESTLEGEN DER FREIEN WEGLAENGE
00023100
00023200

```
\begin{tabular}{|c|c|c|}
\hline CC & \(\mathrm{PATHO}=2.0\) & 00023300 \\
\hline \multirow[t]{2}{*}{CC} & & 00023400 \\
\hline & IF (N.GE.NUNT. AND . N. LE. NOB ) WRITE (6, 671)EN, PATH0, PS 1, PS 2, PS 3 & 00023500 \\
\hline C & & 00023600 \\
\hline C & BERECHNUNG DES WEGES BIS ZUR NAECHSTEN WW & 00023700 \\
\hline \multirow[t]{5}{*}{C 39} & & 00023800 \\
\hline & PPP=RANDOM (0.) & 00023900 \\
\hline & IF (PPP.EQ.0.)GOTO 39 & 00023910 \\
\hline & IF (PPP.LT. GRENZ1) PPP=GRENZ1 & 00024000 \\
\hline & IF (PPP.GT.GRENZ2) PPP=GRENZ2 & 00024100 \\
\hline \multirow[t]{3}{*}{CC.} & \(\mathrm{PPP}=\mathrm{PPS} 2(\mathrm{M})\) & 00024200 \\
\hline & S2 \(=-\mathrm{PATH} 0 * A L O G(P P P) ~\) & 00024300 \\
\hline & IF (N.GE.NUNT. AND.N.LE.NOB)WRITE (6,415)N, M, PPP, S2 & 00024400 \\
\hline 415 & FORMAT(' ',2I10,' ZUFALLSZAHL, S2 ', 2F10.5) & 00024500 \\
\hline C & & 00024600 \\
\hline C & BERECHNEN DER KOORDINATEN DER M-TEN WW & 00024700 \\
\hline \multirow[t]{13}{*}{C} & & 00024800 \\
\hline & CALL EULER(X1, Y1, Z1, RMATRX, S2,THETA, PHI, X2, Y2, Z2, R2SQR) & 00024900 \\
\hline & \(\mathrm{XX}(\mathrm{M})=\mathrm{X} 2\) & 00025000 \\
\hline & \(Y Y(M)=Y 2\) & 00025100 \\
\hline & \(Z Z(M)=Z 2\) & 00025200 \\
\hline & \(\mathrm{E}(\mathrm{M})=\mathrm{EN}\) & 00025300 \\
\hline & \(\mathrm{SS}(\mathrm{M})=\mathrm{S} 2\) & 00025400 \\
\hline & STETA ( M\()=\) THETA & 00025500 \\
\hline & SPHI (M) \(=\) PHI & 00025600 \\
\hline & \(\mathrm{R}(\mathrm{M})=\mathrm{SQRT}(\mathrm{R} 2 \mathrm{SQR})\) & 00025700 \\
\hline & \(T \mathrm{~T}(\mathrm{M})=\mathrm{TT}(\mathrm{M}-1)+\mathrm{TTT} * \mathrm{~S} 2 / \mathrm{SQRT}(\mathrm{EN})\) & 00025800 \\
\hline & IF (N.LT.NUNT.OR.N.GT.NOB) GOTO 40 & 00025900 \\
\hline & WRITE (6,678)N, M, X1, Y1, Z1, S2, THETA, PHI , X2, Y2, Z2, R2SQR & 00026000 \\
\hline 678 & FORMAT (216,' RPOLAR', 10F10.3//) & 00026100 \\
\hline 40 & CONTINUE & 00026200 \\
\hline C & & 00026300 \\
\hline C & FESTSTELLEN WO NEUER WW PUNKT LIEGT & 00026400 \\
\hline \multirow[t]{2}{*}{C} & & 00026500 \\
\hline & & 00026600 \\
\hline \multirow[t]{3}{*}{C
C
C} & ENTSCHEIDUNG WO NEUTRONENBAHN KUGELSCHALEN MIT RIN, ROUT, RPROBE & 00026700 \\
\hline & TRIFFT & 00026800 \\
\hline & & 00026900 \\
\hline \multirow[t]{4}{*}{42} & \(\mathrm{XN} 1=0\). & 00027000 \\
\hline & \(\mathrm{YN} 1=\mathrm{R}(\mathrm{M}-1)\) & 00027100 \\
\hline & \(P Y Y=(R(M-1)+R(M)+S 2) / 2\). & 00027200 \\
\hline & IF (PYY.GT. AMAX1 (R(M-1), R(M), S2) ) GOTO 43 & 00027300 \\
\hline C & & 00027400 \\
\hline C &  & 00027500 \\
\hline C & & 00027600 \\
\hline & WRITE \((6,698) N, M, R(M-1), R(M), S 2\) & 00027700 \\
\hline \multirow[t]{5}{*}{698} & FORMAT (' STREUUNG SPEZIELL BEH.DA XN2 \(=0, \mathrm{R}(\mathrm{M}-1), \mathrm{R}(\mathrm{M}), \mathrm{S} 2: ~ ', 2 I 10\) & F00027800 \\
\hline & 110.5) & 00027900 \\
\hline &  & 000028000 \\
\hline & 1 TO 104 & 00028100 \\
\hline & GOTO 101 & 00028200 \\
\hline \multirow[t]{2}{*}{104} & DIFF1=R(M)-ROUT & 00028300 \\
\hline & GOTO 200 & 00028400 \\
\hline \multirow[t]{3}{*}{101} &  & 000028500 \\
\hline & 1 O 3333 (M) & 00028600 \\
\hline &  & T00028700 \\
\hline
\end{tabular}
```

 1 0 3 3 3 3 ~ 0 0 0 2 8 8 0 0
 IF(R(M).LT.R(M-1).AND.R(M).LT.RIN.AND.S2.LT.AMAX1(R(M),R(M-1)))GOT00028900
 10 103 00029000
 IF(R(M).LE.ROUT.AND.S2.GT.AMAX1(R(M),R(M-1)))GOTO 103 00029100
 IF(R(M).GT.ROUT.AND.S2.GT.AMAX1(R(M),R(M-1)))DIFF1=R(M)-ROUT }0002920
 GOTO 200
 00029300
 103 S2=S2+2.*RIN
CALL RPOLAR(X1,Y1,Z1,S2,THETA,PHI,X2,Y2,Z2,R2SQR)
XX(M)=X2
YY(M)=Y2
ZZ(M)=Z2
SS(M)=S2
R(M)=SQRT(R2SQR)
TT(M)=TT(M-1)+TTT*S2/SQRT(E (M))
IF(N.GE.NUNT.AND.N.LE.NOB)WRITE (6,685)X2,Y2,Z2,R2SQR
TIMEPR=TT (M-1)+TTT*R(M-1)/SQRT (E (M))
IF(N.GE.NUNT.AND.N.LE.NOB)WRITE (6,650)TIMEPR
650 FORMAT(' PROBE ZENTRAL DURCHQUERT TIMEPR: ',F10.5)
GOTO 201
43 PXX=SQRT((PYY-S2)*(PYY-R(M-1))*(PYY-R(M))/PYY)
PALPHA=ATAN(PXX/(PYY-S2))
PALPHA=PALPHA*2.
XN2=R(M)*SIN(PALPHA)
YN2=R(M)*COS(PALPHA)
STEIG=(YN1-YN2)/(XN1-XN2)
PPPP=2.*STEIG*YN1/(1.+STEIG**2)
QQQQ=(YN1**2-RIN**2)/(1.+STEIG**2)
QQQ1=(YN1**2-RPROB**2)/(1.+STEIG**2)
QQQ2=(YN1**2-ROUT**2)/(1.+STEIG**2)
DISK=PPPP**2/4.-QQQQ
DISK1=PPPP**2/4.-QQQ1
DISK2=PPPP***2/4.-QQQ2
IF (N.GE.NUNT. AND.N.LE .NOB)WRITE (6,679)XN1,YN1,PALPHA, XN2, YN2,
1STEIG,DISK,DISK1,DISK2
679 FORMAT(' XN1,YN1,PALPHA,XN2,YN2,STEIG,DISK,DISK1,DISK2',/,10F10.4)00032500
C
C
C
C
C
C
NORMALFALL R(M-1),R(M)UND S2 LIEGEN NICHT AUF EINER GERADEN
00031000
00031100
0 0 0 3 1 2 0 0
00031300
00031400
00031500
0 0 0 3 1 6 0 0
00031700
00031800
00031900
00032000
00032100
00032200
00032300
00032400
00032600
FESTSTELLUNG OB NEUE WW PUNKT AUSSERHALB LIEGT
00032700
IF(R2SQR.LE.QROUT)GOTO 13
00032800
00032900
BERECHNUNG WANN NEUTRON DIE AUSSENKUGEL DURCHQUERT
00033000
00033100
XN3=-PPPP/2.+SQRT(DISK2) 00033300
XN4=-PPPP/2.-SQRT(DISK2) 00033400
YN3=STEIG*XN3+YN1
00033500
YN4=STEIG*XN4+YN1
00033600
DIFF1=SQRT((YN2-YN3)**2+(XN2-XN3)**2)
0 0 0 3 3 7 0 0
DIFF2=SQRT((YN2-YN4)**2+(XN2-XN4)***2)
00033800
IF(N.GE.NUNT.AND.N.LE.NOB)WRITE('6,681)XN3,XN4,YN3,YN4,DIFF1,DIFF2 00033900
681 FORMAT(' SNITTPUNKTE MIT AUSSENKUGEL XN3,XN4,YN3,YN4,DIFF1,DIFF2 '00034000
1,6F10.4)
00034100
DIFF1=AMIN1(DIFF1,DIFF2)
00034200
200 TT(M)=TT(M-1)+TTT*(S2-DIFF1)/SQRT(EN)
00034300

```
```

 IF(N.GE.NUNT.AND.N.LE.NOB)WRITE (6,677)TT(M) 00034400
 677 FORMAT(' ZEITPUNKT WANN NEUTRON DIE KUGEL VERLAESST ',F10.5) 00034500
 NOUT(M)=NOUT(M)+1 00034600
 KKK=1 00034700
 MMM=M . 00034800
 GOTO }111
 13 IF(DISK.LE.O.)GOTO 3333
 00034900
00035000
S2=S2+ABS(DIFF1-DIFF2)
IF(N.GE NUNT AND N.LE NOB)WRITE (6,680)XN3 XN4, YN3, YN4,DIFF1,DIFF2,00036900
1S2 00037000
680 FORMAT(' INNENK.DURCHQXN3,XN4,YN3,YN4,DIFF1,DIFF2,S2NEU ',7F10.4)00037100
CALL RPOLAR(X1,Y1,Z1,S2,THETA,PHI,X2,Y2,Z2,R2SQR) 00037200
XX(M)=X2
YY(M)=Y2
ZZ(M)=Z2 00037500
SS(M)=S2
R(M)=SQRT(R2SQR)
TT(M)=TT(M-1)+TTT*S2/SQRT(E (M))
IF(N.GE.NUNT.AND.N.LE .NOB)WRITE (6,685)X2,Y2,Z2,R2SQR
685 FORMAT(' X2NEU,Y2NEU,Z2NEU,R2SQRNEU ',4F10.4)
IF(DISK1.LE.0.)GOTO 41
NEUTRON HAT BEREICH DER PROBE GETROFFEN
XN3=-PPPP/2.+SQRT(DISK1)
XN4=-PPPP/2.-SQRT(DISK1)
YN3=STEIG*XN3+YN1
YN4=STEIG*XN4+YN1
DIFF1=SQRT((YN1-YN3)**2+(XN1-XN3)**2)
DIFF2=SQRT((YN1-YN4)**2+(XN1-XN4)}***2
BERECHNUNG DES ZEITPUNKTS WANN PROBE GETROFFEN
DIFF1=(DIFF1+DIFF2)/2.
TIMEPR=TT(M-1)+TTT*DIFF1/SQRT (E (M))
IF(N.GE.NUNT.AND.N.LE .NOB)WRITE (6, 682)XN3,XN4 ,YN3,YN4 ,DIFF1,DIFF2 ,00039600
1TIMEPR 00039700
682 FORMAT(' PROBE DURCHQUERT XN3,XN4,YN3,YN4,DIFF1,DIFF2,TIMEPR ', 00039800
17F10.4)
00039900

```
```

 201 NIN(M)=NIN(M)+1 00040000
 KPP=KPP+1 00040100
 KPP=KPP+1
 ITIME=ITIME+1
 IF(ITIME.GT. 200)ITIME=200 00040400
 NTIMEI (ITIME)=NTIMEI (ITIME) +1
 IENER=100.*E (M)/ENO
 IENER=IENER+1
 IF (IENER.GT. 100)IENER=100
 NENIN(IENER)=NENIN(IENER)+1
 C
C FESTSTELLEN OB KORRIGIERTER ORT DER WW NOCH INNERHALB DER KUGEL
C
41 IF(R2SQR.LE.QROUT)GOTO 3333
GOTO42
C
C ENTSCHEIDUNG OB NAECHSTE WW EINFANG ODER STREUUNG
C
3333 PPP=RANDOM(0.)
IF(PPP.LT.GRENZ1)PPP=GRENZ1
IF(PPP.GT.GRENZ2)PPP=GRENZ2
C. . }33\mathrm{ PPP=PPAAA (M)
IF (N.GE .NUNT.AND.N.LE .NOB)WRITE (6,694)N, M, PPP
694 FORMAT(' ',2I10,'ZUFALLSZAHL FUER NAECHSTE WW ',F10.5) 00042300
IF(PPP.LE.PS1)GOTO 45
IF(PPP.LE.PS2)GOTO 46
IF(PPP.LE.PS3)GOTO 47
NCAP(M)=NCAP(M)+1 00042700
KCC=1
MMM=M
IF(N.GE .NUNT.AND.N.LE.NOB)WRITE (6,695)N,M 00043000
695 FORMAT(' ', 2I10,' NEUTRON EINGEFANGEN '')
GOTO }111
45 AAA=AA1
GOTO 2222
46 AAA=AA2
GOTO }222
47 AAA=AA3
2222 CONTINUE
C
C WEG DES NEUTRONS IST BEENDET ENTWEDER ENTKOMMEN ODER EINGEFANGEN
C
1111 IF(M.EQ.100)WRITE (6,686)N
6 8 6 ~ F O R M A T (' ~ N E U T R O N ~ M I T ~ F O L G E N D E R ~ N U M M E R ~ B L E I B T ~ I M ~ K R I S T A L L ~ ' , I 1 0) ~ 0 0 0 4 4 3 0 0 ~
IF(N.LT.NUNT.OR.N.GT.NOB)GOTO 51
WRITE (6,683)
WRITE (6,683) , XX(M),YY(M),ZZ(M),TT(M),SS(M),TETA(M),PHI (M),R(M)')}00044560
DO 50 K=1,M 00044700
683 FORMAT(' E (M),XX(M),YY(M),ZZ(M),TT(M),SS(M),TETA(M),PHI (M),R(M)')}0004460
WRITE (6,684)E(K),XX(K),YY(K),ZZ(K),TT(K),SS(K),STETA(K),SPHI (K), 00044800
1R(K)
684 FORMAT(10F10.4)
50 CONTINUE
IF(M.LT;NWRITE)WRITE (6,696)
696 FORMAT(' '////)
51 ITIME =TT(M)/10.
ITIME=ITIME+1
00040200
00040300
0 0 0 4 0 4 0 0
00040500
00040600
00040700
00040800
0 0 0 4 0 9 0 0
0 0 0 4 1 0 0 0
00041100
0 0 0 4 1 2 0 0
0 0 0 4 1 3 0 0
0 0 0 4 1 4 0 0
0 0 0 4 1 5 0 0
00041600
0 0 0 4 1 7 0 0
00041800
00041900
00042000
00042100
00042300
00042400
00042500
0 0 0 4 2 6 0 0
00042800
00042900
0 0 0 4 3 1 0 0
0 0 0 4 3 2 0 0
00043300
00043400
00043500
0 0 0 4 3 6 0 0
0 0 0 4 3 7 0 0
00043800
00043900
C WEG DES NEUTRONS IST BEENDET ENTWEDER ENTKOMMEN ODER EINGEFANGEN
00044000
00044100
00044200
0044300
00044400
00044700
00044900
00045000
00045100
00045200
00045300
00045400
00045500

```
```

 IF(ITIME.GT.200)ITIME=200 00045600
 IENER=100.*E(M)/ENO 00045700
 IENER=IENER+1 00045800
 IF(IENER.GT.100)IENER=100 00045900
 IF(KCC.EQ.1)GOTO 55 00046000
 IF(KKK.EQ.1)GOTO 56 00046100
 NNN=NNN+1
 GOTO 1000
 55 NTIMEC(ITIME)=NTIMEC(ITIME)+1
 NENCAP (IENER)=NENCAP (IENER)+1
 C.... IF(ITIME.LT. 20)WRITE (6,651)N,M,ITIME,TT(M),E (M),R(M)
C.651 FORMAT(' NEUTRON EINGEFANGEN N,M,ITIME,TT,E,R ',3I10,3F10.5)
GOTO 1000
56 NTIMEO(ITIME)=NTIMEO(ITIME)+1
NENOUT (IENER)=NENOUT (IENER)+1
C1000 WRITE (6,697)N,M,KKK,KCC,KPP
697 FORMAT('N M, KKK , KCC , KPP ',5I10)
1000 CONTINUE
WKITE(6,703)
703 FORMAT('1'/)
WRITE (6,690)
WRITE (6,691)
RAUSGESTREUTE NEUTRONEN
1NGEFANGENE NEUTRONEN NEUTRONEN DIE PROBE TREFFEN 00047700
2 '/) 00047800
6 9 1 ~ F O R M A T (' ~ K A N A L ~ A N Z A H L ~ E N E R G I E ~ Z E I T 1 ~ Z E I T 2 ~ A N Z 0 0 0 4 7 9 0 0 ~
1AHL ENERGIE ZEIT1 ZEIT2 ANZAHL ENERGIE ZEIT1 00048000
2 ZEIT2 '/)
DO }59\mathrm{ KK1=1,10
DO 60 KK2=1,10
K=(KK1-1)*10+KK2
WRITE (6,692)K,NOUT(K),NENOUT(K) ,NTIMEO(K) ,NTIMEO(100+K) ,NCAP(K),
1NENCAP(K),NTIMEC(K) ,NTIMEC (100+K),NIN(K) ,NENIN(K) ,NTIMEI (K) ,
2NTIMEI (100+K)
6 0 CONTINUE
6 9 2 ~ F O R M A T (' ~ ' , ~ 1 3 I 1 0) ~
WRITE (6,699)
6 9 9 FORMAT(' ')
5 9 ~ C O N T I N U E ~
WRITE (6,700)
700 FORMAT(/' GEMITTELTE ERGEBNISSE UEBER 10 KANAELE '/) 00049400
DO 63 KK1=1,10
DO }63\mathrm{ KK2=1,12
63 IFELD (KK1,KK2)=0
DO 61 KK1=1,10
DO 62 KK2=1,10
K=(KK1-1)*10+KK2
IFELD(KK1, 1)=IFELD(KK1,1)+NOUT(K)
IFELD(KK1, 2) = IFELD(KK1, 2)+NENOUT(K)
IFELD(KK1, 3)=IFELD(KK1, 3)+NTIMEO (K)
IFELD(KK1,4)=IFELD (KK1,4)+NTIMEO(100+K)
IFELD(KK1,5)=IFELD (KK1,5)+NGAP (K)
IFELD(KK1, 6)=IFELD (KK1,6)+NENCAP (K)
IFELD(KK1, 7)=IFELD (KK1, 7)+N'IIMEC (K)
IFELD(KK1, 8)=IFELD(KK1,8)+NTIMEC (100+K)
IFELD(KK1,9)=IFELD(KK1,9)+NIN(K)
00048100
00048200
00048300
00048400
00048500
00048600
00048700
00048800
00048900
0 0 0 4 9 0 0 0
00049100
00049200
00049300
00049500
00049600
00049700
00049800
00049900
TFEID(KK1,3)=IFELD (KK1, 3) +NTIMEO(K) (K)
00050500
00050600
00050700
00050800
0 0 0 5 0 9 0 0

```
```

 IFELD(KK1,10)=IFELD(KK1,10)+NENIN (K) 00051000
 IFELD(KK1,11)=IFELD(KK1,11)+NTIMEI(K) 00051100
 IFELD(KK1, 12)=IFELD(KK1,12)+NTIMEI (100+K) 00051200
 6 2 ~ C O N T I N U E
 WRITE (6,692)KK1,(IFELD(KK1, J), J=1, 12)
 6 1 \text { CONTINUE}
 DO }64\textrm{I}=1,1
 DO }64\textrm{K}=2,1
 64 IFELD (1,I)=IFELD (1,I)+\operatorname{IFELD}(K,I)
 K=1
 WRITE (6,701)
 701 FORMAT(/' TOTALE SUMMEN'/)
 WRITE (6,692)K,(IFELD (1, I), I=1, 12)
 WRITE (6,693)NNN
 693 FORMAT(/' NEUTRONEN IN DER PROBE STEKENGEBL. ',I10)
 AMIOUT=0.
 AMICAP=0.
 AMIIN=0.
 DO 65 K=1,100
 AMIOUT=AMIOUT+FLOAT (K*NOUT (K))
 AMICAP=AMICAP+FLOAT (K*NCAP (K))
 AMIIN=AMIIN+FLOAT(K*NIN(K))
 6 5 CONTINUE
AMIOUT=AMIOUT/FLOAT(IFELD (1,1))
AMICAP=AMICAP/FLOAT(IFELD (1,5))
AMIIN=AMIIN/FLOAT(IFELD (1,9))
WRITE (6,702)AMIOUT, AMICAP, AMIIN
702 FORMAT(/' MITTLERE ANZAHL DER WW,MIOUT,MICAP,MIIN: ',3F10.5)
D0112 K=1,100
MENOUT (L, K)=NENOUT (K)
MENCAP (L, K)=NENCAP (K)
MTIMEO(L,K)=NTIMEO(K)
MTIMEC (L,K)=NTIMEC (K)
MTIMEO(L, 100+K)=NTIMEO (100+K)
MTIMEC (L, 100+K})=\operatorname{NTIMEC}(100+K
112 CONTINUE
4 4 4 4 ~ C O N T I N U E ~
C
C
C
BERECHNUNG DES TOF SPEKTRUMS DES EFFEKT
D0113 K=1,NENER
TIMELO(K)=TTT*FLUGW/SQRT (ELOWER(K)) 00051708
TIMEUP (K)=TTT*FLUGW/SQRT(EUPPER(K)) 00051709
113 CONTINUE
DO114 K=1,NENER
KKI=TIMEUP(K)/10.
KK1=KK1+1
KK2=TIMELO(K)/10.
IF(KK2.LT.KK1)KK2=KK1
AFLUSS=FLUSS (K)*SIGMAG(K)/FLOAT(KK2-KK1+1)
AFLUSS=AFLUSS*(EUPPER(K)-ELOWER(K))/10.
DO 115 I=KK1,KK2
IF(I.GT.200)J=I-200
J=I
EFFEKT(J)=EFFEKT(J)+AFLUSS
115 CONTINUE
00051300
00051400
00051500
00051510
00051520
00051530
00051540
00051550
00051560
00051570
00051580
00051600
00051610
00051620
00051630
00051640
00051650
00051660
00051670
00051680
00051690
00051691
00051692
00051693
00051694
00051695
00051696
00051697
00051698
00051699
00051700
00051701
00051702
00051703
BERECHNUNG DES TOF SPEKTRUMS DES EFFEKT
00051705
00051706
00051710
00051711
10.
00051712
00051713
00051714
00051715
00051716
00051717
00051718
0 0 0 5 1 7 1 9
0 0 0 5 1 7 2 0
00051721
00051722

```
```

 1 1 4 \text { CONTINUE 00051723}
 C
C BERECHNUNG DER ZEITVERTEILUNG DER EINFANGERREIGNISSE
C UND NEUTRONEN DIE DIE KUGEL VERLASSEN
C
C

```
    118 CONTINUE
    UNTERGRUND MIT MEHR ALS 2 MICROSEC WIRD ALS KONSTANNTE ADDIERT
        UNTCO1=FLOAT(MTIMEC (K,200))*FLNORM
        UNTCO2=FLOAT(MTIMEO (K,200))*FLNORM
        UNTCO1=UNTCO1/200.
        UNTCO2=UNTCO2/200.
        D0119 I=1,200
        UNTCAP (I)=UNTCAP (I)+UNTCO1
        UNTOUT (I)=UNTOUT(I)+UNTCO2
    119 CONTINUE
    117 CONTINUE
C
C
C
00051724
00051725
        D0117 K=1,NENER
        TMIT=(TIMEUP(K)+TIMELO(K))/2.
        ITMIT=TMIT/10.
        ITMIT=ITMIT+1
        FLNORM=FLUSS (K)*SIGMAG(K)*FAKTOR(K)/FLOAT(NEUTRS)
        FLNORM=FLNORM* (EUPPER (K)-ELOWER (K))/10.
        DO 118 I=1,199
        J=I+ITMIT
        IF(J.GT.200)J=J-200
        UNTCAP(J)=UNTCAP(J)+FLOAT (MTIMEC (K,I))*FLNORM
        UNTOUT(J)=UNTOUT(J)+FLOAT (MTIMEO(K,I))*FLNORM
    BERECHNUNG DER ENERGIEVERTEILUNG DER NEUTRONEN CAP UND OUT
    DO 120 K=1,NENER
    FLNORM=FLUSS (K)*SIGMAG (K)*FAKTOR(K)/FLOAT (NEUTRS)
    FLNORM=FLNORM* (EUPPER(K)-ELOWER(K))/10.
    EMIT=(ELOWER(K)+EUPPER(K))/2.
    DO }121\textrm{I}=1,10
    EEE=EMIT*FLOAT(I)/100. -EMIT/200.
    IEEE=EEE/0.1
    IEEE=IEEE+1
    IF(IEEE.GT. 1000) IEEE=1000
    ENECAP(IEEE)=ENECAP(IEEE)+FLOAT(MENCAP(K,I))*FLNORM
    ENEOUT(IEEE)=ENEOUT(IEEE)+FLOAT(MENOUT(K,I))*FLNORM
121 CONTINUE
120 CONTINUE
        DO 125 K=1,200
        I=(K-1)*5+1
                            768
        00051769
    ENECAP(K)=ENECAP(I)+ENECAP(I+1)+ENECAP(I+2)+ENECAP(I+3)+ENECAP(I+400051770
    1)
                                    00051771
    ENEOUT(K)=ENEOUT(I)+ENEOUT(I+1)+ENEOUT(I+2)+ENEOUT(I+3)+ENEOUT(I+400051772
    1)
00051773
125 CONTINUE 00051774
    WRITE (6,703) 00051775
    WRITE (6,417) 00051776
4 1 7 \text { FORMAT( ' KANAL EFFEKT UNTCAP UNTOUT ENECAP ENE00051777}
    louT '/) 00051778
```

```
    DO 123 KK1=1,20 00051779
    DO 126 KK2=1,10 00051780
    K=(KK1-1)*10+KK2
    WRITE (6,416)K,EFFEKT(K),UNTCAP(K),UNTOUT(K), ENECAP(K),ENEOUT(K) 
    00051781
126 CONTINUE
    WRITE (6,699)
123 CONTINUE
    DO 127 KK1=1,20
    DO 127 KK2=1,5
127 OFELD(KK1,KK2)=0
    WRITE (6,700)
    DO 128 KK1=1,20
    DO 129 KK2=1,10
    K=(KK1-1)*10+KK2
    OFELD (KK1, 1)=OFELD(KK1,1)+EFFEKT(K)
    OFELD(KK1, 2)=OFELD(KK1, 2)+UNTCAP (K)
    OFELD(KK1, 3)=OFELD (KK1, 3)+UNTOUT(K)
    OFELD(KK1,4)=OFELD(KK1,4)+ENECAP(K)
    OFELD(KK1,5)=OFELD(KK1,5)+ENEOUT(K)
129 CONTINUE
    WRITE (6, 416)KK1, (OFELD (KK1,J), J=1,5)
128 CONTINUE
    DO 130 I=1,5
    DO 130 K=2,20
    OFELD (1,I)=OFELD (1,I)+OFELD (K,I)
130 CONTINUE
    K=1
    WRITE (6,701)
    WRITE (6,416)K,(OFELD(1,I), I=1,5)
416 FORMAT(' ',I10,5F10.3)
    DO 131 K=1,200
    XXX(K)=FLOAT(K)
131 CONTINUE
    DO 132 K=1,200
    EFFEKT(K)=EFFEKT(K)+UNTCAP(K)
132 CONTINUE
    CALL PLOTS(IBUF,8000,1)
    CALL PLOT(1.,1.,-3)
                            00051815
51816
    CALL PLOT2(200.,0.,9,1,XXX,1.,200.,10.,0.,200.,EFFEKT,5.,0.,100.,Y00051817
    1YY,YYY,0)
                            00051818
    CALL PLOT2(200.,0.,9,1,XXX,1.,200.,10.,0.,200.,UNTCAP,5.,0.,100.,Y00051819
    1YY,YYY,0)
    CALL SYMBOL(4.,4.,0.25,17HEFFEKT+UNTERGRUND,0.,17) 00051821
    CALL PLOT(0.,6.,-3)
    00051822
    CALL PLOT2(200.,0.,9,1,XXX,1.,200.,10.,0.,200.,UNTCAP,5.,0.,100.,Y00051823
    1YY,YYY,0)
    CALL SYMBOL(4.,4.,0.25,6HUNTCAP,0.,6)
    CALL PLOT(0.,6.,-3)
                            1824
                            00051825
    CALL PLOT2(200.,0.,9,1,XXX,1.,200.,10.,0.,200.,UNTOUT,5.,0.,200.,Y00051827
    1YY,YYY,0)
    CALL SVMBOL(4.,4.,0.25,6HUNTOUT,0.,6)
    IF(AA1.EQ.137)CALL SYMBOL(4.,6.,0.25,3HBAF,0.,3)
    IF(AA1.EQ.209)CALL SYMBOL(4.,6.,0.25,3HBGO,0.,3)
    CALL NUMBER(4.,5.5,0.25,RIN,0.,1)
    CALL NUMBER(6.,5.5,0.25,ROUT,0.,1)
    CALL PLOT(11., -12.,-3)
                            00051828
00051829
    0 0 0 5 1 8 3 1
    00051832
00051834
```

```
        DO 133 K=1,100 00051835
        I=(K-1)*2+1
        ENECAP(K)=ENECAP(I)+ENECAP (I+1)
        0 0 0 5 1 8 3 6
        ENEOUT(K)=ENEOUT(I)+ENEOUT(I+1) 00051838
    133 CONTINUE
        00051839
        CALL PLOT2(200.,0., 9,1,XXX,1., 100., 10.,0.,100.,ENECAP,5.,0., 200. ,Y00051840
        1YY,YYY,0) 00051841
        CALL SYMBOL(4.,4.,0.25,6HENECAP,0.,6) : 00051842
        CALL PLOT(0.,6.,-3) 00051843
        CALL PLOT2(200.,0.,9,1,XXX,1.,100.,10.,0.,100.,ENEOUT,5.,0.,400.,Y00051844
        1YY,YYY,0) 00051845
        CALL SYMBOL(4.,4.,0.25,6HENEOUT,0.,6) 00051846
        DO 136 K=1,100 00051847
        ENEIN(K)=0. 00051848
    136 CONTINUE 00051849
        DO 134 K=1,NENER 00051850
        KK1=ELOWER(K) 00051851
        KK2=EUPPER(K) 00051852
        KK2=KK2-1 00051853
        DO 135 I=KK1,KK2 00051854
        ENEIN(I)=FLUSS(K) 00051855
    135 CONTINUE
    134 CONTINUE 00051857
    00051856
        CALL PLOT(0.,6.,-3) 00051858
        CALL PLOT2(200.,0.,9,1,XXX,1.,100.,10.,0.,100.,ENEIN,5.,0.,100.,Y 00051859
        1YY,YYY,0) 00051860
        CALL SYMBOL(4.,4.,0.25,5HENEIN,0.,5) 00051861
        CALL PLOT(0.,0.,999) 00051862
    999 STOP
        END
        SUBROUTINE CMLAB(EN,THETA,AAA)
            INPUT : NEUTRON ENERGY
                    STREUWINKLE IN CENTER OF MASS FRAME
            OUTPUT : ENERGY & ANGLE , IN LAB. FRAME
        COMMON NUNT,NOB,N,M,IY,DENSTY,ESIG,SIGC,SIGN,AI1,AI2,AI3
        DIMENSION ESIG(3,100)
        CTHETA=COS (THETA)
        A1A1=AAA**2+2.*AAA*CTHETA+1.
        IF(AAA.EQ.1..AND.A1A1.EQ.0.)TETLAB=1.5708
        IF(AAA.EQ.1..AND.A1A1.EQ.0.)GOTO 2
        CTHLAB=(AAA*CTHETA+1.)/SQRT (A1A1)
        TETLAB=ACOS (CTHLAB)
    2 ENNEU=EN*A1AI/ (AAA+1.)**2
        IF(ENNEU LE ESIG(1,1) AND EN GT ESTG(1,1))WRITE (6,601)N M
```



```
        IF(ENNU.INSM
        F(ENNEU.LE.ESIG(1,1))ENNEU=ESIG(1,1)
        00053400
        IF(N.GE.NUNT.AND.N.LE.NOB)WRITE (6,600)N,M,THETA,TETLAB, EN,ENNEU, }0005350
        1AAA
600 FORMAT(2I6, 'CMLAB: TETA-CM,TETA-LAB,EIN,EOUT,AAA',5F10.3/)}0005360
    THETA=TETLAB
    EN=ENNEU 00053800
    RETURN
0 0 0 5 3 9 0 0
    END
    0 0 0 5 4 0 0 0
    SUBROUTINE EULER(XIN,YIN,ZIN,RMATRX,R,THETA,PHI,XOUT,YOUT,ZOUT,
    0 0 0 5 4 1 0 0
```

```
        2R2SQR) 00054200
        COMMON NUNT,NOB,N,M,IY,DENSTY,ESIG,SIGC,SIGN,AI1,AI2,AI3 00054300
        DIMENSION RMATRX(3,3),RR(3,3),EUL(3,3) 00054400
            -\infty- XYZ IN ROTATED FRAME ---- 00054500
    X=R*SIN(THETA)*COS(PHI) 00054600
    Y=R*SIN(THETA)*SIN(PHI) 00054700
    Z=R*COS(THETA) 00054800
C ---- XYZ IN LAB. FRAME ---- 00054900
    XOUT =XIN+X*RMATRX (1,1)+Y*RMATRX (1,2)+Z*RMATRX (1,3) 00055000
    YOUT =YIN+X*RMATRX (2,1)+Y*RMATRX (2,2)+Z*RMATRX (2,3) 00055100
    ZOUT=ZIN+X*RMATRX (3,1)+Y*RMATRX (3,2)+Z*RMATRX (3,3) 00055200
    R2SQR=XOUT**2+YOUT**2+ZOUT**2
C... IF(M.LT.NWRITE)WRITE (6,600)N,M,XIN,YIN,ZIN,R,THETA,PHI,XOUT,YOUT, 00055400
C... 2ZOUT,R2SQR 00055500
C.600 FORMAT(2I6,' EULER: XYZ-IN S2 TETAFI-IN XYZ-OUT R2'/10F10.3/) 00055600
C ---- ROTATION MATRIX FOR THE INPUT THETA-PHI VALUES ---- 00055700
    EUL(1,1)=COS (THETA)*COS (PHI) 00055800
    EUL(1,2)=-SIN(PHI) 00055900
    EUL (1,3)=SIN(THETA)*COS (PHI) 00056000
    EUL(2,1)=COS (THETA)*SIN(PHI) 00056100
    EUL(2,2)=COS (PHI)
    EUL(2,3)=SIN(THETA)*SIN(PHI)
    EUL(3,1)=-SIN(THETA)
    EUL(3,2)=0.
    EUL(3,3)=COS (THETA)
C... IF(M.LT.NWRITE)WRITE (6,611)RMATRX,EUL
C.611 FORMAT(2X, 'RMATRX-IN , EUL(TETA,FI)'/9F7.2/9F7.2/)
C --.- ROTATION MATRIX OF THE NEW FRAME
            DO 10 I=1,3
            DO 10 J=1,3
        10 RR(I,J)=0.
            DO 100 I=1,3
            DO 100 J=1,3
            DO 100 K=1,3
        100 RR(I,J)=RR(I,J)+RMATRX (I,K)*EUL(K,J)
            DO 11 I=1,3
            DO 11 J=1,3
        11 RMATRX (I,J)=RR(I,J)
C --.- THETA-PHI OF NEW Z-AXIS , IN THE LAB. FRAME -.--
            THETA=ARCOS (RMATRX (3,3))
C PHI=ARCOS(RMATRX (2,2))
C IF(RMATRX(1,2).GT.0.)PHI=2.*3.1416-PHI
    XZUNIT=RMATRX (1,3)
            YZUNIT=RMATRX(2,3)
            IF(XZUNIT.EQ.0.)PHI=1.5708
            IF(XZUNIT.EQ.O.)GOTO 12
            PHI=ATAN(YZUNIT/XZUNIT)
        12 IF(XZUNIT.LT.0.)PHI=PHI+3.1416
C.612 FORMAT(' RMATRX-OUT TETA,FI-OUT'/2X,9F10.2/2F10.3/)
C... IF(M.IT.NWRITE)WRITE (6,612)RMATRX,THETA,PHI
    RETURN
    END
    SUBROUTINE B10H14(EN,SIGDEN,PPS1,PPS2,PPS3)
C
C INPUT : N-ENERGY (EN)
C OUTPUT: AVERAGE FREE PATH SIGDEN
C PROBABILITY OF SCATTERING WITH NUCLEUS 1 PPS1 00059600
                    0 0 0 5 6 2 0 0
00056300
00056400
00056500
00056600
00056700
0 0 0 5 6 8 0 0
0 0 0 5 6 9 0 0
00057000
00057100
00057200
0 0 0 5 7 3 0 0
0 0 0 5 7 4 0 0
00057500
00057600
00057700
0 0 0 5 7 8 0 0
00057900
00058000
00058100
0 0 0 5 8 2 0 0
00058300
00058400
0 0 0 5 8 5 0 0
00058510
00058520
0 0 0 5 8 6 0 0
00058700
00058800
00058900
00059000
00059100
00059200
0 0 0 5 9 3 0 0
00059400
0 0 0 5 9 5 0 0
```

C

OF CAPTURE

WITH NUCLEUS $1+2$ PPS2
WITH NUCLEUS $1+2+3$ PPS3
00059700

1-PPS3
COMMON NUNT, NOB, N, M, IY, DENSTY,ESIG,SIGC,SIGN;AI1,AI2,AI3
DIMENSION ESIG(3,100), $\operatorname{SIGC}(3,100), \operatorname{SIGN}(3,100), \operatorname{SIGC1}(3), \operatorname{SIGN1}(3)$
DO $1 \mathrm{~K}=1,3$
$\operatorname{SIGC1}(K)=0$.
SIGN1 (K) $=0$.
1 CONTINUE
II=3
$\operatorname{IF}(\operatorname{SIGN}(3,1) \cdot \mathrm{EQ} \cdot 0.) \operatorname{II}=2$
$\operatorname{IF}(\operatorname{SIGN}(2,1) . E Q .0) I I=$.
C
C
C
LINEARE INTERPOLATION DER STREU UND EINFANGQUERSCHNITTE
DO $5 \mathrm{I}=1$, II
DO $6 \mathrm{~K}=1,99$
IF (EN.LE.ESIG(I,K+1).AND.EN.GE.ESIG(I,K))GOTO 2
IF (K.EQ.99)WRITE $(6,608) E N$
608 FORMAT(' NEUTRONENENERGIE NICHT IM BERETCH DER STUETZST ' F10.5) 00061700
6 CONTINUE
$2 \operatorname{SIGC} 1(\mathrm{I})=\operatorname{SIGC}(\mathrm{I}, \mathrm{K})+(\operatorname{EN}-\operatorname{ESIG}(\mathrm{I}, \mathrm{K})) *(\operatorname{SIGC}(\mathrm{I}, \mathrm{K}+1)-\operatorname{SIGC}(\mathrm{I}, \mathrm{K})) / 000061900$
$1(\operatorname{ESIG}(I, K+1)-\operatorname{ESIG}(I, K))$
$\operatorname{SIGN1}(I)=\operatorname{SIGN}(I, K)+(\operatorname{EN}-\operatorname{ESIG}(I, K)) *(\operatorname{SIGN}(I, K+1)-\operatorname{SIGN}(I, K)) /$
1(ESIG(I,K+1)-ESIG(I,K))
IF (N.GE.NUNT.AND.N.LE.NOB)WRITE (6, 605)EN, SIGC1 (I) , SIGN1 (I)
605 FORMAT(' INTERPOLIERTER QUERSCHNITT PRO ATOM ',3F10.5)
5 CONTINUE
C GESAMMTQUERSCHNITTE PRO MOLEKUEL CAPTURE, STREUUNG, TOTAL
C
$\mathrm{SIGCTO}=\mathrm{AI} 1 * \operatorname{SIGC} 1(1)+\mathrm{AI} 2 * \operatorname{SIGC1}(2)+\mathrm{AI} 3 \div \operatorname{SIGC} 1$ (3)
SIGNTO $=$ AI $1 *$ SIGN1 (1)+AI2*SIGN1 (2)+AI3*SIGN1 (3)
SIGTTO=SIGCTO+SIGNTO
PPS1=AI1*SIGN1 (1)/SIGTTO
PPS2=(AI1*SIGN1 (1)+AI2*SIGN1 (2)) /SIGTTO
PPS3 $=($ AI1 $*$ SIGN1 (1) + AI2 2 SIGN1 (2) + AI $3 *$ SIGN1 (3)) /SIGTTO
IF (N.GE. NUNT. AND.N. LE . NOB) WRITE $(6,606)$ SIGCTO, SIGNTO, SIGTTO
606 FORMAT (' TOTALE QUERSCHNITTE JE MOLEKUEL,CAPT,SCATT,TOTAL ', 3F10. 400063600
1)

SIGTTO $=$ SIGTTO $* 1 . E-24$
SIGDEN=1.
SIGDEN=1. (DENSTY*SIGTTO) 00063900
IF (N.GE.NUNT.AND.N.LE.NOB)WRITE (6,607)SIGDEN 00064000
607 FORMAT (' FREIE WEGLAENGE ',F10.5) 00064100
RETURN
END
00064200
00064300
SUBROUTINE RPOLAR(XIN, YIN, ZIN, R, THETA, PHI, XOUT, YOUT, ZOUT, R2SQR)
C GANZ DUMM : ROUT=RIN+(R,TETA,FI)
00064400
XOUT $=R * S I N(T H E T A) * C O S(P H I)+X I N$
YOUT $=R * \operatorname{SIN}(T H E T A) * S I N(P H I)+Y I N$
ZOUT $=\mathrm{R} * \mathrm{COS}$ (THETA) +ZIN
R2SQR=XOUT*XOUT+YOUT*YOUT+ZOUT*ZOUT
RETURN
END
FUNCTION RANDOM(ANY)
C GENERATING RANDON NO. IN (0. BIS 1.)INTERVAL
C INPUT ANY "ANY" VALUE, IT WILL BE IGNORED ANYWAY

00064500
00064600
00064700
00064800
00064900
00065000
00065100
00065200
00065300
00065400
COMMON NUNT,NOB,N,M,IY,DENSTY,ESIG,SIGC,SIGN,AI1,AI2,AI3 00065500
IX=IY00065600
CALL RANDU(IX,IY,RA) 00065700
RANDOM=RA 00065800
RETURN 00065900
END 00066000

APPENDIX : Tables of coordinates for a spherical shell of 12 pentagons and 30 hexagons

Table B. 1 Midpoints of all hexagons and pentagons forming a sphere with 430 mm radius in Cartesian and polar coordinates.

Number	Type	x	Y	Z	δ	φ
1	P	0	0	430.000	0	0
2	H	132.877	182.890	365.780	54.000	31.717
3	H	215.000	-69.858	365.780	342.000	31.717
4	H	0	-226.064	365.780	270.000	31.717
5	H	-215.000	-69.859	365.780	198.000	31.717
6	H	-132.877	182.890	365.780	126.000	31.717
7	H	0	365.780	226.064	90.000	58.283
8	P	226.064	311.151	192.302	54.000	63.435
9	H	347.877	113.032	226.064	18.000	58.283
10	P	365.780	-118.849	192.302	342.000	63.435
11	H	215.000	-295.922	226.064	306.000	58.283
12	P	0	-384.604	192.302	270.000	63.435
13	H	-215.000	-295.922	226.064	234.000	58.283
14	P	-365.780	-118.849	192.302	198.000	63.435
15	H	-347.877	113.032	226.064	162.000	58.283
16	P	-226.064	311.151	192.302	126.000	63.435
17	H	132.877	408.954	0	72.000	90.000
18	H	347.877	252.748	0	36.000	90.000
19	H	430.000	0	0	0	90.000
20	H	347.877	-252.748	0	324.000	90.000
21	H	132.877	-408.954	0	288.000	90.000
22	H	-132.877	-408.954	0	252.000	90.000
23	H	-347.877	-252.748	0	216.000	90.000
24	H	-430.000	0	0	180.000	90.000
25	H	-347.877	252.748	0	144.000	90.000
26	H	-132.877	408.954	0	108.000	90.000
27	P	0	384.604	-192.302	90.000	116.565

Number	Type	X	Y	Z	δ	φ
28	H	215.000	295.922	-226.064	54.000	121.717
29	P	365.780	118.849	-192.302	18.000	116.565
30	H	347.877	-113.032	-226.064	342.000	121.717
31	P	226.064	-311.151	-192.302	306.000	116.565
32	H	0	-365.780	-226.064	270.000	121.717
33	P	-226.064	-311.151	-192.302	234.000	116.565
34	H	-347.877	-113.032	-226.064	198.000	121.717
35	P	-365.780	118.849	-192.302	162.000	116.565
36	H	-215.000	295.922	-226.064	126.000	121.717
37	H	0	226.064	-365.780	90.000	148.283
38	H	215.000	69.858	-365.780	18.000	148.283
39	H	132.877	-182.890	-365.780	306.000	148.283
40	H	-132.877	-182.890	-365.780	234.000	148.283
41	H	-215.000	69.858	-365.780	162.000	148.283
42	P	0	0	-430.000	0	180.000

Table B. 2 Edges of all hexagons and pentagons forming a sphere of 430 mm diameter, the missing second half of the points is obtained by replacing Y by $-Y$ and Z by $-Z$ or δ by $180+\delta$ and φ by $180-\varphi$.

Number	Type	X	Y	Z	δ	φ
1	PH	0	148.585	403.513	90.000	20.215
2	PH	141.313	45.915	.--	18.000	.--
3	PH	87.336	-120.208	.--	306.000	.--
4	PH	-87.336	-120.208	.--	234.000	.--
5	PH	-141.313	45.915	.--	162.000	20.215
6	HH	0	261.037	341.701	90.000	37.377
7	HH	248.261	80.665	.--	18.000	.--
8	HH	153.434	-211.183	.--	306.000	.--
9	HH	-153.434	-211.183	.--	234.000	.--

Number	Type	X	Y	Z	δ	φ
10	HH	-248.261	80.665	-.-	162.000	-.-
11	PH	109.884	299.828	287.973	69.873	47.956
12	PH	251.199	197.156	-.-	38.127	-.-
13	PH	319.109	-11.852	-.-	357.873	-.-
14	PH	265.131	-177.980	-.-	326.127	-.-
15	PH	87.339	-307.154	-.-	285.873	-.-
16	PH	-87.339	-307.154	-.-	254.127	-.-
17	PH	-265.131	-177.980	-.-	213.873	-.-
18	PH	-319.109	-11.852	-.-	182.127	-.-
19	PH	-251.199	197.156	-.-	141.873	-.-
20	PH	-109.882	299.829	---	110.127	-.-
21	PH	109.884	391.659	139.388	74.328	71.085
22	PH	338.534	225.535	-.-	33.672	-.-
23	PH	406.446	16.524	-.	2.328	-.-
24	PH	319.109	-252.271	-.	321.672	-.-
25	PH	141.313	-318.447	-.	290.328	-.-
26	PH	-141.313	-381.447	-.-	249.672	-.-
27	PH	-319.109	-252.271	-.-	218.328	-.-
28	PH	-406.446	16.524	-.-	177.672	-.-
29	PH	-338.534	225.535	-.-	146.328	-.-
30	PH	-109.884	391.659	-.-	105.672	-.
31	HH	0	422.366	80.665	90.000	79.188
32	HH	401.694	130.518	---	18.000	-.-
33	HH	248.261	-341.701	---	306.000	-.-
34	HH	-248.261	-341.701	-.	234.000	---
35	HH	-401.694	130.518	-.-	162.000	-.
36	PH	251.197	345.744	47.558	54.000	83.650
37	PH	406.446	-132.062	-.-	342.000	-.-
38	PH	0	-427.363	-.-	270.000	-.
39	PH	-406.446	-132.062	-.-	198.000	---
40	PH	-251.197	345.744	-.-	126.000	-.-

Table B. 3 Midpoints of the edges of all hexagons and pentagons forming a sphere of 430 mm diameter. The remaining half of the points is obtained by replacing Y by $-Y$ and Z by $-Z$ or δ by $180+\delta$ and φ by $180-\varphi$.

Number	Type	x	Y	Z	δ	φ
1	PH	72.161	99.321	412.102	54.000	16.589
2	PH	-116.769	-37.937	-.-	198.000	-.-
3	PH	0	-122.768	-.-	270.000	-.-
4	PH	116.759	-37.937	---	342.000	-.-
5	PH	-72.161	99.321	-.-	126.000	-.-
6	HH	0	207.128	376.826	90.000	28.796
7	HH	196.990	64.006	-.-	18.000	-.-
8	HH	121.747	-167.570	-.-	306.000	-.
9	HH	-121.747	-167.570	-.-	234.000	-.-
10	HH	-196.990	64.006	-.-	162.000	-.
11	HH	55.565	283.609	318.401	78.915	42.229
12	HH	252.557	140.485	-.-	29.085	---
13	HH	286.898	34.795	-.-	6.915	-.
14	HH	211.654	-196.784	-.-	317.085	-.
15	HH	121.748	-262.104	-.-	294.915	-.-
16	HH	-121.748	-262.104	-.-	245.085	-.
17	HH	-211.653	-196.784	-.-	222.915	--
18	HH	-286.898	34.795	-.	173.085	---
19	HH	-252.557	140.485	-.-	150.915	-.-
20	HH	-55.565	283.609	--	101.085	-.-
21	PH	184.383	253.782	294.104	54.000	46.846
22	PH	298.338	-96.936	-.-	342.000	-.-
23	PH	0	-311.692	--	270.000	-.-
24	PH	-298.338	-96.936	-.-	198.000	-.-
25	PH	-184.383	253.782	-.-	126.000	-.-
26	PH	112.223	353.103	218.229	72.369	59.502
27	PH	301.143	215.844	-.-	35.631	--
28	PH	370.500	2.386	-.-	0.369	---
29	PH	298.338	-219.705	-.-	323.631	-.-

Number	Type	X	Y	Z	δ	φ
30	PH	116.760	-351.629	-.-	288.369	-.-
31	PH	-116.760	-351.629	-.-	251.631	-.-
32	PH	-298.338	-219.705	---	216.369	-.-
33	PH	-370.500	2.386	---	179.631	-.-
34	PH	-301.143	215.844	-.	144.369	-.-
35	PH	-112.221	353.104	---	107.631	-.
36	HH	55.563	411.619	111.275	82.312	75.002
37	HH	374.302	180.043	-.-	25.688	---
38	HH	408.643	74.351	-.	10.312	-.-
39	HH	286.897	-300.346	---	313.688	-.
40	HH	196.990	-365.667	---	298.312	--
41	HH	-196.990	-365.667	-.-	241.688	-.-
42	HH	-286.897	-300.346	---	226.312	-.
43	HH	-408.643	74.351	-.-	169.688	-.
44	HH	-374.302	180.043	-.-	154.312	---
45	HH	-55.565	411.619	-.-	97.688	-.-
46	PH	184.259	376.379	96.370	63.916	77.049
47	PH	301.021	291.546	-.-	44.084	---
48	PH	414.897	-58.930	--	351.916	---
49	PH	370.297	-196.195	-.-	332.084	---
50	PH	72.164	-412.801	-.-	279.916	---
51	PH	-72.164	-412.801	-.-	260.084	---
52	PH	-370.297	-196.195	-.-	207.916	---
53	PH	-414.897	-58.930	-.-	188.084	---
54	PH	-301.021	291.546	-.-	135.916	-.-
55	PH	-184.256	376.380	-.-	116.084	---
56	HH	0	429.674	16.739	90.000	87.769
57	HH	408.644	132.777	-.-	18.000	---
58	HH	252.556	-347.614	---	306.000	---
59	HH	-252.556	-347.614	---	234.000	---
60	HH	-408.644	132.777	-.-	162.000	-.-

APPENDIX C

Mechanical construction of the 4π detector

Fig.C1 The hexagonal crystal
Fig.C2 The pentagonal crystal
Fig.C3 Hexagonal honeycomb of the supporting structure
Fig.C4 Pentagonal honeycomb of the supporting structure
Fig.C5 Trlagonal flange for the fixation of the hexagonal crystal in the supporting structure
Fig.C6 Triagonal flange for the fixation of the pentagonal crystal in the supporting structure
Fig.C7 Glass fibre tube for fixation of the hexagonal crystal
Fig.C8 Glass fibre tube for fixation of the pentagonal crystal
Fig.C9 Ground frame for fixation of the spherical honeycomb structure

ACKNOWLEDCEMENTS

Design, setup, and operation of such an elaborate detector system was only possible by the help and enthusiasm of many colleagues at $K f K$ and from abroad as well as from various companies. Here, we would like to express our thanks to all who contributed to the success of this project.

In particular we are indebted to Mrs. H. Braun for her care and patience in fabricating the many electronic modules and more than thousand cable connections, and to 0 . Walz for the adjustment and tests of the home made CAMAC electronics. We although thank Mrs. J. M. Fröhlich for the many drawings and D. Adami for his excellent machining of the complicated honeycomb structure.

Our work was greatly facilltated by the fact that we could make use of the experience from the construction of the Heidelberg crystal ball detector. Thanks to the generous support by Prof. D. Habs and R. Repnow (MPI für Kernphysik Heidelberg), H. Farr and P. von Walter (Elektroniklabor des Physikalischen Instituts, University of Heidelberg), and E. Malwitz (GSI Darmstadt) practically all aspects of the detector development including geometry, mechanical construction, electronics, and automatic operation were influenced and facilitated. In an early stage of the project F. E. Beck from the CRN Strasbourg kindly provided us with the first information on BaF_{2} scintillators.

Last but not least thanks are due to Dr. K. Korth and E. Merck, the companies which supplied our BaF_{2} crystals. Persisting efforts of G. Karschnik, C. D. Knöchel and J. Korth were necessary to produce large crystals with the particular quality that now make the detector so outstanding.

