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ABSTRACT 

The application of near real time accountancy to nuclear material bal­
ance data can be performed effectively only with the help of computer­
ised nuclear material accounting and information systems. In this con­
text, two computer programmes will be introduced in this report: DIDI, 
a programme for computing the MUF series and the measurement model of 
a reprocessing plant which is assumed to be a one-block model from data 
resulting from the routine operation of the facility, and PROSA, a 
programme for statistical analysis of NRTA data, which evaluates the 
MUF series on the basis of the measurement model. After the presentation 
of the two computer programmes two examples with realistic balance data 
will demonstrate the application of NRTA measures. Furthermore, some 
new remarks on the precision of Monte-Carlo simulations are mentioned 
which provide a substantial better estimation. 

Anwendung von Near Real Time Accountancy auf Bilanzdaten von Kernmaterial 

ZUSAMMENFASSUNG 

Die effektive Anwendung von Near Real Time Accountancy auf Bilanzdaten 
von Kernmaterial kann nur mit Hilfe rechnergestützter Kernmaterial­
buchhaltungs- und Informationssyteme erfolgen. In diesem Zusammenhang 
werden in diesem Bericht zwei Computer Programme vorgestellt: DIDI, ein 
Programm zur Berechnung der MUF Reihe und des Meßmodells einer "Ein­
Block"-Wiederaufarbeitungsanlage mittels Daten aus dem Routinebetrieb 
der Anlage, und PROSA, ein Programm zur statistischen Auswertung von 
NRTA-Daten, das die MUF Reihe auf der Basis des Meßmodells b(>wertet. 
Nach der Vorstellung der beiden Computerprogramme demonstrieren zwei 
Beispiele mit realistischen Bilanzdaten die Anwendung der NRTA-Verfah­
ren. Darüberhinaus werden einige Überlegungen zur Genauigkeit von 
Monte-Carlo-Simulationen dargelegt, die eine wesentlich bessere 
Abschätzung ermöglichen. 
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INTRODUCTION 

Industrial facilities that handle valuable or hazardous materials are 
often forced to apply material control procedures that effectively 
detect losses of the special material under consideration. In many cases 
the material under consideration can only be measured with random errors 
that means statistical control procedures have to be considered. The 
statistical test procedures that are presented in this report have been 
developed to control Plutonium in nuclear facilities. The basic prin­
ciple of material control is accountancy /1/, where material input, 
output and inventories are measured and the book inventory is compared 
with the measured inventory /2/. The requirement of early detection of 
possible material losses leads to a sequential evaluation of material 
balance data, where the boundary condition of a final decision at the 
end of a given reference time has to be observed. Truncated sequential 
test procedures based on the material accountancy statistic have been 
developed and applied to detect losses of material with sufficiant high 
probabilityandin a timely manner /3,4/. Furthermore, the statistical 
tests are intended to be used by the plant operator for process control 
purposes. 

The application of near real time accountancy to nuclear material bal­
ance data can be performed effectively only with the help of computer­
ised nuclear material accounting and information systems. This is true 
for two reasons: Firstly, there is a big set of data which has to be 
worked up. Secondly, to perform the sequential test procedures we have 
to do a lot of mathematical computations, for example Monte-Carlo sim­
ulations to determine the thresholds of the tests. In this context, two 
computerprogrammeswill be introduced in this report: DIDI /5/,a pro­
gramme for computing the MUF series and the measurement model of a 
reprocessing plant which is assumed to be a one-block model from data 
resulting from the routine operation of the facility, and PROSA /6,7/, 
a programme for statistical analysis of NRTA data, which evaluates the 
MUF series on the basis of the measurement model. 

After the presentation of the two computer programmes some remarks on 
the precision of Monte-Carlo simulations are mentioned. A new estimate 
is introduced which provides a substantial better estimation applicable 
in practice. Finally, two examples with realistic balance data will 
demonstrate the application of NRTA measures. But first of all, the 
materials balance concept and the multiple balance model will be 
introduced in a general manner. 



THE MATERIAL BALANCE CONCEPT 

Let us consider a well-defined box /2/ that contains at a given time 
t 0 some material into which material enters and from which material 
leaves during a given interval of time (t0 ,tN). This box, which is also 
called material balance area, may represent, for example a nuclear 
material reprocessing plant. The material contained in the material 
balance area at time t 0 is called the physical inventory I 0 . The alge­
braic sum of the amounts of material that enter or leave the material 
balance area in the interval of time (t0,t ) - which in the case of an 
industrial plant are called receipts and s~ipments - is called the net 
transfer T. The physical inventory at t 0 plus the net transfer in 
(t0 ,tN) gives the book inventory at tN, i.e. the amount of material that 
should be contained in the balance area at time tN: 

B := I 0 + T . 

The amount of material actually contained in the material balance area 
at time tN is called physical inventory IN. 

If all material contained in, and passing through, the material balance 
area in the interval of time (t0 ,tN) is exactly accounted for, and if 
no material has disappeared or has been diverted, then the difference 
between book inventory B at time tN and the physical inventory IN must 
be zero. This difference is called MUF ( material unaccounted for): 

MUF:= I 0 + T - IN 

One application of materials accounting is to detect an unauthorized 
loss timely. However, the disposition of the material-balance concept 
as usual gives no possibility to detect an occurred loss soon, because 
the decision can be made even at the end of the reference time. For that 
reason one switches over to the concept of sequential balancing (Near­
real-time accountancy,NRTA). In order to follow that idea, the refer­
ence-time period (t0 ,tN) is subdivided into N balance periods. 

With the definitions 

and 

I. : physical inventory at timet. 
T~ : net transfer during (ti_ 1,t1J 

MUF. :=I. 1 +T.- I. 
1 1- 1 1 

i=O, ... ,N 
i=l, ... ,N 

we obtain a sequence of MUF values (MUF1 , ... ,MUFN). At the end of the 
i-th balance period, statements can be made based on all i balance 
results HUF( j), j :::; i, whether there exists an eventual loss or not. 
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MULTIPLE BALANCE MODEL 

The concept of multiple balances is primary used for detection of pos­
sible materials lasses. One application is the international safeguards 
in nuclear facilities. The detection has to be timely and with suffi­
cient high probability. The true MUF values are zero in the ideal sit­
uation of no lasses and no measurement errors. In actual practice, 
however, nonzero MUF values may occur for a number of reasons, e.g. (a). 
measurement uncertainties and (b) lass of material. Measurement uncer­
tainties will be included in our model by using the concept of random 
variables in determining the materials balances. 

We assume that I(k) and T(k) are random variables that can be written 
as 

I(k) = E(I(k)) + ZI(k) + SI(k) , k=O, ... ,N 

with E(I(k)) 
ZI(k) 
SI(k) 

true value of the inventory 
random error of the measurement 
systematic error of the measurement 

and analogaus 
T(k) = E(T(k)) + ZT(k) + ST(k) , k=l, ... ,N. 

Another assumption is that all measurement errors are distributed nor­
mally with mean zero and with known variances. Furthermore, we assume 
that the inventory measurement and the transfer measurement are sto­
chastically independent. 

That means: 

cov(I(k), T(k)) = 0 
cov(ZI(i),SI(j)) = 0 
cov( ZI( i), ST(j)) = 0 
cov( ZT( i), ST(j)) = 0 
cov(ZT( i), SI(j)) = 0 

The variance for period k can be calculated as 

var(I(k)) = var(ZI(k)) + var(SI(k)) and 
var(T(k)) = var(ZT(k)) + var(ST(k)) 

For two periods i and j we define the covariance of MUF(i) and MUF(j) 
as 

oij = cov(MUF(i),MUF(j)) . 
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All the variance and covariance calculations may be summarized into the 
variance-covariance matrix 1 also called dispersion matrix of the 
sequence MUF(l),MUF(2), ... ,MUF(N): 

1 = 

The matrix 1 is the condensed form of the measurement model of the 
facility considered. It is an essential part for the statistical anal­
ysis of the MUF sequence. Given a sequence of nonzero MUF values we have 
to decide on the basis of the measurement model whether the reason for 
nonzero values is due to measurement errors or lass. In our case we use 
the theory of mathematical statistical hypotheses testing to decide at 
the hand of a given sequence of MUF values whether the situation of no 
lass of material is given. 

Lass of material may occur in a variety of pattern and we have to take 
into account that one has no knowledge of the actual lass situation. 

We assume two hypotheses for the mean values of the random variables 
MUF(l), ... ,MUF(N). If there is no lass of material all materials bal­
ances have mean zero. This situation is described by the null hypoth­
esis: 

H0 : E(MUF(k)) = 0 for all periods k=l, ... ,N 

A lass of material can take place in one or more balance periods. Taking 
this into account, we formulate the alternative hypothesis: 

H1 : E(MUF(k)) = M(k) and M:=LM(k) > 0 . 

Hypothesis H1 means that we have a lass of material in at least one 
balance period k. For process control purpuses we would replace the sign 
'>' in the alternative hypothesis by the sign *· 

The problern now is to find (sequential) test procedures which enable a 
decision between H0 and H1 . A further problern is to find test procedures 
with a given probability of type I error a (false alarm probability) 
and with a small probability of type II error (decision for H0 if H1 
is true, i.e. we have a lass and we do not detect it). An even further 
problern is to find test procedures which indicate a lass almost imme­
diately after it has happened. 
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COMPUTER PROGRAM PROSA 

In the Karlsruhe Nuclear Research Center (KfK) a computer program called 
PROSA (Program for Statistical Analysis of Near-Real-Time Accountancy 
Data) has been developed as a tool to apply truncated sequential sta­
tistical tests to a sequence of materials balance results the origin 
of which is a model facility or an existing plant /6,7/. PROSA is a 
decision tool to decide on the basis of statistical considerations if 
in a given sequence of materials balance periods a loss of material 
might have happened or not. 

PROSA is written in Fortran 77 and is in use on IBM mainframes and on 
personal computer with operating system DOS. 

The essential input of PROSA consits of: 

(1) 

(2) 

(3) 

the desired false alarm probability a for a given number of 
balance periods 
the variancejcovariance matrix I which is the condensed form 
of the measurement model of the facility considered 
the series of material balance results (MUF 1, .. ,MUFN) 
which is assumed to be multivariate normally distributed with 
known dispersion matrix I . 

A few remarks to the input components: 

(i) the desired false alarm probability a enables some sensitivity 
studies for given data sets. In the most cases a fixed false alarm 
probability of 5 percent is choosen. 
(ii) The determination of the measurement model for real process 
data is an essential step in the application of NRTA. /9/ 
The matrix as well as the MUF series can be computed with a 
computer program called DIDI. 

The essential output of PROSA is: 

an information if there is a significant test result that means 
an alarm. The balance period where the first alarm happens is 
indicated. 

The evaluation of the materials balance data is based on statistical 
test procedures. One essential part for designing statistical tests for 
materials accounting data is their expected performance in detecting 
losses of material. Performance measures include the concepts of loss­
detection probability and loss-detection time. The performance of a 
special test has to be studied under a variety of loss patterns, which 
have tobe selected according to reasonable assumptions. 
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NRTA TEST PROCEDURES 

In the following the three tests will be described. 

a) CUMUF test 

CUMUF is used for the cumulative sum of the material balance results 
MUF(k): 

CUMUF(i) = MUF(l) + ... + MUF(i) for all i=l, ... ,N 

The test is performed as follows /10/: 

For i=1, ... ,N-1 : 

CUMUF(i) 
s(i) reject H0 {: s(i) no decision, go to the next period 

for i=N 

CUMUF(N) 
{

> s(N) 

:::; s(N) 

reject H0 

reject H1 

The test thresholds s(1),s(2), ... ,s(N) are determined by Monte Carlo 
simulations to fulfill a given false alarm probability a. 

b) GEMUF test 

Testing the single hypothesis H0 agairrst a simple alternative 

H2 : E(MUF(k)) = M(k) and M=L M(k) > 0 

there exists exactly one best test. To use this test one has to know 
the loss pattern M(l), ... ,M(N). However, there exist various possibil­
ties to distribute a loss over the balance periods. So these tests (for 
each loss pattern one best test) are not applicable in practice. The 
idea leading to the GEMUF test is the following: the (in general 
unknown) loss pattern M(1), ... ,M(N) will be estimated as 
MUF(l), ... ,MUF(N) for MUF(i) is an unbiased estimation for M(i) /4/. 

We define : 

E(i) = the first i rows and columns of E 

MUFi = (MUF(l), ... ,MUF(i))T and 

ZG(i) = MUFI ·k (E(i))-l ~'r MUF. i 
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The test is performed as follows: 

For i=1, ... ,N-1 : 

{: s(i) 
ZG(i) 

s(i) 

reject H0 

no decision, go to the next period 

for i=N 

[ > s(N) 
ZG(N) 

:5 s(N) 

reject H0 

reject H1 

The test thresholds s(l),s(2), ... ,s(N) are determined by Monte Carlo 
simulations to fulfill a given false alarm probability a. 

c) Pages test 

The materials balance results MUF(i) are random variables which are 
stochastically dependent. With a linear transformation it is possible 
to transform the sequence MUF(1), ... ,MUF(N) to a sequence of stochas­
tically independent random variables MUFR(1), ... ,MUFR(N). 

The pages test uses the following statistics: 

so = 0 

To = 0 

s. = max(O, s. 1 + MUFR(i) k) 
1 1-

T. = min(O, T. 1 + MUFR(i) + k) 
1 1-

for i=1, ... ,N where k is a fixed nurober /12/. 

The test is performed as follows: 

For i=1, ... ,N-1 : 

Si > h or T. <-h 
1 

reject H0 

Si :5 h or T. 
1 

;:::-h no decision, next period 

for i=N : 

SN > h or TN <-h reject H0 

SN :5 h or TN ;:::-h reject H1 
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The parameters h and k are determined by simulations to guarantee a 
false alarm probability a for the N balance periods. In our case we have 
selected k=O. 
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SOME NEW REMARKS ON THE PRECISION OF MONTE-CARLO SIMULATIONS 

a) Mathematical model 

The application of Monte-Carlo simulations is an essential part of 
PROSA. The calculation of the thresholds for the test procedures is 
based on the desired false-alarm probability a und the measurement 
model. Simulations are necessary because the analytical calculation is 
impossible. That means "empirical probabilities" like "empirical false 
alarm rates" or "empirical detection probabilities" based on Monte­
Cario simulations will be determined. The question arises how "good" 
are these determinations or how close is the empirical probability to 
the true, theoretical probability. The following mathematical model 
answers this question. 

We call MC the nurober of the Monte-Carlo simulation runs. 

Foreachrun i we define a random variable Y(i): 

{: if there is an alarm 
(1) Y(i) = ,i=l, .. ,MC 

if there is no alarm 

We call a the true (theoretical) detection probability that means 

(2) E(Y(i)) = a i=l, .. ,MC 

The Y(i) are stochastically independent, Bernoulli-distributed random 
variables with parameter a. 

(3) Y(i) - B(l,a) 

The empirical detection probability a(e) based on MC simulation runs 
is defined in the following manner: 

(4) a(e) = 
1 MC 

* L Y(i) 
MC i=l 

Consequently, the random variable a(e) is also Bernoulli-distributed 
with: 
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E(a(e)) = a 

(S) var(a(e)) = a*(l-a)/MC 

The "Strong Law of Large Numbers" /13/ says that a(e) converges "almost 
surely" (e.g. with probability 1) against a: 

(6) P{ lim a(e) = a } = 1 
MC-+oo 

However, the "Strong Law of Large Numbers" only says that a( e) converges 
against a, but nothing about the rate of convergence. Therefore, this 
law does not provide any error estimate. 

b) Chebychev-estimate 

A first error estimate provides "Chebychev's inequility" /14/: 

p(la(e)-al ;::: E) :s; var(a(e))/E 2 

(7) a*(l-a) 
= 

MG * E
2 

On the wright hand of (7) the unknown value a occurs. Fora e [0,1] it 
can be easily shown: 

(8) a*(1-a) :s; 1/4 

and further: 

(9) p(la(e)-al ;::: E) :s; 1/(4*E 2 *MC). 

c) Direct estimate 

Because inequility (9) is very gross, we looked for another way to yield 
better estimations. The "Central Limit Theorem" /14/ says that for MC>30 
the random varible a(e) is normally distributed with E(a(e)) = a and 
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var(a(e)) = a*(1-a)/MC. Defining X := a(e)-a and Y := Xjo with o 2 = 
a*(1-a)/MC it is easily to checkthat Y is N(0,1)-distributed. 

So we get: 

(10) p( iXi>o~'<k) = p( IYI>k) 

= 2(1-~(k)). 

With E = k*o we get: 

(11) p(la(e)-al <::: E) ::; 2~'<(1-~(E/O)), 

rsp. with (8): 

Inequility (12) provides a substantial better estimation than inequil­
ity (9). This inequility (12) is applicable in practice. The following 
tables demonstrate the improvements of the new estimate. 
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Nurober of Simulation runs MG 

IEPS 100 200 300 400 500 I 
I I 
10.01 25.000 0.842 12.500 0. 777 8.333 0.729 6.250 0.689 5.000 0. 6551 
10.02 6.250 0.689 3.125 0.572 2.083 0.488 1.563 0.424 1. 250 0. 3711 
10.03 2. 778 0.549 1.389 0.396 0. 926 0.299 0.694 0.230 0.556 0.1801 
10.04 1. 563 0.424 0. 781 0.258 0.521 0.166 0. 391 0.110 0.313 0. 0741 
10.05 1.000 0.317 0.500 0.157 0.333 0.083 0.250 0.046 0.200 0. 0251 
10.06 0.694 0.230 0.347 0.090 0.231 0.038 0.174 0.016 0.139 0. 0071 
10.07 0.510 0.162 0.255 0.048 0.170 0.015 0.128 0.005 0.102 0. 0021 
10.08 0.391 0.110 0.195 0.024 0.130 0.006 0.098 0.001 0.078 0. 0001 
10.09 0.309 0.072 0.154 0. Oll 0.103 0.002 0. 077 0.000 0.062 0. 0001 
10.10 0.250 0.046 0.125 0.005 0.083 0.001 0.063 0.000 0.050 0. 0001 
I I 

Nurober of Simulation runs MG 

IEPS 600 700 800 900 1000 I 
I I 
10.01 4. 167 0.624 3.571 0.597 3.125 0.572 2. 778 0.549 2.500 0. 5271 
10.02 1.042 0.327 0.893 0.290 0.781 0.258 0.694 0.230 0.625 0. 2061 
10.03 0.463 0.142 0.397 0.112 0.347 0.090 0.309 0. 072 0.278 0. 0581 
10.04 0.260 0.050 0.223 0.034 0.195 0.024 0.174 0.016 0.156 0. 0111 
10.05 0.167 0.014 0.143 0.008 0.125 0.005 0.111 0.003 0.100 0. 0021 
10.06 0. 116 0.003 0.099 0.001 0.087 0.001 0. 077 0.000 0.069 0. 0001 
10.07 0.085 0.001 0.073 0.000 0.064 0.000 0.057 0.000 0. 051 0. 0001 
10.08 0.065 0.000 0.056 0.000 0.049 0.000 0.043 0.000 0.039 0. 0001 
10.09 0.051 0.000 0.044 0.000 0.039 0.000 0.034 0.000 0.031 0. 0001 
10. 10 0.042 0.000 0.036 0.000 0.031 0.000 0.028 0.000 0.025 0. 0001 
I I 

Tab.2: Probability of a Deviation of a(e) from a of more then EPS 
Based on MG Simulation Runs, 
1. Row Using Ghebychev's Inequility 
2.Row Using the Direct Estimate 
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Nurober of Simulation runs MC 

IEPS 1000 2000 3000 4000 5000 I 
I I 
10.01 2.500 0.527 1. 250 0.371 0.833 0.273 0.625 0.206 0.500 0.1571 
10.02 0.625 0.206 0.313 0.074 0.208 0.028 0.156 0. Oll 0.125 0. 0051 
10.03 0.278 0.058 0.139 0.007 0.093 0.001 0.069 0.000 0.056 0. 0001 
10.04 0.156 0. Oll 0.078 0.000 0.052 0.000 0.039 0.000 0.031 0. 0001 
10.05 0.100 0.002 0.050 0.000 0.033 0.000 0.025 0.000 0.020 0. 0001 
10.06 0.069 0.000 0.035 0.000 0.023 0.000 0.017 0.000 0.014 0. 0001 
10.07 0.051 0.000 0.026 0.000 0.017 0.000 0.013 0.000 0.010 0. 0001 
10.08 0.039 0.000 0.020 0.000 0.013 0.000 0.010 0.000 0.008 0. 0001 
10.09 0.031 0.000 0.015 0.000 0.010 0.000 0.008 0.000 0.006 0. 0001 
10.10 0.025 0.000 0.013 0.000 0.008 0.000 0.006 0.000 0.005 0. 0001 
I I 

Nurober of Simulation runs MC 

IEPS 6000 7000 8000 9000 10000 I 
I I 
10.01 0.417 0.121 0.357 0.094 0.313 0.074 0.278 0.058 0.250 0. 0461 
10.02 0.104 0.002 0.089 0.001 0.078 0.000 0.069 0.000 0.063 0. 0001 
10.03 0.046 0.000 0.040 0.000 0.035 0.000 0.031 0.000 0.028 0. 0001 
10.04 0.026 0.000 0.022 0.000 0.020 0.000 0.017 0.000 0.016 0. 0001 
10.05 0.017 0.000 0.014 0.000 0.012 0.000 0. Oll 0.000 0.010 0. 0001 
10.06 0.012 0.000 0.010 0.000 0.009 0.000 0.008 0.000 0.007 0. 0001 
10.07 0.009 0.000 0.007 0.000 0.006 0.000 0.006 0.000 0.005 0. 0001 
10.08 0.007 0.000 0.006 0.000 0.005 0.000 0.004 0.000 0.004 0. 0001 
10.09 0.005 0.000 0.004 0.000 0.004 0.000 0.003 0.000 0.003 0. 0001 
10.10 0.004 0.000 0.004 0.000 0.003 0.000 0.003 0.000 0.003 0. 0001 
I I 

Tab.3: Probability of a Deviation of a(e) from a of more then EPS 
Based on MC Simulation Runs, 
1.Row Using Chebychev's Inequility 
2.Row Using the Direct Estimate 
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DETERMINATION OF THE MEASUREMENT MODEL 

As mentioned ealier, the determination of the measurement model for real 
process data is an essential step in the application of the NRTA pro­
cedures. In the following, two concepts of determination of realistic 
measurement models are discribed. The measurement models analyzed in 
this paper are "one-block models". This simplification means that all 
the nuclear inventory of the facility is assumed to be contained in one 
component, but the plant is considered to be in a non-steady operating 
state. The main problern in this context is to determine the variance 
of the inventory measurement. Two approaches are introduced to meet this 
prob lern: 

- the "deductive way" and 
- the "inductive way" 

In the following, the two methods are briefly discussed. 

a) "Deductive way" 

The "deductive way" of determination the inventory variance can be 
performed if one has a few balance periods without any transfer. In this 
case the inventory of the facility is constant. So one gets at least 
two measurements for the same inventory. This situation allows to cal­
culate a point estimate of the variance of the measurement. The method 
has two disadvantages. Firstly the estimation is very gross and secondly 
the distribution of the inventory among the plant components is not 
taken into account. Nevertheless, the deductive method may be a rather 
realistic approach and provides a first idea about the measurement 
uncertainties. 

b) "Inductive way" 

For the "inductive way", operational informations as well as target 
values are needed for the measurement uncertainties /16,17/. The 
determination of Plutonium (Pu) in each process component of the 
facility is the product of volume (VOL) and concentration (CON) meas­
urement 

(1) Pu = VOL >'<" CON. 

Both measurements are assumed to be random variables with random and 
systematic components. The standard deviations of the two types of 
errors are assumed to be known. The means are assumed to be zero for 
both errors so that each measurement is an unbiased estimate for the 
true value. Using truncated Taylor series expansion in the mean values 
E(VOL) and E(CON) one gets: 
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(2) VOL * GON= E(VOL)>'<'E(CON) + (CON-E(CON))>'<E(VOL) + 
+ (VOL-E(VOL))*E(CON) 

which results in the reasonable equation: 

(3) E(Pu) = E(VOL) * E(CON). 

For the variances the following expression holds: 

(4) var(Pu) = (E(VOL)) 2*var(CON) + (E(CON)) 2*var(VOL). 

Based on this procedure, the (average) relative variance of the inven­
tory of the whole facility can be estimated if flow-sheet information 
supplied by the operator is available. Furthermore, the variance of the 
inventory of the whole facility can be split into a random component 
and into a systematic component. Both components are of random origin. 
They differ only in the way of error propagation. In the present case 
systematic errors are assumed to be constant for the whole reprocessing 
campaign. 
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THE COMPUTER PROGRAMME DIDI 

The programme DIDI /5/ (Programme for Computing the Measurement Model 
of a Reprocessing Facility - Dlscontinous Dispersion Matrix) is able 
to compute the measurement model that means the variancejcovariance 
matrix of a one-block model of a reprocessing plant. Therefore DIDI is 
the connection piece between the data resulting from the working of the 
reprocessing facility and PROSA (see Tab.4). 

Input are the inventory data, all transfers and the relative standard 
deviations, respectively, random as well as systematical. 

Output is primarly the variance/covariance matrix (measurement model) 
of the reprocessing plant. But also the absolute standard deviations, 
random as well as systematical, the MUF and CUMUF series, the variance 
of CUMUF and the Neyman-Pearson optimum loss-pattern will be computed. 

The programme DIDI is written in FORTRAN 77. It is tested on a host 
computer (IBM3090) and on a personal computer with operating system DOS. 

Tab.4: The Computer Programme DIDI 

THE COMPUTER PROGRAMME DIDI 

Programme for Computing the Measurement Model of 
a Reprocessing Facility- Dlscontinous Dispersion Matrix 

Process 
data 

Variance/Co­
variancematrix 

+ MUF series 
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REALISTIC DATA SET 

The data base which the NRTA procedures are applied to results of a 
reprocessing campaign of the Wiederaufarbeitungsanlage Karlsruhe (WAK). 
In fig. 1 the Pu inventory is plotted. It is obvious that the data 
represent by no means a steady-state operation of the facility. There 
was an increas ing inventory, and is has to be ment ioned that the 
transfers differed considerably in each period and there were only small 
waste outputs during the campaign. The MUF and CUMUF series is plotted 
on fig. 2. Furthermore, two measureme,pt models have been developed 
according to the two above described approaches. It has to be pointed 
out that the two models assume a simplified "one-block model". Never­
theless, this should give a realistic first rough estimate of the true 
measurement situation. In Tab.S and Tab.6 the relative standard devi­
ations of the four material balance components inventory, input, prod­
uct output and waste output are shown. The inventory data are the result 
of the two different approaches of measurement model construction. It 
can be realized that they differ considerably. The whole data sets are 
the basis for the NRTA analysis performed by PROSA. 

Tab. 5: Measurement Uncertainties (1 o-values) 
related to the "'deductive"' measurement model 

Balance Term Uncertainty Uncertainty 
random (%) systernatic 

INVENTORY 3.3 

INPUT 0.9 

PRODUCT 0.5 

WAS TE 20.0 

Tab. 6: Measurement Uncertainties (1 o-values) 
related to the "'inductive"' measurement model 

---

1 . 3 

0.5 

---

(%) 

Balance Term Uncertainty Uncertainty 
randorn (%) systernatic (%) 

INVENTORY 1. 56 0.86 

INPUT 0.9 1 . 3 

PRODUCT 0.5 0.5 

WAS TE 20.0 ---
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Fig. 1: Plant inventory in the course of the campaign 
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Fig. 2: Results of the material balances in the course of the campaign 
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DAT A EVALUATION 

With the tool PROSA, the balance data of Fig.2 have been evaluated based 
on the measurement models given in Tab. 4 and 5. Tagether with the 
inventory, input and output data, the variancefcovariance matrices 
L(i) can be computed with the tool DIDI. For all test procedures a 5% 
false alarm probability for the 20 balance periods has been assumed. 
The next figures show the results on the basis of the "deductive model". 
Fig. 3 shows that the CUMUF test statistic stays all the time below the 
threshold. That means we have no alarm, the balance data can be 
explained by the assumed measurement model. The same is true for the 
PAGES test (fig. 4). The upper statistic stays below the upper threshold 
and the lower statistic stays above the lower threshold. Also the GEMUF 
test gives no alarm (fig. 5). 

Now we turn over to the evaluation on the basis of the inductive meas­
urement model. There are quite different results. The CUMUF test gives 
an alarm in the second and fourth period ( fig. 6), the PAGES test in 
the 15th and following periods (fig. 7). The GEMUF test alarms in every 
period without the first (fig. 8). This example shows that for the same 
MUF series we have no alarms if the evaluation is based on the deductive 
model and we have alarms if the evaluation is based on the inductive 
model. This demonstrates the great importance of an exact determination 
of the measurement model. But what could be the reason for the alarms 
in the second case? It seems that the "inductive model" results in our 
case in a too optimistic measurement uncertainty for the inventory 
measurements. This might to a great deal be caused by the simplification 
of the "one-block model" because in this case the distribution of the 
inventory among the facility components is not at all taken into 
account. 

Let's have a look again at the determination of the measurement model 
Formula 4 gives the equation for the variance of the plutonium in one 
component. On the right hand, the terms "mean of VOL" and "mean of CON" 
appear. Here we have to put in the true values. But we don't know them. 
Due to this reason we replace them by the measurement results because 
they are un unbiased estimate for them. But in our first approach we 
didn't know even these data, we knew only the inventory data of the 
whole facility. But we had informations from the operator about the 
average volume and concentration in each component. So we replaced "mean 
of VOL" and "mean of CON" by these average values and we were able to 
compute the average standard standard deviation of the whole inventory. 
If we have knowlegde of all measurement data that means the volume and 
concentration measurement of each component, we will be able to deter­
mine a detailed measurement model which is no Ionger a one-block-model. 
These detailed data will be provided from another computer programme 
called PRODES (Process data acquisition and information system) /18/. 
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First calculation with this detailed measurement model have shown that 
the balance data are in accordance with this measurement model. 
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Fig. 3: Evaluation of the balance data with the deductive 
measurement model using the CUMUF test 
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Fig. 4: Evaluation of the balance data with the deductive 
rneasurernent rnodel using the Page's test 
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Fig. 5: Evaluation of the balance data with the deductive 
rneasurernent rnodel using the GEMUF test 
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Fig. 6: Evaluation of the balance data with the inductive 
measurement model using the CUMUF test 
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Fig. 7: Evaluation of the balance data with the inductive 
measurement model using the Page's test 
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Fig. 8: Evaluation of the balance data with the inductive 
measurement model using the GEMUF test 
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CONCLUSIONS 

- The results of the data evaluation demonstrate that the NRTA tests 
included in PROSA are not only able to detect timely a possible loss 
of nuclear material but even to test the underlying measurement model 
if a non-loss situation can be assumed. 

- The determination of the measurement model is an essential part in 
the data evaluation. 
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