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Distribution Functions and Moments in the Theory of Coagulation
Abstract

Different distribution functions and their moments used in the Theory of
coagulation are summarized and analysed. Relations between the moments of
these distribution functions are derived and the physical meaning of individual
moments is briefly discussed. The time evolution of the moment of order zero
(total number concentration) during the coagulation process is analysed for the
general kernel of the Smoluchowski equation. On this basis the time evolution of
certain physically important quantities related to this moment such as mean
particle size, surface and volume as well as surface concentration is described.
Equations for the half time of coagulation for the general collision frequency
factor are derived.

Verteilungsfunktionen und Momente in der Theorie der Koagulation
Zusammenfassung

Verschiedene Verteilungsfunktionen und ihre Momente, die in der Theorie der
Koagulation Anwendung finden, werden zusammengefafBt und analysiert. Die
Beziehungen zwischen den Momenten dieser Verteilungsfunktionen werden
abgeleitet, und die physikalische Bedeutung von individuellen Momenten wird
kurz diskutiert. Die zeitliche Veranderung des Momentes der Ordnung Null
(gesamte Anzahlkonzentration) wéhrend des Koagulationprozesses wird
analysiert fur den allgemeinen Kern der Smoluchowski-Gleichung. Auf dieser
Grundlage wird die zeitliche Entwicklung bestimmter physikalisch bedeutsamer
GroBBen beschrieben, die in einer Beziehung zu diesem Moment stehen, wie z. B.
mittlere PartikelgroBe, Oberflache und Volumen sowie
Oberflachenkonzentration. Die Gleichungen fir die Halbzeit der Koagulation im
Falle des allgemeinen Koagulationkerns werden abgeleitet.
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1. INTRODUCTION

A large number of distribution functions is used at present in the theoretical |
physics of disperse systems and specifically in the theory of coagulation. These
functions have different variables, they may have a dimension or they can be
dimensionless. Moreover these functions can be normalized in a different way.
The basic kinetic equation describing the coagulation process - Smoluchowski
equation - describes the time evolution of the certain, specified distribution
function. Consequently the type and character of the distribution function
determines the form of the Smoluchowski equation. This form in turn is very
important from the mathematical point of view as this equation is complicated
non-linear, integro-differential equation. Moreover each of these distribution
functions can be - with a certain precision - characterized by a set of its moments.
Some of these moments have a physical meaning and can be applied fora
simplified description of the investigated process in this case of the process of
coagulation. Asthere is a number of these distribution functions and sets of their
moments to find out the interrelations and transformations between these
gquantities is sometimes not very easy. Consequently one of the aims of our
investigation is an attempt to organize and clarify the situation in this field
especially from the point of the theory of dimension, theory of similarity and
stressing the physical significance of the discussed quantities.

2. DISTRIBUTION FUNCTIONS AND MOMENTS

The basicsignificance in the theory of disperse systems and specifically in the
theory of coagulation hasthe number-volume distribution function n(v, t) where
vis the particle volume, t the time and the quantity n (v, t)dv gives the number of
particles in unit volume of the system with volumes in the interval v, v + dv. From
this definition it follows that the unit and simultaneously the dimension of this
quantityisdimn (v,t) = 1/m6. In terms of this function the Smoluchowski
equation has the most simple form given by

anw, 1 = (1)

v
Py = 5 J Bw—uwuln (w-—udnut)de —n,t J B (w,u)n (u,) du

where u is the variable particle volume and § (v, u) collision frequency factor or
coagulation constant. The function B (v, u) isthe kernel of equation (1) and on



dimensional grounds from (1) it follows dim f (v, u) = m3/s. The moments of the
function n (v, t) are defined by

* 2
Mk (t):f v*n (v,0)dv (2)

where k is a real number. On dimensional grounds from (2) it follows dim
Mk(t) = m3(k-1). Important special cases of (2) are

Mo(t):J n(t)dv =N (3)

where N (t) is the total number concentration and dim Mp(t) = dim N (t) = 1/m3.
For the next moment M from equation (1) it follows

(4)

M1: J vniv,t)dv = D = const
]

so that the first moment is time independent. From the physical point of view this

quantity represents the volume concentration of the system and as follows from

(4)dim M1 = dim® = 1. There are others integer as well as non-integer moments

My but let us limit to these two.

Next important is the normalised number-volume distribution function f (v, 1)
defined by

1
flv,t) = ]_\7-(5 n(uv,h) (5)

From this definition it followsdim f(r, t) = 1/m3.
Moments of this function are given by

- (6)
Fk(t)Z’ v fu,t)dv

Again on dimensional grounds from (6) it follows dim Fi(t) = m3k.
Applying (5) from (6) we obtain

F, ()= M0 (7)



As special cases of (7) we have Fg = 1 and

F)=——M = —
T MY N

0

=0 @ (8)

where v (t) is the mean volume of particles in time t. This moment is important
not only because of its physical significance but also because its zero-time value is
frequently used for construction of distribution functions with dimensionless
variables. From (8) it follows

- - P P
v = v(i=0)= = —
0 Nu=10) NU

=F =0 (9)
where, of course, N (t = 0) = Ng is the initial total number concentration.

Next important is the normalized volume distribution function given by

1
Jw,0) = L (v,0) (10)

From this definition it follows dim j(v, t) = 1/m3.

Moments of this function are

Jk(t)==] v* jv,0) dv an
so that dim Jg (1) = m3k.
Applying (10) from (11) it follows
]
SO0 = 7= M, 0 (12)

1

with special cases Jg = 1and J1 = M2/My, so thatdimJ; = m3.

All these distributions n (v, t), f (v, t) and j (v, t) have the same variables. However
very important are distributions with different variables first of all number size
distribution function n (r, t) where r is the particle radius. Asn (v,t)dv = n (r, t)dr
and v = 4nr3/3 we have

nlr,) =4n r2n {(v,0) (13)



From (13) it followsdim n(r,t) = 1/m4. The moments of this function are

Q= f ity dr (14)
so thatdim Qg (1) = mk-3. Applying (13) from (14) it follows
3\ (15)
QSk([) = (:;) Mk(t)
As special cases of (15) we have Qqp(t) = N(t)and Q3 = 3 ®/4n.
Next important is the normalised number-size distribution f(r, t) given by
_ n (r,t) (1 6)
[(r,0) = N
so thatdim f(r, t) = 1/m. The moments of this function are
R,0= ’ 0 dr (17)
so thatdim Ri (t) = mk. Applying (16) from (17) it follows
_ (8 (18)
R, (0= <4n) . Mo(t) M,
with special cases Rg =1 and R3 = 3®/4nN.
Further generalisation of the distribution functions is one dimensionless
variable x = v/vg of these functions. As n (x,t) dx = n{v,t) dvwe obtain
— ¢
nix,l) = v, n (v,0) = 1—\-]— n ) (19)
where equation (9) was applied. From (19) it follows dim n(x,t) = 1/m3.The
moments of this function are given by
(20)

Sk(l):J Ikn(:r,t)dx

so that dim Si(t) = m-3 for arbitrary k. Applying (19) from (20) it follows



N, (21)
Sk(t) =— .Mk(t)

k
Ml

with special cases Sp(t) = N(t) and S1 = Ng.

Consequently n(x, t) is a dimensional function of one dimensionless variable.

Further generalisation is a dimensionless function of one dimensionless
variable. Such properties has the normalized distribution f (x, t) given by

n(x,t) (22)

fox,0) =

sothatreallydimf(x, t) = 1.Its moments are

T.0= J x*fla,0) da (23)
so thatdim Ti(t) = 1 for arbitrary k and all these moments are dimensionless.
Applying (22) from (23) we have

NA-
0 (24)

T W)= —— M

W MM e

with special cases Top=1and T;(t) = Ng/N(t).

Using (5) and (22) one can easily prove that the function f(x, t) is related to f(v, t)
by f(x, t) = vof(v, t) in agreement with (19).

Next important dimensionless function of one dimensionless variable is the

function

Yo (25)

) = = (v, W,
1 (x,0}) = — n(v,f) = — nlv,
N2 N, ’

From this definition it follows that really dim h(x, t) = 1 and the moments of this
function are

1,0 = [ x hix, 1) dx (26)

(4]

so that dim Hi(t) = 1 for arbitrary k. Applying (25) from (26) it follows



N(’j”’ (27)
Hk(t) = — Mk(l)

M,

with important special case
H@= N (28)
0 N

sothatHp(t=0)=1and Hy =1.

The most general case of dimensionless distribution with both dimensionless
variables is given by

v, d (29)

where again x = v/¥g and dimensionless time tis given by

N@ | (30)
N

0

T=1~

so that the values of v are in the intervall 0= t = 1. The quantity tis called age of
the spectrum or age of the distribution Martynov and Bakanov (1961) and
Voloshchuk and Sedunov (1975). Defining the moments of this functionin a
standard way we have

® 31
Zk(L):} 2* 2,0 dx (31

so thatdim Zk(x) = 1 for arbitrary k. Applying (29) from (31) it follows

NE-T (32)



with special case Zg = N()/Ng = Hp. Combining this expression with (30) we obtain

Z +1=1 (33)

2]

Hence the age of the distribution can be expressed by the zero-moment of the
functionz(x, t) using the simple relation (33). As0= t = 1 from (33) immediately
follows 0= Zp = 1in agreement with physical interpratation of Zg. Finally from
(32) we have Z1 = 1.

Summarizing all the discussed moments Fy, Ji, Qk, Rk, Sk, Tk, Hk and Zx have
been related to basic moments My so that the interrelations can be easily derived.



3.  TIME EVOLUTION OF THE MOMENT OF ZERO ORDER

As follows from the definition of individual moments and from the foregoing
analysis some of these moments are constant, time independent quantities (e.g.
the moment M expressing the law of mass conservation) and some of them
evolute in time (e.g. the moment Mg). This time evolution in general depends on
the form of the collision frequency factor (v, u) appearing as a kernel in the
Smoluchowski equation (1). Probably the most general case which can be treated

analytically is given by

Blx,y) = BO + Bl(x+y) + Bzx Ly (34)

where again x =v/¥g, y = u/Vg, are the dimensionless particles volumes, fo, f1 and
B2 are constants satisfying the condition dimB =dimfp =dimf; =dimfg = m3/s.
Starting from equation (1) one can derive a setof ordinary differential equations
describing the time evolution of individual moments. For the moment of zero
order and general kernel (34) the corresponding differrential equation becomes

dH (® 1 ) (35)
o = 5 N B0+ 2B H 0+ B,

The moment Hg(t) = Zp(t) is used because of its physical meaning - see (28) - and
because of mathematical simplicity. Perhaps the first who solved the analogy to
equation (35) was Drake (1972). Using his original solution and the theory of
dimension, his results can be further developed in the following way:

case 1:Bo. B2 = P12

Then the solution of (35) can be expressed by

Ny 2= NB A+ By (36)
N, ~2+N@B, +B)t

H @)=
0

case 2:



a=(pp ~Bhl2>0

Then the solution can be expressed by

a — (Ql + ﬁz)tg<-;— N0u1> (37)

o= ] :
a+ @+ ﬁl)zg(-z— Noat)

case 3:
_ 2 1
b= (B] - [50132) /2>0

Then the solution is

b (1 + ENf’bt)— @, + 132)(1 -~ EN"M\) (38)

N bt N bt
b<]+e° )+‘50+B1)(]”€ ¢ >

Hv(t) =

All solutions (36), (37) and (38) satisfy the condition Hg(t=0) = 1 in agreement
with (28). Important special cases are as follows:

a)p1=P2=0

Then evidently case 1 applies and from (36) we obtain the classical equation

Nt = ivo (39}
1+ —Z-NOBOl
derived already by Smoluchowski (1936).
b)Bo=P2=0
Then again case 3 applies, quantity b reduces to b = §1 and solution (38) reduces

to

N
N(l):NU.e ¢

ABo=Pp1=0

Then again case 1 applies and from (36) we obtain



10
(41)

' 1
N = Nu(l - = N‘)p21>

As follows from (41) and already pointed out by Voloshchuk and Sedunov (1975)
the coagulation process in this case can end in the finite time tc given by

_ 2 (42)
¢ NoB‘Z

{

However the equation for tc derived.by Voloshchuk and Sedunov (1975) is
incorrect. The same applies to (35), (their equation 6.2.13 and subsequent special
solutions (6.2.14) and (6.2.15)). All these equations are dimensionally incorrect.
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4.  TIME EVOLUTION OF PHYSICAL QUANTITIES RELATED TO THE MOMENT OF
ZERO ORDER

The knowledge of the time evolution of the moment of order zero (total number
concentation) enables the simplified description of the time change of certain
physically important quantities during the coagulation process.

The time evolution of the mean particle volume v = v(t) given by (8) and using (28)

can be expressed

- [} ¢
v = = (43)
N NOIIU(I)

where Hg(t) is given according to 3 possible cases by egs. (36), (37) and (38).
Important special cases are again
a) B1 = P2 =0 with Hp(t) given by (39) so that (43) reduces to

- [} ( 1 ) (44)
=—|1+ =N
v () NU + 5 OBUI

which corresponds to the classical Smoluchowski solution (39). Consequently in
this case the mean particle volume increases linearly with time.
b)Bo = P2 =0. Then (40) applies and (43) becomes

<@ Noﬁlt (45)

D(z):N—e

U

Hence in this case the mean particle volume increases exponentially.
¢) Bo=PB1=0.Then (41) applies and (43) becomes

- q
v(t) = ; - (46)
NU<] - 'é' N“ﬁQI)

so that in the finite time t=tcis v > = . In the similar way we can express and
discuss the time evolution of the particle size r(t) which is

r (1) ( 3 ) v O (47)
riy=— ) "5 ———————
4n N3 11(‘)’3(1)

g
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and increases with time as Ho(t) is a decreasing function. The particle mean

surface s(t) becomes

) 0 %3 (48)
s{ty =4n - = (36n) 3
r N2 %
U 7]
and is also increasing with time. Finally the surface concentration S = §(t)-N(t)
becomes
U35 235, 13,173 3 2/3
S =(36n)""P°°N HU (1) = (361m) _(-t-)— .N@) (49)
0 v

which is decreasing function of time. Hence the time evolution of the total
number concentration with mean particle volume and the simplified description
of the time evolution of the mean particle size, mean particle surface and surface
concentration during the coagulation process characterized by the general kernel
(34) can be expressed in closed analytical form.

5.  HALFTIME OF COAGULATION

This is a useful characteristics describing the rate of the coagulation process and
defined simply as atime im which the initial total concentration decreases to one
half of its initial value so that N(t = tp) = No/2. For t =ty from (30) it follows t = 1/2
and from (33) Zg = 1/2. Solutions (36), (37) and (38) enable to calculate this
quantity for the general kernel (34).

Case 1:

Solving equation (36) for Hg(t =ty) = 1/2 we obtain

(, = : : (50)

' NO<;—BU+ ~32—(51 + ;52)
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Case 2:
Solving (37) for Hg(t =tp) = 1/2 we obtain
, (ﬁUBZ _ ﬁf) 1”2
t, = arclg
h
Case 3:

Solving (38) for Ho(t =tp) = 1/2 weyobtain

1 B, + 38, + 28, + (B2 ,0,)"
t = .In

h NO(Bf_ BOBQ> 12 B, +3p, +2B,— (Bf— 3032>”2

Important special cases are correspondingly

a)p1=p2=0

Case 1 applies and from (50) we have

b)Bo=P2=0
Case 3 applies and (52) reduces to

ABo=P1=0

Case 1 again applies and (50) reduces to

(51)

(52)

(53)
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comparing (42) and (55) we obtain

' (56)

in confirming the simple fact the coagulation half time in this case is one half of

the coagulation life time.
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