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Distribution Functions and Moments in the Theory of Coagulation 

Abstract 

Differentdistribution functions and their moments used in the Theory of 
coagulation are summarized and analysed. Relations between the moments of 
these distribution functions are derived and the physical meaning of individual 
moments is briefly discussed. The time evolution of the moment of order zero 
(total number concentration) du ring the coagulation process is analysed for the 
general kerne I of the Smoluchowski equation. On this basis the time evolution of 
certain physically important quantities related to this momentsuch as mean 
particle size, surface and volume as weil as surface concentration is described. 
Equations for the half time of coagulation for the general collision frequency 
factor are derived. 

Verteilungsfunktionen und Momente in der Theorie der Koagulation 

Zusammenfassung 

Verschiedene Verteilungsfunktionen und ihre Momente, die in der Theorie der 
Koagulation Anwendung finden, werden zusammengefaßt und analysiert. Die 
Beziehungen zwischen den Momenten dieser Verteilungsfunktionen werden 
abgeleitet, und die physikalische Bedeutung von individuellen Momenten wird 
kurz diskutiert. Die zeitliche Veränderung des Momentes der Ordnung Null 
(gesamte Anzahlkonzentration) während des Koagulationprozesses wird 
analysiert für den allgemeinen Kern der Smoluchowski-Gieichung. Auf dieser 
Grundlage wird die zeitliche Entwicklung bestimmter physikalisch bedeutsamer 
Größen beschrieben, die in einer Beziehung zu diesem Moment stehen, wie z. B. 
mittlere Partikelgröße, Oberfläche und Volumen sowie 
Oberflächenkonzentration. Die Gleichungen für die Halbzeit der Koagulation im 
Falle des allgemeinen Koagulationkerns werden abgeleitet. 
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1. INTRODUCTION 

AI arge number of distribution functions is used at present in the theoretical 

physics of disperse systems and specifically in the theory of coagulation. These 

functions have different variables, they may have a dimension or they can be 

dimensionless. Moreover these functions can be normalized in a different way. 

The basic kinetic equation describing the coagulation process- Smoluchowski 

equation- describes the time evolution of the certain, specified distribution 

function. Consequently the type and character of the distribution function 

determines the form of the Smoluchowski equation. This form in turn is very 

important from the mathematical point of view as this equation is complicated 

non-linear, integre-differential equation. Moreover each of these distribution 

functions can be- with a certain precision- characterized by a set of its moments. 

Some of these moments have a physical meaning and can be applied for a 

simplified description of the investigated process in this case of the process of 

coagulation. Asthereisa number of these distribution functions and sets of their 

moments to find out the interrelations and transformations between these 

quantities is sometimes not very easy. Consequently one of the aims of our 

investigation is an attempt to organize and clarify the situation in this field 

especially from the point of the theory of dimension, theory of similarity and 

stressing the physical significance of the discussed quantities. 

2. DISTRIBUTION FUNCTIONS AND MOMENTS 

The basic significance in the theory of disperse systems and specifically in the 

theory of coagulation has the number-volume distribution function n(v, t) where 

v is the particle volume, t the time and the quantity n (v, t)dv gives the number of 

particles in unit volume of the system with volumes in the interval v, v + dv. From 

this definition it follows that the unit and simultaneously the dimension of this 

quantity is dim n {v, t) = 1/m6. ln terms of this function the Smoluchowski 

equation has the mostsimple form given by 

an(v,i) 1 fu f(X) 
-- = - ß (v - u,u) n (v- u,t) n (u,t) du - n (v,t) ß (v,u) n (u,t) du 

a t 2 o o 

(1) 

where u is the variable particle volume and ß {v, u) collision frequency factor or 

coagulation constant. The function ß (v, u) is the kernel of equation {1) and on 
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dimensional grounds from (1) it follows dim ß (v, u) = m3/s. The moments ofthe 

function n (v, t) are defined by 

M k (t) = I: vk n (v,t) du 

where k is a real number. On dimensional grounds from (2) it follows dim 

Mk(t) = m3(k-1}. lmportant special cases of (2) are 

M 
0 

(/) = I~ n (v,l)dv = N(t) 

(2) 

(3) 

where N (t) is the total number concentration and dim Mo(t) = dim N (t) = 1/m3. 

For the next moment M 1 from equation (1) it follows 

M 1 = I~ v n (v,t) du = <P = const 
(4) 

so that the first moment is time independent. From the physical point of view this 

quantity represents the volume concentration of the system and as follows from 

(4) dim M 1 = dim <P = .J... There are others integer as weil as non-integer moments 

Mk but Iet us Iimit to these two. 

Next important is the normalised number-volume distribution function f (v, t) 
defined by 

1 
((v,t) = - n (v,t) 

N(t) 

From this definition it follows dim f (r, t) = 1/m3. 

Momentsofthis function are given by 

Fk (t) = I~ vk ((v,t) du 

Aga in on dimensional grounds from (6) it follows dim Fk(t) = m3k. 

Applying (5) from (6) we obtain 

1 
Fk(t) = -- M k (I) 

M (t) 
u 

(5) 

(6) 

(7) 
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As special cases of (7) we have Fo = 1 and 

1 <1> -
F (i) = -- M = - = V (l) 

I M (t) I N(l) (8) 
0 

where v (t) is the mean volume of particles in timet. This moment is important 
not only because of its physical significance but also because its zero-time value is 
frequently used for construction of distribution functions with dimensionless 
variables. From {8) it follows 

- - <1> <1> 
V = V (t = 0) = = - = F (t = 0) 

0 N(t = 0) N I 
0 

where, of course, N (t = 0) =No is the initialtotal number concentration. 

Next important is the normalized volume distribution function given by 

1 
j(v,l) = - u . n (v,t) 

<1> 

From this definition it follows dim j(v, t) = 1/m3. 

Momentsofthis function are 

J k (t) = J: / j(v,t) du 

so that dim h {t) = m3k. 

Applying (10) from (11) it follows 

with special cases Jo = 1 and J 1 = M2/M 1, so that dim J 1 = m3. 

(9) 

( 1 0) 

( 11) 

(12) 

Allthesedistributions n (v, t), f (v, t) and j (v, t) have the same variables. However 

very important are distributions with different variables first of all number size 

distribution function n (r, t) where r is the particle radius. Asn (v, t) dv = n (r, t) dr 

and v = 4nr3/3 we have 

2 
n(r,l) = 4 11 r n (v,t) ( 13) 
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From (13) it follows dim n(r, t) = 1/m4_ The moments of this function are 

Qk(t)= J"'rkn(r,t)dr 
() 

so that dim Ok (t) = mk-3_ Applying (13) from (14) it follows 

As special cases of (15) we have Oo(t) = N(t) and 03 = 3 <P/4n. 

Next important is the normalised number-size distribution f(r, t) given by 

n (r,t) r(r t) = --
' N 

so that dim f(r, t) = 1/m. The moments of this function are 

R k (t) = J: rk f(r,t) dr 

so that dim Rk (t) = mk. Applying (16) from (17) it follows 

( 
3 )k 1 

R3k(t) = - . --. Mk(t) 
4 n M (I) 

0 

with special cases Ro = 1 and R3 = 3<P/4nN. 

Further generalisation of the distribution functions is one dimensionless 

variable x = v/vo of these functions. Asn (x,t) dx = n(v,t) dv we obtain 

<P 
n (x,l) = v n (v,t) = - n (v,l) 

o N 
0 

where equation (9) was applied. From (19) it follows dim n(x,t) = 1/m3. The 

moments of this function are given by 

S (t) = J 
00 

xk n (.:r t) dx 
k ' 

0 

so that dim Sk(t) = m-3 for arbitrary k. Applying (19) from (20) it follows 

(14) 

(15) 

(16) 

( 17) 

( 18) 

(19) 

(20) 
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Nk 
u 

Sk(t) =- . Mk(t) 
Mk 

1 

with special cases So{t) = N(t) and s, =No. 

Consequently n(x, t) isadimensional function of one dimensionless variable. 

Further generalisation is a dimensionless function of one dimensionless 

variable. Such properties has the normalized distribution f (x, t) given by 

n(x,t) 
f{x,t) = -­

N 

so that really dim f (x, t) = 1. lts moments are 

so that dim Tk(t) = 1 for arbitrary k and all these moments are dimensionless. 

Applying (22) from (23) we have 

Nk 
0 

T k (t) = . M k U) 
M)t). M

1 

with special cases To = 1 and T,(t) = No/N(t). 

{21) 

(22) 

(23) 

(24) 

Using (5) and (22) one can easily prove that the function f(x, t) is related to f(v, t) 

by f(x, t) = vof(v, t) in agreement with (19). 

Next important dimensionless function of one dimensionless variable is the 

function 

cp vo 
h (x,t) = - n(v,t) = - n (v,t) 

N2 N 
0 0 

(25) 

From this definition it follows that really dim h(x, t) = 1 and the moments of this 

function are 

Jlk(l)= I: ih(x,t)dx 
(26) 

so that dim Hk(t) = 1 for arbitrary k. Applying (25) from (26) it follows 



with important special case 

so that Ho(t = 0) = 1 and H, = 1· 
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N(l) 
H (t) =-

o N 
0 

(27) 

(28) 

The most general case of dimensionless distribution with both dimensionless 

variables is given by 

uo <1> 
z(x "L) = - n(v l) = - n(v l) 

' N ' 2 ' 
o N 

0 

where again x = v!Vo and dimensionless timet is given by 

N{t) 
"L=l-­

N 
0 

(29) 

(30) 

so that the values oft are in the intervall 0::; t ::::1- The quantity t is called age of 

the spectrum or age ofthe distribution Martynov and Bakanov (1961) and 

Voloshchuk and Sedunov (1975). Defining the moments ofthis function in a 

standard way we have 

(31) 

so that dim Zk{t) = 1 for arbitrary k. Applying (29) from (31) it follows 

{32) 
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with special case Zo = N(t)INo =Ho. Combining this expression with (30) we obtain 

Z + L =) 
0 

(33) 

Hence the age of the distribution can be expressed by the zero-moment of the 

functionz(x, -r;) using the simple relation (33). Aso< L ~ l from (33) immediately 

follows 0::::;: Zo ;i; .l in agreement with physical interpratation of Zo. Finally from 

(32) we have Z 1 = .J... 

Summarizing all the discussed moments Fk, Jk, Ok, Rk, Sk, Tk, Hk and Zk have 

been related to basic moments Mk so that the interrelations can be easily derived. 
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3. TIME EVOLUTION OF THE MOMENT OF ZERO ORDER 

As follows from the definition of individual moments and from the foregoing 

analysis some of these moments are constant, time independent quantities (e.g. 

the moment M 1 expressing the law of mass conservation) and some of them 

evoluteintime (e.g. the moment Mo). This time evolution in general depends on 

the form of the collision frequency factor .ß (v, u) appearing as a kerne I in the 

Smoluchowski equation (1 ). Probably the most general case which can be treated 

analytically is given by 

(34) 

where again x = v/Vo .• y = u!Vo .• are the dimensionless particles volumes, .ßo, .ß, and 

.ß2 are constants satisfying the condition dim.ß = dim.ßo = dim.ß1 = dim.ßz = m3/s. 

Starting from equation (1) one can derive a setof ordinary differential equations 

describing the time evolution of individual moments. For the moment of zero 

order and general kernel (34) the corresponding differrential equation becomes 

dli (t) 1 { } 
__ o_ = -- N ß H2(t) + 2ß

1
H (/) + ß

2 dt 2 0 0 0 0 

(35) 

The moment Ho(t) = Zo(t) is used because of its physical meaning- see (28)- and 

because of mathematical simplicity. Perhaps the first who solved the analogy to 

equation (35) was Drake (1972). Using hisoriginal solution and the theory of 

dimension, his results can be further developed in the following way: 

case 1 :.ßo . .ß2 = .ß 1
2 

Then the solution of (35) can be expressed by 

case 2: 

N(l) 2- N
0
(ß 1 + ß)t 

H (l) = - = ------
0 N 2 + N (ß + ß

1
) t 

0 0 0 

(36) 
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2 1 
a = ( j3} 

1 
- j3

1
) /2 > 0 

Then the solution can be expressed by 

(37) 

case 3: 

Then the solution is 

(38) 

All solutions (36), (37) and (38) satisfy the condition Ho(t = O) = 1 in agreement 

with (28). lmportant special cases are as follows: 

a)ß1=ß2=0 

Then evidently case 1 applies and from (36) we obtain the classical equation 

N 
0 

N(t)= ----
1 

1+-Nj3t 
2 0 0 

derived already by Smoluchowski (1936). 

b)ßo=ß2=0 

(39) 

Then again case 3 applies, quantity b reduces tob= ß1 and solution (38) reduces 

to 

c)ßo=ß,=O 

_N ß I 
N (t) = N . e 0 1 

0 

Then again case 1 applies and from (36) we obtain 

(40) 



10 

N(I)=N (1- ~N ß2t) u 2 () 
(41) 

As follows from (41) and already pointed out by Voloshchuk and Sedunov (1975) 

the coagulation process in this case can end in the finite time tc given by 

(42) 

However the equation for tc derived.by Voloshchuk and Sedunov (1975) is 

incorrect. The same applies to (35), (their equation 6.2.13 and subsequent special 

solutions (6.2.14) and (6.2.15)). Allthese equations are dimensionally incorrect. 
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4. TIME EVOLUTION OF PHYSICAL QUANTITIES RELATED TO THE MOMENT OF 

ZERO ORDER 

The knowledge of the time evolution of the moment of order zero (total number 

concentation) enables the simplified description of the time change of certain 

physically important quantities du ring the coagulation process. 

The time evolution of the mean particle volume v = v(t) given by (8) and using (28) 

can be expressed 

- <I) <}) 
u(l)=- = ---

N (t) N 11 (I) 
u u 

where Ho(t) is given according to 3 possible cases by egs. (36), (37) and (38). 

lmportant special cases are again 

a) 131 = 132 = 0 with Ho(t) given by (39) so that (43) reduces to 

- <I> ( 1 ). 
u(t)=- 1+-Nßt 

N 2 u u 
u 

(43) 

(44) 

which corresponds to the classical Smoluchowski solution (39). Consequently in 

this case the mean particle volume increases linearly with time. 

b)13o = 132 = 0. Then (40) applies and (43) becomes 

() 

Hence in this case the mean particle volume increases exponentially. 

c) 13o = 131 = 0. Then (41) applies and (43) becomes 

<I> 
u (l) = ------

N (1 - ~ N ßi). 
u 2 () -

so that in tl)e finite timet= tc is v ~ oo. ln the similar way we can express and 

discuss the time evolution of the particle size f(t) which is 

- ( 3 ) V'' <1>113 
r(l)= - . "----

4n N Jf.l. /Jl/3(1) 
(J (1 

(45) 

(46) 

(47) 
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and increases with time as Ho(t) is a decreasing function. The particle mean 

surface s(t) becomes 

- 2 1/3 <1>213 
s (i) = 4 n - = (36ll) 

r N213. 11 213(/) 
u u 

and is also increasing with time. Finally the surface concentration 5 = s(t)·N(t) 

becomes 

(48) 

2/3 
S = (36n) v3

<1> 
213N 113JJ 113

(t) = (36n) 113
- . N(t) (49) 

u u u(t) 

which is decreasing function of time. Hence the time evolution of the total 

number concentration with mean particle volume and the simplified description 

of the time evolution of the mean particle size, mean particle surface and surface 

concentration du ring the coagulation process characterized by the general kerne! 

(34) can be expressed in closed analytical form. 

5. HALF TIME OF COAGULATION 

This is a useful characteristics describing the rate of the coagulation process and 

defined simply as atime im which the initialtotal concentration decreases to one 

half of its initial value so that N(t = th) = No/2. Fort= th from (30) it follows 1: = 1/2 

and from (33) Zo = 1/2. Solutions (36), (37) and (38) enable to calculate this 

quantity for the general kerne I (34). 

Case 1: 

Solving equation (36) for Ho(t = th) = 1/2 we obtain 

{ =-------
h 

(SO) 
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Case 2: 

Solving (37) for Ho(t = th) = 1/2 we obtain 

u 2 I ( ß ß - ß2)lt2 

. arctg ----'--­
ßo + 3ßl + 2ß2 

Case 3: 

Solving (38) for Ho(t = th) = 1/2 we obtain 

lmportant special cases are correspondingly 

Case 1 applies and from (SO) we have 

t =-­
h 1 

-Nß 2 u u 

Case 3 applies and (52) reduces to 

c)ßo = .ß1 = 0 

Case 1 again applies and (SO) reduces to 

I 
I=--

h N f3 
{) ~ 

(51) 

(52) 

(53) 

(54) 

(55) 
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comparing (42) and (55) we obtain 

1 
t = - t 
h 2 (' 

(56) 

in confirming the simple fact the coagulation half time in this case is one half of 

the coagulation life time. 
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