KfK 4676 Mai 1990

Zeitstandversuche am Grundwerkstoff und Schweißverbindungen des Stahles X6CrNi 1811 (DIN 1.4948) im Rahmen des Programmes AUSOL (Abschlußbericht)

M. Schirra, S. Heger, B. Ritter, S. Barroso, M. de las Rivas, R. R. Solano Institut für Material- und Festkörperforschung

Kernforschungszentrum Karlsruhe

Kernforschungszentrum Karlsruhe Institut für Material- und Festkörperforschung

KfK 4676

Zeitstandversuche am Grundwerkstoff und Schweißverbindungen des Stahles X6CrNi 1811 (DIN 1.4948) im Rahmen des Programmes AUSOL (Abschlußbericht)

M. Schirra - S. Heger - B. Ritter S. Barroso - M. de las Rivas - R.R. Solano*

Diese Arbeit wurde im Rahmen der Zusammenarbeit auf dem Gebiet der friedlichen Nutzung der Kernenergie zwischen dem Kernforschungszentrum Karlsruhe (KfK) und dem C.I.E.M.A.T. (vorm. JEN) -Madrid durchgeführt

> *<u>C</u>entro de <u>I</u>nvestigaciones <u>E</u>nergeticas <u>M</u>edio <u>A</u>mbientales y <u>T</u>ecnologicas - Madrid (Spanien) Kernforschungszentrum Karlsruhe GmbH , Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten \vir uns alle Rechte vor ٠

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

Kurzfassung

Das Programm AUSOL umfaßt Zeitstandversuche an einem austenitischen CrNi-Stahl und wird im Rahmen der deutsch-spanischen Zusammenarbeit (KfK-CIEMAT) durchgeführt. Bei dem Werkstoff handelt es sich um den Stahl X6CrNi1811 (W.Nr. 1.4948), der als Strukturmaterial beim Schnellen Natriumgekühlten Brutreaktor SNR-300 verwendet wurde. Die Versuche an Proben des Grundwerkstoffes und einer Schweißnahtkombination decken bei 500-750°C den Standzeitbereich bis zu 50000 std experimentell ab. Die Versuchsergebnisse zum Zeitstandfestigkeitsverhalten, Kriechverhalten, Duktilität und die metallographischen und fraktographischen Befunde werden dargestellt; insbesondere als Vergleich Grundwerkstoff aegenüber Schweißverbindung. Soweit Unterschiede im Zeitstandfestigkeitsund Kriechverhalten auftreten, liegen sie innerhalb des Streubandes dieses Stahltyps. Die Duktilität der geschweißten Proben ist erwartungsgemäß niedriger als die der Grundwerkstoffproben.

Abstract

CREEP TEST IN BASE MATERIAL AND WELDED SPECIMENS OF X6CrNi 1811 (DIN 1.4849) STEEL IN THE FRAME OF AUSOL-PROGRAM

The program AUSOL encompasses the creep-tests carried out with the austenitic steel CrNi in the frame of the German-Spanish collaboration (KfK-CIEMAT). The material studied is the X6CrNi 1811 (DIN 1.4948) steel selected as structural material for the sodium-cooled fast breeder reactor SNR-300. They have been tested, base material and welded specimens, in the range 500-750°C having reached experimental results up to 50 000 h. The results on creep-behaviour, time to rupture, ductility and the metallographic and fractographic studies are presented, taking into account the comparative behaviour between base material and welded specimens.

The results of creep behaviour and time to rupture fit in a dispersion margin corresponding to this type of steel. As expected the ductility of welded specimens is lower than the corresponding one to welded joints.

Resumen

ESTUDIO DEL COMPORTAMIENTO A LA FLUENCIA DEL ACERO X6 CrNi 1811 (DIN 1.4948) Y UNIONES SOLDADAS DEL MISMO MATERIAL EN EL PROGRAMA AUSOL

El programa AUSOL consiste en el estudio del comportamiento a la fluencia de un acero austenitico CrNi y se realiza bajo el acuerdo de colaboracion hispanoaleman (CIEMAT-KfK). El material ensayado es el acero X6CrNi 1811 (Norma DIN 1.4948) seleccionado como material de estructura para el reactor reproductor rapido refrigerado por sodio SNR-300. Los ensayos realizados, tanto en probetas del material base como las correspondientes a secciones soldadas, abarcan un margen de temperaturas de 500-750°C con tiempos de rotura de hasta 50 000h. Los resultados presentados se refieren a tiempo para alcanzar la rotura, comportamiento en fluencia y los resultados metalograficos y fractograficos.

Se ha prestado una especial atencion al estudio comparativo de los resultados en material base y uniones soldadas. Las desviaciones de los resultados de tiempo de rotura y velocidad de fluencia caen dentro de la banda de disperon para aceros de este tipo.

La ductilidad de las probetas soldadas es, como era de esperar, menor que la de las probetas de material base.

1.	Einleitung	4
2.	Versuchsprogramm	4
3.	Versuchsmaterial	5
4.	Versuchsdurchführung	6
5.	Versuchsergebnisse	6
	5.1 Belastungsdehnung	6
	5.2 Zeitstandfestigkeit und Zeit-Dehngrenzen	7
	5.3 Kriechverhalten	10
	5.4 Bruchverhalten der geschweißten Proben	11
	5.5 Metallografische Untersuchungen und Härtemessunger	า 12
	5.6 Bruchdehnung und Brucheinschnürung	14
б.	Literatur	15

Seite

Gliederung

1. Einleitung

Im Rahmen der deutsch-spanischen Zusammenarbeit auf dem Gebiet der metallischen Werkstoffe werden u.a. Zeitstandversuche an hochwarmfesten Legierungen durchgeführt [1,2]. Nach dem erfolgreichen Abschluß des sog. "Extrapolationsprogrammes" [3] wurde 1982 ein weiteres, längerfristig angelegtes gemeinsames Versuchsprogramm in Angriff genommen. Im Extrapolationsprogramm wurde der Grundwerkstoff und eine artgleiche Schweißverbindung des hochwarmfesten Werkstoffes X6CrNi 1811 (1.4948) untersucht. Dieser Stahl wird sowohl im konventionellen Kraftwerksbau und Anlagen der Petrochemie, als auch im nuklearen Kraftwerksbau als Strukturwerkstoff eingesetzt [4,5,6]. Während im Extrapolationsprogramm baugleiches SNR-Strukturmaterial untersucht wurde, um mit den experimentellen Daten, die den Zeitraum bis 10⁵ std abdecken, auf den anlagenrelevanten Zeitraum >10⁵std extrapolieren zu können, wird im Nachfolgeprogramm AUSOL eine neuartige Schweißverbindung des gleichen Stahltyps auf ihr Langzeitfestigkeits-und Kriechverhalten untersucht [7].

2. Versuchsprogramm

Die Qualifizierung der Schweißkombination 1.4948 + 16-8-2-Elektrode für den Langzeiteinsatz im Anlagenbau (~2·10⁵ std) erfordert u.a. Zeitstandversuche in einem breiteren Temperaturbereich bis mindestens 3·10⁴ std, um ausreichend sicher im anlagenrelevanten Temperaturbereich auf \geq 10⁵ std extrapolieren zu können.

Das Programm AUSOL (= <u>AU</u>stenite-<u>SOL</u>dado) umfaßt Zeitstandversuche im Temperaturbereich 500-750°C an geschweißten Proben mit angestrebten Standzeiten von max. 50 000 std. Diese Versuche werden im Rahmen der deutsch-spanischen Zusammenarbeit in den Anlagen des CIEMAT / Madrid durchgeführt. Parallel werden beim KfK / IMF-II die Versuche am Grundwerkstoff im T-Bereich 500-800°C im Rahmen des PSB durchgeführt. Als Gegenprobe werden im IMF einige Versuche an geschweißten Proben und beim CIEMAT einige Versuche mit GW-Proben gefahren.

Das gesamte Versuchsprogramm umfaßt ca. 300 000 Versuchsstunden für die geschweißten und ca. 400 000 std für Grundwerkstoff-Proben. Die Versuche

wurden 1982 begonnen und sind bis auf einige noch laufende Langzeitversuche abgeschlossen, die über den ursprünglich vorgesehenen Versuchszeitraum von 50 000 std hinaus vorläufig weitergeführt werden.

3. Versuchsmaterial

Das Ausgangsmaterial für das Versuchsprogramm waren 20 mm Platten einer Lieferung der Fa. Uddeholm (Chg. LU 9559) mit der internen Bezeichnung GW 430. Vom Grundwerkstoff erhielt das IMF eine Platte der Abmessung 1000 x 1000 x 20 mm aus der Tafel 1446. Die chemische Zusammensetzung geht aus Tabelle I hervor. Die Analysen des Herstellers und des IMF stimmen gut überein und liegen innerhalb der SNR-Spezifikation. Zusätzlich sind noch in Tabelle II die Analysen mehrerer SNR-Chargen aufgeführt, auf die noch vergleichend Bezug genommen wird [8].

Das Gefüge des Anlieferzustandes (lösungsgeglüht 1065°C / Wasser) ist mit Härteangaben im Bild 1 dargestellt. Die Korngröße liegt zwischen 50-150 µm. Die Schweißverbindungen wurden von Interatom hergestellt. 40 Probenabschnitte der Abmessung 30 x 15 x 20 mm, die der Schweißnaht Nr. 1 aus Platte 6 entstammten, wurden für die Probenfertigung an KfK geliefert.

Eine Schweißverbindung wurde im IMF metallografisch untersucht. Zwei makroskopische Übersichtsaufnahmen sind im Bild 2 dargestellt, aus denen man gut die Lage und Verteilung der einzelnen Schweißraupen erkennen kann. Dle mikroskopischen Gefügeaufnahmen sind im Bild 3 zusammengestellt. Die Aufnahmen 1-3 zeigen Schweißgefüge der Rand-, Deck- und Mittellage. Die Aufnahmen 4 - 6 zeigen den Übergang Schweiße - Grundwerkstoff. Bemerkenswert ist die schmale wärmebeeinflußte Zone von ca. 0.1 - 0.15 mm. Bei den im EP-Programm [3] untersuchten SV-Proben mit einer X-Naht war diese grobkörnige Zone ca. 0.7 mm breit. Die Aufnahme 5 entstammt der Ecke Wurzelnaht-Grundwerkstoff-Lage 1 + 2. Die Darstellung in der Bildmitte zeigt maßstabgerecht die Lage der Probenform (ZS-Probe do x Lo = \emptyset 8 x 50 mm). Daraus erkennt man, daß rd. $\frac{1}{3}$ der Meßlänge aus Schweißgut der Elektroden besteht, wohingegen im EP-Programm der Anteil < 10% war und überwiegend aus Schmelze von Grundwerkstoff + Elektrode bestand.

Der Härteverlauf wurde horizontal (I-II) und vertikal (A-B) gemessen, so, wie er in der makroskopischen Aufnahme im Bild 2b erkennbar ist und im Bild 4 grafisch dargestellt ist.

Die Fertigung der Zeitstandproben erfolgte beim KfK. Die Proben mit Schweißnaht wurden vor dem Einsatz in den Zeitstand-Anlagen des CIEMAT dortselbst nochmals zerstörungsfrei auf Schweißnahtfehler untersucht.

4. Versuchsdurchführung

Die Zeitstandversuche im AUSOL-Programm werden mit Gewindekopfproben (M12) der Abmessung Ø 8 x 50 mm (do x Lo) durchgeführt. Das Meßlängenverhältnis von 6.25 x do weicht zwar etwas von der empfohlenen Normprobe (5 x do) ab, liegt jedoch noch innerhalb der gültige DIN Norm 50118. Ergänzende Versuche am Grundwerkstoff werden im IMF mit Proben \oslash 5 x 25 mm (do x Lo) gefahren. Die Proben haben als Meßlängenbegrenzung umlaufende Meßkragen zur Aufnahme der induktiven Wegaufnehmer. Diese Aufnehmer registrieren kontinuierlich den Kriechverlauf mit einer Genauigkeit von 2 µm. Die Versuchsspannung wird durch Gewichte über ein Hebelsystem (1:15) aufgebracht. Als Heizguelle dient ein 3 Zonen-Ofen, dessen Zonen durch drei PID-Regler separat regelbar sind. Dadurch ergibt sich eine konstante Versuchstemperatur über die Probenlänge. Die Schwankung über die Versuchszeit liegt bei ± 2°C. Die Kontrolle der Versuchstemperatur erfolgt durch drei über die Probenlänge verteilte Pt/Rh-Pt-Thermoelemente. Die Prüfstände im KfK und des CIEMAT sind vom gleichen Hersteller (MFL = Mohr + Federhaff / technischer 5). Losenhausen) und aleicher Ausstattung (Bild Die Versuchsanordnung der Teststrecke geht aus Bild 6 hervor.

- 5. Versuchsergebnisse
- 5.1 Belastungsdehnung

Ein typisches Merkmal austenitischer Stähle im nur thermisch behandelten Zustand ist die weitgehend temperaturunabhängige und relativ niedrige Streckgrenze im Bereich der normalerweise für Zeitstandversuche üblichen Prüftemperaturen. Im Falle des Stahles X6 CrNi 1811 liegen die Werte für Rp_{0.2} (500-750°C) zwischen 110-80 MPa für den Grundwerkstoff [3.] D.h., alle Versuchsspannungen bei Prüftemperaturen bis zu 600°C, die noch in einem realistischen Zeitraum (< 10^5 std = <11.5 Jahre) einen Standzeitwert liefern, führen bei Versuchsbeginn zu einer plastischen Verformung >0.2%. Die Belastungsdehnung kann im Zeitstandversuch nur erfaßt werden, wenn es sich um einen instrumentierten Versuch handelt, nämlich mit einer Dehnungsmeßeinrichtung, wie im Kapitel zuvor beschrieben.

Im Bild 7 ist für alle Proben die Belastungsdehnung ε_0 in Abhängigkeit von der Versuchsspannung aufgetragen. Die beiden Geraden geben den elastischen Anteil nach dem Hook'schen Gesetz an für einen E-Modul zwischen 150-200 kN/mm². Proben des Grundwerkstoffes (GW) erfahren bei Versuchsspannungen > 110 MPa bei Versuchsbeginn plastische Verformungen >0.2%, die bei 280 bis 400 MPa zwischen 10 und 40% betragen. Die geschweißten Proben (SV) zeigen aufgrund des Schweißnahtanteils mit seiner höheren Streckgrenze, bei gleichen Versuchsspannungen etwas niedrigere Beträge und ordnen sich auf einem zweiten Kurvenzug ein.

Diese Befunde sind bei der Behandlung und Bewertung von Zeit-Dehngrenzen und bei der Korrelation von mechanischen Kennwerten mit strukturellen Änderungen zu beachten.

5.2 Zeitstandfestigkeit und Zeit-Dehngrenzen

Die ermittelten Standzeiten von geschweißten Proben und Proben des Grundwerkstoffes sind im Bild 8 in Abhängigkeit von der jeweiligen Versuchsspannung vergleichend dargestellt. Zunächst ist festzustellen, daß sich die Standzeiten der Proben des Grundwerkstoffes unabhängig von der Probenform und des Prüflabors im Rahmen einer normalen Streuung auf einer Zeitstandkurve für jede Prüftemperatur einordnen (geschlossene Symbole). Bei 500°, 650° und teilweise bei 700° Prüftemperatur besteht kein nennenswerter Unterschied zwischen den Werten der Grundwerkstoffproben und den geschweißten Proben. Dagegen liegt die Zeitstandfestigkeit der geschweißten Proben bei 550 und 600°C durchweg 10% unter der Grundwerkstoffproben und bei 700° und 750° bei $t_m \ge 10^3$ ist der Unterschied gravierend (offene Symbole). Dies kann teilweise mit der Bruchlage bei den geschweißten Proben erklärt werden, wenn vorab auf Bild 19 verwiesen wird, in dem die Bruchlage in Abhängigkeit von Standzeit und Prüftemperatur dargestellt ist. Bei 550° und

600° erfolgt der Bruch überwiegend in der Schweißnaht, wohingegen bei 650° und 700° der Bruch überwiegend im Grundwerkstoff der geschweißten Probe erfolgt. Wenn wiederum bei 700° und t > 3000 std und 750° der Bruch in der Schweißnaht erfolgt, ergeben sich wieder deutlich kürzere Standzeitwerte. Eine weitere Ursache ist die geringere Bruchdehnung der geschweißten Proben, die mit einer deutlichen Verkürzung des tertiären Kriechbereiches einhergeht. Bei 500° Prüftemperatur dürfte die Verfestigung durch die hohe Belastungsdehnung (>5% bei o > 300 MPa) eine Rolle spielen, zumal auch die Bruchdehnungswerte der geschweißten und ungeschweißten Proben annähernd gleich sind (s. Bild 37).

Im Bild 9 sind die Standzeitwerte in der Form des Larson-Miller-Parameters in Vergleich gesetzt mit den Befunden von mehreren SNR-Chargen. Das von diesen Chargen gebildete Streuband wird im Bereich P = 19-21 durch die Werte der Grundwerkstoffproben der Charge höheren GW 430 etwas zu Versuchsspannungen hin erweitert. Die Werte der geschweißten Proben liegen innerhalb des Streubandes. Dies gilt auch für Werte der andersartigen Schweißverbindung aus dem Extrapolationsprogramm. Zu bemerken ist noch, daß das Streuband für den Grundwerkstoff der SNR-spezifizierten Chargen nur halb so breit ist wie das Streuband kommerzieller Chargen dieses Stahles, die im Auftrag des PSB vom VDEh bis z.Zt. \geq 10⁵ std untersucht werden [7,8].

Mit eingezeichnet ist ein zweites, schraffiertes Streuband, das die Werte für 1% Gesamtdehnung für die Proben des Grundwerkstoffes umfaßt. Im Gegensatz zu aen nachfolgend beschriebenen Zeit-Dehngrenzen, die jeweils die Zeit angeben bis zu einem bestimmten Kriechbetrag, enthält dieser Wert die Belastungsdehnung ϵ_0 plus den Kriechbetrag bis 1%. Deshalb ist auch verständlich, daß der Kurvenzug bei ~130 MPa endet, denn wie schon im Kapitel 5.1 ausgeführt und aus den Tabellen 3-7 ersichtlich, führen Versuchsspannungen >130 MPa zu Belastungsdehnungen >1%.

Die kontinuierliche Registrierung des Kriechverlaufes erlaubt die exakte Bestimmung der Zeit-Dehngrenzenwerte, wie sie in den Wertetabellen 3-7 für 0.1% bis 10% Kriechdehnung (ohne Belastungsdehnung) zusammengestellt sind. Aus den Bildern 10 bis 15 geht die Spannungsabhängigkeit der Zeit-Dehngrenzenwerte für 0.1 - 2% Kriechdehnung im Vergleich zur Zeitstandfestigkeitskurve hervor.

Ein Vergleich der Zeit-Dehngrenzenkurven zwischen Proben des Grundwerkstoffes und der Schweißverbindung im Rahmen des Extrapolationsprogrammes [3] ergab, daß die Zeit bis zum Erreichen von z.B. 1% Kriechdehnung bei den geschweißten Proben immer erheblich länger war als bei den Grundwerkstoffproben, auch wenn z.B. bei 550°C die Bruchzeiten kürzer waren (Bild 16a). Die Proben der Schweißverbindung im AUSOL-Programm zeigen bei den Prüftemperaturen 600, 650 und 700°C ebenfalls längere Zeiten bis zum Erreichen von 1% Kriechdehnung. Während bei 500° Prüftemperatur im Rahmen der vorhandenen Streuung der Meßwerte kein eindeutiger Unterschied zwischen geschweißten und ungeschweißten Proben feststellbar ist, zeigen die Versuche mit 185 MPa einen deutlichen Unterschied in der Zeit bis zum Erreichen von 1% Kriechdehnung zugunsten der geschweißten Probe.

In den Bildern 10-15 ist teilweise erkennbar, daß die Zeitstandfestigkeitskurven mit zunehmender Standzeit einen stärkeren Abfall aufweisen als die Zeit-Dehngrenzenkurven. Die Ursache ist die Abnahme der Bruchdehnungswerte infolge Verkürzung des tertiären Kriechbereiches (s. Kapitel 5.4). Diese Tatsache verändert auch das Zeit-Dehngrenzen-Verhältnis Rp_E/R_m (bei vorgegebener Standzeit) bzw. das Zeitverhältnis tp_{ϵ}/t_m (bei vorgegebener Spannung). Das Zeit-Dehngrenzen-Verhältnis aibt den technisch nutzbaren Anteil der Zeitstandfestigkeit bzw. der Bruchzeit an und ist gleichzeitig ein Maß für den "Sicherheitsabstand" zwischen einer tolerierbaren Deformation und dem Bruch. Die folgende Tabelle gibt als Beispiel die Verhältniswerte Rp1%/Rm bei 103 und 104 std an:

		R _{p1%} / R _m (10 ³ std)	R _{p1%} / R _m (10 ⁴ std)
<u>Grundwerkstoff</u> GW	500°C 550 600 650 700 750	0.81 0.72 0.69 0.70 0.66 0.64	0.86 0.69 0.72 0.77 0.65 0.75
<u>Schweißverbindung</u> SV	500°C 550 600 650 700 750	0.81 0.84 0.82 0.76 0.79 0.85	0.86 0.84 0.86 0.87 0.90

Bei der Vorgehensweise nach ASME-Code für die Ableitung von Berechnungskennwerten aus Zeitstandfestigkeitsdaten wird ein Sicherheitsfaktor von 1.5 in Bezug auf die Spannung zugrundegelegt [10]. Der Auslegungskennwert S_{t} ergibt sich somit aus

$$S_t = 0.67 \times R_m (T,t)$$
 oder $1 \times R_{p1\%} (T,t)$

je nachdem welcher Wert kleiner ist. D.h., ist das Zeit-Dehngrenzenverhältnis $R_{p1\%} / R_m (T,t) < 0.67$ wird der Wert von $R_{p1\%}$ und bei > 0.67 wird der Wert von $R_m (T,t)$ bei der S_t - Festlegung zugrundegelegt.

5.3 Kriechverhalten

Die kontinuierlich registrierten Kriechkurven wurden mittels Kurvendigitalisierer mit angeschlossenem Rechner analysiert und u.a. jeweils die minimale Kriechgeschwindigkeit é_{pmin} bestimmt. In [3,8] ist ausführlich auf gewisse Einschränkungen bei der Behandlung dieses Kennwertes hingewiesen worden, die sich ergeben aus unterschiedlicher Ausbildung der Kriechkurven, Werkstoffkombination und Strukturänderungen während des Versuchs.

Im Bild 17 ist die Spannungsabhängigkeit der minimalen Kriechgeschwindigkeit dargestellt. Durch die doppellogarithmische Auftragung ordnen sich die Wertepaare für jede Prüftemperatur auf einer Geraden ein, deren Neigung nach dem Norton'schen Kriechansatz $\dot{\epsilon} = k \cdot \sigma^n$ den Spannungsexponenten n ergibt. Nun muß die Spannungsabhängigkeit der minimalen Kriechgeschwindigkeit bei einer Prüftemperatur nicht über den ganzen experimentell abgedeckten Spannungsbereich gleich sein, wie schon in [8] gezeigt wurde, vielmehr kann infolge struktureller Änderungen sich im oberen und unteren Spannungsbereich eine unterschiedliche σ -Abhängigkeit ergeben. Im vorliegenden Falle wurde Berücksichtigung der z.T. erheblichen Streubreite bei ieder unter Prüftemperatur eine Mittelwertgerade angelegt, obwohl z.B. bei 750°C Prüftemperatur im unteren Spannungsbereich die Tendenz zu einer stärkeren Spannungsabhängigkeit besteht.

Die Proben mit Schweißnaht zeigen in etwa das gleiche Kriechverhalten wie die Grundwerkstoffproben. Lediglich bei 650°C ergibt sich ein etwas höherer n-Wert und bei 700°C wird bei gleicher Spannungsabhängigkeit jeweils eine etwas niedrigere Kriechgeschwindigkeit gegenüber den Grundwerkstoffproben gemessen. Aus dieser Parallelverschiebung resultiert ein geringfügig größerer k-Wert, wie aus der Tabelle 11 hervorgeht. In dieser Tabelle und im Bild 17 sind als Vergleich noch die Werte für die SNR-Charge GW326 angegeben, die ein der Charge GW 430 vergleichbares Kriechverhalten aufweist.

Die Schweißnahtkombination im AUSOL-Programm entspricht qualitativ dem Verhalten der Schweißtnahtkombination im Extrapolationsprogramm [3]. Der Vergleich dieser beiden Schweißnahtkombinationen erfolgt im Bild 18. Für den Grundwerkstoff der beiden Chargen ist die Spannungsabhängigkeit von $\dot{\epsilon}_{pmin}$ jeweils ohne Einzelwerte als Gerade dargestellt. Diese beiden Linien stellen gleichzeitig die obere und untere Begrenzung des Streubandes der bisher untersuchten 1.4948-Chargen dar. Die Proben mit einer X-Form-Schweißnaht der Chg. GW 206 zeigen in jedem Fall eine eindeutig niedrigere Kriechrate als die Grundwerkstoffproben. Die Proben mit einer U-Form-Schweißnaht des AUSOL-Programmes liegen nur teilweise unter den Werten der Grundwerkstoffproben, absolut jedoch erweist sich die Charge GW 430 als wesentlich kriechfester.

5.4 Bruchverhalten der geschweißten Proben

Die Darstellung im Bild 19 zeigt schematisch, wo der Bruch in den Proben mit einer Schweißnaht erfolgt, aufgrund der makroskopischen Betrachtung nach dem Versuch und zusätzlicher fraktografischer Untersuchungen mit dem Raster-Elektronenmikroskop. Deutlich wird der zweimalige Wechsel in der Bruchlage. Bei 500° brechen die Proben bis rd. 6000 std Standzeit in der Schweiße bzw. in der Übergangszone Schweiße - Grundwerkstoff. Nach längeren Standzeiten erfolgt der Bruch im Grundwerkstoff. Mit steigender Prüftemperatur erfolgt dieser Übergang zu immer kürzeren Zeit. Bei 700° und 750° tritt allerdings wieder bei längeren Standzeiten der Bruch in der Schweiße auf und ebenfalls wieder temperaturabhängig bei 750° früher als bei 700°C.

Erfolgt der Bruch im Grundwerkstoff, so tritt in der Regel im zweiten Teil der Meßlänge im Grundwerkstoff eine 2. Einschnürung auf. Damit entspricht das Bruchverhalten der geschweißten Proben qualitativ dem Verhalten der Schweißnahtkombination im EP-Programm [3].

Die Befunde der fraktografischen Untersuchungen mit dem Rasterelektronenmikroskop (REM) sind in den Bildtafeln 20-23 in einigen Beispielen dargestellt. Bild 20 zeigt den typischen duktilen Bruch, wie er im Übergang Schweiße / Grundwerkstoff auftritt, also in der wärmebeeinflußten Zone, wohingegen im Bild 21a ein duktiler Bruch in der Schweißzone dargestellt ist und man die dendritische Struktur der Schweiße deutlich erkennen kann (s.a. Bild 3). Den Wechsel vom Bruch an/in der Schweiße zum Bruch im Grundwerkstoff demonstriert das Bild 21b mit interkristallinem Bruch, wie er nach langzeitiger Beanspruchung bei diesem Stahl typisch ist. In Anlehnung an die Darstellung im Bild 19 gelten diese Erscheinungsformen für die Prüftemperaturen bis 600°C. Bei 650°C werden auch bei duktilem Bruch kavernenartige Aufrisse (Bild 22a) bzw. nach längeren Standzeiten interkristalline Aufrisse und Mischbruch beobachtet (Bild 22b). Diese Bruchformen wiederum sind auch typisch für die bei 700°C geprüften Proben bis zu Standzeiten von rd. 3000 std (Bild 23a). Bei längeren Standzeiten (Versuche mit 60 bzw. 50 MPa, 5020 bzw. 9943 std) erfolgt der Bruch wiederum in der Schweiße mit interdendritischen Anrissen.

5.5 Metallografische Untersuchungen und Härtemessungen

Die im Anschluß an den Zeitstandversuch durchgeführten metallografischen Untersuchungen der Grundwerkstoffproben bestätigen die in [3] gemachten Aussagen zum Bruchverhalten, Bildung interkristalliner Risse in der Bruchzone und Meßlänge, sowie das Auftreten von Ausscheidungen in der Matrix und auf den Korngrenzen. Weiterhin bestätigen die metallografischen Untersuchungen bei den geschweißten Proben, inwieweit der Bruch im Schweißgut oder in der Übergangszone erfolgt. Die Zeitabhängigkeit bezüglich Bruchverhalten (Übergang vom Wabenbruch zum kristallinen Bruch) und dem Auftreten der M₂₃C₆-Ausscheidungen (im Korn und auf den Korngrenzen) wurde für diesen Stahl an der SNR-Charge GW 206 von R.Gross et al. [11,12] exemplarisch beschrieben und mit den Ergebnissen der Zeitstandversuche korreliert.

In den Bildtafeln 24-30 sind für die Prüftemperaturen 500-800° jeweils die Bruchzonen von Proben des Grundwerkstoffes mit kurzen, mittleren und langen Standzeiten dargestellt. Deutlich ist erkennbar, wie sich in Abhängigkeit von Standzeit und Prüftemperatur der Übergang vom überwiegend transkristallinen Bruch zum interkristallinen Bruch vollzieht (geätzt) und wie sich in der Bruchzone die interkristallinen Anrisse häufen (ungeätzt).

Die Bildung der interkristallinen Anrisse erfolgt erst weit im tertiären Kriechbereich. Bei 550 und 600°C wurden einige Versuche durchgeführt, die

nicht bis zum Bruch, sondern nach Kriechdehnungen von 0.4% bis 7% abgebrochen wurden. Die Meßwerte dieser Versuche sind in Tabelle 8 zusammengestellt. Dabei ist unterschieden zwischen Belastungsdehnung und Kriechdehnung. Trotz Belastungsdehnung zwischen 5.6 bis 22.2% zeigen die Proben mit der zusätzlichen Kriechdehnung von 3.4% bei 550°C und 7% bei 600°C keinerlei Anrisse in der Meßlänge (Bild 31b + c). Untersuchungen an der Charge GW326 bei 700°C Prüftemperatur ergaben, daß bei der relativ hohen Versuchsspannung von 110 MPa (= tm \approx 300 std) die Rißbildung im Bereich >10% Kriechdehnung erfolgt. Bei niedrigen Spannung (= tm \approx 104 std) wird die Bildung von interkristallinen Anrissen ab 6% Kriechdehnung beobachtet. Die bei hohen Spannungen auftretende Belastungsdehnung wird durch die noch sehr duktile Matrix über entsprechende Korndeformation aufgefangen. Mit zunehmender Beanspruchungszeit, insbesondere bei $T = 600^{\circ}C$, behindert die zunehmende Anzahl von Ausscheidungen im Korn das Durchlaufen von Versetzungen. Die Kriechdehnung wird dann z.T. über ein Aufreißen der Korngrenzen anstatt über Kornverformung erbracht.

In den Bildtafeln 32-35 sind Gefügeaufnahmen aus dem Probenkopf von Proben mit kurzer, mittlerer und langer Standzeit bei T = 500-800°C dargestellt. Sie vermitteln einen guten Eindruck von den ablaufenden Ausscheidungsvorgängen auf den Korngrenzen und in der Matrix, wie sie in [3,11,12,13] qualitativ und halbquantitativ für diesen Stahl beschrieben wurden. Sie machen auch verständlich, wenn die mechanischen Kennwerte sich ändern in Abhängigkeit von Prüftemperatur, Prüfspannung und Standzeit.

Die an den metallografisch untersuchten Proben gemessenen Härtewerte sind im Bild 36 in Abhängigkeit von der Standzeit aufgetragen. In der Meßlänge ergeben sich sehr viel höhere Härtewerte infolge der Deformation und Verfestigung durch die Belastungs- und Kriechdehnung. Die Werkstoffverfestigung wird allerdings mit steigender Prüftemperatur und Versuchszeit in immer stärkerem Maße abgebaut, bis die Härtewerte in der Meßlänge den Werten im Probenkopf entsprechen, der ja praktisch nicht durch die angelegte Versuchsspannung deformiert wird.

Gegenüber der Ausgangshärte des Grundwerkstoffs (150-168 HV30) ordnen sich die im Probenkopf gemessenen Härtewerte zu langen Standzeiten hin im Bereich 135-155 HV30 ein, ein Indiz dafür, daß im Ausgangsmaterial vom Herstellungsprozeß noch eine gewisse Verfestigung vorhanden war, die auch durch die Lösungsglühbehandlung nicht vollständig beseitigt worden war. Auch aus der Tabelle 2 ist ersichtlich, daß im Vergleich zu den übrigen SNR-Chargen das Material der Charge GW 430 eine höhere Härte aufwies.

5.6 Bruchdehnung und Brucheinschnürung

Die an den gebrochenen Proben bestimmten Werte für die Bruchdehnung Au und die Brucheinschnürung Zu sind in den Bildern 37-43, getrennt nach Prüftemperaturen, jeweils zu einem Teilbild in Abhängigkeit von der Standzeit aufgetragen. Dabei sind die Werte für Grundwerkstoff und Schweißverbindung einander gegenübergestellt.

Die Proben des Grundwerkstoffes zeigen mit zunehmender Standzeit bei 500°C und 550°C Prüftemperatur eine Abnahme der Duktilitätskennwerte, die bei 104 std zwischen 15-20% liegen. Ab 600°C liegt mit steigender Prüftemperatur das Duktilitätsniveau jeweils etwas höher, jedoch setzt die Abnahme um so früher und stärker ein. Die Untersuchungsergebnisse an der Charge GW 206 [3] ergaben einen direkten Zusammenhang zwischen Abnahme der Bruchdehnung und Übergang zum interkristallinen Bruch. Durch die verstärkte Bildung von M₂₃C₆-Karbiden in der Matrix wird die Korndeformation stark herabgesetzt und das Aufreißen der Korngrenzen begünstigt. Bei den geschweißten Proben werden bei allen Prüftemperaturen geringere Bruchdehnungswerte gemessen als bei den Grundwerkstoffproben. Die Brucheinschnürungswerte sind ebenfalls in der Regel kleiner, solange die Proben in der Schweißnaht brechen (s. Bild 19). Die Werte für den Versuch 700°C mit 60 MPa und 5020 std konnten wegen zu zahlreicher Aufrisse nicht bestimmt werden.

Im Bild 44 ist eine zusammenfassende Darstellung der Bruchdehnungswerte bei 550°C und 600°C für den Stahl 1.4948 vorgenommen worden, wie sie sich aus den Befunden einer Vielzahl von SNR- und VDEh-Schmelzen für den Grundwerkstoff und für verschiedene Schweißverbindungen ergab [9]. Diese Schmelzen decken auch ein ziemlich breites Legierungs- und Herstellungsspektrum innerhalb der SNR- und VDEh-Spezifikation ab. Für den Grundwerkstoff ist mit den Chargen GW 206 und GW 430 beispielhaft die unterschiedliche Zeitabhängigkeit der Bruchdehnung innerhalb des gesamten Spektrums angegeben. Außerhalb dieses Spektrums und bei geringeren Werten erstreckt sich das Streuband der geschweißten Proben aus verschiedenen Versuchsprogrammen.

Danksagung

Die Autoren danken den Herren A. Falkenstein, J. Sanchez und J. Ruz für die zuverlässige Durchführung und Betreuung der Zeitstandversuche; den Herren P. Graf, H. Meinzer, H. Zimmermann für die Durchführung der metallografischen Untersuchungen und Härtemessungen; Frau E. Ordonez und den Herren J.L. Mozo und A. del Rio für die elektronenmikroskopischen Arbeiten. Besonderer Dank gilt den Herren E. Dequidt und R. Anca de Abati für die zeitweise Betreuung des Ifd. Programmes beim CIEMAT.

6. Literatur

 H.J. Laue, D.Nentwich
 "Deutsch-Spanische Zusammenarbeit auf dem Gebiet der friedlichen Nutzung der Kernenergie"
 KfK-Nachrichten 9-1/1977, S. 14-15

> M. Schirra, R.R. Solano "Zeitstandversuche an austenitischen Stählen im Rahmen der deutschspanischen Zusammenarbeit" KfK-Nachrichten 9-1/1977, S. 15-19

- M. Schirra, B. Ritter, R.R. Solano, M. de las Rivas, S. Barroso
 "Untersuchungen zum Einfluß des Stickstoff- und Niobgehaltes auf die Zugfestigkeitseigenschaften und das Zeitstandverhalten des Stahles X2CrNiMo 1814" (Abschlußbericht)
 KfK-Bericht 4121, Juli 1986
- [3] M. Schirra, B. Seith, K. Ehrlich, R. Groß, R.R. Solano, M. de las Rivas,
 S. Barroso
 "Zeitstandfestigkeits- und Kriechversuche am SNR-Strukturwerkstoff
 X6CrNi 1811 (1.4948) im Rahmen des Extrapolationsprogrammes
 (Abschlußbericht)
 KfK-Bericht 3397, Mai 1985

[4] H. Gerlach "Warmfeste austenitische Stähle, Werkstoffkunde der gebräuchlichen Stähle" Verlag Stahleisen-Düsseldorf 1977, Band 2, S. 106-120 [5] I. Class, H.R. Kautz, H. Gerlach "Austenitische Cr-Ni-Stähle für Temperaturen über 400°C" VGB-Werkstofftagung 1969 - Sonderdruck S. 42-54, Essen [6] E. Grosser, E. te Heesen, H.Lorenz "Properties of Type 1811 CrNi-ss and Parent-Like Weld-Joints with Regards to Elevated Temperature Application" AED Conf. -74-538-008 [7] M. Schirra, R.R. Solano "Das Zeitstandfestigkeitsverhalten von zwei verschiedenen Schweißverbindungen des SNR-Strukturwerkstoffes X6CrNI 1811 (1.4948)" Jahrestagung Kerntechnik, München 1985, Beitrag 6014, S.511-514 M. Schirra [8] Zeitstandfestigkeits- und "Das Kriechverhalten des SNR-300 Strukturwerkstoffs X6CrNi 1811 (W.Nr. 1.4948)" KfK-Bericht 4273, Februar 1988 [9] B. v.d. Schaaf, M. Schirra "Long term creep properties, including irradiation effects, of DIN 1.4948 steel from SNR-300 primary components" Int. Symp. on Fast Breeder Reactors, Lyon 22.-26.7.85, IAEA-SM-284/86 [10] E. Krägeloh, M. Trunk, K.H. Herter "Vergleich der amerikanischen und deutschen Festigkeitsberechnung bei kerntechnischen Anlagen"

BMI-1984-058, S. 1-53, Nov. 1984

[11] S. Barroso, K. Ehrlich, R. Groß

"Untersuchung zum Ausscheidungsverhalten und zur Mikrostruktur des Werkstoffes X6CrNi 1811 (1.4948) unter Kriechbeanspruchung" Jahrestagung Kerntechnik 80. Reaktortagung 1980.
Berlin, 25.-27. März 1980
Kerntechnische Ges. e.V., Deutsches Atomforum e.V.
Eggenstein-Leopoldshafen: Fachinformationszentrum Energie, Physik, Mathematik; 1980, S-709-12

- [12] R. Groß, B. Bennek-Kammerichs
 "Bestimmung der Kriechmechanismen am SNR-Strukturwerkstoff
 X6CrNi 1811 (1.4948) aus den Strukturuntersuchungen"
 KfK-Berich 4086
- [13] M. Pohl

"Elektronenmikroskopische Untersuchungen zum Ausscheidungsverhalten unstabilisierter Chrom-Nickel-Stähle im Temperaturbereich von 500- 800°C

Diss.: Rhein.-Westf. Technische Hochschule Aachen, Fakultät für Bergbau und Hüttenwesen, 1977

	Chg. G	W 430	SNR Spazifikation
	IMF	Werk	Sint-spezifikation
С	0.057	0.051	0.04-0.07
Si	0.47	0.50	<0.75
Mn	1.82	1.73	<2.0
P	0.021	0.024	<0.03
S	0.008	0.009	<0.02
Cr	18.4	18.3	17-19
Ni	10.6	10.7	10-12
Мо	0.084	0.09	<0.50
Ti	< 0.05		
Та	< 0.01	<0.03	<0.10
Nb	<0.01	J	
Al	-	-	
N	0.06	0.052	
0	0.015		
Cu	-		
V	-		
Co			
В	6ppm		

Tabelle 1 Chemische Zusammensetzung X6CrNi 1811 (1.4948)

Tabelle 2

Chemische Zusammensetzung X6CrNi 1811 (W.-Nr. 1.4948

Charge-Nr.

	GW 206 x)	GW 325 x)	GW 326 xx)	GW 402 xx)	GW 430 xx)	D21547 xx)	SNR-Spezifi- kation
C	0.053	0.051	0.05	0.06	0.057	0.056	0.04-0.07
Si	0.39	0.37	0.45	0.495	0.47	0.545	≦0.75
Mn	2.25	1.37	1.8	1.675	1.82	1.69	≦ 2.0
Р	0.018	0.010	0.0155	0.013	0.021	0.0155	≦0.03
S	0.032	0.005	0.01	<0.01	0.008	0.0135	≦0.02
Cr	17.8	18.55	18.7	17.9	18.4	18.65	17-19
Ni	10.6	10.89	10.25	10.75	10.6	10.91	10-12
Mo	0.065	<0.01	<0.1	0.06	0.084	0.355	≦0.50
Ti			<0.1	<0.01	<0.05	<0.05	7
Nb		1	0.01		< 0.01		} ≦0.10
		<0.01					
Та		}	<0.03		<0.01		
Al	0.008	0.016	0.009	<0.06		< 0.01	
N	0.041	0.058	0.077	0.035	0.06	0.03	
0					0.015		
V	0.02	0.041	0.007	0.095		<0.01	
Cu	0.043	0.047	0.07	0.05		0.18	·
Со	0.069		0.065	0.055		0.155	
W	·			<0.05			
В	2-2.3××)	3.4	1.2-1.3	2-3	6	5ppm	
x) Werks-	bzw.	IA- Analyse		xx) IMF-	Analyse		
Anlieferzustand	1000-1080°	1060°/W	1050°20'/W	1020°/W	1065°/W	1050°∕W	lösungsgeglüht
Härte HV30	134-140 147-157	132 128-136	137-140 140-161	138-165 140-142	165-168 150-158	129-140 138-150	längs quer
Korngröße	50-100 3.5-5.5	90-130 3-4	50-100 3.5-5 5	20-50 5.5-8.5	50-100 3.5-5.5	30-80 4.5-7	µm ASTM
Abmessung	20 mm	40. mm	20 m m	20 m m	20 m m	20 m m	Blech

AUSOL - Programm

Tabelle 3

Grundwerkstoff

Legierung Charge-Nr. Zustand	Pr. Ø	Vers. Nr.	v °C	σ _o MPa	t _m h	Е ₀ %	ε _{f0,1%} ⊧	[£] f0,2% n	[£] f0,5% h	€f1% h	Շ <u>քշ</u> % հ	[£] ք5% հ	A., %	Zu %	^ė pmin(abs) x10 ⁻⁶ /n
X6CrNi1811	8	2625	500	420	Bel.								40.2	69.8	
GW 430	5.	2631		400	1 min	38							39.6	72.8	
Lös.gegl.	5	1651		400	516	16.8	1	40	95	165	300		29.6	36.0	74.3
1065°C/W	5	1640		390	605			70	112	305	500		24.4	22.5	46.5
	5	2632		380	570	13.0	12	63	135	250	450		32.0	31.7	19
	8	JEN		360	1167	18.9	45	70	120	220	550	1100	22.0	23.8	27
	8	2623		350	1530	13.0	60	82	145	285	685	1485	21.4	22.0	11.5
	8	JEN		330	2390	10.9	40	75	140	350	1400		18.0	19.0	8
	5	2657		310	5560	10.0	• 67	120	255	605	2350		16.8	22.0	3.7
	5	2686		290	10707	8.7	123	204	500	2160	7670		17.6	22.0	1.5
	5	2709		270	23709	7.1	180	500	1650	5250	18050		14.0	10.9	0.8
	8	2711		240		5.8	440	950	5300	22400					
	5	1622	550	330	92	11.0	1.5	3.5	6.5	11	22	51	28.8	36.3	901
	8	2626		310	317				18.5	34	75	257	21.0	20.0	164
	5	1625		290	456	5.4	1.75	3	7	19	57	293	22.8	29.5	113
	8	JEN		270	1610	6.8	1	3	10	30	130	1050	18.0	25.6	28
	5	2640		250	507 9	7.5	8	24	133	576	2120	4703	16.4	14.5	6.1
	8	2695		240	9290	5.6	9	16	55	250	1467	7505	14.6	19.6	3.9
	5	2702	ſ	210	26951	4.1	9	22	115	730	4700	23080	15.2	14.7	0.83
	8	2710]	185		2.3	37	93	980	3600	18500				

- 20 -

AUSOL - Programm

<u>Tabelle 4</u>

21 -

Grundwerkstoff

Legierung Charge-Nr. Zustand	Pr Ø	Vers. Nr.	v °c	σ _o MPa	t _m h	Е ₀ %	^ɛ ք0.1% Ի	^E ք0,2% n	^ይ քՕ, <i>5%</i> h	%1€ h	Ե <u>լշ</u> % h	⁸ ք5% h	е <u>f10%</u> h	A_ %	Z. %	^É pmin (abs) x10 ^{-6/} h
X6CrNi 1811	5	2755	600	360	0.2	23.4								46.4	78.7	i per la constanta de la const
GW 430	5	1638		280	23									38.0	51.0	
Lös.gegl.	5	1636		280	20							3	9.5	44.8	79.1	7040
1065°C/W	5	1631		280	39	8.0				0.75	1.75	6.5	17	37.2	45.0	4120
	5	2649		280	42	11.4		0.5	1.3	2.6	5.4	14.3		38.8	42.1	3080
	5	2644		280	26	10.0		0.25	0.75	1.25	2.75	6	18	40.4	48.0	6360
	5	1634		260	121	6.2	0.25	0.5	1	2.25	5.75	26	62	35.6	36.1	1120
	8	2627		240	388			1.2	3	7	20	119	266	26.2	38.7	254
	5	1629		220	594	4.2	0.3	0.6	1.7	5.75	25	201	490	28.4	45.3	125
	8	JEN		200	2140	3.0		1	5	20	130	820	1570	28.0	34.0	41
	5	2658		190	2581	3.7	1	2	10	45	217	1027	1923	32.4	32.5	34
	8	JEN		170	6450	2.0	1	4	25	140	800	3010		22.4	31.9	13
	5	2712		150	17752	1.56	7	38	333	1410	5140	13687		18.8	22.0	2.3
	8	2713		130	48262	0.92	4	22	435	3000	33200			15.0	19.3	0.25
				ĺ												
		1	1		1	1		[Ì	1		1	1	1	1	

AUSOL - Programm

Grundwerkstoff

Legierung Charge-Nr. Zustand	Pr. Ø	Vers. Ňr.	م م د	σ _o MPa	t _m h	ε ₀ %	Շք0,1% հ	[£] քՕ,2% 'n	[£] ք0.5% հ	^E f1% հ	€ <u>f</u> 2% h	€ [5 % h	Շք10% հ	A _د %	Z _u %	epmin(abs) x10 ⁻⁶ /h
X6CrNi 1811	5	2646	650	210	20.4	5.5			0.25	0.75	1.5	4	10	47.2	56.3	8080
GW 430	5 ·	2645		190	59	4.3	0.2	0.4	0.8	1.8	3.8	11	26	56.0	47.6	2820
Lös.gegl.	8	2628		170	254	1.9		0.25	1	3.25	10.5	47	117	45.4	52.0	670
1065°C/W	5	2639		150	556	2.4	1	2.5	9	23	59	181	345	43.2	47.4	238
	8	JEN		140	875	1.2	0.5	1.5	8	30	85 _	280	500	57.2	51.0	140
	5	1641		130	1324	0.6	0.25	1.25	8	33	114	425	740	51.6	51.0	88.5
	8	JEN		110	4235	0.14	9	30	120	340	900	1700	2620	35.2	41.9	17
	5	1727		95	9138	0.08	26	107	493	1330	2569	4400	6570	32.0	39.1	4.6
	8	2763		85	11977	0.04	50	148	830	3610	5960	9013		15.6	34.3	1.4
	5	1728		75		0.06	39	226	3200	7150	11400	19360				0.59
	8	JEN	675	80	7700	0.06	22	70	390	1100	1850	3400	5500	32.6	45.6	6.2
	8	JEN	675	80	5560	0.06	21	32	150	460	870	1800	3200	49.4	52.7	13.3
	5	1989	700	140	49	1.64		0.2	0.5	1.2	2.7	8.1	18	64.0	51.0	4933
	5	1637		140	40	0.92			0.3	0.8	2.25	7.5	15	53.6	51.2	5940
	8	2629		120	149	0.5	0.1	0.25	1	3.25	9	28.5	101	56.4	53.0	1400
	5	1988		100	394	0.2	0.5	1.5	4.5	12	31	87	162	56.8	59.3	538
	5	1632		100	356	0.2	0.2	0.7	3.3	9	24	75	153	50.8	56.4	543
	8	1725		90	1866	0.38	10	30	90	198	335	603	950	52.6	61.0	47
	5	1770		90	852	0.08	2.25	4.75	14.5	35	78	194	350	66.4	61.7	150
	5	1649		80	838			23	32	52	99	310	562	61.6	61.5	311

<u>Tabelle 5</u>

AUSOL - Programm

<u>Tabelle 6</u>

Grundwerkstoff

Legierung Charge-Nr. Zustand	Pr. Ø	Vers. Nr.	v °c	σ _o MPa	t _m h	Е ₀ %	€f0,1% h	[£] ք0,2% h	^ይ քD,5% h	² Ո% հ	Շ <u>քշ</u> % հ	€ 15 % h	ՅՈՕ% հ	А _и %	Z. %	epmin(abs) x10-6/h
X6CrNi 1811	5	1771	700	80	1419	0.10	3	9	37	112	255	411	646	58.0	56.7	54
GW 430	8	1726		70	6870	0.03	50	135	575	970	1490	2551	3855	53.2	53.2	5.8
Lösgegl.	8	1953		70	3835	0.10	6	22	143	350	559	1044	1769	53.6	53.3	18
1065°C/W	5	1643		60	10190		11	90	511	811	1227	2650	4975	50.8	47.9	16.2
	5	1901		50	27816	0.04	115	1150	2280	3120	5030			35.2	42.2	0.7
	8	2726		40		0.04	1000	3150	5830	9550	15220					0.32
	5	1991	750	110	18	0.35		0.1	0.2	0.45	1.1	3	7.2	50.8	61.6	15975
	8	2668		100	28	0.56		0.14	0.25	0.7	1.6			52.4	57.8	9000
	5	1994		100	16	0.28		0.1	0.3	0.75	1.7	4.5	9.2	44.8	53.7	9920
	5	1705		90	83	0.14	0.16	0.33	1.1	2.5	5.2	14	28	72.0	61.6	3540
	5	1995		90	63	0.16	0.1	0.3	1.1	2.6	5.5	14	28	42.4	56.7	3424
	5	2677		80	135	0.06	0.3	0.8	2.5	4.8	9.7	24.5		62.8	58.7	1880
	5	1990		80	155	0.12	0.3	0.6	1.8	4.3	9.6	27	56	52.8	53.9	1710
	8	JEN		80	146	0.04	0.3	1	2	5	10	28	57	57.6	57.5	1630
	5	1706		70	419	0.06	0.25	2.5	6.5	13	26	68		70.8	57.5	580
	5	2000		70	333	0.10	0.4	1.5	8	18	38	88	162	40.4	48.8	488
	5	2679		60	832	0.04	1	4	15	32	62	156	314	50.8	48.0	314
	5	1709	Ι	50	1655			13	42	86	165	408		49.6	51.2	134

- 23 -

AUSOL - Programm Grundwerkstoff

Tabelle 7

		the second se	and the second se	and a second sec				and the second sec					and an and a second s		the second s	
Legierung Charge-Nr. Zustand	Pr. Ø	Vers. Nr.	v °c	σ _o MPa	t _m h	Е ₀ %	ք _{ք0,1%} հ	^ɛ ք0,2% h	^{- E} f0,5% h	^E f1% h	ε <u>f2%</u> h	[£] ք5% հ	8 ն1) 3 հ	۹ ₀ %	Zu %	ε _{pmin(abs)} x10 ^{-6/h}
X6CrNi 1811	8	JEN	750	50	3240	0.03	11	52	110	175	290	710	1520	39.4	51.0	60
GW 430	5	2685		40	8902	0.06	55	115	240	425	820	2340	4940	34.4	42.1	17.4
Lösgegl.	5	1741		35	20878	0.04	73	361	1704	3020	5320	9952	15500	30.4	36.0	2.1-3.6
1065°C/W						1										
	8	2040	800	95	3.8	1			Ī					58.4	57.0	
	8	1992		90	9	0.16			0.1	0.25	0.5	1.4	2.9	60.4	56.6	32896
	8	1955	 	80	18	0.06		0.1	0.25	0.45	1	3	6.3	48.4	51.6	14300
	8	1956	1	70	40	0.07	0.1	0.2	0.45	1	2.25	6.6	16	37.8	51.4	5056
	8	1957		60	117	0.06	0.3	0.6	1.5	3.1	6.4	19	42	47.6	51.4	2048
	8	1958		50	343	0.04	0.3	1.2	4.1	9	20	63	147	36.6	46.0	592
	8	1959		45	735	0.03	1	2.5	8	19	45	146	343	36.4	41.9	245
	8	1963		40	1211	0.03	1.5	5	14	42	95	309	676	- 31.0	34.5	128
									1							
Lös-gegl.	5	2090	675	90	2439	0.04	3	11	48	138	346	763	1267	47.2	54.4	45
+ 800°7h	5	2121	675	90	2876	0.16	2	6	32	110	355	890	1500	48.0	54.3	39
	1	1	1	1		1	Î	1		1		1	1		1	

Versuch Nr. 1 bis 2000 = Versuche in Vakuumanlagen (ZSV) Versuch Nr. > 2000 und JEN = Versuche in Normalatmosphäre (ZS)

AUSOL - Programm-Schweißverbindung

Tabelle 8

Probe: Ø 8 x 50 mm

Legierung Charge-Nr. Zustand	Vers. Nr.	v °c	0 ₀ MPa	t _m h	Е _О %	[£] fD,1% h	£քD,2% հ	^Շ ք0,5% հ	611% г	^Շ քշ% հ	[£] Ռ% հ	A _u %	Z. %	^ĉ pmin(abs) x10 ⁻⁶ /h
X6CrNi 1811	JEN	500	380	370	8.02	12	23	48	85	160	340	17.4	21.2	350
GW 430	11		360	1266	5.6	18	40	90	250	750	1200	14.8	23.8	16
lösgeglüht	"		340	3130	4.6	25	75	190	510	1700	3000	10.0	19.0	7.5
	u		300	5877	3.7	62	130	340	1000	4100	-	9.4	15.6	2.5
	"		270	28800	1.92	210	500	4900	16800			10.4	16.7	0.44
	"		240		1.6	150	380	2800	16100					
	JEN	550	310	120	4.6	0.6	1.5	6.5	14	44	100	14.0	25.6	300
	"		290	168	3.2	0.4	1	4	12	60	160	12.8	23.8	228
	2757		270	523	2.9	5	8	23	71	267	-	10.0	23.5	45
	JEN		240	2500	1.8	3	7	38	200	1200		 8.0	9.4	7
	"		210	23450	1.5	3	11	90	800	5000	22450	8.8	19.0	1.2
	"		185		0.4	14	60	1200	16100					
	JEN	600	260	37	2.6	-	0.4	1.3	3.6	9	22	18.0	38.0	1816
	2724		240	88	2.3	0.4	0.8	2.5	8	25	64	14.0	32.3	530
	2756		220	166	1.3	0.25	0.5	3	12	48	-	11.2	14.6	220
	2807		200	425	1.2	0.7	2	8	43	167	374	11.8	30.5	78
	2762	[190	1275	0.74	0.5	2	11	62	284	915	13.0	38.7	37
	JEN		170	4580	0.38	3.6	15	100	460	1300	3600	11.0	38.0	4.5
	u.	[150	10550	0.12	11	70	600	2650	6100	9320	11.8	23.5	1.9
	"		130	21870	0.12	36	260	2250	8600	16600		8.6	23.5	0.8

AUSOL - Programm - Schweißverbindung

<u>Tabelle 9</u>

Probe: Ø 8 x 50 mm

Legierung Charge-Nr. Zustand	Vers. Nr.	v °C	Ø _o MPa	t _m h	Е ₀ %	^E f0,1% h	[£] ք0,2% հ	^Շ ք0,5% հ	Ef1% h	^Շ քշ% հ	⁸ ք5% հ	^E f10% հ	۹ ₀ %	Z., %	^c pmin(abs) x10 ⁻⁶ /h
X6CrNi 1811	2720	650	170	110	0.62	0.3	0.6	3	9	22.5	63	-	15.0	19.0	655
GW 430	JEN		140	845	0.17	2	7	34	100	250	550	750	23.0	47.4	67
lösgeglüht	"		110	3970	0.09	17	80	380	940	1515	2600	3500	17.2	45.6	7
	11		95	6897	0.07	32	250	1800	2700	3750	5675		11.8	42.0	1.5
	2824		85	13386	0.05	430	1800	4400	5960	8000	11550		11.2	38.4	0.45
	JEN		73	26330		360	2000	18000	23750				5.0	2.5	0.08
	JEN	700	190	3.8	1.62	-	-	-	0.1	0.3	1	2	32.0	27.8	-
	JEN		170	8.5	0.54	-	-	0.2	0.5	1	3	5.5	39.7	56.1	-
	11		150	23	0.28	-	1	0.7	1.7	4	6	-	34.4	49.9	-
	2723	÷	120	110	0.16	0.5	1.5	4.5	9.75	20	49	84	22.2	52.4	975
	JEN		100	320	0.08	2.5	7.5	22	42	70	140	230	27.2	59.4	195
	11		90	770	0.06	6	20	65	125	220	400	600	25.2	57.7	65
	2805		80	1494	0.08	13	55	213	342	512	885		19.8	58.2	17
	JEN		70	2950	0.06	60	210	420	640	980	1800	2600	22.2	57.7	7
	"		60	5020	0.04	150	460	970	1500	2500	4675		-	-	3.4
	"		50	9943	0.05	1550	3000	5600	8000	-	-	+	6.0	2.5	0.5
	11		40	13900	0.03	1350	8550	13100	-	-	-	-	3.6	0	0.13
	JEN	750	70	318	0.06	1.5	5.5	19	38	70	150	235	26.0	51.0	2240
	"		40	2750	0.02	270	720	1390	2180				4.8	9.8	2

.

AUSOL - Programm - Grundwerkstoff

<u>Tabelle 10</u>

Versuche ohne Bruch, Probe : Ø 5 x 25 mm

KfK 4676

Legierung Charge-Nr. Zustand	Vers. Nr.	v °c	0 ₀ MPa	t _m h	ε _ο %	<mark>ՇքԾ,1%</mark> հ	^E ք0,2% h	^E ք0,5% հ	Եք1 <i>%</i> հ	<mark>Եք2%</mark> հ	^E kr%		ε _{o+} ε _{kr}	Ζ _υ %	epmin(abs) x10 ⁻⁶ /h
X6 CrNi 1811	2748	550	380	4	22.2			1.6	2.2		3.4	bis	25.6	-	
GW 430	2749		360	6.4	20.4			3.6	5.6		1.6	"	22.0	-	
lös geglüht	2750		340	6.5	14.8			4.2	6.5		1.2	"	16.0	-	
	2751		320	10.5	14.2			9	-		0.8	"	15	-	
	2752		-280	26.6	9.4			26.6			0.6	"	10	-	
	2753		240	73	5.6			~ 75			0.4	"	6	-	
	2754	600	340	38'	15.4			4.2'	6.5'	11.5'	7	"	22.4	-	
	2117	675	90	400	0.16	1	7	45	176	400	2			-	35
	2083		90	1124	0.12	3	11	77	320	650	5			-	19
	2102a		90	1009	0.16	0.5	4	52	242	550	5			-	23
	1897	700	70	1101	0.12	4	19	148	335	550	5.08	"	5 .2	-	18.2
	1761	"	50	9834	0.04	70	165	15550	-	-	-	"	18.0	-	-

Tabelle 11
X6CrNi 1811 (1.4948) Charge: GW 430 , Zustand: lsg 1065°/W
n- und k-Werte (Norton ἐ = k·σʰ)

	Grundwerkstoff				Schweißverbindung		
T℃	n	k	σ- Bereich (MPa)	n	k	σ- Bereich (MPa)	
500	12.5	2.10-37	400-240	12.5	2.10-37	380-240	
550	13	2.10-37	330-185	13	2.10-37	310-185	
600	11	3.10-30	280-130	. 11	3.10-30	260-130	
650	8.8	2.10-23	210-75	10.3	6.10-27	170-73	
700	8.0	3.10-20	140-40	8.0	2·10 -20	120-40	
750	7.0	8-10-17	110-35	-	-	-	
800	6.5	5.10-15	90-40	-	-	-	
Chg.							
GW 326							
550	14.3	1.10-39	380-210				
600	10.9	6.10-30	320-180				
650	9.8	1.10-25	220-100				
700	7.8	8 ∙ 10 -20	200-50				
750	6.5	8.10-16	120-40				

v

50172

x500

50174

<u>Naht Nr. 1: GW+16-8-M</u>

a)

c)		Bild 5
	Ansich	t der Zeitstandprüflabors
a)K	fK/IMF	ZS-Labor I (Normal- atmospäre)
b)	_"_	ZS-Labor II -"-
c)	_ "	ZSV-Labor (Vakuum- anlagen)

d) JEN-Madrid (Normalatmosphäre) Teilansicht

— 34 —

- 35 -

сс Г

Bild 10: Zeit-Dehngrenzen-Kurven

- 39 -

- 45 --

Legende:		Y 6 CENI 1811(V NE 1 4948) Charge (CW43)			
Schweißzone	Bruch im Grundwerkstoff		AUSOL-Programm		
Bruch in der 2.E. Schweißzone	-Elektrode,U-Naht)			
$G_{(MPa)}$ T=500° t_m	(std) REM-Befund	G(MPa	.) T-650	,o t _n (std)	REM-Befund
380 SG/U	370 duktil (+Dimpel)	170		SG 11c	
360 SG/U	1266	140		845	duktil
340	duktil (Kragen)	110		3970	Mischbruch
300 SG	5877 duktil	95		6897	
270 28	800	85		13386	\$ ¹
240 50	525	73		26330	
550 ⁰		7000			
310	120 duktil	190		3,8	
290	168 duktil	170	I ja H	3,5	
270 SG	523	150		23	
240 SG 2	500 duktil	120		110	
210	50	100		320	duktil
185		90		770	Mischbruch
	s	80		149/	
600 ⁰		70		2950	Mischbruch
260	37	60		5020	
240 SG	88	50		2943	
220 SG	166	40		13900	
200	+25			; 	
190 SG/U	_750 ⁰				
170	+58c	70		318	
150	550	40		2750	
130 210	370				

<u>1.4948</u> Chg.GW 430

Schweißverbindung

500⁰ 360 MPa 1266 std

Bruch im Übergang Schweiße/Grundwerkstoff (wärmebeeinflußte Zone)

AUSOL 12 x10

x100

AUSOL 30

x10

x100

AUSOL 21 x10

- 54 ---

4 7 10

Ann

550° 240MPa *E*xr=0,4% *E*ges=6,0%

550⁰ 380MPa Exr = 3,4% Eges = 25,6%

56080

600⁰ 340MPa Ex. =7% Eges =22,4%

56078

x100

- 60 -

- 61

1.4948-Chg.GW430-lsg Probenkopf

95MPa

3,8std

800⁰

800⁰ 60MPa 117std

64 -

65 -

- 69 -

- 70 -

— 72 —