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|
Thermodynamics of a Visco-Plastic Material Model with Inter-
nal Variables

Summary

The thermodynamic restrictions for the constitutive relations of an elastic-
viscoplastic material model with internal variables are derived by requiring
compatibility with the Clausius-Duhem entropy inequality (second law). The
material model is a thermodynamic extension of a simplified version of the
mechanical Robinson model, which does not account for isotropic hardening and
its thermomechanical history dependence.

The usual evaluation of the second law implies sufficiently smooth processes.
However, the evolution equations of the Robinson model are discontinuous at
certain states. To account for the discontinuities in the rates of the state variables,
the analysis is based on the time-integral form of the basic equations. Within the
frame of the assumptions, it is shown that the time-integral entropy inequality
does not impose additional constitutive restrictions beyond those obtained when
smooth processes apply.

The evaluation of the residual entropy inequality is done first for the uniaxial
state of stress and then for the general threedimensional state. For the uniaxial
state a limited analysis was performed which resulted in conditions on the
material parameters which are sufficient but which were not proved to be
necessary. On the other hand, a more detailed analysis for the general multiaxial
state yielded explicit conditions which are necessary and sufficient to ensure a
non-negative entropy production. These restrictions do not depend anymore on the
state variables, except the temperature. This result was obtained since the values
of some material parameters were assumed to be restricted to certain ranges
which is, however, consistent with present applications of the material model.
Further, simplified but only sufficient conditions were derived which encompass
those for the uniaxial case. They have the handy form of an upper bound criterion
for one of the thermodynamic parameters.

These results are supplemented by constitutive restrictions deduced from the
stability requirement of equilibrium states.

With respect to the simplified purely mechanical Robinson model it is shown
that it is formally consistent with the second law in the following sense: A ther-
modynamically extended version of the mechanical model can always be set up in
such a way that the entropy production is ensured to be non-negative, whatever
the parameters of the simplified mechanical model are. However, the extended



model may still fail when confronted with caloric measurements even if it is
compatible with mechanical measurements of isothermal experiments.




Thermodynamik eines visko-plastischen Materialmodells mit
inneren Variablen

Zusammenfassung

Die thermodynamischen Einschrankungen fir die konstitutiven Gleichungen ei-
nes elastisch visko-plastischen Materialmodells mit inneren Variablen werden
aus der Forderung nach Vertraglichkeit mit der Clausius-Duhem Entropieunglei-
chung (Zweiter Hauptsatz) abgeleitet. Das Materialmodell ist eine thermodyna-
mische Erweiterung einer vereinfachten Version des mechanischen Robinson-
Modells, die die isotrope Verfestigung und deren Abhangigkeit von thermomecha-
nischen Prozefigeschichten nicht erfafit.

Die tbliche Auswertung des Zweiten Hauptsatzes setzt hinreichend glatte
Prozesse voraus. Fir gewisse Zustiande sind die Evolutionsgleichungen des
Robinson-Modells nun allerdings diskontinuierlich. Um auch Diskontinuitéten in
den Raten der ZustandsgroBen beriicksichtigen zu konnen, geht die Analyse von
zeitlich integralen Grundgleichungen aus, Im Rahmen der sonstigen Vorausset-
zungen wird gezeigt, daf} die zeitlich integrale Entropieungleichung zu keinen zu-
satzlichen konstitutiven Einschriankungen fithrt, die iber die Restriktionen hin-
ausgehen, wie man sie erhilt, wenn nur glatte Prozesse betrachtet werden.

Die Auswertung der Restentropieungleichung wird zunéchst fiir den ein-
achsigen und dann fiir den allgemeinen dreiachsigen Spannungszustand durch-
gefithrt. Fir den einachsigen Fall wurde eine begrenzte Analyse durchgefiihrt, die
fur die Materialparameter Bedingungen ergab, die hinreichend sind, deren Not-
wendigkeit aber nicht nachgewiesen wurde. Andererseits ergab eine detaillierte
Analyse fiir den allgemeinen mehrachsigen Spannungszustand explizite Bedin-
gungen, die hinreichend und notwendig sind, um eine nicht-negative Entropiepro-
duktion zu gewahrleisten. Diese Einschrankungen hangen von den Zustandsva-
riablen, mit Ausnahme der Temperatur, nicht mehr ab. Dieses Ergebnis wurde er-
halten, da angenommen worden war, daB einige Materialparameter in ihrem
Wertebereich beschrankt sind; allerdings ist dieser vertraglich mit den gegenwar-
tigen Anwendungen des Materialmodells. Weiterhin wurden vereinfachte, aber
nur hinreichende Bedingungen abgeleitet, die jene fiir den einachsigen Fall mit
einschlieBen. Sie haben die niitzliche Form einer oberen Schranke fiir einen der
thermodynamischen Parameter.

Diese Resultate werden ergénzt durch konstitutive Restriktionen, die aus der
Forderung der Stabilitat von Gleichgewichtszustanden folgen.




Fir das vereinfachte, rein mechanische Robinson-Modell wird gezeigt, daf es
in folgendem Sinne mit dem Zweiten Hauptsatz formal vertrdglich ist: Es kann
immer eine thermodynamisch erweiterte Version des mechanischen Modells in
der Weise aufgestellt werden, daf3 die Nicht-Negativitat der Entropieproduktion
sichergestellt ist, wie auch die Parameter des vereinfachten mechanischen
Modells gew#hlt werden. Dies schliet allerdings nicht aus, daf das erweiterte
Modell beim Vergleich mit kalorischen MeBergebnissen versagt, selbst wenn es
mit mechanischen MeBergebnissen isothermer Versuche in Ubereinstimmung ist.
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1. Introduction

For the description of the visco-plastic high temperature deformation behaviour of
metals various constitutive models have been proposed. Many of these models
imply that the state of the material is not only described by the instant values of
the stress, temperature, total strain, and plastic strain but also by an additional
set of internal variables.

The concept of internal variables* has been introduced in thermodynamics and
continuum thermomechanics in such references as[1 - 8] and has been considerab-
ly extended and applied more recently [9 - 36]**, This list of publications encloses
linear as well as nonlinear constitutive models and rather different thermodyna-
mic approaches, e.g., the classical Theory of Irreversible Processes (TIP) and
Rational Thermodynamics. However, an appreciation of these various contribu-
tions is beyond the scope of this study.

Some general remarks should be made. It is assumed that the material response
can be characterized by the evolution of two sets of variables, namely, the indepen-
dent variables and the dependent variables. Of course, the choice of these variables
depends on the kind of material to be modeled. For example, if a classical thermo-
elastic material is considered, the independent variables are chosen to be the
instant values of the strain and temperature and possibly its spatial gradient, and
the dependent variables are the specific internal energy (or specific free energy),
the stress, specific entropy, and the heat flux if heat conduction is accounted for.

Strain and temperature are in principle easily measured and directly controlled at
a specimen; therefore, these quantities and their spatial and temporal gradients
belong to the group of external (or observable) variables, But the instant values of
external variables may not be sufficient to determine the dependent variables.
Here additional variables are required which reflect internal processes in the
material. They cannot be easily determined and no direct control is possible since
these internal (hidden or conceiled) variables are not directly connected to any

* Early writers did not use this name: Bridgman [4] used the term "conceiled

variables”,

** The cited references neither represents a complete list of all contributors up
to 1975 nor does this list contain all relevant publications of the cited authors.
Since 1975 the concept of internal variables in continuum thermomechanics
sees an expanding development and application up to present days (e.g. see
CISM course "Internal variables in thermodynamics and continuum
mechanics”, 1988).




additional external force variables. Consequently, the form of the balance
equations for linear momentum, moment of momentum, and energy are the same
whether or not internal variables are accounted for.

Examples of interpretations of internal variables with different character are

— degree of advancement of chemical reactions or phase transformations
(concentrations of constituents)

— quantities related to the density, motion, and arrangement of dislocations

— residual stresses between microelements contained in the macroelement of
polyerystals, concrete, or sand

— internal stresses or displacements in rheological models.

The evolution of the internal variables is usually* assumed to be governed by a set
of ordinary differential equations such that the rates of the internal variables are
uniquely determined by the external and internal independent variables
(constitutive equations for internal variables).

The constitutive equations for the dependent variables such as stress, free energy,
and entropy are usually assumed to be algebraic relations between these variables
and the independent external and internal variables. Thus, the dependent variab-
les depend on the history of the independent external variables only through the
instant values of the internal variables. Of course, the constitutive relations for
the dependent variables and the evolution equations for the internal variables
cannot be chosen independently because the second law imposes certain
thermodynamic restrictions.**

For the description of visco-plastic material behaviour models have been set up
taking into account thermodynamic concepts [e.g. 19 - 28, 30, 35]. However, the
references [37 - 41, 43 - 57] demonstrate that various internal variable models
have been proposed which are not embedded in a truly thermodynamic frame
although they involve the temperature: The temperature appears either simply as
a parameter affecting materials "constants” or it allows for thermomechanical
history dependence in the evolution equations [41, 43, 56]. The missing thermo-
dynamic frame is seen in the fact that quantities like internal energy, free energy

* More complex cases are conceivable: for example, the evolution equations

may involve also the rates of the external variables or they may involve
divergence terms of the internal variables (spatial differential equations)

** Other constitutive principles have to be observed, too.




and entropy are not present in the theory, and thermodynamic restrictions on the
various material parameters are not considered. Therefore, these models are
actually purely mechanical models, However, it appears to be desirable that even
amechanical model should be interpretable as a special case of a more embracing
thermomechanical model, and in general thermodynamical requirements are
expected to impose restrictions even on the structure of the purely mechanical
models.

The Robinson model [54 - 57] is such a mechanical model not embedded in a
thermodynamic frame. It has been implemented into a Finite Element Code and
extensive numerical studies have been performed; also parameter identification is
underway at the Nuclear Research Center Karlsruhe [58 - 61]. Therefore, it
appeared appropriate to complement those studies by investigations of the
thermodynamic consistency of the model: Here the question should be answered
whether a thermodynamic analysis yields restrictions on the material parameters
of the Robinson model.

Such an analysis requires a thermodynamic extension of the model, i.e., an
assumption about the structure of the free energy. But it is conceiveable that
restrictions are obtained which involve only the aspects of the original mechanical
model and thus are not subject to the additional assumptions.

The above questions are analysed in this report under a set of simplifications
made because of the apparent mathematical complexities:

® Isotropic hardening was ignored and therefore also the thermomechanical
history dependence of the drag stress. This simplification reduces the number
of evolution equations for the internal variables by one.

® The static recovery term in the evolution equation of the back stress, which
controls the kinematic hardening, is modified in the same way as was done by
Hornberger and Stamm [58 - 60]. This not only eliminates a discontinuity in
the evolution equation but also allows for the existence of equilibrium states.

® The second law of thermodynamics is taken to be the classical Clausius-
Duhem entropy inequality. Further, its evaluation is based on the Coleman-
Noll argument. More advanced principles and concepts, e.g., the approach of
Muller {62] (see also [63]), require a more elaborate analysis.

The organization of the present study is as follows, In section 2 a general discus-
- sion of thermodynamic restrictions for a class of internal variable models is given.




An essential starting point is the thermodynamics with internal variables
formulated by Coleman and Gurtin [13] within the frame of Rational Thermo-
dynamics. Results obtained for smooth processes are summarized (section 2.1).
This is supplemented (section 2.2) by observations on the residual entropy in-
equality at equilibrium states and stability considerations of these states.

The derivitions of thermodynamic restrictions is usually based on the assumption
that processes are smooth functions of time; thus, the local instant form of the
Clausius-Duhem entropy inequality is an adequate starting point. In fact, this is
an assumption contained in the work {13, 63]. However, a peculiar property of the
Robinson model is the fact that the evolution equations involve discontinuities in
the rates of the internal variables. Thefefore, these discontinuities require a more
general starting point, i.e., a time integral formulation of the entropy inequality
and the balance equations. A general internal variable model, allowing for
discontinuities in the evolution functions for the internal variables, is set up
(section 2.3) such that the Robinson model (without thermomechanical history
dependence) is a special case. For this model the time integral form of the entropy
inequality is evaluated to study whether or not additional constitutive restrictions
are obtained for the discontinuities in the evolution functions.

The thermodynamics with internal state variables formulated by Coleman and
Gurtin [13] has been used by Perzyna et al. [19 - 22] and Kratochvil and Dillon [27,
28] to analyse the thermodynamic restrictions imposed on some elastic-viscoplas-
tic or elastic-plastic material models. In these and other studies the inelastic
strains are interpreted as internal state variables such that the results of Coleman
and Gurtin could be directly applied. This interpretation is also used in the
present analysis. With this interpretation, and observing some rather general con-
stitutive assumptions compatible with the simplified Robinson model, the residual
entropy inequality is formulated (section 2.4). This inequality is to be satisfied for
all states* and it requires further evaluation when specific forms of the evolution
functions are given.

formal description of the Robinson model for the multiaxial and
is gi 1

' s JRUNEIUVE.) TR PRI DU [ RNy
uniaxial state of stress is given, and section 4 describes a relatively simple exten-
sion of the Robinson model within a thermodynamic frame,

* Admissible according to the assumed constitutive equations.




The residual entropy inequality is evaluated in section 5, first for the uniaxial
state of stress, then for the all embracing multiaxial state of stress, and this is con-
cluded with a comparative analysis.

A discussion of the stability of equilibrium states of the thermodynamically
extended Robinson model is enclosed in section 6; a further constitutive restrictiqn
is obtained from these considerations.

In the final section 7 the results obtained for the thermodynamically extended
version as well as for the mechanical version of the simplified Robinson model are
discussed. Future work is indicated.



2. On Thermodynamic Restrictions for Constitutive Equa-
tions of Internal Variable Models

2.1 Constitutive Restrictions for an Internal Variable Model based on the
Evaluation of the Clausius-Duhem Entropy Inequality for Smooth
Processes (A Summary)

Starting from the set of assumed constitutive equations for a three-dimensional
deformable heat conductor with (N) scalar internal variables ay*, y=1,...,N,

3
A A .
6;6‘: = Ggp (é;un/ 7;&, "‘é’/ =G 4 : stress
2 : heat flux
= 94 ( @ ) :
?ﬁ f ) (2.1)
A . .
= : specific internal
< < [ ) ) energy
7 B ’9 / ” ) : specific entropy

and with the evolution equations for the internal variables

p((/, =ﬁ,(g,,,,,,7,/‘,, a(,,/ , (/f,u=//,4..,//1/ (2.2)

the "dissipation postulate”, in connection with the local instant Clausius-Duhem
entropy inequality

)
. g S7
G:= 27 +/7‘)%- 2l = o

or the equivalent dissipation inequality** > (2.3)

o . . 7
;i = /6 = —3% 897 + Cge Eek -'g;—r‘ =0

/

Latin subscripts are associated with cartesian tensors and Greek subscripts
with scalar tuples. The summation convention applies to repeated indices.
A comma denotes partial differentiation.

** The dissipation inequality is derived from the entropy inequality by elimi-
nating the heat sources from (2.3); via the local energy balance equation,
introducting the free energy, and multiplying the result with the absolute
temperature T > 0.




S 7 -
was evaluated in {13, 63]. Here the free energy (Helmholtz function) 3&" e-7- ?
is introduced.

Two methods were applied [63] which yield the same restrictions on the
constitutive functions, i.e.,

A W

’ 4/2_21 Y
Gh”' - 32‘ D Evve g P Enm

Y

7 27 | (2.4)
A A —_— 952

€ = '}P -~/ ’Ya
.2_‘0.__. = 0O

f,,,, )

and the residual dissipation inequality

- 1 _ A4
yi= —S o b = % ke = O, (2.5)

Condition (2.4)4 implies that 1fr, £, ﬁ, and Gpp are independent of the temperathlre
gradient gi. It is also evident that the prescription of the free energy function

A Y
completely determines the constitutive functions 6my, fj and €.

A few remarks on the logic how the restrictions (2.4) and (2.5) are derived from
(2.3) within the frame of Rational Thermodynamics should be made; a more
detailed analysis is given in [63].

The "dissipation postulate” requires that(2.3) holds for all smooth admissible
processes, i.e., smooth solutions of the balance equations (momentum and energy)
and the constitutive equations (2.1) and (2.2).

Two approaches can be used to realize an arbitrary thermodynamic process in the
body. From a physical standpoint these processes are controlled by prescribing the
distribution and history of the body forces and the heat supply as well as initial



and boundary conditions, In the approach of Coleman and Noll [117] the body force
and the heat supply are required to be assignable in any way but initial and
boundary conditions need not to be considered explicitely. This assures that locally
and instantly the observable variables strain €x) and temperature T and it
gradients gx =T i as well as their rates 21, T, gk may take arbitrary values. For
example, the energy balance equation

Qé . Qe .

does not impose a coupling on the rates €Lkl T, ék since r is arbitrary assignable by
assumption. Therefore, the balance equations can always be satisfied for an
arbitrary set of values €], T, gk and ékl, T, ék.

In the approach of Liu [118] and Miiller [62] extended by the author [63] the body
force and heat supply are not assignable any more but only the initial and bound-
ary conditions. Thus, the balance equations represent auxiliary conditions which

have to be considered explicitely to account for the coupling; details may be found
in [63].

To elucidate the results (2.4) and (2.5) somewhat further the more simple
approach of Coleman and Noll is followed. The local energy balance allows to
eliminate the heat supply pr from (2.8);. Insertion of the assumed constitutive
functions (2.1) and (2.2) into (2.3) yields an expression for the entropy production o
which involves only the mdependent variables emn, T, gk, ap and the rates of the
observable variables emn, T gk, thus

G = C;[Z““, 7:?‘-) Ay} é‘“‘ /7:/,?‘6)

This expression, when written down explicitly, contains the rates only linearly.
According to the Coleman-Noll approach the arguments of the G-function are
arbitrary and independent quantities at any material point and at any instant and
the inequality must be satisfied for any arbitrary list of arguments, i.e. arbitrary
rates and arbitrary state variables. Thus, one obtaines two groups of necessary
and sufficient conditions on the constitutive functions:

(1) The satisfaction of the inequality for arbitrary rates can be easily realized
since the rates are only linearly involved. One obtains (2.4) and this repre-
sents restrictions on the constitutive functions and not on the state variables




ek, T, gk, ap since they can take locally and instantly arbitrary valuesin a
process.

(2)  The above result allows to reduce the dissipation inequality to the residual
inequality (2.5). Here the left hand side is only depending on the state vari-
ables and a set of material parameters if the general form of the involved
constitutive functions are assumed to be given. Thus, inequality (2.5) repre-
sents an algebraic condition. Necessary and sufficient conditions on the ma-
terial parameters have to be derived such that inequality (2.5) is satisfied for
arbitrary and independent state variables €4, T, gk, ap. In general the reali-
zation of this requirement may be a formidable mathematical task.

In the following the dissipation (entropy production rate times absolute temper-
ature) due to a change in the internal variables, i.e., the first term in (2.5), will be
called intrinsic dissipation; the contribution due to heat conduction, that is the
second term in (2.5), is the thermal dissipation.

For zero temperature gradient gi; =T x =0 one obtains from (2.5) for the intrinsic
dissipation

9?2[5;.. 70(3)
S, Fplbn, 7,0 %) = O

However, in general a separation of the two dissipation terms in (2.5) into two
inequalities is not possible. A separation is obtained when the evolution equations
of the internal variables are assumed to be independent of the temperature
gradient, i.e.,

. . _
Ay =y (6,7, %) (2.7)

Then, from (2.5) two separate inequalities are derived when it is observed that
locally the temperature gradient may assume arbitrary values:

intrinsic dissipation

DV (5, 7, Ks)
P,

gy

¥
t b, 70%,) =2 O
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thermal dissipation '

(2.8)
A
~ L Gy (lan, T 0,4 =0
These inequalities have to be satisfied whatever the values of the variables
€mn=¢€nm, T, gk, and ay.
If we consider an isothermal relaxation process at uniform temperature, i.e.,
é'”’hz@u/ﬂz. y 7_=6’dw.s')(., ﬁ=0/ (2.9)
then
P A
v _ 2K -
= o
ot ?0\-’,
and from (2.5) it follows
Vi
ALY < 0
it | G, T & Cmst J (2.10)

ﬁ:a

thus, during such a process the free energy is a decreasing function of time.* The
same conclusion applies when equ. (2.7) is assumed to be valid, but the temper-

ature field needs not to be uniform.

Under the assumption (2.7) the inequality (2.8)1 is valid and it requires that the
free energy 1'f; and the evolution function f; are intimately related. This relation
may be given a geometrical interpretation. For constant strain and temperature,
i.e.,

po— &
S = f‘e =m$/‘ p /=7_=""‘"’%'

a constant free energy

* The case dy/dt=0 is excluded.
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A
Vo, | T, o) = aus?

represents a surface in the subspace of the internal variables ay. The n-tuple

/07 “/ Pnty } e,T= const i8S a vector which is normal to this surface. The changes
(rates) in the internal variables and thus the evolution functions fy represent an
other vector in this subspace, and the left hand side of (2.8)1 is simply the scalar
product of these two vectors. Consequently, the inequality (2.8)1 requires that the
two vectors form a blunt angle as shown in fig. 1 for the case of two internal vari-
ables, and the choice of the evolution functions f; and the free energy 121 must be
such that this condition is satisfied for all variables €* 5, T*, and ay. Note that we
exclude the case where the two vectors are orthogonal such that the intrinsic
dissipation (2.8); vanishes identically for all variables.
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2.2 Some General Observations Concerning the Evaluation of the Resid-
ual Entropy Inequality at Equilibrium States and Stability Consider-
ations

We focus our attention on an arbitrary material point xi in the body. Equally well
we may consider a finite body in a homogeneous state.

An equilibrium state at a material point is defined by the condition that the inde-
pendent variables

T:: /fm,., 7_/ j‘ , 4_/,/ (2.11)
do not change with time,
7= [ T8, %)= (] 1
and that the temperature gradient gk vanishes:
ﬁ = 0. (2.13)
Consequently, the dependent variables oy}, qk, €, ) are independent of time. It

should be noted that this definition does not necessarily include the vanishing of
the heat flux and the stress.

Since the rates of the internal variables ay vanish at equilibrium, it follows for the
evolution function f, equ. (2.2),

02/ =/I/flm./7—,0, a{,,/ = O /= //,A/. (2.14)

point (e, ,E, TE, O, ayE) in the space of the independent variables. Thus, every
equilibrium state

(Te £ £ £
/== /;,,.., ,7'/0/ d/f (2.15)
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is a solution of (2.14) and therefore the equilibrium values €, E, TE, ayE are not
independent of each other.

Inspection of the residual dissipation inequality (2.5) and the constitutive
functions , fy, and qk shows that the entropy production rate o or the dissipation
Y can be represented as a function of the independent variables €mn, T, gk, and ay,
i.e.,

TG’/’J;(?M, 7‘,;,,,06./}. (2.16)

The functions (fr and ak, up to and including higher derivatives, are continuous by
assumption. The evolution functions fy are presently assumed to be of class C2 but
in the later course of the development discontinuous functions will be allowed.
Consequently, for the moment being, the dissipation y is assumed to be at leasta
function of class C2 of its arguments.

Generally, the residual dissipation inequality is required to hold for all sets T
where it is defined. The evaluation of this requirement may be rather cumber-
some. However, restricted but important conclusions with respect to the consti-
tutive functions can be obtained if the residual dissipation inequality is evaluated
at an equilibrium state. In the following some general observations are made and
discussed.

Taking due account of (2.12) and (2.13), it is evident that the dissipation y
vanishes at an equilibrium state

y £, _— 2.17
f/gm’-’,7'5,0,o(,/ o, (2.17)

Generally, it is assumed that the materials under consideration are such that the
dissipation is positive except at an equilibrium state. If this assumption applies,
then the dissipation has a relative minimum at an equilibrium state. The assumed
continuity and differentiability of y then implies that the first variation of y

vanishes at this state and the second variation is positive definite*, i.e.,

/ﬂff/f =0 (/0‘”(/’/, >0 (2.18)

* If the second variation vanishes the third variation must be positive etc.
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for all variations of the state variables €mn, T, gm, and ay. If y is not strictly
positive in the neighborhood of an equilibrium state but possibly vanishing, then

(2.18)9 is relaxed to read

/r/nd‘)f = 0o. (2.19)
The first variation yields the following conditions at an equilibrium state
A 4
D Emn e Z’x 9:;.,. f g é’d, 2;;,,,, 7 Db ﬁ‘

Y,
[9/-/ /a?otw g%béj

2 0% - Lin] <o

: (2.20)
D,)‘b é’/{ — 7 9?‘ 4 > =
/ /"fgx‘i f)}: 7— Qﬁ,‘ ;‘ 7 Zé_]&
952 Ay A )
s Sy Ay T 0
eJE £ 4 *
and this reduces to
e Dy ‘
[Z.ZD) 7 = [ @ 9[&»‘/5 = 0
v i _
o), = » 7 = 0
(2£0) . ooy 7 Je b (2.21)

| I d s
[2.20); = 70%7 2}{4 *;—7—"'%‘/5 = 0

WA
(eid) e =[5y e

Ui
Q
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If the variables e, T, gk, and ay are renamed and collected in the array

= /Za..., 7, %, ﬂ/,/ﬁ , A=A, 2N (5 99)

then the condition on the second variation (2.19) can be represented as

a/,’”/ /9// aﬂ)fﬁ”fl =0 fo/;nfﬁ; (2.23)

It is obvious that this implies that the diagonal members of the matrix

/ 07 2/‘ /J/?; ()7/47 /= must be non-negative, that is,

/__72:_5;___’ =0 , no summation; (2.24)
9/5 //ﬁ £

these are necessary conditions but they are not sufficient. In fact condition (2.23)
implies that the matrix (2% / Ty & T )5 is positive semi-definite. A
necessary and sufficient conditon is that the principal minor determinants of the
matrix are positive semi-definite [64]. We will not go into the details of this
analysis at this level of generality.

However, some further discussion of (2.21) is in place. It is fairly obvious that
conditions (2.21) are satisfied if it is assumed that

DV

= 0 (2.25)
o,

and then condition (2.21)3 implies that

[ ?‘é ]5 0, (2.26)

However, the assumption (2.25) appears to be rather arbitrary. On the other hand,
ifthe n x n matrix [ Jty/ ? aJls not singular,

det / Dol /e # .0, (2.27)
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then equ. (2.25) and (2.26) follow from (2.21)4. Enquiring which mathematical or
physical requirement may yield the condition (2.27), the following observations
are made.

Assume that the set ’/T'E , definition (2.15), satisfies the equilibrium condition
(2.14). The (n) conditions (2.14) represent (n) nonlinear algebraic equations for the
(n) equilibrium values ayE. According to the implicit function theorem [65, 66],
there exists a uniqué continuous set of functions

Xp = Fplfun, 7) L =N (2.28)

in the neighborhood of the equilibrium state 7/-75 which are continuous diffe-
rentiable if the Jacobian matrix /ny/ 9ap7at the equilibrium point is non-singular,
i.e.(2.27) applies. Thus, if (2.27) is valid, then, a unique solution ayE of equ. (2.14)
in terms of ¢E,,, and TE exists. However, it should be noted that the implicit func-
tion theorem is only a sufficient condition. One can construct examples* which do
not satisfy (2.27) but still allow a unique solution (2.28).

Another interpretation of the requirement (2.27) is obtained from stability con-
ditions of an equilibrium state. We consider an equilibrium state 7% and
assume that a perturbation has changed the variables T to

1o £ o 2.29
T = {er 75,0, 4/} 29

Note that the observable variables of the disturbed state have the same values as
in the equilibrium state me , but the internal variables have changed from apF
to ap0. In the following we restrict ourselves to infinitesimal perturbations such

that
“; = dfs + da{f’

2
s / p Ty |AI 2
/{f //ﬁfé,fj, Ky y e ) = [ o = Ae7)X,

: .,
/z /9/{,7), Wy, de) = (/%L ""qﬁﬂ?) Z,

where A is some continuous function; here all derivatives of f; with respect to
A, a1, ag vanish at the equilibrium point a; = ag = A(e, T)
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A static stability criterion for the equilibrium state ,/-/—’E would require that the
equilibrium state 7/75 does not admit an other neighboring equilibrium state
7/—10 ,1.e., the equilibrium state e is uniquely determined by the choice of
€mnl and TE,

If a neighboring equilibrium state exists, then the equilibrium condition for the
perturbed state

%,/é;,f, 7€ 0, ap” # /dse) =

/4 2 v ) -
/ Ao, +/%%a£a/@a@g .. o

DX Je

(2.30)
p="

must admit a nontrivial solution for da,. However, when the matrix (2 fy/ 2 ap)g
can be shown to be nonsingular, then, except for higher order terms in dap, only a
trivial solution for day, is obtained; thus, within the frame of this linearized anal-

ysis, a neighboring equilibrium state does not exist. Therefore, the condition

dd—% # 0

9[; E

s S £ .
assures stability of the equilibrium state 7/_' under constant strain and
temperature.

The characterization of stability of an equilibrium state may also be done from a
kinetic point of view. In fact, this seems to be the most natural approach since the
transition from the perturbed to the equilibrium state is a process involving the
rates of the internal variables. On the other hand, it is well known from the stabil-
ity theory of elastostatics that a kinetic stability analysis is the most general and
safe method [67, 68].

We consider again a perturbation of the equilibrium state e such that at
time t=0 the state is at ,/7'0 , def. (2.29). The evolution of the internal variables
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is studied under the constraint of constant strain and temperature, €qnE and TE
with g =0, This evolution is governed by the following initial value problem

(2.31)

Assume that the equilibrium state e is locally asymptotically stable under
constant strain and temperature. Roughly speaking, this means that the evolution
functions f, have properties at 7™ such that the solution ay(t) of (2.31) tends to
ayE with increasing time, i.e.,

oLy fe) —> otp for T > e, (2.32)

whatever the choice of the initial values a0 in the neighborhood of the equili-
brium values ayE.

A more precise definition is as follows [13]. We assume that the evolution func-
tions fy admit at least one equilibrium point T inthe 7" -space. The domain
of attraction D at constant strain and temperature of an equilibrium state is the set
of all initial values ay0 such that the solution ay(t) of the initial value problem
(2.31) exists for all t= 0 and tends to ayE. An equilibrium state T'*  issaid to be
locally asymptotically stable at constant strain and temperature if D contains a
neighborhood of ayE, i.e., if there exists a >0 such that every set of initial values
ay0 with |a,0 - a\E| < g, isin D. Note that D is, of course, depending on 7 . This
definition implies that the equilibrium point ayE is entirely within D but not on its
boundary as illustrated in fig. 2 for the case of two internal variables.

Assume that the deviation from the equilibrium state

E

is small then the right hand side of (2.31) may possibly be developed in a
convergent Taylor series
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%f'/fmn/ 7-5 o, 0‘// ///6”5/ 74,0 ‘f/*

(2.34)
*(iéf—)eﬁ + 4 o‘w, vzféf # o
such that (2.31) reads .
2 e
£ - 5’%) ot (el TS %0 | (2.35)

£, ~ -t for teo

where ny collects the terms nonlinear in £,. Instead of analyzing the stability
properties of the nonlinear initial value problem (2.35), one may question whether
. the analysis of the linearized problem

¢

A’

fJ’ = ﬂo(y) /é’ L (2.36)

fr = % - e iee )

gives sufficient information. Here the following theorems apply (e.g. [691).

Consider a nonlinear system of ordinary differential equations of first order

i;,.; = H‘J ?d' # 72 /3;:) y ‘.”’l"ylv
with initial conditions : (2.37)
?“ /0) = él:

where Ajjis a constant matrix and nj(z,) satisfies the condition

[ )
[#V]
(.4
o

n(z,=0) = ©. :
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Then theorem (1) is valid [69]:
Theorem (1): If

(a) every solution of

> = : . (2.39)
5,_‘ = QLJ' 'E]

approaches zeroast » «
(b) nj(zy) is continuous in some region about z;=0,i=1,....n

© |inill/llzill >0 as ||z -0
(nonlinearity condition)*,
then z;=0 is a stable solution of (2.37). Furthermore, every solution of (2.37)
for which || z; (0) ||is sufficiently small approaches zero as t » 0 (asymptotic
stability).

Note that condition (a) implies asymptotic stability of the equilibrium state z; =0
of the linear system (2.39). However, from the theory of linear systems of ordinary
differential equations of first order with constant coefficients it is known (e.g. [67])
that the asymptotic stability is assured if and only if all eigenvalues A¢ of the
matrix Aj; have negative real parts, i.e.,

Re(d,) <o

irrespective of whether the eigenvalues are simple or not. A necessary and
sufficient algebraic criterion for this requirement is due to Hurwitz [67, 70].

Theorem (2); If

(a) the matrix Ajj of the linear reduced system (2.39) possesses at least one
characteristic root with positive real part

®)  |Ini@)||/]zi] >0 as |zl -0,

then the equilibrium point z; =0 is unstable not only for the linear reduced system
(2.39) but also for the nonlinear system (2.37)
&

Il zi || is a norm of the n-tuple z;, e.g. || a; || = Z]aj]
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From Theorem (1) und (2) and the above remarks it follows that the stability
properties of the equilibrium state of the nonlinear system (2.37) can be judged in
some cases on the basis of the matrix

o .

alone, ignoring the nonlinear terms n; (z;). These criteria are related to the Jaco-
bian (2 fi/ 9 a;)E as follows:

(a) Iffor all eigenvalues A of the Jacobian (2 fi/ dq))g
Re(dg) < o

then the equilibrium state 7' E of the nonlinear system (2.37) is locally
asymptotically stable,

(b) if for only one eigenvalue Aj

R, /,)J/ >0,

then the equilibrium state 7J”E is unstable.

A peculiar situation (critical case) arises if one or more eigenvalues have a
vanishing real part. Then, according to the linearized analysis, the equilibrium
state f/7 E may be stable or unstable* but certainly not asymptotically stable.
However, most important, such a linearized analysis is not sufficient anymore:
The stability properties of " E cannot be judged on the basis of the properties of
the Jacobian (Jfi/o aj)E alone but the nonlinear terms n,(z;) have to be accounted
for [67]. In the present context it is important to note that asymptotic stability
may possibly be assured even in this case. The following theorem may illustrate
this[71];

Theorem (3): If

the Jacobian matrix ( 2/ Qaj)E has a simple eigenvalue Ag =0 at the equili-
brium state 7" E but only eigenvalues with negative real parts in the neigh-

* In the strictly linear case further properties of the Jacobian ( fy/ / aj)E must
be analysed.
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borhood of /I’ E, then the equilibrium state 7" E is asymptotically stable.
However, if at every state in the neighborhood of 7" E, excluding ' E,
the Jacobian has an eigenvalue with a positive real part, then T Eis
unstable.

Assume that the Jacobian (2 fy/ Daj)E has a simple eigenvalue A =0. Accounting
for the fact that the determinant of the Jacobian can be represented by the product
of the eigenvalues

det(afi/aaj)E = A1 A2 ... AK ... AN,
it then follows that
det (9 fi/daj)g = 0.

Thus, it is shown that, even for the case of a vanishing determinant of the
Jacobian matrix at the equilibrium state, asymptotic stability may possibly be
assured,

The aim of the above discussion was to develop rigorous arguments on which the
non-singularity of the Jacobian matrix (o fi/ 20q;j)E at an equilibrium state T E
could be based. The following conclusions were obtained. Neither the requirement
that the equilibrium conditions (2.14) should admit a unique solution for the inte-
nal variables in terms of the observable variables, nor the condition of asymptotic
stability is necessary for the non-singularity of the Jacobian. There exist cases
where either the first or the second condition is satisfied but still the Jacobian is
singular. It is certainly true that the requirement of asymptotic stability of the
equilibrium state puts restrictions on the evolution functions fy at /"E but there
is presently no necessary and simple theorem available. The theorems available
express only sufficient conditions.

However, Coleman and Gurtin [13], assuming locally asymptotic stability under
constant strain and temperature, have proved the condition (2.25), i.e.,

)

in a direct way without enforcing (2.27).* If strain and temperature are constant

* TFollowing the previous discussion on the validity of (2.27), the argument of

Bowen [14] that asymptotic stability at constant strain and temperature
implies (2.25) appears to be erroneous.
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and the temperature gradient vanishes, then (2.10) applies, i.e., the free energy is
a decreasing function of time. Thus

%/&..,.E, 7 o{/‘y 2 Y.l T% o b ) = Vsl « 5/ (2.40)

where a,0 characterizes the perturbed state in the neighborhood of ayE, and ay(t)
represents the solution of (2.31) which tends to the equilibrium value ayE. Since
the equilibrium state is locally asymptotically stable, every set of internal state
variables ay in the neighborhood of a,E may be a point along same relaxation
trajectory which ultimately leads to the equilibrium values ayE. Thus, it is not
permitted that the equilibrium state is on the boundary of the domain of attrac-
tion (fig. 2). Consequently,

72/5«~[/ 75 0,) = 72/27«-5, 7% %) (2.41)

where ay is any arbitrary set of internal state parameters close to ayt. Since the
free energy is assumed to be continuous and differentiable, inequality (2.41) yields

/ ;Zj/ / [ £l,77 "(f// o (2.42)

Assume that the material under consideration is strictly dissipative, i.e., the

intrinsic dissipation is positive everywhere in the neighborhood of an equilibrium
state. Then the equality sign in (2.41) applies only at the equilibrium state.
Consequently, the free energy has a relative minimum at the equilibrium state
with respect to all variations in the internal variables

/0{:'}2)5 = 0 /0/:,"}2/5 >0, (2.43)

Condition (2.43) is equivalent to (2.42) and (2.43)9 reads*

* If the second variation of ’” should vanish at the equilibrium state then

higher variations should be considered.
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£ AN AAN
//d'%/f ‘/,?0(,90(:;‘ ! Za_xgja;”aff - ©
o = o
Vv J«.

which means that the matrix of the second derivatives is positive definite. It is

(2.44)

obvious that equs. (2.43) represent important constitutive restrictions on the
structure of the free energy, and we come back to this when the Robinson model is
analysed.

Conditions (2.43) are consequences of three independent requirements:
(1) The entropy production or dissipation is non-negative.

(11) The considered equilibrium state is locally asymptotically stable.
() The free energy is of class C2.

Note that requirement (1) involves both the free energy ¢ and the evolution
functions fy, that requirement (1) is a condition on the evolution functions alone,
and that requirement (1l1) applies only to the free energy. The second requirement
has been discussed to some extend but a necessary and sufficient criterion for the
functions f is not available. A sufficient condition is given by (2.27).
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2.3 Internal Variable Models with Constraints and Discontinuities

2.3.1 Stating the Questions

It should be recalled that the derivation of the constitutive restrictions (2.4) and
(2.5) is based on the dissipation postulate requiring that the Clausius-Duhem en-
tropy inequality is satisfied identically for all smooth thermomechanical pro-
cesses, Thermomechanical processes are represented by solutions to the nonlinear
differential equations generated by the balance laws of mass, momentum, and
energy as well as the assumed constitutive relations, prescribed initial and bound-
ary conditions, and given body forces and heat supply. However, smoothness of
these solutions cannot be taken for granted. Discontinuities in space and time of
spatial gradients, temporal rates, or even the amplitudes of the solutions may be
induced by discontinuities in the initial values, external constraints, forces or
energy input, or by discontinuities in the constitutive relations. But even for
smooth initial data, etc., material nonlinearities may increase the solution ampli-
tude rapidly such that shock waves are generated. Of course, dissipation is a
mechanism which may smoothen out the discontinuities.

In the present context only discontinuities in the constitutive relations are of
interest. When modeling elastic-plastic or elastic-viscoplastic material behavior,
smoothness of the constitutive functions is not necessarily acceptable. Therefore,
the validity of the arguments and continuity requirements leading to (2.4) and
(2.5) have to be reassessed when the evolution equations (2.2) change according to
certain constraint conditions. However, the constitutive equations (2.1) are still
assumed to be continuous, at least up to and including their first derivatives with
respect to all their independent variables.

Thermomechanical processes with discontinuities and in connection with an
evaluation of an entropy inequality have been primarily considered (eg. [72-78])
when the discontinuity is represented by a spatial singular surface (e.g. a shock,
i.e., amathematical model of a transition zone with large spatial gradients of field
quantities). In addition material properties (like a surface density of internal
energy or entropy) may be attached to a singular surface* to represent immanent
physical properties of interfaces or thin layers [72, 73, 76, 78]. Therefore, constitu-
tive relations are required to describe these material properties.

* Daher and Maugin [78] call this simply an "interface” or a "thermodynamical

singular surface” in contrast to a "free singular surface” described above.
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The jump conditions related to the balance of mass, impulse, and energy play the
role of transition conditions between the adjacend regimes separated by the
discontinuity surface. On the other hand, it has been pointed out by Dafermos [79,
81] that the jump condition related to the entropy inequality at an ordinary
singular surface ("free singular surface”) rules out certain processes* that are
otherwise compatible with the balance laws of mass, momentum, and energy
(Entropy Admissibility Criterion). Thus, for a spatial singular surface without
material properties attached to it, the entropy inequality represents a restriction
on processes and not on the constitutive behavior of the bulk material.

The presence of a discontinuity in the evolution equations for the internal
variables may produce spatial discontinuities (surfaces, lines). However, even all
material points of a threedimensional domain of the body may experience a dis-
continuity at the same time. This situation is realized especially under homoge-
neous conditions. Under these conditions only discontinuities in the time domain
have to be accounted for. Eringen [83] has discussed thermodynamic processes
which are discontinuous at discrete times in somewhat general terms without
including spatial discontinuities. He assumed that the class of thermomechanical
processes to be considered does include "local linear continuations” at the instant
of discontinuity. However, this approach is somewhat artificial and does not
clearly show the physical implications involved. Here another argumentation is
developed to derive consequences from the entropy inequality when a discontin-
uity of the thermomechanical process is induced in the time domain by properties
of the evolution functions.

The primary question to be answered is, whether the general constitutive restric-
tions (2.4) and (2.5), derived for smooth processes, are affected or must be supple-
mented by additional restrictions if the evolution functions fy are subject to
constraint conditions yielding a discontinuous response. It is clear that an
analysis of this question in full generality is beyond the range of this study.
Therefore, we will restrict the analysis to a limited class of constitutive models
which contains the Robinson model as a special case.

For example, in classical gas dynamics rarefaction shocks are compatible
with the balance laws of mass, momentum, and energy but are inadmissible
because they do not obey the entropy inequality.
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1 = 1,2 such that the following constraint conditions control the evolution
equations as indicated:;

( _
«f,(fm, 7,8e, %) ; C >0 aud ( >0

ozd’zﬁ R (2.45)
~'{}’/{'~~, 77;,?‘,&(‘,); L, <0 or 450

Thus, if the conjunction of the two conditions C; > 0 and Cg > 0 applies, then the
function hy governs the evolution of the internal variable ay; in all the other cases
the function 1, determines the rate dy.

Here two different cases are considered:

(1) Continuous transition, i.e., fy is at least of class CO0,

/Z=4/ on 4:0 (Z'—'O

d /
(2) Discontinuous transition* ? (2.46)
on a surface defined by the con-
A, & [/ straints in equ. (2.45), i.e., com-
& posed of parts of the surfaces
C1=0and C9=0. )

It should be noted that case (1) or (2) still permits the derivatives of the evolution
functions to be discontinuous.

In the (10 + N)-dimensional space of the independent variables

T = f )= tuu, T s, %y f (2.47)

in the following denoted by ,, ’/77—space”, the conditions C; = 0 and Cg = O repre-
sent two surfaces which may intersect. Locally, i.e., at a material point, the ther-
momechanical history is completely defined if emp, T, gk are given as functions of
time and if the initial values of the internal variables are prescribed. Assuming

* Physical intuition may suggest that the discontinuous case is nonrealistic or

even in contrast to some general principle; nevertheless, constitutive models
are proposed which have this property.
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that (2.45) allows a unique solution, then the ay are obtained by integration and
the variables oy, ¢, j, and qx may be calculated. The history of the independent
variables 7’ up to time t, may be represented by a trajectory (process path) in the
T -space and the time t (0 = t =t ) is the parameter of the trajectory. The mate-
rial rates

Z%T‘Tz/éun= Yoo /ﬁ / (2'48)

are collected in a vector in the // -space which is tangential to the traJectory
Thus, a segment of the trajectory is defined by ( T dt). At all pointsin the 28
space where these rates are continuous functions of time the trajectory is a

continuous smooth curve. An exception is when a trajectory, originally in the
domain (C; >0 N C9>0), traverses either the surface C; =00or C9=0, i.e., the
boundary of the domain (C1= 0 U C2=0), and vice versa; then the continuous

trajectory suffers a jump (kink) in its slope on the surface C; = 0 or C2 = 0 (fig. 3)*.

Consider a smooth trajectory. The segment ( 7 dt) at a point is not completely
arbitrary even though the rateslR = { €mn, 'f‘, gl } may take locally arbitrary
values by a suitable choice of the thermomechanical process. This is so since the
components (éydt) of the segment depend only on the position in the W-space and
are fixed. Consequently, a given trajectory can be traversed only in the direction
compatible with the evolution functions. Thus, to every trajectory a direction is
attached except where the rates éy vanish (ay = const. during the process).

Consider a process following a trajectory which intersects the surface C1 = 0 or C2
= 0 with a discontinuous transition (case (2), equ. (2.46)). Although most trajec-
tories on either side of the surface of discontinuity can be passed through only in
one direction, the surface can be intersected from both sides if a suitable choice for
the rates f:ij, 'i‘, gk is made. This is illustrated by the following observation. The
normal vector of the surface* C = 0 pointing from the negative domain C < 0 to
the positive domain C > 0 is denoted by dC/aT ; where T iisa component of the
ordered set (2.47). The limiting values of the segment vectors tangentlal toa
trajectory on either side of the surface C = 0 are denoted by 7~ ; dt and 7 dt. A
trajectory intersecting the surface from the negative to the positive side satisfies
the conditions

*

C stands for either Cj or Cg also in fig. 3.




9 7 and W— Z0o. - (2.49)
If
O pa-  JC 4, D 2 .- o
o Vi T pe, e o7 9(7... #* " ouy e

then the segment is tangential to the surface. Since the rates ekl, T gy m g1 are locally
independent and arbitrary, they may be chosen such that the segment, // dt s
pointing away from the surface C = 0, into the domain C < 0,i.e.,

QC ’——" = :3
o // // .

. - o =
However, it should be observed that the segment ’/7'i dt built with the rates 7 ;
in (2.50) is part of a trajectory which is different from that trajectory which
contains the a segment # i dt constructed with the rates of (2.49);.

o nlig
Similar arguments apply to the segment ( ’/7' i dt). Therefore, the surfaces can be
intersected from both sides. An exceptional case is envisaged if the normal of the
surface C = 0 has no components along the coordinates €i1, T, g, i.e., if

2 2 _ 20 _ 2<
9&‘—0 = o,oy‘“ o , 0, #* 0, (2.51)

Here the segment ( T dt) is always either pointing towards or away from the

o ¥

surface C = 0 whatever the choice of (Eqn, T gk).

The more readily treatable case (1) of (2.46) is considered first.
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2.3.2 Continuous Evolution Functions

First, it is noted that the constraint condition do depend only on the variables
but not on the rates

R = /é:n.. = é&vm / 7.-/ g""/ (252)

of the observable variables {€nn, T, gm}. Second, it is observed that the constraint
conditions do not restrict processes to a certain region of the ¥/ -space. A simple
example with this property may illustrate this: Assume that

Lyloe, Ty ) ; o, T, ) = 0

=Fr = (2.53)
| & e T e, 0) 5 o, Ty, ) < ©

and that the states in the region where C >0 are inadmissible. Thus, when a
process is such that the first condition applies along the trajectory, then

é’-gﬂ g-m*_gg_r*_y_c’. —%4=0 (2.54)

Dt o7 7 7

Evidently, for a trajectory on the surface C =0 the rates & of the observable vari-
ables are not independent any more. If the actual state is on the surface C=0 but
the process is such that it leaves the surfaces C =0, then the rates R are subject
to the constraint condition

. . ol A
f:é%%;m +éi§: 9;- *;724/<0/ (2.55)

@
1.e., positive rates C are inadmissible.

For the states on the surface C =0 the two conditions (2.54) and (2.55) on the rates

R represent the inadmissibility condition of states in the domain C>0. Conse-
quently, instead of (2.53) and the verbal inadmissibility requirement we may
write
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3 1 ) ( . ‘
Cy.)=o0 4(,.) Coustrainad by €50
‘7‘/ ) , Hlow oC,= Y @ ud JRJ (2.56)
! |z »
L(,[/ <o | x oV[}) \[uccvus eh el

It is seen that the inadmissibility of a domain in the T—space implies constraint
conditions for the rates of the observable variables. Obviously, this requires
special notice when the local entropy inequality is evaluated for arbitrary
admissible processes.

It is important to note that the constraint conditions in the assumed model (2.45)
do involve only the actual state m but not details of the process, e.g., rates of the
observable variables.

A A
Finally, it is noted that the other constitutive functlons Omn, 9k, € and 11 are

assumed to be at least of class* C1 with respect to all their arguments and thus are
not subject to any "switch” conditions.

The Clausius-Duhem entropy inequality takes now the same form as in ref. [63],
equ. (2.15),

4 PE 7.
f[g.ﬂii% _ '_T“fé’;»./f‘” (2.57)

*
%
%

%&

N ] N
m
3}
'\1
N
\l
p.
Iy
N

* They are continuous functions up to and including their first derivatives.
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where, depending on the set 7/_’ , the functions fy either take the form hy or 1.

In the following the Coleman-Noll approach [13], interpreted and described in
[63], is used. With the same arguments as given in [63] the functions

Uy /,g;“f +) . displacement vector
7 (4., +)  absolute temperature
g( v (X ) : initial values of internal variables

are sufficient to describe an admissible thermodynamic process; of course, it is
implied that the new evolution equations (2.45) admit locally an unique solution.

For an arbitrary admissible thermodynamic process, characterized by an
arbitrary choice of smooth functions Uy (X, t), T (Xyy, t), and gy (Xm, t), the
elements of the two sets

e

7, =T, % f
/ZM“-Z;m/f,j-=im f

may take locally (i.e., for a material point) arbitrary values independent of each

S
£
1

f
F 4
H

(2.58)

other at any time,

;7
Consider a state # such that C1>0and C9>0 are satisfied simultaneously.
Since the rates & are independent of the state T and arbitrary as well as
linearly involved in the entropy inequality, the following restrictions are obtained

D% 947 _ 2o 96 L 22—,
fz 92;. ?[,,,“ rf 0’,&.“, Qfalu 7 6;'“' o
99;’ - 7{ ;) € =0 [ (2.59)
P A
7% oe  _ P

a4
7

¥

77
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and the residual entropy inequality becomes

A
0% e De) S & (2.60)
(o, 7 D) 7o =9

If the state ‘# is such that C1<0or C2<0, the standard argumentation yields the
same restrictions as (2.59) and the entropy inequality is identical to (2.60) except
the functions hy have to be interchanged by ly:

. o . (2.61)
*( oz, 7 2, 7

The same conclusions are obtained if the state T is on the surface C; =0 (or
C2=0) since the rates & are not interrelated and may take arbitrary values on
Ci=0. Naturally, there are special trajectories which stay on the surface C1 =0
such that

PPy Pl g 3% ,
= 2C s EEL Sy £y =0
Cf« DSmn Ema A7 9%» 4y (2.62)

This represents a constraint on the rates //? . Thus, if the strain rates and the rates
of the temperature gradient are taken as arbitrary, the temperature rate T must
obey the following relation

. =S 5, - o, ;| I, /
T"aa/gr E&‘*afmﬁ‘*gxy/”~

Inserting this relation into the Clausius-Duhem entropy inequality (2.57) and
collecting terms with the same rates, one obtains for states T on C1=0and
arbitrary rates €,;np = €nm and &m
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”é’fm - 7“595‘” 7o

Qd/;ua
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"/5’ - 7S )QQ/W :Zm o
| e 7 _Dé
*/s5 ~ 5%,
f“v (2.63)
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Since {:mn and ém are arbitrary on the surface C; =0 and linearly involved in

(2.64), the following conditions on C; =0, i.e.,

D% s DE 72
—_ #* == O,
/% 55 7 D 7 O
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and a residual entropy inequality

[/5’909 n 55%*)

/S’ )% s Dé \PC /[Py ﬂéﬁ >, (269

7 % 7 Jog Jor- /4 - .

are obtained.

However, the relations (2.64) and (2.65) do not, represent new restrictions on the
constitutive equations since they are automatically satisfied if the constitutive
relations obey the restrictions (2.59) and (2.60). This is simply due to the fact that
on Cy =0 actually all combinations of rates k are admissible; Of course, the same
argumentation applies to states on the surface C9=0.

Finally, it should be noted that the introduction of the free energy \;r =¢-3T
allows to write the restrictions (2.59) and (2.60) or (2.61), respectively in the
simple form (2.4) and (2.5).

Summarizing, we observe that the constitutive restrictions (2.4) and the residual
entropy inequality (2.5) retain their validity for every pointin the r’rl-space of
independent variables, including points on the surfaces C; =0 and Cg =0. Of
course, the evolution functions fyin (2.5) are to be interpreted according to (2.45)
with (2.46),

2.3.3 Discontinuous Evolution Functions

It is important to note that the analysis of the internal variable model in [13, 63]
and in section 2.1 is based on the assumption that the forcing functions (e.g., vol-
ume force, heat supply), the initial and boundary conditions, and all constitutive
functions are sufficiently smooth so that spatial and temporal derivatives of the
_1§1dependent and dependent variables exist for all material points and all states
/. The presence of a discontinuity in the rates of the internal variables for states on
the surfaces C; =0 or C2=0 in the 7’ -space invalidates this prerequisite for
trajectories which intersect these surfaces. However, the previous argumentation
and results still apply to smooth processes which do not intersect the surfaces of
discontinuity in the 'i/—r-space. Therefore, and considering the discussion in sec-
tion 2.3.1, the question arises whether the Clausius-Duhem entropy inequality
yields additional restrictions on the processes passing through states on the
surfaces of discontinuity in the T—space or on the constitutive relations at these
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states. Thus, observing the remarks in section 2.3.1, it appears sufficient to treat
discontinuities in the time domain only,

The internal energy per unit mass is assumed to be a function of the independent
variables collected in the set //

€ = 6[5,“) 7/’%/ o(d,)

and again it is assumed to be continuous up to and including at least the first
derivatives with respect to its arguments. Then its material time derivative is

D,z P Qé' A, (2.:66)
jfé-.é-af&g&f %f*f* 9—,

whenever these time derivatives are well defined. For states on the surfaces of
discontinuity in the T—space, i.e., Ci=0o0r C2=0, the rates of the internal
variables are discontinuous, and this may induce discontinuities in the rates of the
other variables. But it is not immediately obvious which quantities are affected.
Therefore, an analysis is required which accounts for temporal discontinuities in
the basic principles.

The energy balance equation is usually formulated as an integral statement with
respect to some finite part of the body but local (instant) in time, i.e.,

\
2 (e + K) = P + #
internal kinetic mechanical heating
energy  energy power
—2/;/5 +z’5.5)dV =/§Z-z7dl/+jzfgfz>’p/a
¢ /, 5 > (2.67)
v

~—— total mechanical power —

£ ferdV - ﬂﬁ-i/ﬂ

(/4
Y~ total heating ——

)

where the time derivative refers to 2a material volume V contained in the surface
O. The integration is performed in the present deformed configuration of the body.
The quantitites are as follows
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internal energy per unit mass
density in the present configuration
velocity vector

body force per unit mass

: heat supply per unit mass

heat flux vector

S WY Sy on

external unit vector on the deformed boundary surface O.

The present formulation does allow for the presence of strong spatial discontinui-
ties in the body, well known in continuum mechanics (e.g. a shock). However, in-
terfaces or layers, which can also be modeled by a strong discontinuity with diffe-
rent material properties (e.g. surface density of internal energy or entropy), are
not contained in the above formulation. Nevertheless, in the following spatial
discontinuities are excluded by assumption.

More important is the implicit assumption in equ. (2.67) that there exists a time
derivative of the total energy. Allowing for a discontinuity in the rates of the
internal variables, this is by no means obvious. Thus, a more general energy
balance equation than (2.67) is required.

The total energy (E + K) of a material body is assumed to be discontinuous at a
finite number of discrete times t*, Further, (E + K) is required to be bounded in the
time domain and the existence of the limits

z:f: e Koz Gie (€4 B e

o

is implied. These properties are viewed as the result of a mathematical ideali-
zation (passage to the limit) of an energy history with a large time derivative in a
small time interval (t*-1) = t = (t*+1).

Taking the total energy as a continuous and smooth function of time, the deriv-
ative D(E +K)/Dt is defined and continuous and its integration over the arbitrary
interval (1] = t* = t9) gives

(E+K), —/Ef/(jé ,
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This is valid also for a derivative D(E + K)/Dt discontinuous but bounded at a
finite number of instants.

Time integration of the power and heat terms in (2.67) is well defined as long as
these contributions are continuous or even discontinuous but bounded functions of
time (finite jumps at a finite number of discrete times are permitted). Thus, the
time-space integral energy balance reads

[ [s(e +15500] -[/:[é v 35.5) ]

% (2.68)

= //Pf/fja’f—.

47

which is valid for all time intervals t] = t = t9 and material volumes V. This is
the desired general formulation which contains the usual instant formulation as a
special case: Assuming the power and heat (P + H) and the total energy (E +K) to
be continuous and smooth functions of time, the localization in the time domain
yields the standard formulation (2.67). But in addition, for more general functions
P,H,E, and K, additional conditions (jump conditions in the time domain) are
obtained.

In a similar way the instant formulation of the Clausius-Duhem entropy
inequality (e.g., ref. [63], equ. (1.1)) is generalized to read

[/5’7/1/4 - [/fﬂzﬂ"//ﬁ

7e
3///27_14/-%5;3240 o
¢ Y o

(2.69)
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The time-space integral energy balance (2.68) and the entropy inequality (2.69)
may also be formulated in the undeformed reference configuration & of the body
[84]

4, )
[/fkfé*zzi”—)”%/ =
%
€e
[[fnioik favam |
‘I % ﬂ&
f/g,eom%’ —}{;;,.@Mk/#,
(o 7
- £, )
(2.71)
€, [
S 2 %
[[[5F % -5 fa
“I ‘/Z ﬂ,t /

where Vg and Og are volume and surface in the reference configuration and

S, =9 dV/a’I/ : density in the initial undeformed reference
% R configuration
Zl.a = ¢ o ﬂ/ﬂ/‘% . stress vector per unit undeformed surface

e

% : 7}:? = ?f‘ 7 “/%/ﬂ)e : heat flux through the surface in the undeformed

configuration
,¢7 . external unit vector on the undeformed reference
R surface

The requirement of invariance of the energy balance equation (2.70) under
Galilean transformations yields the integral balance of momentum
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o, = —
[,/%emi;ﬂ%é —;’///%/f@[a/l{ +/;{Z‘Z/Q/Mﬁ (2.72)

We now assume that the resultant force
= _ - a (2.73)
Fry =[5 8y + ¢ & o4
% G

is a vector function of bounded variation in the time domain, piecewise continuous
but with discontinuities* at a finite number of time instants t;. Therefore, the
vector function F(t) is (Riemann) integrable [65]. The integral

¢
Jea = //EZ_’W ar (2.74)
f

o

isuniquely defined at all instants tg = t in the time domain. Further, since F(t) is
integrable, J(t) may be proved to be a continuous vector function [85]. Since F(t) is
integrable everywhere in the time domain, it is also integrable in any interval

to = t1 = t = t2[85]. Since equ. (2.72) is required to hold for all intervals (ty, t2),
one obtains from (2.72)

£ _
/;/fae 47”/4_50 = \7/4) (2.75)
R

and thus the impulse
/ 5% ? d%
%

is a continuous vector function of time. Since this applies to any volume Vg, the
velocity field is a continuous function of time.

*

It is assumed that the limiting values f(ti +0)and -F-‘(ti - 0) exist; the value
(ti) may be different from the limiting values but is assumed to be bounded.
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With the even stronger assumption of continuity of the resultant force F(t) for all
volumes Vg and all instants t; it may be proven that the material time derivative
of the total impulse and also of the velocity field V(X y, t) is continuous in the time
domain. Consequently, the time-integral formulation of the balance of linear
momentum (2.72) can be replaced by the instant formulation

"%ﬁzﬁﬂ% =/"zé’//a/? 7 /fe . (2.76)
% Z %
The continuity and smoothness of the velocity field in the time domain implies

continuity and smoothness of the kinetic energy, and thus the integral energy
balance may be written as

/g,,ec/z/] ///f,z/é 5)-5 Al +

ékﬁ.v‘dg, v [ or dl, -é%.@/@zf#

%

/5, 255 Y, _—./f?e’i:.?;-ﬂ,%'

R

(2.77)

having used

Assuming that the total heat input H (per unit time) transmitted to the material
volume VR is a bounded function of time and using the same mathematical argu-
ments as applied to the integral balance of linear momentum, it is shown that the
total internal energy E and the specific internal energy € are continuous functions
of time,

If the stronger assumption of continuity of the transmitted heat (for an arbitrary
volume V) is made, then the continuity of the material time derivative of E and ¢
follows as a consequence and an instant formulation of (2.77) is permitted.

Thus, under the above continuity assumption for the forces and the heat input, one
obtains
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L. [efxz,z‘;ff) *é’/%,,,fc)] =0
AS PN

b [ete, t) -~ €l t-T)] =0

({ »o

and ? (2.78)

L. E, trl)-EC, L)  Jf. ECwt) - €O LX)
¢ »eo z N >0 (o

y

where t; is any instant during the thermomechanical process including those
where the process path reaches a surface of discontinuity C; =0 or Co=0 in the
/i -space. Equ. (2.78) states that the internal energy and its material time
derivative are continuous functions of time.

One of the basic constitutive assumptions is that the internal energy is taken as a
function of the independent variables 7/_', ie.,

é‘-—é(falr,jm/d,)

/

//7"

which is assumed to be at least of class C! in all its arguments. If the variables

T are assumed to be continuous functions of time, then, obviously, the internal
energy is also a continuous function of time, and this is compatible with condition
(2.78);.

In an analogous way the integral entropy inequality (2.71) is analysed to derive
some consequences for the entropy . We assume that the entropy supply

/5= %
Z

and the entropy flux
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transferred to a material volume Vg are continuous functions of time (class C0).
This is based on the previous assumption that the local quantities r and Gr-AiR,
i.e., the heat supply and the heat flux as well as the temperature history T(Xy, t)
are continuous.

Consider a trajectory in the T -space which intersects one of the surfaces of dis-
continuity Cy =0 or Co=0. Let t. be the instant of intersection. We consider a time
interval

t-T<=t, £ 4 & b =¢rCT

c 7

Observing the continuity of the integrand of the r.h.s. of (2.71) and passing to the
limit T~ 0, we obtain from (2.71)

t+7
L L[] e
~o0 % - -

or

. - "
L. /gz, [7/,«,‘,/ £ re) - 7/,%4_5/]0% = o @7
Z

T—so0

Requiring validity for all material volumes Vg, equ. (2.79) yields

Lo [7/"71/ £r2) — 7%, £-2)/> 0. (280
T—o

It appears that this condition allows the entropy to be ’(}_i'scontinuous in time.
However, the entropy 1 is a function of the variables # by assumption, i.e.,

7= 709
7 a7

and according to the basic constitutive assumption, f is at least of class C! in all

its arguments.
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Since the set /| is continuous in time, so is the entropy n(Xy,, t); consequently,
the equality condition in equ. (2.80) is satisfied. Thus, the basic continuity as-
sumption on ﬁ is in accordance with the requirement (2.80).

We consider now two time intervals just before and after the instant of inter-

section t, i.e.,

t, - = ¢, s ¢t =t =¢ -0

)
2 N
in
N
e
]
RN
+
=®

t,Lto =%

7

Application of the integral entropy balance equation (2.71) to these intervals,
observing the continuity of the integrand on the r.h.s. of (2.71), and using the

mean value theorem gives* ]
£-o = =
€ fz?" /)
[ Jara], = zf[5 k- J55a
% £¢-C % ﬂk //’-
2.81)
t+T —
[far4] =z /ﬁ;—’”—%-/%ﬁwej
Yo t +o 7 O Lot

Passing to the limit T~ 0, one obtains

, (2.82)

Jsllr), e = K

Yo

* The subcript MV % refers to the mean values of the two internals.
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where

/7/&'—) = 727”“/‘/ - j{ L—;”x a4, (2.83)
% 78

Since His continuous in time, the right hand sides of (2.82); and 2.82)9 are equal.
However, equs. (2.82) show that the entropy rate just before and after the instant
of intersection are not required to be equal. Thus, according to the entropy
inequality, the entropy rate may well be discontinuous.

The continuity of the rates of internal energy and kinetic energy allows to write
the time-space integral energy balance equation (2.70) in the instant form (2.67).
Further, the assumed absense of spatial discontinuities allows to formulate the
local version of the energy balance valid at all material points. The same argu-
ments are applicable to the integral balance of linear momentum (2.72). These
local forms, not given here explicitely, allow to derive the local reduced form of the
energy balance (2.6),i.e., a differential equation where the power of the body force
is eliminated.

An instant form of the integral entropy inequality is valid only at those instants
when the entropy rate 1 is continuous. The variables T are continuous functions
of time with continuous rates, except for states ’/7/_‘ = 77: on the surfaces of
discontinuity. Consequently, the rate

D% Y
9'7 Zm P * 2, % (284

7=~—’Z—€,&7"

is continuous at all states except m ¢ and condition (2.82) clearly shows that con-
tinuity is not required when the trajectory intersects the surfaces C; =0 or Co=0.

Consequently, the validity of an instant local energy balance equation and an
instant local entropy inequality for all states T =+ '/72 allows to write the
Clausius-Duhem entropy inequality in the form (2.3). For all states /AE M

the usual argument yielding the results (2.4) and (2.5) applies [13, 63]; thus, the
dependence of the functions 8 11 and olj on the temperature gradient g, is dropped
for // =k // . However, since these functions are assumed to be of class C1,
this applies also to states T-‘?— '7/: . Therefore, in the following the dependence
on gy, can be dropped for all states in the r/'/"l -space.
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The material time derivative of the specific internal energy just before and after
the intersection of the surfaces of discontinuity C; =0 or Co=0 are given by (2.66)
at the appropriate instants. According to the continuity of this rate, one obtains

94,,/ [dc/ff” £ ro0) -fh(r z‘—a)],c

P& . ,

"‘76‘-“)¢ [T/xo,,, tore) = 7 (X, &-o) ]+ -
g—;;/c [XJ’/’(L/ Aro) = p?/ah,é—a)/ =0,

Since the velocity (and displacement) field are continuous in time, the strain rates
are continuous and thus the first term of (2.85) vanishes. With the notation

706 ¢t to) = 7°¢%) (2.86)

equ. (2. 85) reduces to
. TR (-9 -
/ )/7#) 7”"9»{,//’/ Xy s

Consequently, the discontinuity in the evolution equations (2.45) induces a
discontinuity in the temperature rate

(7% - 7"“7 9@ / g “02;) , (2.88)

(5

The relation between the two discontinuities is linear and it is obvious from (2.88)
that an increase in the rates of the internal variable yields a decrease in the
temperature rate if
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6/ // ) >0 , p=a4 N

A segment of a trajectory in the - -space is defined by the rates of the variables
// ie, (T dt). According to the above assumptions and the result (2.88), the
following statement holds:
If the limiting segment on one side of the surface of discontinuity in the
T -space -e.g. ( T “dt) - is glven then the limiting segment on the other
side of the surface -e.g., ( ' 'T dt) - is completely determined.

The jump in the entropy rate at t =t is defined as
7-(4/ _ 7'(-; = L /,7',,% t+7) - 7’/»:;,, éc—i‘)/. (2.89)
Z ®o ’

observing (2.84) one obtains

GO 5 597"’/_/6 [7’-0/ - o

/573) (%% - 47),

here the continuity of the strain rates is taken into account. With (2.88) and the
definition of the free energy y (page 7) the r.h.s. of (2.90) simplifies to

a4
) ey o _ A P¥ Set) o l-) .
7 Vaad /7_ QX,Z (o o) (2.91)

and it is obvious that the jump in the entropy rate is linearly related to the jumps

(2.90)

in the rates of the internal variables. A comparison with (2.5) clearly shows that
the discontinuity in the entropy rate is proportional to the discontinuity of the
entropy production rate y, i.e.¥,

) e & _ ) ) _ pt-
Y. /7(/ ~ 67 / -4 /. (2.92)

* Note that the entropy production due to heat condition is continuous.
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It should be remarked that the discontinuity in the evolution functions will also
induce a jump in the stress rate

G,

¢

S @ _ fer - 2&) “o1_ 7o) 254) i 7¢9)
‘o hand .(.’— arc/r —-7— *;lec/dJ/ a//

¢

2.) [9€ Y
- 125 () Japi) e

where Gij and € are related to the free energy \fr by (2.4)1 and (2.4)3 which are valid
also on the surface of discontinuity in the ’F—space.

At this point it is appropriate to summarize the main results. The basic

assumptions are

(1)

(2)

(3)

(4)

The constitutive functions Sij, E, ﬁ, and ai are continuous and have at least
continuous first derivatives with respect to the variables r/-/-' = {ej, T, gm,
ay}.

Y

The evolution functions fy for the internal variables are allowed to be dis-
continuous along a surface composed of parts of the surfaces C; =0 and
C2=01in the space of the independent variables ar -space).

Spatial discontinuities are excluded from the discussion. Thus, it is under-
stood that all material points of some material volume Vg experience a
discontinuity in the rates of the internal variables at the same time. This
situation is realized especially under homogeneous conditions in the mate-
rial volume Vg.

The thermomechanical process is such that the rate of the energy input

(P + H) to a material volume Vg is a continuous function of time. In accor-
dance with this assumption it is also assumed that the resultant force on a
material volume is continuous. It should be noted that energy and force
transfer to a material volume may also be assumed to be discontinuous; for
example, an isothermal process would require such a discontinuity. This
will yield other jump conditions but no restrictions on the constitutive
relations.
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When trajectories in the T—space are considered which do not intersect the sur-
faces of discontinuity, the standard Coleman-Noll argument may be applied
yielding the constitutive restrictions (2.4) and (2.5) for all points in the W’ -space
except the surfaces of discontinuity. However, since the constitutive functions
(2.1) are assumed to be continuous up to and including their first derivatives with
respect to all arguments, the restrictions (2.4) apply also to states on the surface
C1=0or C2=0. Therefore, the independence of the functions (2.1) on the tem-
perature gradient is valid for all states in the W—space.

A special analysis, representing the main part of this section, is required for tra-
Jectories intersecting the surfaces of discontinuity. Under the above assumptions
(1) to (4) and using a time-space integral version of the energy balance equation, the
velocity field, kinetic energy, and internal energy are shown to be continuous with
first material time derivatives continuous for all instants including those when a
Jump in the rate of the internal variables occurs. With these continuity properties
itis then proved that the discontinuity in the evolution functions produces a
discontinuity in the rate of the absolute temperature and stress.

The time-space integral entropy inequality (2.69) applied to a time interval en-
closing the instant t. of passing through the discontinuity imposes a restriction on
the jump in the entropy at t=t.: Only non-negative jumps are permitted. How-
ever, since the entropy is assumed to be at least a C1-function of the independent
variables /" and these variables are continuous in time, the entropy must be a
continuous function of time.

On the other hand, the entropy rates just before and after t=t. are not required to
be equal. Indeed, it is shown that there is a jump in the entropy rate proportional
to the jump in the rate of the internal variables.

It is concluded that the above constitutive assumptions are in accordance with the
time-integral Clausius-Duhem entropy inequality, i.e., no further constitutive
restrictions are obtained when a discontinuity in the evolution equations for the
internal variables is present as described. However, this discontinuity naturally
induces discontinuities in process variables.
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2.4 The Residual Entropy Inequality for Constitutive Models with
Internal Variables of Different Character

In the following it is assumed that the (n) internal variables ay may be separable
in two sets*:

(1) afirst set representing two 8x3 symmetric tensors** a(i)y], i=1, 2, in the
threedimensional Euclidian (x1, xg, x3)-space, and

(2) asinglescalar k.

Further, instead of the evolution equations (2.45) having the same constraint
conditions, we consider evolution equations somewhat more general than (2.45):

( <) )

) ,.,
Z&t (Sny 71 oy a/,;,x//. 4 o N G, 70

o (i) g7
% 42 ‘<ﬂk D

(<) — ¢y ) «
Zﬁc/&u/ /,;‘./A’,,.,, x// =0 U  £0
\
A =AZ
(2.94)
& — ’1‘)
x = /(7‘““/ r,j'—, ”(r's, t"‘/}. unconstrained . (2.95)

Again the Coleman-Noll argument in connection with the Clausius-Duhem
entropy inequality is applied. The difference in the constraint functions does not
affect the general structure of the constitutive restrictions. One obtains (2.4) and
the residuel dissipation ineqt}‘ality is p

éﬂi(/”’- éui</m _ kaf_wz;? .5
LT3 Y e $ 902 O =5 P 7 Thfe = (2.96)

* Itisevident that thisis only a special case in a more general setting with (k)

tensors and (n) scalars. Requiring material frame indifference, Coleman and
Gurtin [13] have proved that internal variables of vectorial character are not
allowed in the evolution equations.

** It appears that the introduction of internal variables with a tensorial
character is due to Perzyna and Wajno [19]
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where the form of the functions f{1),,, and f(2),,, depends on the variables

/Z:m =l Tjn. d( rs ’ f (2.97)

according to the constraint conditions.

Up to now the physical interpretation of the internal variables was left open.
However, in section 1 it was already mentioned that these quantities may repre-
sent rather different physical entities, depending on the various physical pheno-
mena to be studied. In microscopic level theories of crystalline materials the
plastic deformation is governed by the movement, multiplication, interaction, and
arrangement of crystal defects known as dislocations. Obviously, the parameters
describing their evolution are not subjected to direct external control and there-
fore it appears reasonable to consider those parameters as internal (state) variab-
les. However, it is still rather difficult to characterize these variables in a reason-
able finite form for a particular material.

In dislocation theories of materials, the movement of dislocations cause perma-
nent geometrical changes in the shape of the body. Therefore, an average of these
dislocation movements in a volume element is a measure of the local shape
changes which may be described by the macroscopic inelastic strain tensor epy).*
According to Kratochvil and Dillon [27], a detailed discussion of the relation
between the inelastic strain and the motion of dislocations was given by Kréner
and Rieder [86].

Following Kratochvil and Dillon [27], the first set of internal variables a(l)y; is

identified as the inelastic strains epyj, and the following notations are introduced

’
@) P

(2.98)
P -

XK = oy

* The introduction of an "inelastic” strain tensor obviously deserves a much

more elaborated analysis,
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The evolution equations of the internal variables are denoted as follows

2
/aﬂ/') ; 4?’”’) >0 N (,(M)>0

Z.ZL= ’Z):/‘f:‘

- P
Fom ; Crpso v Cmy=o
. | ’(2.99)
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Fae (T) , C%am >0 n Gyry >0
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o -
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With these notations the residual dissipation inequality (2.68) takes the following
form

ALl AL Y
_gﬁef,m%’”' gaxm./“'” Srrard = = 0. (2100

To circumvent superfluous generalities, the following specific assumptions are
made

(1) The evolution functions fPyn, , famn ,and f are independent of the temperature
gradient. Consequently, the residual dissipation inequality (2.100) can be
splitted into two separate inequalities analogous to (2.8).

(2)  All constitutive functions y (and consequently  and €), forp , fayy, ,and fdo
not depend explicitly on the plastic strain €py,, and on the total strain €y
but on the thermoelastic strain, i.e.,

, p N7,
aiuu §= Jluu h al«u = &pm (2.101)

where ethy,,, is the thermal strain. Thus, instead of the list of independent
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Jiit
variables 7/ ,equ. (2.11), we have*

f
= e
T =/sS., 7, e, x/' (2.102)

(8) The evolution functions fa,,, are assumed to consist of two parts
' — - P £ &
= /m. cryH = _Q(’/7'7 E,,,,, @) * %ﬂ’) N (2.103)

thus, the rate amp is affected by the plastic strain rate ¢P o since the first
part depends linearly on it. Here the scalar functions  and Y are subject to
the following constraint conditions

e )
ey, Gy >o o Glaryeo

-(2(’0""7 = 4
- o
L7y try=o v )0

"y r(2.104)
y(,p/ ; ary >0 n G o

j/(w

Yary | LTy 20 ¢ &,y <o

)

where Q" and Q- as well as Y* and Y™ are not necessarily continuous on
Cia=0and Cga=0.

The dissipation inequality (2.100) yields the following conditions**
- A, [;y._
[5(95.,.. ’L’ﬁau IZ] Fon =5 5’“~~] "

}&
_/77// | (2.105)
- %@ i“?/r =0 J

Note that the temperature gradient gn, is still an independent variable but
only the heat flux depends on it.

*

** Since €Ppyy and amy are symmetrie, only the symmetric part of the bracketed
terms are involved.
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Observing
¥ = Ty = YT (2.106)

we get

D E s VEe, IEL, =g, ”g”' 2ES.

¥ _ ¥

s se Dy,

L v | L (2.107)
Do D

J¥ _ ¥

O’)Zm;, Qé’e;un

such that (2.105), is transformed to read

"Z:fgi_é *S;’)A’;:.,_Q] /ﬂm -5 9%.& ./K"’ﬁ

.”7‘&

v
_5[9 j/ = (2.108)

or with (2.4)1 and (2.107)4

a it s [RLFE] # r YIAE ] 2o
3;&/// = 0, (2.109)

The first term represents the plastic stress power per unit volume, It is ob-
vious from this expression that the plastic stress power may be positive or
negative depending on the sign of the bracketed term. However, if the inter-
nal variables ay, and x are not present in the theory, then the bracketed
term has to be deleted from the L.h.s. of (2.109) and restriction (2.109) states
that the plastic power must be positive if the decoupling (2.105) is accep-
table.
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3. Formal Description of the Robinson Model

3.1 The Multiaxial Stress State

Here we state in a formal way the multiaxial elastic-viscoplastic constitutive
equations developed by Robinson [54 - 56]. As pointed out in section 1 the reader is
reminded that the Robinson model is actually a purely mechanical model al-
though nonisothermal processes are accounted for. The model presupposes infini-
tesimal deformations and initially isotropic material response. The references [54
- 56] use a slightly different nomenclature and are of somewhat different generali-
ty but here the version given in {56, 57] is summarized.

The total strain tensor gy} is assumed to be separable into its elastic, viscoplastic,
and thermal parts, i.e.,

<
She = €% * ER + &, (3.1)
The thermal part is given by

#
5. = R%(T-7) (3.2

implying isotropic thermal expansion. The elastic strain is related to the stress by
e

where Ck| mn is the fourth order elasticity tensor; in the isotropic case

C =f)p4‘a&.,. +/“(0/2/u/’(~ +/£hﬂ/’,“‘)

Boe 2o

and equ. (3.2) reads (Hdoke's law)
€ €
Gy = A Sty +pu(l L) (3.2
In terms of Young's modulus E and Poisson's number v, Lame's constants are

] = _Ev - £
—(,’#y//r-zy ) i Ll At0) (3.3)




The essential part of the model is contained in relations for the viscoplastic strains
£Pk1 and the internal variables ai] and x:

P
[

S0
e

in which
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2. —
([ pF* 22 | Fro NS4S, »o
I e 7
< (3.4)
o ; F=2o U S Che = O
f // o0 ”_'8 afl |
=5 Sq — KRG GG n S >0
G B <t R Al L 2 e Qe
9 (3.5)
H op ”f’ﬂ d“ ' '
e Ay Y R W PT
R © - o €™ o —
| & /Z,
[ P @
[T S0 £y + BT 3.6
Sgp = Cap — 3’ GConom /A'e : deviatoric stress
|
Aep = a(é - 3'! A, /a : deviatoric "internal stress (back |
stress)”
2;,5 Sge — Age effective stress

N
0
Nla
M

N
M
y

N
]

A

N
P
A

2nd invariant of effective stress
(3.7)
2nd invariant of back stress

¢+ "yield” function

: drag stress
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The quantities A, n, m, , H, R, and G, are material parameters* which may
depend on temperature. x, is the initial value of k at the reference temperature T,
The quantities I' and @ are functions of the plastic work WP and the absolute
temperature

=T o=O0(¥*"7) (3.8)

where

Wp’/Shé:e#

‘ (3.9)

From the structure of these relations and as pointed out in [54] it is evident that
the actual internal variables akj (or their deviatoric part ak}) and x describe kine-
matic and isotropic hardening, respectively.

Asindicated in [56] the form of the evolutionary equation for x, equ. (3.6), does
allow for thermomechanical history dependence of cyclic hardening response. Equ.
(3.6) is a growth law for k which is not a perfect differential. Thus the functions T
and O are independent.

It is noteworthy that none of the evolution equations contain the rates of the
external observable variables £}] and T, except the growth law for x; here the tem-
perature rate T is involved.

The constitutive equations for the internal variable models discussed in [13, 27] as
well as [63] did not involve the rates of the external observables. Thus, the con-
stitutive restrictions, including the residual entropy inequality (e.g., equ. (2.4)
and (2.5)), are not necessarily applicable for the case when the rates of external
variables are involved. Therefore, a simpler version of Robinsons model is studied
which does not involve isotropic hardening at all, i.e., the evolution equation for x
isignored and x is set equal to its initial value

&= = Const. (3.10)

This version was presente(i by Robinson in ref, [54, 55] and during a lecture [57].
The more general case described above will be treated in a future paper.

* The quantity G, is actually chosen apriory as a small number; this prevents

the first term in (3.5) to become singular.
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For future purposes we require a representation of the functions f*ij, equ. (2.98),
as well as Q@ and Y appearing in the general evolution equation (2.103). With (3.4)

and (3.5) one finds

(Pt " 24

h::ﬁ/: /;7

P P
; C'=Fr0nCi=s,

>
B\

S\
i
)
¥
N

The following remarks are now appropriate:

2_a>o

(3.11)

4
(:d.‘='6—69 0 N g -‘=5ﬂ Ay PO

(3.12)

(3.13)

(1) Ttisnoted thatin the evolution equations (3.4) and (3.5) only the deviatoric

part of the internal variables does appear. A constitutive equation for the

trace (akk) is not required, and the rate of the deviatoric trace (akk) is vanish-

ing. This peculiarity is not in conflict with the formalism described in section

2.

(2) The evolution equations for the plastic strain £} and the deviatoric internal

pad
variables ay] are discontinuous on certain surfaces in the /4 *_space deter-

mined by the constraint conditions. This observation will be illustrated to

some detail for the uniaxial case (section 3.2). It should be recalled that such

a discontinuity is explicitely accounted for in the derivations described in

section 2,
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(3) Theright hand side of the evolution equations (3.4) and (3.5) depend on the
deviatoric stress s, the deviatoric internal variables ay], and the absolute
temperature T. This set of variables differs from the assumed list of
independent state variables T*, equ. (2.102). However, a dependence on the
elastic strains eex| may easily be formulated if one uses Hooke's law, equ.
(3.2).

3.2 The Uniaxial Stress State (Pure Tension or Pure Shear)

The uniaxial constitutive relations are obtained by ignoring the isotropic
hardening, such that equ. (3.10) applies. Assuming a uniaxial state of tension or
shear, one obtains:

Table 1:
Tension Shear
[ & o o ) ) zZ o)
G o o o z o o
| o o 1) Lo o o |
’f@ o o o T o)
Ske o -§& o r o o
Lo o '5rj o 7 OJ
(X o0 o ] (0 & o
Xgp o o o0 s 0 0
O o o kﬁ o o J
\ s
{ &
SX o0 O ] (0 8 o
d& O -\;—{0( () A o o
L 0 0 ‘:;d ) &0 0 0 /
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2 \ 1
(Ts_ 0O O () A O
.
Zﬂ o-~-% o (=) | |4 o0 o| (T-3)
Lo o0 -F © o o]
4 g 2 2
Z,= 5% % 5 &
2 2
Lm35,5| F (e (7-4)
K= 344y Fole—=) A L(T=4)
See 24 3 o le—w) 2T (T-A)

In the case of uniaxial tension Hooke's law (3.2) reduces to

e - e
G, = & = £<&, £z (3.14)

time differentiation yields

G = £ &¢ ; (3.15)

here it is implied that E is a constant. It is convenient to introduce dimensionless
quantities

X oy ‘= ol
"= ot =
/7 o, ‘ A

(3.16)

The constraint functions F and G then take the form
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2
£ (cF-x*)Cy , G = (%), (8.17)

Instead of using the parameter G,, we may define another parameter a, and a,

related to the parameter G, by

2
() z
6, = Ll = (a9 @19
) 7 ag L4
With these definitions the plastic strain rate function fPy) is given by
f 5
r3@‘/’}' o o
o -—ﬁ—; o HF/ijﬁ "C/ fro N
/57 >
) & °o -5 o6 un’) >0
Op .
Eh =/a <
o o o ‘
e o e |, Fzo v cleta%) =0,
(] (7] 4
\ / (3.19)

The rate of the deviatoric back stress tensor ay| is determined by (3.5) which
reduces to a single equation for the dimensionless back stress a*
¢ 44 P,
o #
1A - M"‘/ A;m [l > 7 6o 0
K@) 55

x . ‘.Z/M—/a‘)
a8 RV R ,%x M1=/%] U (390
,,zo(’og"‘/ §Ak}_, ‘{o x—o"\"<0

where
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£°:= £/, (3.21)

The functions Q* and Y, equ. (3.12) and (3.13), take the following form

s ()T [&°] > [L] A %" >0
L2 =4 .
- o «£ &
2= (;/‘/’ L2l o oW s o
° , (3.22)
2l -13)
' + R [0(‘) ® / *./ 6"(;(*:»
y =T oy s K> [l] o
- o (9" ‘
;' s = -?‘7;:/ /-/a"/e/a(.‘/(/ GHLo
\ [-4
/

For the case of pure shear the analogous equations are as follows. Hooke's law
reduces to

=0 s =00 Cu, (3.23)

M

With the dimensionless variables*

~ 'l e A
A (3.24)
(-4
one obtains
2 2
= /Z“‘—ﬁ") -4, 5-’[/‘7 (3.25)

and

* It should be observed that the scaling factor is different from (3.16).
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g &
= (/5. ). (3.26)
Then the plastic strain rate function is given by
(
0O A ©
% # v
£ 0 0 HF/y"ff’/// Fro N
éz : é:’ = (3.27)
o o o
o o o ; F=o0 v Z_‘/'/‘o
o © 0
\

and the evolution equations (3.5) simplify to a single differential equation for the

dimensionless back stress p*:

(A P
S KEE" T
A" =
H o ze
A’é‘ﬂ 72
\ ‘o

The functions Q* and Y

[0t

sy
L=

@

e
_fZ

/8
G p %
- /—?——- /Sf'/‘ //"/)//5,//) LA >0
- (3.28)
/Q b

9 s o FR=o

* are given by

e Y o

Py
7L /320

T s (1< 0TS0

y (3.29)
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(/I(mw
pe R (R , . ek
yiz— e /8 ; P12 A TP >0,(3.29)
y=J m‘;{m—/l .

-__R Y=y v Tpzo
o BT ey |

The evolution equations for the plastic strain e =¢P | and the dimensionless back
stress a* change their structure at the boundary of certain regimes in the state
space (0*, a*) defined by the constraint conditions. For better perception these
regimes and their properties are indicated in fig. 4 for ¥ and fig. 5 for a*. Also the

i

boundaries in the (¢*, a*)-space, where a discontinuity in the rates is observed, are
indicated.
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4. Extension of the Roblnson Model within a Thermodynamic
Frame

4.1 The Free Energy*

Obviously, the Robinson model is a purely mechanical model although temper-
ature dependence is included. However, the temperature only plays the role of a
parameter and details of the functional dependence have not been described yet.
Since the consistence of the model with thermodynamic principles is to be ana-
lysed, it is necessary to extend the model. The constitutive functions to be intro-
duced are the specific internal energy € and the specific entropy 1. But the ther-
modynamic restrictions (2.4) show that it suffices to introduce the free energy

Y = ’}2/7/7 = }Z('//"'/; T'={es. 7 ke, f. 1)

With the above remarks and observing the peculiarities of the simplified Robinson
model, it is necessary to introduce

Y- T
where | (4.2)

x& e e

Since the restriction (2.4)1 shows that the free energy is a potential for the stress

(5 3 )-nl% 3
e = 33( 55, 95“)‘ iS5z * ok

we have observing Hooke's law,

v v
+ 9% DV ) e e
Bt * i )< A F e a g

Thus, except for integration constants, the free energy function y may be obtained

*  Further discussion of this subject is given in section 7.
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from (4.3) by partial integration in the domain of the elastic strains. One finds
v e

v (4.4)
+ %a'r a‘ﬁg /7 7-/ ]

This almost trivial result should not make one believe that this completes the
determination of the free energy function. Instead, the most important part is the
characterization of the "integration constant” which depends on the deviatoric
iﬁte}ﬁal variables ag] and the absolute temperature, and which is assumed not to
dei)end on any other variable. This especially implies its independence on any
material descriptor which is in accordance with the assumed isotropic material
behavior. Further, it should be noted that the deviatoric internal variables ak] do
appear only in the "integration constant” yaT, since Lame's constants are
assumed independent of ai] but still may be functions of T.

The free energy contribution t‘fla'l‘ (ak], T) due to the internal variables ay| is
required to be invariant under coordinate transformations. The variables aji] have
the dimension of stress and combine with the Cauchy stress o] to form the
effective stress Zi). Therefore, it is reasonable to assume that the back stress ay]
transforms in the same way as the Cauchy stress, i.e.,

Py a
2y = &, ., Que o a-Q2Q

where Q is a proper orthogonal tensor. Thus, implying isotropic material behavior,
itisrequired that

$la,7) = ¥ (QaQ"T) fr VR, dt@=+

This condition is satisfied if and only if 1‘{;&'1‘ can be represented as a function of the
temperature and the invariants

A = *f' g = R e =0

iy = 1fha) - Fr(ag) =-%% =~ L.

L]

/ det a

L
"
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In agreement with the continuity requirements (section 2.3.3) it is assumed that
yaT allows a polynomial representation in ak|. Dropping terms of cubic order (i.e.,
the determinand i3), one gets*

‘/aT ‘/r s y (4.5)
Yo = Yir + g Moy 7 Amn Bree ’

L

This simple form will be the basis for the further analysis.

The specific entropy and the internal energy are related to the free energy by the
restrictions (2.4)9 and (2.4)1, i.e.,

__ ¥
7 = Y s
« ?(4.6)
A . 9 %
= -/
& W 7 |
where 2 0(8

/ A Y
V= Flow, T, ).

It should be noted that the free energy, according to (4.4), involves a different set
of arguments

v
Y=ley , 7, As) (4.8)

where the elastic strain eey) is given by (3.1) which involves the temperature T.
Consequently,

Q¥ ¢ Y Det.

AN

o7 T 3r T e, oT
2 2 sk,
= o7 Déh. oT (4.9)
" e 4 %,
A L s

The contribution yT(1) need not to be specified within the context of this
study.
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and
%g_ - gif/z:f; £ Ege * %zﬁmzfﬂ)
) ;_g Z__I;_/_ g o o » Z/fr (4.10)
Thus
,= - W 2 fourid) [0 i)
= “/; z / ‘;z[f e * ﬁ"c"“ 2= i
2 (20 w3d) Z/ 0]
TF ST
and .
£ = }[ -7/ gf ~ Z(2ur3d) f;/ﬁ’.“/r—i;/]«f& )
= L1y T el #(1-T TR
(4.12)

18 (e 3T G B )] i

<
g (-7 E) it 2 # (V-

'-w

These equations have to be supplemented by an appropriate constitutive law for
the heat flux. Here simply Fourier's law is assumed

97- _/l ~FO
- U p - (4.13)
?ﬁ = ./(./7) sz




- 69 - |

It should be noted that the parameter M(T) and the purely thermal contribution to
the free energy, i.e., yT(1), do not appear in the stress-strain relation (3.8) and in
the evolution equations for the plastic strain epy| and the back stress akj. There-
fore, these quantities are not involved in the balance of linear momentum. How-
ever, these quantities play their partin the energy balance equation

S€ — G4 6 *+ Hn —S7T =0 (4.14)

if the rate of the internal energy is expressed in terms of its arguments. Starting
from

€ = ’}2 T”/) = }Z = 7] }9—7& wg—k/fﬂ/;é«[é&r-/;)]a;yu.m)

one obtains for continuous rates of the back stress

. ., ¥ . oY

€= Vfn % * Jag ‘e o7 7
__7‘./“9%—% -5 /a-/..?n)/dr/;? /7—/0)/£u]
DE e PV 5 . 2F

T [ o725k, ™ T 97t or*
///4,%,/9 (7 /)/)5“
/Z/";ﬂyagr/? (77 //554]

o ¢ * F M e Zu

(4.16)

\’bk\

2,
747.'/’,’/2/#3))*{{—/'&%/7—/;//5{84 - % 7

7‘3 ¢7.[(Z/«+JJ} é—ﬁ (7- /v/]jétt/
747-/ /Z/I—JJ) d]'/;; (7~ /a/]ﬂfm 97)&' /5“ "'/ ﬂ’)/;lm,. s
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If the elastic constants A, p, the expansion coefficient Ath, and the parameter M
are temperature independent, and if the specific heat at constant elastic strain
(~stress) and constant back stress is introduced, i.e.

O Ly
’ o7 * AT

then equ. (4.16) simplifies to

SE = Gy Ego + May a4 *

,47"//4/ r3d) A%, + 90}1 + T (2nrd) A%,

and the energy balance reads

/9,, v [ 4n N,:/ﬁ"‘._r;é/f ~ Gy (Cae —€5) *

@ “ g
tMag 2y + (24r3)ATEL = ST ~Fp i .

If in addition the body is constrained against deformation at constant temperature
fa = CPl s 7( p /= Cons f'

(relaxation process at constant temperature), and if this process takes place in a
domain where the plastic deformation rate vanishes, i.e.,

Cp _
then the elastic volume change vanishes
° €
and (4.18) reduces finally to
Mag, 44 = 37 = 4,4 (4.19)

Note that the right hand side represents the heat the body exchanges with its
surrounding. It is positive if heat is transferred to the body. It is now evident that
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under the simplifying assumptions and for this special process the heat exchanged
is directly proportional to the parameter M., In principle this observation allows to
determine the parameter M,

The term

v

¢

5 @o., = — M, Run (4.20)
foode,

—S

is the contribution to the intrinsic dissipation due to a change in the back stress.

In fact, it is equal to the total intrinsic dissipation if the plastic strain rates
vanish; consequently it is necessarily positive. Therefore, within the frame of the
assumptions made, the left hand side of (4.19) must be negative which implies that
heat must be extracted from the body if the temperature is to be held constant
during such a relaxation process.

4.2 Existence of Equilibrium States

For every natural body we require the existence of at least one equilibrium state.
This state is characterized by time independent and uniform fields. Typically, an
equilibrium state is attained after a sufficiently long time when initial non-uni-
formities and time dependent processes in the body have smoothed out. Of course,
during this phase the boundary conditions have to be such that this relaxation
process can take place, e.g., adiabatic enclosure and no transfer of mechanical
work. Whether or not this state can be attained can be checked by requiring that
all balance equations, constitutive equation, and boundary conditions are satisfied
in the body. However, the constitutive equations are the most crucial part.

Therefore, the existence of an equilibrium state requires that the evolution equa-
tions for the plastic strain rate and the rate of the internal variables admit a set of
values (0%j;, a¥;) such that these rates vanish, i.e.,

e = 4.21)

Condition (4.21); is satisfied if and only if
F=o0 or Skr za Lo, (4.22)

For the uniaxial case these conditions reduce to

F= (s*«*)-q20 or &°(62u’) 20,
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the appropriate regimes in the (o*, a*)-space are indicated in fig, 4.

If (4.21) is satisfied, then inspection of (4.21)9 shows that the second term in (3.5)9
should become zero. However, it is obvious that there exists no set of values ak 30
which satisfies this requirement; further, performing the limiting process ak| - 0,
we obtain a finite non-zero limit value, e.g.,

L fd,4, = (RG").

ﬂa-—)o

Therefore, vanishing of the rate of the back stress can be obtained only approxi-
mately as G, is made sufficiently small. A rigorous satisfaction of (4.21)2 can be
obtained if the original version of the evolution equation for the internal variables
ak] is modified. A convenient approach is to extend the recovery term in (3.5);
from the region G > @G, into the region G <Gy, continuously. Consequently, instead
of (3.5), we have

( # .P d‘l
e - 6 — > NS¢, Bpg >
Gh Sl TRE g 676 1 el 7o
e = (4.23)
H gy QQ
A - U S Bpy <O
Y. Eer /QG 7 646 % Zeoe
| o ) 2

where it is understood that
M -ff >0, v (4.24)
This inequality is derived as follows. With £pi1 =0 and (3.7)g one obtaines from

(4.23)9
Lf#ns8) S(7=43)

. o 2 ’;. ‘4424(4/
7 % Y " /e/z«g*/ 'Q/ :

Thus, if all rates ékl vanish, as it should in an equilibrium state, then the r.h.s.

must vanish, i.e.,

2 [ <8)

(Z.) = 0.
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If (m-B) > 0, then Iy =0 and consequently*

Ag = O Ae=423 . (4.25)

7
If (m-B) < 0, then Iy - to assure that all rates ay] vanish; however, this appears to
be unreasonable.

With (4.23) and (4.24) an equilibrium state is possible when the deviatoric stress
sk] and back stress ai) satisfy the conditions

3 Se S (4.26)
= -7 =0 aud Ayp =0 , :
';‘a .
Finally, it should be noted that the modification (4.23)2 has been used by
Hornberger and Stamm [58 - 60].

For completeness we indicate that the uniaxial evolution laws (3.20)2 and (3.28)2
should appropriately be changed. Thus, for example, (3.20)2 reads
*p 2(m-p)
/{ 2 /? # 2 4 o
s T T °

oc*xf=o0.

Va3

(4.27)

* Note that I is a sum of quadratic terms.
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5. Constitutive Restrictions for the Extended Robinson Model

5.1 Preliminaries

The extended and modified Robinson model is required to be consistent with the
dissipation postulate where the entropy inequality is given in the Clausius-
Duhem form. The requirement to satisfy the Clausius-Duhem entropy inequality
for all processes, i.e., especially for all rates of the independent observable variab-
les, was imposed on a whole class of constitutive relations (section 2) yielding a set
of restrictions (e.g. on the stress, entropy etc.) and the residual entropy inequality
in the form (2.109). Further, this inequality has to be satisfied for all admissible
variables T * equ. (2.102), whether the state is an equilibrium state or not.

The extended Robinson model (section 4) uses a free energy function depending on
the variables T **

p=rt) . T fen,7, anf

and the scalar quantities Q and Y (3.12) and (3.13) are given by*

R =1 07Y / 7/"‘=/5:&/ 7, d...,.j' (5.1)

y= Z;{’F"‘/

Thus, the dissipation inequality (2.109) takes the following alternative forms

L =5 [94‘.] /»~ }[ﬂa.]d"“>0 ‘

eﬁm

or | (5.2)

(6. -s —@6[39@,..] S ’92/9@.]4‘-'« =0

57.

and with (4.4) and (4.5) this reduces to

* Note that the elastic strains £¢) may be uniquely expressed in terms of the
stresses gy
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(6o - _(3( 7 M, . /€8 - ?[@"}/@ Qun Bun. 2. O
P (7 (5.3)

In an equilibrium state, which is partly characterized by (4.21), the left hand side
of (5.3) vanishes.

The inequality (5.3) has to be satisfied for every set of variables (omn, 2mn, T), or
more precisely, (smn, émn, T) since the hydrostatic stress* is not involved in (5.3).
It appears that the general threedimensional case requires a cumbersome analysis
although the material reponse is assumed to be isotropic. Therefore, the onedi-
mensional stress state is analysed first. Obviously, conditions to be obtained here
cannot be as strong as in the multiaxial case.

5.2 Thermodynamic Restrictions for the Uniaxial State of Stress

A uniaxial state of tension is considered. According to section (3.2), one has

@ *p o P
p = —
é;nu Emnn 6/;! 24/ = G &

@ - Y] oy ] P _ e P
% é:m = B, &4 D 5;2 t &5 S‘U = X £

7 2

Oy Bure. = 2 L, o

(

llm

and
( & %
.}‘z‘/.?ﬁF"/?«/é'x—alyj Fs>o n 8~ )>0
2P > P = ¢
£ = & (5.4)
4 ; Feo v cEta’) <o
*

0 °
Note that Omn €Pmn = Smn €Pmn
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/

70%44 (s fo,) n % =0

__[3_ //774 = ¢ (5.5)
(%) P

N AR

.

. 2 (_21/»/)
s o
Z/ﬂ/’/= X kY (5.6)

With dimensionless variables inequality (5.3) reduces to
= A y 3 .P -4 4 4 ¢
[6% = R Ma*]e '3/;%3/’//‘{/ =0 (5

or more explicitely using (5.4)

e, e e e e—n G — oy o e Oy @ )| eweees ey

| oy, e oo s e, ems e ovmomy oomm, coscsed | e cmmmn S

G M ) =0 5.9

In fig. 6 the (0%, a*)-plane is separated in the regions 0 to V. According to fig. 4, in
regions O, IT, and V, which may or may not include part of their boundary, the
plastic strain rate vanishes, Consequently, states corresponding to case B are in

these regions. F;:'n—n /3()5 9) with (5.6) one obtains

/x#/ @9 = Ru (%) o, VAT,
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With (4.17) it is assured that the dissipation vanishes at the equilibrium state
a*=0if RM is bounded. Thus, non-negative intrinsic dissipation requires

2 /7,,) = ¥ (5.10)

Excluding the case that either R or M are identically zero, they are required to
have the same sign except for special values of the temperature where either R or
M may vanish. If the original Robinson model is used, with Y given by (3.22),
distinctions according to the constraints in (3.22)9 must be made when (5.9) is
evaluated. However, the inequality (5.10) is obtained again,

The algebraic analysis for case A is more involved. This condition applies in
regions I, ITI, IV, and VI of fig. 6.

Region IIT and VI

In region III the second term of (5.8) is explicitely
w-f8
A 2 6’( *7 rZ
— Y M (Y = + RH —= A (5.11)
2 7 /Y

and with condition (5.10) this is clearly non-negative. The first term of (5.8) in
region IIl is determined to be

[o* - L Mx*]m'“/g«/f“—x?

=/-/s /' /,, 0(]6’/" (4}../} “4+ 4. ///]A’ % (5.12)

and this expression is clearly positive since a*= 0 in this region and H and A are
assumed positive. Consequently, in region III the intrinsic dissipation is positive.

In region VI a similar consideration yields the same conciusion.

Region I and IV

In region I inequality (5.8) simplifies to
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y* = [6"- Clay ][ KT ~A] + 24y 2o,

<0 =0 A
for H>wlso (5.13)
T at ¥
Ve [ot Cler] e A] £ P =,
| — i N 2o J
<o =0 Forr oz wted )
where £ 1
*
(s X C*,(ay:#/f X 28
() = i 2 ams , ol (%)
| (5.14)

OV AN (% A
ey LS S (] e,
x-!‘

/

The second term on the left side of (5.13) is non-negative for all values of a*, i.e.,

D?d‘/ >0 Va’“_a; o (5.15)

4

since (5.10) and A >0 implies

& L,

If RM/A is strictly positive, then D*(a*) vanishes only if a* =0 (note the assump-
tion (4.24)). The first term on the left side of (5.13) requires some discussion. The
second factor

24
£ = (e -o)*1] (5.16)

is definitely positive in region I except along the boundary between region I and 0
where F vanishes, The first factor

[ - 5’2(‘9-7 o [ 6 = {f/ﬂ"j] (5.17)

may become negative then and only then when the common factor HM of the
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functions C*(a*) and Co*(a*) is positive. H is positive by assumption but M is
required to be positive if R is assumed positive; then

WY > o. (5.18)

With (5.18) the terms (5.17) may be either positive or negative depending on the
values of 6* and a*. Thus, the continuous function

-2/
( 2wy = M k") ocatent

#
6 = ¢ Py (5.19)

| Py = #H (K e w®

represents a boundary which possibly separates region I into two subsections. For|
a sufficiently large value HM and

B> (5.20)

this is shown in fig. 7. Note that the function C*(a*) is monotonically decreasing or
increasing with a* according to whether p>4 or B <4. The further discussion is
restricted to the assumption (5.20) which is in accordance with the data assumed
by Robinson [55, 561.

Consequently, for every set of values (0%, a*) represented by a point in region I,
which is outside the shaded area, the factors (5.17) are positive and consequently
the intrinsic dissipation is positive. The shaded area, in the following denoted as
the “critical region”, contains states (0¥, a*) where the factors (5.17) are negative
and thus the intrinsic dissipation may possibly become negative. The boundary of
the critical region is given by equ. (5.19) and

() K d-
F=0, le, G'=do+4, (5.21)
The analysis of region IV can be done along the same line of arguments. One

obtains a critical region of the same shape but with a point symmetric orientation
(fig. 7).

It is obvious that for a special set of material parameters the critical region in
regions V and VI may vanish. This is the case when the maximum point C of the
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curve (5.21), with coordinates
7=24

Che = Couy =Cwy = @), ary

(5.22)
# &
o boex = %
is just on the upper boundary of region 0 (point B'). Thus, the critical region
vanishes if Y.
X’ _ « ¥ > '/L
) = WP W) < atsa | for B2
or 24~
P A
Hh & (12 45) (&7 for pz .
(5.23)

Of course, the same result is obtained for the critical region in region IV. Conse-
quently, if the material parameters are such that

ﬁ/ #/ 'Q/ o 7O
and, according to (5.10),

M >0

and if in addition inequality (5.23) is satisfied, then the intrinsic dissipation is
positive for all states in the (0*, a*)-plane. However, it is evident that relation
(5.23) is only a sufficient condition. Thus, by a suitable choice of the transition
value ao*, equ. (3.18), it is possible to assure that the intrinsic dissipation is
positive for all states in the (6%, a*)-space. Note that this choice is only depending
on the material parameters H, M, and p. But it is obvious from (5.23) that the
transition value is bounded from below, i.e., it cannot be made arbitrarily small.

R emark: Theoriginal version of the Robinson model required a dis-
tinction in the recovery term of the evolution equation for the internal
variables (back stress ay]) such that the model did not admit an exact equi-
librium state. Nevertheless, by choosing a,* as small as possible, an approxi-
mate equilibrium state could be achieved. The constraint (5.23) would also
apply to the original version and assures positive intrinsic entropy produc-
tion in the (o*, a*)-space. However, the constraint that a,* should be above
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some lower bound and simultaneously as small as possible represents an
inconsistency of the original version of the Robinson model.

To obtain necessary and sufficient conditions for the uniaxial case, the following
approach appears to be straight forward. Generally, it is required to find those
conditions on the material parameters which just prevent the intrinsic dissipation
Y* from becoming negative at any state (0¥, a*) in the critical region. Thus, the
vanishing of the absolute minimum of the intrinsic dissipation in the critical
region defines the marginal case. For the uniaxial Robinson model the intrinsic
dissipation y* is a function of the variables (6%, a*) and of the material parameters
which may depend on the absolute temperature. Equ. (5.13) and (5.14) show that
y*is continuous in the variables (0%, a*) but discontinuous in its derivative
dy*/da* at a* =qa,* (along B' C in fig. 7). Therefore the two regions A B' C and B' B”
C are discussed separately.

If the absolute minimum of the y*-function in the critical region is represented by
the extremal properties

p 3
o8 )& _
Cri O, ox* 5 (5.24)

then the search for the absolute minium of y* reduces to the solution (6%, a*)min of
the two nonlinear algebraic equations (5.24). Obtaining a closed form solution is
by no means obvious, and even if it can be done, the result has to be checked
whether the formal solution is in the domain of definition. On the other hand, the
absolute minimum may well be on B' C where y*/ 2a* is discontinuous.

Therefore, an alternative approach will be followed by deriving a qualitative
picture of the y*-function in the two regions A B'C and B'B” C.

On the boundary A B' B” C, given by the functions (5.19) and (5.21), the intrinsic
dissipation is determined from (5.13):

4 2w p) +7 ou bowncla ry
LS _4])"}0;4) = -’%—— (%) >0 , RB8EC (5.25)

Thus, y* is strictly positive and independent of o*. Consequently, the smallest
value of y* on the boundary is at point A, the largest at B”, and at B' and C the
intrinsic dissipation is the same.
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Critical region B' B” C:

According to (5.13);,

f5= ("~ )] (o) 4] D lwy

and thus
2 [(c*ud ] ([ )T
+/«3°"—d?x7]za, /6"‘—04"//

g
=4

277 - [ letay oy /[Mf[(c— Y- 47~

2a*

_[(‘[‘,,v/ —6“‘]24, /6‘10(42/7‘

L (5.26)

These functions take the following values at the boundary of region B' B” C if the

material parameters are not yet restricted by the condition y

*é O~

Table 2:
o Y* 2Y*
v* o o* o a*
dD*(a*)
progressive da*
Bn C D*(G*) >O > 0 >0
progressive (=0atB”)
CB' = =
(a*=ap*+0) S 0 >0 >0

The results in table 2 give a qualitative picture of the y*(c*, a*)-distribution in the
region (B'B”C) as shown in fig. 8. Thus, the absolute minimum of y* in this region

is to be expected on the intersecting boundary B'C (a*

=ae*+0). Since the slope
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2Y*/J o* vanishes at B' and is positive at C, at least one extremum (minimum) must
exist along B'C. This is determined by the condition

9&") - |
6" [yt w*s0 . (5.27)

From (5.26)2 one abserves that this is satisfied for
W -

)
[(c*-x9-a] =o (5.28)
or

[[0”'—0(,"/2'4,7 - Clu®) ~6*J2m (6~ x%)=0, (5.29)

Equ. (5.28) identifies point B' where (5.27) is satisfied. Equ. (5.29) is simply a
quadratic equation for o* with the following two roots

» - {lfh)dof'lﬁv {' J_/-ﬁi‘bj(o . % g‘. 4"’ ’Zh {]

4 PN At At

¢ & 7, (5.30)
L Ay PP (e ".//Z]/l
A2y - 4&’4
with
¥ _HH
4 = [’ 0{7 4 “S s "'—"“/A‘Iym_,, (5.31)

Since the radicand on the right hand side of (5.30) is positive for all parameter
combinations, equ. (5.30) represents two real roots. Inspection of (5.26) shows that

¥

QL >0 (5.32)

da*
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and
/=0

& .
%}l >0 (5.33)

The second derivative of y* is
%d‘éd,' = (m-7) [/0“"'-%:/L'/’]m:° Edf)
‘/[/o‘*‘-x,”)z- 7]—[95*-572* fcs"‘:d.‘)/
+ [l n ) 7"
. //z r2m)(c*- %) - /é‘-—ojji”/. (5.34)

It vanishes at point B' (6* =1 + ao*). At the positions (ay*, 01*) and (a,*, 09*) one
obtains with (5.29) and (5.30)

o’ud,k‘ 24~
96"“6’4;51 = [/O:fz -%") "//]'

D et (s ) - 2a Vraty/4

=/[lsf - w) 1]
* * (5.35)
2 [1tm) [‘5,:; M G L A'é]

A LD

= [5) -a)-47"7

7
‘Z/_’_"[/f- 2 r:gz/("~n/")z7-//'

« % s / A
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Therefore

Jipk

. . # JY;
T > ¢ —# Minimumat /0< 6"*)

cts,*

(5.36)
oozd’f ' . € %
90""‘“6'*6-4‘ < 0 ~—-> Maximum at /0(5/6; )

=0g

If (5.29) is observed, then it is evident that the two extrema are positioned in the
range 01 2* < (C*.Itis clear that the minimum at 01* is in the interval
1+a,*<01* <,C* but the maximum at o2* may be within or outside this interval
as shown in fig. 9. However, a decision can be obtained whether the maximum is
in the interval 1 +a* <o* < C* or not; if it is, then y* must be somewhat larger

than D*(a,*) for 0*-values slightly larger than 1+ a,*. Inspection of (5.26)1 shows
that

J;a{ﬁf‘/: D;/,V - /?"5'7[/"'"‘"‘372”’] < ﬁﬁ;‘/ (5.37)

>0 >0 /7 S >o

with
¥ svofrs, ocsecd

and this is true for all parameter combinations subject to the assumptions made so
far. Thus, it is concluded that the maximum at (ao*, 09*) is outside the interval
B'C and is consequently irrelevant.

These results and the general observations collected in table 2 prove that the
general shape of the function y*(a*, 0%) in the region B'B”C is as indicated in fig. 8.
- Therefore, in this region y* has its minimum values along B'C at

. ¢ ! 7
P e (#njts + u € A / 26 u)R]%
h == = 472 e
6 o; PV + i AFZy + n /a( o/]
(5.38)

and it is required that
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¥ - 2 %
//og‘;g% D?og'/ -[,C"*"’Jf//fé"’”{"/ -1/ zo (5.39)

with

* — IL/M # FM ® 2(4“-/)—4
{, = o9 Do = 7?_/@// :

If this condition is satisfied, then the intrinsic dissipation y*(a*, 0*) is positive for
all other states in the region B'B”C. This follows from the general shape of the
function y*(a*, 0*) in this region (table 2, fig. 8). Condition (5.39) together with

- (5.38) represents a restriction on the constitutive parameters and the logical
status of condition (5.39) is as follows. Whenever the parameters have been chosen
such that

#
d’/‘ag:l guy < 0/ (56.40)

then it is assured that the set of constitutive parameters is not thermodynamically
consistent: Then there exists a finite region of states in the critical region B'B”C
where the intrinsic dissipation is negative. However, if

l(nt 6y = o,

thermodynamical consistency is not yet assured since y*(a*, %) may possibly be
negative in the critical region B'CA. The following analysis demonstrates this.

Critical region B'CA
We calculate the slope
&
()
$ " ¥
94‘{ X#T:A:r—o)é-:d;*)’

if this value is positive for the limiting case

*
(%% = o, » (54D
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then there exist states with y* <0 in region B'CA in the neighborhood of (ao*, 01%).
With (5.13)9 we obtain

5:1 oo, (), (55 (g T

.—
_=

(5.42)

7‘/[(@4/ o”/z,h(o« o Ack a//—//]M

But at the state (ay*, 01*) condition (5.29), and thus (5.30), applies so that (5.42)
reduces to

(20( e a0 / /ﬂ/w ;"/_’//Z’" ""/ ”/ (5.43)

o €= 6'" %
Observing (5.14), one deduces 2w p) P /sj iy \
& st
:7/37 A ‘—*/ Z(m-p) ,.4// #, / )/x'}
 (5.44)
20, HM o A
;j‘(—,& ¢ = = Ka/fﬁéj AR

The limiting case equ. (5.41) gives

&Z(// = [[;Z/,'/ —6;"][6’."—4{,7&—’/] ; (5.45)

Combining (5.44) and (5.45) with (5.43) yields
e Gy - ot ) (G-
Sl -]
(5.46)
f; //4'?44'/ -6 %) 2fmp) —Af*‘—azy’-
Ll -nt) 1]

ft

7 oe* 0(‘;4/,“.0
#
6= 6,

I
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Since

2t > o

the r.h.s. of (5.46) may be written

0”4’/
A Sy w0

orea -[(6“-/0’)L’4]/(°”‘“‘ <) .

b -6 Nk o Jelort) - [

(5.47)

Accounting for (5.29) with o* = 01*, again we finally obtain for (5.47)

&It , 3 -A
2 st //%é "’//07“"('7 - % /

0”*?6'4“

%
[ (5~ &) -] (5.48)
5% n")

The sign of the derivative is determined by the sign of the term within the {...}-
brackets. It is evident that the derivative is negative for all values of (01*- a,*)>0
whenever the exponents m, B, and n are conditioned by

m=/3
—_— £ 4 (5.49)
m ]
Thus, if the ratio (m-B)/n satisfies the upper bound condition, then it is assured
that all states (a*, 0¥*) in the infinitesimal neighborhood of (a,*, 01*) belonging to
region BC'A have a positive intrinsic dissipation independently of the value (o1*-

ao*). If the above condition is not satisfied, then the same conclusion is obtained
provided

" #r— /3 _4//0, 4/ -/f c O

or Py et A/‘VZ (5.50)
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On the other hand, if either (5.49) or (5.50) is not satisfied by the constitutive
parameters, the intrinsic dissipation is negative at neighboring states of (ao*, 01%)
in region B'CA. Thus, satisfaction of condition (5.39) assures thermodynamical
consistence for all states in the critical region B'B”C but not in region B'CA.

However, the satisfaction of the conditions (5.49) or (5.50) does not assure that the
intrinsic dissipation does not possibly become negative at other states in region
B'CA. Therefore, it is necessary to study the implications of a vanishing relative
minimum in region B'CA.

From (5.13)9 we obtain

5= Dy — [y - T L ) 4]

L L o] Y-
-y - 6" Tam (5= "‘“)/

L (5.51)

gj: - [(s-u)*-a] /ﬂ’”“[ﬂ 9-1]
~[Cuwy-6en (6* ”‘%

The general trends of these functions at the boundary of region AB'C are collected
in table 3.
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Table 3:
Y oY*
y* D o* 9 a*
dD*(a*)
B'A D*(a*)>0 0 —_—>0
da*
AC D*(a*)>0 >0 =
(=0atA) S
CB 0 0
>
(see table 2) | (seetable 2)

Following the variation of y* for a fixed value of a* but variable o* (i.e., along a

parallel to the o*-axes), one finds that the slope 9 y*/? o* must vanish at a point in
the interval 1+ a* <o* <Cy*(a*), and this corresponds to a minimum of the curve
(Y*)a*=const. . Thus, the general shape of y* along parallels to the o*-axes is the
same in the regions B'CA and B'B"C.

From

o *

= O

inregion B'CA

it follows (excluding the boundary B'C; see table 2)

[lef-n)-n] = [ Ctn?) -6 T2n (4,°-4) =0

and consequently

G

A

A2

The requirement

w  (rink p o Old) Y

7

THELn

(5.52)

(5.53)

[/#244 vu(Cotn) —xﬂjz’

(5.54)
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! 4
/99;: o“;&' = O in region B'CA
o

¢
K=o
yields

aw/ [{( - =/ //M‘/ 1 =0

when (5.53) is observed and thus

. ;4 7, 4/1
% # (d(o/ﬂ/d‘/'&: -4 A] (5.55)
= A .
S o # / ‘ [/a’ﬂ'/dx%/f _/ '

Combining (5.54) and (5.55) gives a nonlinear algebraic equation for ay*. If the
choice of the material parameters is such that the solution an* is outside the
interval

*
o' e % L oxt L af

R AL R A

then certainly a relative minimum of y* in region B'CA does not exist. In any case
an analytical solution for am* does not appear to be feasible. Therefore, the search
for thermodynamic restrictions of the material parameters via the requirement of
a non-negative relative minimum of the intrinsic dissipation is not tractable if
restrictions of some generality are wanted. However, a lower bound for y* in
region B'CA can be determined. Taking the minimum value of the first term on
the r.h.s. of (5.51)1 and the maximum value of the second term yields

7/ # v A
P Py - [¢ - e[ ¢ AD ]

(5.56)
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It is now evident that thermodynamical consistency of the material parameters is
assured in case that

s = o. (5.57)

The quality of this bound is difficult to estimate. An improved bound can possibly
be found if the function (5.56) is studied in more detail. However, at this point a
further extension of the analysis seems not to be justified since the results are
restricted to the uniaxial case anyhow. It is more appropriate for the multiaxial
state of stress which is tackled in the next section. In fact, for a limited but
practically important range of parameters we will obtain a complete solution.
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5.3 Thermodynamic Restrictions for the Multiaxial State of Stress

For the extended Robinson model without isotropic hardening and for a general

A
state of stress the dissipation inequality is given by the inequality (5.3). Here Q is
the positive discontinuous function

%ﬂ ; G > G, N Sy Qge >0

0= =
, (5.58)
l//G_ﬂ ; 6= G U Sy, =0

[]

and, accogding to the assumed continuity of the recovery term (equ. (4.23)), the
function Y is continuous and given by

7=y= - R 6M7E . (5.59)

s & .
Thus, both Q2 and Y depend only on the back stress and the absolute temperature if
a temperature dependence of the material parameters is accounted for. Then the
dissipation inequality (5.3) takes the following form

/-= Lo * fo * Je =0 (5.60)

where, observing the deviatoric character of the plastic strain rate,

[] o P
/:0 = 6:?”41 Ezu = ‘Sma € ses e (5.61)
1s the plastic stress power, and
gy
fu = = LM Aun Eane (5.62)

is the contribution due to the hardening term in the evolution equation for the
back stresses; further,

w3
&

- i , T
fo = -?Mdmdm = + K/ 77 ST (5.63)

is the contribution due to the static recovery term.

Several observations can be made rather easily. The evolution equation for the
plastic strain rate ¢Py) is given by equ. (3.4). Then the plastic stress power reads
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( 2l
Vo4 F*;?Z ; F 20 A Suu Snn>0
[y ] é £
o = Soon Emn = (5.64)
0 , FS0 USu. 2w, 20,

\

obviously the Robinson model is designed in such a way that y,, is non-negative,
le.,

fo = o0 (5.65)

for all processes. Here it should be noted that the thermodynamic requirement of
non-negative entropy production actually does not require such a modeling since
the plastic stress power is not the only term contributing to the intrinsic dissipa-

tion vy.

The Robinson model allows for an elastic region where the plastic strain rate
vanishes:

If Fso u,s;,,Zaso then S.P

MA_O'

In this region the intrinsic dissipation is completely determined by the static re-
covery of the back stress, and it is required to be non-negative

M A3
J/nd/e = /@O') /1(',-) ‘_é[z_':'-," Z-Z; = 0 (5.66)
2

where

Since I, the second invariant of the back stress (see equ. (3.7)), is a non-negative
quantity, the restriction (5.66) is satisfied if and only if the two material para-
meters R and M are constrained by

2

Ner) Mc’r) =

Y 7. (

@4
(o))
-~
e

?

This condition hasalready been obtained in the uniaxial case, equ. (5.10).

Equ. (5.67) simply requirés that the parameters R and M have the same sign if
none of them vanishes. The positiveness of R (as well as H and A) is, of course, an
essential property of the Robinson model. Otherwise, the recovery of the back
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stress could be inverted or would be non-existing, Therefore, inequality (5.67)

yields the necessary requirement
M=o, (5.68)

If the plastic strain rates £P’| are non-vanishing, that is, if the constraint condi-
tions

F?@ and \.5;@“, Emm >0

are satisfied, then the contribution y  due to hardening is given by

| % =
= - QMR F Zun<mn ; (5.69)
ﬁ" /'

the product term QMAT" is positive and the second invariant Jo of the effective
stress €| is non-negative by definition, Thus, the sign of y,, is controlled only by
the sign of the tensor product any, Zyn or by

K 1= 1 a,, Eran . (5.70)

The scalar quantity K9 is one of the mixed or simultaneous invariants of the two
tensors amp and Zy,, and it may be positive or negative. Here it should be noted
that the irreducible system of invariants (integrity bases) of the two symmetric
tensors aij and Xi| consists of the three invariants of each of the two tensors and of

four simultaneous invariants [87, 89]:
& = Qgq =0 7 = Zg =0

Laa = Qg dg HEL = Zg e b (5.71)

ez

‘Zl,_g,g;,g = Zge Agsa Aok frggz = g@ Et’lm Z"*i)

— ' = \

r& 2 = Cap . z8 '
S v simultaneous invariants > (56.72)
6:3” g‘é% T ke Aj;gm e ak} and Zi).
trald 2 =AQg @eni Zi &
frﬁéggs@géz@%&m%&@ )

It is obvious that only three invariants of the irreducible system of the pair (a;,
2) are involved in the representation of the intrinsic dissipation y, i.e.,
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Ay By = 2L, 20
dée Zfé = 2 kz i o . J

Itis evident that the positiveness of the contribution y,;, equ. (5.69), in the plastic

region is only assured if Ko is negative

K, <o > fx “o . (5.74)

In this case all three contributions to the intrinsic dissipation (5.60) are positive
and thus the dissipation inequality is satisfied. However, if K9 is positive the the

contribution y,, is negative,i.e.,

kK, >0 ——> (fy <O (5.75)

and possibly the dissipation inequality may be violated by some set of state vari-
ables ai), £ and T. Therefore, the dissipation inequality has to be discussed only

for a positive simultaneous invariant Ko,

In the plastic region the intrinsic dissipation takes now the following form

/' = 4 * I * d=
‘ . -p
S Eﬁ,, —_[ZMahcu E soane ¢ i/{eu,, Do

1]

| SR R— N I ~—
d» z0 e 2 o de =
oH &
= 7”;;‘:_ ahn -_aMdﬁ'o. Zlh-u]'/— —_—-—éllmﬁ“‘*
é
“t (5.76)

I

Vs

where the relation
. bl J- = ) /7 i )
5::..;. Zlhn =3 (/Zmn # Dseen ‘!“4«4- 2 +r(z‘

is applied.

With the introduction of dimensionless quantities
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~ . o~ N

S = Ske/x, At A fi | Zg = Ly s
and y (5.77)

:,’Z;/JgLaG/ i:ﬁ/ﬁ;ﬁz , /&zﬁ/kpz’

where K,>0, equ. (5.76) reads

z%’%"% G el - t)h]

it

> =20 ) (2) (5.78)
~ W-ABtH
’f'gz/?lr}/if}r)}f 2:, = O 5
here =0
f . v e o~ ad N
Her) /7,7 Z,>2, ~nZ+k >0
¥ o
AL207,,7) = N . (679
| »4/(7}/2& 7 5; v 4 450)

with

Z, =& . (5.80)
Y]

Note that in inequality (5.78) only positive values Ko are to be considered. Fur-

ther, the admissible signs of other quantities are indicated.

Following the argument of Rational Thermodynamics, the dissipation inequality
has to be satisfied for all states characterized by the deviatoric stress Sk1, the devia-
toric back stress ak| and the temperature T. Equally well a state may be described
by the effective stress ikl =8k| - Gk, as well as ay) and T. The stress variables gkl
and ay] determine the invariants fz, 32, ﬁz In general fkl and gkl may take inde-
penaenuy arbitrary values and this property applies also to the second invariants

Joand] I3, non:negatwe bJ y definition,

According to the theory of invariants [87, 89], the simultaneous invariant ﬁz can-
not be expressed in terms of the other variants of the integrity base (5.71, 5.72).
However, this does not mean that the invariant ﬁz can take arbitrary values inde-
pendent of the choice of'fz and 32. This is shown as follows.
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First of all, the assumptions
Z, =0 or /Z = O

P4
impose the condition that all components of the tensors '51‘1 or Xk vanish @

Ly =0 or  Zg =0,

Thus, in both cases one has

~F

K= O, |

Further, consider the principal coordinate systems S' and S” which are associated
with the tensors ai) and i) and which are generally different. The principal val- i
ues are aj, 4y, appp and 2, 21, 2p1p such that

( ~ 3 (=~ )
a4, O o© Sy O ©
ar / s = 4 ~
a, = e a4 o 2y = |0 25 © (5.81)
0 0 Q4 O o 2:_;?
4

)

are the appropriate components in the two coordinate systems. The second in-

variants are given by

U
e

Ls

Lad

~ &

4

.2 ~e
+ Az ""ﬁj}

L (5.82)

(5 +Ey + 5/

A =

/
The relative orientation of the two systems of principal axes, both considered to be

right handed, is completely determined by three angles. For definiteness the
Eulerian angles

o< S = T

o

/ /

as defined by Goldstein [129] are used. If the cartesian coordinates of the principal
systems S” and S' are denoted by x”k and x'k then they are related by the transfor- |
mation matrix Ag|

4

/
"2=F74

e A
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where A} contains the relative direction cosines

N
‘ f '/4 #, %,

() = (005 5) = | 40 oo m

(5.83)
Ly sy g ’
3 /
In terms of the Eulerian angles they are given by [129]
N
@3(/\’::%‘;4/ =xf, = Y gy »mr}da'«;*/h«%
/ % — e A - y
Gn (X K) = L =iy mp - aip oy
/ y _ _ . .
ai( 8y, £)) = 4y = widlaiy
aﬁ/x’x«"/ = A, = LW /.td.;ﬂ——anz/qabfﬂ/f«i%
F,72 4 (5.84)

f
»
W

X X4Y) - din(p s g0 o+ ) oo pp L Y
a,,/,(}ijc’y = /1«3-—-—4&4}470}9

oo (W' 4y") = g = mr;z/m;»f
ol K ") = e Cosy i
499//(}//,(37 = o, = @J'f o

J

/

The back stress tensor g'kl, given in the principal system S', is obtained from the
transformation law

~ N

,ﬁ‘; = 'z?‘ln Zhn g"e

which yields, observing (5.81),

o f

(5.85)

Zo = e Zr Aue * Ay Eg By * Fea 23 e

The simultaneous invariant ﬁz is obtained from (5.73) with (5.81)y
o~ ~t) 2

4 ¥ 5 Y
Ky = 2 e 2y = 2 % le

~ / =/

P Bl e ad
1/ s o, + S, + Ay ]

Ul
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and thus
f-z/a Ea) vibm) i)
va df’zg] 7‘4}51’/”'1/3

£ 46.'12_7_/7 *41721/ He Mg ]'

(5.86)

If one keeps the principal values of the effective stress and the back stress constant
but chances the relatlve orientation of the two principal systems S' and S”, then
the invariants Iz and Jz are constant but the simultaneous invariant Kg varies
due to the change in the relative direction cosines. However, this change is re-
stricted due to the boundedness of the trigonometric functions (5.72). This observa-
tion applies also two more complex situations where also the principal values
change but fg and 32 are kept constant. Thus, fiz is not allowed to take any (posi-
tive) value if fz and J. o are held constant. In other words, the property of arbitrary-
ness and independence of the two deviatoric tensors ak) and §k1 is not transferable
to all of the three invariants'fz, 52 and f(z. This has logical consequences for the
restrictions to be obtained from the dissipation inequality (5.78).

Assume in contrast to the above conclusions that fz, 3,2 and ﬁg > 0 could take in-
dependently arbitrary values. Then inequality (5.78) is satisfied if and only if

A

/// ——/Z/IZ,T)/‘//U/: o Y Z.,7 8D

From (5.79) one finds than the maximum value for Q is given by

{2 = b‘/f)/?f. (5.88)

max

Thus, under the above assumption the restriction

'y} A

Hezy 1%,
S - I s, /7 (5.89)
: A ’ ’
7

o
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is a necessary and sufficient condition for the dissipation inequality to be satisfied
for all values of I, :f 2, ﬁz. However, since the invariants cannot take independent-
ly all positive values the restriction (5.89) is only sufficient.

Combining the two inequalities (5.68) and (5.89) yields

Y
- 73
4.

» < e
o< M, = o (5.90)

This may be viewed as a lower and upper bound for the parameter M; the lower
bound is necessary the upper only sufficient. If M is assumed to be given, inequal-
ity (6.90) represents a lower positive bound for }zB/H.

It should be noted that condition (5.90) does not involve the state variables
"stress” and "back stress” any more, but is a condition only on temperature depen-
dent material parameters,

Because of the sufficiency of the inequality (5.89) or of the upper bound for M is in-
equality (5.90) values of M larger than ;fzﬁ/H are possibly allowed without viola-
tion of the required non-negativeness of the intrinsic dissipation (5.78) for all val-
ues of the state variables ax] and gkl- Therefore, the derivation of a necessary and
sufficient upper bound on M or more generally necessary and sufficient conditions
involving only the temperature dependent parameters would be rather valuable,
This aspect is discussed in the following.

To begin with such an analysis requires a better understanding of the bounded-

ness of the simultaneous invariant ﬁz if the invariants Jo and I are prescribed,
Here the Schwarz inequality applicable to vectors or matrices is the essential rela-
tion [64]. Applied to the two tensors dk) and Zi) it reads

or . L (5.91)
b - € MZIT, fea,

)
note that only positive Ko-values are of interest, thus, only the range 0=~ §= lis to
be considered. The dissipation inequality (5.78) then reads
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/ ‘3’9’” /7‘”‘/77: 7‘/4——(2/-2’:;7//10//f/§f_[;:/

) °
| v ol (5.92)
+ 2 Ry Mpy x L, > 0

7

>O

L~

=0
where .Q(fg; T) is the discontinuous function given by (5.79). We now consider con-
stitutive models which permit the expression [1 - Q(Ig; T) M(T)] to be negative in a
region Iy < Io* such that (Fig. 10)

(1 — 4/ TP >0, 7, 2" }
-#ﬁ/j“ﬁ =0 , ”2. = ':,P
[1- QM= ) oy L (5.93)

//-///’/'/flﬂ <o , Ly < L

~ fadt o
g - BHfF8 = amst <0, Lo ZL, <1,
% o J

In the region Iz Io* the dissipation y is definitely pos1t1ve but for 12 < Ig* the

™

dissipation may become negative for some set of values Iz, Jz and { and a given

temperature. However, the function

/=f/fu/]:,f,'/_/ (5.94)

is required to be non-negative for all values of its arguments in the regions

“ ~ % )

OSLSZL
by
0<f

7 > o0 J

 (5.95)

note that for}z = 1the yield function <F> vanishes (vanishing plastic strain
increments) and then y is definitely positive.

For a given set ofvaluesTg, J2, Tand [1 - QM] < 0 a lower bound Yy, for the intrin-
sic dissipation is obtained by setting £ =1; thus
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/28 = /)/-Zni //: ) 4/’.7_j
_ 1?{2];(.]3) <, /;; " //,__Q(ji',?)/"//r/)//[jﬁ/

e (5.96)

+ 2 Ra) Moy % L e

Fa

=:fle[-zﬁi/;:i7/ Sf/j;//:/ﬁ'r/'

Since the value £ =1 may indeed be attained for some choice of EH, f‘:kl for given val-
ues of I9 and J9, the function §m is subject to the constraint

As 2 i
VosZ, <Z,

A ~ .
lza /-Zc;, /;_,. 7—/ zZ O ) b >4, (5.97)

7 70,

If this is assured, then}is also non-negative and therefore it sufficies to study the
lower bound §LB'

With
Fadu/% =4 =f 7
and the notation

X = /f , g = /{/,:: (5.98)

equ. (5.96) reads

e = 280 (32-0) [ g+ (1w t)r]

-ptYe
t2RMy ()" < e

(5.99)

here and in the following the dependence on temperature of various quantities is
not indicated anymore. Then the lower bound dissipation (5.99) represents a sur-
face in the (x,y, y; 3)-space. This permits to discuss the lower bound-dissipation

function y, ; in geometrical terms analogous to the analysis of the uniaxial stress
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(section 5.2); but it should be noted that the choice of the independent variables is
different.

Since [1 - Q M] is allowed to be negative for x < x* = \/—f;“., a critical region exists
in the first quadrant of the (x, y)-plane where y, , may become negative; this re-
gion has a closed boundary and outside this region the lower bound dissipation is
definitely positive. This boundary is defined by (see also fig. 11a)

y = ; ﬁaunafzr/ /73054

7 . /4 - —%—/L/X" = O ; éamdwy A% , (5.100)

y* //}..%)X" :O;éﬂund&ﬁ/z’;

where
e - ‘ (5.101)

In fig. 11a the boundary B”C is constructed assuming that

B =4 (5.102)

in accordance with the data for the Robinson model [56]. This limitation will be
used throughout the following (see also section 5.2); it implies that the shape of the
critical region approximates a triangle.

Whenever a state (x, y) is on the boundary, the first term of the lower bound-
dissipation (5.99) is zero either because (y2 - 1) or the term in [ ]-brackets vanishes;
here it should be noted that Q(x..) is a continuous but non-smooth function. Thus,
along the boundary the lower bound-dissipation is determined by the positive sec-
ond term in (5.99), i.e., the dissipation yg due to recovery; this is only a function of

the variable x (related to the back stresses):
;..“;é-_f-&.

rd 2

J;’é = d”‘e = 2/?M aﬂa [X"y >0 a/ov ﬁ&le?ﬂi (5.103)

The critical region exists if and only if point C is above point B' (fig. 11a); note that
this is strictly true only for p - 1/2. Thus, the following criteria apply:
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( ] ) ( HH A
exists a/__.m - /X“ >A
el g ’
A critical region L if ¢ L (5.104)
H#H
=/ o, = [ 5 4
| does not exist J ? ¢ ,4;1.8 / o J.

The non-existence of a critical region implies that the lower bound dissipation is
positive for all values x, y and T. Therefore, the condition

/,’%x ’/’//f =4 (5.105)

o

" assures compatibility of the thermodynamically extended Robinson model with
the dissipation postulate; however, it is only a sufficient condition. Inequality
(56.103) implies an upper bound for the parameter M

23
—/I;‘)g— /// * f";) (5.106)A

With equ. (5.98) we have

and therefore equ. (5.106) A takes the alternative form

L0/ i)
M = “7/_‘ ',Z.z . (5.106)

A comparision with inequality (5.90) shows that (5.106)p is an improved upper
bound which encloses the bound (5.90).

In principle necessary and sufficient conditions on the temperature dependent ma-
terial parameters can be derived by requiring that the absolute minimum value of
the lower bound dissipation is non-negative in the critical region. However, the

classical extremal conditions

Ids _ ? dis o

ox 'y

h

cannot be simply applied since y, , is a non-smooth function: Atx=x,,i.e.,along
B'C (fig. 11a) the derivative dy, ,/dx is discontinuous. Therefore, analogous to sec-
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tion 5.2, a qualitative picture of the y, -function in the two regions AB'C and
B'B”C is derived.

Critical region B'B”C:

According to (5.99) with (5.79) the lower bound dissipation is

fio = 28 (720 [ +(7- ﬁﬁ)‘v]*ﬁ’”’/

i

and thus -
-_.gja = 2R% (37 //”‘3"//;7 "‘zy/f/z»//’ Ar"/’

//fZ'h
’ (5.107)

gf‘“ 285 (7%7) [fz/’ﬂ < + /
fz/?ﬂag 2fnips + %) ﬁ(”/“/)z.

Here it is to be observed that § = 1/2(5.102) and m- f§ > 0 (equ. (4.24)).

These functions take the following values at the boundary of the region B'B"C
(table 4):

Table 4
dY, g ay g
\7
LB ay ax
d
Bv Bn Yl{ > 0 0 _Y_R 0
progressive dx
Bn C YR > O > 0 > O
progressive (0 at B”)
CB' . = 0
_ 0 0 >
(x=%,+0) S >
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Since the slope dy, ,/dy vanishes along B'B” and is positive along B"C there exists
at least one extremal value of y, ; along parallels to the y-axes. The condition

¢/
2y =0
yields y,=1, i.e., the boundary B'B”, and two roots

o A’M —-///X“
Pz = ram

HHM WK
z 4#24: //ﬂc'ra x ~/’)X:// ;

only the first one is relevant, since the second one is outside the critical region,

(5.108)

Observing the derivatives along the boundary B'B” and B”C, it is evident that the
root yy represents the locus of the minimum value of y, , along a parallel to the y-
axes. Fig. 11b gives a qualitative picture of the y, ;,-distribution along any parallel
in the critical region B'B”C except at point B” where P=Q.

Since the derivative dy, g/0x is positive everywhere in the critical region B'B”C, the
absolute minimum of y, ; in this region must be on the boundary B'C. Therefore,

the absolute minimum (y, ), of the region BB"C is at
\

X=X

(4]
A A M , (5.109)
J = %f ;/fzm Xo‘,eﬂ ,//r:

1‘//';,;_4' f/:/:;,h X‘z,a - )X‘]/

and is given by

(5.110)

/"/"3//1 T Ju /X: \’/yg/) ‘
With this geometrical results and the data of table 4 a qualitative picture of the
surface Y. g(X, ¥) in the critical region B'B”C can be given: It is similar to the "sag-
ging roof”-picture of fig. 8; of course, here the difference in the choice of the vari-
ables produces some distortion.
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Itisrequired that

({s), = o. (5.111)

If this is satisfied, then the lower bound dissipation y, ;(x, y) is positive for all oth-
er states (x, y) in the region B'B”C; this follows from the derived geometry of the
surface y, 4(x, y). Condition (5.111) is a somewhat limited restriction on the tem-
perature dependent material parameters. Whenever the material parameters are
chosen such that

/IZB/X;,%/ < 0/

then it is assured that this set of parameters is not thermodynamically consistent:
There exists a finite region in the critical region B'B”C where the lower bound dis-
sipation is negative. However, if

/‘3/’(:/%) z 9y

thermodynamically consistency is not yet assured since y, ; still may possibly be
negative in the critical region B'CA. This is discussed in the following.

Critical region B'CA

The lower bound dissipation is given by

- HY
@ z__ - ——
fos =475 () (3 ~(g5 1)) i@ 6.112)
and the corresponding derivatives are

. | HM ‘
s 2B, (3%) (12)f 3l -2y ﬁ;/ﬂﬁ "/f‘
4

2y

anmp

//'f"("'h/

ddes 272 (37 /- (ﬁz _4/] (5.113)
Hgo

A

4 2oMm Lfom-ge + %) (1Y
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At the boundary of region B'CA the above functions take the following values
(table 5):

Table 5

g Yz

Yin ay ax

d
B'A V>0 0 LI
progressive dx
AC yi=>0 >0 = 0
progressive (0atB”) >
CB 0 "0 "0
> > >

Similar to the region B'B”C the slope dy, ;/dy vanishes along B'A and is positive
along AC. Thus, there exists a relative minimum of the distribution of y,; along

parallels to the y-axes. For a given x-value (x, <x <x,) the necessary condition for
this minimum is given by

s _
P ~0.

(5.114)
and this yields y,=1 and two roots

i #H 2,
7’12 = st X —A)X“{_)

At En 7
o M )]/5} 2 (5.115)
"[:ffz» /2*—27’ /. /

but only the root yj is relevant. Therefore, the y,p-distribution along any parallel
to the y-axesis similar to that in region B'B”C (fig. 11b).
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The second derivative of y, ; along a parallel to the x-axes is given by

2fmrt)- 1

Axrt 4

an intrinsically positive quantity and constant along parallels to the y-axes. This

gives a qualitative idea of the shape of y, ;-distributions along parallels to the x-
axes. In principle the positiveness allows the occurrence of a relative minimum of
this distribution.

The locus where the derivative dy, ,/dy vanishes in the critical regions B'CA and
B'B”C is represented by the curve ADB” in the (x, y)-plane (fig. 12a). It is evident

that a relative minimum of the surfacey, y(x, y) in the critical region B'CA, if it ex-

ists, is on the section AD and the necessary condition, in addition to (5.114), is

2d:0 = O along D (5.116)
aox

This yields a second nonlinear relation for the coordinates x1, y; of this extremum.
Together with (5,114) this represents the determining system of equations. In-
stead of trying to solve this system of equations*, we prefer to study the question
whether or not a relative minimum exists in the critical region B'CA,

The lower bound dissipation y, , along the section AD and DB” is given by

4
Yl = foa (X Z000) = Jra(X) (5.117)

where y1(x) is defined by (5.115) and (5.108), respectively. Fig. 12b gives a qualita-
tive idea of this distribution. Along the section DB” the function (5.117) is monoto-
nously increasing. Observing (5.107), the slope dy, ,/dx is given by

m //,/u Mabir) 48 _ [PV
/ 7‘ 2 4/(" )/r' v (5 118)
h e 77 |

= O

At point B” one finds y; =1 and thus.

* In fact, an analytical solution appears not to be possible.
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ddster  d o

= > 0.
adr A X

Consequently, the function {1’“; is tangential to y, at B” as shown in fig. 12b.

The second derivative is given by

4% P4 ) /07,;;8 d;, /) /d«y /ﬁ}_y Afgz,

det = L oxe Ix ;’J ,, Ar a¢) T 2y4 A
= 0O

>0

and consists of positive and negative contributions. Therefore, its sign is not im-
mediately obvious. In fig. 12 different values are assumed; in any case a precise
knowledge is not important since it is known that the absolute minimum in region
B'B’CisatD (x=x%,,y=y1).

At x=x,o0ne finds

Ao _ /)(f / / ly / / .0
ar =)t to IX S ro Y to

N‘Zy _ a,)/m) / z ) s
A /-0 ( PX ;:;-o o At fteo <

such that

Ay
o
i
0

dda) /d{y = 2R 4‘—44‘2 o >0,
/“"‘,pa /dx‘,:_, Zo(y}ﬁ/};‘"o

4-
[oun]
&
133

lways larger than at %, - 0. This fact is accounted for in
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Atx= x, one obtains

a/ ;&2 J&ar / = f .

Therefore, the distribution \‘T,LB(X) along ADatx= x, is tangent to the function
V(%) as shown in fig. 12b.

The second derivative of y Y, in the interval x, = x<x is given by
ﬂ/ﬂg _ Dtos iy ﬁcf’a /?///Jy
dxt T U ey e a’; agt ax,
>o

e A%,
2 7= dx? .

The complexity of this expression makes it difficult to judge the possible occur-
rence of a change in sign. However, at x=x, a positive value is observed:

Ay / //ir
ar’ /rx, ar?
2 (A 8) =

= 2RM z/m,mz/»Z/'»- ) Xy > o,

]

Several distributions along the section AD are shown in fig. 12b (case 0 - 3). Case 3

implies the existence of a relative minimum. Since the slope atx —xA s always
positive the presence of a relative minimum in the interval x, = x=x _implies the
existence of two extrema at least. Therefore, the necessary condition

/4

Ax ’ (5.119)

must yield at least two different roots in the interval. With (5.118) and (5.113)g
equ. (5.119) yields

U4

Z -
dhe g, (i-1) [ r“‘ */

# 2RM ¥ (0 B +%) ﬂ«ﬁ = o, (5120
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This problem is equivalent to the search for the points of intersection of two curves

z1(x) and za(x), i.e.,
Z,00) = &,0)
where
A
Z ) = L)

%o s
Bl 20mB81L)) 4=

X
ﬁ [Z"Ti;"j'/f] '

Zylr) = A #

[

/

(5.121)

(5.122)

the function y(x) is given by (5.115). A geometrical discussion of the two functions

z1(x) and zo(x) will yield the required information,
The function y(x) may be written as ,
%
2 2
g',p)=8;r 7‘/%/'49&"/

with

A 4 » A i
= < —= o= — JET
A e T 3 / B AFLw ,g"l’c

where 8 is positive by assumption. Thus,

4%
Ar

%
-8 + [ » B2 B0 o

@

._.% .
/14 _ z fngz
Z;ZZ = 248 [04 _/ > o

- /70

(5.123)

(5.124)

) (5.125)

)

For large values of x the function y(x) approaches the straight line 2 8x from
above; and for x-values close to zero y1(x) is tangent to (¢4 1/2 + & x). Its curvature
is positive for all 0 <x and continuously decreasing. Fig. 13 gives a qualitative
idea of the shape of y1(x) as well as its square, i.e., zj(x); this figure is constructed

for some arbitrary x-scale and arbitrary value & but for n=5.
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The first and second derivative of zj(x) is given by

A K T
s (5.126)5
¥4 /;
Z, A 2 o
T = z/ F LG ai
/
and for zo(x) one obtains explicitely
, % s
Az, /?/7 Z/ﬂ%—ﬂr‘}z,/ / 4,,_,4 ,t‘“{l —,,;"-4)
Ay ey /_/L"l iy ) P2 S0
/(:;"’"’ } (5.126)p

AN //"'“Z

Obviously, the shape of the zo(x)-function is determined by the ratio* (m - §)/n > 0

of the three exponents. If

f N\
-A R
Case 1 Z«i < mm f ~0
] A%z
4Case 2 :z,! = —"%4—- { then n'x*:’ J =0 qu’o. (5.127)
Case3 24 m-0 <O
L z 7= ) ( /

nd 3 there exists one and only one

*  The positiveness of (m - ) and n in an inherent property of the Robinson

model.
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For large values of x the ratio of the two functions z1(x) and zg(x) is given by

Z, - 2 - %)
/z) _ [28x) _ &,

¢ #/47¢ - f szw_’:_v-_@ - 2’
where
7,
74
/Qﬁ Z//’h -/ + 4)
(5.128)
Xtdﬂ - 4/
Hence, for case 1 (i.e., (m-8)fa > /o)
v -1 )
/d) A Z. o, - ) ( ¥ < </
K=y oo T2

2 ]

2
/é/ L, L2 _ ¢8 r ifand only if 2 =/ (5.129)

At x=0 one observes z;(0)= A< 29(0) = 1 and for large x-values case I(a) implies
z1(x) ® z9(x); this requires that there exists at least one or a larger uneven number
of intersections of the two curves z(x) and z9(x); if there is more than one intersec-
tion there should be at least three,

The case of one intersection, possibly in the interval x, <x<x asshownin fig. 12
(case 2), seems to be the most likely case. In fact, we will prove that for case 1(a)
there is one and only one intersection in the range x >x,.

As noted above the two functions z;(x) and za(x) have at least one intersection for
case 1(a). Assume that their first intersection is at x=x,>x, (fig. 14). Consider the
lower bound function of z1(x) given by |

foy)y = (e85)'< 2,
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for large values of n or large values of x this is also a good approximation for z;(x).
The intersection of the two functions (z1)), and z2 is determined by
e /3

F A sl A
$BL, = A*E L= | Z,=x7
Aslong as (m - B)/n < 1 the shape of these two functions of fg shows that there ex-
ist one and only one intersection (I2);

(), =), > o),

which corresponds to the value (xj)yp, an upper bound for x;. Consequently, the ac-
tual functions z; and zg allow one and only one intersection in the range x >x, for
case I(a).

On the other hand, case 1(c) implies that z1(x) < zy(x) for large x-values. Thus,
there exist none or at least two intersections depending on the factors & and 2,

For case 1(b) there exist one or two intersections depending also on the parameter
B and €. Some of these cases are illustrated in fig. 14.

It should be pointed out that the existence of a relative minimum in the critical re-
gion B'CA requires that at least two intersections of the functions z(x) and z2(x)

exist and are located in the interval x, < x = xg. The above remark should be ob-
served when studying the following conclusions.

Case3 & 2 (m-8)/n < 4 and
Case l(a) % <fom-ps)fae < A

One and only point of intersection of z(x) and z(x) for X, <X
- = relative minimum does not exist in critical region B'CA

Case l(b) (#-Blfn =7

One or two intersections for x, < x
=  existence of relative minimum cannot be excluded; depends on para-

(RN Fan

. 7
mewer l)g and C, LOOo.

Case lic) (A -Blffm > 7

None or two intersections for x, <X

=  existence of relative minimum not excluded; depends on parameter 8
and & , too.
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If (m - B)¥n < 1, arelative minimum of the lower bound-dissipation y, ;, does not
exist in the critical region B'CA and the distribution (3) in fig, 12b is not possible.
Consequently, the absolute minimum of y, , is either at A or at D (distribution 0, 1
& 2, fig. 12b). At A the dissipation is positive a priori, but at D it may be positive or
negative. Therefore, these results yield the following theorem:

The inequality

M=o (5.130)
and, provided a critical region exists and (m - )/n < 1, the inequality

Jfs = © (5.131)
aQ

with

J;fﬁ = ﬁﬁ /‘:gy/ %ﬁ/ﬁ

= 2R /%i”/f)[% ” W ’4/’(/]

f%sa/z U

+ LRHxg () L (5.132)

i
7= Fx) = QZM K )&

/;M@, [ 2% ,wzxz )”] /

are necessary and sufficient conditions for the intrinsic dissipation y to be
pGS ive whatever the variables ]:2, Jz, KZ .

It should be noted that both inequalities do not involve the state variables Tz, 52’
fiz anymore but only temperature dependent material parameters. Further, for
the derivation of (5.130) and (5.131) use of the positiveness of the parameters A, H,
R, K, m, 0, B, % as well as (m - ) an d (28 - 1) has been made.
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The above inequality (5.131) is a criterion which applies whenever a critical re-
gion exists that is if (see (5.102))

ﬁ:{; 1/ > 4 (5.133)

If, however,

HH
X7 //f =7 (5.134)

a critical region does not exist and the intrinsic dissipation is positive everywhere.
So inequality (5.134) is the first criterion to be tested.

Further, the above inequality (5.131) applies only if the ratio of the exponents is
bounded by

O < "-’—/'h—é < A, (5.135)

If (m - §).:n Z lthe situation is much more complex; a necessary and sufficient con-
dition has not been derived yet. Fortunately, in most applications of the Robinson
model [566, 61] the exponents have the typical valuesn ~4-5,m ~3.5-4,4 <p <1
such that (5.135) is satisfied. Therefore, an analysis of the more complex situation
(m- B)/n . 1issuperfluous.

The derivation of a strict upper bound criterion for the parameter M using (5.131)
and (5.132) is a difficult task. However, a sufficient upper bound may be obtained
as follows. The assumed existence of a critical region requires that

HH
yﬁ e

—1 )K"~ Zf > 7, (5.136)

which implies

X4

Consequently, equ. (5.131) yields
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G0 B¢ T

/%év”/yy%% ”ﬁ)f“%]/'g;f "75‘/6"7 . (5.137)

The basic trick is to find an expression which is an upper bound for the left hand
side of (5.137) and which allows an explicit analytical solution for the parameter
M. H(yol Jub and (y1)p is an upper and a lower bound for VAR respectively, then

@

//%/:“”/%//%% )5 = (P ] i
Sy ) (e g Ty

(5.138)

and the above left hand side is an upper bound of the r.h.s. Instead of requiring
(5.137) the inequality

.73/

//224/;: “/77,45% ’""’/5 “’//%Xgé];% X /ft’”/ (5.139)

is enforced. If the parameters satisfy (5.139), even more so inequality (5.137) is
satisfied. Therefore, inequality (5.139) is only a sufficient criterion.

Dropping the term 1/(1 +2n) in (5.132)9, a lower bound for Y1 18

AR _ (5.140)
(o) = 0 Wﬁ’ e = 280 < G
Obviously, an upper bound is

/&"g/% = Zm% wr],g;« = ’fzg @xj ={Q f;.'—'/b,g-‘;é(&lzm
7 o

but a reduced upper hound can be obtained as follows, The function y(x) in the
critical region B'CA approaches the straight line 2@x from above (fig. 13). There-

fore, a parallel shift of this asymptote through point A gives an upper bound func-
tion for y)(x) which is below the boundary AC (fig. 13). Thus

/%/ié& = 44 ~Xp) A Z % (5.142)
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where

A

¢ (5.143)
" [ ]

Observing (5.124), one gets

/fz)ﬂbg =/fi:4, __— 4]/)( [ -4]) °7

2 4 ] 7 (5.144)
Sian L g 77 Xt 7422
&

ey
—

= LBx # A.

Combining (5.140), (5.141), and (5.144), one obtains

By = FH < 284 ",;;/;/“ < &*5)3{ (5.145)
Aot o o S &
(s /Jg)m (P2 Juse

Thus, for large values of n the upper and lower bound are rather close. For a mod-
erately large value, e.g., n =4, inequality (5.145) gives

#
A< < A28,
28 ‘
With the definition
/a ;= #HM (5.146)
£
4
and introducing (5.140) and (5.141) into (5, 139) one obtains
sa-ptY
/ / __/ X‘ /fza / ]
- <
(Vo bé,
(5.147)

& #a
7///-/'244/ /r
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where

/%)m /7"399 [/‘” "’7"“ vy (5.148)
o = [ 7- ;}’;} < A,

Still the L.h.s. of (5.147) does not allow an analytic solution for p or M. But taking
an upper bound of the L h.s. of (5.147), such that

4 “ @ 2 bt
//%/aég - "7 < ;’?;7/"“//’“'“) A (5.149)

is used instead of (5.145), greatly simplifies the problem and if the parameters sat-
isfy (5.149), even more so they satisfy (5.147). Beyond that the L.h.s. of (5.149) may
be a good approximation for the Lh.s. of (5.147) if p » 1, then

(7= %) =~ 4

Note that the present analysis is done under the assumption that a critical region

and

exists; this is the case if and only if

= ﬁi; > A4 ;;—, (5.150)
&

(74
If).; is a small number,

X << A (5.151)

one obtains

/ét o A
and y (5.152)
A g A ) . .
A = —— = A .
i e = / -~ / = J

Hornberger and Stamm [58 - 60}, when performing parametric calculations with
the Robinson model, have used a relatively large value for x, i.e.,

X o (e = A8

@ o
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However, Schwertel [61], when fitting the Robinson model to experimental data of
a stainless steel, proposes to use a value less than a small limit, i.e.,
-z

X = & Ao

(4

thisis to improve the fit. On the other hand, an extremely small value for X, 88y X ~
10-6, would cause trouble for the numerical calculation. Thus, this remark demon-
strates that there exists materials which indeed require a relatively small value
for X.

Irrespective of the magnitude 0f§, the inequality (5.149) is valid and from it the

(h <[ o (g )]

follows; with (5.148) this yields

relation

7 {« 2 % 7

At 2

= + M+ rzn)] X . 5.153
Y A s / /;; (rren) / Inre - 5159

Note that this condition is only a sufficient upper bound criterion for p. That is,

provided 4 critical region exists, i.e.,

> A # 7
= X
and a relative minimum is not located in the interval x, <x<x , which is certain
for

O < bmpBl/m 2 A,

the condition (5.153) assures that the intrinsic dissipation is positive. However,
values of p larger than the r.h.s. of (5.153) are not forbidden.
Obviously,

%

a4 7
/47‘;:;/< //7,_% At ./_/‘4/////#'2«///\"’ /"‘Z}Vg
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Therefore, the sufficient condition (5.153) encompasses the condition (5,134) for
the non-existence of a critical region.

For a necessary and sufficient condition one has to apply (5.131) and (5.132), How-
ever, if n is large, the upper and lower bounds (y1)ub2 and (y1)1p, are "close” to the
exact value yy, and if x <€ 1, then inequality (5.153) represents a "good” approxi-
mation to the necessary and sufficient condition (5.131) for p (or M).

Provided %, L
g
L) ¢e= /5’57 //Hc’m}/ A’; << A (5.154)
the r.h.s. (5.153) may be simplified
Yo z,%‘w

4 a 22w (K Ly0m)) K
M= A “ + z“;;"/g”/)’”) 0 ‘ (5.155)

With (5.146) one finally obtains

% Q % -45"4
X 7 p AAEw “
M = y7 A + ot E aa e (11en) & ., (5.156)

The shift of the upper bound for M to values larger than (1 + 1/§)§25/H depends lin-
early on the ratio w/x of the two small quantities ® and % Itis obvious that for w/x
< 1 this shift is negligible and criterion (5.106)4 is sufficiently accurate.
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6. Stability Properties of Equilibrium States

In section (2.2) it has been pointed out that the evaluation of the residual entropy
inequality at an equilibrium state yields important but limited restrictions on the
constitutive functions if continuity and sufficient differentiability of the constitu-
tive functions are assumed. Now, one should be aware of the fact that necessary
and sufficient criteria for non-negative entropy production for all states in the
state space have already be derived. Thus, the requirements (2.18) need not be
discussed here.

We turn to the derivation of certain consequences following from stability
requirements of the equilibrium states.

At first equilibrium states characterized by

e 2
% 6.1)

a, = o

E £
FE_ a4 Skl _ 4 o

are considered where sEy) and aEj are equilibrium values, States defined by
J_E E
LE_ 2k _ 4 oo
= 2 et

are discussed later. In the neighborhood of the above equilibrium states (6.1) the
plastic strain rate f’:pk) vanishes identically. Thus, the evolution equation (4.23) for
the back stress reduces to |

_ mA
® ﬁ / -Z-I / a‘l
a/a = - afo ¥l ﬁ-:’ P (62)

Consider an equilibrium state with the following equilibrium values

3 e .
L7 equilibrium value of total strain
g

Ke " » " plasticstrain
a £l = O » ) »

iz back stress

£
/ ” ” ” temperature
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Correspondingly, the equilibrium values of the stress and the deviatoric stress,
i.e., oﬁl and sﬁl are given by Hooke's law (3.2) such that (6.1); is satisfied. We now
consider a disturbed state such that all these values remain unchanged except the
akl, which take new initial values a}}. We require that this disturbance i is
sufficiently small such that plastic strain rates do not occur, i.e., (3.4)9 applies. If it
is now required that the equilibrium state is locally asymptotically stable under
constant total strain and temperature*, then it is obvious from the differential
equations (6.2) that R must be positive, i.e.,

R 2zo, (6.3)

The thermodynamic restriction (5.95)1, which is a consequence of the evaluation of
the residual dissipation inequality, then implies**

M>0 . (6.4)

This result can also be derived along the lines sketched in section 2.2, Starting
from the same assumption as above, the residual dissipation inequality takes the
following form during an isothermal relaxation process in the neighborhood of an
equilibrium state where épkl =()
A
oL .
- &
S QQ“ Le

fad

(6.5)

b=~

g 4y
d

= —¢ é%/ 7&4(&//)0
ajf hn/ rd

For the constitutive model under consideration the equality sign applies only at
an equilibrium state, i.e., the model is strictly dissipative. Thus, equ. (6.5) implies
along an isothermal relaxation process

v

[74
Yrsee , 7€ aun) = Vet 75 45) @9

* Tt should be kept in mind that different constraints could be applied, e.g.,
adiabatic enclosure at constant total strain.

¥+ The case M =0 is of no interest, It implies a vanishing entropy production due
to the internal variables.
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where

£
a,v;e =0, (6.7)

Since the equilibrium states satisfying (6.1) are locally asymptotically stable,
inequality (6.6) may be written as

'V’/ . Q) 2 }4/ o“ a;, ) 6.8)

valid for all values apq in the neighborhood of af)q. The equality sign applies only
at the equilibrium state. Consequently, equ. (2.43) applies which yields

/”{"%75 = &a,.,,,)/'““ (g//(,,d..,)fam_o )

b (6.9)

(L8 = (5 Mo (1) da o >

for all variations 8apq subject to the constraint
Joy =

which is due to the deviatoric character of the back stress tensor. It is a trivial
matter to show that (6.9); yields (6.7), and (6.9)2 implies

/{,,‘7 >0 . (6.10)
We now turn to equilibrium states characterized by
» £
\ ' Sz 5’2 , .
7 )
\ F = 3 z. 7 =©
< K | |
£ _ t (6.11)
4‘( = O
/
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It is obvious that a perturbation of these equilibrium states, such that the total
strain i) and temperature T are kept constant, may yield the production of plastic
strain or not. Correspondingly, the following cases are considered:

Case (1): The perturbed state is such that not only strain and temperature are
the same as in the equilibrium state but also the plastic strain. Consequently, the
elastic strain and thus the stress remains unperturbated but the internal vari-
ables are affected. We assume that this perturbed state is within the region where
(3.4)2 applies but not on its houndary. Thus, during the following isothermal
relaxation process no plastic strain is produced. Therefore, only the simple rela-
tion (6.2) applies and it is clear from the previous discussion that the internal vari-
ables relax to the equilibrium values aEy) =0 with increasing time, Consequently,
under such disturbances the equilibrium states are asymptotically stable.

Case (2): We assume that the perturbation is such that the total strain and
temperature are the same as in the equilibrium state but that the equilibrium
values of the plastic strain epy) and back stress ay) are perturbed too. The response
during the following isothermal relaxation process depends strongly on the fact
whether plastic strains are produced or not. This can be decided on the basis of the
constraint conditions given in (3.4). We assume the perturbed state satisfies the
condition

Fo -

so that the plastic strain rates are vanishing. Then relation (6.2) applies and the
back stresses relax to the equilibrium values aEy]=0. However, the other
variables, i.e., plastic strain, elastic strain, and stress, remain at their perturbed
values 81‘51{1, €8y, and skl. Thus, under this kind of disturbance the equilibrium
state is not asymptotically stable. However, the response of the material under a
bounded perturbation is bounded. Under the above conditions the equilibrium
state may be considered to be indifferent.

Case (3): Again we consider a perturbation as in case (2), however, the perturbed
state should satisfy the constraints

e O
F°>0 A 34 g4 >o
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Thus, during the following process at constant total strain €)) =¢eEy) and temper-
ature T =TE the plastic strain rate is non-vanishing such that (3.4)1 and (4.23)2
apply. Note that (4.23)s is the appropriate form since the perturbation aj] is
assumed to be sufficiently small such that

Qg @
= 1 Ahe “ax
G—a ;%L < Go-n

The ordinary differential equations governing the above process are derived as
follows. Equ. (3.2) yields the deviatoric stress

\90:?/4/5’2‘ "’:;’2:,.,,_02/

and with (3.1) one obtains after time differentiation

u g[8 <l t )55 oo

note that p is assumed constant and Py is deviatoric. If total strain and temper-
ature are held constant, then (6.12) reduces to

[

5‘( = -—Z/(«. ng . (6.13)

Consequently, observing (3.4)1, (6.13), and (4.23)9,

. Ske — A e
S, = - 2a RFE e '
74
7~ 3 (614
: # " Se-le “P g
A, =+ AF - RG

Le 3 s
G Yz /Z. |
and this represents the required set of differential equations for the deviatoric
stress and back stress*, The associated initial conditions (perturbed values) are

St (o) = ke
) L (6.15)
2,le) = Age
/

* Equations (6.14) represent a system of 12-2 =10 independent ordinary diffe-

rential equations. Note that this s%stem can be condensed to a system of three
O.D.E.'s for the invariants To, J9, Ko.
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and these values are required to satisfy

= O 7 /51;’&‘:0/[5:2*@;1) - A
F = 2 e 2
o

>~ o
and

5o (%% —ate) > 0.
The initial values of the deviatoric stresses are given by

S% = 20 (€5 - 4 &5 Vi)

where
e € po w€

L]

The stability properties of the above nonlinear system of ordinary differential
equations cannot be judged simply by inspection. Mathematical methods are
required, and we will comment on two standard approaches [67]:

(1) Linearization at the equilibrium point
(2) The direct method of Lyapunov,

The first method consists of two parts. Firstly, the derivation of the linear
variational equations of the nonlinear system (6.14); this requires a Taylor series
developement of the right hand side at the equilibrium point

£
e = Sge
£ (6.16)
a& = Q“ = O
with
Sk Sea
£ e e o4 =
F = 2 % - A = O
)
and a reformulation of (6.14) in terms of the deviations (i} and X
€ \
v , (6.17)

X = @y~ 24 = %
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In the second part the stability analysis of the linear variational system is done.
Turning to the first part, we note that generally n>1 and, therefore, the first
derivatives of the right hand sides of (6.14) vanish at the equilibrium point; this is
true also for higher derivatives if n is large. Thus, if n is an integer and n>1,
linear variational equations cannot be set up. On the other hand, if nisnot an
integer, a Taylor series development at the equilibrium state is not possible.
Consequently, the approach (1) is not applicable to the system (1).

For the discussion of Lyapunov's method some introductory remarks are neces-
sary. We denote the deviations (6.17) by the letter £k

fk = ija , Xa]. (6.18)

Then the system (6.14) may be put in the general form

é‘:{ = X, [f,,,) (6.19)

where

Xx/ﬁq/ =0 for £, =0 (6.20)

represents the equilibrium point. The initial conditions (6.15) read

= ? 6.21
é/o) ﬁ (6.21)

The solution £k (t) of (6.19) and (6.21) may be represented by a trajectory in the k-
space (phase space) starting at the point {g = E‘f(.

Lyapunov's theorem for a system of autonomous differential equations may be
formulated as follows [67, 90]. Assume that a scalar function V(§k) can be pre-
scribed with the following properties:

(a) 'V andits first partial derivatives are continuous in an open region Q around
the origin £g =0,

(b)  V vanishes at the origin, i.e. V(5)=0,
(¢) Vispositive everywhere in Q. Thus the origin is an isolated minimum of V.

A function with the properties (b) and (c) is called positive definite.
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If in addition the change

Y
dt‘ V(f/ﬁ/ f f - fX/f”

is negative semidefinite or identically zero along all trajectories, i.e., if
y d
= —— -
v At }/(ﬁ(y/ = 9,

then the unperturbed solution, i.e., the equilibrium point £k =0, is stable. If V is

negative definite
é

V= o,

except for £k =0 where V=0, then the unperturbed solution is asymptotically
stable.*

We recall the fact that the intrinsic dissipation must be non-negative during any
process and, therefore, also for processes at constant total strain and temperature,
i.e., along solutions of (6.14) and (6.16). Within the plastic region the intrinsic
dissipation (2.99) reads

2 Q... (6.22)

where

4/:/5‘(,7-/ gﬁﬂc,dﬂ/

~
h

f (6.23)
e 4 )
= V/le(fﬂs, £i"/ / / 7Y
At constant strain and temperature
E‘L = é@-‘es.’é p, /7 = dau.s)f

and consequently

*  For the strict definition of stability see ref. [67, 90]
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EZ = Cowust

we obtain from inequality (6.22)

< a '(Z
= -
Y 7 < o, (6.24)

The rate of the free energy is strictly negative in the plastic region but vanishes at
the equilibrium state.

Condition (6.24) gives the motivation to check whether the free energy satisfies
the requirements of Lyapunov's theorem observing that a constant term may
always be added. Substracting the value at the equilibrium state gives

Ay = ¥ — ¥° (6.25)

such that requirement (b) is satisfied by Ay. Further, by assumption, requirement
(a)is satisfied everywhere and since (6.24) applies to y it also applies to Ay.

Using Hooke's law (3.2), the free energy may also be expressed in terms of the
stresses

A,}L = '};/54,7;@,“,,) - %E

g 4 [ AV y
7 4 LT _ {LE
ts 7 M ay 24 7L}b{r)

(6.26)
o

Xx
= _ £
%(‘S‘al 6;'“-/7:4/‘?) %

= ;g(—g—— She Sek ZE& s e 5‘“/

XK

A
.
125 Mag e + Yo — YE

EN
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where
£ = A4 (34 +44) J = A (6.27)
A # ’ 2(d*4)
Note that

h

S (34 424) (G, - E2E),

thus, if the total strain and temperature are held constant, the trace oy or the

hydrostatic pressure
7

L= = 37 Com
does not change. If the deviations (6.17) are introduced in Ay, equ. (6.26), it is seen

that €i) are quadratic but also linearly involved and the coefficients of the linear
terms do not vanish identically:

S S < % %k =faf4¢ 4 éj(e&f :

Consequently, the difference Ay is not positive definite in the neighborhood of the
considered equilibrium state. Thus, Ay is not a Lyapunov function and stability
cannot be assessed on this basis.

Presently, we will postpone the stability analysis of the general nonlinear system
(6.14) and (6.15). We expect that the perturbated state will relax to the equilib-
rium state characterized by (6.11) if the material parameters A, H, and R are
positive, p taken to be positive anyway. But possibly this behaviour depends on
the initial disturbance. In fact, it can be shown [91] for the restricted condition of a
uniaxial state of stress that the equilibrium state (6.11) is not locally asymptoti-
cally stable: The equilibrium state is on the boundary of its domain of attraction
(see fig. 2).

Summarizing the discussion of equilibrium states characterized by (6.11), it has
been demonstrated that their stability depends on the kind of disturbance: For
some disturbances asymptotic stability is assured, for others a kind of indifferent
equilibrium is observed. If the perturbated state is in the plastic region and re-
mains in this region at constant strain and temperature, asymptotic stability is
not assured, but a general analysis is not yet available.
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An important observation should be added. If the equilibrium state is locally
asymptotically stable, the free energy has a relative minimum at the equilibrium
state which implies (2.43)

/90@ -

as shown in section (2.2).

Using the terminology of the classical Theory of Irreversible Processes [92, 93],
the quantities -p ?y/? ay represent the "affinities” or "thermodynamic forces”
associated with the "thermodynamic fluxes” ay, i.e., the rates of the internal
variables. Thus, under the above assumptions the "thermodynamic forces” vanish
at equilibrium. Classically, this is considered as a part of the definition of thermo-
dynamic equilibrium [93, 95]. For the equilibrium states in the non-plastic region
(6.1) the thermodynamic forces (-p Qw/ o dmn)E indeed vanish as seen from equ.
(6.9)1. However, equilibrium states characterized by (6.11) are not locally
asymptotically stable, and so the free energy has no relative minimum, This is
seen also from (6.22) which can be written as

. v
,j;"" 5,':’. - ¢ ;Z;:—- 7 %% = O

and obviously

S #o , /5’91//

0 & &Ql«b £ - '

The "thermodynamic forces” of the plastic strain rates are given by the deviatoric
stresses which do not vanish at the equilibrium states. Thus, following the discus-

sion of Bowen [14], equ. (6.11) characterizes non-classical ("false”) equilibrium
states.

Finally, the following remark should be made. The assumed external constraints
on the process following a perturbation, i.e., constant total strain and temper-
ature, is just one set of constraints which involves heat exchange of the body with
the surrounding but no exchange of mechanical work. Stability should also be
studied under other constraints, e.g., when neither work nor heat are exchanged.
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7. Discussion and Conclusions

The primary aim of the present study is to analyse whether or not a version of the
Robinson model is consistent with thermodynamic principles as motivated in sec-
tion 1. Here it should be noted that the Robinson model is a mechanical model not
embedded in a truly thermodynamic frame although it involves the temperature.
Therefore, a thermodynamic consistency analysis requires an extension of the
model, i.e., an assumption about the structure of the free energy.

The analysis was done under a set of simplifications:

® Isotropic hardening was ignored, and, therefore, also the thermomechanical
history dependence of the drag stress x. This simplification reduces the num-
ber of evolution equations by one.

¢ The static recovery term in the evolution equation of the back stress ay) was
modified in the same way as done by Hornberger and Stamm [58-60]. This
not only eliminates a discontinuity in this evolution equation but also allows
for the existence of equilibrium states.

e The second law of thermodynamics is taken to be the classical Clausius-
Duhem entropy inequality. Further, its evaluation was based on the
Coleman-Noll argument. More advanced principles and concepts, e.g., the
approach of Miller [62] (see also [63]), require a more elaborate analysis.

Starting point for the above analysis was the thermodynamics with internal state
variables formulated by Coleman and Gurtin [18] within the frame of Rational
Thermodynamics. This general frame was used by Perzyna and Wojno [{19-22] and
Kratochvil and Dillon [27, 28] to analyse the thermodynamic restrictions imposed
on some elastic-viscoplastic or elastic-plastic material models. In these contribu-
tions the inelastic strains were interpreted as internal state variables such that
the results of Coleman and Gurtin could be directly applied. This interpretation
was also used in the present analysis,

Usually, the derivation of thermodynamic restrictions implies the assumption
that processes are smooth functions of time; thus, the local instant form of the
Clausius-Duhem entropy inequality is an adequate starting point. In fact, this is
an assumption contained in the work [13, 63]. However, the Robinson model has
the peculiar property that the evolution equations for the inelastic strain and the
back stress involve discontinuities in the rates of these variables. Therefore, the
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Robinson model requires a more general starting point, i.e., a time-integral formu-
lation of the Clausius-Duhem entropy inequality and time-integral balance equa-
tions. Allowing for discontinuities in the evolution functions for the internal vari-
ables, a general internal variable model was set up such that the Robinson model
(without thermomechanical history dependence) is a special case. The constitutive
functions for internal energy, entropy, or free energy, however, were assumed to
be continuous and differentiable up to any needed order. Under these conditions
the instant Clausius-Duhem entropy inequality is adequate for all states except
those where a discontinuity in the rates occurs; here the time-integral form is re-
quired. The instant form imposes restrictions as usual. It was shown then that the
time-integral form does not impose additional constitutive restrictions at states
where a discontinuity in the rates of the internal variables occurs. However,
discontinuities in the process variables are induced. As a consequence, the restric-
tions obtained from the classical instant form of the Clausius-Duhem entropy in-
equality are applicable to all states, and no other constitutive restrictions are to be
observed. |

One may question whether the assumed differentiability of the free energy is com-
patible with the discontinuities in the evolution equations for the internal vari-
ables [113]. Some remarks on this subject are in place here.

In the classical linear Theory of Irreversible Processes (TIP) the rates a, of the in-
ternal variables, i.e., the "thermodynamic fluxes”, are assumed to be linearly re-
lated to the socalled "thermodynamic forces” A so that

G = Ly .

The Ay are the "work coefficients” of the fluxes in the Gibbs fundamental equation
whose validity is a basic assumption of TIP. If the free energy y is differentiable
with respect to the internal variables then it may be shown that

oy
v ==% 2wy

Here one considers the "forces” as the causes of the "fluxes”; then, formally, a dis-

continuity in the "fluxes” is obtained if the "forces” are discontinuous or if the coef-
ficients L relating "forces” and "fluxes” are discontinuous. Thus, there appears

to be no basic requirement that a discontinuity in the rates c'ly - the fluxes - should
always be connected only to a discontinuity in the derivatives dy/day of the free en-
ergy, i.e., the "forces”, even in the linear Theory of Irreversible Processes. Further-
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more, the present analysis is within the frame of Rational Thermodynamics which
does not use the concept of forces and fluxes and which does not enforce a priory a
Gibbs fundamental equation but which is fairly general with respect to the evolu-
tion and the state equations. Of course, the assumption of sufficiently smooth state
functions (2.1) is a restriction on the constitutive behavior.,

The present material model is a macroscopic phenomenological model and the in-
ternal variables used represent suitably chosen macroscopic mathematical enti-
ties to describe some of the observed material behavior. The understanding is that,
in a certain average sense, they reflect essential features of microstructural
changes. This interpretation is followed by many of the cited writers. Others have
associated a, with special structural changes occuring at localized sites within the
body, e.g., Rice and coworkers {32, 114, 115]. There the state functions are not ex-
plicitly required to be differentiable with respect to the history variables denoted
by H; however, the notation in {32, 114, 115] is somewhat irritating since it is not
always clear whether the existence of a limiting process for the state functions ex-
ists or not. In any case, the assumption of differentiability of the free energy is not
just a formality which has also been pointed out by Nemat-Nasser [116]; in gener-
al this assumption may exclude certain effects.

The constitutive restrictions obtained for the Robinson model will now be dis-
cussed. Here we will first turn to the thermodynamically extended model; later
the consequences for the purely mechanical model will be considered.

The thermodynamic extension requires an assumption about the free energy. The
elastic response ig described by Hooke's law where the elastic constants are possi-
bly temperature dependent but independent on the plastic strains and back stress-
es. Therefore, the free energy consists of a term depending only on the first and
second invariant of the elastic strains such that the elastic strains (or the stresses)
are quadratically involved. This term is entirely analogous to classical thermoe-
lastic assumptions, However, this term has to be supplemented additively by two
terms representing the influence of the back stress and, of course, the purely ther-
mal effects. The essential assumption is that the second invariant of the deviatoric
back stress is involved linearly so that the free energy depends only quadratically
on the back stress; this is the most simple assumption compatible with isotropy
and differentiability.
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Expecting mathematical simplicity, the uniaxial case was subjected to a consis-
tency analysis first. But since the multiaxial case is the more embracing one, we
will restrict the discussion to this case.

The requirement that the intrisinc dissipation is non-negative for all admissible
processes has yielded a set of conditions with different logical properties. The nec-
essary condition (5.97),1.e.,

/e(r} M/r/

v

(&)

giveswithR > 0 (7.1)

M(r) = 0.

Further, implying (7.1)2 and assuming a critical region does not exist, i.e.,

Y

X
el ~ 1JX° < 4 orequivalently /'75 //7"/'/ (7.2)A
XLZIG 4 A/ 'C; /

o

the intrinsic dissipation is assured to be non-negative; thus, inequality (7.2)4 is

only a sufficient condition. However, if a critical region exists, that is

7
X “/’//“: >4, (7.2)8

and if

a0 -/3
O< —/+ =< 4, (7.3)

condition (5.131), i.e.,

J:zg = 0
where

B ) LA . 3 , —
Jolm = ,eﬂ;g /ZI"_/// Z?p" -~ /‘Z‘,%; - /(a=/

a0 B+ L (7.4)

r2 R, [x°)
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is a necessary and sufficient requirement for a non-negative intrinsic dissipation.

These conditions involve only the temperature dependent material parameters

[2 A )

but not the variables "stress”, "back stress”, and "plastic strain”.

It isimportant to note that, when deriving the above restrictions, it was under-
stood that the material parameters satisfy the following requirements:
Firstly,

A, n - o
H, R, m,p > o0 > (19
and secondly and more specific, /
A TO A =% 4_%;_@__ < A, (7.6)

The condition (m - §) >0 assures that an equilibrium state for vanishing back
stresses exists (see section 4.2), The condition § = 1/2 implies that a critical region
in the (x,y)-plane has a quasi triangular shape such that the existence or non-
existence of a critical region can be characterized by the simple criteria (7.2)5& 8.
Finally, when the condition (m - §)/n <1 applies it is certain that a relative mini-
mum of the lower bound-dissipation does not exist in the critical region B'CA.

Practically relevant material data are consistent with the conditions (7.6). There-
fore, the analysis was not extended to the range (m - p)/n <1. In this range, strict
conditions are more complex.

Whereas inequality (7.1)2 represents a necessary lower bound criterion for the free
energy parameter M and (7.2)a a sufficient upper bound criterion, condition (7.4))
should yield a necessary and sufficient upper bound for M. However, a strict crite-
rion is difficult to obtain, Nevertheless, it was possible to develop from (7.4) an im-
proved sufficient upper bound for M using bounding estimates of various terms in
(7.4). This bound is given by (5.153) or explicitly

%
, 4 A2 / 2
M<')‘g‘[4+7;71 / /}ffzw)x”/]zw(w

H
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obviously, this condition includes the sufficient condition (7.2)a. Further, it may
be shown that for large values of the exponent n and small values X(x<1) the

above condition represents a good approximation for (7.4);.

The separation of the dissipation inequality into the two conditions (7.1); and
(7.4)1 is due to the fact that the Robinson model involves a "switch” which controls
the transition between regions where the plastic strain rate is either vanishing or
not. If the plastic strain rate vanishes, then dissipation is only due to the static re-
covery characterized by the parameter R. Thus, inequality (7.1); expresses the
fact that this contribution to the total dissipation must be non-negative and this is
a necessary and sufficient condition whenever the plastic strain rates vanish.

It should be noted that the derivation of (7.1)1 actually did not involve any as-
sumptions on the two parameters R and M. Thus, for R0 and M #0 condition
(7.1)) simply requires that R and M have the same sign. Of course, M =0 is math-
ematically permissible but this would imply that the internal variables a] - the
back stresses - do not contribute to the intrinsic entropy production which appears
to be unreasonable. Therefore, assuming R(1)>0, condition (7.1)1 simply implies
M1y>0. The positiveness of the recovery parameter R as well as the hardening
parameter H is an essential property of the Robinson model. The equality of sign
of both R and H is necessary for the existence of stationary states, e.g., secondary
creep. Otherwise the hardening and the "static” recovery term in the evolution
equations for the back stress could not compensate each other to yield a vanishing
rate in the back stress. Also, if both R and H where negative, primary creep with a
decreasing creep rate could not be modeled. Furthermore, the positiveness of the
parameter R alone implies that equilibrium states in the region of vanishing plas-
tic strain rates are asymptotically stable under constant strain and temperature
(section 6). This is a rather reasonable property since otherwise equilibrium states
could not exist in nature. Thus, we conclude that a unique assignment of either a
positive or negative sign to each of the parameters R and M cannot be based on
thermodynamic considerations alone but other physically reasonable require-
ments, e.g., certain simple response properties of the model or stability of equilib-
rium states, are necessary too.

In this connection it should be pointed out that in the present analysis the require-
ment of positiveness of the entropy production (second law) does not impose stabil-
ity of equilibrium states by itself, but stability is a separate demand. Similar ob-
servations were made by Perzyna [96], Podio-Guidugli [97], Anthony [98], and es-
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pecially Serrin [100] in his i]luminating article; in fact, Coleman and Gurtin [13]
introduced the asymptotic stability of equilibrium states as an extra requirement.

On the other hand, one may easily get the impression in textbooks that existence
and stability of equilibrium states is a consequence of the first and second law
alone (e.g. [102], [103], [62]). In fact, there exist several indications pointing to an
intimate relationship between the second law and stability. Notably, the work of
Ericksen [104, 105], Koiter {106], Coleman and Dill [108], and Gurtin [109] has re-
vealed that the Clausius-Duhem inequality induces Ljapunov stability of equilib-
rium states for a variety of materials. Dafermos [110] established a different con-
nection between stability and the second law, in that stability is interpreted as
continuous dependence of thermodynamic processes on the initial state and supply
terms. He showed within the context of thermoelasticity theory without heat con-
duction that, whenever they exist, smooth processes are stable within the class of
(not necessarily smooth) proper processes [110] that satisfy the Clausius-Duhem
inequality in its traditional form. However, this result was established under cer-
tain assumptions on material response, relating to the convexity of internal ener-
gy. Thus, as pointed out by Dafermos [110], it is not generally to be expected that
the second law will by itself induce stability, unless it is supplemented by appro-
priate restrictions on constitutive relations. Here one may add the almost trivial
remark that primary assumptions and derived theorems obtained in one course of
theoretical deduction may interchange their role in another course of deduction.
We illustrate this for the thermodynamically extended Robinson model. Lame's
parameter A, p are positive by assumption. If the free energy y is assumed to be a
positive function of the variables T’ ** and vanishing at the reference state

T ** = {0, 0, To}, then this implies that the temperature dependent functions
M1) and wT(7) are positive too. Then, according to the dissipation inequality con-
dition, equ. (7.1)1 is required which yields the positiveness of the parameter R.
This in turn implies the asymptotic stability of equilibrium states in a regime
with vanishing plastic strain rates.

After this digression we proceed to discuss condition (7.4). It has been demonstrat-

ed that the derivation of (7.4), especially its logical status, is less trivial than (7.1)

since this requires the identification of the absolute minimum of the intrinsic dissi-
pation in the critical region whenever such a region in the (x, y)-plane exists.

The non-linearity of the problem forbids a formal analytic solution. Also a numeri-
cal approach would be of a very limited value. Rather, a geometric interpretation
of the relations is used to a large extend. This allows for a limited range of the
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parameters, i.e.,(m- B)/n<1aswell as p = 1/2, to exclude the existence of a rela-
tive minimum of the intrinsic dissipation in the critical region. This in turn per-
mits to localize the absolute minimum. Condition (7.4); simply states that the in-
trinsic dissipation (more accurately: its lower attainable bound) at this location is
non-negative.

The inequality (7.4); can easily be used for a test of the thermodynamic consisten-
cy of the extended Robinson model. Further, the sufficient upper bound condition
(7.7) is a handy criterion for the free energy parameter M: It allows to define a
range for M which assures that the extended Robinson model is compatible with
the dissipation inequality.

The derivation of necessary and sufficient conditions for the extended Robinson
model has demonstrated that such an analysis is relatively complex; by no means
it is certain that conditions, which involve only the temperature dependent mate-
rial parameters, can be derived in explicit terms. This complexity makes it under-
standable that various authors propose the concept of a positive convex dissipation
potential which determines the evolution equations for the interval variables and
which assures a positive intrinsic dissipation [e.g., 9, 32, 42,95, 112, 114, 145].
This approach has been criticized by Onat and Leckie [126].

Two further remarks are added.

Firstly, in the spirit of Rational Thermodynamics, which requires that the
Clausius-Duhem entropy inequality is identically satisfied for all processes every
extended Robinson model with exponents satisfying (7.6) but whose parameters
are not compatible with (7.4); is thermodynamically inconsistent. Consequently,
the model has to be modified. Here we will not elaborate on this subject in detail
but ad hoc-possibilities are indicated. For some initial choice of material param-
eters the condition

fiwi (L., 0, K, T) =0

together with (5.91) and (5.95) defines a surface in the (f2, 52, ﬁz)-space; here the
temperature T is assumed to be constant. This surface devides the (1:2, J: 2, f(z)-
space into an admissible region (y_.. , = 0) and into an inadmissible region
(Yinitias < 0). The surface may be considered as a kind of switch condition which
controls a change in the constitutive model such that processes are allowed to

transmit the initial surface y = 0. A very simple adjustment is obtained if one

initial
~ . . .
of the material parameters, e.g., H., Ry Mg, or I, is modified such that the in-
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trinsic dissipation is non-negative. A specific choice would be the one where the in-
trinsic dissipation vanishes identically (non—dissipative process). Consequently,
the parameter modified will become a functionjnot only of the temperature but
also of the invariants fg, J 2, ﬁz. |

On the other hand, the surface (y, ., = 0) may be considered as a kind of "limit-
ing surface” so that points beyond this surface cannot be reached. Thus, the limit-
ing surface represents a kind of "thermodynamic yield surface”. Further analysis
of this idea is required but we will not proceed here.

One must admit that all these approaches are purely f>rmal and ad hoc and it is
not excluded that the adjusted models fail when confronted with experimental re-
sults.

It should be mentioned that a concept of a "thermodynamic yield surface” was set
up by Lubliner [111]; starting from a set of evolution equations, it was possible to
derive a yield condition from the Clausius-Duhem inequality. However, the struc-
ture of the evolution equations in {111]* is very different from the one considered
in this report such that Lubliner's concept of a thermodynamic yield surface is not
comparable with the one indicated above.

We now turn to the primary question of the thermodynamic consistency of the
mechanical Robinson model without isotropic hardening whose parameters satisfy
(7.5) and (7.6). The two thermodynamic conditions (7.1) and (7.4) contain the ther-
modynamic parameter M which is not part of the purely mechanical Robinson
model. Thus, the parameter M is free and its choice has no consequences for the
purely mechanical predictions.

Both thermodynamic conditions (7.1) and (7.4) are formally satisfied if the para-
meter M is chosen such that

&L g e R #oazf 4
o A Py L 142 ol
0s M<2 /4%}(; z_m{’”[/,m/ o,/j,g“ ik 2; (7.8)A

note that the upper bound is solely defined by the parameters of the mechanical
Robinson model.

*  All evolution equations contain a scalar function ¢, a priory restricted to be a

non-negative function of the state variables. As a consequence, the intrinsic
dissipation is proportional to ¢.
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This result yields the following conclusions:

® There exist a thermodynamically extended version of the Robinson model
which can be designed in such a way that the intrinsic entropy production is
assured to be non-negative whatever the parameters* of the mechanical
Robinson model are. Of course, the extension chosen here is not the only one
but obviously the simplest. Since the parameters per se are found not to be
subject to thermodynamic restrictions, the mechanical Robinson model is for-

mally consistent with the second law.

® Consider the case that the mechanical Robinson model with a given set of
mechanical parameters is in agreement with the data of isothermal me-
chanical experiments (e.g. creep, relaxation ete.). The thermodynamic pa-

' rameter M is not required to predict these tests. Therefore, a choice consis-
tent with (7.8)A cannot be tested with these experiments. According to sec-
tion 4.1, the parameter M plays a quantitative role only in the energy bal-
ance equation; therefore, caloric measurements are also required for the test
of the validity of the thermodynamically extended model and, obviously the ex-
tended model may possibly fail in these tests.

Remark:
Another sufficient condition is given by (5.89) such that inequality (5.90) applies,
l.e., X.,ZA
o
o=M = 5 . (7.8)B

Obviously, this inequality is contained in (7.8)4 but more important it is also valid
when (7.5) and (7.6); but not (7.6)9 and (7.6)3 are satisfied. This situation has not
been analyzed in this report but likely there exist an improved upper bound for M
less restrictive than the one in (7.8)3. In any case, the above interpretations for-
madll(y]a;;ply also when the exponents of the Robinson model do not satisfy (7.6)g

an 6)3.

These observations clearly demonstrate that a thermodynamic consistency analy-
sis of a purely mechanical model can only yield the assurance that the model is the
isothermal derivative of one or the other thermodynamically extended (i.e. non-
isothermal) model which is compatible with the second law. This extended model

may still fail energetically even under isothermal conditions.

The generally accepted viewpoint that a purely mechanical material model should
be thermodynamically consistent, i.e., compatible with the second law, has obvi-

** However, the parameters are required to satisfy (7.5) and (7.8).
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ously a quality which ranks above the requirement that the model should be com-
patible with some caloric test results which are not in the centre of interest of the
intended application. Two reasons are indicated: Firstly, this priority assures at
least that the mechanical model is thermodynamically consistent in principle, and
secondly, restrictions may be obtained which limit the range of posstbilities for set-
ting up the mechanical model. This last aspect is frequently realized within a
purely mechanical context by requiring that the mechanical material model
should satisfy certain work-inequalities; they are or appear to be related to irre-
versibility and the second law [119 - 128]. An analysis of this relation and espe-
cially the relation to the concept used in this report must be postponed.

We will close the discussion by pointing out the required future theoretical work
to enhance understanding of the phenomenological Robinson model.

—  So far only a simplified version of the Robinson model has been analysed.
The thermodynamical consistency analysis must be extended to include iso-
tropic hardening as well as the thermomechanical path dependence of the
drag stress. This last aspect is modeled such that the evolution equation for
the drag stress involves the rate of the observable variable "temperature” in
a non-integrable form [56]. This requires special attention when the
Clausius-Duhem entropy inequality is evaluated.

—  In this analysis the Clausius-Duhem inequality has been used in its traditio-
nal form in connection with the Coleman-Noll argument. Both concepts are
subject to criticism [112, 63]. A more advanced and less restrictive entropy
principle and a physically more realistic method for exploiting the entropy
principle should be used [62].

—  Itissuggested to provide some evidence whether the choice of the free energy
is acceptable in the light of available caloric experiments.

—  Consequences of work-inequalities proposed in the literature to restrict
purely mechanical material models should be applied to the Robinson model
and the results should be compared with the conclusions obtained in this re-
port.

—  Last but not least it is mehtioned that various visco-plastic models use the
concept of a dissipation potential to satisfy the Clausius-Duhem inequality.
The relation of the Robinson model to this concept should be clarified.
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material parameter in the evolution law for the visco-plastic
strain, equ. (3.4)

lumped parameter, equ. (5.124)

deviatoric back stress, equ. (3.7)

lumped parameter, equ. (5.124)

constraint functions, equ. (2.45), (2.94)

function characterizing boundary of critical regime, equ. (5.14)
lumped parameter, equ. (5.128)

intrinsic dissipation due to recovery along boundary of critical
regime, equ. (5.14)

internal energy, equ. (2.67) or Young's modulus, equ. (3.3)
evolution function for tl}e internal variables, equ. (2.2)
yield function, equ. (3.7)

dimensionless second invariant of back stress, equ. (3.7)

value defining switch in evolution equation for the back stress,
equ. (3.5)

temperature gradient, equ. (2.1) & page 6

total heating, equ. (2.67), or hardening parameter, equ. (3.5)

*

The number of the equation indicates where the symbol appears for the first

time. The list contains primarily those mathematical symbols which are used
throughout the text,
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evolution function for internal variables, equ. (2.45)

second invariant of back stress (internal stress), equ. (3.7);

dimensionless second invariant, equ. (5.77)

second invariant of effective stress, equ. (3.7); dimensionless

second invariant, equ. (5.77)

kinetic energy, equ. (2.67)

2nd order simulaneous invariant of back stress and effective
stress, equ. (5.63); dimensionless simultaneous invariant, equ.
(6.77)

evolution function for internal variables, equ. (2.45)

material parameter characterizing the contribution of the back

stress to the free energy (stored energy parameter), equ. (4.5)

material parameter: exponent in the evolution law for the back

stress, equ. (3.5)

material parameter: exponent in the evolution law for the visco-

plastic strain, equ. (3.4)

external unit vectors in current and reference configuration, equ.
(2.67),(2.70)

current and reference surface of body

total mechanical power, equ. (2.67)

hydrostatic stress, pressure, page 116

component of (current) heat flux vector

heat flux vector in current or reference configuration
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external heat source per unit mass, equ. (2.3)

set of rate variables, equ. (2.52)

recovery parameter, equ, (3.5)

index denoting undeformed reference configuration, equ. (2.70)
dimensionless intrinsic dissipation due to recovery, equ. (5.75)
deviatoric stress, equ. (3.7)

time

stress vectors referred to current or reference configuration, equ.
(2.67)

absolute temperature, equ. (2.8)

displacement vector and its components

velocity vector, equ. (2.67)

volume in the current and reference configuration

plastic work per unit volume, equ. (3.9)

cartesian coordinate; a distinction between Eulerian and Lagran-
gian coordinates need not to be made since infinitesimal displace-

ment gradients are assumed in this study

variable, equ. (5.98)

X; = } ',,Zz "‘/(% parameter, equ. (5.101)

¢

lumped parameter, equ. (5.143)
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variable, equ. (5.98)

function, solution of dy/dy =0, equ. (5.108) & (5.115)
y-position of y-minimum along B'C at X =X,, equ.(5,132)
functions, equ. (5.122)

general internal variables, equ. (2.1), (2.2)

dimensionless internal variable characterizing the uniaxial back
stress, equ. (3.16)

value deﬁning switch in evolution equations for the back stress,
equ. (3.18)

dimensionless value of aq, equ. (3.18)
tensorial internal variables, equ. (2.94)

tensorial internal variable defining the back stress tensor (kine-
matic hardening variables), equ. (2.98), (2.99), (3.7)

material parameter: exponent in evolution equation for the back |

stress, equ. (3.20)

constitutive quantity and the related function, equ. (3.6), (3.8)

dissipation (entropy production rate times absolute temperature):

total dissipation, equ. (2.3), (2.5), & intrinsic dissipation, equ.
(5.13) ff '

plastic, hardening and recovery contribution to intrinsic
dissipation, equ. (5.60)

lower bound-dissipation, equ. (5.96)
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lower bound-dissipation at x=x,, y=y3%, equ. (5.132)

constitutive function, equ. (3.6), (3.8)

internal energy per unit mass, equ. (2.1)

total strain tensor, equ. (2.1)

elastic strain tensor, equ. (3.1)

visco-plastic strain tensor, equ. (3.1), (3.4)

thermal strain tensor, equ. (3.1), (3.2)

deviation from equilibrium stress, equ. (6.17)

entropy per unit mass, equ. (2.1)

drag stress (isotropic hardening variables), equ. (2.95), (3.6), (3.7)
initial value of drag stress, proportional to yield stress, equ. (3.10)
heat conductivity, equ. (4.13)

eigenvalues, equ. (4.13)

Lame's constants, equ. (3.3)

dimensionless free energy parameter, equ. (5.146)

Poisson's number, equ. (6.27)

variables denoting deviation from equilibrium values, equ. (2.33),
(6.18)

various sets of independent variables characterizing a point in
different state spaces, equ. (2.11), (2.97), (2.102), (4.2), (5.1)
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density, equ. (2.67)
effective stress, equ. (3.6), (3.7)
symmetric stress tensor; a distinction between the Cauchy stress

and the Kirchhoff-Piola stress of 2nd kind is not necessary, since
infinitesimal displacement gradients are assumed, equ. (2.1)

entropy production rate, equ. (2.8), or uniaxial stress, table 1, equ.

(3.23)

dimensional uniaxial stress, equ. (3.16)

increment of time (page 35) or shear stress, table 1, equ. (3.23)
dimensionless shear stress, equ. (3.24)

general constitutive function, equ. (2.103), (56.1)

deviation of the back stress from its equilibrium value, equ. (6.17)
free energy per unit mass, page 7, equ. (2,106), (4.2)

general constitutive function, equ. (2.103), (5.1)
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