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Stress intensity factors and weight functions for the edge cracked plate calculated by the boundary
collocation method

Abstract

The determination of stress intensity factors for cracks exposed to arbitrary stress distribution
according to the weight function method calls for knowledge of the crack opening displacements
and stress intensity factor for a reference load case. The determination of these variables by
means of the Boundary Collocation Method (BCM) is discussed by the example of the drawn plate
with an edge crack. After derivation of the formulas for evaluation the influence is studied of the
relative crack depth and the plate length on the stress intensity factor, and the results are com-
pared with data from the literature.

The crack opening displacement field is determined from the stress function established by the
Boundary Collocation Method and the fracture mechanical weight function is calculated from it.
The resuits are compared with an analytical weight function obtained on the basis of approxima-
tive crack opening displacement fields. A formula is indicated for the weight function which covers
the total range from a/W=0 to a/W=1. This formula is the result of BCM computations made up
to a/W=0.8 for a relative plate length of a/H>1.5 and applies 1o the limit case a/W =1 known from
the analysis.

Finally the Boundary Collocation Method is used to calculate the mode Il stress intensity factors
for shear loaded plates with an edge crack. The resulis of the computations are compared with
solutions proposed in the literature. For the edge crack loaded with constant shear stresses, which
act on the crack surfaces, a numerical formula is given of the geometric function. Values applica-
ble to the weight function are determined from the crack opening displacements.

As an examplie of application the weight functions h; and hy, are used to calculate the stress inten-
sity factors of edge-notched beams in an asymmetric bending-arrangement,

Spannungsintensititsfaktoren und Gewichtsfunktionen fiir die Platte mit AuBSenrif auf der Basis der
Boundary-Collocation-Methode

Kurzfassung

Die Ermittlung von Spannungsintensitatsfaktoren fir Risse unter beliebiger Spannungsverteilung
nach der Methode der Gewichisfunktion erfordert die Kenntnis der RiBuferverschiebungen und
des Spannungsintensitatsfaktors fiir einen Referenzlastfall. Die Bestimmung dieser GroBen mittels
der Boundary-Collocation-Methode wird am Beispiel der gezogenen Platte mit ‘edge crack’ be-
handelt. Nach Herleitung der Auswerteformeln werden der EinfluB der relativen RiBtiefe sowie
der Plattenlange auf den Spannungsintensitatsfakior untersucht und die Ergebnisse mit Literatur-
daten verglichen.

Aus der mit der Boundary-Collocation-Methode bestimmten Spannungsfunktion wird das RiBufer-
verschiebungsfeld ermitteit und daraus die bruchmechanische Gewichisfunktion berechnet. Die
Ergebnisse werden mit einer auf der Basis approximativer RiBuferverschiebungsfelder erhaltenen
analytischen Gewichtsfunktion verglichen. Es wird eine Formel fiir die Gewichisfunktion im ge-
samten Bereich von a/W=0 bis a/W=1 angegeben, die auf BCM-Rechnungen bis a/W=0.8 bei
einer relativen Plattenlange von H/W>1.5 und auf dem analytisch bekannten Grenzfall a/W=1
beruht.

AbschlieBend wird die “Boundary-Collocation”-Methode zur Berechnung der Mode-il-Spannungs-
intensitatsfaktoren fir schubbelastete Platten mit AuBenriB verwendet. Die Ergebnisse der Be-
rechnungen werden mit Literaturidsungen verglichen. Im Falle des mit konstanten Schubspan-
nungen auf den RiBfldchen belasteten “edge-cracks” wird eine numerische Formel fiir die Geo-
metriefunktion angegeben. Aus den RiBuferverschiebungen werden Werte der Gewichisfunktion
bestimmi.

In einem Anwendungsbeispiel - dem unsymmetrisch belasteten 4-Punkt-Biegestab mit RiB - wer-
den die Spannungsintensitatsfaktoren K; und K, ermittelt.
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1. Introduction

The current determination of stress intensity factors by means of the weight function method calls
for knowledge of the crack opening displacements {CODs) and stress intensity factor for a refer-
ence load case. Whereas approximation methods have been developed for the determination of
the crack opening displacements, knowledge of the reference stress intensity factor is indispen-
sable. One method of the analytical determination of K-factors is the Boundary Collocation Method
(BCM) which was pioneered in early research activities by Gross, Srawley and Brown (e.g. [2] and
3]). Thanks to the conspicuous increase in the speed of computation of present-day computers
this method continues to be highly important, not the least due to its high accuracy.

The computation of stress intensity factors can be reduced 1o the determination of the stress dis-
tribution at the crack tip, which is fuilly known if we succeed in the determination of the Airy stress
function @.



2. Principles of the Boundary Collocation Method

2.1 The Airy stress function for crack problems

The stress components can be represented in polar coordinates - with the pole in the crack tip
(fig.1) - as

_13® 1 &0
%= o RPN
2
P
%o~ ar? ™

The orientation of these stresses is likewise indicated in fig.1. The Airy stress function results as
a solution of the bipotential equation

AAD =0 @)

In its extended version and represented in polar coordinates this gives
2 2 2 2
_6_2__‘_%_?__*__1_ d aq)_{._;l__aq) +_j§.aq: =0 (3)
or o 12 542 or? o 12 e
Besides the condition of compatibility (2), ® and the stress components, respectively, have to fulfili

in addition the boundary conditions still to be specified. Regarding the crack problem, the
requirement must e.g. be fulfilled that the crack faces are free of stress, i.e.

=0 (4a)

% lp=tn

T lpmin =0 (4b)

Due to the linearity of eq.(2) the stress function ® can be divided into a fraction ®; which is sym-
metric with respect to ¢ =0 and an antisymmetric fraction ®,.

b=0,+P, (5

The general treatment of the crack problem will be explained here in more detail by the example
of the symmetric fraction of the stress function.

2.2 Approach to determine the stress function

Expressions by a series are formulated for the still unknown stress function. For instance a power
series could be developed to describe the dependence on the distance r and a Fourier series for
the angular dependence. Their general term

D, =A,, " COS pg (6)
after introduction into (3) yields
: v—4, 2 2 22
AAD s =Ayr (V- (v = 2)° — u°] cos(ue) =0 7

Since this relation must be fulfilled for any values of r and ¢, the non-trivial solutions

v=p und v=pu+2 (8)

-2



follow with
®,=r"[A, cosve + A, cos(v-2)p] 9)

Since no use has as yet been made of the integralness of v, eq.(9) applies likewise 10 any value
of v, and the functions ®,, consequently are eigenfunctions of the bipotential equation (2) with the
eigenvalue v. Therfore, a development by eigenfunctions is possible.

In this representation the stress function reads

(o]

D, = Z r* [Aq cos ip + Ay cos(i — 2)¢] (109)
A=3[2
o0
o, = Z r* [B, sin 1¢p + By sin(A — 2)¢] (1)
>3]2

with the summation to be made only over the eigenvalues 1>3/2. Eigenvalues smalier than 3/2
do no longer give stresses capable of integration which means that the elastic energy diverges
ahead of the crack tip!

2.3 Consideration of the boundary conditions

2.3.1 Free crack surfaces

Introduction of the expansions (10) und (11) into the conditions applicable to crack surfaces free
of normal stress and shear stress according to eqs.(4a,4b) yields (in case of the symmetric portion)
two relations

Ajcos in + A, cos(A — 2)r =0 (12a)
A4l sin Am + Ay(4 —2) sin(A —2)r =0 (12b)

from which the eigenvalues 4 and one coefficient each must be determined.
Equation (12a) is non-trivially fulfilied by

najon

cos Ar =cos(A -z =0 — /1=—g-,
and the solution of eq.(12b)
sin Afr =sin(Af -2)r=0 - Ai¥=234..
follows. The symbol % is introduced here in order to discriminate between the two solutions
The coefficients pertaining to the two solutions are
A2

and



2.3.2 Crack surfaces exposed to constant load

If the crack borders are loaded with the constant pressure p,, the symmetric stress function will
include an additional term which, on account of the non-dependence of the pressure p, on the
distance from the crack tip, can only take the form r°. Then, instead of the boundary condition (12a)
it follows

Ay cos An + A, cos(A —2yr =0 flir A>2
and

Ay c052n+A20050=£§— fir A=2

Thus, the following additional term of the symmetric stress function is obtained
6D = %‘porz

if a crack is exposed to constant shear stress t, on the crack faces a term is found in addition to
the antisymmetric portion of the stress function

6P, =— % -ror2 sin 2¢

2.3.3 Stress function

The series (10) together with the eigenvaiues and coefficients yield after appropriate renumbering
of the running index

[>oe]

3/2
D, = Ern+3/2,qn{ cos(n+ 3/2)p — %Tj? cos(n — 1/2)¢]
n=0
+ Zrm’zArf[ cos(n + 2)p — cos ne ] (13)
n=0
+ 3 por?

2

where the first sum accounts for singular stress distribution and the second for the regular por-
tion.a.ren Anteil verantwortlich.
In analogy, the following expression is obtained for the antisymmetric portion of the stress function

D, = Zr"+3/28n[ sin(n + 3/2)¢ — sin(n — 1/2)¢]
n=0

o
+ Zr”“s,?{ sin(n + 3)p — ": j: :1’ sin(n + 1)<p] (14)
n=0
- —,:,— To"z sin 2¢



2.4 Stresses

These are the stresses following from eq.(1):
symmetric portions

o0 2
o= Aar" M0+ 3/2)[ i—'-';%"—‘-—sﬁ cos(n — 1/2)¢ — (n + 1/2) cos(n + 3/2)¢]

o 1/2
+ ZA:r"[(nQ —n —2)cos ng — (n+ 2)(n + 1) cos(n + 2)<p] + Po
n=0
Z 20 4 312)(n + 1 /2)[ cos(n + 3/2)p — —"-E—?% cos(n — 1 /2)90]
n=0
+ ZA,’fr”(n + 2)(n + N[ cos(n +2)p —cos ne] + pg
n=0

2o = D A" 20 4+ 312)(0 + 1/2)L sin(n + 3/2)¢ — sin(n — 1/2)¢]
n=0

+ ZA,Tr"(n + Dl + 2) sin(n + 2)p — nsinne]

n=0

antisymmetric portions

= ZB P2 (n? —2n — 5/4) sin(n — 1/2)p — (0 + 3/2)(n + 1/2) sin(n + 3/2)g ]

)
2
+ ZB,T,—"-{-"(H + 3){ ‘L,?:-{_":_g. sin(n + 1) — (1 + 2) sin(n + 3)(P}
n=0
+ 19 8in 2¢

o

Z - 1/2(n +3/2)(n + 1/2)[ sin(n + 3/2)p — sin(n — 1/2)¢]

o0
+ ZB:*,nM(n + 3)(n + 2)[ sin(n +3)¢ — ’r: i ? sin(n + 1)90]

n==0

— 1o 8in 2¢

Ty = anr”“‘/g(n +1Y2)[(n — 1/2) cos(n — 1/2)p — (n + 3/2) cos(n + 3/2)¢ ]

n=0

- ZBffr"H(n + 3)(n + 2)[ cos(n + 3)p — cos(n + 1)¢]

n=0

(15a)

(16a)

(17a)

(15b)

(16b)

(17b)



+ 15 COS 20

In the special case of the crack tip near-field the terms proportional to 1/\/7 with r—0 are domi-
nating. The associated stresses result from the symmetric portion of the stress function

a,=—3—A0r"—1/2[5 cos—;—(p—cos—qo] (18a)

Ay 23 cos—2—¢+cos (p] (18b)

4
_3
%% =7
T =—3—A 1/2[sm1

ro o @ +sin— (p] (18¢)

and from the antisymmetric portion of the stress function it follows

o= =By [ =5 sin+ ¢ +3sin 5 o] (180)
4 2 2

I ey _L 2ain S
0p == Bor [ -3 sin 5 @ —3sin o] (18e)
o= =7 B [ cos ; ¢ +3cos cp] (181

These relations are identical with the Sneddon equations and thus allow Ay, A 10 be identified
and likewise the stress intensity factors K, , Ky, viz.,

K, =327 A, (19a)
K”=“‘«/21T Bo (1gb)

2.5 Determination of the coefficients A,A*

For practical application of eqs.{13) and (14), which are used to determine stress intensity factors,
the infinite series must be truncated after the Nth term for which an adequate value must be cho-
sen.

The still unknown coefficients are determined by fitting of the stresses resulting from eqgs.(15 to
17) 1o the specified boundary conditions. If for a selected number of 2(N + 1) edge points two of the
related stress components are known, two of egs.(15) to {(17) each yield a system of equations with
2(N+1) unknowns whose solutions allow ail 2(N+ 1) coefficients of egs.(13,14) to be determined.
Freguently, the computation is reduced to only N +1 equations. This always holds when the prob-
lem is a purely symmetric one which will be described in the foilowing section.

The expenditure in terms of computation can be reduced by selection of a rather large number
of edge points and by solving subsequently the then overdetermined system of equations by use
of the least squares of deviations, thus obtaining a set of "best” coefficients.

The Harwell subroutine VO2AD is used here to determine the best fit. The nomber of fitting nodes
was selected to be 4N.

The description of the boundary conditions by the given load stresses is meaningful, above all for
stresses subjected to high local variations (e.g. bolt loading). elatively homogeneous loading (eg.
constant tension, bending) fitting to the boundary conditions applicable to the stress function -
which ss an integral variable is an average of the stresses - should be preferred. The determi-
nation of the boundary conditions of the stress function from the boundary conditions of stress is
illustrated by the examples. der Spannung wird in den Beispielen verdeutlicht.

The fitting points should be selected such that their densities likewise increases with their
approaching the the crack tip. One possibility is e.g. to choose equidistant angular steps between
successive fitting points. Since the stress components in the rectangular coordinate system are
known for the border - as in the case here - also the stress components given in eqs.(15-17) must
be rewritten as



0y = 0y cosch +9, sinch — 27, sin @ cos ¢ (20a)
o, =0, sin2<p + o, COquD + 21, sin ¢ coOs ¢ (20b)

Tyy = (6, — 0,) Sin ¢ cos ¢ + Trq,( COSQ(p - sin2¢) (20c)



3. Edge cracked plate under mode | loading

3.1 The plate subjected to tension

The first practical example to be cited here ist the plate drawn in longitudinal direction, provided
with a straight through crack on its side, fength 2H, width W.
The stresses at the border in this example are

oy=0 . 17,,=0 fir x=—a (21a)
oy=0p , T4,=0 fir y=H (21b)
o,=0 ’txy=0 fir x=W (21c)

The stress oo can be chosen arbitrarily because the only interesting result of computation is the
geometric function which is determined by dividing again by o,. It is recommended to choose e.g.
Oy = 1

In the special case selected here of the drawn plate the study can be restricted to the symmetric
stress components for reasons of symmetry (with respect to y=0). Due to the free crack surfaces
one can set py=0.

The boundary conditions for the stresses given by eq.{21) can be rewritten by making reference
to equivalent boundary conditions which are applicable to the stress function ®;.

Instead of (r=a,p = =) the stress function according to eq.(13) is given by

Dsl;, = Pslx=—ay=0=0 (21d)
Moreover, for partial derivations at the-same location it applies am gleichen Ort
OD/0X| 4y =0 (21e)
and

OD0Y |4 y0=0 (215)

As both the shear stresses t,, and the normal stresses o, along the line x=-a disappear, the fol-
lowing expressions must hold for all locations y according to eq.{1):

62 2 =0 21

axéy |X“—a ( g)

62 > | 0 (21h)
y2 X=—a

Along the edge defined by y=H the shear stress disappears and the normal stress is o, = 6= 1.
it follows

3@, l e
—_ = 1
ax? =0
GR N o o1
axay Iy:H - ( J)

Along the edge x=W-a it applies in analogy to the edge x=-a

0

S —_—
553y v=w-a =0 (21k)

-8 -



5@,

—55— Ix=w—gz =0 211
This results in the boundary conditions

oD
——'a—)z— |x=—a =0 (223)
Oy, =0 (22b)

oD,
T ly=H=0 (22c)

X2 22
@glyp = oo 5~ +ax+—5-) (22d)
0P,
Fx lx=w—a= oW (22e)
1 2

Oylyp—g = 5 oW (22)

Figure 2 shows as the result the geometric function for different ratios a/W and H/W defined by

oK (23)

O/ ta
y

For comparison, data from [1] - based on computations by Gross and Srawley [2] - have been
entered. Table 1 shows a comparison of the values determined here for H/W =2 with data taken
from [1]. The agreement is very good. The maximum deviations from the solution proposed in the
literature [1] are smaller than 1%.

al/W Tension Internal pres- [1]
sure

0.2 1.370 1372 1.367
0.3 1663 1.662 1.655
0.4 2112 2112 2108
05 2 825 2825 2827
0.60 4.033 4,033 4,043
0.70 6.348 6.352 6.376
0.80 11.90 11.86 11.99

Table 1. Geometric function for the long plate (H/W=2) for tension

In fig.3 the influence is shown of the relative specimen length a/W for a/W=0.4. It is clearly visible
that for H/W>1 no noticeable change in the geometric function F occurs any more and that hence
the case H/W =1 reflects sufficiently well also plate strips infinite in length. In table 2 the geometric
functions obtained for different H/W ratios have been compiled. Any intermediate values can be
easily obtained by parabolic interpolation.

Figure 4 shows the influence of the number of considered terms of the series on the value of the
geometric function F determined. A nearly constant value is attained from N=60 on. A clearly
better convergence appears when the stress function is fitted to the boundary conditions as com-
pared to the fitting of the stresses. For the geometric functions indicated in figs.2 and 3 always
N =860 is used.



a/W=0.20 0.30 0.40 0.50 0.60 0.70

H/W=0.35 1.743 2.264 2.852 3.581 4.635 6.678
05 1.487 1.848 2.324 3.008 4.149 6.393
0.75 1.381 1.680 2.133 2.841 4.040 6.355
1.00 1.372 1.662 2.113 2.825 4.033 6.354
1.25 1.370 1.662 2.112 2.825 4.033 6.354
1.50 1.370 1.662 2112 2.825 4.033 6.354
2.00 1.370 1.663 2.112 2.825 4.033 6.352

Table 2. Influence of the plate length on the geometric function for tensile loading

An investigation of especially small cracks {(e.g. a/W < 0.10) using the Boundary Collocation
Method is not meaningful because in that case at the far distant fitting points - relative to the crack
length - with r>a the homogeneous stress field gets only little "disturbed”. in the range of small
values of a/W the plot determined for larger values of a/W can then be extrapolated 1o the value
a/W=0. Values for cracks occurring in the half-space of infinite extension - to which the case a/W
corresponds - are provided with high accuracy by analytical methods.

3.2 The cracked plate with compressfon stresses acting on the crack
surfaces

The crack loaded by constant pressure is, according to the principle of superposition of stress
intensity factors, equivalent to the plate with crack loaded by tension of equal amount. The inter-
comparison of the numerical results of both cases provides a measure of the accuracy of the
method of collocation.

In the example under consideration the edge stresses are:

ox =0, 7, =0 fiir x=—a (24a)
o,=0 , 7,,=0 fur y=H (24b)
ox=0 , 1,,=0 flir x=W (24c)

Integration of these stress conditions leads to the equivalent boundary conditions for the stress
function:

oD
I lx=—a =" Po? (25a)
1
Oylye—o =5 Poa’ (25b)
LA
oy ly=n=0 (25¢)
Oy, = —Poal5 +x) (250)
oD,
—5)(_ |x=W—a = — poa (258)
Oylew—o = —Poa(W — ) (25

- 10 -



The geometric functions F obtained for the edge crack at constant compression stress loading of
the crack faces has been entered in addition in table 1. The deviations from pure tensile loading
are smaller than 0.4% and due to the fracture mechanics equivalents of both types of loading they
are a measure of the accuracy of the numerical values. Thus, an increase in the number of series
members of the expansion (13) taken into account (here N=60) does not seem necessary. It takes
about 20s computer time to calculate a K-factor which time increases quadratically with the num-
ber of terms N. The results of the calculations of the stress intensity factors according to the BCM
have been represented in fig.5a together with the literature data [1], [5], [6], The solid line cor-
responds to the geometric function tabulated in [1]. The values calculated by Benthem and Koiter
[5] using the method of the asymptotic interpolation have been entered as dashed line; obviously,
the accuracy of these values is particularly high close to the limit values a/W—0 and a/W—1. A
numerical relation given by Tada {6]

4 0.857 4+ 0.265«

F = 0.265(1 — a)
(1 _ a)3/2

(26)

has been traced as a dotted-dashed line. However this formula does not express the correct
(exactly known) derivative for a/W=0. The geometric functions calculated in that report can be
represented by the numerical formuia

0.026778 (0.427103 + a) > 7°8% 4 0.26514 « +0.72475 ”
F=1122 P (27)

Figure 5b shows a comparison of the calculated points with the representation according to
€q.(27).

3.3 The plate subjected to bending load

The stresses acting on the edges of the bent plate are:

ox=0, 14,=0 for x=—a (28a)

X+a "
ay=oo(1—2-——w——) . Txy=0 fir y=H (28b)
ox=0, 7,,=0 for x=W (28¢c)

Expressed in terms of the stress function - similar to ref. [3] - the boundary conditions read:

o0,
Ix Ix:——a =0 (298)
Dslyesq=0 (29b)
a0,
oy ly=n =0 (28¢)
3 2 2 3 2 2
a ax ax X X a
Clyn=col gy~ ~—w ~aw Tz T+ 3) (290)
o,
= lyew—a =0 (29¢)
1 2
Dyl x=w—a =5 oW (299

The results of the computations have been represented in fig.6. Deviations are found up 1o 2%
from the values in the table given in [1]. On the other hand, the agreement is excellent with the
results proposed by Nisitani and Mori [4] (cited in [1]). The geometric functions calculated by
those authors with the "Body Force Doublet Method” can be written

- 11 -



F=1.122 — 1121« + 3.7400° +3.873° — 19.054* + 22.554° (30)

Table 3 is a compilation of own results together with results from [1] and eq.(30).

a/w [1] [4], eq.(30)
0.10 1.048 1.049
0.20 1.058 1.035 1.055
03 1.126 1.098 1.427
0.4 1.261 1.234 1.263
0.50 1.497 1.475 1.495
0.60 1.913 1.898 1.917
0.70 2.708 2.716 2.714

Table 3. The geometric function for the long plate (H/W=2) under bending load

3.4 The weight function for mode I loading

Stress intensity factors for cracks exposed to any loading can be calculated using the weight
functions method. If a stress distribution o(x) acts on the crack surfaces of a one-dimensional
crack of depth a , the effective stress intensity factor K, is given by

K =o*/naF= foah(x,a)a(x) dx (31)

where o* is a characteristic stress value of the stress distribution o(x), e.g. the stress acting near
the plate surface. The weight functions h(x,a) used in {31) are known for important types of crack.
They can be calculated from the crack opening displacement field of any reference load case -
normally chosen with ¢ =constant - using

h(x.a) = —Elr— % v (x.a) (32)

The subscript r denotes the reference load case. For the module E’ we must introduce E in case
of plane stress and E/(1 — v?) in case of plane strain. In order to be able to determine the weight
function for a crack/component configuration we have to determine the crack opening displace-
ment field of the reference load case as well as the related stress intensity factor. it is proposed
to determine in this report the weight function for the edge cracked plate (see fig.1) from stress
collocation computations and to compare it with solutions indicated in the literature.

3.5 The crack opening displacement field for the reference load case

The displacements u and v can be calculated from the radial strains e, and tangential strains e,.
The following relation holds:

ou
er="5" (33)
u 1 Ov
g =— 4 = 34
(S r de . (34)

From the Hook law written in a general version
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(35a)

®
&, = Mo, —No, (35b)
with
m= 4 n=-—+ for plane stress
E E
2
1—v _v(14) .
m=—F% , h= E for plane strain
and the stress components given by the stress function @
100 | 1 30
=T o tT2 2
r r° ode
2
o, =0 (36)
or

we obtain the following system of equations describing the displacements :

du m b  m oD P*®
U _moR maod ,0 (37a)
or r ar f'2 a(pQ al’2

u 1 v PO n od n 0D

or

The integration of this system of differential equations leads to

2 2
fi—@drd —rnj 220 g +m | L2 gp - 1 T2 (38)
r° d¢ or 9

After introduction of the stress function - with the coefficients A, A* determined by the BCM -

oo

3/2
O, = Zrn+3/2Anl: cos(n + 3/2)¢ — %—%— cos(n — 1/2)<p]
n=0
+ Zr"HA,T[ cos(n + 2)¢ — cos neJ (39)
n=0

we obtain for the crack opening displacements on account of p ==

3/2
—n_mZA nH1[2 4 ""’1//2 (=)™ (40)
=0

Figure 7 shows the crack opening displacements for cracks of different depths as normalized plots.
For comparison, the approximative crack opening displacements have been entered in addition
which had been obtained in [7] and [8] on the basis of the reference stress intensity factor, the
conditions of self-consistence, and the requirement of vanishing bending on the surface. The
agreement is very good for relative crack depths a/W<0.7 with maximum deviations of about 1%.
For a/W=0.8 the maximum deviations increase to approx. 3%. As the representation in an
approximation relies on a polynomial expansion with only three terms in "2 it is evident that the
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real crack contour can be satisfied only by averaging over the totai crack depth. According to
these deviations, also deviations in the weight function can be anticipated in case that the latter
are determined by the method of approximation and not by crack opening displacement fields
determined in a direct manner.

3.6 Determination of the weight function

Since up to a/W=0.7 the crack opening displacement fields determined by approximation
according to [7] [8]are not identical with the values determined according to the BCM - the devi-
ation being 1% - the weight function indicated in [8] can be used for a/W<0.7. It is contained in
the Annex as fitted formula.

Starting from the crack opening displacement fields determined according to eq.(40) the weight
function h{x,a) will now be newly calculated for a/W>0.5. Table 4 shows as a basis for the calcu-
lations the crack opening displacements for several values a/W and &/a (£ =x+a; see fig.1} in the
form suited for interpolations ’

o a
T W) “

This leads to the derivation of the crack opening displacements with respect to the crack length.
The function values needed for numerical differentiation of the function f have been interpolated
from the values given in table 4 using bicubic splines. With the help of eqs.(27) and (32) the values
of the weight function are obtained which have been compiled in table 5. The values so obtained
have been entered in fig.8 together with the weight function given in [8]. Likewise, the weight
function solution according to Buckner [9] has been represented with a range of validity a/W<0.6
as well as the solution proposed by Kaya [10]. In the range a/W<0.6 all weight functions are nearly
identical.

¢/a a/W=0.5 0.6 0.7 0.75 0.8

00 1.7464 1.6779 1.5838 1.5152 1.4225
0.2 1.6805 1.5880 1.4739 1.3885 1.3029
0.4 1.6183 1.4859 1.3555 1.2710 1.1705
0.6 1.5567 1.3962 1.2233 1.1268 1.0193
0.8 1.4888 1.2841 1.0706 0.9577 0.8386

Table 4. Normalized crack opening displacements f({/a,x/W) according to eq.(41)

Table 6 shows the weight function values from table 5 in a representation which lends itself easily
to interpolation

2 gla.aw)
T8 A= ¢ja (1-a/w)*?

In order to make possible interpolations up to a/W—1 the solution known from analysis for a/W =1
(slotted half-space with remaining dam) [6]

235 1% (43)

Jra (1 —ajw)*?

has been incorporated in this table. The values for £/a=1 result from the crack tip field (near-field)
which is exclusively determined by the stress intensity factor

Voan =8 £ F (44)

h=

(42)

h=
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Using eq.(32) this resuits in the weight function applicable o the crack tip zone

8 ¢la a oF
ey m%—("‘f'?_aa“)\/‘l”é/a] (45)
and especially for ¢/a —1
T2 ¢l
h=./—— ———— 46

independent of a/W .

a/w ¢/a=0.0 0.2 0.4 0.6 0.8 0.9
0.5 §.270 8.139 7.032 6.000 5.249 5.401
0.6 13.605 11.618 9.661 7.787 6.170 5.811
0.7 21.54 18.17 14.80 11.46 8.263
0.75 28.88 24.12 19.37 14.63 10.01
0.8 41.14 34.06 26.96 19.87 12.86
Table 5. Weight functions h(Z/a,a/W) from crack opening displacement fields
a/W ¢(/a=00 0.2 0.4 0.6 0.8 08 1.0
0.0 1.834 1.624 1.440 1.273 1.128 1.060 1.000
0.1 1.796 1.575 1.378 1.190 1.007 0.928 0.8538
0.2 1.833 1.650 1.402 1.160 0.920 0.815 0.7155
0.3 2.195 1.830 1.488 1.155 0.852 0.715 0.5857
0.4 2.527 2.050 1.600 1.172 0.793 0.620 0.4648
0.5 2.907 2.295 1.725 1.185 0.738 0.535 0.3536
0.6 3.298 2.548 1.850 1.230 0.683 0.450 0.2530
0.7 3.711 2.800 1.875 1.250 0.637 0.370 0.1643
0.75 3.918 2.927 2.036 1.260 0.607 0.330 0.1250
0.8 4.125 3.054 2.094 1.260 0.577 0.297 0.0894
1.0 4.978 3.562 2.314 1.259 0.445 0.157 0.0000
Table 6. Weight function in a normalized representation g(£/a,a/W) according to eq.(43)

Using the data from table 6 the weight function can be expressed within +1% accuracy by the
approximation formula

h

2 1 a 32 E : . v+, a F
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The related coefficients are:

Ago=0.4980 Ay, =2.4463 Agy =0.0700 Agg=13187 Ay, =—3.067

Ajo=0.54165 Ay =—50806 A, =243447 Ayy=—32.7208 A,,=18.1214

Ago=—0.19277 Ay =255863 Ay =— 126415 Ay =19.7630 A,, = — 10.9860
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4. Edge cracked plate under mode li loading

To be able to evaluate fracture toughness measurements knowledge is required of the stress
intensity factor solution applicable to the load case chosen. Besides in the mode | loading studied
thoroughly, the interest is growing in mode il and mixed mode loadings. Here the continuous
surface crack under constant shear loading =, will be examined as the reference load case for
weight function application.

The following relations hold for stresses acting on the specimen edge

oy=0, 1,,=0 fir x=—a (48a)
o,=0, 'rxy———O fir y=H (48b)
ox =0, 1,,=0 fir x=W (48¢)

Integration of these stress conditions gives the equivalent boundary conditions for the siress
function:

b,

- lxmma =0 (49a)
@yl x=a = T08Y (49b)
b,

—*aTl—'- |y=H = T8 (49C)
D,y = T0aH (490)
oD,

——67" |x=W——a =0 (496)

@yl x=w—a = T08Y (491)

The geometric functions F obtained for the edge crack at constant shear stress loading of the crack
faces have been entered in table 7. The results of the computations have been entered in fig.9.
The solution obtained by Tada [6] from the asymptotic interpolation according to the method by
Benthem und Koiter {5] has been represented in addition.

1.122 — 0.561a/W +0.085(a/W)? +0.180(a/W)*

"= (50)

With the formula above the two exactly known limit cases of the straight continuous surface crack
in the half-space (a/W—0) and of the siotted half-space with remaining dam (a/W—1) are interpo-
lated, with the derivation dF,/d(ajW) for the limit case a/W—0 known in addition by a suitable
polynomial and, obviously, its accuracy is maximum near a/W=0 and a/W=1. Deviations up to
approx. 1.5% from the formula indicated in [67] are found.

The geometric functions determined in that study can be represented analytically by the relation

1.122 — 0.561a/W —0.20(a/W)? +0.89115(a/W)> —0.42609(a/w)*
F/I = \/m (51)

4.1 Determination of the mode Il weight function

The computation of stress intensity factors for cracks loaded by shear stresses can be performed
using the weight function for mode |l loadings. If the stress distribution (x) acts on the crack sur-
faces of the one-dimensional crack the mode |l stress intensity faclor is expressed by
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a
Ky=1*/ra F = fo hy(x,a)z(x) dx (52)

where 7* is a characteristic stress value of the stress distribution z(x). The weight function h, can
be calculated by
E 0

hy(x.a) = K o8 u/(x.a) (53)

4.2 The crack opening displacement field for the reference load case

The displacements u and v are described by eqs.{33) and (34). Using eq.(33)

_ ou
Toor

&r
and the Hooke law - eq.(35) - we obtain especially for ¢ == - since in this case o, -

ou

o \o=n=Mmo; (54)
The integration of eq.{54) gives for the reference case of constant shear stress on the crack sur-
face using eq.(5a)

Ul pmr = 4mZ( —1)"B, "2 (55)
n=0

The crack opening displacements determined according to eq.(55) were compared with a solution
proposed in the literature [6] for the special case r=a, i.e. for crack opening on the surface. Clear
deviations were found. By verifying the derivation of the solution indicated in [6] an error in [6]
was detected. The correct derivation - and likewise an intercomparison of the crack opening - have
been described in more detail in the Annex.

4.3 Determination of the mode Il weight function

The weight function can be determined with eq.(53) from the crack opening displacements deter-
mined by eq.(55). Very accurate solutions are available for the limit cases a/W—0 and a/W—1
[6]. Together with these limit cases the values of the weight function for discrete values of a/W
and &/a (see fig.1) entered in table 8 yield in the normalized representation

2 g¢laaw)
T8 J1—¢la J1—aw

In fig.10 the weight function for cracks of different depths is shown in a normalized representation.
From the data in table 8 the weight function for each value of a/W and &/a can be obtained by
parabolic interpolation. The IMSL-routine IBCIEU is suited for this purpose.

An analytical approximative representation for a/W=<0.8 can be described by

h= (56)

1/2 v
h= _’é— J1—¢la (: —ajw)'? [(1 “%) +ZA”“(1 ~ <) +1(%)ﬂ] 7

The related coefficients A,, are entered in tabie 9.
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4.4 Stress intensity factors for short plates

The influence of the height H on the geometric function F; is represented in table 10. For small
values of H/W (H/W<0.4) and a/W<0.8 a simple relation becomes obvious by plotting the F,-data
versus a/H. The result is shown in fig.11 . A unique relation occurs which can be described by the
simple relation

Fp = [1.684(a/H)2 ¥ 1.1215“]1/4 (58)
a/W Fu GL{9)
0.2 1.128 1.134
0.25 1.133 1.143
0.3 1.143 1.155
0.4 1.178 1.181
0.50 1.239 1.252
0.60 1.345 1.351
0.70 1.523 1.520
0.80 1.846 1.833
0.85 2.129 2.110
0.90 2.620 2.584
Table 7. Geometric function for the long plate with constant shear stresses acting on the crack faces
a/W ¢/a=0.0 0.2 0.4 0.6 0.8 0.8 1.0
0.0 1.834 1.624 1.440 1.273 1.128 1.061 1.000
0.2 1.662 1.488 1.311 1.146 1.007 0.947 0.894
0.4 1.543 1.382 1.208 1.048 0.902 0.834 0.775
0.6 1.556 1.382 1.199 1.009 0.813 0.728 0.632
0.8 1.680 1.502 1.289 1.048 0.778 0.615 0.447
0.9 1.766 1.570 1.356 1.096 0.791 0.573 0.316
1.0 1.834 1.641 1.421 1.160 0.820 0.580 0.000
Table 8. Mode il weight function in a normalized representation g{£/a,a/lW) according to eq.(56)
p=0 1 2 3
v=0 0.59250 0.08077 | -2.93912 | 6.06686
0.15745 -1.83168 | 11.7816 -14.599
2 0.21108 2.8108 -14.701 15.329
3 -0.12416 -1.6465 6.69787 | -6.15696
Table 9. Coefficients of the weight function according to eq.(57)
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0.5

H/W a/W=0.1 0.2 0.3 0.4 0.7 0.9
0.025 2.368 3.272 3.977 4.582 5.082 6.022 6.826
0.05 1.762 2.373 2.858 3.272 3.644 4.292 4.845
0.1 1.366 1.763 2.090 2.375 2.629 3.075 3.479
0.2 1.172 1.366 1.575 1.763 1.834 2237 2.772
0.4 1.122 1.174 1.261 1.366 1.474 1.707 2.611
0.5 1.205 1.282 1.371 1.615
0.6 1.174 1.232 1.309 1.567 0.000
0.75 1.1582 1.184 1.262 1.536 0.000
Table 10. Geometric function for the short plate
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5. Applications of the two weight functions

5.1 The edge-notched beam in asymmetric 4-point bending

As an example of application the weight functions h; and h, are used to calculate the stress inten-
sity factors of edge-notched beams in asymmetric bending-arrangements (fig.12). Such a test
configuration is of interest for the determination of the fracture toughness K. of ceramic materials.
Iin this case the geometric functions F, and F; are defined by

P d — Iy
KI::_W{(1—T) naF, , K” Wt( ) 1raF,, (59)

The non-symmetrically loaded (unnotched) 4-point bending bar was studied by Filon [11] who
derived an analytical solution for the stress state. The axial stresses o,, normal to the crack, are

TR —ry cos mx cosh my

2P i o Sinh mW[2 — mW/2 cosh mw/2
L

2p my sinh mW/2 i

T cos md W sinh mW cos mx sinh my

Ox = ) =t (60)
Z cosh mW/[2 — mW/[2 sinh mW|2

sin mx sinh my

sinh mW — mw

op Z in md my coshmWw/2 h
- 1slnm SR W —mw Sin mx cosh my
n=

with m = nz/L. and the shear stresses v are given by

Z mW 2 cosh mW/2 sin mx sinh my
L mW + sinh mW
- ——L— Zcos md nTV)b; inst;nmhvr\;fv sin mx cosh my
T= & (81)
2P ) mW/2 sinh mW/2 h
L rHsm md SR W — mW cos mx cosh my

- my cosh mW/2
EE_.Z("nm y /

m cos mx sinh my

An illustration of the shear stresses 7 along the line x=0is given in Fig.13 and the normal stresses
o, are represented in Fig.14. The numerical calculations were carried out with at least 500 terms
in the center (y~0) increasing to 10000 terms for the outer regions y—-+W/2. Based on the stress
fields ox(y) , T(y), the siress intensity factors for mode-l and mode-|l resuli,

a a
Ky= J;) h(nla.alW)oydn , K= fo hy(nla,a|W) = dy (62)

w
=5y (63)
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5.1.14 The long beam without eccehtricity

The stress intensity factors (expressed by the geometric functions) are listed in tables 11 and 12
for L/W=5 and various a/W- and d/W-values. From these results any other combination can be
obtained easily by application of bicubic splines.

d/W=0.25 0.300 0.375 0.500 0.625

a/W=0.1 0.3746 0.3428 0.3318 0.3450 0.3598
0.2 0.7881 0.7180 0.6719 0.6633 0.6741
03 1.0374 0.9933 0.9560 0.9399 0.9431
0.4 1.1858 1.1818 1.1753 1.1702 1.1695
0.5 1.3120 1.3380 1.3578 1.3661 1.3641
0.6 1.4674 1.5079 1.5387 1.5507 1.5472
0.7 1.6948 1.7318 1.7553 1.7600 1.7547
0.8 2.053 2.0687 2.073 2.0684 2.0635
0.9 2.7563 2.7545 2.7505 2.7467 2.7452

Table 11. Geometric function for mode Il

d/W=0.25 0.300 0.375 0.500 0.625
a/W=0.1 0.2615 0.3695 0.4241 0.3841 0.2918
0.2 -0.0038 0.1129 0.2110 0.2448 0.2060
0.3 -0.0307 0.0447 0.1184 0.1580 0.1410
0.4 0.0024 0.0483 0.0904 0.1098 0.09534
0.5 0.0407 0.0672 0.0842 0.0806 0.06268
0.6 0.0716 0.0808 0.0771 0.0566 0.03706
0.7 0.0855 0.0769 0.0581 0.03198 0.0164
0.8 0.0641 0.0460 0.0271 0.0106 0.00359
68 - -0.0048 -0.0002 0.0077 0.01406 0.0138

Table 12. Geometric function for mode |

Figure 15 shows a comparison of the results of weight functions with the FE-results given in [12].
For this case especially L/W=2.5 was chosen. As can be seen from tables 11 and 12 the geometric
function F, is approximately independent of the value of d/W in the range 0.375<d/W<625. An
analytical approximation can be given by

Fy = 3.9204c — 5.1295«° + 14.45660° — 26.2916a" +17.073° , o=a/W (64)

5.1.2 The influence of an eccentricity

In order to evaluate tests with small misalignments, where the crack is not located exactly
between the inner rollers with an eccentricity Ax , stress intensity factors were calculated for
Ax=40.2d and d/W=0.5 in addition. By interpolation of the values in table 13 the influence of the
eccentricity can be taken into account.
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Ax/d =-0.2 0. +0.2
0.1 0.3544 0.3450 0.3355
0.2 0.7081 0.6633 0.6296
0.4 1.2320 1.1702 1.1110
0.6 1.5747 1.5507 15170
0.8 2.0667 2.0584 2.0700

Table 13. Geometric function for eccentric crack location (mode |l)

5.1.3 The influence of the specimen length

The geometric function F, was computed for several values of the ratio L/W. The results are shown
in table 14 for the case d/W =0.5. it is obvious that the specimen length exerts only an insignificant
influence.

L/W=1.25 2.50 3.75 5.00 7.50

a/W=0.1 0.3293 0.3411 0.3438 0.3450 0.3462
0.2 0.6485 0.6596 0.6621 0.6633 0.6644
0.4 1.1700 1.1702 1.1703 1.1702 1.1703
0.6 1.5575 1.5524 1.5513 1.5507 1.5503
0.8 2.0735 2.0697 2.0689 2.0684 2.0682
08 2.7480 2.7471 2.7470 2.7467 2.7468

Table 14. Geometric function (mode il) for different ratios L/IW

5.1.4 Recommendation for mode-ll experiments

For mode-Il experiments it is recommended to use specimens with 0.4<a/W<0.6 since the mode-I
stress intensity factor is very smalli in this range. The remaining mode-| portion guarantees a crack
opening and avoids friction effects between the two crack surfaces. For d/W 0.35<d/W=<0.625
should be chosen since in this range the geometric function Fy is nearly independent of d/W. The
specimen lengths should be L/W>2 to obtain a geometric function F; which is nearly independent
of the specimen length.

5.2 Stress intensity factor and compliance in 3-point bending tests

Three-point bending tests are usually carried out to determine subcritical crack growth of
macro-cracks in static bending tests and to determine the R-curve effect of ceramics. Therefore,
the stress intensity factors are necessary as well as the compliance.

The geometric function F defined by

K,=00Fw/1ta . O'o=—3" PL (65)
2 ws

has been determined by Brown and Srawley [2], [3] for 3-point bending tests with L/'W=4 and 8

with the Boundary-Collocation-Method (BCM). in this section the stress intensity factor and the
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compliance of bending bars are analyzed in a wide range of L/W using the weight function method.
The aim is, to provide data which allow to evaluate tests with arbitrary geometry (L/W>2).

5.21 Stress distribution

The symmetrically supported 3-point bending bar (fig.16) was studied by Filon [11] who derived

[0 0]
3yPL 4P sinh mW/2 — mW/2 cosh mW/2
Coow? L mW + sinh mW

cos mx cosh my

N=1
(%)

4P my sinh mW/2

L mW 4 sinh mW

oo n=1 (66)

4P Z cosh MW/2 — MW/2 sinh MW/2

cos mx sinh my

SInh MW — MW cos Mx sinh My

n=0
00

4P My cosh MW/2
T L /_ sinh MW —MW
n=0
with m = 2n=/L, and M = (2n + 1)=/L.
An illustration of the resulting stresses o, aiong the line x=0 is given in Fig.17.

cos Mx cosh My

5.2.2 Stress intensity factors

The stress intensity factors -expressed by the geometric function F and illustrated in fig.18 - were
fitted by
1 2 3 4
F= DRI [O.3738a + (1 — a){(Ag + Aja + Aya” + Aga” + Ay )] , a=alW (67)
(1—-a)

The coefficients A,....A; are listed in table 15 for different values of L/W. From these results the
coefficients for any other L/W>2 can be obtained easily by application of bicubic splines.

A As A, As As
L/W=2 1.0426 -2.2336 3.8625 -3.3469 1.0121
4 1.0697 -2.0120 3.4980 -2.8588 0.8756
8 1.0941 -1.8105 3.1971 -2.6356 0.7445
16 1.1063 -1.8598 3.0477 -2.4758 0.6801
32 ~ 1.1130 -1.8420 3.0018 -2.4385 0.6690
oo 1.1200 ~1.8286 2.9734 -2.4268 0.6706

Table 15. Constants for eq.(67)
A representation by polynomials reads
2 3 4
A# = Auo +A WL+ A#Q(W/L) + A#S(W/L) + AM(W/L) , u=0.4 (68)

with the coefficients listed in table 16.
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Auo A A Aus Aus
n=0 1.1200 -0.2387 0.4317 -1.7351 2.4145
w=1 -1.8288 -0.2573 -4.9847 16.9047 -18.2883
u=2 2.9741 0.2706 18.6767 -60.4912 59.8239
u=3 -2.4280 0.5627 -27.3447 87.7078 -85.2405
u=4 0.6712 -0.5184 13.5837 -43.5421 42.3503

Table 16. Coefficients for eq.(68)

5.23 Compliance

The compliance of a bending bar with the crack size a consists of the compliance of the uncracked
bar C, and the portion AC caused by the crack. The total compliance is then given by

C=Cy+ AC (69)
with
2 1+ W
Co=—t [411_/v+( 2L) ] (70)
W BE
(E =Youngs modulus, v=Poisson ratio, B=specimen width), and
2 a
AC=3 LT 'Ry gu (71)
2 w?eB Jo
The result of the numerical evaluation of eq.(71) can be expressed as
bt (12 2o
AC =— B o (72)
2 — u
2 W°EB 1 [ed pr

with the coefficients of table 17. Figure 19 shows the compliance in a normalized representation.

B, B, B, B, B, Bs
L/W=2 1.7046 -6.251 13.924 -18.867 14.073 -4.3928
4 1.7950 -5.8908 12.452 -16.161 11.609 -3.508
8 1.8787 -5.9556 11.742 -14.668 10.200 -2.8972
16 1.8210 -5.8329 11.368 -13.894 9.4753 -2.7354
32 1.9424 -5.8220 11.185 -13.524 8.1344 -2.6138
0o 1.9638 -5.8091 10.991 ~13.128 8.7669 -2.4818

Table 17. Constants for eq.(72)

The data of table 17 can be fitted by
2 3
B,= B,uO + Bm WL + B#Q(W/L) + 8#3(W/L) , n=0.5 {73)

with the coefficients listed in table 18.
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By B, B,. By
u=0 1.9634 -0.6473 -0.4645 1.4479
p=1 -5.9080 -0.5307 1.8855 -4.3890
u=2 10.9809 - 6.2296 -2.3368 3.2163
u=3 -13.130 -12.356 0.08942 3.3477
u=4 8.7702 11.3087 1.7797 -6.3733
=5 -2.4832 -4.0318 -0.9616 2.7738

Table 18. Coefficients for eq.(73)

5.3 The 3-point bending test with eccentric notch

In a three-point bending test with a notched bar under asymmetric load (fig.20} the geometric
functions F,, F;, may be defined by :

PL
w?s

KI=O'0F,\/;3— s K,,=0'0F”«/7ra, y G’o=‘£23" (74)

in order to determine the mixed-mode stress intensity factors the weight function method is
applied in this section.

5.3.1 Stress distribution

The symmetrically supported 3-point bending bar (fig.1) was studied by Filon [11] who derived an
analytical solution for the stress state. The stress components necessary for fracture-mechanical
calculations read

[o ¢]

_ 12yPL 4P sinh mW/2 — mW/|2 cosh mW/2 h
ox= wt L mW + sinh mW cos mx coshmy
n=1
o
4P my sinh mW/2 .
L mW  sinh mw COS M sinh my
o (75)
4P cosh MW/[2 — MW/[2 sinh MW/2 .
L sinh MW — MW cos Mx sinh My

n=0

o0
My cosh MW |2

- % si:h MW -M{/V cos Mx cosh My

n=0
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o0

4P mW/2 cosh mW/2

T= 7 W Snh MW sin mx sinh my
n=1
4P my sinhmW/2 h
L mW + sinh mW Sin mx cosh my
oo (76)
4P MW/|2 sinh MW/2
+ [ Z Snh MW — MW sin Mx cosh My
n=0
4P My cosh MW[2 .
— St MW =MW sin Mx sinh My
n=0

with m = 2n=n/L, and M = (2n + )= /L.
An illustration of the resulting stresses o, and t is given in figs.21 and 22.

5.3.2 Stress intensity factors

The mode-l and mode-ll stress intensity factors were calculated by introducing egs.(75) and (76)
in eqs.(77). The results are expressed by the geometric functions F,, Ffy and compiled in tables
18-24. From these results the coefficients for any other L/W>2 can be obtained easily by applica-
tion of bicubic splines ( e.g. IMSL-bicubic-spline routine IBCIEU).

2d/L=0. 0.2 0.4 0.6 0.7 0.8 0.9
a/W=0. 1.0426 0.9757 0.8171 0.6462 0.5747 0.5348 0.5692
0.1 0.8067 0.7560 0.6292 0.4663 0.3647 0.2088 | -0.1222
0.2 0.6583 0.6145 0.5032 0.3521 0.2564 0.1345 [ -0.0011
0.3 0.5655 0.5240 0.4210 0.2864 0.2094 0.1274 0.0497
0.4 0.5065 0.4648 0.3664 0.2468 0.1837 0.1206 0.0601
05 0.4674 0.4235 0.3276 0.2194 0.1648 0.1106 0.0584
0.6 0.4380 0.3911 0.2972 0.1882 0.1490 0.1005 0.0521
0.7 0.4164 0.3627 0.2719 0.1809 0.1359 0.0911 0.0467
0.8 0.3977 0.3362 0.2510 0.1672 0.1254 0.0837 0.0421

Table 19. Geometric function for mode-l at LIW=2
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2d/L=0.2 0.4 0.6 0.7 0.8 049
a/W=0.1 0.0320 0.0481 £.0528 0.0642 0.1164 0.3687
0.2 0.0557 0.0868 0.1069 0.1359 0.2146 0.3893
0.3 0.0743 0.1167 0.1453 0.1750 0.2315 0.3093
0.4 0.0888 0.1378 0.1649 0.1858 0.2172 0.2522
0.5 0.1041 0.1513 0.1709 0.1825 0.19879 0.2116
0.6 0.1183 0.1585 0.1689 0.1740 0.1802 0.1841
0.7 0.1333 0.1598 0.1628 0.1641 0.1660 0.1662
0.8 0.1462 0.1551 0.1545 0.1546 0.1549 0.1534
Table 20. Geometric function for mode-tl at LIW=2
2d/L=0.2 0.4 06 0.7 0.8 0.9
a/W=0. 0.9450 0.7187 0.5058 0.4223 0.3596 0.3466
a/W=01 0.7480 0.5750 0.3998 0.3188 0.2267 0.0397
0.2 0.6179 0.4755 0.3252 0.2496 0.1604 0.0344
0.3 0.5315 0.4067 0.2745 0.2070 0.1331 0.0533
0.4 0.4720 0.3581 0.2398 0.1801 0.1187 0.0571
0.5 0.4280 0.3220 0.2148 0.1615 0.1079 0.0547
0.6 0.3924 0.2835 0.1856 0.1470 0.0886 0.0504
0.7 0.3615 0.2700 0.1799 0.1351 0.0904 0.0458
0.8 0.3348 0.2506 0.1670 0.1253 0.0836 0.0418
Table 21. Geometric function for mode-i at LIW=3
2d/L=0.2 04 0.6 07 0.8 0.9
a/W=0.1 0.0328 0.0406 0.0348 0.0324 0.0402 0.1282
0.2 0.0553 0.0696 0.0638 0.0649 0.0871 0.1912
0.3 0.0712 0.0895 0.0856 0.0895 0.1131 0.1779
0.4 0.0827 0.1018 0.0895 0.1036 0.1206 0.1550
0.5 0.0915 0.1081 0.1063 0.1091 0.1189 0.1358
06 0.0883 0.1087 0.1080 0.1093 0.1139 0.1208
0.7 0.1028 0.1076 0.1061 0.1065 0.1081 0.1107
0.8 0.1030 0.1030 0.1022 0.1022 0.1025 0.1030
Table 22. Geometric function for mode-il at L/IW=3
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2d/L=0.2 0.4 0.6 0.7 0.8 0.9
a/W=0. 0.9324 0.6858 0.4640 0.3712 0.2961 0.2648
a/W=0.1 0.7450 0.5540 0.3741 0.2938 0.2158 0.0445
0.2 0.6187 0.4625 0.3111 0.2398 0.1651 0.0607
0.3 0.5330 0.3988 0.2673 0.2034 0.1364 0.0597
0.4 0.4729 0.3536 0.2362 0.1785 0.1184 0.0583
0.5 0.4278 0.3196 0.2132 0.1605 0.1075 0.0545
0.6 0.3914 0.2924 0.1949 0.14865 0.0881 0.0502
0.7 0.3604 0.2697 0.1798 0.1348 0.0802 0.0458
0.8 0.3343 0.2505 0.1670 0.1253 0.0836 0.0422
Table 23. Geometric function for mode-1 at LIW=4
2d/L=0.2 0.4 0.6 0.7 0.8 0.9
a/W=0.1 0.0295 0.0316 0.0272 0.0244 0.0238 0.0567
0.2 0.0497 0.0543 0.0481 0.0454 0.0499 0.1049
0.3 0.0633 0.0693 0.0632 0.0616 0.0692 0.1131
0.4 0.0722 0.0781 0.0730 0.0723 0.0793 0.1062
0.5 0.0777 0.0820 0.0783 0.0779 0.0827 0.0971
0.6 0.0805 0.0824 0.0800 0.0798 0.0822 0.0888
07 0.0805 0.0804 0.0792 0.0790 0.0799 0.0823
0.8 0.0778 0.0770 0.0765 0.0764 0.0766 0.0772
Table 24. Geometric function for mode-1l at L/W=4
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7. Annex

7.1 Weight function from approximative crack opening displacements

The weight function determined from approximative crack opening displacements in [8] with
p=¢E&/a reads

_
h(x,a) =/ =5 "71%7_ [1 4 Ay(1 = p) + Ay(1 — p) + Ag(1 — p)°] (A1)

with the coefficients obtained by fitting

2 3 4
0.4523 + 1.1690%+ 8.5078(%) —13.6598(—5;—) +4.4306(—at—)

A, = (A2)
(1—afty’?
a a 2 a3 a .t
0.7017 — 2.2134 2 + 2.7344( )" +4.6756( 2 ) —6.0185(2)
A f t t t 3
2 5/2 ( )
(1—ajf)
a a 2 a3 a 4
—~0.3102 + 08970 & — 0.5156(2-)" —2.0149(5-) — 1.8843( )
Az = (Ad)

(1 —ajt)>?

As appears from a comparison with the weight function determined according to the BCM, the
solution indicated here yields sufficiently accurate values up to a/W=0.75.

7.2 Comparison of the crack opening displacement field under mode Il
loading with a solution proposed in the literature

In [6] the crack opening displacement directly at the surface was indicated for the case of the edge
crack loaded with constant shear stresses using to the method of Paris (see [6] Annex B).

=2 Uy . a—aW (A5)

where the function U, has been represented by

Uy = —0.184 —0.637x — 0.1294 + 0.026a> + 0.028¢* + 0.0080° — 844 1n(1 — ) (AB)

This solution is shown in fig. A1. in addition, the results obtained by use of eq.(55) are entered.
The deviations of the two solutions occur well beyond the accuracies of the two methods.

If Kir means the stress intensity factor caused by a (continuous) loading P and K,; means the stress
intensity factor caused by a point load Q at the crack mouth (£ =0 in fig.1) the crack opening dis-
placement for £ =0 is obtained as follows

2 a 6K,Q
8eo= 'E—fo Kip—g 9a (A7)

With the stress intensity factor given in [6]

2Q 1.3 — 0.65a + 0.37¢° + 0.284°
Kig= a o [ (A8)

\/r;'c_a— ST —a

and
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= 2 3
AT a

Introducing (A8) and (A9) into eq.(A7) afier elementary integration leads to

(A9)

1.0738

a

U, = 0.3848 —0.5369x — 0.06117a° + 0.025464° — 0.028164* — 0.00840° —

In(1 — «) (A10)

This relation - controlled by numerical integration of eq.(A7) - is likewise entered in fig.A1. Within
the accuracy of both methods it agrees with the dependence resuiting from eq.(55).
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8. Figures
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Fig.1

Coordinate system and stresses ahead of the crack tip.
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Fig.2

Geometric function of the "edge-crack” subjected to tensile stress.
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Fig.3

Influence of the specimen length 2H on the
geometric function under tensile loading.
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On the convergence of the Boundary Collocation Method after fitting
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Fig.5a

Comparison of the results obtained with the BCM with data from the literature.
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Own results and their analytical representation by eq.{27).



F — o BCM
a [1,2]
~ a - — 4] eq.(30)
20 = )
W —
-
M
15 R

10 ) i | | | | ]

Fig.6

Comparison of the geometric function F for the case of
pure bending with a solution taken from a table in [1].
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Fig.7

Crack opening displacements according to the BCM, compared with crack
profiles obtained by an approximation method indicated in [8].
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Fig.8

Values of the weight function of the edge cracked plate,
compared with solutions indicated in the literature.
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Fig.10

Weight function hy in a normalized representation g{¢/a,a/W) according to eq.(56).
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Geometric function F, for small values of H/W.
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Edge-notched bending bar in an asymmetrical bending test.
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Fig.13

Shear stresses in the asymmetrically loaded bending bar at x=0 .
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Fig.14

Normal stresses o, in the asymmetrically loaded bendi'ng bar at x=0.
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Geometric functions £, and F, compared with an FE-result from [12],
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Edge-notched bending bar in a 3-point-bending test.
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Fig.17

Stress distribution ox(y).
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Fig.18

Geometric function in normalized form.
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Compliance AC in normalized form.
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Fig.20

Bending bar with an eccentric edge-crack in a 3-point-bending test.



Fig.21

Stress distribution o,(y).
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Stress distribution z(y).




Fig.A1

Crack mouth opening compared with data from the literature.



