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Abstract

A formalism developed by Benoist, to calculate the neutron leakage in a voided
fast reactor lattice, was modified and simplified using analytic chord length
distributions. The new method (computer routine ARIADNE) allows for a rapid
calculation of buckling-dependent anisotropic cell diffusion coefficients for voided
and unvoided periodic lattices with adequate accuracy. Results are compared with
Monte Carlo calculations carried out at Argonne National Laboratory, and with
results from other authors.

Zusammenfassung

Eine neue vereinfachte Methode zur Berechnung der Streaming-Reaktivitit in

Stabgittern schneller Reaktoren

Ein Formalismus, der von Benoist zur Berechnung der Neutronen-Leckage in
Natrium-entleerten Stabgittern schneller Reaktoren entwickelt wurde, wurde
modifiziert und unter Benutzung analytisch angendherter Sehnenlangenvertei-
lungen vereinfacht. Die neue Methode (Rechenprogramm ARIADNE) erméglicht
eine schnelle Berechnung von Buckling-abhingigen anisotropen Diffusionskoeffi-
zienten fir Zellen mit und ohne Natrium mit ausreichender Genauigkeit. Die
Ergebnisse werden mit Monte-Carlo-Rechnungen verglichen, die im Argonne
National Laboratory durchgefiithrt wurden. Weitere Vergleiche mit publizierten
Ergebnissen werden vorgestellt.
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1. Introduction

If the pin lattice of a Fast Reactor has voided coolant channels, neutron leakage is
enhanced as compared to the case of a homogeneous material distribution in the
unit cell. It is important to calculate this enhanced leakage ("streaming effect”) for
a gas cooled fast reactor in its operating state, and for a sodium cooled reactor
under conditions of hypothetical core discruptive accidents, when the sodium has
boiled out. E.g., in an unprotected loss-of-flow accident, pin failure into a voided
channel leads to a quasi-homogeneous material distribution, and therefore to an
increase in reactivity because the leakage is reduced.

For lattices which involve two-dimensional plane void gaps, the directional cell
diffusion coefficients depend strongly on the bucklings B2 of the global flux
distribution. On the other hand, the standard KfK cell code KAPER! does not
have the capability to calculate B2-dependent diffusion coefficients. The method
included in KAPER underestimates the leakage in voided pin lattices. This is
unsatisfactory because the streaming effect is a safety-relevant parameter, and it
is important to calculate it with reasonable accuracy.

Therefore, a computer model ARIADNE was developed at KfK, which calculates
B2-dependent diffusion coefficients in a 2-region approximation (fuel pin and
coolant channel region). It is based to some extent on a formalism proposed by
Benoist2, In the present paper, ARIADNE is described. For verification of the
method, results for cell diffusion coefficients are compared with data available in
the literature.
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2. Methods to Calculate Cell Diffusion Coefficients

The standard tool for homogenisation calculations at KfK is the cell code
KAPERI!, Direction-dependent diffusion coefficients are calculated using the
collision probability method by Benoist3, which leads to the simple equation

D = - ] (1)

where the Pj; i are the directional (axial or radial) collision probabilities intro-
duced by Benoist. The cell is taken as cylindrical, with white boundary conditions;
i.e. neutrons returning from the boundary have isotropic angular distribution.
This is adequate for a sodium-filled hexagonal lattice of a fast reactor. However, a
voided lattice contains two dimensional plane gaps (see Fig. 1) if it is wide enough;
i.e. if p/d > 2/V3, which is usually the case for fast reactor lattices. Then, the
“cylindical cell” method involves an artificial cut of the plane gaps by introducing
a fictitious cell boundary, which is located in vaccum. Therefore, the long neutron
paths which are present in such a voided lattice are not adequately treated, and
the leakage (or the cell diffusion coefficient) is underestimated. A slightly
different method, which is also available in KAPER, is the use of Dancoff factors
for the coolant channel region. This alternative leads to a similar underestimate of
the leakage in voided cells as the cylindrical cell method.

The principle of cell homogenisation leads to different definitions of the cell-
averaged cross sections, and the cell diffusion coefficients, depending on how
different terms of the neutron balance are grouped together. This was discussed
e.g. by Hughes4. However, for fast reactors, the pin cells are usually optically thin,
and the differences between the different definitions are usually negligibly small.
It is, therefore, completely adequate to use the simplest definition, which is
termed "Benoist uncorrected”4. On the other hand, as mentioned above, it is im-
portant to calculate B2-dependent diffusion coefficients for lattices with 2-dimen-
sional void planes. This is still not standard in most cell codes. In the following,
the different methods are briefly discussed.

Kohler and Ligou5 were the first ones to calculate B2-dependent diffusion coef-
ficients for gas cooled fast reactor lattices. These authors used a numerical method
to solve the basic equations in their code DIFFAX. This method does not involve



any modelling approximations and is, therefore, accurate and useful as a reference
method. However, streaming corrections are quoted in their paper only for the
axial direction, and only for voided lattices. For a sodium cooled reactor, it is
desirable to have a method which is valid for both voided and unvoided lattices,
and for both directions.

Eisemann6 developed a method to calculate streaming in the hexagonal lattice of
a gas cooled reactor. This method is also restricted to voided lattices. Besides, the
B2-dependence was suppressed, and it is not clear from the documentation how
convergence of the numerical integration was achieved. Therefore, this method
was not considered suitable for further development.

Gelbard and Lell7 and Lell8 derived a perturbation equation to calculate the
change Ak due to streaming for given B2, and solved it by a Monte Carlo method.
The published results quoted in Table I were produced by a one-group calculation;
therefore, AD's can be derived from them. A direct use of the quoted Ak/k to the
real reactor is, however, questionable, for once because of the one-group approx-
imation, and also because blankets are ignored in these zero-dimensional calcu-
lations.

Benoist extended his original theory3 to the case of lattices with voided coolant
channels2. His approach follows the principle to retain the B2-dependence only to
the lowest order necessary. This is consistent with using the diffusion approx-
imation in the whole core calculation, '

For a periodic 2-region lattice (fuel pin and coolant channel), the important quan-
tity is the reduced collision probability pcck (¢ = coolant channel). It is related to
the collision provbability P..x (probability that a neutron born in the coolant
channel makes its first collision in the coolant channel) through the equation

cck

2P

Note that peck (unlike Peek) remains finite in the case of a voided channel, i.e. if
Zc = 0.

This quantity is split into contributions Qx and Q'x, where Qg is due to neutron
paths which never leave the coolant channel region. It is calculated by a numer-
ical procedure, adding the contributions of each ring of fuel pins separately. The
second term Q'k, accounts for neutron paths which traverse at least one fuel pin.
The assumption is made that neutrons entering a pin have isotropic angular dis-
tribution. This assumption leads to an overestimate of the diffusion coefficients,



which is obvious by looking at the results published by Benoist and Duracz9. Note
that for a typical fast reactor lattice, Q'x is a lot larger than Q.

Ghol0, in his dissertation, developed a comprehensive computer model TRIFFAX.
Itis based in part on DIFFAX, but extensions include e.g. the effect of the wrapper
tubes of a hexagonal lattice. The results of this code for an undisturbed periodic
lattice are very close to the DIFFAX results.



3. The KfK Method to Calculate B2-Dependent Cell Diffusion Coefficients for
Pin Lattices

The following method is valid for both voided and for sodium filled periodic pin
lattices. It can therefore be used to calculate the streaming effect associated with
the removal of sodium in a consistent manner. The method is, in its present form,
restricted to two region cells, which consist of the fuel pin and the coolant channel.

3.1 Approximate Projected Chord Length Distribution

The method is based in part on a formalism developed by Benoist2. An important
quantity which is needed in Benoist's equations is the distribution of the chord
lengths g (p) in the coolant region, projected on a horizontal plane. Thus, the pro-
jected chord length p is given by

p=1lsin8

where | is the true chord length, and 6 is the angle of the flight path with the z-
axis.

Assume a pin lattice, with "a” the pin radius, and "s” the lattice pitch. If s >
4a/V'3 (which is usually the case in fast reactor lattices) then the lattice contains
plane void spaces of the thickness

(2)

£ =

T (-3

For a lattice where ¢ < 0, the following method is irrelevant, and the simple
KAPER method should be used instead. However, if ¢ > 0, the distribution of
projected chord lengths g (p) contains an asymptotic term, which behaves, for
large values of p, as

A

g, ()= — (3)
p3

where

3e’s (4)

na




It is due to this asymptotic term that a formalism which is independent of B2
would give infinitely large cell diffusion coefficients for voided lattices. This is
connected with the fact that the mean square of the chord length is infinity

2 B 2
p =j g, (ppidp—w
0

The complete distribution of the projected chord lengths,

g =g, () +g,p) (5)

where g1 is the asymptotic term, is clearly a rather complex function of p for a
hexagonal lattice. In an early paper by Sauerll, it was suggested to approximate
complex chord length distributions by simple analytic functions, which lead again
to simple, but rather accurate analytic expressions for the collision probabilities.
Sauer uses the following ansatz for the (three dimensional) chord length distri-
bution in coolant channel regions of pin lattices

£y = (6)

where 1is the mean chord length, C is a normalization constant, and t is a dimen-
sionless free parameter. Clearly, very small chord lengths do not occur. Therefore,
f(1) = 0 for small 1. Sauer obtained the best fit if he required that the logarithmic
moment of the distribution, In /1, was adjusted to values obtained by numerical

(Monte Carlo) calculations.

Sauer's argument leads, for a hexagonal lattice, to the following approximate
expression for the free parameter t

VC
09523 V1 + — —1
v

7
v = - —0.12 )
VIV
C u

where V./V is the volume ratio "coolant/fuel pin”. This approximation (Fig. 2) is
used in the KfK cell code KAPER, and gives good results for sodium-filled lattices.

Note that, according to Sauerll, the logarithmic moment of the chord length
distribution is connected with t by the equation



Wt =t e ( —— e, (=) 8
n nt+ exp P E1 T (8)

where Ej is the exponential integral.

In the present work, an approximation is desired for the projected chord length
distribution rather than for the three-dimensional chord length distribution as
used by Sauer. It should include the asymptotic term, so that it can be used for
voided lattices, too. The following approximate distribution function is used

0 p<t
: A A1
glp)= { —3 + (1 - __E) _e'—(P‘t)/A p>t (9)
p 2t2/ A

The distribution (9) is normalized; A follows from the condition that the mean p
has the correct value

1

13

p=

where [ is the mean chord length in the coolant channel. This condition can be
written

| >

& 1o
[l |
o

(10)

I
|

~,,>,
| >

N
—1f

2t

The method described by Sauer is then used to determine another dimensionless
parameter T = t/I, which is characteristic of the projected chord length distribu-
tion. One finds easily that the logarithmic moment is connected with the param-
eter T through the relation

_— A Ty /l A 1 11
Inl/l =InT+ 1—-——-)exp —)E — j+ +In2 - - (11)
2742 NSV 42 2

Then, assuming that Sauer's parameter tis given as a function of the volume ratio
V/Vy by Sauer's approximation (7), one obtains the logartihmic moment from eq.
(8), and the parameter T from eq. (11). This procedure gives T, as shown by the solid



line in Fig. 3. For easy use in the code, this function is approximated by the fol-
lowing analytic fit

i b o 003 (12)
1

The circles in Fig. 3 show the fit by this equation. The KfK method (computer
routine ARIADNE) consists of using the approximate distribution (9) to simplify
Benoist's formalism. This will be outlined in the following Section. Note that t in
eq. (9) is given by eq. (12).

3.2 Outline of the Basic Benoist Approach?2

The equations for cell homogenisation are generally derived from the neutron
transport equation, which reads in the case of one energy group, with isotropic
scattering

r 1
@V+2)F(}?§z’):—iJF(’r,3)d3+——s (13)
t 4n 4n
where F is the angular flux, and S is an external source.

Then, one assumes that the flux can be factored as follows
F = fexp (iﬁ?) ’ 14

where f has the periodicity of the lattice, and the global flux is described by the
exponential term. One obtains a system of two coupled equations

> > > Zs -> 1
(QV+2t)g—— QBh = — ] gdQ + — 8
4n 4n
(15)
@Vv+2)h+ OBg= — I hd©
t 4n

where g and h are the real and imaginary part of the periodic cell flux f.



Starting from these equations, one can work out different definitions for the cell
diffusion coefficients. Benoist2 uses the simplest definition, which is usually
termed "Benoist uncorrected” in the literature2.,4. It is given by

javiadn Y @ B
k (16)

2 _
%DkBk—_

[av [d%g

where the volume integral is over the unit cell, and the integral dQ over the full
solid angle.

Benoist evaluates eq. (16) in an approximation where the B2-dependence is
retained only to the lowest order necessary, and the small "angular correlation”
terms are neglected2. This way, he finds that the expression (1) for the cell
diffusion coefficient can be generalized to include the buckling dependence in first
approximation, by including non-leakage factors in the directional collision
probabilities; i.e. replacing Pjjx by the expressions

—> > > -»
P.(B)= J dVJ dV'P (r', r)eos(B R) (17
ijk V. V. k

._9
where R = 7' - 7. For a two-region cell, the diffusion coefficients are then

e (B9 (RS (B3 CRTA [ I

u

where Qk and Q' are related to the reduced collision probabilities
Qk * Q'k = 2Pcck”c_zc (19)

Pcc is the probability of a neutron born in the coolant channel region to make its
next collision in the coolant channel. The P,k are the corresponding directional
collision probabilities. Qi refers to neutrons which never leave the coolant chan-
nel region, while Q'x accounts for those neutrons which traverse at least one fuel
pin. Note that the reduced collision probabilities (i.e. also Qi and Q') are non-zero
even in the void case where P is zero.
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3.3 Evaluation of the Quantities Q, and Q,

According to Benoist, Q, and Q, are defined by the following four-fold integrals

Q,&,B,B)=— J decoszﬁ{ dp ng(p)] ndn[ dxexp
0 ] 0 0

‘-—xn(Zc+iBzoose>p/sin8]J0(qurp) (20)

and

® 1

1 n/2 1
Q Z,B,,B)=— J dBsin® J dp ng(p)[ ndn I d x exp
nlc 0 0 0 0

l_xq<zc + iBzcos())p/sinO (Jo(x nB_p)—J, (qurp)) (21)

where Jg and J9 are Bessel functions.

We first evaluate the contributions due to the first (asymptotic) term of the distri-
bution function (9). These contributions are termed Q,(1), Q,(1). The integrals over
p have the form

% iB e‘ J B (22)
—xn{ g5 TiB.ced)p ,xnB p)

®d
W, = { = exp
t P

where n = 0 or 2. Introducing the variables x = yn Z. p, x0 = xn Z¢ t, ar = By/Z,,
a; = B,/Z., T = 1/sin 6 + iq; ctg 0, one has

“d
W(Ol)___ J ___)Se‘r‘XJ (G x)

” X (4] r

0
This can be written

*dx -a ax *o dx —aq.ax
D __ ur_ —TIx r _ o8 ~Tx _ r

Wy _J —e (Jo(arx)—-e )+ E, (T +aa)x) JO —e (Jo(arx) e )

0
(23)
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where a is a free parameter. The first integral on the right side of eq. (23), which
we call Wp1(1), can be evaluated in closed form

W= [ | 24)
ol VI a’+T
We notice that the exponential integral E; has the expansion
E@=-Inz-y+AE () ' (25)
where y is Euler's constant. Thus
W(o”=1nﬁ—:;—lnxo—y+wl(;"e) (26)
r

where AE;is a small correction of order xg; therefore B was set equal to zero in this

term.
Inserting into (20), and carrying out the integrals over Yy and n, one obtains

(1) /«a _ 12A I H/2 2 - IB
Qz (LC,BZ,Br)-— — Z(l—y)-— dBcos“BIn {t Lc-i- ZcosG+

nl?
C

0

1 1 n/2 X
l+2] ndr\[ d&{ dGcoszﬂAEl< 0 )} (27)
0 0

0 sin 0

V(E_ +iB_cos8)? + BZsin’0

To evaluate the last term (the integral over the function AE;) we observe that the
integral over the E{ function can be written as follows

0 sin@ u

/2 2 X() ® du /
J do cos BEI(—-———-): Jx —(Kil(u)—- Ki3(u)) (28)
0
where the Ki, are the Bickley functions, or Bessel function integrals12, of index n.
In a fast reactor, the coolant channels are always optically thin; thus, xg <€ 1.

Therefore, we want to find a series expansion in powers of xg. Using the series
expansions of the Bessel function integrals Kip, we obtain



-12-

” du( _ , 3 no 1 ( 2
] — le(u)—Kls(u))-—Conl—FZln——-&- tp(2)+ln—-)x

i 0
0 xo xO

3
1 1 2\ X
+Ex2—(tp(4)+—+-+ln-—-)—-9 (29)
g 0 2 3 X, 36
where the constant Conj is
B ® du( . . ' ! du( . . n
Con1 = 1 : Kll (u) — Kl3 (u)) + . —u— K11 (u) — sz(u) - Z) (30)

The constant can be evaluated by a very simple argument. The integral over AE;
is given, according to eq. (25), by

n/2 ) XO n/2 9 X0 n I 1
JO d6 cos GAEI(;{;E):J d0 cos GEI(_sin8>+ Zlnx0+ Z(y+ln2+ E) (31

As the left hand side is of order of xg, its expansion has a constant term which is
zero. Therefore by comparison

Conl = —

Lol =

(y+ln2+%) (32)

The integrals over n and £ in the last term of eq. (27) are then trivial, leading to
the following contribution to Q,(1)

Q™ (contribution of AE. ) = o2 ( (4)+1n2)p+” P
contripution o _ T— - - -
z v e WY p/6 812
C
1 1 2\ p°
-—(ty(ﬁ)+—+-—1n-—)———-—] (33)
2 35/ 720

where p = Z.t.

The equations (27) and (33) represent Q;(1) in terms of a single integral over 6,
plus a fast-converging series expansion. Eq. (27) shows clearly that the buckling
dependence becomes important when Z. < B,, and/or . < Br. Besides, it is clear

that the dependence on the two bucklings, B, and B,, has a different form.
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To evaluate the corresponding radial quantitiy Q,(1), as defined by the eq. (21), we

need, in addition to Wo(1), the quantity Wg(1), which according to eq. (22) is given
by '

) X d
—J — e ‘Jz(arx)—— J 0 —ie'rxJz(arx) (34)

In this equation, the second term on the right side is of higher order in B, and can
be neglected.

The first integral, from zero to infinity, can be evaluated in closed form

o ey &

Then, inserting the expressions (23) and (35) into eq. (21), and carrying out the
integrals over 1 and §, one obtains for the radial term Q,(1)

n/2

QVe ,B B)—ﬁé Ze—y) d0sin20In|tT +iB cosO+V(E +iB cos0)’+BZsin20
r o By r—- 12 1 -Yi= 0 sin n ¢ 1 zCOS ¢ st rsm
n
C
2
B n/2 d Bsin*e
— — Re

0 2, +iB, c0s8)+Bsin?6+2 (E_+iB_cos8) V(Z_+iB_ c0s8)? + Bsin’0

1 1 n/Z X .
+2[ qdnJ df,j stinQGAEl( 0 ) (36)
0

0 0 sin 0

The last term in the integral, which involves AEj, can be evaluated in a similar
way as for the axial case. One has

n/2 X o
J stinzeEl( 0 ):J i (37)
0 X
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and, proceeding to a series expansion

3
Fd“K'()-nl L 4 Con, + n2+< @+ =41 2>x° 8
3 ig () = = In - ony +xy — = xo+ W st =3 (38)
0 0 0
where the constant Cons is
B *du 1du<K, n
Conz— 1 ‘a‘KlB(U)'i‘ . —u— 13(u)—- Z) (39)

Again, the constant can be found from the requirement that the integral over AE;
is of order xg; then

I 1
Con, = —-4—<ln2+y—-5> (40)

The contribution of the last term in eq. (36) is then

2 3
12A 1 2\ p
QY (contribution of AE, ) = =2 [R _ BB (w(S) +~+1n —) ———’ (41)
r VT 2 16 T 8 12 3 p/ 360
[4

This completes the evaluation of the terms Q,(}) and Q(1), which are now repré—
sented by single integrals over 6, plus fast-converging series expansions in the
parameter p = Z.t. The principle to keep the B2 dependence only in the lowest
order necessary was followed, but no other approximations were made. Note that
the approximate splitting in two terms, Q (£., B) = Q (£, B=0) + § Q (£.=0, B),
as suggested by Benoist2, was not used. A few remarks on further simplication
will be made later. In the following, the contributions of the second (exponential)
term in the distribution of the projected chord 1engths, eq. (9), will be evaluated. It
is sufficient to evaluate these terms for zero buckling because they are finite in
this case.

Inserting the exponential term of the distribution function g (p) into eqgs. (20) and
(21), one finds after some manipulations

24 el (

2
c

@ = A ” “uEAM . m u
Qz (ZC,O) = 1 - — , due KIS(U) - K)s(u) - -1—6— + :.3_ (42)

nl2zé)
C
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and

12 e ( A ® -wZ A 3n 2
(2) /n C .
p)) = _ — e — -
Qr ( c,0) TN 1 2t2) L due [K15(u) T + 3 u (43)
[y [

where g =t/A.

If p is small, which is always the case for a fast reactor pin lattice, the following
power series expansions are useful

D@ 0)—2)‘2(1 A){“ (q) ((4) lom 2 @) —
% G nl TV RC _n2q)¢3q)6q
(9
2 . 3
P n p 1 p
+A(q)—‘—-—cb(q)-—+(qx(6)+—-—-ln—)q> q)
377 6q 48 4T 2 2 2q/ 7% 7 94048
3
p
- A_{q) ]
5 240 3 (44)
A2< A [n p & p?
(2) v
0= 1= — || = - — — —
Q- (X0 " 2t2) 5 b2 @ ¢3(q)6q + 15 2@ -2
3 3
- (q: 6) —In —‘3—)¢5(q) +A, (@ (45)
2q 120 ¢° 120q°
where

o @=q"+n" '+n-1g"?+. . +nm-1...8qg+nm-1...21
and

A@=¢ @n g+ +5q+11)+6e’E (@

A @ =d,@ln g+ (g +9q°+47¢" + 154 + 274) + 120°E, (q)
These expansions are used in the computer routine ARIADNE,

We now discuss further simplifications of the terms Q,(1) and Q,(1), and quote the
results for the important case where the coolant channels are voided.
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3.4 Limiting Cases

The expression for Q,(1) can be further simplified if B, = 0; i.e. if the (small)
influence of the radial buckling on the axial leakage is neglected. In that case, the
remaining 0 integral in eq. (27) can be carried out, and one has

JSTTTE
(L - 24A [n/1 1 R 1+a; -1
QVE ,B,B =0)= (- —y+mlm=-l(Q+V1+d)e ——
zoe v 2 18 1\2 p z 2
nl aZ
2 u p’ 11 2y p°
+(1p(4)+ln~>2+—-————(\p(e)+—+_+1n_>___} (46)
p/6 812 2 3 p/ 720

This expression holds for any value of the ratio a, = B,/ Z.. Especially, it has a
finite value in the void case, ;. = 0. In the latter case, the total Q, reads

— _ _nth (2)
Qz(zc -O’Bz’Br ﬂo)_Qz + Qz

C3A] 11 3)\2( ANz, o .y
_Tln—B—_t;-+§—Y +"“'§"‘ 1——3(q+q+) (47)
lc 2 lc 2t

The asymptotic part (in the first bracket) is nearly the same as the one given by
Kohler and Ligou, except that e (Kohler and Ligou) is replaced by t.

The similar case, where Q,(1) is to be calculated neglecting the small influence of
the axial buckling, i.e. setting B, = 0; is not as simple. The two integrals over 6,
which appear in eq. (36), read in this case

w2 R
[ d0sin®0 |In p+In(1 +V af sinze)l (48)
0
and
af w2 d0sin®0 | /2 e
- J — = J do (V1 +a’sin®0 —1)*  (49)
2 Jo 2+a§sin26+2\/l+afsin6 2a” 40

Both integrals can only be evaluated in closed form in the limits ar — « (void case)
and ar = 0 (buckling dependence negligible).
In the first case (void case) the integrals are, respectively

n 1 0'r I
-\ = +In — and -
4\2 2 8
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Thus, Qr is in the void case

_ _ _ 34 AN o
Qr(Ec“O’Bz—O’Br)_;lE In=—+1—-y|+ — 1——;:2-)&1 +2q + 2) (50)
Cc

In the opposite case, ar = 0, the two integrals are

g In@p) and 0

respectively. To arrive at a "working approximation”, the following procedure is
used.

First, find Q1) for B, = 0, assuming Z. = 0 (though it may be very small). Then,
the correction for B, = 0, as obtained in the limit of small Z, is proportional to

-1 (51)

As Q;(1 can only decrease if By is considered, this correction is applied only if it is
negative, i.e. if

)

[

—_—<
B
r

>} o

Eq. (46) for Q,(1), and the "working approximation” for Q,(1) are used in the stand-
ard ARIADNE routine. They give results which are very close to those of the
equations (27) and (33).

3.5 Calculation of Qi

The quantity Q'x is the reduced collision probability for neutrons which traverse
one or more fuel pins, and then collide in a coolant channel. A simple way to calcu-
late Q'k is to represent the total collision probability as a product of single-zone
collision probability, and probabilities to traverse a zone. Then

@ 2T
v _ n -1__ ¢ (52)

Q=0-P) 2 0-T)"1-T )" —

n=1 c c

where the index n accounts for neutrons which traverse n fuel pins. I'; and I'¢ are
the probabilities that a neutron entering medium u or ¢ makes a collision in this

medium; 1 - Pg is the escape probability from the coolant.
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Eq. (52) holds for the isotropic case. It involves the assumption that the neutrons
entering a medium (u or ¢) have an isotropic angular distribution. To calculate the
anisotropic Q';, one has to assume that the source neutrons have an angular distri-
bution proportional to cos2 6. Then, in eq. (52), also the I'; and I'; must be calcu-
lated for neutrons entering with an angular distribution ~ cos2 6. This is, however,
not a good approximation because neutrons with small 8 decay much faster, after
traversing a few pins, than neutrons with 6 = n/2 (i.e. in the horizontal plane).
Then, the angular distribution is no longer ~ cos2 0.

A significantly improved method was proposed by Benoist in the Appendix 1 of his
paper2. One assumes isotropy of the incident neutrons only for the azimuthal
angle @ (i.e. in the x-y plane), whereas the integration over the elevation angle 6
is carried out explicitly. With these assumptions, one has

* 2 (u)
o - 3n Jnlz 602 I-w Vo
k™ 2 J, k n® 1 (53)
1-{1- ——(-a )|o¥
451ne cc 88

w(Wgg is the transmission probability through a fuel pin in the x-y plane, averaged

over the azimuth angle ®. It is a function of the quantity z = 2a X, /sin 0, and is
defined by2

n/2 2a Zucoscp) (54)

m;:)(sin 8) = J do cos p exp (— o

0
The collision probability in the coolant channel in the x-y plane, for a uniform and
isotropic source is

* 4A

1
wcc(v)-’— nvlct l— -2- +v+E3(v)

e vig

(55)

4t A v
+ (1——)[—(1+q)——1+
q

2
nl v 21 1+ v/q

where the variable vis defined as

Note that w*;; is independent of the buckling, because for calculating Q'k the
buckling dependence is neglected.



4. Comparison of Results

Table I shows a comparison of ARIADNE and Monte Carlo8 one-group calcu-
lations for the Clinch River Breeder Reactor and for a Gas Cooled Fast Reactor.
The results for the axial leakage are in very good agreement, whereas the
ARIADNE method underestimates somewhat the radial leakage; the largest devi-
ation is of the order of two standard deviations. The overall results can be con-
sidered satisfactory. Note that ARIADNE should not be applied to high-leakage
cores (e.g. EBR-II, where ko = 2.009) because the B2-dependence is retained only
to a low order.

To compare ARIADNE and the cylindrical cell approximation in KAPER with
MOBIDIC, calculations for a Gas Breeder cell, but with variable Z. were per-
formed, and are shown in Tables II and III. The code MOBIDIC is based on
Benoist's theory2. The results quoted in Tables Il and III are taken from a publi-
cation by Benoist and Duracz9. The geometry data are a = 0.37 cm, s = 1.08 c¢m,
and the bucklings B,2 = 1 x 10-4 cm-2, B2 = 2 x 10-4 cm-2, For large coolant cross
sections, the streaming corrections are small, and the results of KAPER and
ARIADNE are comparable. In the void case, there is a fairly large underestimate
by KAPER. It is interesting to see that MOBIDIC gives larger streaming
corrections than ARIADNE, This is probably due to an overestimte of MOBIDIC
in the cases where the fuel cross section is small, as is typical for fast reactors. This
point will be discussed below, see comments on Table IV. The B2 dependence is
shown in the Figures 4 and 5 for the case £, = 0.59657 cm-1. In the void case, the
streaming corrections increase with decreasing bucklings.

Fig. 6 shows a comparison with some results available in the literature. The axial
streaming correction for a gas cooled fast reactor lattice is shown. The lattice is
voided, the variable homogeneous diffusion coefficients on the abscissa correspond
to variable fuel cross sections. DIFFAX can be considered as a reference because it
uses numerical integration. The ARIADNE method is rather close to DIFFAX
except for small diffusion coefficients, where ARIADNE underestimates the effect.
‘This range corresponds to the large fuel cross sections at thermal energies and is
not relevant for applications to fast reactors. It is obvious that the “cylindrical
cell” method, which is used in KAPER, strongly underestimates the streaming
correction. The overestimate by MOBIDIC, as published by Benoist and Duracz9,
may be due to an inaccurate method to calculate Q'; (see above).
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This latter statement can be understood better when looking at Table IV, which
shows the streaming correction for different fuel cross sections. For the large Z,
(thermal neutrons), very few neutrons traverse a pin. Thus, Q' is small compared
to Qx. MOBIDIC agrees well with DIFFAX, but the simple ARIADNE method
underestimates the streaming correction (D/Dpom - 1) by about 10 %. This must be
due to an underestimate of Qy, because Q'k is small and has little influence on the
results. For the smaller Z, which are the cases of interest for a fast reactor, the
streaming correction is smaller. In these cases, Qk remains the same, but Q'y
becomes important. It is interesting to see that ARIADNE compares well with
DIFFAX. On the other hand, MOBIDIC overestimates the effect, obviously
because it calculates Q'x too high.

5. Calculation of the Streaming Reactivity in the SNR-300

The streaming reactivity in the voided lattice of SNR-300 was calculated by
D. Thiem, using a procedure for neutronics calculations which includes cross sec-
tion preparation, cell homogenization, and whole-core diffusion calculations. The
cell diffusion coefficients were obtained with ARIADNE. The procedure and the
results are described and discussed in some detail in Ref.13.
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Appendix: Extension of ARIADNE to the Case of a Cell with Three Regions

The original computer program ARIADNE uses two regions, namely the fuel pin
and the coolant channel. Thus, the fuel and the clad must be smeared over the pin
volume. This approximation is adequate for many cases because the clad is usu-
ally thin, and the transp rt cross sections of oxide fuel and the clad are not too
much different. It is, however, desirable to have the capability for a separate treat-
ment of the fuel and the clad. Therefore, the program ARIADNES3Z for 3 zones
(u = uranium, ¢l = clad, ¢ = coolant) was developed. The extension was carried
out along the lines suggested by Benoist in the Appendix of his papers2.

For this extension, the assumption is made that neutrons which cross the pin
boundary, either entering the coolant channel or the pin, have isotropic angular
distribution in the x-y plane. The distribution in the azimuth angle 0 is calculated
explicitly. This is more accurate than the usual assumption of complete isotropy in
3 dimensions (as used e.g. in KAPER), and is an important improvement when
directional collision probabilities (and diffusion coefficients) are required. Note
that no assumption about the angular distribution at the u-cl surface is made.

To follow up this idea, one introduces 2-dimensional collision probabilities wjj in
the x-y-plane by the definition

Py = J 307 d6sind ©,; () (A1)
and
2.' — El
m..:—i]dr"drw (A 2)
4 Vi 2np
ViV

where p is the distance in the x-y plane, and

. Z, (A3)

I sinB

Inserting (A 2) into (A 1) leads immediately to the usual definition of Pj; k. Note
that the Pj; i, or at least some of them, depend on the bucklings.
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They are the quantities needed in Benoist's expression for the diffusion coeffi-
cients2, 3

Z v, Z P /2,
_ j

b, - (A4)
3V ¢
For the wjj, both the reciprocity relations
VEZo =VZLa (A'5)

i1 ij 171

and the completeness relations
}: w.=1
~ ]
]
hold.

For a 3-region cell, the collision probabilities for neutrons starting in the coolant
channel will be given first. With the above assumption, the w. for the lattice can
be approximated as follows

W = m:c + o mLZ) Gsc (A 6)
where
w*,c  probability for a neutron to collide in ¢ without leaving the region
wes = 1- " probability for a neutron to leave region ¢ (s = surface)
wPly  probability for a neutron which enters the pin to traverse it without
a collision
@se  probability for a neutron which enters ¢ to eventually collide in ¢
(perhaps after traversing one or more pins)

The quantity @gc is determined by the relation

a')sc =0+ w;‘;) m;z) gsc (A7)
where
wse  probability for a neutron which enters ¢ to collide without leaving
the region
wlely; probability for a neutron which enters ¢ to traverse it without a

collision
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In the ARIADNE method, w*. is given by eq. (55). Note that the buckling
dependence is neglected. For small values of the argument, the expression (55) is
replaced by a series expansion.

In additon, we need the following probabilities

wPly,  probability for a neutron which enters a pin to collide in u in the
same pin

w'Pls) probability for a neutron which enters a pin to collide in cl in the
same pin.

Clearly
P 4 o'P 4 P = (A 8)
su 58

scl

These probabilities can be expressed by the integrals

atan R, /R
m;‘;) = ] d ¢ cosd exp (— 2::lpcl)(1 —exp (- E'upu))
0
Ru
1 o A
= R J dhexp (~ L,p,)0 —exp(— )..u ) (A9)
0
where R pinradius
R, radiusofregionu
p, =2 \/Rﬁ - b’
o . =VRI_h?-VR?-h?
cl u
and
Ry R
1 . . ' Y SR
(p) — h) -y - 1 2 _ 2
of = o H dhexp(—-ZLclpcl Lupu>+ { dhexp( 2%, VR -h )J (A10)
0 Ry
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The lattice collision probabilities for neutrons born in ¢ are then

* CSm(SZ)wSC

W, =0 F T (A11)
1 - e’
S8 S8

(
w p)
¢s su

0 = (A12)
(p) (e
1 - mSS wSS

(p}
Cocs mscl
@0 = (A 13)
c,cl (p) (c)
l—0"
ER 58

Similarly, one has for neutrons born in u

te)y (p)
w W w
* us 85 su

Wy = @y T R (A 14)
S8 58
L 000 00
wU,Cl: mu,cl + 1 (p) (¢) (A 15)
- W W
88 S8
W
- us SC
Ouc = 1 — P e (A 16)
S35 88
where
R,
Gy = 1= . fdh(l ~exp(~ % p) (A17)
V X
u u
0
Ry
. 2 , g
o= — J dh(l —exp (= Z _p )(1 —exp (=2 p ) (A 18)
vV X
u u
0
Ry
-2 | dna (=% p Nexp(=2 p) (A19)
(x.)us - V Z- — expl(— upu exXpil— ol pcl
a u
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The eq. (A 4) for the diffusion coefficient reads for a 3-region cell (Vy = cell
volume)

3V, D, = Vl(P“k/Z + Pmk/Zz) +2V, P31k/

+ V2(P21k/2 + P /LZ) + 2 V

3ok’ T
tVa Pog/By (A 20)
Asregion 3 is the coolant channel, one has
! A21
Py = 5 1.2, @, + Q) (A21)

where Qy depends on the buckling; Q'k is given by eq. (53), where the transmission
probability w(u)g has to be replaced by w(pP)gs. In the present model, the complete-
ness relations hold approximately for the Pjj. Therefore, one has in a approxi-
mation which is consistent with the 2-region case

P, =1-P_-P

31 32 33
V. %

P =1-1 2 3p

1 vV e 31

171

21 3 12

V2,

v,z

P =1-P

i v,z Py

Thus, the three collision probabilities which must be calculated explicitly are P33,
P32, P12. |

For comparison between a 2-region and a 3-region model, calculations were
carried out for the Gas Breeder cell with variable L., see Tables I and IIl. The fuel
radius is 0.33 cm, the pin radius 0.37 cm. To obtain a significant difference, it was
assumed arbitrarily that the transport cross section of the fuel is more than twice
the one of the clad. The results are shown in Table V and Table VI. The diffusion
coefficients calculated by the 3-region model are up to 2 % larger than the ones of
the 2-region model. Note, however, that this is due to the unphysically large
difference between the cross sections, chosen to demonstrate the method.
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TableI: Streaming-Reactivity (in % Ak/k) Calculated with Monte Carlo7 and
ARIADNE (1-Group, Zero-Dimension)

CRBR GCFR

B2, (cm-2) 4.69422 x 10-4 4.69422 x 10-4
B2,,4 (cm-2) 4.9x10-4 3.88607 x 10-4
1 + L2p,,B2 1.2520 1.4425

MC 0.326 £ 0.062 1.162 + 0.113
(Ak/K)ax

AR 0.280 1.119

MC 0.217 *+ 0.062 0.676 + 0.083
(Ak/K)rag

AR 0.138 0.500

Table II: Diffusion Coefficients for a Gas Breeder Lattice with Variable Z..
Comparisons KAPER-MOBIDIC-ARIADNE. £, = 0.59657

D, /Dhom D,/ Dhom
Dhom | KAPER2) MOBIDIC ARIADNE |KAPER2) MOBIDIC ARIADNE

e= 4] .6891 [1.0048 1.0050 1.0026 1.0028
B 1 .7820 |1.0126 1.0135 1.0067 1.0074
21 .8037 ]1.0269 1.0299 1.0140 1.0163
.1 11.0703 [1.0524 1.0798 1.0630 1.0265 1.0376 1.0338
0511.1790 11,0723 1.0952 1.0357 1.0504
.02 11.2555 11.0879 1.1303 1.0426 1.0685
.01 11.2832 |1.0942 1.1490 1.0454 1.0798
.00511.2976 }1.1040 1.1602 1.0442 1.0822
0 §11.3122 11.1070 1.2343 1.1697 1.0454 1.1089 1.0844

a) Cylindrical cell approximation
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Table III: Diffusion Coefficients for a Gas Breeder Lattice with Variable Z..
Comparisons KAPER-MOBIDIC-ARIADNE., £, = 0.29828

Dz/Dhom

Dy /Dhom

Dhom

KAPER2) MOBIDIC ARIADNE

KAPER«) MOBIDIC ARIADNE

e = .21.3783

.1 11.8074
.05 12.1407
.02 12.4070
.01 12.5111

.005 12.5666

0 12.6245

1.0025 1.0027

1.0136 1.0218 1.0160

1.0259 1.0332
1.0374 1.0540
1.0424 1.0655
1.0488 1.0723

1.05616 1.1100 1.0789

1.0013 ~1.0015

1.0069 1.0099 1.0088

1.0129 1.0182
1.0184 1.0296
1.0207 1.0366
1.0204 1.0387

1.0216 1.0469 1.0409

a) Cylindrical cell approximation

Table IV: Streaming correction with different codes

(Gas Breedercell,Z; = 0)

Ty
Dhom

D/D hom
ARIADNE

MOBIDIC
(Benoist and Duracz)

DIFFAX
(Kéhler and Ligou)

TRIFFAX
(Gho)

Qi (AR)
Q'k (AR)

2.9828 0.59657 0.29828
0.26246 1.3123 2.6246
Axial Radial Axial Radial Axial Radial
2.070 1.507 1.170 1.084 1.079 1.091
2,176 1.551 1.234 1.109 1.110 1.047
2.152 1.187 1.082
2.157 1.600
3.608 1.940 3.608 1.940 3.608 1.940
0.238 0.360 3.254 3.751 7.622 8.246

For large Z, (thermal neutrons), the term Qi dominates. ARIADNE slightly
underestimates the streaming (~ 10 %).
For small I, (fast neutrons), both Qx and Q' are important. ARIADNE agrees
very well with DIFFAX.
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Table V: Diffusion Coefficients for a Gas Breeder Lattice with Variable Z..
Two-region model (£, = Z;] = 0.59657) and three-region model
(Zy = 0.67284, %) = 0.3)

D Dz/Dhom Dy/Dhom
hom 2 region 3region |2region 3 region
g eg egio eg

X.=0.3 0.7820 1.0135 1.0191 1.0074 1.0103
0.2 0.9037 1.0299 1.0379 1.0163 1.0205
0.1 1.0703 1.0630 1.0747 1.0338 1.0397
0.05 1.1790 1.0952 1.1098 1.0504 1.0575
0.02 1.2555 1.1303 1.1472 1.0685 1.0765
0.01 1.2832 1.1490 1.1670 1.0798 1.0882
0.005 1.2976 1.1602 1.1787 1.0822 1.0907
0.002 1.3064 1.1687 1.1853 1.0856 1.0921
0 1.3122 1.1697 1.1889 1.0844 1.0932

Table VI: Diffusion Coefficients for a Gas Breeder Lattice with Variable Z..
Two-region model (£, = £} = 0.29828) and three-region model
(Zy = 0.36818, . = 0.15)

Dhom . D;/Dhom . . Dy/Dhom .

2 region 3region |2region 3 region

Y. =02 1.3783 1.0027 1.0067 1.0015 1.0035
0.1 1.8074 1.0160 1.0244 1.0088 1.0132

0.05 2.1407 1.0332 1.0452 1.0182 1.0243

0.02 2.4070 1.0540 1.0691 1.0296 1.0371

0.01 2.6111 1.0655 1.0820 1.0366 1.0448
0.005 2.5666 1.0723 1.0897 1.0387 1.0471

0 2.6245 1.0789 1.0971 1.0409 1.0495
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