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Abstract 

A monostatic Doppler-SODAR and a sonic anemometer have been op
erated during Jnne and Jnly 1990 at the Nnclear Resea.rch Center Karlsruhe 
to measme 30 min mean values of the vertical wind speed and its standard 
deviation at 100 m above gronnd level. Other meteorological parameters 
have been additiona.lly measured by t.he SODAR and at a 200 m high tower. 
During seven runs lasting abont two hours each and covering different atmo
spheric stability conditions, instanta.neons va.lues of the vertical wind speed 
have been measured by both instruments, too, from which logarithmic power 
spectra have been calculated. From these spectra, the logarithmic spectral 
peak, the conesponding outer turbulent scale wavelength, and the integral 
scale of turbulence have been determined. 

The longterm comparison of the standa.rd deviation measured by both 
instruments was quantified by the bias, the root mean squa.re enor, the pre
cision, and the correlat.ion coefficient. The agreement of the data sets varies 
as a function of horizontal wind speed and atmospheric stability. In general, 
there isabettet agreement during low wind situations and during nighttime. 
The SODAR is nnderestimating high valnes of the standa.rd deviation. 

The power spectra yielded by both instnnnents are generally well com
parable in all atmospheric stabilit.y conditions. In particular, the logarithmic 
spectral peaks derived from SODAR and sonic data are a.lmost coincident. 
During windy conditions, the inertial subrange slope of the SODAR spectra 
is not detailed and the definition of the spectral peak is difficult. In some 
cases, the spectra derived from SODAR data are underestimated. 

Mit SODARund Ultraschallanemometer 
gemessene Turbulenzparameter. Ein Vergleich 

Zusammenfassung 

Im Juni und Juli 1990 wurden am Kernforschungszentrum Karlsruhe 
mit einem monostatischen Doppler-SODAR und einem Ultraschallanemome
ter 30 min Mittelwerte des Vertikalwindes und der zugehörigen Standard
abweichung in 100 m über Grund gemessen. Begleitend wurden andere 
meteorologische Größen mit dem SODAR und an einem 200 m hohen 
Mast bestimmt. Während sieben etwa zweistiindigen Intervallen mit un
terschiedlichen atmosphä.rischen Stabilitätsbedingungen wurden mit beiden 
Instrumenten zusätzlich Momentanwerte des Vertikalwindes gemessen und 
daraus Spektren berechnet. Aus diesem Spektren wurden Betrag und Fre
quenz des Maximum sowie die zugehörige sogenannte "ont.er turbulent. sca.le 



wavelength" bestimmt. Dieser Parameter charakterisiert die Größe der Tur
bulenzelemente in diesem Trägheitsunterbereich. Weiterhin wurde aus den 
Spektren der sogenannte "integral scale" der Turbulenz abgeleitet, der ein 
Maß für den zeitlichen Abfall der Autokorrelationsfunktion ist. 

Für einen Langzeitvergleich der mit beiden Geräten gemessenen Stan
dardabweichung des Vertikalwindes dienen die systematische Abweichung 
der Mittelwerte (Bias), die Wurzel der mittleren quadratischen Differenzen 
der jeweiligen Meßwerte (RMSE), und die Wurzel der mittleren quadratis
chen Differenzen der Abweichung der jeweiligen Meßwerte von ihrem Mit
telwert (Precision) sowie der Korrelationskoeffizient. Die Übereinstimmung 
der beiden Datensätze variiert mit der horizontalen Windgeschwindigkeit 
und den atmosphärischen Stabilitätshedingungen. Im allgemeinen ist die 
Übereinstimmungen gut, besonder während der Nacht. Das SODAR unter
schätzt allerdings hohe Werte der Standardabweichung und während Zeiten 
hoher horizontaler Windgeschwindigkeit. 

Die mit Hilfe beider Instrumente gewonnenen Spektren stimmen all
gemein während aller atmosphärischen Stabilitätsbedingungen gut überein. 
Das gilt besonders für Betrag und Frequenz des Maximums. Während Zeiten 
hoher horizontaler Windgeschwindigkeit ist allerdings der hochfrequente 
Abfall der SüDAR-Spektren im Trägheitunterbereich nur andeutungsweise 
vorhanden und damit die Bestimmung des Maximums schwierig. In einigen 
Fällen liefert das SODAR insgesamt zu niedrige Spektralwerte. 
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1 Introd uction 

Knowledge of the nature of turbulence in the atmospheric boundary 
layer is of great importance in many practical problems faced by atmo
spheric scientists. Recently, with the growing needs of air quality studies 
and pollution control, interest has increased in the capability of Doppler 
SüDARs to measure turbulence parameters. 

Determinations of the spectra of the vertical wind velocity w measured 
by a SüDAR in the boundary layer are not plentiful. Asimakopoulos et 
al. (1978) presented the first intercomparison with in Jitu measurements. 
Congeduti et al. (1981) have shown that SüDARs have the capability to 
determine vertical velocity spectra for frequencies up to 1/80 Hz. Under
wood and Coulter (1983) published a study of SüDAR spectra which shows 
that in some atmospheric conditions, the peaks of logarithmic spectra de
rived from SüDAR data are relatively well defined. Kaimal et al. (1984) 
compared commercially available Doppler SüDAR with sonic anemometers 
and computed spectra of vertical velocity obtained by SüDAR. But their 
main purpose was to explain the underestimation of the standard deviation 
CJ'w measured by a SüDAR due to the spatial averaging. Helmis et al. {1985) 
used a small high frequency SüDAR to determine atmospheric turbulence 
parameters and spectra at low altitudes. 

During the summer of 1990, a field test program was conducted by 
the Institut für Meteorologie und Klimaforschung (IMK) at the site of the 
Kernforschungszentrum-Karlsruhe (KfK) to evaluate the capabilities of Sü
DARs to determine turbulence parameters. As the vertical wind velocity is 
very important to quantify atmospheric turbulence, it was simultaneously 
measured by the IMK-SüDAR (type AO-REMTECH) and a sonic anemome
ter mounted at the 100 meter height level of the meteorological tower at 
KfK. The field experiment and the evaluation were split into two parts: a 
long term intercomparison of half hour mean values and a comparison of 
the measured spectra of the vertical wind velocity during seven short time 
periods ( 1.2 to 2.3 hours) covering all stability conditions. 

The more general objectives of this experiment were {i) to collect suffi
cient samples of data for statistical and spectral analysis, (ü) to check the 
performance of the SüDAR to determine turbulence parameters and (iü) to 
obtain information about the capability of SüDAR to measure other tur
bulence parameters, such as u 1w 1 or the scales of turbulence derived from 
spectra. Such features are useful as input data for numerical atmospheric 
models. 

1 



2 Instrumentation 

2.1 SODAR 

The monostatic three dimensional Doppler SODAR AO is manufactured 
by the French enterprise REMTECH, with general characteristics listed in 
Table 1. 

Table 1: General characteristics of the AO Doppler-SODAR. 

Centered frequency 
Acoustic transmitted power 
3 dB beam width of antenna 
Angle tilted antenna 
Pulse length 
Pulse repetition 
Minimum height resolution 
Nurober of range gates 

around 1600 Hz 
60 w 
± 70 

18° 
6-400 ms 

0 to 20 s 
20m 

20 

The system uses a trailer mounted array of three antennae with two 
antennae tilted from the vertical to measure horizontal components of the 
wind vector. The SODAR emits a double frequency pulse of 150 ms duration 
with a centered frequency of 1600 Hz. Analysis of the backscattered echo 
using FFT was automatically done by the SODAR software. The rejection 
by software of backscattered echos was mainly due to tixed echos and ambi
ent noise. Furthermore, after each 3 h a "big" calibration is automatically 
performed to take care of temperature variations. 

2.1.1 Averaging mode 

During the tirst part of the experiment (from 1 Juni 1990 to 31 July 
1990), the SODAR measured wind data between 60 and 420 m above ground 
Ievel (AGL) with a 20m height resolution and a 4 to 5 s pulse repetition 
interval. 

The SODAR adjusts for ambient noise variations with a 9 s small cali
bration after each 14 pulses, which, in this confi.guration, is at an interval of 
about 1 min. The averaging time interval chosen was 30 min, and the SO
DAR system stored the following parameters on magnetic device: backscat
tered echo intensity, horizontal ( U) and vertical ( w) wind speed, direction 
( 8), and standard deviations O"w and o-u of vertical wind speed and direction. 
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2.1.2 lnstantaneous mode 

In the second part of the experiment, we chose the three measurement 
levels 80 m, 100m and 120m AGL, with a 20m height resolution. Although 
it would have been possible to measure the three components of the wind 
vector, we used only the vertical antenna in order to obtain a short sampling 
interval which, in this configuration, was about 1.3 s. The date and time of 
the measuring periods are listed in Table 4. 

Three problems appeared: 

(i) The experimental site has a high environmental noise level and many 
fixed echos. So, even if there was a backscattered echo, the SODAR 
often rejected it. 

(ii) It is not possible to suppress the small and big calibrations in the 
SODAR measuring cycle. The consequence is that the SODAR was 
measured for 18 s, then the transmission was stopped for about 9 s. 
The e:ffects of this 27 s cycle on the time series are described in Ap
pendices B and C. 

(iii) Spectral analysis of data with randomly missing observations is not 
possible using classical methods. However, in Section 4 and Ap
pendix A a new procedure that was recently developed by mathe
maticians is described to overcome this problem. 

2.2 Sonic anemometer 

The sonic anemometer-thermometer is a KAIJO DENK! model DAT 
300 mounted on the meteorological tower at 100 m AGL. The probe model 
TR 61 C measures in three orthogonal directions. The distance between 
transducers is 20 cm. A detailed description of this instrument has been 
published by Hanufusa et al. {1982). General characteristics are given in 
Table 2. The sonic anemometer interface unit was linked to a computer 
through an RS 232 port. In the averaging mode, u, v, w, T, crw 1 u'w' and 
other parameters were stored every 10 min. In the instantaneous mode, the 
sampling intervalwas 1.06 s and only the components u, v, and w of the wind 
speed and the temperature T were available. No couection to compensate 
for the e:ffects of wind shadowing by the transd ucers has been performed. 
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Table 2: General characteristics of the sonic anemometer-thermometer. 

Interna! sampling frequency 
Path length (TR 61 C) 
Diameter of transducers 
Separation between axes 
Velocity resolution 
Temperature resolution 

2.3 Site installation 

20Hz 
200 mm 

15 mm 
90° 

0.01 ms-1 

0.025 °C 

The KfK tower is located in the Rhine valley about 4 km east from 
the river, and the local topography is roughly fl.at. Hills of a relative height 
of 200 and 500 m are situated repectively 8 km east and 30 km west of 
the Research Center. The wind blows predominently parallel to the valley 
direction, from south-west to north-east. 

The KfK tower is an open lattice-type structure of square cross section 
with a side length of 1.5 m. The boom of the sonic anemometer is :fixed at 
a height of 100 m on the north side and extended 4 m from the north-west 
tower comer. Seen from the centre of the tower, the direction of the sonic 
anemometer is ~ 275° west, following meteorological conventions. Thus, the 
sonic anemometer is considered to be in the wind shadow when the wind 
comes from a direction between 70° and 120°. 

The tower bears instruments at 10 Ievels, namely 20, 30, 40, 50, 60, 
80, 100, 130, 160, and 200 m AGL, with cup-anemometers, temperature 
sensors, windvanes, and propvanes (Dilger (1976), von Holleu:lfer-Kypke et 
al. (1984)). Thesesensors were used to determine the atmospheric conditions 
during the experiments. 

The SO DAR was installed in a clearing ( 60 m x 100m) of a pine forest, 
which surrounds the site. The average height of the pines in this area is 
about 20m. 

Figure 1 illustrates the position of the tower and the SODAR. It will 
be shown in Section 5 that the distance between the two instruments is too 
great to permit a direct comparison of vertical wind speed. 
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Figure 1: Plan of the experimental site. 
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3 Long term comparison 

3.1 Analysis of mean values 

The SODAR G"w (Yi) are compared to the sonic G"w (Xii averaged over 
30 min) using data recorded during the months of June and July 1990. We 
have chosen to examine the four criteria: 

1 N 
B N ?=(Yi- xi) (1) 

&=1 

[ 1 N 2] 1/2 (2) RMSE N L)Yi- Xi) 
i=l 

p ( RMSE2
- B 2f 12 

(3) 

RP 
p 

(4) X X 100 

with X, being the mean of the sonic data, and N the number of data couples. 
These basic criteria, bias B, root mean square error RM SE, precision P, and 
relative precision RP are adopted from the study of SüDARs conducted for 
the U.S. EPA by NOAA/ERL (Kaimal et al. (1984)). This means that the 
results of our investigation are comparable with previous studies (Kaimal 
et al. (1984), Chintawongvanich et al. (1989), Thomas and Vogt (1990)). 
Regression analysis of the data gives additional information about the linear 
relationship between Xi and fi. The relationship may be expressed as: 

(5) 

with 

a : slope of the regression line 

b : Y intercept of the regression line 

ei : error term 

and the correlation coefficient is R. 
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3.2 Results of the comparison 

This section focuses on some results and implications of our comparison 
between the mean values and compares them with those of SODAR mea
surement error models. Table 3 illustrates the results including the cases 
of wind shadow. Examination of the horizontal wind speed when the tower 
is upwind indicates calm conditions. As will be explained in this section, 
the measurement accuracy is better in calm conditions so the effect of wind 
shadow is comparatively small. 

Table 3: Comparison of Uw measured by SODARand sonic during June and 
July, 1990. 

Day and Daytime Nighttime 
night 

N 1509 857 536 

X(ms-1) 0.58 0.75 0.36 

Y(ms- 1 ) 0.47 0.59 0.29 

B(ms-1) -0.12 -0.16 -0.07 

RMSE (ms-1 ) 0.22 0.26 0.14 

P (ms- 1 ) 0.18 0.20 0.12 

RP (%) 31.3 28.0 33.3 

a 0.63 0.51 0.61 

b(ms-1 ) 0.10 0.22 0.07 

R 0.82 0.65 0.84 
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3.2.1 lnfluence of wind speed 

Figures 2 and 3 depict plots of SODAR O"w 1 sonic O"w and the O"w dif
ference against the sonic horizontal wind speed U. Only every second data 
couple are plotted in the figures. lt can be seen in Figure 2 that the SO
DAR measures accurately Uw in the range zero to 0.4 ms-1. This is partly 
possible with the help of the SODAR multifrequency signal. The SODAR 
interpretes the frequency difference of each backscattered echo analysed at 
the same time. Such method permits to reduce the error in measurement, 
especially at low wind speeds which can be confounded with fixed echos. 
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CD 

0 
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0 

0 
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.20 .40 .60 .80 1.00 1.20 
Sonic sigma w ( m . s -!) 

Figure 2: SODAR O"w versus sonic Uw measured at 100 m. 

Figure 3 illustrates clearly that the SODAR O"w measurement is not very 
accurate in windy conditions. In calm to medium conditions (U ::; 6 ms- 1 

), 

the difference between the two measurements of aw is small, but the SODAR 
gradually underestimates O"w with increasing horizontal wind speed. 
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The relative difference as a percentage illustrated in Figure 4 is low for 
windy conditions . Thus, even if the numerical difference between SODAR 
and sonic aw is greater in windy conditions, it is satisfying to see that the 
relative difference decreases with increasing horizontal wind speeds. 

3.2.2 Influence of daytime and nighttime 

We have differentiated the data into the categories daytime and night
time (07h00 to 19h30 and 21h00 to 05h30 Central European Time - CET). 
During June and July 1990, the weather was mainly influenced by high pres
sure systems. This resulted in unstable atmospheric conditions during the 
day whereas stable conditions were prevalent during the night. 

Table 3 indicates that the SODAR and the sonic anemometer are much 
bettet correlated at night than during the day. This suggests that the SO
DAR aw values are more accurate during calm and stable conditions than 
during windy and unstable conditions. 

It should be noted that Kaimal et al. (1984), and Chintawongvanich et 
al. (1989) found similar results. The latter suggested that the poorer day
time results may be due to spatial inhomogeneity resulting from convection. 
In addition, they also suggested that the presence of gravity waves during 
the night may have contributed to better nighttime results. 

3.3 Conclusions 

Our study shows that the comparability of SODAR and sonic data 
varies, among other possible factors, with the horizontal wind speed and 
the atmospheric stability. The influence of wind speed is easily explained. 
As described in Appendix A, the area between two values of frequencies and 
the spectral density function is equal to the variance or covariance produced 
between the two frequencies involved. The total area represents the variance 
a~. Because of its low sampling rate, the SODAR is not able to measure 
the smallest fluctuations, those corresponding to a small part of the power. 
However, in windy conditions, the whole spectrum is shifted to higher fre
quencies and a greater part of the power is then filtered by the SODAR. 
This Ieads to a greater underestimation of the variance a~. · 

Kaimal et al. (1984) have studied the influence of aliasing and other fac
tors on the vertical wind speed variance. Their study suggested that half the 
power above the Nyquist frequency n 0 is aliased back. The other half would 
represent the variance loss through spatial averaging. Their conclusion was 
that a possible reason for the SODAR underestimation is the spatial averag
ing. However, they did not separate cases into windy and calm conditions. 

Kristensen and Gaynor (1986) have published a study which presents 
a theoretical description and resulting applications of the effects of spatial 
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and temporal separation, and of volume sampling. In the case of CTw mea
surements, spatial and temporal separation have no effect because only the 
vertical antenna is involved. In contrast, volume sampling does have an ef
fect. They propose a correction of SODAR CTw which involves knowledge of 
the integral scale of turbulence A (see Section 4.2.3): 

cr
2 (D)2/3 -::::::1 -1.2 -

er~ A 
(6) 

with er being the SODAR CTw 1 CTo the sonic or true unfi.ltered CTun and D 
the diameter ofthe crossection of the beam conesponding to the half power 
beam width. It should be noted that the linear dimension of the beam must 
be smaller than A. They applied this result to SODAR data, estimating A. 
Their comparison of conected SODAR CTw with reference CTw was poorer 
than in the case of unconected SODAR CTw. Their conclusion was that the 
difference between SODARand sonic CTw did not originate from volume fil
tering. We cannot apply this correction factor to the SODAR CTw during the 
long term comparison. However, it will be shown in the second part of our 
experiment that this correction factor is not always valid. 
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4 Vertical velocity Spectra 

4.1 Analysis of instantaneous data 

4.1.1 Sonic autospectra 

Two main facts concerning the time series and spectra of the sonic data 
can be summarized: 

(i) The sonic data were sampled every 1.06 s. Although it is possible to 
compute a spectrum with such a sampling rate, one cannot calculate 
cross correlations with the SODAR data, because the SODAR sam
pling rate is different. lt is necessary to transform the sonic data to 
obtain SO DAR and sonic data at the same time ( the transformed 
sampling rate was chosen to be 1 s). 

(ii) The theory of spectral analysis makes the assumption that the power 
spectra or non-normalized spectral density is very low at and above 
the Nyquist frequency n 0 • Aliasing folds power at frequencies higher 
than n 0 back into the relevant spectrum. One practical solution to 
overcome this problern is to low-pass filter the data with half power at 
n 0 • This restores the true power at n 0 and reduces the effect of aliasing 
below this limit. 

To take care of these two aspects, sonic data were filtered with an inter
polation scheme using Cressman weight functions (Jones, 1972) to transform 
the 1.06 s sampling to a 1 s sampling. The low-pass filter has its half power 
at roughly 0.5 Hz. A detailed description is given in Appendix C. 

The spectra were computed by Discret Fourier Transform (DFT) of 
the autocovariances with a Tukey-Hanning spectral window. The trunca
tion point M follows from the rules described by Priestley (1981), and pre
sented in Appendix A. The DFT routines have been described by Jenkins 
and Watts (1968). 

4.1.2 SODAR autospectra 

As described in section 2.1.2, the SODAR data in the instantaneous 
mode are not regulary distributed, and the missing data blocks are generally 
up to 15 s long. Figure 5 depicts the density function ft(t) of the SODAR 
sampling intervals during run No 5. This function indicates, for example, 
that in about 24% of all cases, the time between sequential sampling intervals 
is 2 to 3 s. The in:fiuence of small calibrations is seen in the decrease of ft(t) 
for an interval between sampling of 7 up to 9 s, w hereas fi ( t) is 2 tim es 
greater when the interval is 9 to 10 s. An example of SODAR and sonic 
time series during run No 5 is presented in Figure 6. 
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The theory of spectral analysis with randomly missing observations has 
been developped by Jones (1962), Parzen (1962), (1963), Scheinok (1965), 
Bloomfield (1970), Brillinger (1972), (1983), Dunsmuir and Robinson (1981) 
and others. The work of Parzen is · the basis of these new theories. He has 
developed the concept of amplitude modulated stationary time series and 
has applied it to the case in which observations are missing in some periodic 
way. Bloomfield found conditions under which consistent estimates of the 
spectrum of the observed process can be made. Below, we summarize the 
main aspects of this concept and apply it to SODAR data transformation. 
For a more detailed description, Appendix B reviews the theory of amplitude 
modulation and its application to spectral analysis. 

A time series with missing observations can be regarded as an amplitude 
modulated version of the original time series: 

Z(t) = g(t) W(t) 

where 

(i) W( t) is the vertical wind speed und er study, assumed to be defined at 
equally spaced points of time, with zero mean value. 

(ii) g( t) is defined by 

g(t) = 0 

g( t) = 1 

if W(t) is missing at timet. 

if W( t) is observed at time t. 

(iii) Z( t) represent the observed sequence of W( t ), with 0 inserted in the 
time series w henever the value of W ( t) is missing. 

We are thus able to calculate the spectrum of the time series Z( t ). But this 
spectrum, denoted Sz(w), is not a good estimate ofthe real spectrum Sw(w). 
One can show that 

(7) 

where C9 and the function A(w) are due to the properties of the sampling 
scheme g( t). lf all data were observed, we would have C 9 =1 and A( w) = 0. 
This fundamental relation (7) was set down by Bloomfield for discrete real 
valued time series, and by Brillinger (1972) and Marsy(1978) for continu
ous real valued time series. Eq. (7) makes it clear that the spectrum of the 
o bserved time series refiects the properties of the true spectrum Sw ( w) and 
the properties of the sampling scheme. The conclusion of this discussion is 
that the percentage of missing data should be low, and the function A( w) 
should conespond as closely as possible to white noise. 
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Table 4 indicates the percentage of observed data for all time periods 
when the SODAR was running in the instantaneous mode. Because of the 
lack of data, the confidence on the velocity spectra would be very poor. We 
are therefore obliged to use data transformation to increase the percentage 
of "available" data and to reduce the "spectrum" of the sampling scheme 
A(w) to white noise. 

One method to transform the function A( w) would be to omit data in a 
random way, but in this case the percentage of missing data is already too 
high. A second method would be to average data in non overlapping blocks. 
But in a period of two hours, using an averaging interval of 10 s, only 720 
blocks are available for spectral analysis. It is not possible to obtain great 
confidence, in the statistical sense, in the spectra with so few data. 

Table 4: Percentage of availability of the observed and transformed data. 

Run No Date Time (CET) % of Mov. av. % of 
observed length (s) transf. 

data data 

1 01/08/1990 13h09-15h12 11.1 7 46.3 

2 10/08/1990 10h41-12h36 16.2 5 50.7 

3 15/08/1990 09h50-11h40 13.1 5 44.1 

4 16/08/1990 17h20-18h40 16.9 3 40.1 

5 04/09/1990 14h19-16h30 21.7 5 65.1 

6 05/09/1990 10h58-13h15 20.6 5 61.3 

7 11/09/1990 08h22-10h39 25.7 5 70.4 
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The third method is to transform the data using a moving average of 
overlapping blocks. The moving average procedure (Cressman weighting) 
consists of estimating the value at each data point with an average of the 
data separated by 1 to 3 s from the data point in question. Below 0.05 Hz, 
this procedure has a similar effect to a symetric low-pass filter that is, it does 
not introduce shift. The percentage of observations is greatly increased in 
all the cases, as shown in Table 4, which illustrates the effect of the moving 
average transformation for averaging length of 3, 5, and 7 s. 

4.2 Spectra of the vertical velocity component 

The seven time series were between 1 and 2 hours long, were measured 
during the day, and cover a wide range of stability situations. Table 5 lists 
the mean wind speed and direction measured by cup-anemometers and wind
vanes, the standard deviation of direction (1'8 measured by propvanes, the 
temperature, and the gradient Richardson number all at 100 m AGL. 

Table 5: Significant mean meteorological parameters measured on the tower 
at 100 m AGL during the seven runs. 

Run No Temp. Speed U Direction (} (!'() Richardson 
oc (ms-1) ( degrees) ( degrees) number 

1 29.3 5.7 71 15.0 -0.54 

2 24.1 4.6 245 13.9 -2.10 

3 21.2 6.4 227 10.1 -1.57 

4 16.5 7.9 252 7.0 0.17 

5 17.7 6.5 229 6.2 0.18 

6 14.7 3.9 242 13.7 -1.80 

7 11.7 1.6 321 16.0 -0.10 
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Unfortunately, due to instrument failure, all values of cr6 in August had 
to be measured by windvane. These values (runs No 1 to 4) have been 
conected by a factor 1/1.3, because in previous studies it was found that 
the windvane overestimates cr8 by a factor of about 1.3. To calculate the 
gradient Richardson numbers (Arya, 1988), wind and temperature gradients 
were found by differentiating second order polynomials fitted to average 
speeds and temperatures measured near the Ievel in question (L.Mahrt et 
al. (1979), Kaimal et al. (1976)). In most cases five Ievels were used for each 
computation, namely the Ievel itself, the two below and the two above. The 
polynomials werein ln(z) for the wind speed andin z for the temperature 
(z is indicating the height above ground Ievel). 

In the discussion to follow, we will use common meteorological notations. 
We use frequencies, not wave numbers, and the conversion between them is 
made through the use of the Taylor hypothesis. We introduce the following 
notation: 

n 

f = nU/z 

k 

A 

frequency 

non dimensional frequency 

wavenumber 

frequency of the logarithmic spectral peak 

wavelength 

outer turbulent scale wavelength corresponding 

to the peak of the logarithmic spectrum 

integral scale of turbulence 

lt is traditional in atmospheric work to plot frequency spectra Sw ( n) 
and nSw(n), not against the frequency n, but against the non dimensional 
frequency f. However, the purpose of this study is to discuss the physi
cal limitations of the systems, therefore we will use log( n) as abscissa and 
log(n.Sw(n)) as ordinate to simplify the study. The spectral forms will be 
referred to as logarithmic spectra. 

Although the sampling rate of the transformed SODAR data was about 
1 Hz, the SO DAR spectra have been removed for frequencies above 0.15 Hz. 
Above this frequency, the confidence Ievel in the statistical sense for the spec
tra is very poor, as shown in Appendix B (see the 80% confidence interval 
of the SODAR logarithmic spectrum for each run). 

The spectra of the vertical wind speed derived from SODAR measure
ments should be the same as those derived from the sonic anemometer. Due 
to the configuration of the system, the SODAR sampling volume is large, 
which causes attenuation of the SODAR spectra for high frequencies. Other 
authors have discussed this matter for RADAR (Srivastava and Atlas (1974)) 
and SODAR (Gaynor (1977), Kaimal et al. (1984)). Assuming a Gaussian 
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illumination function, which appears app.ropriate for SODARs, Srivastana 
and Atlas suggested that the three dimensional filter function corresponding 
to the pulse volume is 

(
sin ktL/2) 2 2 2 2 2 

<Pr(k) = ktL/2 exp(-cr k2 )exp(-cr k3 ) (8) 

where 

- kt, k2, and k3 are the three orthogonal components ofthe wavenumber, 
k1 is along the vertical beam axis. 

- L = h/2 , with h the pulse length along the beam axis. 

- er= 0.3D, with D, the horizontal dimension ofthe beam corresponding 
to the half power beam width. 

Wavelengths which aresmall compared to the SODAR sampling volume 
are filtered whereas wavelengths for which At > 4L and both .A2 and A3 > 4D 
are unaffected. Srivastava and Atlas (1974) have illustrated this result with 
numerical calculations, and have also shown that one dimensional spectra are 
attenuated, even at scales which are large compared to the beam dimension. 
This is because the one dimensional spectrum has a contribution from small 
wavelengths orthogonal to the beam direction, which are attenuated under 
these conditions. According to their interpretation, the filtering causes a 
lessening of the power in the inertial subrange above the frequency n,, the 
extend of which depends on the variable relationship between the sampling 
volume and the outer turbulence scale wavelength. 

In our case, D and L are about 25 m and 20 m respectively at 100 m 
AGL. The cutoff frequency n1 should be .roughly 

(9) 

4.2.1 Comparison during unstable conditions 

The runs recorded during unstable conditions are No 1, 2, 3, 6 and 7. 
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Figure 7: Vertical velocity spectra, run No 1 (01/08/90). 

Although the sonic anemometer was in the wind shadow from time to 
time during run No 1 (Figure 7), this does not seem to have had a great 
effect on the estimation of the logarithmic spectral peak. lt may dishub the 
small scale turbulence, but the spectral density for n :::; 0.03 Hz appears 
to remain unaffected. Because the percentage of available SO DAR data was 
low, it was necessary to average data over 7 s blocks. The sharp minimum 
in the range 0.03 Hz to 0.07 Hz is due to the SO DAR sampling scheme. 

Concerning run No 2 (see Figure 8), the power of the SODAR spectrum 
at ~ 0.025 Hz is underestimated because of missing data. At frequencies 
above 0.1 Hz, the logarithmic spectrum derived from SO DAR data decreases 
because the low-pass filter transfer function has its -3dB point at roughly 
this frequency. The sharp minimum at approximately 0.08 Hz is due to the 
sampling process. This coincides with the presence of a minimum in the 
density function of the sampling process due to the small calibrations (see 
Figure 5 and Appendix C, Figure 36). 

The results from run No 3 (Figure 9) show that the spectra have the 
same shape, but the SODAR underestimates the power at all frequencies. 
However, the logarithmic spectral peaks are !fell defined and are nearly the 
same. 
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The results from run No 6 (Figure 10) show that, in typical convective 
conditions, the SODAR and sonic spectra are identical for frequencies up to 
0.02 Hz. For frequencies between 0.02 Hz and 0.07 Hz, the spectra have 
the same shape, but the SODAR underestimates the power. 
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Figure 10: Vertical velocity spectra, run No 6 (05/09/90). 

1. 

Run No 7 (Figure 11) took place early in the moming. Before 09h00 CET 
a strong wind shear was present at roughly 100 m with a very low wind speed 
(~ 1 ms- 1 ), which disappeared between 09h30 and 10h00 CET. Figure 12 
depicts the variations of wind speed at 100 m AGL, the wind direction at 
40 m AGL and 160 m AGL, and the temperature at 100 m AGL. The 
logarithmic spectrum derived from SO DAR data is underestima ted by a 
factor that is approximately constant. To investigate this problem, we have 
computed a sonic spectrum with the same sampling scheme as the SODAR 
data for runs No 6 and No 7 (Figures 13 and 14). 

Figure 13 shows a fair agreement between the SODARand sonic spectra 
under the homogenous turbulence conditions which were present during run 
No 6. Figure 14 illustrates the situation in wind shear conditions (run No 7). 
The agreement between the sonic and SODAR spectra is still poor, and the 
underestimation of the power is the same as in Figure 11. 
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Therefore, this underestimation is not due to the sampling scheme but 
presumably due to the fact that the two systems did not detect the same 
turbulence ftuctuations. 

This study reveals three different kinds of spectra: 

(i) The runs No 1, 2, and 6 show similar trends, with high power levels. 
The inertial subrange with -2/3 slope is well de:fined. In all cases, 
the logatithmic spectral peak detived from SODAR is very close to 
that derived from the sonic spectra. Above 0.03 Hz, the inftuence of 
missing data and spatial averaging reduces the accuracy of the SO DAR 
spectra. 

(ii) The run No 3 reveals that in some cases the SODAR underestimates 
the spectrum. 

(iii) The run No 7 is uncommon, because the atmospheric situation is 
changing during the experiment. Even if the SODAR underestimates 
the spectrum, the SODAR and sonic logaritmic peaks are close. 

4.2.2 Comparison during stable conditions 

The prevailing atmospheric conditions during run No 4 (Figure 15) and 
run No 5 (Figure 16) were weakly stable. The high wind speed at 100 m 
AGL (~ 8 ms-1 during run No 4 and ~ 6 ms-1 during run No 5) has 
the expected effect on the spectra: The logarithmic spectra are shifted to 
high er frequencies. Note that the light rain ( 4 mmjhour) du ring the w hole 
run No. 4 did not perturb the SODAR. The sonic spectra of both runs have 
nearly the same shape, however the spectra derived from SODAR data are 
underestimated. This is not surprising, considering the following facts: 

(i) During stable conditions, the logarithmic spectral peaks are shifted to 
higher frequencies and have lower power. This is a disavantage for the 
SODAR which cannot detect small scale turbulence eddies. 

(ii) The correction for missing data does not completely restore the spec
trum because the peaks of the SO DAR spectra are situated on the high 
part of the spectral bandwidth, and also the SODAR spectra have a 
poor con:fidence interval (see Appendix B). 

(iii) The sampling volume :filtering reduces the power of the SO DAR spec
tra in the spectral window above 0.08 Hz ( run No 4) and 0.06 Hz 
(run No 5), following Eq. (9). 
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According to Figures 15 and 16, it is difficult to estimate the logarithmic 
spectral peak with good accuracy. Wehave computed a sonic spectrum with 
the same sampling scheme as that of the SODAR data for the run No 5. 
Figure 17 shows that the power of the SODAR spectrum is lower than that 
of the sonic spectrum. The SODAR spectrum departs markedly from the 
sonic spectrum at high frequencies, presumably due to the filtering of power 
by the sampling volume. 
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Figure 17: Vertical velocity spectra from SODAR and sonic data with the 
same sampling scheme. Run No 5 (04/09/90). 

4.2.3 Characteristic scales of turbulence 

Several methods for estimating the characteristic scales of the energy
containing eddies can be found in the literature. Two that are commonly 
used refer to the wavelength >.m corresponding to the peak of the logarithmic 
power spectrum and to the integral scale A: 

A =Ur= U fooo p(t)dt (10) 

where p( t) is the autocorrelation coefficient and T is the integral time scale. 
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The peak wavelength Amis important for studies of turbulent transport 
in the boundary layer and we have therefore examined it. Figure 18 shows 
the SODAR and sonic Am for stable and unstable conditions. As illustrated 
in this figure, the SODAR is able to measure the outer turbulent scale wave
length with good accuracy in all atmospheric situations. The corresponding 
relative precision is about 7 %. 
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Figure 18: Outer turbulent scale wavelength Am estimated from SODAR 
and sonic data. The figures refer to the run No. 

A can be determined from the spectrum by extrapolating the low
frequency roll-o:lf to zero frequency. Theoretically one needs a record of in
finite length in order to estimate r. However, due to limitations imposed 
by a finite observation time, one makes a simple extrapolation of the auto
correlation or the spectrum. As indicated by Kaimal (1972), the measured 
A then represents the actual length scale at moderate to high frequencies. 
Fortunately, a }arge gap usually exists between spectral regions representing 
turbulent energy and those representing the energy of long-term oscillations. 
Kaimal has proposed under these conditions to estimate A with the following 
relation : 

A = ~ U Sw(O) 
4 0"~ 

(11) 
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Table 6 indicates the integral scales of turbulence for the 7 runs. Fig
ure 19 illustrates the two atrnospheric situations. The RMSE of SODAR A 
is about 18 rn, which Ieads to a relative precision of about 22%. The SODAR 
is not as accurate when rneasuring the integral scale as when rneasuring the 
wavelength conesponding to the logarithrnic spectral peak. This is due to 
the SODAR a~ error which has a great influence on the integral scale esti
rnation. 

We have used the values of the integral scale to predict the correction 

Table 6: Sodar and sonic turbulence pararneters. 

Run No SO DAR So nie SO DAR So nie SO DAR So nie 
Sw(O) Sw(O) 0'"2 w 0'"2 w A A 

(m2s-l) (m2s-1) (m2s-2) (m2s-2) {rn) (rn) 

1 76 81 0.87 1.34 123 86 

2 56 56 0.82 1.03 76 61 

3 38 48 0.61 0.99 99 78 

4 4 7 0.25 0.40 32 34 

5 5 7 0.17 0.31 45 34 

6 51 49 0.55 0.60 77 101 

7 18 26 0.19 0.27 38 39 

coeffi.cient for O"w as indicated in Eq. ( 6) and as described by Kristensen 
and Gaynor (1986). In unstable conditions (runs No 1, 2, 3, and 6), the 
observed ratio a~ODARI a~onie is 0.6-0.9, whereas the predicted ratio is 0.35-
0.5. However, during run No 7, which is slightly unstable, the integral scale 
of turbulence is srnall and the predicted ratio 0.1 greatly underestirnates the 
observed ratio 0. 7. 
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Under the stable atmospheiic conditions (runs No 4 and 5), the observed 
ratio of 0.55-0.65 greatly exceeds the predicted ratio of 0.1. The correction 
factor of Kristensen and Gaynot is no Ionger valid when the integral scale is 
of the same order of magnitude as the sampling volume, which is the case 
for the two stable runs. 

1-Y=1.22 X-3 I 

Integral scale measured by sonic(m) 

Figure 19: Integral scale of turbulence A estimated from SODAR and sonic 
data. The figures refer to the run No. 

4.3 Conclusions 

The conclusions to emerge from this study can be summarized as below: 

(i) Although the SODAR is missing data and the SODAR antenna config
uration filters the high frequency turbulence, the vertical wind speed 
spectra deiived from SODAR are in general comparable to the spec
tra derived from sonic data. In windy conditions, however, the inertial 
subrange slope lacks detail because of the low sampling rate. 

(ii) In all unstable atmospheric conditions, the logarithmic spectral peaks 
measured by SODAR and sonic are very similar. The characteristic 
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outer turbulent scale wavelength .Am deduced from nm, and the inte
gral scale of turbulence A obtained from SODARand sonic are, in all 
atmospheric conditions, also very similar. 

(iü) The SODAR data transformation and the modulated amplitude the
ory are satisfactory. The SODAR logarithmic spectra have 80% confi
dence intervals which include nearly all frequencies of the sonic spectra. 
The correction is, hewever, better in unstable conditions and low to 
medium wind speeds, because the logarithmic spectral peak is then 
not contaminated by the influence of the periodic small calibrations. 

(iv) One can interpret the underestimation of the spectrum by SODAR in 
stable conditions as being the result of the difference between physi
cal phenomena in stable and unstable conditions: In stable situations, 
the eddies are small, corresponding to mechanical or frictional forces, 
while in unstable atmospheric conditions, the eddies resulting from 
heat convection are greater and are more easily detected by the SO
DAR. 
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5 Crosscorrelations and crosspectra 

5.1 Theoretical Background 

The crosscovariance is ofinterest because ofthe quantitative information 
on the temporal correlation of instantaneous vertical wind speed measured 
by SODAR and sonic. 

When dealing with missing data, it is possible to use the same method 
to determine crosscovariance, crosscorrelation, and crosspectrum as for au
tocovariance, autocorrelation, and autospectrum (presented in Section 4. In 
this case, the two time series involved can be regarded as amplitude mod
ulated versions of the original time series. With the help of the following 
relation, we have computed crosscovariance, crosscorrelation, and crosspec
trum following (Brillinger, 1972): 

(12) 

with Rzi ( r) being the crosscovariance of observed time series Z ( t) and Z( t), 
Rw.u(r) the crosscovariance oforiginal time series W(t) and W(t), and R99(r) 
a function depending on the sampling schemes g(t) and g(t). The computa
tion of crosscorrelations and crosspectra is done following lenkins and Watts 
(1968), and Priestley (1981). 

5.2 Results and conclusion 

There are a number of reasons why the two systems may show different 
readings of w at the same time. The distance between the two sensors does 
not permit measurements within the same volumes and the same eddies, 
except for the particular case in which the wind direction is parallel to the 
direction of the SODAR-tower. Unfortunately, this never occurred during 
the seven runs. 

A localy isotropic homogeneous turbulence and a "frozen atmosphere" 
(Taylor hypothesis) is assumed. The correlation between vertical wind speed 
at two points A and B is given by (Hinze, 1959): 

(w')A(w')B = u! [f(r) T~ l(r) {! + l(r)] {13) 

where r is the distance between A and B, {w is the distance between A and 
B along the vertical axis, /( r) is the vertical correlation along the vertical 
axis, and 1( r) is the lateral correlation (isotropic within horizontal plane). 
In our case, with A and B at the same altitude, {w is equal to zero and the 
correlation is equal to l( r ). As a first approximation, one may consider that 
the autocorrelation of wind speed follows an exponentiallaw (Hinze, 1959). 
Then, the correlation p( r) is : 
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Figure 20: Example of SODAR and sonic positions in the wind :field. Run 
No 3 (15/08/90). 

(w')A(w')B _.?:. 
p( T) = /( T) = 2 :::::: e A 

CTw 
(14) 

Appling this theory by way of example to run No 3 with r :::::: 200 m and 
A:::::: 100m gives p(r):::::: 0.13. 

Some authors have investigated the relation among wind speed U, wind 
direction, and the time lag Tm at which the lateral correlation becomes 
maximum (see for example Shiotani and Iwatani, 1976). Here, the time that 
turbulent eddies travel from point A to point B should be proportional to 
r cos 1/J jU ( "P denotes the angle between the wind direction and the SO DAR
sonie line in Figure 20). The correlation between SODAR and sonic should 
become maximal when the time lag is equal to r cos "P fU. Fot run No 3, 
U / cos 1/J :::::: 7 ms-1 and the time lag r cos "P / U is ab out 29 s. 

Table 7 shows the maximum and minimum cross correlations, the time 
lag Tm, and time lag r cos 1/J jU for all runs. The very poor conelations seem 
to be of the same order as the theorical values from Eq. (14). Furthermore, 
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if SODAR and sonic data were correlated, the time lag in Table 7 would 
have been proportional to r cos '1/J/U, butthiswas not the case (it has been 
found by Shiotani and Iwatani that there is a proportionality coefficient of 
about 0.8 between Tm and r cos '1/J /U). It is clear that in none of the runs is 
it possible to make a direct comparison of SODAR and sonic instantaneous 
vertical wind speed. 

Table 7: List of maximum and minimum crosscorrelations between SODAR 
and sonic, time lag Tm for maximal correla tion, and time lag r cos '1/J / U. 

Run No Maximum Minimum Time lag rcos'if;/U 
cross corr. CIOSS COII. Tm (s) ( s ) 

1 0.008 -0.210 200 -25 

2 0.102 -0.119 -186 34 

3 0.184 -0.117 66 29 

4 0.103 -0.131 -12 18 

5 0.111 -0.093 35 28 

6 0.130 -0.110 -76 41 

7 0.112 -0.030 -224 53 
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6 Conclusions 

The long term intercomparison showed that, in general, the (J'w data of 
the SODAR compare well with the sonic anemometer data. The agreement 
between both sets of data is much better during the nighttime measure
ments; this means that the SODAR (J'w values are more accurate during 
stable than during unstable atmospheric conditions. There is, however, an 
underestimation of (J'w measured by the SODAR especially at higher wind 
speeds. 

The spectral analysis of the vertical wind speed showed that during dif
ferent atmospheric conditions the SODAR can truly observe large to small 
scale turbulence eddies. In special situations, even :fluctuations down to the 
inertial subrange are observable. The peak of the logarithmic spectrum is 
accurately determined by the SODAR in all cases, although in some runs 
the power spectra derived from SODAR data are too low. The reasons for 
this are not clear. More tests are needed to understand the physical meaning 
of this effect. In addition, the outer turbulent scale wavelength correspond
ing to the peak of the logarithmic spectrum and the integrallength scale of 
turbulence arealso accurately determined by the SODAR. Both parameters 
are associated with the vertical transport of pollutants. 

The mathematical approach of the spectral analysis which has been pre
sented provides some topics for future study. Turbulence :fluxes as u'w' or 
w'T' may be derived from SüDARs or a combination SODAR-RASS (the 
RASS isaRadio Acoustic Sonnding System which permits measurements of 
temperature profiles within the Planetary Boundary Layer). Further com
parisons need to be performed in order to quantify the ability of the SO DAR 
and RASS to measure these cospectra and :fluxes to be used as an input to 
atmospheric models. 
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Appendices 

A Comments on spectral analysis 

The purpose of this Appendix is not to give a complete description 
of the notion of spectral analysis. Many authors (Jenkins and Watts,1968, 
and more recently Priestley,1981) have published complete studies of this 
subject. We present a short review of the main assumptions and results 
of spectral analysis theory. Some of the notations and results are used to 
explain the theory of amplitude modulation functions in Appendix B. 

A.l Spectral analysis theory 

A time series is very often a random or non deterministic function of 
the time. A characteristic of these random functions is that they are not 
predictable. For example, if we compare visually the time series of vertical 
wind speed given by SODAR and sonic anemometer, they do not ressemble 
each other. But their averaged or statistical properties such as mean value 
or standard deviation are in good agreement (see Section 3.2). 

We define a random process as the collection of all possible records of 
a random variable X(t) and we note it {X(t)}. We use different symbols 
to refer to the observation :z:( t) or :Z:t ( discret sample) from the particular 
sample we have selected as opposed to the random variables X(t) or Xt 
( discret sample) which denote general values of the observation at time t. 
For each value of t, there exists a whole range of possible values of X(t). 
Thus, an observed record of a random process is merely one record out of 
a whole collection of possible records which we might have observed. The 
collection of all possible records is called the "ensemble", and each particular 
record is called a "realization" ofthe process. The sample space ("ensemble ") 
associated with this process is doubly infinite, extending from -oo to +oo 
at each point of time and time extending from -oo to +oo. 

For each t, X ( t) is a random variable and thus has a range of possible values, 
some of which may be more likely to occur than others. Acoordingly, for each 
t, X(t) will have some probability distribution. In most cases, its properties 
will be described by its probability density function /t(:z:), defined for all :z: 
at time t. We can then define the first and second moment of the random 
variable X(t) (mean value p,(t) and variance a 2(t)): 

p,(t) = E[X(t)] = ;_: xft(x)dx 

a2(t) = E[X(t)2
] = ;_: x2 ft(x)dx, 

(15) 

(16) 

and also the autocovariance function and all the higher moments. E[X(t)] 
is the expected value of X(t). E[X(t)] is computed as a weighted average of 
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all possible values of X ( t), each value being weighted by the conesponding 
probability ft(x). Note that the moments of the probability law may vary 
with time. To describe a general theory of stochastic processes, it is necessary 
to make two assumptions to simplify the problem: 

(i) The time series can be described with the lowest moments of its proba
bility law: mean value, variance, autocovariance, and the Fourier trans
form of the autocovariance, which is named the power spectrum. This 
assumption is true in the particular case of normal probability law 
( Gaussian distribution). 

(ii) The probability law during the time ofmeasurement remains the same. 

These assumptions can be applied to time series of atmospheric turbulence 
parameters that are approximately stationary during short time periods, like 
in our experiment. It has a lot of applications in meteorology such as spec
tral analysis of fluxes of various properties, and analysis of the relationship 
between two time series like wind speed and temperature. 

Considering a stationary random process {X ( t)}, the mean value p, auto
covariance R( s) and autoconelation p( s) are independent of time t: 

JL 

R(s) 

p(s) 

E[X(t)] 

E[(X(t)- p)(X(t + s)- p)] 
R(s) 
R(o) 

(17) 

(18) 

(19) 

It can be shown that the power spectral density S( w) is the Fourier 
Transform of the autocovariance function R(s) 

1 100 . S(w) =- R(s)e-"'"ds. 
27r -oo 

(20) 

This result gives necessary conditions to the existence of the spectrum: The 
autocovariance function R(s) of X(t) should have a Fourier Transform. It is 
interesting to note that the inverse Fourier Transform gives in particular 

R(O) = u2 = L: S(w)dw. (21) 

The variance u 2 is equal to the total area of the spectrum. 

Because it is not possible to completely de:fine the stochastic process 
and its density function, we are then facing the problern of estimating the 
moments of the stochastic process. A solution to this problern is possible 
with the help of statistical analysis. 
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A.2 Statistical analysis tools 

To simplify the symhols, we will only use Xt when refering to a single 
realization Xt or to the random variable Xt. lt should be clear from the 
context whether we are discussing a particular set of numerical values or 
whether we are refering to a set of random variables. 

Let {X ( t)} be a stationary process involving discrete realizations with 
mean J.L, autocovariance R( s ), and autocorrelation p( s ). Given N observa
tions X1, Xa ... , XN, we define 

{22) 

We have, with the assumption of a stationary time series, 

1 N 
E[X] = - 2: E[Xi] = J.L 

N i=t 
(23) 

- 0"2 N-1 I s I 
var{X} = N 2: (1- N )p(s). 

•=-(N-1) 

{24) 

If E[X] and var{X} are finite when N __... oo, then X is said to be a 
consistent estimate of J.L· 

Using the same hypothesis, one can show that 

l N-1•1 
R(s) = N ?: (Xi- X)(Xi+l•l- X) 

t=l 

{25) 

is a biased estimate of the autocovaiiance function R( s) but asymptotically 
consistent, and 

. il( s) 
p(s) = R(O) (26) 

is an asymptotically consistent estimate of the autocorrelation function p( s ). 

The fundamental relationship (20) willlead us to consider an estimate 
S(w) which should be a Fourier Transform of the estimate R(s) of R(s). 
However, it appears that this estimate is not consistent and not valid. 
But, with a suitable lag window AN(s), the new estimate 

• 1 N-1 
S(w) =- 2: AN(s)R(s)e-i•w 

211" 
•=-(N-1) 
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is consistent if AN( s) has well suited properties, as for example the Tukey
Hanning lag window 

1 11"S 
-(1 + cos -) s < M 
2 M 
0 s > M. 

with the window parameter M. lt is possible to compute the estimate S(w) 
from the periodogram 

and 

N-l 

IN(B) = 2:N I I: X(s)e-i'812 
•=-(N-1) 

S(w) 

A.3 Precision of spectral estimates 

(28) 

(29) 

(30) 

In practice, we can calculate an estimation S( w) of the spectrum S( w) 
with a time series of finite length. We introduce errors in the estimation of 
S(w), which can be quanti:fi.ed at each frequency w by the bias b(w) and the 
variance v2 ( w) 

b(w) = E[S(w)J- S(w) 

v2 (w) = var{S(w)} 

(31) 

(32) 

One approach to estimate the precision of spectral estimates is to com
pute the "p% Gaussian range of percentage error" ßp(w), which is de:fi.ned 
by 

v(w) I b(w) I 
ßp(w) = 'Yp S(w) + S(w) ( 33) 

with "(p, the two sided p% point of the standardized Gaussian normal distri
bution. The product S(w) x ßp(w) may be regarded as an upper bound for 
a p% con:fi.dence interval for S( w ). Priestley shows that when one desires a 
p% con:fi.dence and a given bandwidth resolution Bh, then ßp(w) is bounded 
by 

(34) 
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Figure 21: 90% confidence interval of so nie spectrurn for run No 7. 

1. 

with Iw and Bw, parameters depending on the window shape (see Priestley). 
We are then able to deterrnine a confidence interval for the spectrurn, written 
as 

S(w) S( ) S(w) -"'----"- < w < . 
1 + tip - - 1 - tip 

(35) 

The strategy consists in calculating the M value that will rninirnize the enor 
for a given time series. Priestley finds that, for a fixed record length N, one 
can choose 

( 
B 4 )1/5 M = 3-2/5 ~ N1f5. 

Iw Bh 
(36) 

Wehave applied this procedure to the sonic data. During the run No 7, 
the fixed pararneter is the nurober of points N ( 8225 ), the chosen pararneters 
are (i) the Tukey-Hanning window (Bw = 2.4571" rad s-1 , Iw = 0.75), (ii) 
the confidence interval 90% (p = 0.90, 1'0.9 = 1.96), (üi) the bandwidth 
resolution Bh (0.15 rad s-1 ). Then, M = 97 and lio.9 = 0.23. Figure 21 
illustrates this result. Because the nurober of observations and the spectrurn 
bandwidth are neady the sarne for the seven experirnents, lio.9 only varies 
between 0.23 and 0.26, and M varies between 86 and 97. 
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B Spectral analysis with missing observations 

Parzen (1963) and Bloomfield (1970) have discussed basic aspects ofthis 
theory. An excellent survey is given by Bloomfield from which we bonow 
freely. 

Generally, the vertical velocity time series W(t) does not have a zero 
mean value W. If W is removed from the W(t), a new time series X(t) with 
zero mean is defined. lt is considered to be stationary and to be defined at 
equally spaced intervals of time. The really measured amplitude modulated 
series, Z(t) is constructed by replacing missing observations in the original 
X(t) by their mean value zero. Thus, 

Z(t) = X(t) if observed. 

Z(t) = 0 otherwise. 

The amplitude modulation function g(t) satisfies 

g( t) = 1 

g(t) = 0 

if X(t) is observed. 

otherwise. 

B.l Amplitude modulation process 

The amplitude modulation function g(t) is assumed to be independent 
of X(t). Then, we define ß, Rg{s) and the characteristic function h(s) ofthe 
sampling scheme g(t) by 

ß = E[g(t)] 
R9 (s) 

h(s) 

= E[g(t)g(t + s)] 

Rg(s)/ß. 

(37) 

(38) 

(39) 

The index g refers to the sampling scheme. One should note that ß is the 
fraction of nurober of observed points to the observation time interval in 
seconds. Bloomfield imposed two conditions to the amplitude modulation 
function. He shows that its hypothesis are verified if 

h(s)>O s=0,±1, ... 
00 

L I h(s)- ß I< +oo. 
•=-oo 

Following Bloomfield, we find that 

cov{g(t),g(t + s)} -t 0 1 if s -t ±oo. 

(40) 

(41) 

Thus1 situations where g(t) has some periodic component arenot solved 
by this method. Jones (1962), Parzen (1962), Scheinok (1965) 1 Neave (1970)1 
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Brillinger (1972), (1983) and Marsy (1978) have proposed solutions to spe
ci:fic situations including periodic missing data. 

The amplitude modulated process Z(t) follows the properties: 

E[Z(t)] = 0 

Rz(8) = R9(8) X Rz,(8) 

with Rz(8) and Rz,(8) the autocovariance of Z(t) and X(t). 

(42) 

(43) 

The :first consequence of these assumptions is that we are able to estimate 
the autoconelation and autocovariance of X(t) with these equations. We 
can compute the Fourier Transform of 

c9(8) = ß-2cov{g(t),g(t + 8)} 

under Bloom:field's assumption : 

N-1 
1 ~ . 

A(w) =- L..J c9 (8)e-""'. 
211" 

•=-(N-1) 

As a consequence, Sz(w) can be written 

(44) 

(45) 

This is the key formula presented in Section 4. A solution of this equation 
can be found. Let us de:fine 

1 ( 1 1 ) cg{8) 
dg( 8) = ß ß- h(8) = Rg{8) · 

It can be proven that dg( 8) is finite for each 8 and that its Fourier Transform 
D 9(w) is continuous and bounded. 

Then 

Sz,(w) = ß-2 Sz(w)- l: D 9(w- 8)5::(8) d8 

or with the notation f( w) = ß2 D 9 ( w ), 

(46) 

This notation is similar to the formulation of the solution of continuous time 
series spectral estimates with random sampling (Marsy, 1978). 
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B.2 Estimate of S~(w) 

Throughout this section, the basic assumptions are those stated in sec
tion B.l. These assumptions will be demonstrated in section B.3. To calcu
late an estimate of S~ ( w ), we use the method of moments: The estimators 
f'(w), ß, R9 (s) are supposed to have the exact values of r(w), ß, R 9(s). 
The estimates bias and variance of the time series Z(t) are calculated fol
lowing the basic approach (Appendix A). 
Then, we define 

(48) 

which can be written in a similar form as Eq.(27) 

S• ( ) 1 ~1 R::(s)' ( ) -i•w 
~ w = - LJ --AN s e . 

211' •=-(N-1) R9 (s) 
(49) 

Eq. ( 49) is more convenient for computation. Following Priestley (1981) and 
Marsy (1976), we can show that this estimate is asymptotically consistent. 
The bias is expressed by 

(50) 

with the prime indicating frequency derivation. Priestley shows that, when 
using Tukey-Hanning windows, the bias can be expressed as: 

1 (Bw )2 b~(w) = 6M2 Bh S~(w). (51) 

As mentioned by Bloomfield, the variance is, with Priestley's notation, 

(52) 

with Kronecker's symbol6..,,o,'l< being 1 for w = 0, ±11', and being 0 otherwise. 
Following Eq.(33) and Priestley, we have 

(53) 

with P [] indicating the probability function. Then, 

Indexpis indicating that this relationship is true with a probability of p%. 
For w not equal to 0, ±11', and following Eqs.(52) and (54) 

- M 2 lw ( ) I S~(w)- S~(w) IP::SI b~(w) I +'Yp NS::(w) ß4 • 55 
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In this case, it is not possible to calculate a simple confi.dence interval as 
in Appendix A.3 because Sz(w) and s:(w) are independant. It is necessary 
to estimate the spectrum Sz(w) and the spectrum s:(w) using two different 
confi.dence intervals. The real confi.dence interval of Sa:(w) is then based on 
the intersection of the two confi.dence intervals. The study of the estimate 
of Sa:(w) is then separated in two parts, the fi.rst one dealing with s:(w) 
and the bias b:c( w ), the second one dealing with the spectrum S z ( w) and the 
variance var{Sa:(w)}. 

Results of the computation of the confi.dence intervals of the sonic spec
tra indicate that the bias corresponds to less than 20% of the total percent
age error. We suppose that, in the frequency band not perturbated by the 
missing data (below 0.05 Hz), the percentage error of the SO DAR spectra is 
of the same order as in the case of the sonic spectra. The bias and variance 
introduced by the missing data are not greatly increasing the total error, as 
suggested by the Figures presented in Section 4. However, in the frequency 
band pertubated by missing data (frequencies above 0.05 Hz), the bias is 
very important when the power spectrum is greatly underestimated. In this 
case, the hypothesis is no more valid; we also know that the power spectrum 
has no sense any more. Then, in the frequency band not greatly perturbated 
by the missing data, we assume 

I b11(w) I~ "Yp'Var{Sc(w)} 112
• 

Considering this hypothesis and Eq.(54), we have (asymptotically) with p% 
confi.dence, 

I S.,(w)- Sc(w) 1,:$ "Yp'Var{S11 (w)} 112 

giving 
Sc(w) :5 Sa:(w) + "Yp'Var{Sc(w)}112 

• 

and, following Eq.(51), 

1 . . l/2 (Bw)2 I bc(w) lp:$ GM2 (Sc(w) + "}'p'Var{Sc(w)} ) Bh · 

(56) 

(57) 

(58) 

Concerning the spectrum Sz(w), the results of Section A.3 are applica
ble, because there is no missing data for the random variable Z ( t). We have 
then, following Eq.( 35 ), 

Sz(w) I s z ( w) lp• ::; D. . 
1- p' 

(59) 

with D.p•, the p'% Gaussian range of percentage error of Sz(w) calculated 
following the results of Appendix A. D.p' has the same value as in the case 
of the sonic data because there is no missing data for the random variable 
Z(t). Then, following Eqs.(52) and (59) 

• M lw ( 1 )2 •2 
var{S.,(w)} :5 Nß4 1 _ jj.P, Sz(w). (60) 
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N ow, we are a ble to calcula te a confidence in terval for S:c ( w). Following 
Eq.(58) and Eq.(60), we obtain 

Furthermore, using p = p', 'Yp = 'Yp' and having 

1 (Bw )2 
6M2 Bh <t: 1 

with M :::::: 100, Bh :::::: 0.15 rad s-1 , Bw = 2.4571" rad s-1, we obtain 

(61) 

(62) 

Following Eq.(48) and the experimental results, the convolution of r and 
Sz(w) should have a small infl.uente (m Sa;(w) for frequencies below 0.05 Hz. 
In this case, S:c(w):::::: ß-2 Sz(w). Then for p = p' = 0.9, 

:::::: 0.28 (63) 

::::::0.05. (64) 

The bias expressed by the second relationship is about 18% of the error 
introduced by variance and expressed by the first relationship. 

The following Figur es 2,2J9. ~~ ill~s.tfate the results of Eq.( 62) for the 
seven runs. The chosen parameters and the truncation value of the Tukey
Hanning spectral wind~w are the same as for the confidence intervals of the 
sonic spectra. 
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Figure 22: 80% confidence interval of SODAR data. Run No 1 (01/08/90). 
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Figure 26: 80% confidence interval of SODAR data. Run No 5 (04/09/90). 
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Figure 27: 80% confidence interval of SODAR data. Run No 6 (05/09/90). 
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Figure 28: 80% confidence interval of SO DAR data. Run No 7 (11/09 /90). 

B.3 Comments about the assumption of Bloomfield theory 

lnstead of a periodic sampling with randomly missing data, the sam
pling scheme can represent a renewal process (Bloomfield). In this case, the 
intervals between successive observations are independent random variables, 
each with ß, being the fraction of the observed points to the time duration 
in seconds and probability function fn(t), which is the density function of 
the time interval between samplings at tim es tk+n and t,. for all k (ft ( t) is 
depicted for the run No 5 in Figure 5, section 4.1.2). Bloomfield shows for 
h(s) of Eq.(39): 

h(s) > 0 

h(s)--+ ß 
for all s 

if s--+ ±oo. 

if ft(t) > 0 for all t. Figure 29 illustrates the function h(s) for run No 6. The 
small peaks represent the 27 s cycl~s. With increasing lags, the magnitude 
of the peaks decreases slowly, and therefore the characteristic function h( s) 
tends to a finite Iimit. This is in fair agreement with the theory of a renewal 
process. 
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Figure 30 shows how h( s) evolves with increasing averaging width ( see 
Appendix C). The overall shape of the function remains the same for origi
nal data or smoothed data, but the small "high frequencies" variations are 
filtered. 

1.00r------------------------------------------. 

...... 
111 ......... 

0.80 

.r= 0.40 

Lag s (s) 

Figure 29: Characteristic function of the sampling scheme, run No 6. 

One condition under which the Bloomfield hypothesis is completely valid 
is Eq.( 41 ). Figure 31 show; a particular example of I h( s) - ß I· This de
creasing function suggests that it is bounded by a decreasing exponential 
function, integrable over [0, +oo ). Then, it follows that Bloomfield's hypoth
esis is valid for run No 6. All the other runs suggest that this is generally 
applicable for the SODAR sampling scheme. 
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Figure 30: Evolution of the characteristic function with averaging time. 
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Figure 31: Properties of the characteristic function, run No 6. 
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C Moving average proced ure 

The purpose of the moving average procedure is to increase the per
centage of "observed" data and to randomize the spectral functions A( w) 
and f( w) , representing the sampling scheme properties ( see Eqs.( 42) and 
( 4 7). We can summarize the properties of this data transformation in two 
points: 

(i) This process is a low-pass filter which has some infiuence on the spec
trum . A demonstration of this undesired effect is presented in Fig
ure 32. 

(ü) This averaging procedure reduces the undesired peaks of the functions 
A(w) and f(w). 

C.l Characteristics of the low-pass fi.ltering procedure 

Following conventional descriptions, we consider in this section the sta
tionary time series X(t) as the input and the transformed time series Y(t) 
as the output of a linear filter. The output time series is defined by 

m 

Y(s) = L: a~:X(k+s) (65) 
k=-m 

Wk (66) a~: = 
'ÜJ 

m 

'ÜJ = L: Wk (67) 
k=-m 

with chosen weights w~:. The transfer function of the filter is then, 

m 

H(w) = L ak e""'iwk (68) 
k=-m 

Since, in general, H(w) is complex we may write it in the form 

H(w) = G(w) ezp(i~(w)), (69) 

with G( w) called the gain at frequency w, and ~( w) called the phase-shift at 
frequency w. We then obtain, following the above arguments, 

I H( ) 12= Sy(w) 
w Sx(w)' 

(70) 
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with Sx(w) and Sy(w) being spectra ofthe time series. We denote nc as the 
cutoff frequency corresponding to half power, i.e. I H( nc) 12= 0.5. 

Equal-weight or arithmetic averaging consists in giving the same weight 
to all values w~c = 1 /(2m + 1 ). It is easy to show that the transfer function . 
in this case is 

1 sin (2m+ 1)1rn 
H(n) = 2m+ 1 sin 1rn 

The phase-shift of this filter is in theory equal to 0 or 1r, because the filter is 
symmetric. Following Jones(1972), we did not choose this simple averaging 
procedure, but instead used the Cressman weight fur<.::tion 

which has also the particularity to have a phase-shift equal to 0 or 1r. An 
interesting feature of the following Figure 32 is the difference between the 
arithmetic and Cressman low pass filters: The equal weight gain function 
decreases more quickly. 
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Figure 32: Comparison of Cressman and arithmetic low-pass filters. 
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We have applied this filtering procedure to the sonic data. Spectra of 
filtered and unfiltered data were computed with the same window param
eter M. The etfective transfer function, i.e. the ratio between the filtered 
and unfiltered spectra, is presented in Figure 33. The cutotf frequencies nc 

for 3, 5, and 7 s averaging intervals are respectively 0.173 Hz, 0.11 Hz, 
and 0.0815 Hz. The phase-shifts calculated with sonic data are shown in 
Figure 34 for the different averaging widths. 

+1 
10 

1--3 s j-ss I····· 7 s 
>--.iii 
; 10+0 
-c .. :.~-~- ...... 
0 \ .... ·. ' -() \ 

CD \ 
c.. \ 
111 

' .... 1Ö1 
' CD ' J; ' 0 

' c.. 
' - I 

0 I 

.§ 1Ö2 I 
I - I () 

0 I .... I • ..... I 
I 

; I 
"' • -3 

10 
10-4 10-3 10-2 10+0 

Frequency n (Hz) 

Figure 33: Fraction of power specral density Sy(w)/Sx(w) with Cressman 
weigthing of 3, 5, and 7 s averaging width applied to sonic data. 

Examination of Figures 33 and 34 reveals that only in the frequency band 
n ~ nc, w here H ( n) is close to 1 and the phase shift </J is close to 0, this 
procedure is meaningful. With a 3, 5, or 7 s averaging interval, this is the 
case for a frequency band below 0.05 Hz. 

53 



CIJ 
Cl) 

0 

~ -1 

0.0001 0. 

1--- 3 51- 5 5 ,.oou 7 5 I 

0.01 
Frequency n (Hz) 

Figure 34: Phase-shift of Cressman filter with 3, 5, and 7 s averaging width 
applied to sonic data. 

C.2 Infl.uence of the low-pass filtering procedure on SO DAR 
spectra 

With the notation of section B, we study the evolution of the parameter 
ß and the shape of A( w) and r( w ). The weights are applied to the time series 
Z(t). Table 8 shows the evolution of ß with increasing averaging widhts. 

Table 8: Infl.uence of averaging interval on ratio ß of availabe data for run 
No 1. 

Lag m 0 1 2 3 4 

Averaging width (s) 1 3 5 7 9 

ß 0.11 0.28 0.38 0.46 0.53 

The functions r( w) and A( w) have been compu ted for the same aver
aging intervals. As expected, the high peak at 0.04 Hz due to the periodic 
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calibrations is greatly reduced with increasing averaging intervals and ß (see 
Figure 35). 

150 
-- filt. data (5 s) 

········ orig. data 

100 

50 

0 

0.0001 1. 
Frequency n (Hz) 

Figure 35: Function A( w) for original data and filtered data with averaging 
interval of 5 s, run No 6. 

We have compared the functions A(w) calculated for runs No 2, 6, and 7, 
which have roughly 50%, 60%, and 70% of data available (see Figure 36). 
A pparently, there is no great difference of A( w) at the frequency peak cor
responding to the periodic calibration when ß 2: 0.5. Therefore, there is no 
need to increase the averaging interval beyond 7 s. 

Figure 37 represents an example of the effect of the moving average pro
cedure. Although the spectrum derived from original data is inaccurate for 
frequencies above 0.03 Hz with two typical nadirs at 0.03 Hz and 0.09 Hz, 
the spectrum derived from transformed data is consistent for frequencies up 
to 0.07 Hz. Summarizing the consequences of moving average on sampling: 
It has the desired properties of increasing ß and reducing the intensity of 
peaks in the functions r( w) and A( w ). 
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Figure 36: A( w) for filtered data, runs No 2, 6, and 7. 
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Figure 37: Comparison of spectra derived from original and filtered SO DAR 
data, run No 7. 
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C.3 Sonic low-pass filter 

The sonic data are observed at N equally spaced times t1 , t 2 , t3 , •.. ,tN 

with a 1.06 s sampling rate. It is desired to smooth these data to obtain a 
1 s sampling rate. Considering a time t situated between two values tk and 
tk+1, the chosen weights are compiled in Table 9 and plotted in Figure 38. 

Table 9: Chosen weights wk/w for the sonic low-pass filter. 

Time t (s) wkfw wk+tfw 

t ::; tk + 0.05 1 0 

tk + 0.05 ::; t ::; tk+l - 0.05 
(t-tk±l )2 

(t-td2+(t-tk+l )2 
( t-tk }J 

(t-tk}l+(t-tk+d2 

t 2: tk+l - 0.05 0 1 

1.20,------------------------------------------, 

1.00 

~ 0.80 
+= 
u 
c: 
::s .... 
m0.60 
c 

+= .c 
0) 

~ 0.40 

0.20 
" " " , ... 

" " 
" 

" " " 
" 

" " " 

"..----

-- w k+ 1 (t)/w 

- w k (t)/w 

__ ",.,""" 
0.00~--~~--------------,---------------~---; 

.00 .53 1.06 
Time t between values t k and t k+ 1 

Figure 38: Weights of the sonic low-pass filter. 
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Figure 39 illustrates an example of filtered and unfiltered sonic spectra. 
The phase-shift in the band between 0.03 Hz and 0.5 Hz is due to this 
procedure. The filtered data show a -2/3 slope corresponding to the iner
tial subrange for frequencies up to 0.5 Hz, although the original data are 
contaminated by aliasing. Therefore, this filtering procedure is satisfactory. 
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Figure 39: Comparison of sonic filtered and unfiltered data. 
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