KfK 4913 November 1991

Freisetzungsraten gasförmiger Reaktionsprodukte bei Einwirkung induktiv beheizter Metallchargen auf Beton

B. Stuka, H. Knauß, R. Döbele, D. Perinić Hauptabteilung Ingenieurtechnik Projekt Nukleare Sicherheitsforschung

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Hauptabteilung Ingenieurtechnik Projekt Nukleare Sicherheitsforschung

KfK 4913

Freisetzungsraten gasförmiger Reaktionsprodukte bei Einwirkung induktiv beheizter Metallchargen auf Beton

B. Stuka H. Knauß R. Döbele D. Perinić

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

Zusammenfassung

Auf der Basis der induktiven Schmelzanlage SUSI (<u>S</u>chmelzanlage für Versuche <u>unter si</u>mulierten Unfallbedingungen) wurde eine Experimentierstrecke errichtet zur Durchführung von Massenbilanzen gasförmiger Reaktionsprodukte bei Schmelzexperimenten mit Beton, UO₂, Edelstahl und Natrium.

Im Rahmen von Matrixexperimenten wurde die Wechselwirkung bei Einwirkung induktiv beheizter Edelstahlschmelzen sowie inerter Suszeptoren (platinierte Molybdänzylinder) mit Beton untersucht.

Für die Hauptphase der jeweiligen Versuchsart wurden folgende mittlere spezifische Beton-Aufschmelzraten sowie die zugehörigen spezifischen Freisetzungsraten der nichtkondensierbaren Gase bestimmt:

Suszeptor, Anfangsgeometrie D/h = 65/30 mm	Edelstahl aufgeschmolzen	Edelstahl aufgeschmolzen	Mo platiniert fest inert
Induzierte Leistung [W/cm ³]	500	240	24
Penetrationsgeschwindigkeit [cm/min]	4,9	2,3	0,3
spez.Beton-Aufschmelzrate [g/hcm ²]	731,4	342,8	43,8
spez. H ₂ -Freisetzungsrate [dm ³ /hcm ²]	30,74	12,81	-
spez. CO-Freisetzungsrate [dm ³ /h cm ²]	4,33	1,65	-
spez. CO ₂ -Freisetzungsrate [dm ³ /h cm ²]	0,15	0,28	0,28

Hierzu sei angemerkt, daß im Falle der Inertsuszeptorversuche, mit Rücksicht auf die Gefahr einer Beschädigung des inerten Charakters des platinierten Molybdänzylinders durch Überhitzung (Schmelzpunkt von Platin 1769°C), eine vergleichsweise nur geringe induzierte Leisung gefahren werden konnte.

Release Rates for Gaseous Reaction Products after the Impact of Induction Heated Metal Batches on Concrete

Summary

Starting from the SUSI induction melting facility (SUSI = German acronym for melting facility for tests performed under simulated accident conditions) a test section was built in which mass balances can be established for gaseous reaction products in melting experiments involving concrete, UO_2 , stainless steel and sodium.

In the course of matrix experiments the interaction was studied which is caused by the impact of induction heated stainless steel melts and inert susceptible materials (platinized molybdenum cylinders) with concrete.

The following mean specific concrete melting rates and the associated specific release rates of the non-condensable gases were determined for the main phase of the respective test type:

Susceptible Mate Initial geometry D/h =	rial 65/30 mm	Stainless Steel Molten	Stainless Steel Molten	Platinized Molybdenum Solid, Inert
Induced power	[W/cm ³]	500.00	240.00	24.00
Rate of penetration	[cm/min]	4.90	2.30	0.30
Specific concrete melting rat	te [g/hcm²]	731.40	342.80	43.80
Specific H ₂ release rate	[dm³/hcm²]	30.74	12.81	-
Specific CO release rate	[dm ³ /h cm ²]	4.33	1.65	-
Specific CO ₂ release rate	[dm ³ /h cm ²]	0.15	0.28	0.28

It should be added in this context that in the experiments with inert susceptible materials comparatively little induced power was supplied considering the risk of impairing the inertness of the platinized molybdenum cylinder by excessive heating (melting point of platinum 1769°C).

Inhaltsverzeichnis

Verzeichnis der Abbildungen

Zusammenfassung

1	Einleitung und Aufgabenstellung	1
2	Versuchsbedingungen	2
3	Verfahrenstechnik	7
3.1	Grundausrüstung	7
3.2	Schmelzanordnung	8
3.3	Reaktionsgasauffang utransportstrecke	10
4	Meßtechnik	12
4.1	Aufschmelzrate und Penetrationsgeschwindigkeit	12
4.2	Druck und Temperatur	12
4.3	Volumenstrom	13
4.4	Gaskonzentration	13
4.5	Induzierte Leistung	16
4.6	Meßwerterfassung und -verarbeitung	20
5	Ableitung der Zahlenwertgleichungen	21
5.1	Massenbilanz der Reaktionsgaskomponenten	21
5.2	Volumenstrom V	22
5.3	Zeitkorrektur	24
5.4	Aufschmelzrate und Penetrationsgeschwindigkeit der Betonprobe .	25
6	Versuche mit Edelstahlschmelzen (E001 bis E 004)	27
6.1	Anfangs- und Randbedingungen	27
6.2	Diskussion der Ergebnisse	27
7	Versuche mit inertem Suszeptor (ISO2)	32
7.1	Anfangs- und Randbedingungen	32
7.2	Vergleichende Diskussion der Ergebnisse	33
Literat	ur	38

Verzeichnis der Abbildungen

Versagenszeitintervalle der Thermoelemente			le 1
Versuchsanordnung in SUSI zu den Versuchen E001 bis E004			1
Versuchsanordnung in SUSI zum Versuch IS02			42
Funktionsschema der Gasauffang-u.	Transportstrecke	Abb.	2
SUSI, Schema des Schmelzversuchsau	ıfbaues	Abb.	3
Na-Aerosolfilter für Schmelzversuch	e	Abb.	4
Betonprobekörper für Schmelzversu	che	Abb.	5
Molybdänzylinder IS02		Abb.	41
Fließschema zum Massenspektromet	ter	Abb.	6
Schematische Darstellung der Meßst	ellen zur Bestimmung	Abb.	7
der Gasfreisetzungsraten.			
HF-Generator der Schmelzanlage SU (vereinfachtes Schaltbild)	SI	Abb.	8
Blockschaltbild der Leistungsmeßand	ordnung	Abb.	9
	Versuchs-Nr.		
Penetrationsgeschwindigkeit	E001	Abb.	10
Penetrationsgeschwindigkeit	E002	Abb.	17
Penetrationsgeschwindigkeit	E003	Abb.	24
Penetrationsgeschwindigkeit	E004	Abb.	31
Penetrationsgeschwindigkeit	IS02	Abb.	53
Betonabschmelzrate	E001	Abb.	11
Betonabschmelzrate	E002	Abb.	18
Betonabschmelzrate	E003	Abb.	25
Betonabschmelzrate	E004	Abb.	32
Betonabschmelzrate	IS02	Abb.	54
H ₂ -Norm-Volumenstrom	E001	Abb.	12
H ₂ -Norm-Volumenstrom	E002	Abb.	19
H ₂ -Norm-Volumenstrom	E003	Abb.	26

H ₂ -Norm-Volumenstrom	E004	Abb.	33
CO-Norm-Volumenstrom	E001	Abb.	13
CO-Norm-Volumenstrom	E002	Abb.	20
CO-Norm-Volumenstrom	E003	Abb.	27
CO-Norm-Volumenstrom	E004	Abb.	34
CO ₂ -Norm-Volumenstrom	E001	Abb.	14
CO ₂ -Norm-Volumenstrom	E002	Abb.	21
CO ₂ -Norm-Volumenstrom	E003	Abb.	28
CO ₂ -Norm-Volumenstrom	E004	Abb.	35
CO ₂ -Norm-Volumenstrom	IS02	Abb.	60
Übersichtsplot:	E001	Abb.	15
Betonabschmelzrate			
H ₂ -Norm-Volumenstrom			
CO-Norm-Volumenstrom			
CO ₂ -Norm-Volumenstrom			
Übersichtsplot:	E002	Abb.	22
Betonabschmelzrate			
H ₂ -Norm-Volumenstrom			
CO-Norm-Volumenstrom			
CO ₂ -Norm-Volumenstrom			
Übersichtsplot:	E003	Abb.	29
Betonabschmelzrate			
H ₂ -Norm-Volumenstrom			
CO-Norm-Volumenstrom			
CO ₂ -Norm-Volumenstrom			
	H2-Norm-VolumenstromCO-Norm-VolumenstromCO-Norm-VolumenstromCO-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromÜbersichtsplot:BetonabschmelzrateH2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromÜbersichtsplot:BetonabschmelzrateH2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO2-Norm-VolumenstromCO3-Norm-VolumenstromCO3-Norm-VolumenstromCO3-Norm-VolumenstromCO3-Norm-VolumenstromCO3-Norm-VolumenstromCO3-Norm-VolumenstromCO3-Norm-VolumenstromCO3-Norm-VolumenstromCO3-Norm-VolumenstromCO3-Norm-VolumenstromCO3-Norm-VolumenstromCO3-Norm-VolumenstromCO3-Norm-VolumenstromCO3-Norm-VolumenstromCO3-Norm-Volumenstrom	H2-Norm-VolumenstromE004CO-Norm-VolumenstromE001CO-Norm-VolumenstromE003CO-Norm-VolumenstromE004CO2-Norm-VolumenstromE001CO2-Norm-VolumenstromE003CO2-Norm-VolumenstromE003CO2-Norm-VolumenstromE004CO2-Norm-VolumenstromE004CO2-Norm-VolumenstromE004CO2-Norm-VolumenstromE004CO2-Norm-VolumenstromE004CO2-Norm-VolumenstromE004CO2-Norm-VolumenstromE004CO2-Norm-VolumenstromE001BetonabschmelzrateH2-Norm-VolumenstromH2-Norm-VolumenstromE002BetonabschmelzrateE002H2-Norm-VolumenstromE002CO-Norm-VolumenstromE003GO-Norm-VolumenstromE003BetonabschmelzrateE003H2-Norm-VolumenstromE003CO2-Norm-VolumenstromE003BetonabschmelzrateH2-Norm-VolumenstromCO2-Norm-VolumenstromE003GO-Norm-VolumenstromE003BetonabschmelzrateE003H2-Norm-VolumenstromE003CO-Norm-VolumenstromE003BetonabschmelzrateE003H2-Norm-VolumenstromE003CO-Norm-VolumenstromE003BetonabschmelzrateE003H2-Norm-VolumenstromE003CO-Norm-VolumenstromE003BetonabschmelzrateE003H2-Norm-VolumenstromE003BetonabschmelzrateE003H2-Norm-Volume	H2-Norm-VolumenstromE004Abb.CO-Norm-VolumenstromE001Abb.CO-Norm-VolumenstromE003Abb.CO-Norm-VolumenstromE001Abb.CO2-Norm-VolumenstromE001Abb.CO2-Norm-VolumenstromE001Abb.CO2-Norm-VolumenstromE003Abb.CO2-Norm-VolumenstromE003Abb.CO2-Norm-VolumenstromE003Abb.CO2-Norm-VolumenstromE004Abb.CO2-Norm-VolumenstromE004Abb.CO2-Norm-VolumenstromIS02Abb.Übersichtsplot:E001Abb.BetonabschmelzrateH2-Norm-VolumenstromAbb.CO2-Norm-VolumenstromE002Abb.CO2-Norm-VolumenstromE002Abb.BetonabschmelzrateH2-Norm-VolumenstromAbb.CO2-Norm-VolumenstromE003Abb.BetonabschmelzrateH2-Norm-VolumenstromAbb.CO2-Norm-VolumenstromE003Abb.CO2-Norm-VolumenstromE003Abb.CO2-Norm-VolumenstromE003Abb.BetonabschmelzrateH2-Norm-VolumenstromAbb.BetonabschmelzrateE003Abb.BetonabschmelzrateE003Abb.CO-Norm-VolumenstromE003Abb.CO-Norm-VolumenstromE003Abb.CO-Norm-VolumenstromE003Abb.CO-Norm-VolumenstromE003Abb.CO-Norm-VolumenstromE003Abb.CO-Norm-VolumenstromE003Abb.

•

Übersichtsplot:	E004	Abb. 36
Betonabschmelzrate		
H ₂ -Norm-Volumenstrom		
CO-Norm-Volumenstrom		
CO ₂ -Norm-Volumenstrom		
Induzierte Leistung im Werkstück	E001	Abb. 1 6
Induzierte Leistung im Werkstück	E002	Abb. 23
Induzierte Leistung im Werkstück	E003	Abb. 30
Induzierte Leistung im Werkstück	ISO2	Abb. 43
Tiegel-Meridianschnitt	E001	Abb. 37
Tiegel-Meridianschnitt	E002	Abb. 38
Tiegel-Meridianschnitt	E003	Abb. 39
Tiegel-Meridianschnitt	E004	Abb. 40
Tiegel-Meridianschnitt	1502	Abb. 64
Temperatur des Inertsuszeptors	1502	Abb. 44
T1 Beton-Temperatur	1502	Abb. 45
T2 Beton-Temperatur	IS02	Abb. 46
T3 Beton-Temperatur	IS02	Abb. 47
T4 Beton-Temperatur	IS02	Abb. 48
T5 Beton-Temperatur	IS02	Abb. 49
T6 Beton-Temperatur	IS02	Abb. 50
Übersichtsplots:		
Temp. Mo-Suszeptor u. T1 bis T4	IS02	Abb. 51
Temp. Mo-Suszeptor u. T3 bis T6	IS02	Abb. 52
Gasdruck	IS02	Abb. 55
Mittlere Gastemperatur	IS02	Abb. 56
VolStrom bei Betriebszustand	IS02	Abb. 57
CO ₂ -Konzentration	1502	Abb. 58

,

Übersichtsplots:

Konzentrationen H_2 , CO_2 , CH_4 , O_2 , CO	IS02	Abb.	59
Vertikale TempVerteilung im Beton	E002	Abb.	63
Vertikale TempVerteilung im Beton	E003	Abb.	62
Vertikale TempVerteilung im Beton	1502	Abb.	61

.

1 Einleitung und Aufgabenstellung

Die Wechselwirkung von Kernschmelzen mit Beton im Beisein von Natrium ist bedeutsam für den Ablauf angenommener Kernschmelzunfälle von Schnellen Brutreaktoren.

Die Problemstellung erwächst aus den für Sicherheitsbewertungen notwendigen Kennntnissen zum Druckaufbau im Containment, zur Zusammensetzung der Gasatmosphäre sowie der Schmelzfrontausbreitung im Betonfundament.

Daher gehört zu den wesentlichen Zielen der experimentellen Untersuchungen die quantitative Bestimmung der Freisetzungsraten einzelner gasförmiger Reaktionsprodukte korreliert mit der Zerstörungsrate des Betons infolge der Einwirkung induktiv beheizter metallischer Chargen auf Beton.

Eingebunden in den Arbeitsthemenbereich Sicherheitsuntersuchungen wurden im Rahmen des Projektes Nukleare Sicherheitsforschung (PSF) eine Versuchsstrecke im Labormaßstab errichtet und eine Reihe typischer Experimente erfolgreich durchgeführt und ausgewertet.

Die als Grundausrüstung genutzte Versuchsanlage SUSI erlaubt es, induktive Schmelzversuche im Temperaturbereich bis über 3000 °C unter Vakuum und Schutzgas (Argon) durchzuführen.

Die Anlagentechnik der Versuchsstrecke ermöglicht Schmelzexperimente sowohl mit radioaktiven Chargenanteilen (UO₂), als auch mit kontrollierter Natriumdosierung in den Schmelzraum.

Die notwendigen Arbeiten zur Entwicklung der technologischen Grundlagen erstreckten sich auf die Hochtemperatur-Schmelzanordnung, die automatische Auffang- und Transportstrecke für die Reaktionsgase sowie auf die notwendige Meßtechnik, einschließlich Datenerfassung- und Verarbeitung.

Zur Unterscheidung der Parametereinflüsse auf die Gasfreisetzungsraten aus der heißen Wechselwirkungszone wurden bisher Betonschmelzversuche mit induktiv beheizten Edelstahlschmelzen sowie mit inertem Suszeptor (platiniertem Molybdänzylinder) durchgeführt.

In den nachfolgenden Ausführungen wird sowohl auf die Anlagentechnik als auch auf die durchgeführten Experimente und deren Ergebnisse eingegangen.

2 Versuchsbedingungen

Zur möglichst realistischen, labormäßigen Simulation von Unfallbedingungen in kleinem Maßstab wurden die Voraussetzungen hinsichtlich Experimentiertechnik weitgehend auf die Anfangs- und Randbedingungen eines Ereignisfalles abgestimmt. Außer inaktiven Materialien können auch radioaktive Chargenanteile in Form von UO₂ in der induktiven Schmelzanlage auf typische Unfalltemperaturen gebracht werden.

Das Natrium kann auf die heiße Schmelzbadoberfläche kontrolliert, tropfenweise zudosiert werden.

Im Hinblick auf die Forderung einer quasistationären Schmelzfrontausbreitung, d. h. einer möglichst langen Wechselwirkungsdauer zwischen Metall und Beton, wurde die Höhe der Betonprobe entsprechend der vertikalen Ausdehnung des Induktionsfeldes der Induktionsspule optimiert.

Zur eindeutigen Unterscheidung der Parametereinflüsse auf die Gasfreisetzungsraten aus der heißen Wechselwirkungszone sowie der zugehörigen Aufschmelzraten des Betons können mit der errichteten Versuchsstrecke folgende Versuchsreihen durchgeführt werden [7]:

- Betonschmelzversuche mit inertem Suszeptor (platinierter Molybdänzylinder)
- Betonschmelzversuche mit Edelstahl
- Betonschmelzversuche mit Kernschmelze (Edelstahl und UO₂)
- Betonschmelzversuche mit Kernschmelze und Natrium

Innerhalb der Versuchsreihen wird hauptsächlich die HF-Leistung, als der die Aufschmelzrate des Betons bestimmende Parameter variiert.

In früheren BETA-Experimenten wurden maximale, vertikale Aufschmelzgeschwindigkeiten des Betons von 6 cm/min bei einem Temperaturniveau der Metallschmelze zwischen 1550 °C und 1600 °C ermittelt.

Die dabei mittels eines Quadrupol-Massenspektrometers kontinuierlich gemessenen nichtkondensierbaren Reaktionsgase, in der Abfolge ihrer molaren Freisetzungsraten, waren: Wasserstoff, Kohlenmonoxid und Kohlendioxid. Methan wurde nur in sehr geringen Mengen nachgewiesen. Aufgrund dieser Erfahrungen wurde auch für die quantitative Gasanalyse der SUSI-Experimente das Referenzgasspektrum für die quasisimultane, quantitative Gasanalyse auf folgende nichtkondensierbare Gase beschränkt:

H₂, O₂, CO, CO₂ und CH₄ und Ar als Trägergas.

Zur Vermeidung einer nennenswerten Vordehydratation der Betonprobe vor Ausbildung einer Schmelzfront wird die HF-Leistung möglichst schnell auf den jeweils vorgesehenen Endwert hochgestellt.

Die hauptsächliche Bedeutung bei der Wechselwirkung in der heißen Zone kommt, allein schon wegen seiner komplexen physikalischen Konstitution, dem Beton zu.

Aus diesem Grund soll im Folgenden sowohl näher auf die allgemeinen als auch auf die speziellen Eigenschaften des verwendeten Betons eingegangen werden.

Beton ist ein künstlicher Stein, der aus einem Gemisch von Zement (ggfs. auch Mischbinder), Betonzuschlag und Wasser - ggfs. auch mit Betonzusatzmitteln und Betonzusatzstoffen (Betonzusätze) - durch Erhärten des Zementleims (Zement-Wasser-Gemisch) entsteht [1].

Zement ist ein oxidisches Vielstoffsystem mit mindestens sieben Komponenten, dessen Festigkeit durch Hydratation bewirkt wird. Das im Beton vorhandene Wasser existiert in drei Zustandsformen, denen jeweils ein bestimmter Wasserzementwert (W/Z-Wert) entspricht [2]:

- 1. In Kapillaren und Strukturporen eingelagertes Wasser mit einem W/Z-Wert von 20 % Massenanteil.
- 2. Physikalisch durch Adsorption in molekularem Zustand gebundenes Wasser mit einem W/Z-Wert von 15 % Massenanteil.
- 3. Chemisch vorwiegend im Calziumhydroxid gebundenes Wasser mit einem W/Z-Wert von 25 % Massenanteil.

Die physikalisch und chemisch gebundenen Anteile von Wasser im Zement betragen danach 40 % Massenanteil. Dieser Wasseranteil ist zum vollständigenAbbinden des Zements unbedingt notwendig. Der zugehörige W/Z-Wert wird als "idealer" Wasserzementwert bezeichnet [2].

Bei Wärmebelastung des Betons entweicht zunächst bei etwa 100 °C das eingelagerte, ungebundene Wasser. Bis 200 °C läßt sich das physikalisch gebundene Wasser austreiben. Die Dehydratation des chemisch gebundenen Wasseranteils verlangt dagegen Temperaturen von 700 °C bis 900 °C. Neben der Wasserfreisetzung erfolgt bei quarzhaltigem Beton bei 573 °C eine mit Materialdilatation verbundene Phasenumwandlung. Im Temperaturbereich von 600 °C bis 900 °C entweicht zusätzlich Kohlendioxid, das beim Zerfall von Calziumkarbonat entsteht [2].

Die höchste bisher bekannte Liquidustemperatur des Betons liegt bei ~ 1700 K, während die niedrigste bekannte Solidustemperatur bei ~ 1450 K liegt [3].

Die hier verwendeten Betonproben wurden in Anlehnung an die Zusammensetzung des Konstruktionsbetons des SNR 300 hergestellt. Mit Rücksicht auf die kleinen Abmessungen der Proben (ø/h = 65/30) wurde zur Erzielung einer gleichmäßigen Verteilung der Zuschlagstoffe die max. Korngröße auf 11 mm festgelegt. Hierzu wurde die Ausgangsrezeptur so umgerechnet, daß die spezifischen Anteile an Wasser und Karbonaten in den kleinen Proben mit denen des Konstruktionsbetons identisch sind. Zur ausführlichen Bestimmung der Betoneigenschaften wurden zusätzliche Probekörper in Würfelform 20x20x20 cm hergestellt. Daran wurden der Wassergehalt und die Festigkeitsentwicklung bis zu einem Alter von 360 Tagen bestimmt [8].

Baustoff	Konstruktionsbeton kg/m ³	Probenbeton kg/m ³
Zement	280	280
Füller	100	100
Sand 0/2 mm	726	726
Basalt 8/11 mm	1014	1216
Basalt 26/32 mm	181	-
Wasser	165	165
Betonverflüssiger	2,8	2,8

Nachstehend werden die Konstruktionsbetonmischung und die für die Kleinproben modifizierte Mischung gegenüber gestellt.

<u>Zement</u>

Der Zement entspricht dem Original-Zement des SNR 300 Betons. Es handelt sich um einen Hochofenzement HOZ 35 L NWHS der Fa. Thyssen, Oberhausen. Die chemische Analyse nach Herstellerangaben zeigt nachstehende Tabelle.

Stoff	Massenanteil in %
SiO ₂	27,5
Al ₂ O ₃	8,5
Fe ₂ O ₃	1,4
CaO	52,5
MgO	3,5
K ₂ O	0,85
Na ₂ O	0,3
SO ₃	3,0
Glühverlust	0,8
Unlösliches	0,4
Summe	98,75

<u>Füller</u>

Als Füller kam EFA-Füller BM II zum Einsatz. Dies ist auch der Füller des Original SNR 300 Betons. Die chemische Analyse zeigt nachstehende Tabelle.

Stoff	Massenanteil in %
Fe ₂ O ₃	5,6
Al ₂ O ₃	28,5
TiO ₂	0,1
CaO	2,9
MgO	1,8
Na ₂ O	1,3
K ₂ O	3,4
SiO ₂	52,2
SO ₃	0,7
Glühverlust	3,5
Summe	100,0

Zuschlag

Als Zuschlag wurde Quarzsand 0/2 mm verwendet. Dabei handelt es sich um Eder-Flußsand, der über die Fa. Kimm, Stegerwaldstr. 63, 3500 Kassel, Werk Uttershausen, bezogen wurde. Es ist ein quarzitischer Sand mit einem SiO₂-Gehalt > 98 % Massenanteil. Der Glühverlust beträgt 1,27 % Massenanteil.

Der Basalt stammt von der Fa. Basalt-Union, Oberpleiß, und entspricht dem Original-Basalt für den SNR 300 Beton.

<u>Betonverflüssiger</u>

Als Betonverflüssiger wurde entsprechend dem Originalrezept Zentrament BV der Firma MC-Bauchemie, Bottrop, verwendet.

Die mittlere Festbetonrohdichte nach 28 Tagen beträgt 2,5 kg/dm³.

Nachstehend werden die alterabhängigen Betoneigenschaften nach Lagerung bei 20 °C und 65 % rel.F. gegenübergestellt.

	nach 28 Tagen	nach 360 Tagen
Druckfestigkeit, N/mm ²	40	58,3
Gesamtporosität, Vol%	13,4	8,6
Verdampfbarer Wassergehalt,		
% Massenanteil	7,2	2,8
Ca(OH) ₂ , % Massenanteil	2,6	2,9
CaCO _{3,} % Massenanteil	0,45	1,2

Da für die Schmelzexperimente die gesamte Entwicklung der Betoneigenschaften als Funktion der Zeit zwischen 28 und 360 Tagen [8], von untergeordneter Bedeutung ist, soll hier nicht weiter darauf eingegangen werden.

Der Massenanteil des gesamten Wassergehalts im Beton wurde in erster Näherung nach Angaben gem. [10] mit 6,1 % ermittelt.

3 Verfahrenstechnik

Das verfahrens-, geräte- und meßtechnische Konzept der Versuchsstrecke zur Durchführung von Schmelzexperimenten, einschließlich Bilanzierung der Freisetzungsraten gasförmiger Reaktionsprodukte als Funktion der Versuchszeit, ist in der Hauptabteilung Ingenieurtechnik (HIT) entwickelt und erprobt worden.

3.1 Grundausrüstung

Als Grundausrüstung dient die induktive Schmelzanlage SUSI, die seit 1981 für verschiedene experimentelle Untersuchungen genutzt wird. Sie besteht aus dem gasdichten Ofenbehälter (Volumen ca. 1,15 m³) in dessen Zentrum der Induktor positioniert ist, der elektrischen Stromversorgung (HF-Generator 280 kW, 40 - 50 kHz), der Gasentspannungsstation, dem Abgassystem, dem Kühlwassersystem sowie der Betriebs-MSR-Technik.

Bei Verwendung oxidkeramischer Tiegel wird die Schmelze durch direkte Ankoppelung der metallischen Phase des Schmelzgutes im Induktionsfeld erzeugt, während der oxidische Chargenanteil durch Wärmeübertragung von der metallischen Phase aufgeschmolzen wird.

Zur Natriumdosierung wird eine speziell entwickelte, gasdichte Einrichtung [4] verwendet:

Der Natriumvorrat wird in einem Strang-Preßzylinder von etwa 1 Liter Fassungsvermögen bei Raumtemperatur eingefüllt. Mit Hilfe der darüber angeordneten hydraulischen Presse wird das feste Natrium durch eine zylindrische Bodendüse in einen darunterliegenden, elektrisch beheizten Schmelzbehälter gedrückt. Der Natriumdurchsatz ist über die Fördermenge der Hydraulikdosierpumpe im Bereich von 2 bis 20 g/min einstellbar. Der in den auf etwa 300 °C temperierten Natriumschmelzbehälter eintretende Natriumstrang schmilzt kontinuierlich ab. Aus dem Sumpf dieses Behälters wird das flüssige Natrium mittels eines stetigen Argon-Transportgasstromes sofort herausgefördert und über eine beheizte Rohrstrecke (ø 4 mm) bis zur Tiegelanordnung im SUSI-Ofenbehälter transportiert und dort tropfenförmig auf die Schmelzbadoberfläche aufgeblasen. Die erzielte Natriumdosierung ist sehr gleichmäßig und reproduzierbar. Für die durchgeführten Experimente wurde die Natriumdosierrate auf 4 g/min festgelegt, wobei der notwendige Natriumvorrat im Preßzylinder auf 60 g pro Versuch begrenzt wurde.

3.2 Schmelzanordnung

Die in begleitenden Vorversuchen erprobte Schmelzanordnung ermöglicht Experimente mit weitgehend eindimensionaler, abwärts gerichteter Schmelzfrontausbreitung im Beton. Die Erprobung erfolgte mit komplettem Chargeninventar, d.h. mit Beton, UO₂, Edelstahl einschließlich Natriumbeaufschlagung.

Getestet wurden verschiedene oxidkeramische Schmelztiegel aus reinem Al₂O₃, MgO und ZrO₂. Es wurden zweischalige Tiegelanordnungen, bestehend aus dem eigentlichen Schmelztiegel (\emptyset /h/s = 85/150/6 mm), der in einen äußeren Schutztiegel (Al₂O₃, \emptyset /h/s = 120/200/10 mm) mit Keramikpulver (100 µm) eingebettet wurde, verwendet. Das als Wärmedämmung dienende Keramikpulver war aus dem gleichen Werkstoff wie der jeweilige Schmelztiegel.

Die Art der Einbettung des Betonprobenkörpers sowie der übrigen Charge im Schmelztiegel verdeutlicht Abb. 1.

Wegen der relativ geringen Zeitdauer der quasistationären Versuchsphase (konstante Schmelzfrontgeschwindigkeit bei maximaler Temperatur) wurde in den Vorversuchen eine möglichst kurze Aufheizphase der Charge durch sprungartiges Hochstellen der HF-Leistung auf den max. Wert realisiert.

Für die Messung der Schmelzbadoberfläche standen zwei wahlweise umschaltbare Quotientenpyrometer mit den Schwerpunkt -Durchlaßwellenlängen 850/1000 nm und 500/580 nm zur Verfügung.

Nach Versagen des untersten in der Betonprobe (20 mm oberhalb der Unterkante) positionierten Thermoelements wurde die HF-Leistung abgeschaltet. Dabei reichte die Wärmekapazität der Schmelze aus, um noch weitere ca. 5 mm des Betons aufzuschmelzen.

Wegen der sehr starken Rauchentwicklung war kurz nach dem Aufschmelzen des metallischen Chargenanteils die Schmelzbadoberfläche nicht mehr beobachtbar. Dieser Störeffekt behinderte total jegliche pyrometrische Temperaturmessung. Aus diesem Grund ist zur Vereinfachung der Versuchsmeßtechnik bei den Hauptexperimenten auf die Pyrometrierung verzichtet worden.

Bei der zur Tiegelerprobung gefahrenen max. HF-Leistungsaussteuerung versagten die Tiegel aus Al₂O₃ und MgO bereits bevor die Schmelzfront das unterste Thermoelement in der Betonprobe erreicht hat. Im Einwirkungsbereich des oxidischen Schmelzenanteils wurde die Tiegelwand aus diesen Werkstoffen vollständig aufgelöst, wobei ein Teil der Schmelze ausgelaufen ist.

Im Gegensatz dazu konnten in den ZrO₂-Tiegeln die Schmelzen bis zum Schluß gehalten werden. Oberhalb des metallischen Regulus, im Einwirkungsbereich der oxidischen Phase, weist die Tiegelwand Auswaschungen, jedoch keinerlei Durchbrüche auf. Der metallische Regulus erstarrt stets ganz unten in direktem Kontakt mit dem Beton, ohne nennenswerte oxidische Einschlüsse. Darüber erstarrt die oxidische Phase als poröse Masse, z. T. als domartige, mehrschalige Blase.

Makroskopisch waren in der Mischoxidphase keine erhaltenen Restpartikel der UO₂-Tabletten erkennbar. Daraus wird gefolgert , daß der UO₂-Chargenanteil vollständig in der Mischoxidphase aufgelöst wurde.

Es sei noch anzumerken, daß der visuelle, makroskopische Befund zum Erhaltungszustand der Tiegel anhand der Tiegelschnitte auf keinen Unterschied zwischen den Ergebnissen aus Vorversuchen mit und ohne Na-Beaufschlagung sowie mit und ohne UO₂-Chargenanteil hindeutet.

Aufgrund dieser Ergebnisse werden in den Hauptversuchen nur noch die optimal bewährten Tiegelanordnungen, bestehend aus Schmelztiegel (ZrO₂) eingebettet mit ZrO₂-Pulver (100 μ m) in einem äußeren Schutztiegel (Al₂O₃), verwendet (s. Abb.1).

Nach Aufschmelzen der Metallprobe wurde stets eine sehr heftige Eruptionstätigkeit aus dem Schmelztiegel heraus festgestellt. Zur Verhütung thermoschockbedingter Beschädigung der die Tiegelanordnung umschließenden Gas-Auffangapparatur aus DURAN-Glas infolge Beaufschlagung mit Eruptionspartikeln in Tropfen- bis Fladengröße, wird der Schmelztiegel mit einer oxidkeramischen Haube (Al₂O₃) abgedeckt. Über mehrere Entlastungsbohrungen in der Haube können die Reaktionsgase ungehindert in die Gas-Auffangapparatur entweichen, während durch eine Zentralbohrung das Mündungsröhrchen für die Natriumdosierung eingeführt wird.

Zur Verhinderung des Auseinanderklaffens der thermoschockbedingt reißenden Tiegelhaube wurde diese ebenfalls in einen keramischen Schutzringaufsatz, ähnlich dem Schutztiegel, mit ZrO₂-Pulver eingestampft (Abb. 1).

3.3 Reaktionsgasauffang u. -transportstrecke

Zum Auffangen der gasförmigen Reaktionsprodukte ist die gesamte Tiegelanordnung von einer kontinuierlich argondurchspülten Gas-Auffangapparatur vollständig umschlossen (Abb. 1).

Grundlegende Voraussetzung für eine vollständige meßtechnische Erfassung des Reaktionsgasgemisches ist eine sichere Vermeidung von Leckagen aus der Versuchsapparatur.

Dies wird durch ständige Unterdruckhaltung in der Glasapparatur und in der Gastransportstrecke gewährleistet.

Gerätetechnisch wurde diese Anforderung wie folgt realisiert (s. Abb. 2):

Der Argon-Spül- und Trägergasstrom \mathbf{m}_{AR} strömt gegen die Schließkraft eines federbelasteten Rückschlagventils 3 (NW 15) aus dem als Gasreservoir dienenden Ofenbehälter in die Reaktionsapparatur 1 in Richtung des Druckgefälles ein.

Die Öffnungsdruckdifferenz des Rückschlagventils beträgt 12 mbar.

Der Trägergasdurchsatz wird vor Versuchsbeginn mit Hilfe des Drosselventils 4 fest eingestellt. Zur Gewährleistung des Unterdruckes Δp in der Reaktionsapparatur während der gesamten Versuchsdauer muß der Trägergasdurchsatz m_{Ar} auf einen stets ausreichend hohen Wert eingestellt werden, so daß aufgrund der zu erwartenden maximalen Reaktionsgasrate m₁ der Unterdruck Δp gegenüber der Ofenbehälteratmosphäre nicht zusammenbrechen kann.

Die während des Versuchs entstehende Reaktionsgasrate \mathbf{m}_1 bewirkt einen geringfügigen Druckanstieg in der Reaktionsgasapparatur, wodurch sich im gleichen Maße der gegen die Schließkraft des Rückschlagventils einströmende Trägergasstrom \mathbf{m}_{Ar} vermindert. Für den Gesamtgasdurchsatz ist jedoch immer nur der vor jedem Versuch fest eingestellte Durchlaßquerschnitt des Drosselventils 4 verantwortlich.

Aus Sicherheitsgründen (Wasserstoffentstehung) ist der Druck im Ofenbehälter (Reservoir) auf 2,7 bar begrenzt. Das Druckniveau wird durch diskontinuierliche Nachspeisung aus Druckgasflaschen mit Hilfe eines grenzwertgesteuerten Magnetventils geregelt (Regelabweichung $\pm 0,1$ bar).

In einem Simulationsversuch wurde bei 2,7 bar Ofenbehälterdruck der Argondurchsatz exemplarisch auf $\dot{m}_{Ar} = 10,71 \text{ kg/h} \div 6000 \text{ l/h}$ Normvolumenstrom mittels des Drosselventils 4 fest eingestellt. Der zugehörige Unterdruck in der Reaktionsapparatur bei gegen die Federkraft des Rückschlagventils 3 einströmendem Argon stellte sich mit $\Delta p = 10,2$ mbar ein. Die Reaktionsgasrate \dot{m}_1 wurde durch zusätzliche direkte Einspeisung von Argon in die Reaktionsapparatur mittels einer separaten Gasdosiereinrichtung simuliert.

Dabei konnte nachgewiesen werden, daß der Unterdruck Δ p in der Reaktionsapparatur sowohl bei stoßartigen als auch bei sehr hohen zusätzlichen Fremdgaseinspeisungen m_1 stabil bleibt. Selbst bei einer Fremdeinspeisung entsprechend einem Normvolumenstrom von z. B. 5500 l/h verringerte sich der Unterdruck in der Reaktionsgasapparatur nur auf 8,1 mbar, gegenüber dem Unterdruck von 10,2 mbar ohne zusätzliche Fremdgaseinspeisung.

Alle aus der Schmelze aufsteigenden Aerosole einschl. Natrium werden mittels eines im Ofenbehälter eingebauten Filtersystems (s. Abb. 4 und 5), bestehend aus 4 umsteuerbaren Pfaden, vollständig abgeschieden. Dabei ist vor jeweils zwei Feinfilterpfaden ein gemeinsames Grobfilter in Form von Sintermetall-Filterkerzen (Werkstoff Nr. 1.4404) mit der Porenweite 50 µm geschaltet. Die Feinfilter haben bei gleicher Geometrie und Werkstoff eine Porenweite von 1 µm. Nach den vorliegenden Erfahrungen aus Erprobungsversuchen ist, entsprechend den Erwartungen, die Rückhaltung von Aerosolen (einschl. Na) so hoch, daß nach den Filtern solche Aerosole, selbst in kleinsten Spuren, nicht zu finden sind.

4 Meßtechnik

Grundsätzlich werden sämtliche zur Bestimmung der Betonaufschmelzrate sowie der Raten der gasförmigen Reaktionsprodukte notwendigen Meßwerte als Rohdaten mittels eines PC, der dazugehörigen Peripheriegeräte und einer speziell erstellten Software erfaßt und auf Disketten abgelegt. Die gewonnenen Daten können nach jedem Versuch mit Hilfe einer Auswertesoftware verrechnet und in gewünschter Form als Tabellen und Diagramme ausgegeben werden.

4.1 Aufschmelzrate und Penetrationsgeschwindigkeit

Als Maß für die Penetrationsgeschwindigkeit der Betonprobe werden die Versagenszeitpunkte der in der Probe tiefengestaffelt angeordneten 6 Thermoelemente (Abb. 5) gewertet.

Die Hauptdaten der Thermoelemente sind

- Werkstoffpaarung des Thermopaares NiCr-Ni
- Mantelwerkstoff Edelstahl
- Manteldurchmesser 1 mm
- Länge 2000 mm
- Meßstelle vom Mantel isoliert

Aufgrund der Kürze der Versagensdauer der Thermoelemente bei Annäherung der Schmelzfront wurde, bei Versuchen mit Edelstahlschmelzen, der Versagenszeitpunkt für alle Thermoelemente auf den Standardgrenzwert von 1000 °C festgelegt.

4.2 Druck und Temperatur

Zur Messung der intensiven Zustandsgrößen Druck und Temperatur im strömenden Gasgemisch sind im Hochdruckteil der Abgasleitung (d. h. vor dem Drosselventil) folgende Meßstellen installiert worden:

- eine Bartonzelle mit Meßumformer für einen Druckbereich 0 6 bar
- ein Thermoelement (Fe-Konst) für einen Temperaturbereich 0 100 °C.

4.3 Volumenstrom

Für Gasgemische, mit sich während der Messung ändernden Konzentrationen, ist derzeit am Markt kein geeignetes Meßgerät zur simultanen Messung des Volumenstromes erhältlich.

Im Hinblick auf das spezielle Meßproblem wurde bei HIT/PA ein volumetrisch messender Trommelverdrängungszähler mit Sperrflüssigkeit (System Crosley in Hochdruck-Sonderausführung) auf Tauglichkeit untersucht. Aufgrund der starken, systembedingten Gleichlaufschwankungen hat sich auch diese Geräteart zur Messung aktueller Volumenströme als ungeeignet erwiesen.

Der Volumenstrom, als extensive Zustandsgröße, mußte daher mit Hilfe der simultan gemessenen intensiven Zustandsgrößen p und t, der Konzentrationswerte x_i, der Gasgemischekomponenten und dem fiktiven Drosselquerschnitt auf indirektem Wege bestimmt werden (s. 5.2).

4.4 Gaskonzentration

Für die Gasanalyse der nichtkondensierbaren Reaktionsprodukte aus der Metall-Beton-Wechselwirkung wurde ein Quadrupol-Massenspektrometersystem ("Gas 200" der Fa. VG INSTRUMENTS, Abb. 6) benutzt. Dieses speziell für die Aufgabe konzipierte Analysesystem gestattet eine quantitative, quasi simultane Messung, automatische Erfassung und Ausgabe der Konzentrationswerte.

Im Unterschied zu magnetischen Massenspektrometern stellt das hier benutzte Quadrupolmassenfilter ein magnetfreies Bahnstabilitätsspektrometer mit linearperiodischer Ionenbewegung dar.

Da die theoretischen Grundlagen zum Massenfilter selbst sowie das mathematische Auswerteverfahren in einschlägiger Fachliteratur ausführlich behandelt wird, werden im folgenden nur die technischen Besonderheiten des prototypischen Analysesystems kurz erläutert.

In dem Quadrupol-Massenspektrometersystem wurde eine dreifach Quadrupol-Massenfilter-Anordnung eingesetzt. Dies ermöglicht eine Verbesserung des Auflösungsvermögens, des Transmissionsverhaltens, der Empfindlichkeit sowie der Kontaminationsresistenz. Zur Minimierung von Matrixeffekten wird eine geschlossene Ionenquelle benutzt.

Der Massenbereich erstreckt sich auf Massen von 1 ÷ 199 amu.

Die nachgewiesene Meßgenauigkeit bei der Konzentrationsbestimmung im Konzentrationsbereich größer, gleich 0,1 % beläuft sich auf kleiner, gleich 5 % rel. vom jeweiligen Meßwert.

Der Detektor besteht aus zwei wahlweise umschaltbaren, rechnergesteuerten Systemen: Faraday und Off-Axis Channeltron-Multiplier. Bei den Versuchen wurde nur mit dem Multiplier gemessen, da dieser wesentlich höhere Meßgeschwindigkeiten ermöglicht. Damit konnte ca. alle 4s eine vollständige Analysesequenz gewonnen werden.

Eine wesentliche, in das System fest integrierte Hilfseinrichtung ist ein rechnergesteuertes, mit separatem Vakuumpumpstand ausgestattetes Batch-Einlaß-System. Es gestattet eine manometrische Herstellung der versuchsrelevanten Gasgemische für Kalibrierzwecke. Dieses Einlaßsystem kann vollautomatisch oder manuell bedient werden und ist mit einer Verriegelungsschaltung gegen Fehlbedienung gesichert. Das Volumen des Hauptreservoirs beträgt 5 dm³. Es ist über Steuerventile für Zwischenevakuierungsschritte mit einem Manifold verbunden. Dieses besteht aus 16 elektro-pneumatischen Ventilen, an welche die benötigten Reinstgasflaschen angeschlossen sind.

Der auf den Arbeitsdruck des Analysators optimierte Gesamtdruck im Reservoir beträgt ca.2,4 mbar. Die Drucküberwachung im Batch-Einlaßsystem erfolgt gasart-unabhängig über eine kapazitive Bartonzelle ("Baratron"), das Vorvakuum hingegen wird mit einer Pirani-Meßröhre kontrolliert. Die Meßwerte werden vom Rechner verarbeitet, der auch den automatischen Ablauf aller Ventilsteuerungsfunktionen für einen Kalibrierlauf bestimmt.

Für eine Kalibration werden die Konzentrationswerte für das gewünschte Gasgemisch in den Rechner eingegeben, der dann die Steuerung wie folgt übernimmt:

- Evakuierung des Reservoirs und des Manifolds auf ca. 10⁻⁶ mbar
- Wahl eines der angeschlossenen Reinstgase und Einlassen bis zum vorbestimmten Partialdruck im Reservoir
- Evakuierung des Manifolds und Einlassen der nächsten Komponente

- Wiederholung obiger Schritte bis die gewünschte Zusammensetzung erreicht ist
- Massenspektrometrische Analyse des eingestellten Gasgemisches und Bestimmung aller Kalibrierkonstanten.

Entsprechend dem zu erwartenden Reaktionsgasspektrum wurden bei allen Versuchen zur Mehrpunkt-Kalibrierung des massenspektrometrischen Gasanalysesystems nur Kalibriergasgemische, bestehend aus H₂, O₂, CO, CO₂ und CH₄ im Ar als Trägergas mit verschiedenen Konzentrationsbereichen, verwendet.

Für die quasisimultanen Analysen beim Versuch wird ein Teilstrom aus der SUSI-Gastransportstrecke entnommen und dem Massenspektrometer zugeführt. Dazu dient das zweistufig druckreduzierende und beheizte Kapillar-Einlaßsystem. Die erste Stufe ist als Beipaß zur Gastransportstrecke ausgebildet. In ihm wird ein Teilstrom (ca. 14,25 l/min) über ein Sintermetallfilter, ein Drosselventil und einen Durchflußmesser zunächst auf ca. Umgebungsdruck entspannt und in das Abluftsystem geleitet. Die zweite Stufe zweigt nach dem Drosselventil als eine auf 200 °C beheizte Kapillare ($\phi_i/L = 0,33$ mm/4m) ab und führt den eigentlichen Meßgasstrom (ca. 20 ml/min) zum Einlaßleck des Spektrometers.

Zur Steuerung des Massenspektrometers sowie der Gaseinlaßsysteme dient ein im Rack integrierter Microprocessor. Damit verbunden über eine RS 232 Schnittstelle ist ein IBM PC mit Diskettenlaufwerk, Monitor, Matrixdrucker und Plotter.

Die Meßvorschriften werden im Dialog-Modus über das Keyboard erstellt. Danach laufen sämtliche Routinen rechnergeführt automatisch ab. Sämtliche Kalibrierdaten und Rohdaten werden mit entsprechender Überschrift versehen auf Disketten abgelegt. Mit Hilfe eines zusätzlichen Programms werden nach jedem Versuch ausgewählte Daten zeitkorreliert ausgedruckt und/oder als Plotts ausgegeben.

Zusätzlich zur quasisimulanten Gasanalyse über den kontinuierlichen Kapillaren-Gaseinlaß wurde ein Probenahmesystem bestehend aus 10 parallel geschalteten Probenahmebehältern (Gasmäuse) errichtet, welches an die derzeit nicht belegten Eingänge des Batch-Einlaßsystems angeschlossen ist (Abb. 7). Als Probenbehälter dienen die Verbindungsleitungen ($\phi/L = 6 \text{ mm}/4 \text{ m}$) zwischen den Batch-Einlaßventilen und der Anzapfstrecke der Gastransportleitung. An die Anzapfstrecke sind die Gasmäuse über elektropneumatische Befüllventile angeschlossen, die in gleicher Qualität wie am Batch-Einlaß ausgeführt sind. Die Evakuierung der Gasmäuse erfolgt integral durch Öffnen der Füllventile und Evakuieren der gesamten Anzapfstrecke. An einer automatischen Ventilsteuereinheit werden vor jedem Versuch die Fülldauer und die Taktzeiten eingestellt. Gestartet wird das System gleichzeitig mit dem Hochstellen der HF-Leistung, d. h. zum Zeitpunkt des Beginns der Versuchshauptphase. Die erste Gasmaus enthält somit als Basisfüllung nur das Transportgas Ar.

Nach jedem Versuch werden die Gasmäuse einzeln über das Batch-Einlaßsystem massenspektrometrisch analysiert und als Momentanalysen in den Gruppenplott der kontinuierlichen Analyse eingefügt.

Zur Ermittlung des Einflusses von Wasserdampf auf die Analysegenauigkeit der nichtkondensierbaren Gaskomponenten wurden gesonderte Tests durchgeführt. Dabei wurden typische Prüfgasgemische bei Raumtemperatur über eine Waschflasche mit Gasfilter durch reines Wasser geperlt und das so mit Wasser gesättigte Gasgemisch über den kontinuierlichen Kapillareinlaß dem Massenspektrometer zur Messung zugeführt. Unter Annahme einer Sättigung bei 21 °C Raumtemperatur und ca. 1 bar Gesamtdruck (Umgebungsdruck) betrug die Wasserdampfkonzentration ca. 2,3 %. Die Auswertung der Meßsequenzen "trocken" - "naß" -"trocken" zeigen, daß die absoluten Meßfehler sehr klein bleiben. Die rel. Meßfehler insbesondere für Wasserstoff zeigen für diese Sequenzen eine unsystematische Streuung sowie einen gewissen Memoryeffekt (d. h. der Meßfehler bleibt nach der Naß-Messung zunächst bei erhöhten Werten). Sie bleiben jedoch stets unterhalb einer hier definierten Meßfehlertoleranz von ± 5 %. Dieser geringe Wassereinfluß erklärt sich daraus, daß sowohl die Masse 18 für H₂O als auch die außerdem auftretenden Bruchstückionen der Massen 17 und 1 für OH und H bei der Konzentrationsbestimmung in dem benutzten Programmode diskriminiert werden.

4.5 Induzierte Leistung

Ein wesentlicher Versuchsparameter ist die jeweils im metallischen Chargenanteil induzierte Leistung.

In den vergleichenden Experimenten mit Edelstahl als Chargenanteil sind zwei Leistungsstufen der HF-Generatoraussteuerung gefahren worden:

N _{max}	entsprechend	370 V Induktorspannung (Versuch E001 u. E002)
1/2 N _{max}	entsprechend rd.	260 V Induktorspannung (Versuch E003 u. E004)

Für diese Generatoraussteuerungswerte (Induktorspannungen) wurden in Vorversuchen die induzierten Leistungen in Edelstahlproben gleicher Geometrie kalorimetrisch ermittelt.

Zur Durchführung einer Wärmebilanz zwecks Ermittlung der induzierten Leistung wurden folgendes Rechenmodell zugrunde gelegt:

- der Zylinder wurde in zwei vertikale Zonen mit jeweils drei gleich dicken, konzentrischen Ringen aufgeteilt. Jeder dieser gedachten sechs Ringe wurde in Profilmitte mit einem Thermoelement bestückt.
- die HF-Leistung wird mit einem Stufensprung auf den jeweils vorgesehenen Wert hochgesteuert und nach Erreichen von ca. 1000 °C am ersten Thermoelement abgeschaltet.

Die induzierte Leistung ergibt sich in guter Näherung aus der Wärmebilanz über alle Ringe zwischen zwei gewählten Zeitmarken im 6-Linienschrieb der Thermoelemente zu:

25 kW	für U _{max}	=	370 V Induktorspannung
12 kW	für U	=	260 V Induktorspannung

Die sich daraus ergebende Abweichung von dem theoretischen, quadratischen Zusammenhang

 $U^2/U^2_{max} = N/N_{max}$

beläuft sich auf 3 %.

Die so bestimmten Leistungswerte gelten jedoch nur für die Ausgangsgeometrie der Edelstahlprobe, d.h. vor ihrem Aufschmelzen.

Jedoch nach Aufschmelzen der Probe in den Hauptversuchen verändert sich die Geometrie einerseits infolge Vergrößerung des Durchmessers (D_{Tiegel} > D_{Probe}) und andererseits infolge Einwirkung elektrodynamischer Rührkräfte sowie nichtdefinierbarer, heftiger und instationärer Rührwirkung durch aus dem Beton aufsteigende Gasblasen, verbunden mit Eruptionen. Da der induktive Ankoppelungswirkungsgrad hauptsächlich von der Geometrie des metallischen Schmelzenanteils abhängt, läßt sich für solche extremen instationären Bedingungen die induzierte Leistung kalorimetrisch nicht verifizieren. Außer der kalorimetrisch in den o.g. festen Edelstahlzylindern, d.h. bei unveränderter Geometrie des Suszeptors, in Vorversuchen ermittelten induzierten Leistung wurde während der Hauptversuche die Netto-Leistung durch Messung elektrischer Größen mit Hilfe einer speziell, bei HIT entwickelten Meßanordnung simultan bestimmt.

Den Wert der elektrischen Wirkleistung erhält man, wenn man die Augenblickswerte des Stromes in einer Leiterschleife mit den jeweiligen Augenblickswerten der zugehörigen Spannung multipliziert und das Produkt zeitlich integriert.

Die in die Schmelze induzierte Leistung kann nur indirekt gemessen werden. Da der Induktor Bestandteil eines elektrischen Schwingkreises ist, führt er einen sehr hohen Blindstrom (ca. 13.700 A). Für so hohe Ströme bei 40 KHz ist am Markt kein Stromwandler erhältlich. Eine andere Stelle, an der geeignete Sensoren für Strom und Spannung angebracht werden können, ist das Koaxialkabel vom Generatorschrank (Senderöhre) zum Schwingkreisschrank. An dieser Stelle mißt man aber als Wirkleistung die gesamte Verlustleistung mit, die durch Wasser- und Luftkühlung aus den Komponenten des Schwingkreises abgeführt wird, einschließlich der zur Senderöhre zurückgeführten Rückkopplungsleistung.

Diese "Brutto"-Leistung ist etwa das zehnfache der in die Schmelze induzierten Leistung. Eine Aussage über die Höhe der induzierten "Netto"-Leistung kann man machen, wenn die reine Verlustleistung bei leerer Induktorspule bekannt ist und von Versuch zu Versuch bei jeweils gleicher Induktorspannung reproduzierbare Werte hat.

Die "Netto"-Leistung ist die Differenz der im Lastversuch gemessenen Bruttoleistung und der im Leerlaufversuch bei der gleichen Spannung ermittelten Verlustleistung.

Der gerätetechnische Aufbau der Meßanordnung geht aus den Abb. 8 und 9 hervor. Die Signale des Hochspannungstastkopfes und des Stromwandlers werden dem x- bzw. dem y-Eingang zugeführt und gelangen nach geeigneter Konditionierung an die Eingänge des Multiplizierers. Seine Übertragungsfunktion lautet $U_a = x \cdot y/10$. Die Werte "x" und "y" können Spannungen mit beliebiger Kurvenform sein im Frequenzbereich 0 bis ca. 1 MHz. Dieser Umstand ist wesentlich, weil der Strom eine stark verzerrte Kurvenform hat. Eine Spektrumsanalyse hat ergeben, daß erst oberhalb der 10. Oberwelle die Amplitudenanteile unter 1 % sinken. Um die Meßwerte auf ihre Korrektheit hin prüfen zu können oder um Korrekturfaktoren zu ermitteln, wurde das Leistungsmeßgerät um 2 Effektivwertwandler für den Strom- und den Spannungspfad erweitert. Außerdem wurden Monitorausgänge vorgesehen, um die Signale mit dem Oszilloskop beobachten zu können.

Somit stehen folgende Meßwerte zur Verfügung:

U_{eff}: Effektivwert der Hochspannung am Schwingkreis

- I_{eff}: Effektivwert des Stromes vom Generator zum Schwingkreis
- N_w: Brutto-Wirkleistung (Wärmeverluste und in das Schmelzgut induzierte Leistung)
- Daraus lassen sich weitere Größen berechnen:

Scheinleistung:	U _{eff} x l _{eff}
Scheinwiderstand:	U_{eff}/I_{eff}
Wirkwiderstand:	U_{eff}^2 / N_w

Versuchsreihen mit leerer Induktorspule und verschiedenen Spannungen haben gezeigt, daß der Wirkwiderstand bei Induktorspannung > 160 V weitgehend konstant ist mit Abweichungen von nur 0,5 %. Das bedeutet, daß die Leerlaufverlustleistung proportional zu U_{eff}² verläuft.

Damit ist die Möglichkeit gegeben, die im Schmelzgut induzierte Nettoleistung während des Versuchs zu messen: Von der während des Versuchs gemessenen Brutto-Wirkleistung wird ein Teil abgezogen, der aus U_{eff}² abgeleitet ist mit einem Faktor K, der im Leerlaufversuch ermittelt wird.

 $N_{netto} = N_{brutto} - (K \cdot U_{eff})^2$

Diese Funktion wird durch eine integrierte Schaltung mit Quadrier- und Subtrahierfunktion realisiert. Bei korrekt abgeglichener Schaltung ist der Meßfehler bei der Nettoleistung kleiner als 5 % vom jeweiligen Meßwert.

4.6 Meßwerterfassung und -verarbeitung

4.6.1 Betriebsmeßwerte

Die zur Überwachung des Betriebes der gesamten Induktionsschmelzanlage SUSI erforderlichen Meßwerte wurden mit einem HP-Tischrechner im 10 s-Takt erfaßt, gespeichert und zur Ausgabe in Plot- und Tabellenform verarbeitet.

4.6.2 Experimentmeßwerte

Die Temperaturen in den Betonproben und im Mo-Suszeptor, die Zustandsgrö-Ben der Gasgemische Druck und Temperatur sowie die Versagenszeitpunkte der Thermoelemente und die Zeitsignale vom Versuchsstart und der Leistungssteigerung wurden im 1 s-Takt mit einem PC erfaßt.

4.6.3 Verknüpfung der Meßwerte

Die separat vom Massenspektrometer-PC erfaßten Gaskonzentrationsmeßwerte sowie die übrigen erfaßten relevanten Meßwerte mit den zugehörigen Abfragezeitpunkten, wurden nach jedem Versuch in den Auswerte-PC (Punkt 4.6.2) eingelesen. Dort erfolgte die eigentliche Berechnung des Volumenstromes V, der Zeitkorrektur, der Gasfreisetzungsraten, der Beton-Aufschmelzrate und der Penetrationsgeschwindigkeit nach den in Kap. 5 abgeleiteten Zahlenwertgleichungen.

Sowohl die direkt gewonnenen Werte sämtlicher Meßstellen als auch die durch Verrechnung der Meßwerte ermittelten Größen können mit dem Auswerterechner und den zugehörigen Peripheriegeräten als präsentationsfähige Zahlentabellen, Plotts und Gruppenplotts ausgegeben werden.

5 Ableitung der Zahlenwertgleichungen

5.1 Massenbilanz der Reaktionsgaskomponenten

Für eine beliebige Komponente i eines Gasgemisches idealer Gase gilt $p_i \dot{V} = \dot{v}_i R_m T$,

darin bedeuten:

- pi Partialdruck der Komponente i
- \dot{v}_i Anzahl der Mole der Komponente i pro Zeiteinheit (Moldurchsatz)

Dividiert durch den Gesamtdruck p folgt

 $\dot{V} p_i/p = \dot{v}_i R_m T/p$

Darin gibt der Quotient pi/p die Konzentration xi der Komponente i an.

Ersetzt man also p_i/p durch die gemessene Konzentration x_i , so folgt deren Moldurchsatz

$$\dot{\mathbf{v}}_i = \frac{p \, \dot{\mathbf{V}}}{R_m T} \, \mathbf{x}_i \tag{1}$$

Damit erhält man den Normvolumenstrom, bzw. den Massenstrom der Komponente i

$$\dot{V}_{N_i} = 22,41 \cdot \dot{v}_i, \text{ bzw. } \dot{m}_i = M_i \cdot \dot{v}_i.$$

Mit R_m = 8,314 J/mol K x_i in % p in bar M_i in g/mol t in °C V in l/h

ergeben sich die Zahlenwertgleichungen für den Normvolumenstrom der Komponente i

$$\dot{V}_{N_i} = 2,6955 \quad \frac{p \dot{V}}{(273,15+t)} x_i$$
 [1/h] (2)

und der Massenstrom der Komponente i

$$\dot{m}_i = 0,12028 \frac{p \dot{V}}{(273,15+t)} x_i M_i$$
 [g/h] (3)

5.2 Volumenstrom V

Der Volumenstrom in (1), (2), (3) kann als extensive Zustandsgröße in guter Nährung aus den gewonnenen Meßgrößen p, t, x; und den Stoffkonstanten mit Hilfe der Formel für isentrope Ausströmung bestimmt werden.

Als grundlegender Parameter für dieses Berechnungsverfahren gilt eine feste Drosselventileinstellung. Für die feste Drosselventileinstellung muß zunächst rechnerisch der engste fiktive Durchlaßquerschnitt des Drosselventils anhand eines gemessenen Normdurchsatzes von reinem Argon bestimmt werden. Alle Versuche wurden mit dem max. möglichen Argon-Trägergasdurchsatz. d.h. bei voll geöffnetem Drosselventil (Abb. 2) der Gastransportstrecke gefahren. Der Argondurchsatz wurde vor den Versuchen gravimetrisch (Wägung einer Gasflasche vor und nach Entleerung) mit 15,817 kg/h, entsprechend einem Normvolumenstrom $\dot{V}_{\rm N} = 8,86$ m³/h, bestimmt.

Der Volumenstrom vor dem engsten Drosselquerschnitt errechnet sich aus

$$\ddot{V} = \ddot{V}_N \frac{p_N}{p} \frac{T}{T_N}$$
 [m³/h] (4)

Im engsten Drosselquerschnitt herrscht Schallgeschwindigkeit we, da die Bedingung

$$\frac{p_u}{p} < \frac{p_e}{p}$$
 erfüllt ist.

Daher gilt für die Geschwindigkeit we im engsten Querschnitt

$$w_e = \sqrt{\frac{\kappa}{\kappa+1}} \frac{p}{\rho}$$
(5)

und ebenso für den Volumenstrom

$$\dot{V}_e = \dot{V} \left(\frac{p}{p_e}\right)^{1/\kappa}$$
(6)

Damit folgt der fiktive engste Querschnitt Fe

$$F_e = \frac{\dot{V}_e}{w_e} \tag{7}$$

Mit den Daten für reines Argon

Druck vor der Drosselstelle (~ Behälterdruckniveau)	р	=	2,7 bar ⁻ 270000 Pa
Temperatur vor der Drosselstelle	Т	=	293 K
Dichte vor der Drosselstelle	ρ	=	4,4923 kg/m ³
Krit. Druckverhältnis für Argon	p _e /p	=	0,49
Normdurchsatz	νŇ	=	8,86 m³/h
Umgebungsdruck	pu	=	1,0 bar

erhält man als Zahlenwert für den engsten fiktiven Drosselquerschnitt $F_e = 8,362 \text{ mm}^2$.

Damit gilt analog für den in (1), (2) und (3) enthaltenen Volumenstrom V des Gasgemisches die Größengleichung

$$\dot{V} = F_e \sqrt{\frac{\kappa}{\kappa+1}} \frac{p}{\rho} \left(\frac{2}{\kappa+1}\right)^{\frac{1}{\kappa-1}}$$
(9)

Darin sind:

Engster Strömungsquerschnitt	$F_e = 8,362 \text{ mm}^2 (s. 5.2)$
Gesamtdruck vor der Drosselstelle	р

Für die in (9) enthaltene Dichte p des Gasgemisches gilt

$$\rho = \frac{p}{TR_m} \sum_{i=1}^n M_i x_i$$
(10)

Darin sind:

p, T, R_mx_i entsprechend (1), und M_i die rel. Molmasse entsprechend (3) der Komponente i in kg/kmol.

Für den in (9) enthaltenen Isentropenexponenten K des Gasgemisches gilt

$$\kappa = \frac{\sum_{i=1}^{n} x_i C_{p_i}}{\sum_{i=1}^{n} x_i C_{v_i}}$$
(11)

Darin sind:

Konzentrationen	xi
Mol. spez. Wärme bei konst. Druck	C _{pi}
Mol. spez. Wärme bei konst. Volumen	C _{vi}

5.3 Zeitkorrektur

Aufgrund der vom Reaktionsort entfernten Anordnung der Meßstellen für Druck, Temperatur, Volumenstrom und Konzentration werden die Meßwerte zeitlich phasenverschoben gegenüber der Freisetzungszeit der Reaktionsprodukte erfaßt.

In erster Näherung ergibt sich diese Phasenverschiebung zu

$$\Delta \tau = \frac{V_o}{\dot{V}} 3600 \qquad \text{in s}$$

Darin bedeuten:

- Vo
 Volumen der Gastransportstrecke in dm³
 (Wert wird nach jedem Versuch für die Auswertung eingegeben)
- V Volumenstrom des Gasgemisches in dm³/h
 (gem. 5.2 bestimmt)

5.4 Aufschmelzrate und Penetrationsgeschwindigkeit der Betonprobe

Als Maß für die Penetration der Betonprobe infolge Einwirkung der Schmelze werden die Versagenszeitpunkte der in der Probe tiefengestaffelt angeordneten 6 Thermoelemente benutzt.

Die einzelnen Thermoelementmeßstellen werden (beginnend mit dem zuoberst positionierten TE) mit TE1 bis TE6 bezeichnet und je wie separate Meßstellen behandelt. Die Zeitsignale τ 1 bis τ 6 für den einheitlich definierten Temperaturgrenzwert der o.g. Thermoelemente dienen zur Detektion der Schmelzfront und werden unabhängig von der Temperaturabfrage erfaßt, verarbeitet und dargestellt.

Mit den Anfangswerten der Betonprobe (Dichte $\rho = 2,5$ g/cm³, Durchmesser d = 6,5 cm) ergibt sich die aufgeschmolzene Betonmasse als Funktion der Tiefenkoordinate s in Form der Zahlenwertgleichung

 $m = 82,958 \cdot s$ in g (1)

Der Ursprung der Tiefenkoordinate entspricht der O.K. Betonprobe.

Die genauen Tiefenwerte (Abb. 5) mit den Bezeichnungen s 1 bis s 6 entsprechend den Positionen von TE 1 bis TE 6 werden vor jedem Versuch an der jeweiligen Betonprobe ausgemessen und nach dem Versuch in cm in den Rechner eingegeben (z.B. 5,52 cm).

Bei der Auswertung werden mit (1), für s 1 bis s 6 die aufgeschmolzenen Betonmassen als Funktionswerte m 1 bis m 6 bestimmt und den im Versuch erfaßten TE-Zeitsignalen τ 1 bis τ 6 zugeordnet.

Für die Funktionswerte m 1 bis m 6 mit den zugeordneten Werten τ 1 bis τ 6 wird ein Interpolationspolynom m = f(τ) bestimmt.
Die erste Ableitung dieser Korrelation ergibt die Abschmelzrate des Betonprobekörpers als Funktion der Zeit

 $r = f'(\tau)$ in g/s, bzw. $r = 3600 f'(\tau)$ in g/h

Daraus folgt formal auch die Penetrationsgeschwindigkeit v der Betonprobe als Funktion der Zeit

$$v = \frac{1}{\frac{\mathbf{n} \cdot d^2}{4} \rho} r ,$$

und als Zahlenwertgleichung

$$v = 0,0121 f'(\tau)$$
 in cm/s.

6 Versuche mit Edelstahlschmelzen (E001 bis E 004)

Nachfolgend werden nur die für diese Versuchsreihe spezifischen Bedingungen aufgeführt, da sowohl der allgemeine Versuchsaufbau als auch die Verfahrensweise gegenüber den der ausführlichen Beschreibung in den vorangestellten Kapiteln 2 bis 5 unverändert geblieben sind.

6.1 Anfangs- und Randbedingungen

Chargeninventare:

- Edelstahlzylinder	d/h = 65/30 mm, 780 g, Werkstoff Nr. 1.4301
- Betonzylinder	d/h = 65/65 mm, 530 g, Thermoelementbestückt gem Abb. 5

Schutzgasdruck im Ofenbehälter:

2,7 bar, Argon, geregelt, Regelabweichung ±0,1 bar

Trägergasdurchsatz:

15,82 kg/h, Argon, bei voll geöffnetem Drosselventil

Induzierte Leistung (vor Aufschmelzen der Edelstahlprobe): 25 kW bei den Versuchen E001 und E002 12 kW bei den Versuchen E003 und E004

6.2 Diskussion der Ergebnisse

Die Versuchsauswertung erstreckt sich im wesentlichen auf die Hauptphase, d. h. auf die Zeitdauer zwischen Hochstellen und Abschalten der HF-Leistung. Dabei erfolgt die HF-Leistungsabschaltung bei allen Versuchen nach Detektion der Schmelzfront durch das vorletzte, d. h. das fünfte im Beton angeordnete Thermoelement. Die Zeitintervalle zwischen den Versagenszeitpunkten aufeinander folgender Thermoelemente zeigen bei gleicher Leistungsaussteuerung sogar noch gegen Ende der Hauptphase gewisse Streuweiten, s. Tab. 1.

Mögliche Erklärungen für dieses Verhalten sind:

- Die Betonmischung stellt ein heterogenes System dar, bestehend aus verschiedenen Korngrößen und Kornarten, wodurch die lokalen Aufschmelzraten direkt über dem jeweiligen Thermoelement deutliche Abweichungen vom Mittelwert aufweisen können und somit der Zeitpunkt der Detektion der Schmelzfront durch das jeweilige Thermoelement nicht exakt reproduzierbar ist.

- Die aus der Reaktionszone der Schmelzfront ausgetriebenen Dampf- und Gasblasen verursachen eine stark schwankende integrale el. Leitfähigkeit und somit einen entsprechend schwankenden induktiven Ankoppelungswirkungsgrad der Schmelze.

Trotz dieser lokalen Unregelmäßigkeiten zeigt es sich, daß die Dauer der Hauptversuchsphasen der Versuche mit gleicher Leistungsaussteuerung kaum untereinander differieren. Hingegen ist die Dauer der Hauptversuchsphase mit halber Leistungsaussteuerung 1/2 N max im Mittel um den Faktor 2,26 größer als bei voller Leistungsaussteuerung N max.

Für die einzelnen Leistungsaussteuerungen ergaben sich folgende Hauptphasendauern (Abb.: 10, 17, 24, 31):

HF-Leistung	N _{max}		1/2 N _{max}	
Versuch Nr.	E 001	E 002	E 003	E 004
Hauptphasendauer in s	107	108	246	240

Eine gute Übersicht über das vertikale Aufschmelzverhalten vermitteln die mit Hilfe von Approximationspolynomen gewonnenen Kurvenzüge der Beton-Penetrationsgeschwindigkeit als Funktion der Zeit zum jeweiligen Versuch. Diese Kurvenzüge lassen eine gemeinsame Tendenz hinsichtlich des Übergangsverhaltens von der instationären zur stationären Eindringgeschwindigkeit der Schmelzfront erkennen. Es zeigt sich nämlich, daß die Kurven für alle Versuche systematisch zu Beginn des letzten Drittels der Hauptphase in die stationäre Phase (Plateau) einschwenken und zwar unabhängig von der Leistungseinspeisung (Abb. 10, 17, 24, 31). Dabei weisen die Plateauhöhen für max. Leistungsaussteuerung N_{max} eine gewisse Streuweite auf (0,725 mm/s in E001 und 0,905 mm/s in E002), im Gegensatz zu den Plateauhöhen für halbe Leistungsaussteuerung 1/2 N_{max}, die fast deckungsgleich verlaufen (0,38 mm/s in E003 und E004). Somit liegt der Medianwert der Ersteren um den Faktor 2,14 höher. In grober Näherung folgen bei allen Versuchen die Freisetzungsraten von H₂ und CO den Aufschmelzraten des Betons (Abb. 15, 22, 29, 36). Systematische Ausnahmen machen die Freisetzungsraten CO₂, welche erst nach Abschaltung der HF-Leistungseinspeisung, d.h. nach Ende der Hauptphase ihre rel. Maxima erreichen (Abb. 14, 21, 28, 35).

Zu erwähnen ist, daß bei allen Versuchen der massenspektrometrisch nachgewiesene Sauerstoff im Streubereich der Untergrundmessung von ca. 0,05 % lag. Bei der Bilanzierung blieb der Sauerstoff deshalb unberücksichtigt. Diese Vereinfachung ist formal, allein schon wegen des herstellerseits für das Massenspektrometersystem für kontinuierliche, quantitative Gasanalysen gewährleisteten dynamischen Konzentrations-Meßbereichs 0,1 % $\leq x_i \leq 100$ %, gerechtfertigt.

Für die Phase der quasistationären Schmelzfrontausbreitung ergeben sich aus den Werten gem. den Kurvenzügen im Anhang folgende auf die Stirnfläche der Betonprobe bezogenen, spezifischen Höchstwerte:

rel. HF-Leistung (Nennwert)	N _{max}		1/2 N _{max}	
Versuch Nr.	E 001	E 002	E 003	E 004
spez. Beton-Abschmelzrate in g/h cm²	650,93	811,86	346,56	339,03
spez. H ₂ -Freisetzungsrate in dm ³ /h cm ²	32,55	28,93	14,47	11,15
spez. CO-Freisetzungsrate in dm³/h cm²	4,52	4,13	1,51	1,78
spez. CO ₂ -Freisetzungsrate in dm ³ /h cm ²	0,13	0,17	0,33	0,22

Daraus werden noch die spezifischen Medianwerte aus jeweils zwei Versuchen mit voller und halber HF-Nennleistung gegenübergestellt:

rel. HF-Nennleistung	N _{max}	1/2 N _{max}
spez. Beton-Abschmelzrate		
in g/h cm²	731,40	342,80
in % bezogen auf Wert bei N _{max}	100	47
spez. H ₂ -Freisetzungsrate		
in dm³/h cm²	30,74	12,81
in % bezogen auf Wert bei N _{max}	100	42
spez. CO-Freisetzungsrate		
in dm³/h cm²	4,33	1,65
in % bezogen auf Wert bei N _{max}	100	38
spez. CO ₂ -Freisetzungsrate		
in dm³/h cm²	0,15	0,28
in % bezogen auf Wert bei N _{max}	100	183

Bei einer vollständigen Umsetzung des im Beton enthaltenen Wassers gem. [10] infolge einer Metall/Wasser-Reaktion ergäbe sich theoretisch, bezogen auf die Betonmasse, ein H₂-Normvolumen (DIN 1343) von 0,076 dm³/g.

Im Vergleich dazu werden die durch Messung bestimmten H₂-Normvolumenströme bezogen auf die Betonabschmelzraten als absolute und relative Medianwerte gegenübergestellt. Damit ergeben sich auch, bezogen auf den totalen theoretischen Wert, die relativen Betonwasserumsetzungen:

rel. HF-Nennleistung (Medianwert)	N _{max}	1/2 N _{max}
H ₂ -Normvolumen / Betonmasse in dm ³ /g in % vom Wert bei tot. Betonwasserumsetzung	0,0420 55	0,0374 49

Obige Gegenüberstellung zeigt, daß der Tendenz nach das im Beton enthaltene Wasser etwa nur zur Hälfte bei der Schmelze/Beton-Wechselwirkung zu Wasserstoff umgesetzt wird und zwar weitgehend unabhängig von der eingestellten HF-Leistung. Dazu sei angemerkt, daß zu den in 6.1 bezeichneten Nennwerten der induzierten rel. HF-Leistungen die Stellwerte für die Induktorspannung gem. 4.5 gehören. Die entsprechenden, kalometrisch verifizierten (s. 4.5), in der Edelstahlprobe induzierten Leistungen gelten jedoch nur für die Ausgangsgeometrie vor dem Aufschmelzen. Diese Werte für die induzierte Leistung stimmen auch weitgehend mit den Anfangswerten der elektrisch gemessenen Wirkleistung nach Hochstellen der HF-Leistung auf den jeweiligen Nennwert überein (Abb. 16, 23, 30).

Nach Aufschmelzen des Edelstahlvollzylinders steigt jedoch die el. Anzeige der Wirkleistung in größeren Niveausprüngen und unregelmäßigen Zeitinervallen auf Werte, die die Anfangswerte z. T. um den Faktor 2 übertreffen (Abb. 16, 23, 30).

Als Ursache für dieses Verhalten wird eine totale Änderung des induktiven Ankoppelungswirkungsgrades einer Metallschmelze gegenüber der zylindrischen Ausgangsgeometrie angenommen. Die elektrodynamischen Kräfte verursachen eine nicht definierbare, völlig neue, instabile geometrische Form der Schmelze, verbunden mit einer Rührwirkung. Zusätzlich erfährt die Schmelze einen starken Auftrieb durch aufsteigende Gas- und Dampfblasen, die bei der Metall/Betonreaktion ausgetrieben werden. Dadurch wird die Rührwirkung so heftig, daß es zu unregelmäßigen, kleineren und größeren Eruptionen kommt. Für solche turbulenten und instationären, geometrischen Bedingungen der Schmelze werden entsprechende, keiner reproduzierbaren Gesetzmäßigkeit folgende, schwankende und niveaumäßig veränderliche Wirkleistungen elektrisch gemessen. Die Kurven für die Wirkleistung in den Abb. 16, 23, 30 stellen gemittelte Linienzüge dar, welche aus den alle Schwankungen enthaltenden Linienschrieben gewonnen wurden.

Anhand der Meridianschnitte der Tiegel (Abb. 37, 38, 39, 40) bestätigt sich der bereits in früheren Vorversuchen aufgestellte Befund, daß der nicht aufgeschmolzene Betonrest für alle Versuche, unabhängig von der HF-Leistungsaussteuerung annähernd gleich ist (ca. 10 mm). Dies legt den Schluß nahe, daß die Nachwärmemenge und somit die mittlere Temperatur der Metallschmelze nach Leistungsabschaltung, welche den Abklingvorgang bestimmt, weitgehend gleich und unabhängig von der zuvor induzierten Leistung ist. Die Ursache dafür wird der latenten Wärme in Form der Zerstörungsenthalpie des Betons zugeschrieben. Auch hier gilt, daß der allgemeine Versuchsaufbau sowie die Verfahrensweise in nur wenigen Details, gegenüber den Beschreibungen in den Kapiteln 2 bis 5 abgewandelt wurden.

7.1 Anfangs- und Randbedingungen

Chargeninventare:

- Inerter Suszeptor Molybdänzylinder d/h = 65/30 mm, 1012 g.
 Die Ausgangsgeometrie entspricht den Edelstahlproben gem. 6.1.
 Zur Erzielung einer inerten Oberfläche ist der Molybdänzylinder im Schmelzfluß-Elektrolyseverfahren mit Platin beschichtet worden.
- Betonzylinder d/h = 65/65, 530 g Thermoelementbestückt gem. Abb 5

Schutzgasdruck im Ofenbehälter:

2,7 bar, Argon, geregelt, Regelabweichung ±0,1 bar

Trägergasdurchsatz:

15,82 kg/h, Argon, bei voll geöffnetem Drosselventil

Induzierte Leistung:

Zur Erzielung einer möglichst schnellen Aufheizung des Inertsuszeptors auf ein Temperaturniveau nahe 1700 °C wurde die Leistung des HF-Generators mit einem großen Stufensprung auf 1/2 N_{max} hochgestellt und dann langsam, entsprechend dem beobachteten Temperaturanstieg zurückgesteuert. Dadurch wurde einerseits weitgehend eine thermische Vordehydratation des Betons, vor Ausbildung der Schmelzfront, unterdrückt und andererseits ein thermisch bedingtes Versagen des Inertcharakters des Suszeptors durch mögliche Überhitzung unterbunden (Schmelztemperatur von Platin 1769 °C).

Im Gegensatz zu den Versuchen mit Edelstahlschmelzen bleibt die Geometrie des Inertsuszeptors und somit auch der induktive Ankopplungswirkungsgrad in der gesamten Versuchszeit weitgehend unverändert.

Temperatur des inerten Suszeptors:

Zur Temperaturüberwachung möglichst nahe der Betonschmelzzone wurde der Suszeptor mit einem PtRh-Mantelthermoelement in einer Position 5 mm von der Zylindermantelfläche und 5 mm von der Bodenfläche bestückt (Abb. 41).

Hauptdaten des Thermoelements:

- Werkstoffpaarung des Thermopaares PtRh 30 PtRh 6
- Mantelwerkstoff PtRh 10
- Manteldurchmesser 1 mm
- Länge 800 mm
- Meßstelle vom Mantel isoliert

7.2 Vergleichende Diskussion der Ergebnisse

Mit Inertsuszeptor wurden zwei Versuche durchgeführt, IS 01 und IS 02. Davon diente der erstere als Vorversuch zur Bestimmung des optimalen HF-Leistungsstellprogramms im Hinblick auf möglichst schnelles Erreichen und Konstanthalten des angestrebten Soll-Temperaturniveaus von ca. 1700 °C, unter sicherer Vermeidung einer den Inertsuszeptor schädigenden Überhitzung.

Der zweite, eigentliche Versuch IS 02 wurde entsprechend der zuvor bestimmten Vorschrift gefahren. Daher konzentriert sich die ausführliche Auswertung und Darstellung der Ergebnisse nur auf den Versuch IS 02.

Die nachfolgenden Betrachtungen erstrecken sich ebenfalls im wesentlichen auf die Versuchs-Hauptphase, d. h. auf die Zeitdauer zwischen Hochstellen und Abschalten der HF-Leistung. Dabei erfolgte die HF-Leistungsabschaltung bei Annäherung der Schmelzfront an das vorletzte Thermoelement, d. h. nach Erreichen von 1000 °C am fünften Thermoelement in der Betonprobe.

Im Mittel sind die Versagenszeitintervalle der untereinander gestaffelt angeordneten Thermoelemente, die der gefahrenen HF-Leistungsaussteuerung von 0,14 N_{max} ² 2,4 kW entsprechen, in der quasi stationären Versuchsphase etwa um den Faktor 17 länger als bei den Versuchen mit max. HF-Leistungsaussteuerung mit Edelstahlschmelzen (Tab. 1). Höhere Leistungen konnten aufgrund der Gefahr einer unzulässigen Überhitzung des platinierten Molybdänsuszeptors nicht gefahren werden. Die mittlere Suszeptortemperatur betrug 1680 °C (Schmelztemperatur von Platin 1769 °C). Auch hier zeigte es sich, daß trotz der unveränderten Suszeptorgeometrie die einzelnen Versagenszeitintervalle sogar noch gegen Ende der Hauptphase größere Streuweiten aufweisen.

Als mögliche Erklärung für diesen bereits früher festgestellten Effekt gilt auch hier, daß die Betonmischung ein heterogenes System darstellt, bestehend aus verschiedenen Korngrößen und Kornarten, wodurch die lokalen Aufschmelzraten direkt über dem jeweiligen Thermoelement deutliche Abweichungen vom Mittelwert aufweisen können.

Bei den Versuchen mit Edelstahlschmelzen und hoher induzierter Leistung konnten aufgrund der extrem kurzen Versagensdauer der Thermoelemente die eigentlichen Versagenszeitpunkte bei ca. 1400 °C in guter Näherung mit dem Zeitpunkt, bei dem 1000 °C erreicht wurden, gleichgesetzt werden.

Im Falle der Inertsuszeptor-Versuche ist wegen der geringen Penetrationsgeschwindigkeit eine solche vereinfachende Gleichsetzung unzulässig. Der Versagenszeitpunkt des vorletzten Thermoelementes TE5 bei 1400 °C (entsprechend etwa dem Solidus-Punkt der Schmelzfront) wurde erst nach Ende der Hauptversuchsphase erreicht.

Da jedoch gemäß dem Leistungsstellprogramm die HF-Leistung bereits nach Erreichen der 1000 °C-Marke am TE5 abgeschaltet wurde, müßte der tatsächliche Versagenszeitpunkt für 1400 °C, unter Annahme ununterbrochener Leistungseinspeisung, aus dem Temperaturverlauf durch Extrapolation ermittelt werden.

Im Vergleich ergeben sich für den Inertsuszeptor-Versuch und die Versuche mit Edelstahlschmelzen folgende, gesamte, mittlere Zeitdauer bis zum Versagen des TE5 mit den zugehörigen rel. HF-Leistungsaussteuerungen und den entsprechenden Induktorspannungen:

HF-Leistungsaussteuerung	0,14 N _{max} - 140 V	0,5 N _{max} - 260 V	N _{max} - 370 V
Versuch	Inertsuszeptor	Edelstahl	Edelstahl
Versagenszeitdauer von TE5 (s)	1290	238	107

Zur Veranschaulichung der thermischen Beanspruchung des Betons in der quasistationären Aufschmelzphase wurde die vertikale Temperaturverteilung in der zylindrischen Betonprobe in Form von Temperaturprofilen mit der Zeit als Parameter dargestellt (Abb. 61, 62, 63). Daraus wird deutlich, daß sich bei nur geringer, auf den Beton übertragenen Zerstörungsleistung, wie im Fall des Inertsuszeptors mit einer maximal zulässigen Temperatur von rd. 1700 °C, rel. flache Temperaturprofile, d. h. höhere Temperaturen in größeren Tiefen ergeben. Im Gegensatz dazu wird bei starker Konvektion der Wärmequelle selbst, wie es bei einer im Induktionsfeld heftig gerührten und beheizten Edelstahlschmelze der Fall ist, eine beträchtlich höhere thermische Zerstörungsleistung auf den Beton übertragen, was sich in Form wesentlich steilerer Temperaturprofile ausdrückt.

Die mit dem PtRh-Termoelement gemessene Temperatur im Inertsuszeptor nahe der Schmelzfront geht aus Abb. 44 hervor.

Nach Hochstellen der HF-Leistung auf 1/2 N_{max} ² 260 V Induktorspannung belief sich die Übergangszeit bis zum Erreichen der Temperatur von rd. 1680 °C auf ca. 130 s. Zur Verhütung eines Versagens der Platinschicht (Schmelzpunkt von Platin 1769 °C) wurde das Temperaturniveau durch manuelle Leistungsstellung (Abb. 43) während der gesamten Hauptphase geregelt.

Der zeitliche Temperaturverlauf in den verschiedenen Tiefen der Betonprobe wurde als Einzelplotts, Abb. 45 bis 50 sowie als Gruppenplotts, Abb. 51 und 52 dargestellt. Die Gruppenplotts enthalten zur besseren Orientierung jeweils den Verlauf der Temperatur des als Wärmequelle dienenden, direkt, induktiv beheizten Molybdänsuszeptors.

Die formal ermittelten Werte in der quasi stationären Phase für die Penetrationsgeschwindigkeit sowie die Abschmelzrate gehen aus Abb. 53 und 54 hervor.

Alle, für die Bestimmung der Massenbilanz aufgenommenen Zustandsgrößen sowie die Konzentration des Gasgemisches sind in Abb. 55 bis 59 dargestellt. Auf die formale rechnerische Gasratenbilanzierung haben Schwankungen der Zustandsgrößen keinen Einfluß, d. h. sie wirken sich nicht als Fehler aus. Die gemessenen Schwankungsbreiten waren dennoch gering.

Die Konzentrationswerte hingegen zeigen dem Leistungspeak folgende, aber phasenverschobene rel. Maxima.

Für H₂ und CO lagen jedoch sogar die rel. Maxima unterhalb der unteren, dynamischen Meßbereichsgrenze (0,1 %) des benutzten quantitativen Gasanalysesystems. Aus diesem Grund ist auf eine rein formale und kaum belastbare quantitative Ermittlung und Darstellung der zugehörigen Freisetzungsraten verzichtet worden. Für CO₂ erschien es zweckmäßig, die Freisetzungsrate als Funktion der Versuchszeit zu bestimmen (Abb. 60), obwohl auch hier, abgesehen von dem anfänglichen, rel. Maximum, die Konzentrationswerte in der quasistationären Versuchsphase nur geringfügig über der unteren Meßbereichsgrenze lagen.

Diese Meßergebnisse bestätigen die Erwartungen, daß der platinierte Molybdänsuszeptor keinen nachweisbaren reduzierenden Einfluß in der Reaktionszone hatte.

Im Gegensatz dazu dominierte bei Versuchen mit Edelstahlschmelzen stets die Freisetzung von Wasserstoff, was im wesentlichen auf die Wasserdampfreduktion infolge der Metall/Wasser-Reaktion zurückzuführen ist. Ebenso dürfte dabei das aus dem karbonatischen Betonanteil ausgetriebene CO₂ größtenteils zu CO reduziert worden sein.

Nachstehend werden für die bisher durchgeführten Versuche die formal ermittelten Mittelwerte der quasi stationären Schmelzfrontausbreitung (Penetrationsgeschwindigkeit), der spez. Betonaufschmelzrate und der spez. Gasfreisetzungsrate gegenübergestellt.

Suszeptor, Anfangsgeometrie D/h = 65/30 mm	Edelstahl aufgeschmolzen	Edelstahl aufgeschmolzen	Mo platiniert fest inert
Induzierte Leistung [kW]	50	24	2,4
Penetrationsgeschwindigkeit [cm/min]	4,9	2,3	0,3
spez.Beton-Aufschmelzrate [g/hcm ²]	731,4	342,8	43,8
spez. H ₂ -Freisetzungsrate [dm ³ /hcm ²]	30,74	12,81	++
spez. CO-Freisetzungsrate [dm ³ /h cm ²]	4,33	1,65	
spez. CO ₂ -Freisetzungsrate [dm ³ /h cm ²]	0,15	0,28	0,28

Gemessen an der sehr geringen Beton-Aufschmelzrate ist bei dem Inertsuszeptorversuch die CO₂-Freisetzung jedoch bemerkenswert hoch. Hierbei dürfte die Freisetzungsrate weniger mit der Eindringgeschwindigkeit der Schmelzfront als viel mehr durch die Betonzerstörung infolge ausreichend hoher Temperaturen in größeren Betontiefen zu erklären sein. CO₂ entweicht nämlich einerseits bereits im Temperaturbereich ab 600 °C durch thermischen Zerfall von Calciumkarbonat und bleibt andererseits aufgrund einer fehlenden reduzierenden Metallreaktion vollständig als solches enthalten. Der Meridianschnitt des Tiegels nach dem Versuch (Abb. 2) bestätigt den anhand der Art der freigesetzten Reaktionsgase aufgestellten Befund, daß der platinierte Molybdän-Suszeptor inert geblieben ist, da an ihm zumindest makroskopisch keine Beschädigung der Außenhaut festgestellt werden kann.

<u>Literatur</u>

- [1] DIN 1045 Beton und Stahlbeton Bemessung und Ausführung
- [2] Alsmeyer, H.; Barleon, L.; Koster, J.; Michael, I.; Mueller, U.;
 Reimann, M.: Ein Modell zur Beschreibung der Wechselwirkung einer Kernschmelze mit Beton.
 KfK-2395 (Oktober 1977)
- [3] Holleck, H.; Nazare, S.; Ondracek, G.; Skokan, A.: LWR core melt down accident - a materials viewpoint. Topical Meeting on Thermal Reactor Safety, Sun Valley, Idaho, July 31 -August 5, 1977
- [4] Feuerstein, H.; Schülken, H.; Oschinski, J.: unveröffentlichter Bericht, Kernforschungszentrum Karlsruhe, 1981
- [5] Alsmeyer, H.: BETA-Experimente zur Verifizierung des Wechsel-Codes.
 Experimentelle Ergebnisse zur Schmelze-Beton-Wechselwirkung.
 Abschlußkolloquium des Projektes Nukleare Sicherheit 1986, Karlsruhe,
 10. 11. Juni 1986, KfK-4170 (August 1986) S. 409 30, Karlsruhe
- [6] Physikhütte Bd. 2, W. Ernst, 1971
- [7] Horn, S.; Kammerer, B.; Knauß, H.; Perinić, D.; Stuka, B.: unveröffentlichter Bericht, Kernforschungszentrum Karlsruhe, 1987
- [8] Stuka, B.; Horn, S.; Kammerer, B.; Knauß, H.; Perinić, D.; Rinderspacher, R.: unveröffentlichter Bericht, Kernforschungszentrum Karlsruhe, 1988
- [9] Nägele, E.: unveröffentlichter Bericht, Amtliche Baustoff- und Betonprüfstelle F, Gesamthochschule Kassel, 1985
- [10] Prof. Dr. U. Schneider: persönliche Mitteilung, Gesamthochschule Kassel, 1989

	Aufeinander folgende Thermoelemente (TE)	OK. bis TE1	TE1 bis TE2	TE2 bis TE3	TE3 bis TE4	TE4 bis TE5	TE5 bis TE6	Bemerkungen
Versuch E001 N _{max} - 370 V	Abstände der aufeinander folgenden TE [mm]	6,6	8,8	9,9	9,7	10,1	9,0	
Induktor- spannung	Versagenszeitintervall der aufeinander folgenden TE [s]	55	17	11	15	9	129	Hauptphasendauer zw HF hoch u. HF aus 107 s ≏ 1,78 min
Versuch E002 N _{max} ^ 370 V	Abstände der aufeinander folgenden TE [mm]	7,5	9,1	11,4	9,7	8,7	9,7	
Induktor- spannung	Versagenszeitintervall der aufeinander folgenden TE [s]	62	14	10	15	7	90	Hauptphasendauer zw HF hoch u. HF aus 108 s
Versuch E003 0,5 N _{max} ≏ 260 V	Abstände der aufeinander folgenden TE [mm]	5,8	9,6	10,3	10,4	9,8	8,4	
Induktor- spannung	Versagenszeitintervall der aufeinander folgenden TE [s]	112	34	27	30	33	103	Hauptphasendauer zw HF hoch u. HF aus 236 s
Versuch E004 0,5 N _{max} ≏ 260 V	Abstände der aufeinander folgenden TE [mm]	6,8	10,6	10,8	8,8	8,9	10,0	
Induktor- spannung	Versagenszeitintervall der aufeinander folgenden TE [s]	113	40	29	27	31	235	Hauptphasendauer zw HF hoch u. HF aus 240 s ≏ 4,0 min
Versuch IS 02 0,14 N _{max} ~ 140 V	Abstände der aufeinander folgenden TE [mm]	4,5	10,5	9,5	1,0	8,5	10,2	
Induktor- spannung	Versagenszeitintervall der aufeinander folgenden TE [s]	400	220	195	220	255		Hauptphasendauer zw HF hoch u. HF aus 1290 s – 21,5 min

HIT 1991 18.02.05

Tabelle 1: Versagenszeitintervalle der Thermoelemente und ihre Abstände in den Betonproben

Versuchsanordnung für Schmelzversuche mit Betonproben in SUSI

Abb.: 1

1991 HIT 1991 18.02.05

Funktionsschema der Gasauffang-u. Transportstrecke, qualitative Darstellung des Druckverlaufs

Abb. 2

SUSI, schematischer Schmelzversuchsaufbau mit Na- Aerosolfilterstrecke Abb.: 3

Abb.: 4

Betonprobekörper für Schmelzversuche in SUSI

Abb.: 5

Fließschema zum Massenspektrometer einschl. Batch - Einlaßsystem zur Herstellung von Kalibriergasgemischen Abb.: 6

Schematische Darstellung der Meßtechnik zur Bestimmung der Gasfreisetzungsraten Abb. 7

HF-Generator der Schmelzanlage SUSI (schematisch) 250 KW; 40K Hz Abb.: 8

Blockschaltbild des Leistungsmessgerätes der Schmelzanlage SUSI Abb.: 9

•

Neg. 172/4

HIT 1991 18.02.05 Versuch E001

Meridianschnitt des Tiegels nach dem Versuch

Neg. 172 / 5

HIT 1991 18.02.05

Versuch E002 Meridianschnitt des Tiegels nach dem Versuch

Neg. 172/8

HIT 1991 18.02.05

Versuch E003

Meridianschnitt des Tiegels nach dem Versuch

Neg. 172 / 10

HIT 1991 18.02.05

Versuch E004

Meridianschnitt des Tiegels nach dem Versuch

Molybdänzylinder m = 1012g

Versuchsanordnung für Schmelzversuche mit Betonproben in SUSI

 Wersuch IS 02
 Vertikale Temperaturverteilung

 in der Betonprobe mit der Zeit als Parameter;

 Inertsuszeptor (Mo platiniert) N = 2,4kW

Abb.: 61

1991

HIT

Versuch E 003 Vertikale Temperaturverteilung

Vertikale Temperaturverteilung in der Betonprobe mit der Zeit als Parameter; Edelstahlschmelze, N = 24kW Abb.: 62

Versuch E 002

Vertikale Temperaturverteilung in der Betonprobe mit der Zeit als Parameter; Edelstahlschmelze , N = 50kW Abb.: 63

Neg. 178/2A

Versuch IS 02 Meridianschnitt des Tiegels nach dem Versuch ; Inertsuszeptor (Mo platiniert) N = 2,4kW

Abb.: 64