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COINCIDENCE CROSS SECTIONS WITHIN THE QUASI FREE BREAK-UP MOD-
EL FOR ELASTIC PROJECTILE BREAK-UP

Abstract

Scrutinizing the basic break-up model of Serber we show that it is possible to derive the
triple differential cross sections for particle-particle coincidences in analytical form. An
alternative interpretation within the opaque version of the model suggests to assign these
cross sections to the elastic nonresonant projectile break-up due to the nuclear interaction.
Distortion effects by the Coulomb field of the target are included in analogy to the Serber

model. Beside the well known single maximum in the break-up spectra double and triple
peak structures appear for certain combinations of the observation angles. The model yields
reasonable agreement to the given experimental data, concerning the multiple peak structure
as well as the order of magnitude for the absolute normalisation. Its application comprises
the region of forward emission angles, especially the angular range of the classical Coulomb

deflection.

KOINZIDENZ-WIRKUNGSQUERSCHNITTE IM RAHMEN DES QUASIFREIEN
AUFBRUCHMODELLS FUR ELASTISCHEN PROJEKTIL-AUFBRUCH

Zusammenfassung

Eine eingehende Untersuchung des Aufbruch-Modells von Serber ergab, daf3 dreifach dif-
ferentielle Wirkungsquerschnitte fur Teilchen-Teilchen-Koinzidenzen in analytischer Form
abgeleitet werden konnen. Eine alternative Interpretation innerhalb des ‘opaquen’ Modells
legt nahe, diese Wirkungsquerschnitte dem elastischen nichtresonanten Projektilaufbruch
zuzuordnen, welcher auf der Kernwechselwirkung beruht. Distortionseffekte durch das
Coulombfeld des Targets werden mit beriicksichtigt in Analogie zum Serbermodell. Neben
dem bekannten einzelnen Maximum in den Aufbruchspektren treten bei bestimmten Kom-
binationen der Beobachtungswinkel Doppel- und Dreifachstrukturen auf. Das Modell
befindet sich in verniinftiger Ubereinstimmung mit den gegebenen experimentellen Daten,
was sowohl die Mehrfach-Peak-Struktur als auch die GroBenordnung des Normierungsfak-
tors betrifft. Die Anwendung umfaBt die Emission in Vorwirtsrichtung und speziell den
Winkelbereich der klassischen Coulomb-Ablenkung.
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1. Introduction

The break-up of 190 MeV deuterons was described within a geometrical break-up model,
introduced by Serber [1], which served as the basis for several further investigations. Two
extreme cases were treated, the sransparent and the opague model, which describe the ideal-
ized cases of a complete transparent and a complete opaque target nucleus. Originally, the
model allows to calculate single differential cross sections like energy and angular distrib-
utions of the break-up fragments. For the reproduction of the energy spectra of the ejectiles
the double differential cross section &¢/(dQdE) was deduced by Utsunomyia [2] from Ser-
bers formulae. It has been shown that the model reproduces quite well the energy spectra
and the angular distributions from the break-up of 156 MeV 6L i-ions at small emission
angles [3], measured with the Karlsruhe magnetic spectrograph ‘Little John'.

Recently, particle-particle coincidence measurements were performed, where the alpha
particle and deuteron fragments were detected in the forward angular range [4 - 7]. The
present paper shows that corresponding triple differential cross sections can be derived from
the original approach of Serber without any principal modification. Actually, an inaccuracy
in the derivation of the expressions within the opaque model has been found and this prob-
ably has prevented that the results have been found earlier. Anyhow, the improper interme-
diate expression in the original article leads again to the correct results and leaves the for-

mulae for the cross sections unchanged.

The Serber model yields good predictions only with a number of certain physical
restrictions. The projectile energy should be large compared to the Fermi motion of the
projectile clusters and the particle observation should be in forward direction, i.e. in the
range of the classical Coulomb deflection angle. With these conditions at least an estimate
of coincidence cross sections seems to be possible. As in the article of Serber all results are

given in analytical form and can be easily handled.

2. Basis for coincidence cross sections

The projectile (P) consists of two clusters (1) and (2), each with the extension zero and a
separation Iy, , whereas the target nucleus is treated as a circular disc perpendicular to the
beam direction with the radius Rr. As already mentioned, the energy of the Fermi motion in
the projectile should be small compared to the incident energy.

At the collision one cluster interacts with the target, if it passes the target disc, whereas
the other cluster continues undisturbed on its trajectory like a spectator. It follows that the
momentum of the observed fragment is the sum of the momentum due to the projectile
motion plus the Fermi motion at the moment of collision, which is described by the Fourier
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transformed J)(p) of the relative wave function ¢(r;) . Hereby, p is the relative momentum
vector of both clusters. Assuming a Yukawa type wave function

—cir /2
¢(r;n) = w/2“_1’: er y o= h,ua (2.1)

the wave function in p-space is constrained to Lorentzian shape:

1 (2‘us)% 2.2)

= (2ue + p°)

with z and £ being the reduced mass and the separation energy of both fragments.

In one ideal case the target is assumed to be transparent to the participant fragment which
implies that both fragments, after break-up of the projectile, remain quasi undisturbed from
the target. The opaque model is based on the assumption of a completely dark target
nucleus. It follows that a fragment, once hitting the target disk, undergoes a reaction as ,for
example, a complete fusion process and is therefore lost for the detection. Whereas the
transparent case is the easier approach the opaque model seems to reflect the physical situ-

ation more realistically [3].

We use the coordinate system, introduced by Serber. The x-axis is perpendicular and the
y-axis parallel to the target surface. The view upon Fig. 1 is in the direction of the incoming
projectiles, which defines the z-direction. For inclusive measurements the opaque model is

Target
nucleus

Figure 1. Local coordinate system at the target surface and the two projectile clusters 1 and
2, projected into the x-y-plane with a given separation r. The view upon the figure is
in the direction of the incoming projectiles and defines the z-axis, being perpendicular
to the x-y-plane.
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now characterised by the conditions that the spectator misses and the participant fragment
hits the target disc, equivalent to x; >0 and x, < 0. Hereby, as also in the following, the
subscribts # and p, used by Serber for the neutron and the proton in the deuteron projectile
are replaced by 1 and 2. Taking the Fourier transformed wave function J>(p) and performing
twice a Fourier transformation in the x-coordinate with the above conditions, Serber obtains
an expression for the wave function of four independent momentum coordinates

- h% ‘b(px” Py, pz)

’ ] ) = ’ ’ d ! 2.3
‘/’(py Pz Px1 px2) (27[)% (px —pxl) (Px +px2) Px ( )
WTueT [ d
—n2(2ue)4 p !
= 3 N . , (23a)
22az J O P —pa) (0 + o)

P = \/2u8+p§+p22 .

If the participant fragment hits the opaque target nucleus, it cannot reach the second
detector. Therfore, we concentrate on the case that both fragments miss the target nucleus,
which is equivalent to x; >0 and x; > 0 in the Fourier transformation. Fig. 1 displays the
geometry for a given position of cluster 1 and a given separation r between both clusters.
In Serbers approach the part of the circle around cluster 1, overlapping with the target
nucleus, is a measure for the probability that cluster 2 hits the target and the projectile
breaks up. In our case the part of the circumference outside the target disc yields the
probability for the break-up and represents quasi the complementary situation. In other
words: Even if both clusters miss the target, an overlap between projectile wave function and
target nucleus remains, being the cause for the break-up reaction.

Inspecting the double Fourier transformation, done by Serber, with this new conditions,
the resulting wave function ¥ in (2.3) remains the same except a minus sign at the beginning.
Lateron , only the squared wave function is needed, implying that the condition of "both
fragments missing the target’ does not alter the result. This process can be interpreted phy-
sically as the elastic nuclear projectile break-up, caused by the fact that the extension of the
cluster wave function in r-space is deminished by the volume which is superseded by the
target nucleus. It has been already described by Glauber [8] and called “free dissociation” in

contrast to the absorptive dissociation.

We now perform the calculation in more detail, which follows the equation (2.3a), since
our result deviates from that of Serber. Evaluation of the above integral can be done by
performing the contour of integration into the upper half of the complex plane taking into



Im (py)
A
iP 9
(H)
o\ /o) = Re(p,)
-R ~Px2 Pxi R
Figure 2. Integration path in the complex plane considering three poles.

account the poles at iP, at p, and at — p,, . Following the path in Fig. 2 and expressing
the integrand in (2.3a) by F we get

, ~ Dy —6 Py —6 R
2ni Res(F, iP) = j + f + j + f + f + f . (2.9)
-R By “n, +6 H

= Px2 +6 D1

Here, & is the radius of the small half circles around p,; and — p,,. After evaluating the
integrals we have to perform the limits R — co and  — 0 . The integral along H vanishes
as R goes to infinity. Arranging the terms in (2.4), the integral term in (2.3a), which we name
I, then becomes the sum of the residuum at /P and the integrals along /; and 4. These two

integrals are easy to calculate [9] and we get

T + ~ in in 2 5)
P (P = px) (P + pra) (Px1 + Pra) (P2 + ph1) (Px1 + Pra) (P + ph)

Adding these terms the imaginary part vanishes and we find

1 1
7 (2ue)a (P + pupr)

. 2.6
ens PO+ P +p0) 9

‘/’(py’ P2 Px1s Px) =

This wave function differs from the corresponding expression in the article of Serber,
represented only by the first term in (2.5). Anyhow, integration of ¢ (2.6) over p,, as the
next step in Serbers article, leads to the same result except a normalization factor of 1/2.
Lateron (chapter 3) it is shown that for a given detection geometry in most cases two sol-
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utions of the given equations, interpreted as near side and far side effect, contribute to the
cross section and therefore equalizes the factor 1/2.

The absolute square of ¥ (2.6) now represents the differential cross section per unit length
of the circumference of the target nucleus, being the quintuple cross section

5
do,,

= { p 2
e ’ 2.7
dpydp Ap;,dps,dl [Py, P2 Px1 Pxa) | 2.7)

where [ is the length from the x-axis to the break-up point along the circumference of the
target nucleus. The subscript ‘op” stands for the opaque model. When we omit from now
on the indices ‘1" or "2’ for the case that only p. , p, or p, are used, the momenta always
refer to the first observed particle.

3. Opaque model and elastic nuclear break-up

The quintuple cross section (2.7) is dependent on the five variables p,i, pa, p., p,, and /.
The desired triple differential cross section d?a/(dQ.dQ.dE,;;) in the laboratory system is
dependent on the five coordinates 6, 6;, Ei, ¢, and ¢,. In order to get directly the labora-
tory cross section we evaluate the Jacobian

0(px1; Pxas P Pys ) - (3.1)

J )
i 6(61’ 92’ El’ d)l’ ¢2)

where 6, and 6, are the laboratory angles, measured with respect to the beam direction,
¢:, ¢, are the azimuth emission angles of the first and second fragment and E, is the lab-
oratory energy of the first fragment.

From Fig. 3 we derive the equations, connecting both sets of coordinates in (3.1):

{

Px1 = P1p €OS (—R_ - ‘151), (3.2)
T
{

Pxa = P1j €OS (R_ - ¢2>, (3.3)
T

. l .

Pynu = P1p S0 (R_ - ¢1), (3.9)
T

Py = — Pns (3.5)

P = Pn €0s;—pg, (3.6)



b)
Cl) Detector 1

Yiab
Detector 2 |

Target
nucleus

Figure 3. Momenta of the break-up fragments a) in the p, -p, plane and b) in the p, -p, , plane.

and additionally
. !
Py2 = P1p SIn R o2, (3.7)
T

P = Pp €086, —pg,. (3.8)

Hereby, p., and p,, are the momentum components of the corresponding fragments per-
pendicular to the beam direction. The momentum pqy in (3.6) of the first fragment due to the
centre of mass motion of the projectile is py = (ml/mp)m , Where mp, Ep ,
and Q designate mass and energy of the projectile and the Q-value of the break-up reaction.

The momentum py, can be obtained analogously. The momenta p,; and p,, are given by

Piq = pasinby, p; = 2mkE and (3.9)
Pila = ppsinb,, pp = 2my(Ep—E —Q) . (3.10)

The law of energy conservation is met by using E, — Q = E, + E; when replacing the energy
of the second fragment E, in (3.10). The target nucleus is assumed to be infinitely heavy,

implying that no recoil energy is transferred.

The Jacobian J,,, which includes reactions in plane as well as off plane, can now be calcu-
lated from (3.2) - (3.6), (3.9), and (3.10) (see Appendix A). We find
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JOp = RTpll pfzz q—'l ml Sin 01 Sin 02 COoS 02

(3.11)

with g = /pi+ps+ 20101y cos(dr — )

where ¢ is the absolute value of the sum of the transversal momentum components. It

represents approximately the momentum transferred to the target nucleus.

Now we combine the quintuple differential cross section (2.7 and 2.6) with the Jacobian
(3.11). For a given set of input parameters, corresponding to near side and far side reactions
(see Fig. 4) we obtain two solutions. Without any Coulomb correction it can be shown that
both solutions are identical, although some momentum components have changed signs.
Therefore, the following expression corresponds only to ‘one side’. Taking into account that
dQ, = sin 6,d6,d$, and dQ, = sin 6,d0,d¢, the particle-particle coincidence cross section

becomes
d3aop (one s.) Rp Ry py ph my cos 8, 1+ & +00) (3.12)
d0,d0,dE, 4’ (2ue)’q A+ A+ 8+ A+ +4Y
2, 2
» p pyt+p ,
with  f = ——, L= ——, ad = ["—. @129
2ue 2ue 2ue '

Here, R, = h/(Z\/—iE ) is the average separation of the clusters in the projectile. The other
variables have to be replaced using (3.2) to (3.6). In (3.12) the signs of p, and p., have to
be taken into account. From geometrical considerations it can be derived that p, >0, only
if (¢1—n/2) <I/Rr < (¢ + =/2) and that p,,>0, only if (¢, — 7/2) <I[Rr < (P, + 7/2) .

The “far side” solution corresponds to the replacements (see Fig. 4) :

Px1 = —Px

(3.13)
and  py - —po -
By adding the two contributions the final cross section becomes
d’a,, d’o,, (near side) d°c,, (far side)
= + . (3.14)

dQ,dQ,dE, dQ,dQ,dE, dQ,dQ,dE,



Detector 2 N

= Detector 1

Figure 4. FExample of the geometric conditions with the input parameters ¢ =0°,
¢2=135° and p,; = 2p,,. We obtain /9/Rr=128.7° and M/Rr=— 151.3°. These
angles and the relative lenghts of the vectors at (a) and (b) obey quantitatively to the
given set of input parameters. The vectors have the same meaning as in Figure 3a.

When replacing the equations (3.4) and (3.6) by (3.7) and (3.8) the evaluation of the
Jacobian shows that it remains the same except that the indices 1 and 2 are interchanged.
Physically, it means that at the same detection geometry both fragments are interchanged.
So, this complementary situation (first fragment in the second detector and vice versa) can
be simply obtained by the interchange of all indices 1 and 2.

The two contributions are added incoherently and since both terms on the right side of
(3.14) are identical we simply get a factor 2, which cancels the normalization factor 1/2,
mentioned at the end of chapter 2. The situation is completely changed, when including the
Coulomb deflection (chapter 4). Some examples of theoretical energy spectra (Fig. 5) show
that a single maximum as well double peak and triple peak structures appear. This is caused
neither by structures in the projectile wave function, because a Lorentzian shape is used, nor
by interference effects, because they are not included in the model. In our approach the

structure is due to geometrical and kinematical effects.

In Fig. 5 ¢) a pole shows up at lower energies. The reason is, that for in plane geometry
with ¢, — ¢, = =, and for a certain fragment energy the momentum transferred to the
target nucleus, represented by ¢ in the denominator of the cross section (3.12), becomes zero.
In this case the break-up can happen at any place around the target circumference. The
position of the pole varies and can be either far away or near to beam velocity energies,



a) 0, =0

——
o

8 L 1 i
S b) 92 = 160°
>
o 6 L
2
N
L
£
- L— ™
s
O] ~
© %— " i
c
©
0 1 ¥ ¥
8 (] 1 1
c) 9, = 180°
6 ’ .
b- -
24 L
0 T T \/\l
0 S0 100 150 200
Eq [(MeV]
Figure 5. Theoretical coincidence energy spectra of alpha particles for the elastic nuclear

break-up, calculated with (3.12) and (3.14) neglecting Coulomb effects. The angles are
8, =0,=6°and ¢, = 0° . The input parameters are taken for the reaction 156 MeV
SLi+2C—>a4+d+12C.
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dependent on the observation geometry. Taking into account - more realistically - the
3-body kinematics and also the fact that the target edge is diffuse, it seems reasonable that
the increase of the cross section around the pole is smeared out to another maximum.

In order to avoid the pole in the coincidence spectra one could, for example, replace g by
(g + qu) , where g is a reasonably chosen small correction. Of course, this could change the
cross sections dramatically, if the pole is near to the beam velocity energy. So, we prefer
another way. Although we have in plane-geometry, given by ¢, — ¢, = =, the real reactions
do not occur exactly in one plane due to the finite horizontal and vertical acceptances of the
detectors and due to the finite size of the beam spot. Geometrical considerations imply that
a rough average value for | ¢, — ¢, | is not z, but a little less, because only the absolute value

of it is important for the formulae (see A.3 and 3.12c). For comparison with the exper-
imental data in chapter 5 we use | ¢, — ¢:| = 177° instead of 180° . This is closer to the

experimental geometry, avoids the pole and does not alter the equations.

The absolute value of the angular momentum between projectile and target is roughly
given, because the impact parameter is equal to the target radius. Now, also the orientation
of the angular momentum can be derived easily, because the detection geometry fixes the

place of break-up on the target circumference (for ¢ # 0).

4. Coulomb corrections

The influence of the repulsive Coulomb field between projectile and target in the entrance
channel and between fragments and target in the exit channel is taking into account in
accordance with Serbers considerations. The effect of bending the trajectory of projectile and
fragments is to add a momentum in the direction of p,, and p., , respectively. This is rea-
sonable because the displacement of the fragments in p,-direction due to the Fermi motion
is negligible when passing the target nucleus. The coincidence cross section (3.12) is altered

by the following replacements

Px1 — Px—04p0
4.1)

and  py = P —00p0n-

Hereby, 6., and 6, are the effective Coulomb deflection angles, caused by the successive
deflection of projectile and fragments. Now, the near side and far side term in (3.14) are not
any longer identical (Fig. 6). Different charge-to-mass ratios of projectile and fragments have
to be considered. The difference of the longitudinal velocity of projectile and fragment due
to the Fermi motion also influences the deflection and is represented by an additional factor

pu/pn . We get



mpZ; Py
6., = 6.11 — ] K, 4.2
cl c( + m, ZP Dn ) ( )
ZpVe
6. = 4.2

with Z, Z,, and V. being the charge numbers of projectile and first fragment and the
energy per unit charge due to the Coulomb wall. The factor K is a kinematical factor
accounting for the transformation from the c.m. system of projectile and target nucleus to
the laboratory system. For small emission angles 8, and 8, we find in a good approximation
K = mz{(m7 + mp) , which can be derived by considering the centre of mass motion between
projectile and target nucleus (7 is the target mass). The parameter 8. is defined like in the
article of Serber and represents the Coulomb deflection of the projectile before the break-up.
The expression for 8., is analogous to (4.2) with replacement of all indices 1 by 2.

The change of the transversal momenta, affecting the emission angles, has a corresponding
longitudinal effect, shifting and deforming the cross sections in the energy spectra. This
effect of changing the absolute values of the velocities when approaching the Coulomb wall

is considered by replacing the energies as follows [2]:

Ep —» Ep—ZpVc
and E, - E —-Z/V..

(4.3)

Detector 2

= Detector 1

Figure 6. An example with the same geometrical conditions as in Fig. 4 including the classical
Coulomb deflection. At near side and far side it has a very different influence on the
actual momentum components within the projectile wave function (dashed vectors).
The dotted lines show the projected directions to the detectors.
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It can be shown that in a good approximation (4.3) is equivalent to

p: 2 P eczPOI . (4~4)
In analogy to the Coulomb deflection angle 6., = Ap,,/pn the parameter 6. stands for the
relative alteration of the longitudinal momentum : Ap,/py . Performing the replacements

(4.3) in the expression of p, (3.6 and 3.9) for small observation angles, one gets 6., similar

to (4.2) :

mpZy Py
6, = 6.1 — 1 — K 4.5
(¥4 C( + ml ZP p“ > 3 ( )

with K being added and having the same meaning as in (4.2). For calculation of the Cou-
lomb correction we use the replacements given by the relations (4.1) to (4.3).

5. Experimental and theoretical data

In order to compare the theoretical predictions of the model with the experimental data,
the following figures present experimental coincidence cross sections [5,6,7] together with
calculated triple differential cross sections given by (3.12) and (3.14). The calculations were

performed on a PC using the program compiled in Appendix D.

Fig. 7 gives calculated triple differential cross sections for « and d in the reaction 156 MeV
SLi+ T > a+d+ T, where the target (T) is 12¢ (Figs. 7 a,b) and 208py, (Figs. 7 c,d)
for ¥ = 0 MeV. As expected from (3.12) and (3.14) for both targets in this case the near
side (dashed line) is exactly half of the total cross section. Due to the factor Ry in (3.12) the
maximum value of the cross sections for the two targets is in the ratio of their radii. As

expected, the maximum of the cross section is around beam velocity.

Fig. 8 shows a comparison of theoretical predictions with experimental data for the lead
target with 8, = 12.68° and variable 6,, for alpha particle (a,b,c) and deuteron (e,f,g). In the
figures the index 1 always refers to the alpha particle and 2 to the deuteron fragment. The
theoretical cross sections are multiplied by a normalization factor N = 5. The influence of
the vicinity of the pole can still be seen shifting the second bump away from the main one.
The position and the width of the maximum is in good agreement with the experimental
data. For deuterons the agreement is less satisfactory, especially in the position and magni-
tude of the second bump. Fig. 9 gives another example for a different observation geometry
in the case of lead target for alpha particle ejectiles. The theoretical cross sections are mul-

tiplied by a factor N = 10.
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In Fig. 10 some results from different detection angles are shown for the case of a carbon
target. For alpha particles (a,b,c) the theoretical spectra are multiplied by a factor N = 1/3,
whereas for the deuteron fragments (d,e,f) we have N = 1. The experimental spectra have
a low statistical accuracy and the broad bump in the alpha particle spectra appears to be

shifted by about 10 MeV to lower energies as compared with the theoretical predictions. For

3 d3
——  [mb/(sr2MeV)] — 7 (mb/isr®MeV)]
da, dn, dE, da, de, o,
4-8 - s.a _:
a) w N
3.8 3 T3
28 3
1.8 3
8.8
] T ™ I
[:] 58 168 158
E, [MeV] Eq [MeV]
3 2 d30
—————  [mb/isrMeV)] ————  [mb/(srMeV)]
42, 42, dE, a2, 49, d,
15.0
12.8 C)
18
5.8 -
58 -
8.8 - 08
I T ¥ T L l T T T T 1 T T T k] ' T T T | T T T T ' T LI T r
8 58 160 158 (2] 58 160 158
E, [MeV] Eq [MeV]

Figure 7. Calculated triple differential cross sections for 156 MeV ¢Li — « + d break-up in the
case Ve=0MeV , for carbon (a,b) and lead target (c,d). The detection angles are
0, = 12.68°, 6, = 16.88°, ¢, = 0°and ¢, = 177°. The dashed line represents the
contribution from the near side.
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Figure 8.

Experimental and calculated triple differential cross sections for 156 MeV
6li—>a+d break-up on lead target with the angles 6, = 12.68°, 8, variable,
¢1 = 0° and ¢, = 177° (180° in the experiment) for alpha (a, b, ¢) and deuteron
ejectiles (d, e, f). The dashed line shows the far side contribution in the alpha spectra
and the near side in the deuteron spectra. The theoretical cross sections are multiplied

by a factor N = 5.
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Figure 9. Experimental and calculated triple differential cross sections for 156 MeV
6i—>a+d break-up on lead target in the geometry 8; = 12.18°, 8, variable,
¢1 = 177° (180° in the experiment) and ¢, = 0° for alpha ejectiles. The dashed line
shows the far side contribution. The theoretical cross sections are multiplied by a factor
N = 10.
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Figure 10.

Experimental and calculated triple differential cross sections for 156 MeV
6li —> a + d break-up on carbon target with the angles 8, = 12.68°, 8, variable,
¢1 = 0° and ¢, = 177° for alpha particles (a, b, c¢). For deuterons we have ¢, vari-
able, 8, = 12.68°, ¢ = 177° and ¢, = 0° (d, e, f). In the experiment
in plane-geometry (¢1 — ¢2 = 180°) is used. The alpha particle spectra are multiplied
by N = 1/3 and for the deuterons the normalization factor is N = 1. The dashed line

shows the far side contribution for all spectra.
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deuterons the agreement between experiment and theory is rather good. Even the angular
dependence on 8, is reasonably reproduced. In the experimental data for the carbon target
the bumps are broader than for the lead target, probably caused by recoil effects. Note, that
the alpha particle spectra and the deuteron spectra belong to different sets of observation
angles. In all calculations (Figs. 8 to 11) a value of Ve = 10 MeV is used for the lead,

respectively Ve = 5 MeV for the carbon target.

Fig. 11 shows another good agreement between theory and experiment. As before, the
theoretical cross sections are multiplied by a factor N = 5. It is mentioned here that the
theoretical curves are not adjusted to the measured data, but are fixed by the experimental

parameters. The normalisation factor is used for an easier comparison.

d%

——— [mb/{srMeV)]
dQ, d, dE,

150 1

100 -

50 1

150

E, [MeV]

Figure 11. Experimental and calculated triple differential cross sections for 156 MeV
¢Li > a+d break-up on lead target in the geometry 8, = 10°, 6, = 10° ,
¢, = 0°and ¢, = 177° (180° in the experiment) for alpha ejectiles. The dashed line
shows the far side contribution. The theoretical cross sections are multiplied by a

factor N = 3.
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6. Conclusions

For the break-up of loosely bound projectiles in the nuclear field of the target nuclei triple
differential cross sections for particle-particle coincidences are derived on a simple geome-
trical model, introduced by Serber, and in the limit of a completely opaque target. A simple
and easily applicable analytical formula is obtained, which reproduces the gross features of
the experimental data: the order of magnitude of the cross sections, the structures with one
or several maxima, the width of the bumps, the dependence of the spectra on geometry, etc..
Nevertheless, the variation of this structure is not as rapid as shown by the observed exper-

imental data.

Taking into account the simplicity of the present approach the results are rather good,
showing that many of the important features of experimental triple differential cross sections
can be qualitatively explained on simple geometrical and kinematical arguments.
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Appendix A. Calculation of the Jacobian
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The Jacobian for the opaque model (3.1) can be written explicitly as the determinant

apxl apr apz ap b4 ol

6, 00, 06, 08, 06,

o Op Op, OBy g

26, 26, a6, 00, 96,

Jo o= dpsy Opn  Op, O, ol
op 9E, OE, OE OE, OE
g %o Op, 9 _al
o0p, 0¢, 0, 0@, I¢,;

aP)cl apr apz ap y 61
o9, 0¢, 09, 09, 0I¢,

(4.1)

It is not necessary to calculate all derivatives. One possible way of evaluating the deter-
minant is given here. To simplify the notation we replace the derivatives 8p,/d6, , dp,/06, ,
Op,/0E: , Op,Jo¢, and 0Op,/d¢, by pP...pP . With p®=—p® (A.1) becomes

I, =
2 . 1 1
P sin6; cos 8, —pypy‘ ) —pypy( ) -
pxl sz pll S 1
2 2 . 2
~p,p Pi sin 6, cos 6, — p,p? .
pxl sz
.2 3 o 2
m; Sin“6; — pypy( ) — my Sin“0, — p,p; m o
P 2 P %71
4 4
—p,pf? —pp? 0
pxl Px2
4 4
Ry ppy) .
le sz

1
)

@)

3
Py

4
p;>

4
)
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Adding line 4 to line 5, extracting some common factors from the first, second, and fifth
row, and adding the fourth row times p, to row 1 and row 2, the matrix is reduced sucessively
to a dimension of 4 x 4 and then to a size of 3 x 3. We are left with the expression

p} sin 0, cos 6, 0 — pyy sin 6,
= = Ph, sin 6, cos 6 0 ) .
Yoo = Tapa 79, * 2> (4.2)
m
my sin.2l91 —my sin202 P_I:- cos 8,

From equations (3.2), (3.4) and (3.5) one derives the momentum component p, :

2 2 .2
2 PL1P12 Sin (¢ — &)

p = (4.3)

2 2 ‘
pPi1+ P12+ 2p) 10, cos (P — @)

After evaluating ép,/0¢,, inserting p. and p., and performing further simplifications
we get straight forward the final result for the Jacobian J,, (3.11).
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Appendix B. Remarks on the transparent model

In case of the transparent version of the Serber model the centre of mass of the projectile
will continue its motion undisturbed after the break-up reaction. It follows that the triple
differential coincidence cross section is identical to the double differential cross section
d?c|(dQdE) for properly chosen detection angles and is otherwise identical to zero. It means
that only the cases ‘both fragments hit” or ‘both fragments miss the detectors” are possible
for the correctly chosen observation geometry.

The situation changes when taking into account the Coulomb deflection. It can be verified
that a set of detection angles - also out of plane - fixes the Coulomb deflection angle. This
also fixes the impact parameter, which .could be much larger than the target radius (Fig. 12).
From the physical point of view, here only the Coulomb break-up is a relevant process with
rather different characteristics compared to the nuclear break-up. This is not included in the
model. Calculations show that coincidence cross sections within this ‘transparent’ case have
characteristics from Rutherford scattering, but not from Coulomb break-up. In principle the
calculations could yield informations about the trajectory geometry. Anyhow, this trans-

parent version is not treated further.

Detector 2
N (R,
L —a= Detector 1
‘%/ Target
nucleus
Figure 12. Projection of the momenta into the plane perpendicular to the beam direction for

the same set of parameters as in Fig. 4 ¢;=0° , ¢,=135° and p,, = 2p,,. We get
R-=128.7° . If we take 6, =0,=>5° the deflection angle becomes 8., = 2.46°,
which is classically equivalent to an impact parameter b of 53 fm. To show the
proportions a lead nucleus (Rr= 7.3 fin) is drawn schematically. The parameter / is
the length of the circumference up to the break-up point with the impact parameter
b as radius. The parameters } and  would replace p,, and / when calculating the
Jacobian. Note, that for the transparent case always p,, = —p,; and po=—pa .
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Appendix C. Theoretical cross section in 3D-plots
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£0.0
30.0

20.0

10.0

0.0

Figure 13. Three-dimensional representation of the triple differential cross section calculated
for the elastic nuclear break-up of 156 MeV ¢Li— a + d as a function of 6; and
E, . The alpha particle detection varies from 6, =—15° to 8, =15° , whereas the
deuteron detector is fixed at 8,=-5° . Coulomb effects are not included
(Ve=0MeV) . The same data are shown twice with different vertical scales and are
calculated with the program, listed in Appendix D.
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Triple differential cross sections for alpha particles as in Fig. 14 with

8, =0,=>5°. The Coulomb deflection is considered by two different values for the
Coulomb wall energy per unit charge. Only the near side contribution is plotted.
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Figure 16. Triple differential cross sections for alpha particles with the Coulomb deflection
as in Fig. 15 for the emission angles 8, =6, =8°, ¢,=0° and for the near side
only.
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Appendix D. Program listing (FORTRAN 77)

PROGRAM SER

c X b3
c X _ X
C X TRIPLE DIFFERENTIAL CROSS SECTIONS FROM THE X
c X BREAK-UP MODEL OF SERBER (OPARUE). VERSION 14.10.91 X
c X PROJECTILE ¢ 6-Li =--> 4-He + d X
c % TARGETS H 12-C AND 208-Pb X
c X OPTIONS : NEAR SIDE, FAR SIDE, SUM OF BOTH X
c X X
C X X

REAL X(501),Y(501),DY(501)
IMPLICIT DOUBLE PRECISION (A-H,0-2)

CHARACTER CFILENX32 .
COMMON /PARM/AM1, AM2, AMP, AMUE , AKIN, IOUT, ICORR, EPQ,EPC,EMUE,ELABI,
& ZP,21,22,VC,PP,P0O1,P02,REPS,WJACOF,SIN1,C0S1,8IN2,DPHI,SINA,

& COSA,THETC,PI11,PID2,PHIB1,PHIBZ, AEXPD, WANEAR, WAFAR, W, WaMAX

C.....PHYSICAL PARAMETERS

AM1 © = 3727.407D0
AM2 = 1875.627D0
AMP = $5601.561D0
AMUE = AM1%AM2/ (AM1+AM2)
AMTC = 11174.946D0
AMTP = 193488.563D0
Z1 = 2.D0

2 = 1.D0

P = 3.D0

RP = 1.63D0

RTC = 2.70D0

RTP = 7.32D0

EPO = 156.D0

EPQ@ = EPO - 1.47D0O

1.07 MeV DETERMINES THE WIDTH OF THE ALPHA-D-WAVEFUNCTION AND
YIELDS THE BEST AGREEMENT TO EXPERIMENTAL INCLUSIVE ENERGY SPECTRA

EMUE = SQART(2.DO%1.07DOXAMUE)

aon

C.....INPUT-PARAMETERS
PII = 3.141592654D0
PID2 = PII % 0.5DO
PIGRAD = PI11/180.D0
WRITE (%, ’ (5X,’ "QUTPUTFILE
READ (X, ’ (A32)’) CFILEN
WRITE(X%,’ (5X,’’THETA 1 (DEG) . r 7))
READ (%, %) THETA1
THETB1 = THETA1l % PIGRAD
WRITE (%,’ (5X,”"THETA 2 (DEG) 1 7))
READ (X, %) THETAZ2 :
THETB2 = THETA2 % PIGRAD

ERER

WRITE (X, (S5X,”"PHI 1 (DEG) : )
READ (X, %) PHI1

PHIB1 = PHI1 % PIGRAD ;
WRITE(X,” (SX,”"PHI 2 (DEG) : 7Y
READ (X, %) PHI2 :

PHIB2 = PHI2 % PIGRAD

WRITE (X,’ (5X,’”COULOMB WALL (MeV) : 7Y
‘READ (%, %) VC )

WRITE (X, ’ (5X,’ *MAXIMUM PLOT-VALUE : 7))

READ (x, X) WAMAX

WRITE(X,’ (SX,”’12-C (1) OR 208-Pb (2) : ’7’)7)
READ (%, %) ITARG

WRITE (x,” (5X,” "FRAGMENT al (1), d (2) : *’)’)
READ(x, Xx) IFRAG

WRITE(X,’ (5X,”*NEAR(1), FAR(2), BOTH(3) : *7)")
READ (%, x) MODE

WRITE (%,’ (5X,’’Q-CORR. ? N(1), Y(2) : 77)")
READ(x, %) ICORR
WRITE(%,” (53X, TEST-0UTPUT ? N{1), Y(2)
READ (%, x) I0OUT

1y
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C.....CHOICE OF THE TARGET

IF (ITARG.EQ.1) THEN
AMT = AMTC
RT = RTC
ELSE
AMT = AMTP
RT = RTP
ENDIF
C.....CHOICE OF THE FRAGMENT
IF (IFRAG.ER.2) THEN
XX = AM1
AM1 = AM2
AM2 = XX
XX =1
1 = 12
22 = XX
XX = THETB1
THETB1 = THETB2
THETB2 = XX
XX = PHIB1
PHIB1 = PHIB2
PHIB2 = XX
ENDIF
C.....0OTHER CONSTANTS
EPC = EPQ - ZPXVC
PP = SQRT (2.DOXAMPXEPC)
POl = PP x AM1/AMP
PO2 = PP % AM2/AMP
QEPS = 197.33D0/ (2.DOXPIIXRT)
THETC = ZPXVC/(2.DOXEPO)
SIN1 = SIN(THETB1)
COS1 = COS(THETB1)
SIN2 = SIN(THETB2)
C082 = COS(THETB2)
DPHI = ABS(PHIB1 - PHIB2)
SINA = SIN(DPHI) :
COSA = COS(DPHI)
PI4 = 4.DOx PIIXX3

C.....FIXED PART OF THE JACOBIAN AND KINEMATICAL FACTOR

c

THE FAKTOR 10. CONVERTS fm¥%2 INTO mbarn
WJACOF = RP X RT % 10.DO X AM! X COS2/(PI4XEMUEXX4)

AKIN = AMT/ (AMP+AMT)

C.....CALCULATION AND SAVING OF THE SPECTRUM

10

20

TH

NPT = 300
EMIN
EMAX
DE
DO 10 I=1,NPT+1

C.DO
180.D0
= (EMAX - EMIN) /NPT

ELAB1 = EMIN + (I-1)%DE
X(I) = ELAB1
CALL SERBER

IF (MODE.ER.1) Y(I) = WEANEAR
IF (MODE.EQ.2) Y(I) = WRFAR
IF (MODE.EQG.3) Y(I) = wQ

IF (MODE.NE.1.AND.MODE.NE.2.AND.MODE.NE.3) Y(I) = wa

BY(I)= Y(1)%0.001DO
ZCO1 = THETC % (1.DO+ AMPXZ1/(AM1XZP)) x AKIN/PIGRAD

THECO2 = THETC % (1.DO+ AMPXZ2/(AM2XZP)) X AKIN/PIGRAD

WRITE(6,%x)° *
OPEN(UNIT=10,FILE=CFILEN)
WRITE(lO,’(4E15.3)’)THETAI,THETA2,PH11,PHIZ
WRITE(10,’ (3E15.3)*)VC, THECO1, THECO2

DO 20 I=1,NPT+1

WRITE(10,%)X(I),Y(I),DY(I)

CLOSE(10) .
STOP
END
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C.....TRIPLE DIFFERENTIAL CROSS SECTION IN mbarn/(srksrkMeV)

SUBROUTINE SERBER

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /PARM/AM1,AM2,AMP,AMUE,AKIN, 10UT, ICORR,EPQ, EPC, EMUE,ELABI,
& zP,21,22,VC,PP,P01,P02,REPS,WJACOF,SIN1,COS1,8IN2, DPHI, SINA,
& COSA THETC PII PIDZ PHIB1,PHIBZ, AEXPO WQNEAR NQFAR wa, WQMAX
E1 = ELABL - Zl#VC

g2 = EPC - El

ELAB2 = EPQ - ELABI

WANEAR = 0.DO
WArFAR. = 0.DO
Wwa = 0.DO

IF (E1.GT.0.DO.AND.E2.6T.0.DO.AND.
& ELABL1.GT.0.DO.AND.ELAB2.GT.0.DO) THEN
PL1 = SART(2.DOXAMIXEL)
PL2 = SQART(2.DOXAM2XE2)

PLAB1 = SART(2.DOXAMIXELAB1)

PLAB2 = SART (2.DOXAM2XELAB2) :
THETC1 = THETC % (1.DO+ AMPXZ1%PO1/(AMIXZP%PLAB1)) x AKIN
THETC2 = THETC % (1.DO+ AMPXZ2xP02/(AM2XZPXPLAB2)) % AKIN

PS1 = PL1 % SIN1

P82 = PLZ % SINZ

8 = SART(PS1%XPS1 + PS2%PS2 + 2.DOXPS1xPS2%C0OSA)
IF (ICORR.EG.2) @ = Q@ + QEPS

IF (Q.NE.O0.DO) THEN

PY = PS1X%PS2%SINA/Q
PZ = PL1%C0OS1 - POl
PSQ@ = 1.D0 + (PYXPY + PZ*PZ)/(EMUE*EMUE)
PX1 = SQART(PS1%PS1 - PYXPY)
PX2 = SART(PS2%PS2 - PYXPY)

€. . . . DETERMINATION OF THE SIGNS OF PX1 AND PX2
BL = 0.DO

IF (PS1.NE.0.DO) BL = PHIBLI - ASIN(PY/PS1)

IF (BL.LT.PHIB1-PID2.0R.BL.GT.PHIB1+PID2) PX1 = - PX1
IF (BL.LT.PHIB2-PID2.0R.BL.GT.PHIB2+PID2) PX2 = - PX2
€. . . . COINCIDENCE CROSS SECTION (OPAQUE MODEL, NEAR-, FAR SIDE)

ZEN1 = (PX1 - PO1XTHETC1)/EMUE
ZEN2 = (PX2 - PO2XTHETC2)/EMUE
ZEF1 = (- PX1 - PO1XTHETC1)/EMUE
ZEF2 = (- PX2 - PO2%THETCZ2)/EMUE,
WJACO = WJACOF % PL1 % PL2%%2/Q
WANEAR = WJACO % (PSA + ZEN1XZEN2)X%2 /

& - (PS@ X ((PSA + ZEN1XZEN1) X (PSQ + ZEN2XZEN2))Xx2)
WAFAR = WJACO % (PS@ + ZEF1XZEF2)%Xx2 ./

& (PSA@ % ((PSQ + ZEF1XZEF1) % (PSQ + ZEF2XZEF2))%X2)

WA = WANEAR + WQRFAR

IF (WANEAR.GT.WAMAX) WGNEAR = WAMAX
IF (WRFAR .GT.WAMAX) WEFAR = WQAMAX
IF (WQ .GT.WEMAX) WE = WEAMAX
ENDIF
C . . . TEST OUTPUT

IF (IOUT.EQ.2.AND.ELAB1.GT.100.DO.AND.ELAB1.LT.100.3D0) THEN
’

WRITE(6,%)"ELABL = ’,ELAB1 ,’ PSQ = *,PSQ
WRITE (6, %)’ PS1 = 7,PS1 s’ P82 = ’,P82
WRITE (6, %)’ PY = ’,PY s’ Pz =7?,PZ
WRITE (6, %)’ PO1 = ’,P01 i PO2 = *,P02
WRITE (&6, %) PX1 = ’,PX1 7 PX2 = *,PX2
WRITE(6,%)’Q = 7,8 s’ THETC = *,THETC
WRITE(6,%)’ THETC1 = ’,THETCI,’ THETC2 = ", THETC2
WRITE (6, X)*WJACOF = *,WJACOF,” WJACO = ’,WJACO
WRITE (6, %) ZEN1 = ’,ZEN1 ,’ ZEN2 = ’,ZEN2
WRITE (6,%)” ZEF1 = *,ZEF1 ,’ ZEF2 = ’,lEF2
WRITE (&, %) ”WANEAR = ’,WANEAR,’ WAFAR = ' ,WEFAR
WRITE (&, %)’ WQ = ',Wa

WRITE(6,%)" ’
ENDIF
ENDIF
RETURN
END
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