KfK 4948

Dezember 1991

0= M
.w3m...mA
i
=TG5
- Q.Y o
SwnE=T
8S0c000°
TN ST
_T. -
D O [
Qoo Prd
£ £ 3
P~ c
< g nw
(7))
©
R
lm
=
=
=

Part 1
ical Bas

IS.
ions,

Theoret

Conservation and State Equat

ICS.

Numer

Kolev

Institut fiir Neutronenphysik und Reaktortechn

D
=
-
|
L)
S
©
"4
&
-
o
wlend
e
o
N
N
(@)
-
i
&
n
| '
Q
Pl
-
¢
A4







KERNFORSCHUNGSZENTRUM KARLSRUHE
Institut fiir Neutronenphysik und Reaktortechnik

KiK 4948

A THREE-FIELD MODEL OF TRANSIENT 3D MULTIPHASE,
THREE—-COMPONENT FLOW FOR THE COMPUTER CODE IVA3

Part 1: Theoretical Basis: Conservation and State Equations, Numerics.

N. I. Kolev

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe



Als Manuskript gedruckt
Fiir diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH
Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003



Abstract

The IVA3 computer code is developed for numerical simulation of flows
consisting of air, steam, water, microscopic solid particles which can be carried only by
water, and "liquid metal" — immiscible with water. The "liquid metal" is considered to be
either in liquid state, in equilibrium liquid — solid state, or in solid state in form of
macroscopic solid particles. The flow is transient and three dimensional. The geometry
confining the flow is an arbitrary technical geometry, characterized by obstacles etc. In this
geometry, there may be relatively large volumes not occupied by technical structures (pool

ow) and/or volumes occupied partially by technical structures, considerably influencing
the flow (flow in confined geometry). Within the definition space the flow interacts with
(a) walls, and/or (b) with a nuclear reactor core, and/or (c) with boundary conditions
applied at the boundary of the definition space. The geometrical obstacles may change with
time modelling closing or opening flow cross sections as prescribed functions of time.

This work contains description of the physical and mathematical basis on which
the IVA3 computer code relies.

After describing the state of the art of the 3D modeling for transient multiphase
flows, the model assumptions and the modeling technique used in IVA3 are described.
Starting with the principles of conservation of mass, momentum, and energy, the non
averaged conservation equations are derived for each of the velocity fields which consist of
different isothermal components. Thereafter averaging is applied and the working form of
the system of 21 partial differential equations is derived. Special attention is paid to the
strict consistence of the modeling technique used in IVA3 with the second principle of
thermodynamics. The entropy concept used is derived starting with the unaveraged
conservation equations and subsequent averaging. The source terms of the entropy
production are carefully defined and the final form of the averaged entropy equation is
given ready for direct practical applications. The idea of strong analytical thermodynamic
couplin% between pressure field and changes of the other thermodynamic properties, which
is used for the first time in 3D multi fluid modeling, is presented in detail.

After obtaining the working form of the conservation equations, the discretization
procedure and the reduction to algebraic problems is presented. The mathematical solution
method together with some information about the architecture of IVA3 including the local
momentum decoupling and accuracy control is presented too.

Ein Drei—Feld Modell der transienten 3D Multiphasen Drei—Komponenten
Stromung fiir das Rechenprogramm IVA3

Teil 1: Theoretische Basis: Erhaltungs— und Zustandsgleichungen. Numerik
Kurzfassung

Das Computerprogramm IVA3 wurde fir die numerische Simulation von
Stromungen bestehend aus Luft, Wasserdampf, Wasser, mikroskopischen festen Partikeln,
die vom Wasser getragen werden kdnnen, und "Metallen", die nicht im Wasser aufgelost
werden konnen, entwickelt. Die "Metalle" konnen entweder fliissig, oder im



Zweiphasengleichgewichtszustand, oder fest in der Form von makroskopischen Partikeln
sein. Die Stromung ist transient und dreidimensional. Die Geometrie, in der die Strémung
stattfindet, ist eine beliebige technische Geometrie, die durch Stromungshindernisse etc.
charakterisiert wird. In dieser Geometrie konnen relativ grofie Volumina, die frei von
technischen Strukturen sind (Poolstromungen) und/oder Volumina, die teilweise von
technischen Strukturen ausgefiillt sind (Kanalstromungen), vorhanden sein. Innerhalb des
Defintionsbereiches erfahrt die Strdomung Wechselwirkung mit (a) Winden, und/oder (b)
mit der Spaltzone eines Kernreaktors, und/oder (c) mit Randbedingungen, die an den
Réindern des Integrationsbereiches wirken. Die geometrischen Strdmungshindernisse kdnnen
verdnderlich sein und Schliefen oder Offnen von Strémungsquerschnitten als
vorgeschriebene Zeitfunktionen modellieren.

Diese Arbeit beinhaltet eine Beschreibug der physikalischen und mathematischen
Grundlagen, auf denen das Computerprogramm IVA3 basiert. Nach Beschreibung des
derzeitigen  Standes der  Modellierung der  dreidimensionalen  transienten
Mehrphasenstromungen werden die Modellannahmen und die Herangehensweise in IVA3
dargestellt. Beginnend mit den Prinzipien der Erhaltung von Masse, Impuls und Energie
werden die nicht gemittelten Erhaltungsgleichungen fiir jedes Geschwindigkeitsfeld
bestehend aus mehrkomponentigen isothermen Mischungen hergeleitet. Nach einer
Mittelung wird die Arbeitsform des Systems aus 21 partiellen Differentialgleichungen -
hergeleitet. Spezielle Aufmerksamkeit wird der strikten Ubereinstimmung mit dem zweiten
Hauptsatz der Thermodynamik geschenkt. Das in IVA3 verwendete Entropiekonzept wird
hergeleitet beginnend mit nichtgemittelten Erhaltungsgleichungen und nachfolgender
Mittelung. Die Quellterme der Entropieproduktion werden sorgfiltig definiert and eine
endgiiltige Form der gemittelten Entropiegleichung, welche fertig fiir direkte praktische
Anwendung ist, wird hergeleitet. Die Idee der strengen analytischen thermodynamischen
Koppelung zwischen dem Druckfeld und den Anderungen der anderen thermodynamischen
Grofien, welche hier zum ersten Mal in der 3D Modellierung von Mehrphasenstrémungen
angewendet wurde, wird im Detail dargestellt.

Nach der Erhaltung der Arbeitsform der Erhaltungsgleichungen wird die
Diskretisierungsprozedur und die Reduktion der partiellen Differentialgleichungen auf ein
algebraisches Problem beschrieben. Das mathematische Losungsverfahren sowie einige
Informationen iiber die Architektur von IVA3, die lokale Krifteabkoppelung und die
Genauigkeitskontrolle wiahrend der Integration werden diskutiert.
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1. INTRODUCTION

Several processes in environment and industrial equipment are associated with
transient three—dimensional flows consisting of micro—, and macroscopic particles, liquid
and gas mixtures. The increasing importance of the environment protection topics and the
optimization of 3D technological processes needs sophisticated methods for the
mathematical description of multiphase flows. Computer simulation of physical problems is
now widely accepted as the third method of investigation in science — besides theory and
experiment. In computer aided analysis of accidental processes in power plants with water
cooled nuclear reactors, the safety engineer has frequently to do with flows consisting of
mixtures of air, water, water steam, microscopic solid particles and liquid metals. The
complexity of such multiphase flows is mainly due to the big variety of combinations of the
three aggregate states and chemical components, and even for simple mixtures consisting of
one, two or three chemical components, it is due to the variety of flow patterns. In addition
the situation is further complicated by the complexity of the geometry of the technical
equipment confining the flow. So the interesting dilemma arises: on one hand the desire (a)
to establish basic conservation equations relying on rational mechanics, (b) to develop the
needed closure relations for multiphase flows, (c¢) to prove theorems for uniqueness and
stability of the numerical solutions, and (d) to create a versatile computer code
architecture relying on this results; on the other, the daily need to analyze such kind of
flow for practical design and licensing before the previous task is completely solved. As the.
experience with the development of computer models for one— and twophase flows shows,
there is a straightforward feed back between the above discussed steps. Moreover, without
interaction between the four steps non of them can successfully be finished. That is why we
decided to start the development of the IVA computer codes, modeling 3D flows consisting
of air, water, water steam, microscopic solid particles and molten metal, it being clear that
only the interaction of the above mentioned steps will bring us ahead in our understanding
of this complicated physical phenomenon.

The computer code IVA3 can be applied for modeling flows in many branches of science
and industrial equipment design as e.g. nuclear technology, meteorology, lava—water
interaction, chemical equipments etc.

The purpose of this paper is to present a brief summary of this development. Full
documentation of the code is under preparation and will be published in the near future.

1.1 SUBJECT OF IVA3

The IVA3 computer code is developed for numerical simulation of flows consisting
of air, steam, water, microscopic solid particles which are only carried by water, and
"liquid metal" which immiscible with water. The "liquid metal" is considered to be either
in liquid state, or in equilibrium liquid — solid state, or in solid state in form of
macroscopic solid particles. The flow is transient and three dimensional. The geometry
confining the flow is an arbitrary technical geometry, characterized by obstacles etc. In this
geometry, there may be relatively large volumes not occupied by technical structures (pool
flow) and/or volumes occupied partially by technical structures which considerably
influence the flow (flow in confined geometry). Within the definition space, the flow
interacts with (a) walls, and/or (b) with a nuclear reactor core, and/or (c) with boundary
conditions applied at the boundaries of the definition space. The geometrical obstacles may
change with time modelling closing or opening flow cross sections as prescribed functions of
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time.

1.2 STATE OF THE ART

Particular interest in modelling of multiphase flows arises with the necessity to
model numerically accidental processes in high energy converting components of power
plants. One started 30 years ago with three—point models, arriving today at models using
several thousand points in the discretization network. If we talk today about mathematical
models of multiphase flows, we think of computer codes of sizes of 1 000 FORTRAN
statements for one dimensional flow and up to 50 000 statements for three—dimensional
flow or flow in quasi one—dimensional networks. Thus, as model elements we count

1. Systems of partial differential equations (PDEs) reflecting the global conservation
principles, transformed in proper form for numerical integration, the so called working form
of the system;

2. Approximations for the thermodynamic properties of the chemical components;
3. Initial and boundary conditions;

4. Mathematical methods for integration of the system of PDEs, and a strategy of coupling
them with the constitutive equations;

5. Systems of equations reflecting the micro conservation laws for mass, momentum and
energy conservation on geometrical surfaces dividing the phases from each other or the flow
from structures, frequently called constitutive equations.

In the following we use the term "multiphase flow model" having in mind its five
above mentioned components.

The only universal way known to us at present time to transfer the empirical
experience gained in small— and semi—scale experiments to design full scale industrial
machines is the use of mathematical models of the controling physical phenomena.

Thus, are there models reported in the literature with the characteristics
summarized in the the previous Chapter ?

The development of one—phase models by Amsden and Harlow [1] (1964), Hirt and
Harlow [2] (1967), Harlow and Amsden [3] (1968), Hirt [4] (1968), Harlow and Amsden [5]
(1971), Kobayashi and Namathame [6] (1975), Takeuchi [7] (1979 — MULTIFLEX),
Amsden and Harlow [8] (1980 — SMAC), Chen et al. [9] (1980 — BODYFIT — 1FE), Hall
[10] (1982 — DUVAL), Gay and Gloski [11] (1983 — GFLOW), Domanus et al., [12] (1990 —
COMMIX-1C), Sakai [13] (1990 — COMMIX—2(V)) among many others has been a
prerequisite for the development of two—phase models.

Equilibrium models of one—component flow were reported by Hall and Porshing [14]
(1981 — DUVAL, non—homogeneous), Van der Vorst and Singhal [15] [1981 — SWIRL,
non—homogeneous, (r,0,z)], Bottoni [16] (1984 — COMMIX — SM) etc. Carver and
Calcudean [17] developed in 1986 the steady state FAITH computer code using two
velocity fields for modeling of incompressible two—component flow in a toroidal coordinate
system (3D).
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On the basis of drift—fluz five—equation models, the computer program SOLA-DF
was developed in 1979 by Hirt et al. [18]. The steam was assumed to be saturated.
Moessinger [19] (DRIX—2D) introduces "turbulent viscosity" in the code SOLA-DF.

Siz— and more—equation models have been used in practical application since 1974,
for example Amsden and Harlow [20] (KACHINA). Each of the two velocity fields used by
these authors was assumed to consist of two components: gas and liquid. Thermal
nonequilibrium was assumed for the two velocity fields. This simulation technique was
improved further by Rivard and Torrey [21] (K—FIX 1976). In each velocity field only one
component was considered, but the source terms were taken into account implicitly in the
numerical solution. In both codes separated momentum equations were used. The next step
was made by Liles et al. for TRAC—P1 [22] (1978), TRAC—PD2 [23] (1981) and by Kelly
et al. [24] for (THERMIT—2 1981). The three models are coupled with models of nuclear
reactor internals. The THERMIT—2 model takes into account the turbulent twophase
transport, which is not considered in the TRAC codes. All of the above mentioned models
describe one—component flows.

The need for extension of the 3D — flow description which uses two velocity fields to
more sophisticated models, using three velocity fields for modeling of one component flows
was recognized in the earlier 80—ies. Kelly and Kohrt [25] (1983) succeeded in developing
the first one—component, 3D, three velocity field model for the COBRA—TF code, in which
the droplets and the continuous liquid are supposed to be in thermal equilibrium. This
family of codes was extended further by Thurgood et al. [26? (1983) with
COBRA-TF/TRAC. In COBRA-NC [27] (1984), a noncondensing gas component and
turbulent diffusion were taken into account.

A further parallel activity has been the PHOENICS code development by Spalding
et al. [28] (1982). The PHOENICS code employs two velocity fields with four chemical
components in each field, respectively.

A fourth velocity field was introduced by Williams and Liles [29] (1984) in a
one—component model of a vapour field, a continuous liquid field, and two dispersed
droplet fields. A successful one—dimensional comparison was made with an experiment of
Lehigh University for post—critical heat transfer. Relying on the TRAC code development,
Dearing (Oct. 1985) [30] reported the conservation equations for a two—dimensional
four—field model of gas mixture of steam and hydrogen, liquid water, and solid and molten
nuclear reactor core material.

The author developed a three—field model of a two—component nonequilibrivm flow
[31] (1977). A further solid phase was introduced to extend equilibrium and nonequilibrium
models from two to three components using two velocity fields [32] (1986).

In the soviet literature, Nigmatulin & Ivandeev [33], Ivandeev & Nigmatulin [34]
(1977) used three velocity fields for describing steady state critical one—component
two—phase flow, assuming non compressible liquid and considering the steam as a perfect
gas.

There are only few attempts to model transient multi—dimensional three—phase
flows known to the author. They will be shortly discussed next.

Bankoff and Hadid [35] (1984) used the capabilities of the PHOENICS computer
code [28] (1981) to model twophase flow by means of two velocity fields. They modelled
with one velocity field the solid particles and with the other the equilibrium mixture of
steam and liquid, assuming it to be homogeneous. A 2D geometry was used.

Similarly, Abolfadl and Theofanous [36] (1987) used the two velocity field code
K—FIX [21] (1977) dropping the assumption of thermodynamic equilibrium of the vapor —
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liquid system.

The lumping of vapor and liquid into one velocity field is appropriate only for fast
running processes driven by considerable pressure differences. For processes with relatively
slow pressure changes, the pressure difference driven separation of the "vapor — liquid —
- solid particles" mixture is important and cannot be neglected.

The author developed the computer code IVA2, describing three—phase flows in
porous structures with arbitrary internals e.g. a nuclear reactor core by means of three
velocity fields [37—42] (1985—86). The first velocity field consists of steam and a
noncondensible gas, the second ot continuous liquid and solid particles, and the third of
discrete liquid and solid particles. IVA2 employs a diffusion form of the mixture
momentum equations for each direction. The differences between the center of mass
velocity of the mixture and the field velocities are computed using empirical correlations
obtained from steady state experiments. The three velocity fields are in thermodynamic
nonequilibrium in general. The constitutive packet describes pool flow as well as flow in
confined geometry.

In 1988, Amarasooriya and Theofanous [44] extended the K—FIX solution scheme to
2D two—component three velocity field flow. The first field is vapor, the second water, and
the third solid particles. In 1989, Medhekar et al. [45] extended this code further including
microscopic inert particles homogeneously mixed with the liquid field as already done in
IVA2. In addition, a constitutive relationship describing the triggering mechanism was
introduced in order to describe the production rate of microscopic particles from the
macroscopic solid particle field. .

In the same year Thyagaraja and Fletcher [46] published a model describing 2D flow
consisting of solid particles, liquid, and steam by means of three velocity fields. The
authors confine themselves to noncompressible flow, letting the densities constant.
Nevertheless they published a successful comparison with a small scale premixing
experiment with a pressure change of 2 bar and applied their code to large scale mixing
calculations [47]. Recently, Fletcher in his review paper [48] (1989) envisaged the
development of computer codes which should relax the above mentioned restrictions.

Bohl et al. [49] (1988), developed an advanced 2D fluid dynamics model for pool
flow consisting of three velocity fields and three chemical components, where the first one
is gas, the second can be either liquid or gas and the third can be either in solid, in liquid,
or in gaseous state.

Conclusion: up to now there is no computer code solving the task discussed in
Chapter 2 in variable 3D geometry.

1.3 MODELING TECHNIQUE AND MODEL ASSUMPTIONS

IVA3 models a transient (7 — without index), three—dimensional (r,4,z) flow passing
through a porous body. The volume porosity Ty in the immediate neighborhood of the

point (r,6,z) is defined as the ratio of the flow volume to the total volume of the
computational cell i.e. 1 — 7, part of the total cell volume is occupied by structure. We

define flow in cells with T, < 1las flow in confined geometry and flow in cells with 'yv=1 as
pool flow. Surface permeability ('yn, n =1, §, z) is similarly defined as the ratio of the

surface area in the n direction available to the flow to the total surface area in the same
direction. Note the difference between surface permeability defined here and the
permeability coefficients usually used to define the resistance of the porous structure in the
mechanics of flows in porous body. Surface permeabilities within the computational region
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remain unchanged per definition unless a special condition is imposed defining particular
surface permeabilities as prescribed functions of time.

To model the physical picture described in Chapter 2 needs several decisions to
formalize it, i.e. to divide it into several subproblems. We start with the so—called velocity
fields. The velocity field "1" in IVA3 is an abstract, @ — part of the total flow volume in

the computational cell having its own temperature T, and velocity V,. After analyzing the

possible flow topologies and flow patterns we define in IVA3 three such velocity fields, 1 =

1,1 .., where l = 3. The fields interact with each other (ml, m # 1) and with

structures through their surfaces.

Now we describe the correspondence between the abstract velocity fields "1" and the
substances participating in the flow.

The gas is associated with the first velocity field (1 = 1 = gas). In each
computational cell this field can be either continuous, or discrete (bubbles). The gas
consists of air and steam denoted with "nl1" and "M1", respectively. The air is called inert
component and is not allowed to change the state of aggregate, while the steam, called non
inert component, may condense. The gas phase obeys the Dalton law. The noncondensing
gas component "nl1" is assumed to be a perfect gas.

The water is associated with the second and, under certain circumstances, with the
third velocity field. In each computational cell the water in the second velocity field can be:
(a) either continuous or discrete (droplets) for pool flow, or (b) only continuous for flow in
confined geometry (channel flow). The water in the second velocity field is carrying
microscopic solid particles with a prescribed diameter. These particles, denoted with "n2",
are called the inert component of the second velocity field — inert because they are not
allowed to change the state of aggregate whereas the water, the non inert component of the
second velocity field which is denoted by "M2", may evaporate. For flows in confined
ig-leometry the second velocity field may be entrained i.e. transported to the third velocity

eld.

The third velocity field is associated with: (a) water droplets in confined geometry
or (b) with "liquid metal" in pool flow. In the case of flows in confined geometry,
microscopic solid particles of the same chemical substance as in the second velocity field
having the same previously prescribed particle diameter are carried with the water droplets
in the third velocity field. These solid particles, denoted with "n3", are called inert
component of the third velocity field, because they are not allowed to change their state of
aggregate, whereas the water droplets, denoted with "M3", the non inert component of the
third velocity field, may evaporate. In confined geometry the droplets may be deposited
into the continuous liquid of the second velocity field.

Finally, in case of pool flow in a cell, the third velocity field is associated with
"liquid metal" of the same chemical substance as the solid particles of the second velocity
field. In this case the third velocity field is immiscible with the others and consists of the
inert component "n3" only. The liquid metal is allowed to freeze and to form solid
particles. There are no heat sources in the liquid metal.

We see that there is one common feature of the velocity fields "1", namely all of
them are considered as homogeneous mixtures of an inert and a noninert component,
denoted with "nl" and "MI", respectively, having the same temperature as the velocity
field 1, Ty=Ty=Ty
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No high order effects of the surface curvature on all terms in the basic equations are
taken into account (e.g. the pressures of all of the three velocity fields are equal to the
system pressure).

The concentration of microscopic solid particles in liquid—gas mixtures is of
particular interest in many applications, e.g. radioactivity transport, environment pollution
etc. Small impurities in the classical two phase flow theory are usually neglected due to
their negligible effect on flow mechanics. In contrast with the mechanical influence, the
thermodynamic influence on metastable liquids and gases can be substantial. Microscopic
solid particles substantially increase the bubble nuclei generation and consequently the
flashing initiation and flashing itself which has an enormous impact on the mechanical
behavior of the system. Therefore considering microscopic particles is a step forward in the
sophistication of modeling of twophase flows. Now let us answer the question: why the
proposed association with the velocity fields? Small movements of the microscopic
components "nl" within the field "I" can be successfully described by diffusion inside the
field "1" or neglected. It saves the introduction of an additional velocity field, and therefore
modelling costs. In contrast, the macroscopic structures are strongly heterogeneous, and
therefore they must be associated with a separate velocity field.

Zemansky [50] p.566 defines "a phase as a system or a portion of the system
composed of any number of chemical constituents satifying the requirements (1) that it is
homogeneous and (2) that it has a definite boundary" In this sense we are attempting to
mathematicaly describe 5 phases at the maximum.

2. SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS DESCRIBING THE FLOW

We start with the presumption that the system of all equations describing the
macroscopic behavior of the flow has to be solved numerically. Therefore we discuss some
details that are important for the integration at the very beginning of the derivation of the
equations.

The flow is described by means of a vector of variables depending upon space and
time. Writing the conservation equations for mass, momentum, and energy for a given
control volume at a given time, local instantaneous formulation, one can describe in general
the flow if the time scale of the integration and the length scale of the space discretization
resolve all frequencies and wave lengths inherent to the studied phenomenon, i.e. the time
scale of the parameter changes is comparable to the integration time step and the
structural length scale is comparable to the available discretization size — direct simulation.

The local instantaneous conservation laws can be formulated in different ways. In
what follows some of them will be discussed briefly.

(1) The most popular way is to formulate the conservation laws as being valid only
for the space occupied by the velocity field in the so—called separated flow models. In this
case, the local instantaneous conservation equations for single phase flow are applied to
each of the velocity fields and therefore the generated equations are valid for the time and
space dependent volume occupied by the particular velocity field only. In addition, local
instantaneous balances of mass, momentum and energy are formulated at the interfaces as
boundary conditions — sometimes called jump conditions — e.g. Ishii [65] (1975). The jump
conditions are valid at the interfaces only. Both groups of local instantaneous conservation
equations are not valid for all of the space and time domains under consideration.
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(2) Another way is to formulate the local instantaneous conservation laws as being
valid everywhere in the space and time domains under consideration, i.e. in the bulk of the
velocity field, at the interfaces, and outsides of the velocity field. This means that the
equations for each particular velocity field are defined in a control volume equal to or
larger than the subvolume possibly occupied by the velocity field under consideration. The
equations generated in this manner are called local instantaneous field conservation
equations — see Bedereaux et al [86] (1976), Kataoka [126] (1985).

(3) A third group of local instantaneous equations can be formulated for an
observable control volume. The word observable is used here in the sense that the control
volume possesses a size comparable to the size of the sensors of the measuring instruments,
i.e., has a finite size.

The local instantaneous volume fraction of the velocity field is equal to one, o =1,

in the first formulation for the regions occupied by the velocity field of interest. The
volume averaged instantaneous volume fraction arises after a volume averaging.

In the second formulation, the control volume is divided into an infinite number of
nonuniform subvolumes so as to define in each of them the local instantaneous phase
volume fraction, ), as a velocity field existence function being zero for nonexisting velocity

field, and one for existing velocity field. The volume averaged instantaneous volume
fraction arises after a volume averaging. Subsequent time averaging defines the volume and
time averaged volume fraction. Performing time averaging, the local volume fraction is
easily obtained.

In the third formulation the control volume is divided into a finite number of
uniform subvolumes. In this case the local instantaneous volume fraction assumes
continuous values between zero and one in the control volume. Again, different kinds of
averaging lead to time and/or volume averaged local volume fractions.

For practical applications all of the three above discussed formulations lead to
useful results. The first approach formulated for the first time the local surface
conservation equations ( sometimes called jump conditions) and after averaging the
averaged interface conservation equations and the averaged macroscopic quantities. The
second resolved the criticism that the local instantaneous equations defined by the first
formalism are not field equations. The second formalism provides local instantaneous
conservation field equations valid in all the space and time domains of interest. The
subsequent averaging leads to the same averaged interface conservation equations and
macroscopic quantities. The third formulation is very practicable for free surface modelling
allowing all wave lengths and frequencies, for deriving nonlinear jump conditions resulting
from the interface curvature — see Ramshaw and Trap [93; (1978), Zuber [102] (1979),
Banerjee [103] (1984) among others, or for direct simulation of multiphase flows with future
computers.

In the authors view, there are no arguments against the simultaneous interpretation
of the local instantaneous volumetric fraction in the sense of the three above discussed
formulations:

— equivalent to "one" only for the regions occupied by the velocity field under
consideration,

— equivalent to the "velocity field existence function" that is defined in the total time and
space domain under consideration and takes values of 0 or 1, and finally



8 Theoretical basics.

— identical to the heterogeneous local volumetric fraction in finite volume formulations.

We call further this interpretation the triple interpretation of the local instantaneous
volume fraction of the velocity field 1.

Usually for practical applications the time scales of integration and the length scales
of discretization are much larger than the system characteristics due to the limitations of
the present day computers. So in order to be practically useful, the instantaneousaneous
conservation equations should be appropriately averaged. The averaging is required also in
order to interpret measurements which provide observations of some averaged flow
properties. Two different approaches are known to express averages of the products as
products of averages in the conservation equations: (a) definition of distribution coefficients
or tensors (requires large numbers of constitutive relationszl; (b) weighted averages
(introduces new dependent variables, retains the dimensions of the problem). There is a lot
of literature published from the community searching for appropriate averaging procedures.
The proposed averaging schemes can be classified as follows:

I. Time and/or volume averaging:

(a) Cross section spatial averaging (simple kind of volume averaging, reduce dimensions of
the problem): see Zuber [51] (1964), Zuber and Findlay [52] (1965), Wallis [53] (1977),
Yadigaroglu and Lahey [54] (1964), Panton [55] (1968) and for rigorously derivation.
Delhaye [56] (1976) and Delhaye and Achard [57] (1977).

(b) Time averaging — the most popular: In three fundamental papers Teletov [58, 59] (1945,
1957) and later in [60] (1958) formulated the instantaneousaneous and the averaged
equations of conservation of mass, momentum and energy for a twophase one—component
flow (preceded by the two—fluid super fluidity Helium 2 model of Landau 161] (1941)).
Teletov’s equations — today sometimes called unfounded "ad hoc equations' — are later
being used in thousands of publications concerning different aspects of twophase flows.
More rigorous time averaging for one—component twophase flow is given in Rahmatulin
[62] (1956), Drew [63] (1971), Frenkel [64] (1973), Ishii fss] (1975), Delhaye [66, 67] (1976)
and Delhaye and Achard [57] (1977).

(c) Volume averaging — the averaging volume length scale is much smaller then the length
scale of the macroscopic changes: for rigorous derivation see Nigmatulin [68, 69] (1977,
1978) (further information in Dobran [70—73] (1983—85), Iwanga and Ishihara [74] (1980)
among many others).

Time and volume averaged equation have virtually identical form but different
interpretations of the averaged terms.

d) Combinations of space and time averaging: Delhaye and Achard [57] (1977), Drew [63]
1971), Bataille &75% (1981), Bataille and Kestin [76] (1981) among many others. For

example Bataille [77] (1988) classified the existing combinations of averaging procedures in

two groups: In the first group the distance between the particles (=n'—1/ 3, n being the
number of particles per unit volume of the mixture) is much less than the heterogeneity of
the continuous phase without discrete impurities. For this case it is advisable to average
first in a control volume with characteristic sizes much less than the heterogeneity and
much bigger than the characteristic particle size, and to perform thereafter averaging in a
time interval much less than the characteristic time constant of the process studied. In the
second group the distance between the particles is much bigger than the heterogeneity of the
continvous velocity field. The fluctuations of both structures are influencing each other. In
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this case, a time or statistical averaging is advisable. Although the equations resulting from
the two kinds of averaging look very similar, they contain important and different
information as to the procedure to formalise different phenomena, and how to measure
them.

I1. Ensemble averaging:

The ensemble averaging is in fact the determination of all possible realizations of the
system parameters, determination of the probability distribution over all the possible
realizations, and a probability weighted average over all possible realizations — Buyevich
[78] (1966) Batchelor [79] (1970), Buyevich [80? (1966), Selesnev [81] (1976), Buyevich and
Shchelchova [82] (1978). The closure conditions for the resulting averaged equations are
difficult to constitute.

Unfortunately the rigorous ensemble averaging and some combinations of the above
mentioned types of averaging results in very complicated equations and need large numbers
of up to now not defined constitutive closure relations. The discussion about which of the
above techniques is most rigorous and in the same time practicable is not closed and having
in mind the development o? turbulence research in one—phase fluid mechanics in the last 50
years it cannot be foreseen when this discussion will be completed. And even having the
final form of one "well established" set of averaged equations the problem with the
practical application is not solved automatically. One needs appropriate integration.
methods for any given class of initial and boundary conditions. It is well known that even
for simple twophase flows there are no universal theorems for uniqueness and stability of
the solutions. So, apparently the dilemma arises: on one hand to stop the application and
wait until the above circle of problems is solved, which is not serious; or, on the other
hand, to make "compromises" in the application using solvable systems and available
closure relations, developing and sophisticating the solution methods for the so obtained set
of equations in order to be helpful in the daily need to analyze such kinds of flows for
practical design and licensing and at the same time to provide experience with the
numerical methods and constitutive relationships integrated into the model. Even the
latter is much easier to say than to do for multiphase flows. Fortunately the division of the
existing methods into two basic groups is conditional because the solution of the system of
the resulting equations is not possible without concretization of the actual flow pattern or
topology. The latter is nothing else but replacing the ensemble averaged systems with time
and volume averaged systems — see the discussion in Deich and Phillipov [83] (1981) p.36.
That is why we prefere in this work to follow the Teletov—Ishii—Delhaye scheme of deriving
the conservation equations under consideration of the porosity of the space:

1. Write the equations representing the local instantaneous conservation principles.
2. Perform time averaging.
3. Perform volume averaging.

The local instantaneous equations obtained as a result of the first step are valid on
the micro scale being of order of the smallest flow observation that we can make, but on a
scale much larger than the molecular scale, i.e. they average the motion of individual
molecules and operate with macroscopic parameters like pressure, temperature, density and
velocities representative for large ensembles of molecules. Thus the first step of averaging
leads to loss of information of the thermodynamic behavior of the system. The lost
information must be provided by the first group of constitutive relationships, namely the
equations of state. The equations of state provide the relationships between the microscopic
molecular motion and the macroscopic parameters.

The time averaging introduces new terms in the equations describing the turbulent
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pulsation of the flow parameters. If we neglect these terms, we filter the high frequencies of
the oscillations of the flow parameters. If we are interested in this information, we need
additional constitutive relations for the describing of the turbulent flow behavior. In addition,
time averaging means that all source terms of the equations obtained are representative for
the integration time step. Consequently, the source terms must not be local instantaneous
values at the beginning of the time step but {ime averaged values taking into account the
unknown changes of the driving forces during the time step which needs additional care
when formulating the closure constitutive relations.

The volume averaging enables us to operate with parameters representative of
control volumes larger than the characteristic length of the largest structural
characteristics e.g. bubble or droplet diameters, surface wave lengths, etc. At this stage of
the averaging, if we proceed to work with the volume averaged parameters only, we will
lose information on the spectral distribution of the characteristic structural dimensions and
wave lengths. In many cases this information is very important in order to determine the
flow structure and topology. Therefore it should be provided again by constitutive
relationships or additional differential equations and constitutive relationships. Again, like
withy the time averaging, the source terms for the resulting equations must be wvolume
averaged over the spectral characteristics of the length scale of the flow structure.

2.1 PRINCIPLE OF CONSERVATION OF MASS

The purpose of the following chapter is to present the mathematical form of the
principle of conservation of mass for each velocity field and for each inert component inside
each particular field. Thereafter we will show an alternative notation of the same principle
for dispersed inert solid particles with equal diameters carried by a continuum. Using the
same idea, we will derive an equation describing the conservation of the number of nuclei
for spontaneous evaporation or condensation and show the relationship between this
equation and the equation describing the conservation of the number of the originating
droplets or bubbles (discrete phase).

The principle of conservation of mass for plane geometry and one—phase flow has
been formulated for a first time in the form of a partial differential equation by Jean le
Round d’Alambert in the pioneer papers Traite...des fluides (1744) and Theorie generale
des vents (1745), and was generalized to its contemporary form in a few papers by Euler in
1757.

Having this forerunner and following the Teletov — Ishii — Delhaye — Kataoka
concept it is a straightforward step to write the local instantaneous mass conservation
equation of the velocity field "1" for the situation schematically presented in Figure 2. The
size of the region of interest, called computational region, is much larger than the size of
the local structure D & Consider a control volume dVol, placed inside the computational

volume. The size of the control volume is much larger than the molecular free path length.
The control volume is the smallest possible observable volume, which means that its size is
comparable with the size of the sensors of the measuring instruments as shown in Fig. 2 a)
trough d). Fig. 1 shows the control volume in more detail. The control volume dVol is
occupied partially by non movable structures. The geometry of the structures inside dVol is
described as follows:

(a) 7, is the part of dVol available for the flow. 7, 18 called local volumetric porosity in the



IVA3 Code. 11

following. The part of dVol occupied by structures is therefore 1 — Ty

(b) 7" belongs to the n—th of the six surfaces dF™ defining the control volume dVol. 4" is

the part of the surface dF™ available to the flow. The 'yn’s are called surface permeabilities
in the following. Note the difference from the permeability coefficients usually used for
description of the pressure drop in porous media. The part of the surfaces occupied by

nonmovable structures is therefore 1 — fyn.

Inside the volume available for the flow, dVolg ow (within dVol) we assume that

three velocity fields exist. Each of the velocity fields is designated with 1, wherel = 1, 2, 3.
The instantaneous geometry of the velocity field is defined in a similar way as the
nonmovable structure:

(a) a; is the part of 7,4Vol available to the velocity field 1. o is called local instantaneous
volume fraction of the velocity field 1 in the following.
(b) 0}11 belongs to the n—th of the six surfaces defining the control volume. alllfynan is the

part of the surface available to the velocity field 1. The o™ are called heterogeneous volume
fractions in the following.

We define the macroscopic density p1 only within the space of dVol occupied by
velocity field 1. Outsides velocity field 1 the density py is not defined. The macroscopic
density obeys some law expressed by the macroscopic equation of state. The equation of
state describes the interdependence between macroscopic density, called simply density in
the following, pressure in the control volume and temperature of the velocity field 1.

The above definitions are sufficient to compute the following:

The part of the control volume dVol occupied by the velocity filed 1 is

alfyvdVol (2.1.1)

and the mass within this volume is

P09 71, dVol. (2.1.2)

The mass of the larger computational volume that is designated by Vol, and consists of
many control volumes dVol, is simply the sum of the masses of the control volumes dVol,
namely

I pyoyr,dVol. (2.1.3)
\I/ol "1y

The change of this mass of the velocity field 1 per unit time inside the computational
volume Vol in kg/s
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0
oy dVol. 2.14
a7 {1 o ndvel (2.1.4)

is due to two reasons:

(a) convectional mass transfer through the surface F defining the computational volume
Vol;

(b) convectional mass transfer trough the surfaces separating the velocity field 1 from the
neighboring velocity field designated with m. We call this mass transfer component
interfacial mass transfer in the following.

Next we compute these two components (a) for the control volume dVol and (b) for the
larger computational volume Vol.

Consider each of the six surfaces dF" defining dVol. Define the normal velocity of
the velocity field 1, VIII, pointing outwards from the control volume dVol. With this

definition the mass flow in kg/s of the velocity field 1 through the surface dF" is
.
o] p V17 dF". (2.1.5)

Sum this mass flow over all six surfaces. The result

6
) 1a111p1V1117nan (2.1.6)
n=

is the mass change of the velocity field | in kg/s for the control volume dVol due to mass

transfer across the surfaces dF". Now consider the computational volume Vol consisting of

many dVol’s. Sum all mass flows across the surfaces dF" for all dVol’s. The mass flows at
the common surfaces between neighboring dVol’s cancel. What remains is the net mass
flow at the surface F defining the volume Vol

[ o®p VI dF. (2.1.7)
» A

Thus if there is no interfacial mass transfer across the interfaces between velocity
field 1 and the neighboring velocity field m, the change of the mass of the velocity field 1
within the computational volume Vol with time in kg/s equals the net mass flow of the
field 1 through the surface F

a
B {4 e aval + | afoVioar” <o @19

Next we introduce the effect of the interface mass transfer. The interface mass
transfer can be caused by evaporation, condensation, entrainment, deposition or external
sources. External refers to the regions outsides the computational region Vol.
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The interface in m? belonging to the control volume dVol and separating the
velocity field 1 from the neighboring fields is designated with dF;,. Here, i refers to
interface. Define for dVol some representative normal velocity Vllli. Vllli points outwards
from the velocity field 1. We call this velocity in the following interfacial mass transfer

velocity. It has notting to do with the normal interface velocity. Vllli is the velocity with

which the mass leaves field 1 across the interface due to evaporation, condensation etc.
With this definitions we can compute the interfacial mass flow in kg/s leaving the velocity
field I within the control volume dVol across the surface th

n n
AV1dF Y (2.1.9)

Consequently the mass flow leaving the velocity field 1 due to evaporation,
condensation etc. within the computational volume Vol consisting of many dVol’s is simply
the sum of the mas flows over all surfaces dFy

[J pV];dF] (2.1.10)
F

i 1
li

Here Fli is the interface of the velocity field 1 being insides the computational volume Vol.

It is customary in twophase flow theory to introduce the local interface density of
the velocity field 1 as the interface of the velocity field 1 per unit flow volume dVolg ow

belonging to our control volume dVol

ay = dFy,/dVolg . (2.1.11)

With this definition the mass flow leaving the velocity field 1 due to evaporation,
condensation etc. within the computational volume Vol consisting of many dVol’s can be
simply rewritten as the sum of the mass flows over all surfaces th belonging to all dVol’s.

n _ n _ n —

I oV dFy = [J] g Vigay dVolg o= [ mVia7, dVol == [[[ i, dVol.
f Vol Vol 1

1i 0 flow 0 0

(2.1.12)

The product

- — o V2 (2 1 13)
M=% L ‘

is the mass transferred into the velocity field 1 per unit time and unit mixture flow volume
dVolg ow We call this term local instantaneous mass source density in kg/(m3s) of the
velocity field 1. Note the difference between the mass source per unit volume of the flow, '8
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and the mass source per unit of the control volume dVol, M7y

Thus with the above definitions and considerations we can finally write the mass
balance for a computational volume Vol, namely: The change of the mass of the velocity
field 1 within the computational volume Vol with time in kg/s equals the net mass flow of
the field 1 through the surface F and the interface of the velocity field Fli

0
o \%{ (pyoq— )7, dVol + }{‘j alllplvxllfynan = 0. (2.1.14)
The convective term

[ o) V17 dE" (2.1.15)

can be used in practical applications with different degrees of simplification. The most
important thing here are

(a) the relationships between the heterogeneous volume fractions o:Il1 and local
instantaneous volume fraction Q,

f (o, alll) =0 (2.1.16)
and

(b) the relationships between the surface permeabilities 7n and the local volume porosity
Ty

n —
f'y(71’ 1) =0. (2.1.17)

The simplifications used in IVA3 are described below.

Define indices n of the surfaces dF  belonging to dVol as shown in Fig. 1. Introduce

lim (o]) = o, forn=1..6, (2.1.18)
dvol - €3

1 2

im (7, 1) = 1, (2.1.19)
dr - ¢

. 4

lim (1%, 1%) = 7, (2.1.20)

rdf - ¢
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lim (75, 76) = - (2.1.21)
dz - €

where € is chosen so as to satisfy the inequality:
size of dVol >> € >> molecular free path length. (2.1.22)

With this simplification and after defining the vector 7 as follows

71'
7Z

we can apply the Gauss — Ostrogradsky theorem to the convective term as follows
%‘ f a)p V17" dF = {, (J) { V(o Vy7) dVol. (2.1.24)

Here V, is the velocity vector with components (v, VP Wl) in (r, 6, z) direction,
respectively, and Vyvis the vector with components (ulfyr, g wlfyz) in (r, 6, z) direction,
respectively, and V is the Nabla operator.

Next we discuss the important consequences of this approach.

Definition 2.1.18 means that only the local instantaneous volume fraction is needed to
describe the flow under the assumption of homogenezation (mechanical nonequilibrium
retained) of the phases insides dVol, which is of course a very strong simplification that
introduces unphysical diffusion that has nothing to do with numerical diffusion. It
influences the modeling of disperse flow pattern less than free surface modeling. This
roblem is already recognized and a way to improve it shown by Hirt and Nichols [130]
1981) is also applicable to multiphase mechanics.

Generally speaking, at all of the surfaces 1, 3 and 5 of the control volume dVol three
surface permeabilities in the three main direction can be defined. Therefore the surface
permeabilities defined in this way form a tensor which is obviously symmetric for

infinitesimal dVol’s. All 'yn’s can be computed as space functions in Vol knowing this
tensor. In fact for the practical application six surface permeabilities need to be defined. In
IVA3 we define three of them and in addition rules for the computation of the residual
three (harmonically weighting). In many technical applications the functional relationship
2.1.17 is known and the introduction of the volume porosity must be consistent with this
relationship. We use only its diagonal elements in the derivation of the mass and energy
balances. Further we use the vector v as defined in 2.1.23 containing the three diagonal
elements of this tensor.

Thus the simplification with respect to the geometry definition of the nonmovable
structures is less restrictive than the simplification concerning the volume fractions.

Note that for technical structures the introduction of the local volume porosity is a
convenient formalism to describe the real distances between the flow volumes and to retain
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the mathematical description of acoustic processes unaffected by the geometry description.

Using Eq. 2.1.24 we rewrite 2.1.14 as follows
0
\I{f{ [ 77 (o407,) + V(g V1) — 7,14 ] dVol = 0 (2.1.25)
)

which represents the mass conservation equation of the velocity field 1 in the volume Vol
consisting of many dVol’s and consists of a simple sum of the mass conservation applied
per unit volume of each of the control volumes dVol

g7 () + TV = (21:26).

The dimension of Eq. 2.1.25 is in kg/s and that of Eq. 2.1.26 in kg/s per m® of the control
volume dVol.

The triple interpretation of the local instantaneous volume fraction o is preferred

here rather then only one of the above discussed three interpretations in order to retain the
freedom to use this form for different applications.

For convenience of the numerical integration the source term 7l is split in two non
negative groups of terms

1max’A

m= I (i) (2.1.27)

The source terms having two subscripts are non—negative. The two successive subscripts
denote the direction of the mass transfer. For instance p 'l denotes the transferred mass

per unit time and unit volume of the flow from velocity field "m" to velocity field "I". As a
consequence of this definition, the source terms with two identical subscripts are equal to

zero (p = = 0). We denote with A the region "outside of the flow". For instance

Jip] Means mass transport from exterior source into the velocity field 1. For the mass
transport among the velocity fields and between the exterior sources and the velocity fields
we assume that the mass convectively leaving the velocity field has its concentrations of the
inert components (the mass entering the field has the concentrations of the donor field,
respectively).

Performing time and volume averaging and omitting the averaging signs for
simplicity of the further discussion we obtain the same form as 2.1.1 but with different
interpretation of all of its terms, which now contain products of time and volume averaged
variables.

The local instantaneous mass conservation equation of the microscopic component
"il" in the velocity field "1" (inside the part of the control volume filled with the component
"il”, the net mass flow of the component ”il” must equal the rate of increase of mass of the
component ”il”) is:
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1m ax’A

o _
a7 (Pt + V(o Vi) = 1k 2%y B (i)

(2.1.28)

Note that for gas mixture @, = aq, whereas for mixtures consisting of liquid and
macroscopic solid particles @ # Q.

It is convenient for the description of the transport of the microscopic component
"iI" in the velocity field "1" to replace the velocity component Vil by the sum of the

averaged centre of mass (c.m.) velocity of the particular field, V), and the deviation from
the c.m. velocity or the so—called diffusion wvelocity, Wﬂ, of the inert component with
respect to the c.m. velocity of the field, as suggested by Reynolds

Fick [84] (1855) noticed, that the mass flow rate of the microscopical impurity with respect

the mass flow rate of the continuous mizture including the impurity is proportional to the
gradient of the concentration of this impurity

_ 1
%P Vi = — 4DV Gy, (2.1.30)
where
Cﬂ = aﬂpﬂ/(alpl) (2.1.31)

is the mass concentration of the inert component "i" in the velocity field "1". The
coefficient of proportionality, Dh [mz/s], is called coefficient of molecular diffusion. The

diffusion mass flow rate is directed from regions with higher concentration to regions with
lower concentration, which is reflected by the minus sign in the assumption made by Fick,
called later Fick’s law, because many processes in nature and industrial equipments are
successfully described mathematically by the above approach — diffusion processes.
Substituting 2.1.30, 2.1.31 in 2.1.28 gives

9 1 _
a7 (@A Cy 1) + V(ep Gy Vi) = V(egp Dy v ¥ Cy) = 7oy

(2.1.31)

Molecular diffusion has microscopic character, being caused by the endless molecular
interactions. There are special theoretical treatments of how to determine the molecular
diffusion constant in multi—component mixtures which will not be discussed here.

The diffusion can have also macroscopic character, being caused by the macroscopic
strokes between large eddies, having dimensions considerably larger than the molecular
dimensions — turbulent diffusion. In a mixture at rest the first phenomenon is the only
mechanism driving diffusion. In real flows both mechanisms are observed. The higher the
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velocity of the flow, the higher the effect of the turbulent diffusion. The c.m. velocity of the
velocity field can be expressed as an averaged c.m. velocity and a pulsation component

Replacing in Eq. 2.1.31, performing time and volume averaging and omitting any averaging
signs for simplicity of the further discussion we obtain

) , 1
77 (421Cyy7y) + V(0o Cyy Vi) + V(g0 Cy Vi) — V(g Dy 7V Cyp) = 74

(2.1.33)
O. Reynolds assumes

y i
nC Vi = — 92DV Cyps (2.1.34)

where the coefficient of the turbulent diffusion Dfl is proportional to the coefficient of the

turbulent kinematic viscosity (this is not valid for turbulence of electro—conductive liquids
in a strong magnetic field):

t b ot
Djy = vy/S¢, (2.1.35)

where the proportionality is determined by the turbulent Schmidt number (e.g. Sct = 0.77
if no other information available). This coefficient is not a thermodynamic property of the
material as the molecular coefficient is, but a property of the flow. Thus, having for the
total diffusion coefficient

1

¢
% _

Df; =Dy + Dyp. (2.1.36)
we obtain finally

1 A

6 _ max’ _
a7 (aCyny) + Vo (ViCy =D WOl =7y B (ignr#iam) = Wy

(2.1.37)

After differentiation of the first two terms of the above equation and comparing with the
averaged Eq. 2.1.26 we obtain the non—conservative form

aC.
il -
ap(1, 57 + V171:9Cy) =V [op D7 VC] = 7, (1 — Cypiy)-
(2.1.38)

The simplicity of this equation is the reason for the choice of Cil as elements of the
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dependent variables vector describing the flow. As a consequence of this choice the equation
of state of the multi—component mixture, p = pl(p, T), all Cﬂ), has to be derived from the

equation of state of the elementary components of the mixture, Py = pﬂ(pﬂ, Tl)' This will
be a subject of Chapter 2.5.

We denote with I and p the time and volume averaged mass sources per unit time
and unit volume of the flow.

The non—conservative form of the concentration Eq. 2.1.16 for the velocity fields 2
and 3 can be written in another way. Suppose the solid particles of the n—th component of
the velocity field 1, have a diameter D - After dividing the mass of this component being

in unit volume of the velocity field plCnl’ by the mass of one particle p nl %wa’ll, we get the
number of the particles of the component "n" in unit volume of the velocity field "1"

_ 4 3
n_; =~ Cph/ (15 ™yp)- (2.1.39)

We see that the denominator is a constant. Dividing Eq. 2.1.15 and using Eq. 2.1.17 we
obtain

0 _ Fnl
nl nl

This form illustrates the idea how to obtain the equation for the conservation of the number
of nuclei per unit volume of the continuous liquid field,

k
* —
n} = i)nn2 + 1y (2.1.41)

initiating flashing if the field becomes thermodynamically unstable, namely

t
9 Y9 Fno k
a7 (2 7y) + Vagn(Von] — S Tnp)l = 7,( ;—%753— + ).
n2 n2

(2.1.42)

Subtracting the equation describing the solid particles transport, from the equation of the
total number of nuclei, we obtain the equation describing the transport of the number of the
kinetics nuclei only

t

9 k k_"2 o k k

77 (agn 7)) + V. ag(Vong "ok V.ny)] = 7,005, (2.1.43)
c

where with
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k_ . 4
aghy =1y, D‘}’I;I‘Yw +agfpg Tnpg + ap(fyy i) —Byin (2.1.44)

we denote the number of nuclei generated per unit time and unit volume of the continuous
liquid. The particular components of the right hand side are:

flw Frequency of the nuclei generation from one activated seed on the channel
wall;
n{w Number of the activated seeds on unit area of the wall;

flw %—};n'l‘w Number of the nuclei generated from the wall per unit time and unit

volume of the flow (wall cavity nucleation rate);

Dhy Hydraulic diameter (4 times cross sectional area / perimeter);

fo Frequency of the nuclei generated from one activated seed on the particle
belonging to the second velocity field;

aanzi)nz Number of the nuclei generated from the solid particles homogeneously
gg;cfd with the second velocity field per unit time and unit volume of the

g Bulk liquid nucleation rate.

oy Number of the nuclei generated by homogeneous nucleation in the
second velocity field per unit time and unit volume of the flow;

4 Number of the nuclei generated from the dissolved gases in the second
velocity field per unit time and unit volume of the flow;

i Number of the nuclei transformed into bubbles per unit time and unit

volume of the flow;

Because the nuclei have microscopic dimensions, they can be transported not only
by convection, but by turbulent diffusion too. The Eq. 2.1.43 has a physical meaning only if

the second velocity field exists, 0y > 0, and, of course, if there is liquid in the field, which

can evaporate, CM2 > 0. In case of missing gas phase, a = 0, the initial value of the
number of the bubbles in unit volume of the mixture is n, = azn‘{.

If one is not particularly interested in the number of the nuclei, only Eq.2.1.13
should be used having in mind that

_ 4 ,
My kin = fw D“‘hyﬂw + agf o B n o + ag(nyy + 1), (2.1.45)

In case of flashing or evaporation, the balance of the bubble number density can be
described by the following Equation

t
v

) 1 _ .
77 (7)) + V[(ny V4~ ot )7 = 1B = Myeor T Bysp) for @ >0,
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(2.1.46)
where
1 ol is the number of the bubbles disappearing due to coalescence per unit time
and unit volume of the flow;
nlsp is the number of the bubbles arising due to the hydrodynamic bubble
splitting (disintegration) per unit time and unit volume of the flow;
t
v
———1-,6- is the diffusive flux of bubble number density due to the fact that the
Sc
bubbles are in "random motion" in the presence of a void fraction
gradient.

In accordance with Batchelor [79] (1988)

t

v
1 vr1l/2 _ 1/2

st const D,[VIV3]"/* = const D; AV, ,[H(a,)] (2.1.47)
where const % 1,

% “
H(al) 8 -5———{1 - —&————) (2.1.48)
1m 1lm

and a; ® 0.62 is the limit of the closest packing of bubbles.

If in one time step A7, void arises (for 7, a4, = 0, and for 7 + AT, a; > 0) or void
already exists (for 7, a;, > 0,and for 7 + A1, o) > 0) , the expression

. k
1 = (Gony), /AT (2.1.49)

reflects the assumption, that all nuclei in the second velocity field become bubbles within
the time step A7.

In a similar way we write the conservation equation for the condensation nuclei in
the vapour component

t
i k kK 1ok k
77 (37, ) + V. [ AV ng - P> V.ng)] = 7,014 (2.1.50)
c
valid for, CMl >0, a >0, and the conservation equation for the droplet number density

t
9 "3 o (4
77 (m37,) + V.[(ngV, Tof Vng)7] = 7v(n3kin"ﬁ3col+n3sp) for ag > 0.
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(2.1.51)
Vt ‘
—--—g'—t— is the diffusive flux of droplet number density due to the fact that the
Sc

droplets are in "random motion" in the presence of a gradient of the
voloumetric fraction of the droplets.

Again following Batchelor [79] (1988) we write

t
"3
Ct

1/2 1/2
% const Dy [VéVé] 12 2 const D,AV, 4 [H(ag)] / (2.1.52)

wn

where const % 1,

3 123 (2.1.53)
3m %3m -

H(ag) »

and ag ® 0.52 is the limit of the closest packing of droplets.

Again, if one is not particularly interested in the number of the nuclei, only Eq.2.1.34
should be used.

A comparison of nonequilibrium model predictions with experimental data for
flashing in Laval nozzles, carried out by the author [38] (1985), shows that the numerical
simulation of the nucleation density, and of the discrete particle (bubbles or droplets)
density is the right way to obtain a more accurate prediction than with the widespread

approach of assumingi an almost arbitrary number density inside the range of 109+1013.
8

Deich and Philippov [83] (1981) analysed the pressure and temperature distribution inside
the eddies of subcooled steam, and came to the conclusion, that eddies with proper
dimensions serve as a nuclei for condensation, which is an additional argument advocating
the above discussed method.

If we multiply the bubble number density, n, by the surface energy of one bubble,

WD%O’2, we will obtain the surface energy per unit mixture volume. The conservation

equation for this energy is similar to Eq. 2.1.46. It is interesting to note that the surface
energy is transported by the convection and diffusion of the discrete velocity fields but the
terms supplying the change of this energy (kinetic origination, collision, splitting) are on
account of the energy of the surrounding continuous liquid.

2.2 MOMENTUM PRINCIPLE

Fluid dynamics was first envisaged as a systematic science in Johann Bernoulli’s
Hydrodynamics (1737), and Daniel Bernoulli’s Hydrodynamique (1738). The ideas
expounded in these books were formulated mathematically as local instantaneous partial
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differential equations by Euler in two pioneer papers (1752, 1755). In these equations no

dissipation terms like 7 V2V are present. These terms are introduced first by Navier in 1825
on molecular arguments. Later in 1845, Stokes proposed independently the same
mathematical theory of fluids. This theory uses the concept of a stress tensor, introduced
by gauchy a decade earlier. The work of Stokes popularized this fruitful idea in fluid
mechanics.

Our purpose in this Chapter is to extend the Teletov — Ishii — Delhaye formulation
for 1 max velocity fields in a porous body and to define the actual form of the source terms

taking into account the interaction between the separated velocity fields, as well as
between the walls confining the flow and the velocity fields. Thereafter we will discuss the
relationship between the deformations of the velocity fields and the viscous stress.

2.2.1 NON AVERAGED MOMENTUM EQUATIONS

The time rate of change of momentum of a body equals the net force ezerted on it
(Newton). We applied this principle for each velocity field in a control volume

)
7 (g Vi1,) + VeV V + 7)7] + o7 Vo + (o408 + §) 7,

1 max
= Tylta1Var —ma V1 + mzl (b1 Vin — Hm YY) (2.2.1.1)

and for each of the three space directions. The scalar notation of the above equation needed
for the construction of the numerical solution is given in Appendix 1. When formulating
the momentum transport resulting from the mass transfer among the velocity fields and
between external sources and the velocity fields, we assume that the mass leaving one and
entering another velocity field has the same velocity as the donor field.

The inertial momentum of rotation around an arbitrary oriented axis of a control
volume of continuum is proportional to the 5th power of the linear volume dimension and
the volume itself is proportional to the 3rd power of the linear dimension. From the
mechanical equilibrium condition for all angular momenta around an axis for vanishing
dimensions of the control volume, one obtains the symmetry of the components of the
viscous stress tensor (see Schlichting [87] p.50): Ted=Tor Tez=Tar T0s= T2l

Each velocity component can be decomposed in Taylor series. The linear part of this
decomposition corresponds to small movements of a control volume. The linear part can be
properly rearranged, and one sees that each small movement of the continuum consists of
deformation, translation, and rotation. In the classical mechanics for Newtonian fluids, one
looks for a relationship between the deformation of the velocity field and the stress. Usually
the heuristic approach proposed by Helmholtz and Stokes is used. This approach contains
three main hypotheses éee Schlichting [87] p.58), namely:

a) the wiscous siresses are caused only by deformations of the wvelocity field
Navier—Stokes) (change of the form of the volume for constant volume, or change of the
volume itself for constant mass in the initial volume, or both simultaneously),
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éb) the viscous stresses are linearly dependent on the deformations of the velocity field
Newton),

(c) this dependence is invariant to the chosen orientation of the directions of the azes of the
coordinate system.

The mathematical notation of this hypotheses is
r=n[V+ TV +30(divV) 6 (2.2.1.2)

where 7 is the second order tensor for the momentum flux, V.V is the dyadic product of the

Nabla — operator and the velocity vector, (V.V)T is V.V transposed, div V is the divergence
of the velocity vector and 6 is the unit tensor whth diagonal elements equal to one and
non—diagonal elements equal to zero. The viscous stress components needed for the
construction of the numerical solution are given in Appendix 2.

It is important to emphasise that inspite of the fact that several processes in fluid
dynamics are successfully described by the above hypotheses, that they are only hypotheses,
which are not derived from experiment, neither proven by abstract arguments.

Lets us repeat the background conditions: (a) continuum, (b) small velocity changes,
(c) only the linear part of the Taylor series is taken into account, and therefore (d) linear
dependence between stresses and velocity deformations.

This limitation of the hypotheses has to be borne in mind during practical
applications.

2.2.2 AVERAGED EQUATIONS

Equation 2.2.1.1 is local instantaneous. Usually in practical applications averaged
properties of the flow are of interest. That is why averaging of this equation in a
characteristic time interval and in a given control volume is necessary.

We replace the instantaneous values of the velocities V by the sum of the averaged

value V and the pulsation components V’ with respect to the averaged values V=V+V’,
perform time averaging in a time interval much less than the characteristic time constant of
the process considered (Reynolds) and thereafter averaging in 2 space volume, and obtain
the following momentum equation (the averaging symbols are dropped again for simplicity)

57 (Vi) + VAaylo (V V4 V V) brh) + oy o + (oo + ),
|
max
=V maVit 2 (Vi — V1) (2.2.2.1)

The scalar notation of the averaged momentum equations needed for the construction of
the numerical solution is given in Appendix 3. In reality, the velocity pulsations depend on
the pulsations of the volumetric concentrations too. Thus to obtain a more general form of
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the averaged equations needs the introduction of aI=51+ai, p1=ﬁl+pi etc. This leads to

very complicated systems, because additional variables are introduced that characterize the
turbulence and for which no information is now available on how they can be calculated.
For this reason, we confine our attention to the above described much simplified approach.
This approach describes correctly the case of missing dispersed phase.

The reader can find further development of the theory for the case of dispersed flow
of droplets and gas without viscous terms by Besnard and Harlow [88] (1985).

2.2.3 REYNOLDS STRESSES OF TURBULENT PULSATIONS

We see from Eq. 2.2.2.1 that the products of the pulsation velocity components,
called Reynolds stresses, act on the flow introducing additional macroscopic cohaesion inside
the velocity field. The search for a proper way of a quantitative estimation of the Reynolds
stresses for multiphase flows is in its initial stage. One of the possible ways for its
formulation is the use of the analogy with one—phase fluids. Such a variant is the use of the
Boussinesq hypothesis (1877) for the turbulent eddy wiscosity inside the velocity field,
namely:

VPV = g 1V + (W) T] 4 2 of(div V +K) 5, (2.2.3.1)
where k is the kinetic energy of the turbulent pulsations of the velocity component,
k= %(u’u’ + vV + ww’). (2.2.3.2)

The scalar notation of the components of the Reynolds stress tensor needed for the
construction of the numerical solution is given in Appendix 4. After replacing the Reynolds
stresses in the averaged momentum equations with their counterparts from Eqgs. 2.2.3.1 the
terms containing k are absorbed by the pressure gradient, because the system pressure is
formed by the molecular as well as by the turbulent pulsations. The Boussinesq hypothesis
does not solve the problem of the turbulence description in the velocity field. It simply
transferres it into the search for a formalism for estimating the so called turbulent dynamic

viscosity coefficient nt.

2.3 ENERGY PRINCIPLE (FIRST LAW OF THERMODYNAMICS)

Euler has considered the flow density as a function of the pressure p = p(p) only and did
not need an equation of conservation of energy to describe the flow completely. Later with
further development of thermodynamics, it became clear that fluid density depends not
only on the pressure but on the temperature p = p(p,T) as well. The German physician R.
~J. Mayer in 1842 and the English scientists J. P. Joule in 1843 to 1867 have shown through
their experiments that mechanical work or kinetic energy can be transformed into internal
energy of the fluid in a closed system by compression or viscous dissipation. Both scientists
stated that the energy can be neither created nor destroyed: it can only change in form.
This fundamental principle is contained in the first law of thermodynamics. Thus the need
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arises to formulate the energy principle for a flowing continuum. Probably B. de Saint
Venant 1839 was the first to use a simple form of a one—dimensional equation of
conservation of the energy. B. Riemann (1826—1866) [97] has used (probably for first time)
a transient equation of conservation of energy in a perfect gas. With time the energy
conservation equations for open systems became more complicated, taking into account
more possibilities of energy transformation from one form to another including phase
changes. When writing the energy equation for the velocity field 1, our task is reduced to
the extension of the Teletov—Ishii analysis, which is for two velocity fields and
one—component twophase flow to a formulation for lmax velocity fields describing

three—phase, three component flow in porous body.

The energy principle formulated for each velocity field is: The sum of the rate of
heat added to the velocity field inside the control volume from the surroundings plus the rate
of work done on the velocity field inside the control volume is equal to the rate of change of
the energy of the velocity field as it flows through the control volume. Thus the instantaneous
energy conservation equation for unit flow volume is

max V2 max 6a

d
I {[ i El ailpil(eil + )]’)’ }+ - ( 2 Pﬂ ‘5—)

Imax V?l
+ V{[ E alp (& + py/og + 5Vl

V.[(ey7- V)] - V.[(al)\% VIPY) + 7 [oyp (8- V) + V)] =

7, {(.'1"’ + E (“nAlhnAl “”nlAhnl) + /LMAthAl _‘u'MlAhMl

2 2 2

A 53 ” VhAL Viia " VAl VMIA
PnAl™ 9 " Hpa™o /‘MAr”z— PMIATD

lma.x

I v Virm/2) — My + Van/2)

+ 2 (g + Vig/2) = i gy + Vg /20, (2:3.1)

where i=n, M. We denote here with * the specific enthalpies of saturated steam or water
after evaporation or condensation, respectively. For instance Koy €nters the gas phase

with hM21—h"(p) OT g1y €nters the liquid phase with h’(le) , where h"(p) is the steam
saturation enthalpy as a function of system pressure and h’(le) is the water saturation
enthalpy as a function of steam partial pressure.

In order to ensure consistency with the second law of thermodynamics we take into
account in the energy equations the power of all acting forces that are considered in the
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momentum equations — see Kolev [37] (1985) p.6, Kolev [39] (1986) p.5 or in Arnold [104]
(1988) p.258.

2.4 ENTROPY PRINCIPLE (SECOND LAW OF THERMODYNAMICS)

The purpose of the present Chapter is to derive the entropy equations from the mass,
momentum and energy conservation equations presented in the previous Chapters.

2.4.1 NON AVERAGED EQUATIONS

We transform the energy Eq. 2.3.1 through the following steps:

— Express the specific internal energies of the components by

&g = hy —py/py, (2.4.1.1)
and obtain

ima,x "max Bpﬂ
{ _E_ aypy(hy +V11/2)’)’} Ty 23_ % 77)

imax 2
+v.{[ D alpll(hﬂ+Vi1/2).Vi1]fy}... (2.4.1.2)

After differentiating the first and the third terms, and comparing with the mass
conservation equations of the inert components nl, and of the noninert components Ml in
the velocity field 1, we obtain

'ma.x ﬁhﬂ "max
2 leney (7 g + Vi vyl = (2 “nl?f“)

(2.4.1.3)
We multiply each of the momentum equations with one of the corresponding velocity
components U,V W, respectively, and subtract them from the corresponding energy
equation. The result is

Imax ohyy max ap;)
= oty g + Vi1 Vi) =12 ey, 5+ Vigr el + ag (V)

i=1
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]. ” -
= V(A V)l = 7, [‘1'1 +5 o A(Bn Ay —Bpy) + (b — Ban)
1 5 1 9
T E a2 Vaar V)™ — A 3 Vs — V)]

1 9 1 9
a1 3 Vvar V)™ — #via 3 Vana—Vay)

1
T g i b (Ve V)]
mey YMmPMml T ML T 2 Mm T M
1 2] -
+ D byl =By + 3 (Vg = Vi) NEEEY (2.4.1.4)

In this case the irreversible power of energy transformation due to the viscous dissipation is

7. (TVV),. (2.4.1.5)

A part of the dissipated power, i.e.
V- V(ey7.m) (2.4.1.6)

cancels after the subtraction.
At this place we make use of the Gibbs equation (the thermodynamic definitions of

temperature and pressure are used here)
Tds = de + p dv. (2.4.1.7)

This is a differential equation of state which is extremely important in the thermodynamic
theory of compressible substances. It relates the difference in entropy between any two
infinitesimally separated states to the infinitesimal differences in internal energy and
volume between those states. Note, that the Gibbs equation is valid only if "s" is a smooth
function of "e" and "v" i.e. the differentials "de" and "dv" are uniquely defined (smooth
equation of state). Using the definition of enthalpy (a mixture of thermodynamic and
mechanical properties)

h=e+pv (2.4.1.8)
the Gibbs equation can be written as
Tp ds = p dh — dp. (2.4.1.9)

After replacing "ds" in equation 2.4.1.4 with the Gibbs definitions of the specific
entropy of the corresponding components

Typyydsy) = pyydhy) — dpy, (2.4.1.10)

we obtain
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1
max 6 '
1
Tl E el o+ Vi1 sp)) = V(e VI] + o (miV)) = 1,9,
(2.4.1.11)

Using the equations for conservation of mass for each component

0 .
a7 (1) + V(oo Vi) = iy 1=10,M,
this equation can be written in conservative form
i i
max max max 1
{6"[( 2] T B ey Visp)al =y (B sy = V(e T

+ o1.(rVV), = 1,9 (2.4.1.12)

After replacing the instantaneous values of the component velocities with the sums of the
c.m. field velocities plus the deviations from the c.m. velocities '

V=V, + 8V, (2.4.1.13)
taking into account that the specific mizture entropy 5 of the wvelocity field can be
calculated as follows

Imax
s = =z by alpﬂsﬂ, (2.4.1.14)

using Fick’s law

_ 1 _ 1
a0 8y = — oDy py = — oo DV Gy, (2.4.1.15)
and introducing the Prandtl number

1_A° 1”}
Pr) = —j\f— (2.4.1.16)
1
we obtain the following form of the local instantaneous entropy equations

b ima.x
Ty e ) + Ve Vin) =70 B sy
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lm aXx

-V. [alpl(cpl P——V T+ T E 5,4D; IV C)N + g1 (rWV) = 71,9,

(2.4.1.17)

2.4.2 AVERAGED EQUATIONS

After replacing the instantaneous values of the field velocities with the sums of the time
averaged field velocities plus the fluctuation components

V=V +V; (2.4.2.1)

and averaging the so obtained equations, we obtain the following form of the entropy
equations (for simplicity we drop the averaging signs)

i
9 max ’
Ty {grlepprny) + Vg Vin) = (T aysy) + T(agp Vim}

v "max
| 1
- V.[ozlpl(cp1 P?lv T, + T1 E 5DV Ci) + (VW) + g1 (mVV)) = 7. q;.
(2.4.2.2)

In the next Chapter we discuss the different terms of the above equation.

2.4.3 ENTROPY DIFFUSION

For the practical applications of the entropy equation we need to define more accurately
the term

V(P8 V}7)- (2.4.3.1)

A possible assumption in this case is that the mechanism of entropy transport caused by
pulsations is a diffusion like mechanism, which means

Vt

1
V. (alplslVlfy) X T— V. (alpl pl v Tl) (2.4.3.2)
l

where
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{
Pr{':.pl_cR]i/_]L

t 3
A

(2.4.3.3)

is the turbulent Prandtl number, /\11; is the "turbulent coefficient of thermal conductivity" or
"eddy conductivity". Note that the thermal diffusion Vi/ Pr, is a thermodynamic property of

the continuum 1, and v / Pr1 is a mechanical property of the flowing field | [Prl v 0.7+ 09in
channels, whereas for ﬂow in jets (i.e., in "free turbulence") the value is more nearly 0.5
—see Bird et al [98] (1960), Pr{ v 0.5 + 2.5 for water, air and steam — see Hammond [99]
(1985)].

Defining the total entropy diffusion coefficient Df by

S Vl l/{ ima.x 1

1

2 u'{ o"fI‘1 'max BC
)(T)p,Cl+Tl x SlDﬂ( )T]Vsl

1Vs (2.4.3.4)

we can write finally the following form of the entropy equations

i
max

J
Tl {7);(0‘1/’1517‘,) + V-(O‘IPISIVI')’) ( E #11511)} v. [(alplDl Vsl)’)’]

+ o7 (mVV) + 1. (m:VV) = 7 q;. (2.4.3.5)

2.4.4 SOURCE TERMS

In order to obtain the turbulent part of the source terms in the entropy equations we make
analogous transformations to those made in the previous Chapter. Replacmg the
instantaneous velocities by VAI = VAI + VAI’ \Y% 1A = VlA + VIA’ V = V + V V1 =

vy + Vi, in the quadratic terms and averaging in time we obtain (for s1mphclty We drop
the averaging signs)
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lmax lmax

Q=+ B matiarty) + E o eyt + D b (B By

lmax

1 2 1 2 1 2 t
ez V) = mpa g VgV T+ B g g (V= V)" + g,

(2.4.4.1)

where
1

b L v v e L, v B u L voov)?
LAY VALY VIR U VYAV N (e AN e U
(2.4.4.2)

We see that the mass transfer between the velocity fields and between the fields and
external sources causes additional entropy transport, because of the different pulsation
characteristics of the donor and acceptor fields.

The question arises how to estimate V’. From the definition of the specific energy of
the turbulent pulsations

2_1,2_1,.,2 2 2
we see that V] is of the order of magnitude of k). For k) we have information either from

algebraic models or from the k—e model of turbulence.
Another possibility to describe the turbulence anisotropy is by introducing

. ) 2 01 2 2012 2012y s
anisotropy coefficients of turbulence F ; = uj"/(2k)), F g = v} [(2%k]), F = w] /(2k7), in

addition to the k—e model. Wang et al. [100] (1987) report that for a vertical bubble flow
with low gas concentration F gis nearly constant, F g & 025, and for the other coefficients

the authors give a table with empirical constants. There is a conceptual problem in this
approach because the k—equation is derived under the assumption of isotropic turbulence.

2.4.5 VISCOUS DISSIPATION

Next we compute the irreversible power caused by the viscous forces due to deformation of
the mean values of the velocities in the space:

—ayp| Py = 1. (TVV), = V.(oqr. V) = V-V (qmp7) =

duy Oy oWy
= 1{7I(Trrl T asr 1 T HT_)
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1R ar ) ToaRaw H T W ¥ Tea R T

+ 7 (T (?u1+T 6v1+T Bwl)} (2.4.5.1)
T\l Fz T Ta Tz T Tz2l Tz

For a symmetrical stress tensor ool = Tl Tl = Tz Tarl = Tral V€ have

—oypi Py = o 6u1+ (-1-—6vl+E ) + il
P = AN T T 10704 INW T U Y222l Tz

Tl T G T e T L) T e Uy

(2.4.5.2)

Now replacing the stress tensor components using the Helmholtz and Stokes hypotheses,
Eq. 2.2.1.4, we obtain the final expression :
SN S S N B S C S
%P =~ am Bn(e)” + 1 ar o) + e
ov.
1 1 1 «
ez + 7 (R 1 v

K
r

!
+[5;+I7W~

Owy Ou owp Gy
Tor tw) e e
owp Ov 4 Ow v

1
HRar T®)\ 0 weT L)
B o dw,  ou B Bw
2 1 1 1 1 1 1 | 1
3o + Cear + e Yo lnar 1 (CRag W) T 5l

(2.4.5.3)

We see that as for one—phase flow, the viscous dissipation Py (a) is a positive quadratic
form, Pkl > 0, (b) the mathematical description does not depend on the rotation of the
coordinate system [see Zierep [101] (1983)], and (c) contains no derivatives of the viscosity.

The turbulent pulsations irreversibly dissipate power in the viscous fluid, i.e.

o 1(rVV) = - LGT (2.4.5.4)
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where

Ouio 1 9 Mo W2
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In fact, this is the definition eguatz’on for the wviscous

energy kl‘ We see again that ) a) 1s a positive quadratic form, € 12 0,

description does not depend on the rotation of the coo
derivatives of the viscosity.

(2.4.5.5)

dissipation of the turbulent kinetic
(b) the mathematical

rdinate system, (c) and contain no

We obtain an estimate for the value of ¢ in a given point in space and time from
algebraic turbulence models or from the e—equation in the k—e model.

Thus, we can write the following form of the entropy equations

le
P 1( Ty o1

where

1 1
Ds} = Ti[alpl(Pkl +) +ql + E oy + ML T T [y (P + ) + 4

1m ax’A

1 21 2t
* Bt (Vg V) =i 3 (V)" + g

+ VI'y.Vsl) - V'(alplD§7'VSl) + T M8 = 'vas’i‘,

(2.4.5.6)

[L}]

1
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1max’A ima,x + _
m=_ B 1 E )l = 41 —#
m#l
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lnax
4 max max
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m#l
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m#l
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m#1

we obtain the final semi conservative form of the entropy equation

0s
1 ] +
o1y 57 + V1 7.98) = V (4o Dy7Vs) + 1y sy = 9, Dy,

hy

—hy,

)]
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(2.4.5.7)
in which
q'lh 1 ma.x’A imax
Ds; = T 5 DpmiSam t Avmtvml b, Z | Sit(lm Cip — Hiym)]
m=1 n 1=1
m#l
LY.
1
TrlapPata)+ B agy 3 (Vo Vi)? =g 3 (Vig-Vp)?
m#l
1 ma.x’A
f oy fm? 3 (Ve V)” =~ 3 (Vig=V)’) (2457)
mt¢l

where for lm = 23, 32, 1A (mechanical transport),
Hoim = MmCo

AMim = MmCmp

‘otherwise (evaporation or condensation)
Holm * ”1an1’

Mviim F AMmCmp

and

_ *
m = A, SMml = SMm-

This equation reflects very interesting physical phenomena. We see that velocity
gradients cause energy dissipation Py 20, which generates turbulent kinetic energy. The

turbulent kinetic energy increases the turbulent viscosity by the Prandtl-Kolmogorov law
and helps to reduce the velocity gradients. The irreversible dissipation of kinetic energy
caused by the turbulent pulsation increases the specific internal energy of the continuum
field ¢ 2 0. This dissipation decreases the specific turbulent kinetic energy directly.

If the equation is applied to a single velocity field in a closed system without
interaction with external mass, momentum or energy sources, the change of the specific
entropy of the system will be non—negative, because the sum of the dissipation terms
Pkl+ g is non—negative. This expresses the second law of thermodynamics. The second law

tells us in what direction a process will develop in nature. The process will proceed in a
direction such that the entropy of the system always increases, or at best stays the same (Pkl
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+ el=0) — entropy principle. This information is not contained in the first law of

thermodynamics. It results only after combining the three conservation principles (mass,
momentum and energy). In a way it generalises these principles.

In the case of steady—state one—phase, oq =1, incompressible, V V, = 0, isentropic,
Pt =0 flow with equal velocity gradients in all directions, Taylor [119] (1935)

ow
noticed that ¢ # % 15 1y (%—1)2. In this case the turbulence does not depend on the spatial

direction — isentropic turbulence.

This equation is not only very informative, but very convenient for numerical
integration because of its simplicity compared to the primitive form of the energy principle —
Eq. 2.3.1. This is the reason why we chose the specific entropies of the velocity fields
together with the concentrations of the inert component Cnl as components of the

dependent variables vector as already mentioned in Chapter 2.1. This unique combination
of the dependent variables simply minimizes the computational work during the numerical
integration and therefore makes the computer code faster and the analysis cheaper.
Moreover, it makes the code architecture simple and allows us to include more other
physical phenomena in a general flow model.

Note that the three forms of the same equation, conservative, non conservative, and -
semi conservative are mathematically identical. The introduction of the semi conservative
form is perfectly suited for numerical integration because it ensures proper initialization of
the value of the entropy in a computational cell in which a previously not ezisting field just
originates.

The flow modelling concept which makes use of the specific entropies of the velocity
fields as components of the dependent variables vector, is called "entropy concept" in the
following.

It might be useful for the understanding of the final form of the averaged entropy
equation if it can be compared with the frequently used form written in terms of specific
internal energy. That is why we give this form in Appendix 8.

2.5 THE MIXTURE VOLUME CONSERVATION EQUATION

Any numerical method in fluid mechanics must provide correct coupling between
pressure changes and velocity changes. A very effective approach is to replace one of the
mass conservation equations by a particular combination of all of them, i.e. the mixture
volume conservation equation (MVCE). This equation can be directly discretized and
incorporated into the numerical scheme. Another possibility is to follow the same scheme
as if deriving the MVCE analytically but starting with already discretized mass
conservation equations. The purpose of this section is to derive the analytical form of the
MVCE, to discuss the physical meaning of every single term and finally to show what
makes this equation so appropriate for use by constructing numerical schemes for
complicated multiphase flows:

The MVCE was obtained as follows:
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— Differentiate the mass conservation equations using the chain rule.

— Divide each equation by its particular density. The resulting equitations have dimensions

m3 / (mss). They reflect the volume change balance of each velocity field per unit time and
per unit mixture volume.

— Substitute the density derivatives using the differential form of the equation of state of
each velocity field.

— Compare the so obtained equations with the concentration and the entropy equations
and replace the groups

Js

1 N
oo (7 5= + Vp7.Vs )=Ds) (2.5.1)
aC
(1,57 + V17VC )= DCnl (2.5.2)
where
N
Ds| = V.(a1p1D§7 Vs) ) + 7,(Ds; - ;[{'sl), (2.5.3)
N
DC = V[ D WC ] + 7, (=4 Cyp)- (2.5.4)

— Add the so obtained volume conservation equations and use the fact that ¥ q=1 and ¥
dcu1 = 0 to cancel the sum of the time derivatives of the volume concentrations.

The final form of the MVCE is:

al 3 3
1=1 p1 1 1=1 I=1
where
”1 1 /’1
and
3 a 3 «
1 1 1 1 1
=3 =2y =21 (2.5.7)
a2 1=1pa2 Pl=1f *P

is the definition equation of the velocity of sound of the "homogeneous" mixture of three
velocity fields.
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Alternative forms of the MVCE can be used too, e.g.

3
gP_ + VirVp + V. ( E alVlfy) = E Dal, (2.5.8)
or
3 o 3 3
—a— Inp +1)3 o Vi7.V1np + V. 12 Vi) = 12 Dy (2.5.9)
1 =1 =1

or some integrated forms, where
2
k= pa‘/p, (2.5.10)

2
K = pal/p (2.5.11)
are the mixture isentropic exponent and the isentropic exponent of each particular velocity

field, respectively.

The MVCE has the remarkable feature, that it couples the temporal pressure change
through the compressibility 1/ (pa2) with

(a) the convective specific volume change V.(Z o V}7) of the control volume;

(b) the change of the specific volume of the mixture associated with the net specific volume
change of the mixture due to the mass sources 7v2 pl/ py;

(c) density change due to the spatial pressure, entropy and concentration changes of the
particular velocity fields.

For the case of negligible diffusion
V[ DHVC 3] % 0 (2.5.12)

V (qpD}7 Vs) » 0, (2.5.13)
the RHS of the MVCE contains no differential terms

o 9 +oy, 201
Doy = 1,{ 5 "2 [7;3'1 (Dsy = p1%) + 50 (”nl—”lcnl)}}' (2.5.14)
1

This means that during the numerical integration the influence of the changes of entropies
and concentrations on the creation of the pressure field can be taken into account in only
one step (without outer iterations). This simplifies the program architecture extremely,
speeds up the numerical integration, and therefore makes it cheaper, compared to any other
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approach. This is the reason to choose the MVCE equation in IVA code series instead of
one of the three mass conservation equations.

This is an important difference between the entropy concept presented here that is used in
the IVA code series and the concept used in all other computer codes (e.g. TRAC series
[22, 23, 25, 26] (1981—-1985), AFDM [49] (1990) etc.)

For completeness of the theory we give the MVCE equation in case of steady state
noncompressible flow

3 3 3 ;
V(X qVi1)= £ Do, or V.(Jy)= I Dq, (2.5.16)
where
3 3
I=1 I=1
is the volumetric mizture flow rate, and
=V (2.5.18)

are the volumetric flow rates of the particular velocity fields. In case of neglected diffusion
and no mass exchange among the velocity fields or between the flow and external sources,
we have

V.(d7n) =0 (2.5.19)
or
Jy = const. (2.5.20)

Let us emphasise one specific property of this equation. The term

30:1

)Y -———EV 7.Vp
1=1 P12 1

(2.5.21)

represents the dimensionless change of the density. This fact allows to use for instance
up—wind discretization even of the pressure terms (donor—cell concept), because one
practically discretizes the dimensionless density change in the intervals (Ar, A6, Az).

The above—mentioned feature of this equation makes it very suitable for its coupling
with the momentum equations, for derivation of one equation valid for the mixture, similar
to the Poisson equation for one phase flow.
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3. EQUATION OF STATE

The averaged governing equations are derived from the instantaneous equations. As
already mentioned the averaging of the motion of the individual molecules by the
instantaneous equations leads to loss of information on the thermodynamic behavior of the
system. The lost information must be provided by the state and transport equations.

3.1 THERMODYNAMIC AND TRANSPORT PROPERTIES OF "SIMPLE"
CONSTITUENTS

IVA3 uses a set of analytical approximations of the following "simple" substances:
air, water, steam, uranium dioxide in solid liquid and equilibrium solid-liquid state.
Alternatively, instead of approximations for the uranium dioxide properties the analytical
approximations for stainless steel or corium can be used in IVA3.

For air, the Irvine and Liley [105] (1984) approximations of p, cy h = {(T) and
s=s(T,p=const) are used where the influence of the pressure on the entropy, —R In(p/p O) is~

added, where p o is some reference pressure (e-g. 105) and R is the gas constant of air. For

steam, the Irvine and Liley [105] (1984) approximations of p, Ch S, h = f(T,p) are used.
For water, the Rivkin and Kremnevskaya [106] (1977) approximations of p Cp h = {(T,p)

are used. For the metastable water, the above mentioned analytical properties of Rivkin
and Kremnevskaya [106] (1977) are extrapolated taking into account the discussion by
Scripov et al. [110] (1980). The water entropy as a function of temperature and pressure is
computed as follows. First the saturation entropy as a function of liquid temperature is
computed, s° = s’[p’(T)], using analytical approximations proposed by Irvine and Liley
[105])(1984) and thereafter the pressure correction s = s(s’,p’—p) is imposed as proposed by
Gerland and Hand [113] (1989).

The Irvine and Liley [105] (1984) analytical approximations for the steam — water
saturation line, p’ = p’(T) and T’ = T’(p), are used in IVA3. Consequently the Clausius —
Clapeyron equation for dp’/dT was obtained by taking the first derivative of the analytical
approximation with respect to the temperature.

The steam — water saturation properties are computed as a function of p and T°(p) using
the above mentioned approximations.

Analytical approximations to the properties Py cp, s, h = {(T) of solid and liquid uranium
dioxide as proposed by Fischer, Chawla et al., Fink et al. [112, 114, 116] (1981 — 1990) are
used.

We use for the solid stainless steel properties p, o S h = {(T) the analytical

approximations proposed Chawla et al. [114] (1981) and for the liquid stainless steel
properties p , ¢ , s, h = f(T) the approximations proposed by Chawla et al., Touloukian

and Makita [114, 115]. For solid and liquid corium properties we modify the above
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mentioned two sets in order to obtain a set that is based on a mixture of UO2 and stainless
steel.

For the solid—liquid two—phase region of "liquid metal" we use the assumption of
thermodynamic equilibrium within the velocity field and compute the properties as
explained in Kolev [111] (1990) Ch.IV.C.

The derivatives (8h/dp), (0p/0T) D (8p/Op)p are easily obtained by differentiating the
corresponding analytical approximations.

The transport properties of the "simple" substances are computed as follows. Thermal
conductivity and dynamic viscosity of air, and steam A = A(T) — Irvine and Liley [105
(1984). The water thermal conductivity A = A(T, p) is computed using the Rivkin an
Alexandrov [108] (1975) approximation and the water dynamic viscosity 7 = 7(T, p) and
surface tension o = o(T) using the TRAC approximation, Liles et al. [109] ?1981?. The
thermal conductivity of solid and liquid uranium dioxide and stainless steel, as well as the
dynamic viscosity and surface tension of liquid uranium dioxide and steel are computed
using the Chawla et al. [114] (1981) approximations. For the corium set of properties we
use the transport properties of uranium dioxide.

3.2 THERMODYNAMIC PROPERTIES OF THE VELOCITY FIELDS

The velocity fields of IVA3 are by definition binary mixtures of inert and noninert
components. The main assumption made in Section 1.3 is that in case of gas mixture the
air and the steam possess the same field temperature T1 and obey the Dalton’s law. For

the binary mixture of water and microscopic solid particles, the microscopic character of
the particles allows to neglect the temperature difference with respect to the surrounding
water and to assume that the water and the solid particles possess the same field
temperature. The solid particles in this mixture are incompressible. The needed equation of

state and their derivatives (Bpl/ 0p)s C (apl/ asl) e ’ (6p1/6Cn1)p . (631/(9p)T1 C
1"~'nl "n ’ "l
(asl/aTl)p,Cnl’ (asl/acnl)p,Tl and (aTl/ap)Sl’Cnl, (aTl/asl)p,Cnl’ (arl/acnl)p,sl etc. are

expressed as functions of p, T1 and C al by using the equation of state of the "simple"

substances. Details of the general derivation for mixtures of n components are already
published by the author in [111] (1990) and will not be repeated here. It is only noted that
the expressions used in IVA3 are the simple cases for two components of the general
expressions presented in [111] (1990) for n components.

Thermal conductivity and dynamic viscosity of the air steam mixture are computed using
the mole weight method of Wilke [117] (1950).

In the framework of the entropy concept we have values of p, 5 and Cnl in each
computational cell after each integration step. The corresponding temperature T1 is easily
computed by iterations

old old, mold
Ty =T exp{[s; —s; (T} ", p, Cnl)]/cpl} (3.2.1)
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for p and Cnl = const. For velocity fields that have existed in the previous time level the

iteration (old) starts with the old time level temperature Tcl)ld = T, and for just

originating fields with appropriate initial values (e.g. if liquid or steam is presented — with
the saturation temperature Tcl)ld = T’(p)). Convergence is garanteed unless one operates
beyond the validity of the analytical approximations. Alternatively a method is provided in
IVA3 to compute the temperature from the linearized equation of state

oTy 5‘T 0’1‘1
T,=T, + ('5—) C (51‘513) + ('5“) C (p-p ) (BC;)p,Tl(Cnl_Cnla)

(3.2.2)

except in cases in which the velocity fields just originate. This possibility saves computer
time.

Having the temperature, the system pressure, and the inert mass concentration we compute
the steam partial pressure by means of Newton iterations

C

old nl
Py~ 1= BmiTiAw

new 0 ld N Il]. (3 9 3)

PM1 = Pma % 4
i—(lnl nl 1 T
where
dp
M1 1d
pyry 20d (Hr‘)'r f(py; S Ty) (3.2.4)
starting with the value
1-C
1 1

pI\Olld = n _ (3.2.5)

1-C_,(1- Rnl)
nl R:Ml

The pressures of the second and the third velocity fields are equal to the system pressure p
by definition. Thus we have all what we need to compute all thermodynamic and transport
properties of the "simple" constituents and consequently all mixture properties.

At different places of our development we use the following form of the equation of state

P AL, N 1y dc (3.2.6)
A= lap s 0y .oy 1t (a0 s o -
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So one important group of the closure equations for IVA3 is complete.
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4. NUMERICAL METHOD

4.1 WORKING FORM OF THE CONSERVATION EQUATIONS USED IN IVA3

The IVA3 models is based (a) on two of the three mass conservation equations for each
velocity field, (b) on the MVCE, (c) on the three inert mass concentration equations, (d)
on the three particle number density conservation equations, and finally (e) on the nine
momentum equations for each velocity field and each of the three space directions. The set
of the resulting 21 partial differential equations is integrated numerically under the
following additional simplifying assumptions:

v
P $ 1
(1) Neglect the diffusion terms V.(oypDFWC ), V.(eyp Dy Vsy), and o V.

(2) Neglect the lift forces in cases of dispersed structure.

(3) Neglect the spatial part of the virtual mass forces.

(4) Neglect the turbulence effects on momentum transport.

It is simple matter to remove the first three simplifying assumptions in the code. Removing
of simplification (4) needs probably long years effort from the multiphase community to

provide adequate transport equations (like k—e¢, etc, e.g. [100] (1987)) and a reliable set of
closure relationships for 3D three—phase flows.

4.2 FORMULATION OF THE MATHEMATICAL PROBLEM

Let us formulate the mathematical problem to be solved:

a) The system of 21 nonlinear nonhomogeneous partial differential equations with variable
coefficients describing the transient flow has to be integrated in the three—dimensional
region R.

b) The vector of dependent variables is

T

U @y, @, 8, Cop 1 P, Uy, i wl), (4.2.1)

wherel =1, 2, 3.
c¢) The independent variables are the three space coordinates (r,0,z) and the time 7

U=U(7, 1, 0, 2). (4.2.2)

d) The definition region R is divided through the permeabilities in the three directions
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('yr,fyg,'yz)=functions of (r,0,2), (4.2.3)
where
0<(7.7p7,) €1 (4.2.4)

and through the volume porosities

1, =", (1,0,2), (4.2.5)
where
0<n, <L (4.2.6)

into a number of subregions R, ik

W2

e) The surface permeabilities and the volume porosities are not smooth functions of the
space coordinates in the region R.

f) Inside the subregions Ri ik the dependent variables are smooth functions of time and

space.

g) Boundary conditions act on the outer boundary surfaces of the definition region as
functions of time.

h) In order to construct numerical solutions it is essential that the following sets of closure
equations are defined: (1) approximations for the state and transport properties and
thermodynamic derivatives, and (2) correlations modelling the heat, mass and momentum
transport accross the surfaces dividing the separate velocity fields. We already provided the
information needed for modeling the first group of properties in Section 3. Part II is
devoted on the second group of models.

4.3 IVA3 INTEGRATION PROCEDURE

The integration procedure of IVA3 is a logical sequence of steps needed to obtain a
set of dependent variables for each computational cell satisfying the conservation equations
for each time step under the introduced simplifying assumptions and working hypothesis
for any given class of initial and boundary conditions. We found the following procedure
leading to unconditionally stable solutions:

1. Read:

a) Logical control information;
b) Geometry;

c¢) Initial conditions;

d) Boundary conditions;

e) External sources;

f) Variable permeabilities;
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2. Perform:

a) Impose actual geometry;

b) Store old time level information;

c¢) Impose boundary conditions;

d) Impose structure heat sources;

e) Address non—mechanical constitutive equations;

— Compute thermophysical and transport properties for simple constituents and for binary
mixtures;

— Recognize the flow pattern;

— Compute energy and mass source terms for each particular cell corresponding to the
recognized flow pattern;

(f) Address mechanical constitutive equations:

— Recognize flow pattern for staggered cell;
— Compute drag and virtual mass forces;

g) Compute coefficients of the discretized momentum equations;

h) Decouple the field momentum equations for each direction;

k) Estimate velocities based on the old time level pressures;

1) Impose cyclic boundary conditions in case of closed cylindrical geometry;
m) Quter iterations:

— Estimate new » s}, » Cnl’

with prescribed accuracy all entropy and concentration equations and two of the three mass
conservation equations. This step in addition to the outer iteration complex makes the
IVA3 methods fully implicit.

— Compute the coefficients of the pressure equation;

— Solve the pressure equation for 7+AT;

— Perform convergence, accuracy and time step control;

— Compute velocities for 7+AT;

— Impose cyclic boundary conditions;

— Compute 505 Cory q for T+AT;

ooy Repeat this step as many times as necessary to satisfy

— Control convergence;

— Control general accuracy requirements, if not fulfilled perform the next outer iteration; if
no convergence is achieved reduce time step, recover the old time level situation and repeat
the outer iterations until convergence is achieved;

— Perform the next outer iterations until all general accuracy requirements are satisfied;
Perform temperature inversion;

Optimize time step for the next integration step;
Perform as many time steps as required to reach the prescribed process time;

n
0

p

3. Write restart information for prescribed step frequency, before prescribed CPU time is
reached, and at the end of the simulation.

Next we describe the discretization of the system of 21 partial equations and the analytical
reduction to the linearized pressure equation.
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4.3.1 SPACE DISCRETIZATION, LOCATION OF THE DISCRETE
VARIABLES AND DISCRETIZATION IF THE MASS CONSERVATION EQUATIONS

The flow is defined in the domain shown in Figure 3. The (IM+2)(JM+2)(KM+2)
elementary cells have the form depicted in Figure 4. We introduce the following integer
indices for r direction, i = 1, IM+2, for 4 direction, j = 1, JM+2, and for z direction k = 1,
KM+2 denoting the location of the variables used. The cell boundaries are defined by the
following coordinates Ty 0h, zy . The dimensions of the elementary cells Ar, Af, Az are a

result of a non—uniform space discretization. The cell centres have the coordinates t, 0, z.
The distances between the cell centres are Arh, Aé’h, Azh. The dependent variables (al, Cnl’

5 P, nl,), the state and the transport properties Ty, Py Y )\1 etc., and the volumetric

porosity are located in the cell centres.

To achieve a simple and transparent code architecture, we use the usual layer of
surrounding fictitious cells (see Fig. 3): i=1 and i=IM+2; j=1 and j=JM+2; k=1 and
k=KM+2. The boundary conditions as time functions are applied in these cells. This
practice ensures a uniform integration procedure per time step for the inner cells.

The surface permeabilities To Yo Ty and the wvelocity components U, v}, Wy are

located in the walls as shown in Fig. 4. So all dependent field variables are defined at the
cell center and all flow variables are defined at the surface at the cell. This forms the
so—called staggered grid system that is extensively used in fluid mechanics. The reader can
find the considerations leading to the definition of the pressure and velocities in different
space locations for instance by Issa in [118] (1983). For the example of the limiting case of
the steady state momentum equation having convective and diffusion terms and a pressure
gradient, Issa shows that the location of the above mentioned variables at the same point
and the use of discretization schemes of the first order of accuracy leads to unphysical
(chequer—board) oscillations. The staggered grid system is not necessarily needed if high
order discretization methods are used.

Note, that the surface permeability is a tensor with nine components. T g and 7,

are its diagonal elements. For the construction of numerical schemes the other 6
components are needed too. For this purpose the definition of the surface permeabilities 7;:,

'yz and 'yg in the centre of the elementary cell, shown in Fig. 4, is necessary.

If the surface permeability between two neighbouring cells is equal to zero, no mass
can be transferred between them in the direction perpendicular to the surface.

As a consequence of the definition of the velocity location on the cell surface and the
homogeneization of the other properties inside the cell, the mass leaving the cell has the
properties of the cell. This is called further donor—cell concept — Harlow [5{(1971).

All field variables have three indices, i, j and k. For simplicity, we omit writing the
indeces except in the case where one of them is to be distinguished from 1i,j,k. For example
pi,j,k+1 is replaced by Pyt

The old time variables obtain an index "a". The time variables not indicated with
"a" are either in the new time plane or are the best available guesses for the new time
plane.

Further we denote with m=1 through 6 the cells i+1, i-1, j+1, j~1, k+1 and k-1,
respectively, surrounding the cell (i,j,k).

For convenience of the notation we define the normal velocities to the surfaces of
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each computational cell as follows
n\T _
(Vl) - (111, "'u17i_17 V]_; '—vl’j__l) W]_; _Wl,k—l) (4311)

These velocities are positive defined if directed from the control volume to the
environment.

4.3.2 FINITE DIFFERENCES APPROXIMATIONS OF THE EQUATIONS
DESCRIBING THE TRANSPORT OF THE FIELD PROPERTIES

The purpose of this Section is to show how to compute the scalar properties of each
velocity field, except the pressure, in the new time level knowing the corresponding properties
in the old time level.

There are several methods for discretizing the equations of convection—diffusion
type. The reader can find valuable ideas in the publications of Chow et al. [120] (1984),
Patel et al. [121L(1985), Patel et al. [122] (1986). For multiphase flows we use one of the
widely used methods: the donor—cell method. Thise method is numerically unconditionally -
stable.

As already shown in the previous Chapters the conservative form of the conservation
equations contain terms like

Zrori-. (4.3.2.1)

for each of the three space coordinates. F is the mass flow of the field in z direction. We
denote with ® generally some qualitative characteristics of the flow. I' reflects the diffusion
properties of the field. Remember, that differentiating the convective terms and comparing
them with the corresponding field mass conservation equation multiplied by @, leads to a
considerably simpler form

0 8 .00 . 0 30, o OF
LFE-L D) L FeT ) -0 (4.3.2.2)

The subject of our further consideration is the discretization of the above combination of
terms. In order to use the definition location of F, i.e. the boundary of the elementary cell,
we discretize the primary form

] oD OF :
G (FO-T ) -0 (4.3.2.3)

For this purpose we need an assumption for the profile form of ®=0(z) along the space
coordinate z. The linear profile of ® is the simplest possible assumption for the character of
this function. In this case after having discretized the convective terms by means of the
donor—cell principle — Courant et al. [123] (1952), and the diffusion terms by means of
central finite differences
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r
TP {5ll+sign(Fg)|0 -+ ofl-sign(Fy)]o, +1}—z\z—§ (0, ;)]

r
— P {5li+sign(Fy )10+ gli-sign(F, )0 }- Z\ﬁ: (-0, _)]
~ 10(FFy)... (4.3.2.4)
and taking into account
sli+sign(F)]-l=— 3[1-sign(F)] (4.3.2.5)
3li—sign(F)}-1=— J[1+sign(F)] (4.3.2.6)

we obtain

ITI T T
- M[_Fg{g[l—SIgn(Fs)]’*' E‘z‘h‘ }(®k+1—®)

I
1 1 .
— 1 Fyfali+sign(F )1+ Kz—i-k—_—l}(mk_l—o)

o (4.3.2.7)

= (bgyg +b ) @=bp 1O =D 1Oy

Note an important property of the linearized coefficients bk—l’ bk e namely that they are
not negative bk_lzo, by +120. Therefore: (a) Increasing of N 41 0 the locations
neighbouring to k leads to increasing of @ and vice versa; (b) If the coefficients b, ,, are
equal to zero (e.g. due to " il=0), the gradient ®,  ;—® cannot influence the value of .

The coefficient b contains information for the time constant of the propagation of a
disturbance of ®, namely A7 = Az/(convective + diffusion velocity). Therefore the
limitation of the time step is associated with the material velocity of the quality ©.

The above method is appropriate in cases, where the condition

Pe=-—— <2, Patankar [124] (1980) (4.3.2.8)

is satisfied. The local grid Peclet number, Pe, is the ratio of the amounts of the property @
transported by convection and diffusion, respectively. Large values of Pe, e.g. |Pe| > 10,
mean predominating convection and small values mean predominating diffusion. For
onedimensional processes without sources of ® and with predominant convection, the
linearization of the profile lead to overestimation of the diffusion component of the flow.
This is characteristic for coarse meshes, leading to |Pe| > 10. This consideration leads
some investigators to look for a more realistic profile of the function ® = ®(z) as a base for
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construction of discretization schemes without a strong upper limitation of the mesh size.

It is beyond of the scope of this paper to discuss all existing methods from
one—phase fluid mechanics that are potential candidates for solving the problem discussed
here. We confine ourselves to first—order donor—cell for the convective terms for the
following reasons:

(a) Consistency in the high order discretization needs weighted averaging of the source
terms along a prescribed number of cells, which is an extremely complicated matter in
multiphase flow due to the possibility of existence of different flow patterns in different
cells at the same time.

(b) During the IVA—Code development the numerics was kept simple deliberately in order
to concentrate attention on the related physical models.

Now we discretize the mass conservation equation for each velocity field using the
donor—cell concept and introduce some abbreviations which will be used in the following

a o
1A — 1/’1'7)
X'r YaLiy [blm+alp1"blm-—(alpl)m]_7v“’l =0, (4.3.2.9)
m
where
n
Bt = Benbima Vi 2 O (4.3.2.10)
n
& =i[1+sign(V® )] (4.3.2.12)
Im4 =2 MY s O
bm=1"Em s (4.3.2.13)

It is advisable to estimate the geometry coefficients

K K
Th7r (Ih 7r)i——1 _ 79 _ 79 , j—1

B r”Ar’ 2" ®Ar 3 IEAO, 4 tfA0

Yy Tz k-1
 Bs =70 Bs = 15—

A

b

once at the beginning of the actual simulation. If there is a cha.n%e of the geometry during
the time considered, it is advisable to perform corrections only for those elementary cells
where this is necessary. Normally such cells are a small part of the whole cell number.
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4.3.3 FORMULATION OF THE ALGEBRAIC PROBLEM FOR CONVECTION
EQUATIONS

Now let us discretize the equation of the type of the entropy equation following the
procedure already described in the previous Chapter

5;—S8
1 "la +. _
%aPla Vv BT "Ii by (51 =5p) + Yok =7, D8y (4.3.3.1)

where

D =P (42

Further for the simplicity of the notation we denote i+1, i—1, j+1, j1, k+1, k—1 with
1...6, respectively.

The coefficients b;; through by, consist of two characteristic components:
1) They contain a geometrical part ﬂl...ﬂG.

2) The convective part of the coefficients does not depend on whether we compute one of
the variables 5 C ol It is advisable in the general cycle to compute them once at the

beginning of the cycle.

Flow convectively leaving the cell, blm=0, does not influence the specific properties (e.g.
the entropy) of the velocity field in the donor cell. Only input flows, b1 m > 0> can influence

the specific properties of the field in the acceptor cells (if they have specific properties
different of those of the acceptor cell, Sl # Sl)'

4.3.4 PHYSICAL MEANING OF THE NECESSARY CONVERGENCE
CONDITION FOR MULTIPHASE FLOW

Writing for each point (i,jk) one algebraic equation 1 we obtain a system of algebraic
equations for all 5)- This system has a special 7 diagonal symmetric structure. The

coefficients matriz is positive defined. A possible method for its solution is the iteration
method of Gauss—Seidel in one of its several variants. The necessary condition for
convergence of this method is the predominance of the elements on the main diagonal
compared to the other elements

|by| 2 Z|by, | for all equations, (4.34.1)
|by| > E[by | at least for one equation. (4.3.4.2)

This is the well known Scarbourough criteron [125] (1958). Because this is only a necessary
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condition, convergence is possible even if the criterion is violeted. But satisfaction of this
condition gives the confidence, that this algebraic system can be solved af least with one
iteration method [124] (1980). Having in mind that all of the elements of the sum

6
b= ’Yv(alapla/AT‘Fﬂ—{_) + m-_-_z—lblm (4_3'4_3)

are not negative, the Scarbourough criterion is reduced to

'yv(alapla/A'r+u41') > 0 for all equations (4.3.4.4)

fyv(alapla/ATJr;[{_) > 0 at least for one equation. (4.3.4.5)

If @, >0 at least for one elementary cell, the above conditions are always satisfied. If the
velocity field 1is missing in the integration domain, o, =0 for all cells, it is necessary that

;[{' > 0 at least for one single point.

Let us look at the Scarbourough criterion from another point of view. Supposing.
that the properties belonging to the flow leaving the cell are known in the new time level
and that the properties belonging to the flow entering the cell are the best guesses for the
new time level, and solving Eq. 4.3.316 with respect to 5) we obtain

6
7v(alaplas 1 a/ Ar+Ds 1 )+ E blmslm
- m=1 . (4.3.4.6)

5= N 6
7v(alapla,/AT+'ul )+ 21 b lm
m=

This result is similar to the use of the point Jakobi method for the solution of the above
equation. This method consists of a successive visiting of all cells in the definition domain
so many times as necessary to reduce the improvement of the solution from iteration to
iteration below a prescribed small value. For a known space velocity distribution this
method works without problem. Even though the method has the lowest convergence
velocity compared to other existing methods, it illustrates an important feature, namely
the computation of the initial values of the field properties if the field occurs inside the actual
time step, Y, = 0, i.e.

6
7vDsl+m£ 1 blm Slm

8 = 5 , (4.3.4.7)

ToH T+ mg b, >0 (4.3.4.8)
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Note that we do not need an initial value for 5, in this case. The velocity field can
originate in several possible ways, e.g.

a) without convection and diffusion
+.
5, = Ds/u7; (4.3.4.9)

b) without source terms in the cell

6
o2 Pimfm
Sl o— - 6 . (4-3-4-10)
b 1 m
m=1
The Scarbourough criterion is not satisfied if
%afla | 4y, O
T, a7+ #y)+ I b =0 forall cells. (4.3.4.11)
m=1

But in this case 5 is undefined in accordance with Eq. 4.3.4.6. With other words this
criterion is an expression of the simple consideration that if

— the field does not exist in the entire integration domain and
~ will not originate in the time step
its specific properties, like entropy etc., are undefined.

Remark: For the construction of the numerical method it is necessary to set the initial
values of the field properties at least one time before starting the simulations in order to
avoid multiplication with undefined numbers o N a.sla/ A7 in the computer. If during the

transient the field disappears, it will retain its specific properties from the last time step. If
the field originates, its specific properties are obtained automatically by averaging the
specific properties of the entering flows with weighting coefficients equal to the corresponding
mass flow divided by the net mass flow into the cell, governed by Eq. 4.3.4.6. In this case the
old value of the specific properties (like 51a etc.) does not influence the result.

4.3.5 IMPLICIT TREATMENT OF THE MECHANICAL INTERACTION

Applying a spatial pressure difference on a multifield mixture with different field densities
results in relative motion among the fields. The relative motion between two adjacent fields
causes different forces on the interfaces. We postulate in IVA3 the following form of the
drag and the virtual mass forces

—d 3 d
04 =~ (agp Cag $/Dg) 1AV gl (VeVg) = =4 (V=Vy) (43.5.1)
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vm _ -vm J _ vmd

where ¢ stays for continuous and d for disperse. For convenience we define interaction
coefficients having cd = 12, 21, 31, 13, 32, 23. Usually, to model a particular flow pattern
needs only two of them greater than zero (e.g. bubble-liquid three phase flow, cd = 21,
23). To model the flow—structure interaction we postulate the following form of the force

d _ d

fwc = cWC|Vc|Vc (4.3.5.3)
where ¢=1,2,3. Usually, to model one particular flow pattern needs only one of them (e.g.
bubble—liquid three phase flow, ¢ = 2).

The coupling coefficients between the velocity fields correspond to each of the flow patterns
modeled. For some of them the coupling is strong e.g. bubble-liquid in others not so
strong, e.g. large diameters droplets—gas. In any case the coupling is nonlinear and after
discretization must be resolved by iterations.

The way we do that in IVA3 is:

(a) Discretize the momentum equations.

(b) Linearize the nonlinear terms and write for each direction a system of three algebraic
equations with respect to the field velocities.

(c) Solve with respect to the velocities.
(d) Use the so obtained three equations to construct the pressure—velocity coupling.

We call this method partial decoupling of the momentum equations (PDME). Note the
difference between this procedure and the decoupling procedure used in COBRA—TF where
the decoupling is performed with a lower degree of implicitness and solving for the
directional mass flow rates instead for the velocities.

We demonstrate the method used in IVA3 in a simple example which will be extended
later. We consider three momentum equations in r—directions neglecting all spatial
derivatives except Vp:

Mot + apg- 3 L) D (0 ) 4 )
YT T QP T OA8y m=1 ‘e m ™ T %m1 37 W T Aml Pt m Y
m#l
— ppr(upguy) = pyp (g4 —) + ¢y | uy=0. (4.3.5.4)

Note that by definition, if one velocity field does not exists, a1=0, the coeffitions describing

its coupling with the other fields are equal to zero, Ecllm=0, E‘{E:o.

We discretize the time derivative an rewrite Eq. 4.3.5.4 in the following form
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aqp 3 3
171 —
Frr toglyltel = 2 Gpreg)lut B (i) vy =bbi-ai,
m#l m#1
(4.3.5.5)
where

and consider all velocities W in the new time plane (implicit formulation). We repeat this
procedure for each of the velocity fields in the chosen direction. The so obtained system of
algebraic equations with respect to the velocities UT=(u1, u,, u3)

AU=B—-aVp, where ol = (2, ay, a3) (4.3.5.8)

can easily be solved with respect to the velocities provided det|A|#0. The result is

U = dU —RU ¥p (4.3.5.9)
where

dU =A"'B (4.3.5.10)
RU =A"la (4.3.5.11)

Note an important property of the diagonal elements

ayp 3
171
[__A_T— + Clulul | +afy — m:_E_ (@ #m)] (4.3.5.12)
m#l

of the matrix A: If the m—th diagonal element is zero this means that in that time the
velocity field m does not exists and will not originate in the next time step. So the rank of
the matrix is reduced by one. Even if the field m does not exist but just originates in the
actual time step, the diagonal element is not zero and the initial velocity is induced
properly.

One can easily extend this method even taking into account the spatial derivatives in the
Eq. 4.3.5.5, extending the terms aTl and b’i‘. The solution procedure is the same. Obviously,
if one neglects all convective terms and mass sources no initial value for the not existing
field can be defined.

In case of neglected convection, diffusion and mass source terms, the matrix A is
symmetric and the expressions for the relative velocities are getting very simple.
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4.3.6 DISCRETIZATION OF THE MOMENTUM EQUATIONS

The conservative form of the momentum equations without taking into acount
turbulence effects, see Appendix 8 and Figure 5, can be simplified by differentiation of the
convective terms and comparison with the mass conservation equations. Instead of
discretizing the resulting system directly we derive the discretized working form of the
momentum equations through the following steps:

1. Discretize the conservative form of the momentum equation (implicit).
2. Discretize the mass conservation equation for the same velocity field (implicit).
3. Multiply the thus obtained equation by ).

4. Subtract the thus obtained equation from the discretized momentum equation.

The result is given in Appendix 9 and rewriten in the following compact form here

1 1
. p max max
lau”lau * =
[ 7 tan- mzl (aml—"u‘mlu)] o+ mil (aml—“mlu) Un=
m#1l m#l
1 Tr

We repeat this process for the chosen number of the velocity fields. The result is a system
of algebraic equations with respect to the velocities with the same structure as that derived
in the previous section. The a; and b, terms reflect the actions of the drag and of the added

mass forces. The a’f and b’f terms reflect the actions of the spatial inertia and viscous

forces. As in the previous section we solve this system with respect to each velocity and
obtain finally

Again /we er;nphasize the important property of the extended diagonal elements (multiplied
by AT 2
au

lma,x

* -
a,, t (3] mzl (g = ) A7/ Py (4.3.6.3)
m#l

of the matrix: If the m—th diagonal element is zero this means that in that time the
velocity field does not exist and in the next time step will not originate. So the rank of the
matrix is reduced by one. Even if the field does not exist but will originate in the next time
step by convection, by mass transfer from the neighboring field, from other mass sources,
or by an arbitrary combination of these three processes, the diagonal element is not zero
and the initial velocity is induced properly.

As already mentioned we call this step of the IVA3 solution method partial
decoupling of the momentum equations (PDME). The PDME is important for constructing
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a stable numerical algorithm even by first order donor cell discretization of the convective
terms.

We derive the discretized working form of the momentum equations in the other
two directions analogously to Eq. 3.4.6.1. The corresponding control volumes are shown in
Figs. 6 and 7. The result is

vy =dv; =RV, (p (4.3.6.4)

j+17P)
w) = dw; —RW, (pk_H——p). (4.3.6.5)

This general structure of the Eq. 4.3.6.1 is perfectly suited for testing the code by
introducing the mechanical effects step by step.

The thus obtained form of the momentum equations
n n
VIm = dVlm - RVellm (pm——p), (4.3.6.6)
is further used to construct the algebraic problem for computing the pressure field. Here

n\T _
(dvl) — (dul, e dul,i_l, dVl, - dv].’.]"‘]., dWl, - dwl,k"“l)’

(4.3.6.7)
T_
(RVell) —(RUI, RUl,i-—l’ RVI, RVl,j—l’ RWl, RWl,k—l)' (4.3.6.8)
Remember that the normal velocities
mT
(Vl) =(ul,—lll,i__l,Vl,—vl’j_l,wl,—wl,k__l), (436.9)

are defined positive if directed from the control volume to the environment on each of the
six surfaces (m) of the computational cell.

4.3.7 DERIVATION OF THE PRESSURE EQUATION

The mixture volume conservation equation, derived in Ch. 2.5 can be discretized
directly using the donor—cell concept as already done in IVA2 [39] (1986).

In order to assure full compatibility of the discretized pressure equation with the
discretized mass conservation equations we prefer here to derive the discretized pressure
equation from the discretized mass conservation equations performing the same
transformation as already described in Section 2.5. The result is

1 42 Pa 51 5, +& _a p ]V' =3 Da- L _va
Ty p a.ﬁ AT +1Ei—z;m m[£1m+alpl 1m—%mPlm lm"1 1 AT
la“la
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(4.3.7.1)
where
7. 6p1 §,—8 dp Cc ,—C
Doy =51l = oy (g~ + oo e i )
(4.3.7.2)

Replacing the normal velocities Vlllm by means of the momentum equation we obtain
finally the pressure equitation used in IVA3:

cp+ ¥y py =4, (4.3.7.3)
m
where
c= ¥y 5. (4.3.7.4)
"G e
Pla?1a
- 1
‘m™ ~ 2 m ? ,51; [Elrn+ P 1+§lm——a1mplm] Rvellm’ (4.3.7.5)
Ty Y N Tya 1 1
d = AT (2 — ) pa — AT + % { Dal - -b—— % ﬁm[£1m+alpl+§lm—almplm] dVlm}
1 Pla?1a 1 la m
(4.3.7.6)

Writing this equation for each particular cell we obtain a system of (IM)(JM)(KM)
algebraic equations with respect to the pressure in the new time plane. The coefficients
matrix has the expected 7 diagonal (7 points) symmetric structure with garanteed diagonal
dominance — see equation 4. The system coefficients are continuous nonlinear functions of
the solutions of the system. Therefore the system is nonlinear. We solve this system by one
of the 4 SOR methods built in the IVA3 code. The four methods in IVA3 differ in the
volume of the computational work for the direct solution during the iterations. The first
three methods solve directly the pressure equation plane by plane érectangle, cylinder,
circle) and the fourth performs strongly coupling between pressure and velocity along one
line (line by line). Depending on the geometry of the problem which has to be simulated
the user can choose one of the four methods.
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4.3.8 COMPUTATION OF THE FIELD VOLUMETRIC FRACTIONS

After solving our general system with respect to the part of the dependent variable
vector (Sl’ Cnl’ p, U, v, w), the densities can be easily calculated after the temperature

inversion as shown in Section . Having the densities, it is a straightforward matter to
update the volume fractions from the lm ax L independent mass conservation equations

If we consider the field variables oh in the convective terms flowing out of the elementary
cell in the new time plane and oyp in the neighbouring cells as the best available guess in

the new time plane during the iterative procedure, we can solve directly with respect to
P
171

5173; = ALRZ/ALRN, (4.3.8.1)
where
(alp 1)
ALRZ = 7, [ + —x 2] + 21 T (4.3.8.2)
m=
Ty 6
ALRN = x+ X blm+ > 0. (4.3.8.3)
m=1
The thus—obtained equation divided by the density P is
EZI' = ?I/pl. (4.3.8.4)

As we already used the sum of the mass conservation equations for the derivation of the
pressure equation only lmax—-l equations remain independent. Therefore we have to use
only lmax_l mass conservation equations for the computation of lm ax— ] volumetric
fractions. The simplest but the worst possible choice is the direct calculation

a =a_ m=1,1 1 (4.3.8.5)

m m max

from the 1 . —1 mass equations. This problem, recognized by Spalding [127] (1981) for

two velocity fields, was confirmed by the numerous numerical experiments made by the
author during the development of the IVA2 three velocity field code. The reason is the
similarity of the quantitative information contained in the pressure equation and in the gas
mass conservation equation, due to the strong difference between the compressibilities of
the gas and the other velocity fields. This is the reason for using such a combination of the
mass equations, which differs from that already used for the derivation of the pressure
equation. A possible choice could be

a = cm?i; +(1- cm) (1-2 El) (4.3.8.6)
l1#m
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Guidelines for choosing the multiplier c,, are based on physical reasoning. ¢ m has to be

chosen so as to allow the nonezistent velocity field to arise in the course of the calculation. A
good choice is

c,=1l-a_. (4.3.8.7)

Even in case of am=0, the m’th mass conservation equation is used to calculate @, 80

that the velocity field non—existing at the beginning of the time step can arise either by
convection or diffusion through the elementary cell surfaces, or through mass transfer from
the neighbouring velocity fields or by some combination of all mechanism. Substituting ¢

from Eq. 4.3.8.7 into Eq. 4.3.8.6 and solving with respect to o, we obtain

o =5 /T4 (4.3.8.8)

Settingl . = 2and ¢, =1/2, we get the method used by Carver [128] (1984), Carver and
Salcudean [129] (1986), or 1 max = 2 and ¢; = l—a; the method used by Spalding [127]

(1981). In fact the above equation generahzes the existing experience for two velocity fields
and is useful for 1 max velocity fields. '

4.3.9 INITIAL AND BOUNDARY CONDITIONS

At the beginning of the integration of the system, all components of the dependent
variables must be initialized. These may be previously calculated values describing a steady
state. The practicing engineer usually creates his own library of such steady state solutions
for the particular geometry studied before starting to simulate the processes of interest.
There are many applications, where the steady state solution is of particular interest.
Therefore, for the initial computation of the steady state itself initial data are needed which
have to be assigned ezplicitly. In order to reach the steady state saving computer time, it is
advisable to bear in mind the following two principles:

— No sudden changes of the dependent variables, e.g. shock waves etc., should be included
in the initial conditions except in cases where they exist in the process studied, because the
computer time needed to reach the steady state can be considerably greater than the
computer time needed to simulate the transient process studied;

— If steady state has to be reached by time marching (simulation of a transient process),
e.g. coolant acceleration by switching on of pumps, switching on of the heat source in the
flow, for instance a nuclear reactor, etc., the boundary conditions have to be formulated
with such time constants, which are characteristic for the real nature of the technical
processes. Replacing them with step functions is only theoretically admissible. Nonrealistic
boundary conditions can excite the dependent variables into states outsides of their
definition regions, which means that further integration is impossible.

The criteria for reaching the steady state have to be economically reasonable with
respect to the maximum achievable accuracy at all. For this purpose it is enough if the
solution does not depend on time in the framework of the minimum achievable error band
or if the solution reaches values quasi steadyly oscillating around a constant.
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The definition of the geometrical structures through surface permeabilities and
volumetric porosities is very convenient for the description even of complicated geometries.
In this way particular volumes can be isolated from other volumes by nonpermeable
surfaces (walls). We suggest that the velocity vector in such walls is zero, which means that
its three components are zero (non—slip condition).

The computation region is surrounded by a layer of fictitious auziliary cells I = 1, 1
=IM+2K =1 K = KM+2.

For their dependent variables the values of the neighbouring inner cells are assigned (if
nothing else is prescribed).

The fictitious layers in the azimuthal direction J = 1 and J = JM+1 are overlapping
with the layers J=JM+1 and J=2, respectively, so that the corresponding parameters are
directly assigned from J=JM+1 and J=2 to J=1 and J=JM+2, respectively (cyclic
boundary condition). A useful consequence of this strategy is the possibility to model
symmetric sectors, where in the corresponding symmetry plane the surface permeabilities
have simply to be set to zero.

Additional boundary conditions can be specified in the following way:

1. First the cells in which the boundary condition acts are defined by their integer indices.
Next the type of the boundary condition is specified.

2. A physically meaningful combination of boundary conditions can be specified, for
example (a) p, Cnl’ a, T}; (b) ul(vl-——-O, w1=0) or vl(ulz(), w1=0) or wl(ul=0, v1=0); (c) p;
(d) yy=a (mixture sound velocity).

Boundary condition (a) can be used if one expects inflow into the computational region.
This boundary condition must be completed with the boundary condition (b) if y < 0.

Boundary condition (a) can be used alone in the case of outflow from the computational
region to the outside. In this case, the flow has the parameter of the donor cell.

Only when boundary conditions (b) and (d) are used, we set the terms of the
discretized momentum equations d“lzulRB’ RU1=0 in order to define y=Upp.

Useful ideas about how to use nonconflicting combinations of the boundary
conditions can be found in the theory of the method of characteristics for integration of
hyperbolic systems — see for instance Chapter 4 of Kolev [39] (1986).
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4.3.10 TIME STEP AND ACCURACY CONTROL

A time step limitation dictated by the linear stability analysis for implicit donor—cell
methods is used in IVA3

Arh rhAOh Azh

A7epy, < max( ) for all cells. (4.3.10.1)

UtV

This is the so called material Courant, Friedrichs and Levi (MCFL) criterion. Numerous
numerical experiments show that the code can work in many cases with much higher time
steps. Nevertheless the MCFL criterion is retained to ensure convergence in all cases. In
addition to this limitation there are two reasons leading to further time step limits: (a)
linearization limits, (b) definition limits for the dependent variables:

(a) Linearization limits:

While slow running physical processes are successfully simulated using only the MCFL
criterion, for fast running processes more care is needed to ensure time step control leading
to unconditional stability. That is why time step control leading to successful numerical
integration of initial and boundary conditions leading to fast running processes with
dramatical changes of the dependent variables can successfully handle also initial and
boundary conditions leading to slow running processes. The opposite may, but must not be
irue.

The change of the dependent variables within an time step in each computational cell
should not exceed a prescribed values

@

7v“7va+7v(¥ P a? )Apmax
1a“la
ATP < . ' (4.3.10.2)
max ZIJ{Dal—. = 1)111 cm(pma-—pa)
ay.pq.As v
) la¥1a""lmax'v
AT oy < 5 , (4.3.10.3)

VV[DSI_“T(Sla'*’A S1max I+ lblm(slam_sla)
m=

ATC

similar to the above equation.
max

These conditions are associated with the linearization of the strongly nonlinear system of
21 PDE’s and the state equations for each time step, which is not considered in the
classical von Neumann linear stability analysis of 1D numerical schemes for differential
equations with constant coefficients.

From eq. 4.3.10.3 we see that for o, - 0 any heat transfer from or to the velocity field

leads to A7 - 0 which hinders the further integration. This problem can be avoided if one
simply defines a vector a4 so that for o < a, energy balance is no more used.
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(b) Definition limits for the dependent variables:

The velocity field mass is non negative

*
N L 7v_(a1pi7v)a
max - Y — 1);1 (blm-{—alpl-blm——(alpl)m’

(4.3.10.4)

where a’f = 0 for decreasing volumetric fraction, Eii < o, For increasing volumetric

fraction, &I > q, the volumetric fraction of the velocity field cannot exceed the value of
one by definition, a’f = 1.

Further we check the overall mass conservation as follows: After a successful
number of outer iterations leading to convergence and reduction of the pressure and
velocity increments below prescribed values, the densities computed after the temperature
inversion together with the volume fractions are used to compute the mixture density p =
Y o) The mixture density p* is computed from the mixture mass conservation equation

P Y Paya

and thereafter the normalized error is estimated as

*
Ap = P=P_
P="p

The outer iterations are considered as successfully finished if pressure and velocity
increments from iteration to iteration and the relative mass conservation error Ap reach
values smaller than the prescribed ones.

Additional time step optimization is imposed in order to have only a prescribed number of
outer iterations, e.g. 6.
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APPENDIX 1 Scalar Notation of the Momentum Equations.

In the scalar notation of the momentum equations, we use the universal form for Cartesian
and cylindrical coordinates (k=0 rectangular, k=1 cylindrical).

r—direction:
1

d 1 9 0 i}
S, + L G ey ) +5 Sgleovarg g+ (o, )y,

1max

K _ — —
= Soy(ovv g gt ey g +Heypg ) n, =1 gy At B (i)l

(AL1)

f#—direction;

9 18 19 0
6?(“1/’1"1%)“*;;2 o (puv+r gy 1+ = o (v 1+ Fley(pwv+T, g v,]

K 1
+ 7o (pvutT o)y vt 4% *3‘% +ogpegtip) 7,

1max

=7v[” AVAI AT El (1 mlvm—”’lmvl)]' (A1.2)
m=

z—direction:

0 1 4 1 6 0

6?(alplwl7v)+;7€ Ef[rmal(puw+7rz)l7r] +;75 -ap[al(pvw+'r02)l79] + E[al(pww_*'Tzz)l’yz]

lmax

+o, G+ (g, )1 =rleararmamit T (¥ )l

(A1.3)

Note that in the scalar notation of the momentum equations in case of cylindrical
coordinates the centrifugal and Coriolis forces arise. The centrifugal force = ? M1V g
gives the effective force in r—direction resulting from fluid motion in the f—direction, and
the Coriolis force = 'Ii QY T is an effective force in the f—direction when there is flow
in both the r— and f—directions. We see the components of the viscous stress tensor, oy
and 7, a corresponding to these forces and acting in the opposite directions.



66 Numerical Method

APPENDIX 2 Viscous Stress Components

=23t~ 30.V)] (A2.1)
Taez“’?[z(% %"p + K3)- %(V-V)L (A2.2)

““77[2% =AY (A2.3)
Tra‘—'%b"[fﬂg;(:—ﬂ) + %—,;%“p], (A2.4)
o= + o, (A2.5)
== + %), (A2.6)
(v. V)- -2+ ——gY,, + o (A2.7)

The first subscript of the components of the wiscous stress tensor denotes the
coordinate perpendicular to the plane where the stress is acting. The second subscript
denotes the positive direction of the stress component itself.

APPENDIX 3 Scalar Notation of the Averaged Momentum Equations

r—direction

) 1 a - 1 0 -
P r,) + N Fro(puutpww+r )] + ;;2679{0‘1(”““" w7 g gl

L0
sl lowutpww'+7, ) 7,] - al(pVV+pv’v’+ ng)ngwﬁrg? +(oyp 8, +1) 7,

lmax

=Tl AT Ayt z (g1 U= ) (A3.1)
m=

f#—direction

1 1

3 3 a ) 3
H—{alpl 1Ty ) + _n' [r al(puv+pu v +Tr0)17r] + -I—E-gy[al(pvv+pv v +7'00)179]
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a ) 149 1
+ E[al(pwv+pw’v +Tz0)l’)’z] + '}?al(pvu+pv u +Tr0)170+ cxlfygr——,i g% +(alplg(}+f01)7v

1 max
=Tt AT AVt 81 (¥ Mm ) (A3.2)
m=

z—direction
a r?
H_(alplwl7 ) +L G B'f[r o(puw+pww+r )7 ] + = m[al(pvw+pv w75 17l

) ,
+ m[al(pww+pw’w +TZZ)1’7Z] +017, %z)— +(oz1plgz+le)'yV

lmax

=tleararaat B b)) (A3.3)

APPENDIX 4 Scalar Notation of the Components of the Reynolds Stress Tensor

pu’u’:——nt[Z—gui_— - %(V.V+k)] (A4.1)

PV [2(—~ 9+ KD 2(0.V+K)] (A4.2)

pww =129 — 2(v.V+k)] (A4.3)

pu’v’=pv’u’=—-77t[rng}{-‘—',—€) + 1_;1 -g%] (Ad.4)
o r

pV’W’=pw’v’=-—nt(§% + —175 2%) (Ad.5)

pww'=purw=—1" ( ) (A4.6)

APPENDIX 5 Scalar Components of the Drag Force

_ 1 3d
fgd"_adp cDy Tud(Ue ) lu vl (A5.1)
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1 3d
4=, Dy ova(Ve V)l Veval (A5.2)
d 1 3d '
fwd="%Pc Dy 16wd (Ve V) W vql- (A5.3)
APPENDIX 6 Scalar Componets of the Lift Force
1

Vg~V PRV =5+ )l Ge™) = 25 Gilomg—w ) (G = e

(A6.1)

1 1 1

Vg~V TRV =t g ) 5 = e (i) o 0™ 5 Gl

(A6.2)

1

V4=V TV L, =(ug0) G = G (a ol 37~ Gl

(A6.3)

APPENDIX 7 Scalar Components of the Virtual Mass Force

d 1.0 YeVd d
Vo V- VeVl = ug gilugug) + v 5 lveg)= “rn ]+ wy 5{u,1y),

(A7.1)

[V, V.(V~-V.)])],=1u Etav—v)+v [L-a-e(av—v)+nuc_ud]+w E(av—v)

d"V'c¢ "dHgT "d c d drn c d i d ¢ d”
(A7.2)

[V, V(V-V))] =u 6w—w)+v L9 (w—w)+w 6W—W)

¢V (VeVally = vg FWeva) + va Tz a9 (Ve va) + Vg Ve Va)

(A7.3)
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APPENDIX 8 Specific Internal Energy Equation

As already explained in the previous Chapter the use of the specific entropies as
components of the dependent variable vector, the entropy concept, gives the simplest form
of the mathematical description of the flow. The use of any other state variables instead of
the entropies makes the description more complicated. In case that the engineer has in his
personal library approximations of the state variables and transport properties in terms e.g.

of the specific internal energy, the entropy equation 2.4.1.17 should be rewritten in terms of
the specific internal energy. Next we will show how to do that. With similar
transformations one can rewrite the entropy equation in any other form e.g. in terms of the
specific enthalpy.

Using Eqgs. 2.4.1.1, 2, 10, 16 the nonaveraged Eq. 2.4.1.16 receives the following form

1 i
max max max

el 2 P& T B e Vit Eopy CICRRECNAD)

i

ma,x
"’)’V[ 1(e11+ b 1)] [(al)‘l VT1)7]+ Q- ( VV)l—-'y L
(A8.1)
or
i
6 a max
aran ) + V(a9 V1) + P e )+ T eVl = (T yhy)
1=
1 i i
V max 1 max
[alpl(cpP_VT B Dy Gyl B ey ey ﬂc—VCﬂ’Y)
+ o 7.(TVWV)=7,q- (A8.2)
where
imax
We= B it (A8.3)

In order to obtain the averaged form of the above equation we introduce Eq. 2.4.2.1 and
average the so obtained equation (for simplicity we drop the averaging sign). The result is

1
P P max
—B"F(alplelvv) + V-(Cllplelvl’)’) +P ['5;( al’Yv)+V-(a1V1’7)] - 'YV( ; El ﬁ‘ﬂhﬂ)
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l/l max 1max

!
R P" VI + E ly¥ G- E Py V(e 110”‘70117)

) ) — t
+ V.(ogpe, Vi) + p V- (qVin="(q+q))+ oy (P +e))- (A8.4)

APPENDIX 9. Scalar Notation of the Conservative Form of the Momentum Equations
Without Taking into Acount Turbulence Effects.

r direction:

o,
6‘("‘1”1“17 )+ naf[r appy(mym— )7+ n-ﬁ'ﬂ[alpl(vlul Y m?ﬂf Hrg

K 9 , O 5 ouy
— T a9 vVi— % (4 g7 tuplg + 75 [ (w2 577,
G

1max

+a; g8 + (e ) 1= g A at 3 i)y

(A9.1)
where
du v ow
1 3§,k 1 1 4 k0,1 0 1
b =& g ) + T lant w1 & (e )
2L (9 1Ry p¥.V,) 1] = (e40.V )7 ) (A9.2)
T3K P 1 L AR VA B T b SRS VA & '

0 direction

5 1 8 .k o) 19 1
1) + = 5 0 e (e o)l + = g lap (2 = 774
T T

ap ov
171 d,'1 1 fu ad 1
TrEE vy 67 — = a9+ 7z L (w1 5707,

lmax

+oy7 ng%+(alf’1ga+f My = WA araaiat B oV in )y

(A9.3)
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where
ou, By ow
. 10 1 1 8 1
£y _EBE[O‘IPI( V37 v + 5 gl ;,;(”167;"”%“1)’70] +Bz(01/’1”1r—nmr’7z)

I
2
—-3 -1—,;-(3-0 (g4 V.- V)7 gls : (A9.4)

z—direction

ow ow.
9 1 1
a1+ = gf " “1"1(“1""1"’13‘11)’&] +L g?) [y (== 1 H'ZFI)“Y()]
T T T

ow

5 1
+ 3z [ (W= 7)1, + o, gg + (oqpig,+ )7, =
lm ax
Yol Al AT AW IA T 2 ¥ W) (A9.5)
. m= .
where
u, By ow
100 19 1 . 8 Y.
fw= %% (* o 5p) + Fo AN T 0T E (oo 57770~ 3 Fl( g V- Vi) 1,
Pl ‘9"1 5“’1

APPENDIX 10. Discretized Momentum Equations in r—direction.

N b s P
Tvu®uallua™ A7

I K
i+1
(r+Ar, /2)"Ary

) 1
{mm[(),(alplul’y)l] - (alplyl71)1 ZSr.+1}(uli+1_ul)
i

bu1 1

K
I

(r+4r, /2)"Ary

1
{max[0,( Py ’)’)2] +( Y ’7)2 E’f}(uli—l_ul)

bu12
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1

+ {min[0,(opyv ) gl oyp 1y M)g] ——Huys 1)
K 17171 I3 KA 1j+1 71
(r+Arh/2) Ad i AG
bu; 4
L ax|0, (aIPIVI’Y) I+ (alﬂl'/l’)’)4] “1,.5“"'—“‘}(“1}_1“‘11)
(r+Arh/2) A0 rhAgh,j——l
bu14

L fmi 1
 mg(minl0(eypyw M=o 2 7)5] 7z Hogep 1)
buyg

1 1
- M{max[o ;( alplwl7)6]+( @ pl”l7)6] m} (ulk—-l—ul)
bue ,

sin(A6/2)
(r+41, /2)" Ao‘[(alp 703" (M 19 v1d)

2

o dv,
- ——————-——————(I+Arh/2)n{(apl/)13[('5y-)3+u13]73+(apu)l4[(-ay-)4+ul4] T4 1

71 a
- (p1+1 p)+7vu(aluapuagr+clu'ullul+fu1)=

1

max
Toultan (A i) ag (gt B s ()l (A10.1)
m#l ~
or
] 1
Yau”lau %lax rgax _
[ Ar T a’ll m=1 (aml_“mlu)] Ut =1 (aml_'umlu) Um=
m#l m#l

1 '7

by + b = oy 775 (P4 P) (A10.2)

where
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1 6

aty =c || + ppy, — -
17 T EA T ATy 2

b = Kp1g"AL T MAWYA T 7 Ty Bu 2 ¥ P m) (A10.4)
sin(Ad/2) .
- At 2% 01[(0‘1P1V1”70)3"13]+[(a1/’1V170)4"14]
C 2 el et (@) o) 17 1)
(r+Arh/2)” P3G )3 T3l T3 T APVl Fg ) T 014174 55
(A10.5)

We derive the discretized working form of the momentum equations in the other
two directions analogously to Eq. 4.3.6.1. The corresponding control volumes are shown in
Figs. 6 and 7. The result is

1

YavPlay * max max
[ A ta mi (a'mI——”mlv)] Vit mﬁl (aml——”mlv) Ym™
m#l m#l
b+ bf—a k20 ) (A10.6)
1 1 lva ZSU 'y pJ+1 P ’
where
f=oyl—2h 3 b (A10.7)
a1 =¢ | vy —=— Vi L. — 10.7
n= %M Ty o 2 m T AAY T MAy
. 6
BT = Kp1 VAL~ MAVVIA T T R+ 2 BVigVim): (A10.8)
or
v; = dv) =RV, (pj+1—p) (A10.9)
and
¥ wPlaw ! max I nax
[ AT a11 _2_1 (aml—ﬂmlw)] Wit mil (aml—“mlw) Ym

m;‘-l m#l
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1 g
* __ _Z_ —
by + b7 =y, Ezh Tow (pk+1 P)

where

1

6
ati=c_|w| —=— I bw_ 4+ pr.—
=™ 77 = 2 P im T AAlw Aw

6
1
b1 = farw¥ar T Aaw¥iaT 7 Bt DVim Vi)

or

wy = dw) —RW} (py 4 ;-p).

(A10.10)

(A10.11)

(A10.12)

(A10.13)
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ety
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B RERCDmm O ) O

Dimension

2
m/és

3/(keK)
m2/s .
Km2/s

kg/(m’s)

J/kg
N
N/m

1—/ s

kg/(m’)
m/s
J

m
J/kg
—3

3

1/(m%s)

J/kg
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NOMENCLATURE

Meaning

cross section
matrix, constant

thermal diffusivity

speed of sound

matrix, constant

mass concentration of the inert component n in the

velocity field 1
mass concentration of the noninert component M in the

velocity field 1
vector, constant
specific heat at constant pressure

diameter

diffusivity

diffusivity based on entropy driving force

total differential

mass flow rate perpendicular to the interface — drop

deposition

unit matrix

specific internal energy
force

force per unit mixture volume
function of (...
frequency

mass flow rate

gravitational acceleration

enthalpy

specific enthalpy

volume flux density

roughness .

specific kinetic energy of the turbulent pulsations

number of nuclei per unit flow volume, number of
particles per unit flow volume

change of the number of nucli or particles per unit time
and unit volume of the mixture
direct dissipation of kinetic energy and simultaneously

direct production of turbulent kinetic energy per unit mass
pressure

thermal power per unit flow volume
heat flux density
pressure drop per unit length due to friction
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R J/(kgK) (with indeces) gas constant

r m radius

s J/(kgK) specific entropy

T K absolute temperature

t C temperature

U - dependent variable vector

u m/s radial velocity

\' m/s velocity vector

v m/s azimuthal velocity

v m® /kg specific volume

z m axial coordinates

Greek

q m3 /m3 volume fraction of field 1 in the flow mixture

a W/ (mZK) heat transfer coefficient

Ty - volume porosity

" 0.z — . permeabilities in r,f, and z directions

A - finite difference

Au, Av, Aw m/s diffusion velocities in r,f, and z directions

) - small deviation with respect to the average value

0 — partial differential

(pw)23 kg/ (m23) entrainment mass flow rate perpendicular to the
interface

€ J/(kgs) dissipated kinetic energy of turbulent pulsations per unit
time

@ rad angle between upward vertical direction and V

(,/\R — friction coefficient

n kg/(ms) dynamic viscosity

g rad azimuthal coordinate

K — isentropic exponent

A W/(mK) thermal conductivity

L kg/ (m3s) mass source term for velocity field 1 (mass introduced into
the field I per unit time and unit mixture volume)

v m? /s kinematic viscosity

I m perimeter

vis - 3.141592....

J/ kg/m3 density; without indeces: mixture density

z. - sum

o N/m surface tension

T S time

T N/ m? with indeces — tension
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Dimensionles numbers

M Mach number

Pr Prandtl number

Sc Schmidt number

Superscripts

" saturated solid

" saturated steam

’ saturated liquid

’ for velocities: fluctuation

n for the time 7

n+1 for the time 7+ A7

t turbulent

1 laminar

Subscripts

A outside of the definition region

nl inert component (either non condensing gas or solid particles) of the
velocity field 1

Ml  not inert component (e.g. water or water steam)

1 velocity field 1

i,j,k integer indeces for the three coordinates 1, 6, z

w wall

c continuous

d dispersed

h hydraulic

heat heated

1 gas, bubble

2 continuous liquid plus microscopic solid particles

3 dispersed liquid plus microscopic solid particles, drops

(s
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Summary of all thermodynamic and thermophysical properties needed for the description of
multiphase flows consisting of water, steam, air and metallic materials being in liquid or in

liquid—solid or in solid state.

Water—steam saturation line

A’
AH

0-7

J/(kgK)

J/(kgK)

saturation temperature at system pressure.
water specific volume at the saturation line.

steam specific volume at the saturation line.

specific water enthalpy at the saturation line.

specific steam enthalpy at the saturation line.

latent heat of vaporization.

specific water entropy at the saturation line.

specific steam entropy at the saturation line.

derivative of the temperature with respect to pressure at
the saturation line.

water specific heat at constant pressure at the saturation

line.
steam specific heat at constant pressure at the saturation

line.

water dynamic viscosity at the saturation line.
steam dynamic viscosity at the saturation line.
water thermal conductivity at the saturation line.
steam thermal conductivity at the saturation line.
surface tension water steam at the saturation line.

The above mentioned properties can be computed either as a function of temperature T’ in
K or as a function of pressure p’ in Pa, respectively.

The thermodynamic and thermophysical properties of water are computed as functions of
temperature in K and system pressure in Pa:

M
b
SIM

kg/m3
J/kg
J/(kgK)
J/(kgK)
m/s
kg/(ms)
W/(mK)

(J/kg)/Pa

density.

specific enthalpy.

specific entropy.

specific heat at constant pressure.
velocity of sound.

dynamic viscosity.

thermal conductivity.

Prandtl number.

specific enthalpy derivative with respect to pressure at

constant temperature.
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( ) kg/ (m3K) density derivative with respect to the temperature at
constant pressure.

(ZE———)T (kg/m )/Pa density derivative with respect to the pressure at constant
temperature.

oM N/m surface tension metallic phase/gas.

The thermodynamic and thermophysical properties of air are computed as a function of
temperature T1 in K and partial pressure P1p in Pa:

[ kg /m3 density.

by J/kg specific enthalpy.

S1n J/(kgK) specific entropy.

Coin J/(kgK) specific heat at constant pressure.
g m/s . velocity of sound.

Mo kg/(ms) dynamic viscosity.

Ao W/(mK) thermal conductivity.

Prln - Prandtl number.

The thermodynamic and thermophysical properties of steam are computed as functions of
temperature T in K and of the partial pressure PlM in Pa:

M kg/m3 density.

by J/kg specific enthalpy.

SIM J/(kgK) specific entropy.

CH1M J/(kgK) specific heat at constant pressure.

a0 m/s velocity of sound.

MM kg/(ms) dynamic viscosity.

MM W/(mK) thermal conductivity.

Pria - Prandt] number.

(-g;l—lM—)Tl (J/kg)/Pa specific enthalpy derivative with respect to pressure at

constant temperature.
kg/(mgK) density derivative with respect to the temperature at

constant pressure.
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9p
(-51)—111/1—)T (kg/m3) /Pa  density derivative with respect to the pressure at constant
1M "1

temperature.

The properties of a binary mixture consisting of inert (solid particles) and not inert (water)
components are computed as functions of the field temperature T1 in K, system pressure p

in Pa, and inert mass concentration C; (where 1=2,3):

5 J/(kgK) specific entropy.
L J/kg specific water enthalpy.
A kg/m3 density.
a m/s velocity of sound.
Op
(—a—s—l)p C (kg/m3) /(J/kgK) density derivative with respect to the specific entropy
1+~
at constant pressure and inert mass concentrations.
dp .
1 3 . L : :
(mg)p, 5 (kg/m") density derivative with respect to the inert mass
concentration at constant pressure and specific entropy.
oT

( K/[J/(kgK)] temperature derivative with respect to the specific entropy
_a_s_l— p’Cln

at constant pressure and inert mass concentration.

oT
1 C .
(Hi)—) Sl’Cln K/Pa temperature derivative with respect to the pressure at
constant specific entropy and inert mass concentrations.
aT
(EC%—) P, K temperature derivative with respect to the inert mass
n h
concentration at constant pressure and specific entropy.
ol J/(kgK) specific heat at constant pressure.
M kg/(ms) dynamic viscosity.
Al W/(mK) thermal conductivity.
Pr1 — Prandtl number.
] N/m surface tension metallic phase/gas.
Sn J/(kgK) specific entropy of the inert component.
SIM J/(kgK) specific entropy of the water component.
b J/kg specific enthalpy of the inert component.

The properties of a binary gas mixture consisting of inert component (air) and not inert
component (steam) are computed as functions of the gas temperature T, in K, of the

system pressure p in Pa and of the inert mass concentration Cln:



The quantities describing the

J/(kgK)
J/kg
kg/m3
m/s

IVA3 Code. 81

specific entropy.
specific steam enthalpy.

density.
velocity of sound.

(kg/m3)/ (J/kgK) density derivative with respect to the specific entropy

(kg/m®)

K/[J/(keK)]

K/Pa

K

J/(kgK)
kg/(ms)
W/(mK)

m2/s
Pa
J/(kgK)
J/(kgK)
J/kg

temperature in K:

[}
T3n

P3n
P3n
dp3;/dTy

K

kg/m®
kg/m®
kg/(m°K)

at constant pressure and inert mass concentration.

density derivative with respect to the inert mass
concentration at constant pressure and specific entropy.
temperature derivative with respect to the specific entropy
at constant pressure and inert mass concentration.
temperature derivative with respect to the pressure at
constant specific entropy and inert mass concentrations.
temperature derivative with respect to the inert mass

concentration at constant pressure and specific entropy.
specific heat at constant pressure.

dynamic viscosity.

thermal conductivity.

Prandtl number.

diffusion constant of air in steam.
partial pressure of the inert component.
specific entropy of the inert component.
specific entropy of the steam component.
specific enthalpy of the inert component.

solid—liquid transition are computed as functions of the

liquidus temperature.
saturated solid phase density.
saturated liquid density.

density derivative with respect to temperature at the two
phase/solid transition line.
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dpé’n/ dT, kg/ (m3K) density derivative with respect to temperature at the
liquid/two phase transition line.

hg? J/kg saturated solid phase specific enthalpy.

hgn K/kg saturated liquid phase specific enthalpy.

hgn_hgﬁ J/kg latent heat of solidification.

830 J/(kgK) saturated solid phase specific entropy.

sé‘ 1 J/(kgK) saturated liquid phase specific entropy.

s3,7537 J/(kgK) latent specific solidification entropy.

Cgén J/(kgK) specific heat at constant pressure of the saturated solid
phase.

Cg3n J/(kgK) specific heat at constant pressure of the saturated liquid
phase.

Mgy kg/(ms) saturated solid phase dynamic density.

ngn kg/(ms) saturated liquid phase dynamic viscosity.

Azl W/(mK) saturated solid phase thermal conductivity.

Agn W/(mK) saturated liquid phase thermal conductivity.

o3, N/m surface tension liquid metal/gas.

For description of the thermophysical properties of solid and liquid materials the following
approximations are necessary:

T311 K temperature of the liquid metal as a function of specific
entropy in J/(kgK).

T3n solid N/m surface tension of the liquid metal as a function of
’ temperature in K.
M3n solid kg/(ms) solid phase dynamic viscosity as a function of temperature
’ in K.
h : J/k specific enthalpy of the solid phase as a function of
3n,so0lid 8
temperature in K.
h311 liquid J/kg specific liquid metal enthalpy as a function of temperature
’ in K.
¢o3n,solid J/(kgK) specific heat at constant pressure for solid phase as a

function of temperature in K.

¢h3n liquid J/(kgK) specific heat at constant pressure for liquid metal as a

function of temperature in K.



S311,solid

S3n,1iquid

P3n,solid

dp 3n,solid

a.T.___L___

3

P3n liquid

4P 3n liquid

3

)‘3n,solid

)‘3n,1iquid

J/(kgK)
J/(kgK)

kg/m3

kg/(m°K)
kg/m3
kg/(m°K)

W/(mK)

W/(mK)
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specific solid phase entropy as a function of temperature in
K.

specific liquid metal entropy as a function of the

temperature in K.

solid phase density as a function of temperature in K.

solid density derivatives with respect to the temperature

as a function of temperature in K.

liquid metal density as a function of temperature in K.

liquid metal density derivatives with respect to the
temperature as a function of temperature in K.

solid phase thermal conductivity as a function of
temperature in K.

liquid metal thermal conductivity as a function of
temperature.

Having the entropy one checks in which state the metallic, velocity field is and computes
properties either for liquid state or for two—phase liquid—solid equilibrium state or for solid
state. The following properties as functions of temperature in K and/or of the specific
entropy in J/(kgK) are the result:

P3n
h3n

kg/m3
J/kg
J/(kegK)
m/s

kg/(ms)
W/(mK)

(J/kg)/Pa

kg/(m°K)

density.

specific enthalpy.

specific heat at constant pressure.

velocity of sound.

dynamic viscosity.

thermal conductivity.

Prandtl number.

specific enthalpy derivative with respect to pressure at
constant temperature.

respect to the

density derivative with

temperature at constant pressure.
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p
3n kg m3)/Pa density derivative with respect to the pressure at constant
% Ty

temperature.
I3 N/m surface tension metallic phase/gas.
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FIGURES

FIGURE 1. Control volume for derivation of the mass conservation equation — volume
occupied partially by structure and two different phases.

FIGURE 2. Control volume for derivation of the mass conservation equation — to the scale
of the observable control volume by means of different measurement devices.

FIGURE 3. Three—dimensional mesh construction.

FIGURE 4. Definition of the geometrical parameters and the location of the dependent
variables.

FIGURE 5. Three—dimensional mesh cell for discretization of the momentum equations in
the r direction.

FIGURE 6. Three—dimensional mesh cell for discretization of the momentum equations in
the 4 direction.

FIGURE 7. Three—dimensional mesh cell for discretization of the momentum equations in
the z direction. '
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FIGURE 4. Definition of the geometrical parameters and the location of the dependent
variables.
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FIGURE 6. Three — dimensional mesh cell for discretization of the momentum equations
for the § direction.
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FIGURE 7. Three — dimensional mesh cell for discretization of the momentum equations
for the z direction.



