S "~ ¢ XE
o o 2] O EE
X @ - N 2B
xzg @ s S8
e oc o w2

.

< £

(¢+]

Li.

O

A FORTRAN Tool for
Generating Program Tree
Structure Diagrams

Institut fiir Neutronenphysik und Reaktortechn

Projekt HeiBdampfreaktor-Sicherhe
Kernforschungszentrum Karisruhe

= .

o

S

x)

KERNFORSCHUNGSZENTRUM KARLSRUHE
Institut fir Neutronenphysik und Reaktortechnik
Projekt HeiBdampfreaktor-Sicherheitsprogramm

KfK 4979

ARBUS: A FORTRAN Tool for Generating
Program Tree Structure Diagrams

C. Ferrero X) M. Zanger

Hauptabteilung Ingenieurtechnik, presently delegated to
Institut fir Neutronenphysik und Reaktortechnik.

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript gedruckt
Fur diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH
Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

ABSTRACT

The FORTRAN77 stand-alone code ARBUS has been designed to aid
the user by providing a tree structure diagram generating
utility for computer programs written in FORTRAN language. This
report is intended to describe the main purpose and features
of ARBUS and to highlight some additional applications of the
code by means of practical test cases.

ARBUS: Ein Werkzeug zupr Generierung des zu einem FORTRAN—-Rechen-
programm gehorigen Aufrufbaumdiagrammes

ZUSAMMENFASSUNG

Das FORTRAN77-Rechenprogramm ARBUS wurde entwickelt, um dem
Benutzer die graphische Darstellung des Aufrufbaumdiagramms
bzw. der Aufrufstruktur der einzelnen Unterprogramme in einem
beliebigen FORTRAN-Programm zu erméglichen. In diesem Bericht
wird auf die Zielsetzung und die Hauptmerkmale von ARBUS ein-
gegangen. AufBerdem werden einige Anwendungen des Codes anhand
von praktischen Beispielen erldutert

TABLE OF CONTENTS

° e . L ° e e

1. Purpose e o e .

2. Features of ARBUS

2.1 Code Input Description
2.2 Code Output Description
2.3 Examples .

2.4 Particularities a

3. References .

.

nd Limitations

N

(oo 6y I]

10

45

1. PURPOSE

ARBUS is a labor-saving software tool to be used by programmers
and analysts to verify and document complex computer programs
in the frame of the software development cycle. It provides
automatic technical documentation through its ability to gen-
erate hierarchical structures of any FORTRAN program unit
available in form of a sequential file. This is especially
valuable in the maintenance of software, where programs are
often changed by someone not acquainted with the source code.

The user can specify by input the name of the program unit to
be used as tree structure starting point and the branching depth
related to it. The first of these two options is available also
in /17 and in -2/, the second only in 71/. However the utilities
described there can only print a tree structure on an output
listing or data set, thus limiting considerably not only the
readability of the issued description but also the max. print-
able width of the calling structure.

These drawbacks are partly removed in ARBUS since this program
generates a plot of the tree structure with the black-and-white
VERSATEC plotting device of Kernforschungszentrum ~r3/, what
enables the user to get hierarchical code structures up to the
20th calling level. Moreover ARBUS, - unlike the programs in
/717 and rs2/ -, was expressly designed for the special task to
pProduce compact and clearly arranged graphical analysis reports
and the authors endeavoured to make it so flexible and user-
friendly as possible.

ARBUS development benefitted from the experience gathered with
a previous tool /4/ whose major shortcoming was to ignore the
presence of FUNCTION subprograms in the input source code, thus
preventing from a complete and correct analysis of it.

The tree structure diagram gives a quick graphical represen-
tation of the complexity of the source code calling hierarchy.
It is also handy for establishing overlay and segmentation
schemes, to remove redundancies and for restructuring the
calling arrangement.

ARBUS processes programs written in standard FORTRAN 66 and
FORTRAN 77 s57/, provided these have been already compiled suc-
cessfully. Non-compilable sources may cause ARBUS execution to
abend.

2. FEATURES OF ARBUS

ARBUS reads a sequential file containing the FORTRAN source code
with any number of modules (henceforth also called procedures
for the sake of analogy with structured programming languages
like PASCAL or C). While reading it processes the source code
in accordance with a simple set of input instructions specified
by the user in the related Job Control Language (JCL) as .
described in 2.1 . Up to three analysis reports may be issued
by running ARBUS:

two printable invocation reports, one showing the selected
calling tree (calling tree report or invocation bands report)
and the other 1listing in the first section all the modules
called by each individual program unit and in complementary
manner in the second section also every module by which each
individual program unit is called (invocation summary or simply
protocol report).

The invocation summary report can be used to obtain a complete
listing of the calling structure of a given program. It high-
lights modules that are not invoked and modules that do not call
other modules. Procedures that are referenced but not defined
in the source code are identified. This holds for SUBROUTINE
but not for FUNCTION units because for the latter to be detected
a considerable amount of tedious programming work would be
additionally needed. The inclusion of such a feature in ARBUS
would moreover reduce the time effectiveness in running the
program, thus it was decided to ignore invocations of FUNCTIONs
which do not exist in the source list.

The third output file consists of a brief statistics report
where general informative data about the source code under
investigation are summarized (e.g. number of subroutines, num-
ber of functions, max. call depth etc.). A detailed description
of this report is given later in section 2.2

Last but not least ARBUS can provide a calling tree plot which
reflects essentially the structure of the calling tree report
but makes use of the VERSATEC graphical package in order +to
obtain compact and elegant presentation effects (see Figs. 1-5).

2.1 CODE INPUT DESCRIPTION

An executable version of ARBUS has been created and can be run
by the following JCL:

//AITH96Z JOB (0496,935,P0000), FERRERO,NOTIFY=AIT496,MSGCLASS=H,

77 REGION=4000K

//BLOCK EXEC F7CLG,PARM.C='LANGLVL(77),NOFIPS’

/7 KK KK KKK 3K K KK KKK K KK K K 3K 3K 3K KK 3K K KK K K K K KK K K K K K K K K K K 3K K K
s K

/7/C.SYSIN DD DSN=AITU496.BAUM.FORT(ARBUS),DISP=SHR
/oK

77 RO K KK K K KK K K K K K K K K KK KK KNI K KKK K KO KK KK K KK KKK KK KO K
/7/G.SYSIN DD X

3

AIT496 .TESTBSP1.FORT

MAIN

20

AIT496 .CALLTAB.DATA

AIT496 . TREE.DATA

AIT496 .STATIS.DATA
7/ KKK KKK KR KKK KK K KK 3K K K K KK K KK KK KK KK K KK KK KK K K K K K K K KK KK OKCK KK KK KK

7 7 KEKXK KKK
//7XXX PLOT - PARAMETER: AKX
S/ EKK e KKK
/7 EKXKK WK XK
F/REKK O YMAX MAXIMAL ERLAUBTE PLOTLAENGE IN INCH KKK
7 7 XKHKXK KKK

/ / FKOK K KKK K K K K KK K K K K DK KKK K KK KK R K KKK KRR K KKK KKK KK K K KKK ROK KK KK KK K

/777G .PLOTPARM DD X
&PLOT XMAX=600.0 SPACE=30 &END
//PLOT EXEC SVPLOT

Let us consider the G.SYSIN instructions block. In the first
line an integer number must be entered ranging from 0 to 3.
These numerical values correspond to the following menu options:

o 0 - only the program statistics file will be created

® 1 - the program statistics and the tree diagram file will
be created

° 2 - the program statistics file and the tree diagram VER-
SATEC plot will be created

e 3 - the program statistics file, the tree diagram file and
additionally the tree diagram VERSATEC plot will be created

In the second line the name of the data set containing the
program to be analysed must be entered (in our example:
AIT4{496 . TESTBSP1.FORT) The data set organization must Dbe

sequential. For an input source code that contains different
procedures with the same name, the first one encountered while
processing is printedrplotted; however all of them are analysed
and printed in the invocation summary file together with their
subordinate modules (which may be different). Both unnamed and
named BLOCK DATA subprograms are as well listed in the invoca-
tion summary file.

The item "MAIN" of the third line in the list specifies the name
of the program unit to be used as the starting point of the tree
structure. If no PROGRAM statement is used as the entry source
statement of the main program, then the default name MAIN is
assigned, this name appearing throughout the two ARBUS printable
reports whenever the name of the module is used. The main pro-
gram is supposed to be unique. If that is not the case, then
the execution is stopped while processing the first executable
statement of the next main program and the message "™ YOU HAVE
MORE THAN ONE MAIN PROGRAM " is printed out on the standard
output unit FTO06F001.

If the user wants to have the invocation tree starting from the
main program and the name he declared in the JCL doesn't cor-
respond to the actual one in the code to be analysed, ARBUS runs
normally but uses the correct name in the printable output data
sets and in the VERSATEC tree plot. This implies that when the
misspelled name of a SUBROUTINE or of a FUNCTION is coded in
the input,-i. e. a non existing procedure is declared-, then
the call tree start point assumed in ARBUS is the main progranm,
although this might have not been the true intention of the
user.

In the fourth line the selected maximum branching depth of the
invocation tree must appear. If the entry value is greater than
20 then ARBUS sets it automatically to 20, which corresponds
to the max. plottable depth compatible with the VERSATEC paper
sheet width (for comparison: the corresponding max. depth on
printer is 7). If the expected depth is lower than the actual
one or the physical mapping of the tree is such that the max.
width of the papers/plot output is exceeded, a tree diagram
truncated at the 1level selected by the user or respectively
imposed by the paper margin will be generated. A dash following
a framed procedure name indicates that the tree is to be con-
tinued at that point.

The last three lines of the G.SYSIN list must contain the names
of the report files to be issued by ARBUS. In order of appear-
ance in the list we have:

e the invocation summary report (in our example:
AITU{496 .CALLTAB.DATA)

° the invocation tree report (in our example:
AIT496 . TREE.DATA)

e the progran statistics report (in our example:
AITH{96 .STATIS.DATA)

The user is supposed to allocate these three data sets with the
(recommended) DCB parameters RECFM=FB, LRECL=132, BLKSIZE =
3960 and with a cautiously high number of secondary disk tracks
for "CALLTAB"™ and "TREE" prior to running ARBUS. No assessment
can be made here about the total amount of allocation space
required by them except that it should be somewhat proportional
to the expected complexity of the analysed program. This is of
no concern for the statistics file which has a fixed (=36)
number of output lines, no matter what the input source code
is.

It should be noticed that regardless of the menu selection
number the invocation summary file and the statistics file are
always generated whereas the invocation tree file is produced
only with the option numbers 2 and 3. As a consequence, when 0
or 1 are instead selected only two data set names must be
entered in the G.SYSIN 1list and the G.PLOTPARM cards may be
omitted.

2.2 CODE OUTPUT DESCRIPTION

When the user 1is not yet acquainted with the source code he
wants to analyse it is suggested to choose the option "0" for
issuing only the statistics file. The information contained
there enables him to make the right decision about the way he
wants to proceed further in his analysis. In fact ARBUS calcu-
lates the sizes (length and width) in meters and inches of the
tree diagram plot and the length (in number of lines) of the
call tree report. These gquantities are printed in the statistics
file.

This feature is of paramount importance for the user when he
is not able to guess in advance how long the tree he wants to
plot/print is (for some source codes a total length of even more
than 100 m may result!). Therefore before making use of the
plottings/printing option it is strongly recommended to make a
pre—-run requesting only the statistics output. In case the sizes
foreseen by ARBUS are too large for the physicals/plotting sys-
tems, the user is suggested to lower the value of the calling
depth and to start again ARBUS until acceptable values are
attained. He can then easily reconstruct the whole program tree
by running repeatedly ARBUS taking lower-level procedures as
starting points for the remaining branchings to be visualized.

In the statistics file the user can find also important infor-
mation items about the analysed source code like the number of
SUBROUTINEs, FUNCTIONs, BLOCK DATA, ENTRY points and EXTERNALs
included in it. Also the number of subroutines invoked but not
available in the source code is written. Additionally all source
lines are scanned and sorted in actual program statements with
(possibly) continuation lines and comment lines. The amounts
of each kind of line are issued in the statistics file along
with their sum, which must be equal to the total amount of
source program lines. '

The invocation bands file (in the previous section called
AIT496 .CALLTAB.DATA) shows the module <calling hierarchies
identified by ARBUS by means of a graphical tree structure
representation. The user should be aware of the fact that if a
procedure is called more than once within a given program unit,
then for sake of compact visualization only the first call
occurring in the FORTRAN source is mapped onto the tree diagram
print.

The invocation summary file contains a table listing the CALLEEs
(lower—~level routines called by the program unit) and CALLERSs
(upper-level routines calling the program unit) for each program
unit. The symbol "——--- " indicates that there are no CALLERs
or CALLEEs. These are typically the cases of the main program
that is expected not to be called by any other module and of
BLOCK DATA modules which do not call other modules. Any other

modules which are shown as not being invoked should be audited
for possible inconsistencies with the rest of the analysed
library.

It should be noted that in this file neither the statements
where the module reference occurs .nor the number of times one
module is called within the whole program unit under investi-
gation are listed. Such kind of documentation was considered
to be beyond the scope of ARBUS reporting activities and
therefore intentionally ruled out of the work schedule of the
authors.

The invocation tree VERSATEC plot exhibits the same structure
of the invocation bands file but provides a more compact and
elegant graphical representation of it. It is recommended to
make use of this output option (=2) in order to save paper
costs.

Diagnostic messages resulting from +the ARBUS analysis are
written on the FTO06F001 output 1listing. A preliminary input
parameters check is performed by the ARBUS subroutine FEHLER.
This subroutine surveys also the array subscripts history in
ARBUS while processing the input source code which might exceed
the max. permissible parameter values declared in ARBUS (s.
Table 1). Once the error is detected a warning is printed which
identifies the error cause and explains the problem recovery
action to be undertaken (normally resetting a higher wvalue for
the upper subscript of one vector/matrix field in ARBUS main
program).

2.3 EXAMPLES

In this section two sample problems are given which highlight
the ARBUS abilities described in the previous sections. The
following examples contain the JCL's needed to run ARBUS, the
source lists of the input programs and the related output data
sets. It was believed +that although the sample sources
TESTBSP1.FORT and TESTBSP2.FORT are quite short, they are rep-
resentative for testing the functionality of ARBUS, because they
contain all the features which ARBUS is supposed to cover and
document. In the first example the whole program tree diagram
of TESTBSP1.FORT has been generated and printed out in the
protocol data set. The second example differs from the first
in that several ARBUS runs were made and every time only a part
of the call tree diagram of TESTBSP2.FORT was printed /plotted
(s. Figs. 1-4) with different start points.

Example No. 1

//7ATITH496Z JOB (0496,935,P0000),FERRERO,NOTIFY=AITU496,MSGCLASS=H,
Vo4 REGION=4000K,TIME=(1,0)

/7 EXEC F7CLG,PARM.C='LANGLVL(77),ASTER,SOURCE, NOMAP,NOLIST"
77X

/7/7C.SYSIN DD DSN=AIT496 .BAUM.FORT(ARBUS),DISP=SHR

/7K

/7/G.SYSIN DD X

1

AITH496 . TESTBSP1.FORT

MAIN

20

AIT496 .CALLTAB.DATA

AIT4{496 . TREE.DATA

AIT496 .STATIS.DATA

SRR KK KKK K KKK KKK KK R K KK KK K K K K K K K K K KK K ROK R K KKK K K KKK OKOK KKK KKK XKOKKOKK K

C===F-=o==cCoo=ss=s=SSC=S=S==S=S=Ss=SSs==sSSSSoozz==z=sosoosssozz====22=(C
c c
c TESTBETISPTIEL 1 C
Cc c
c DIESES PROGRAMM DIENT LEDIGLICH DEM ZWECK, DIE c
c FUNKTIONALITAET DES PROGRAMMES A R B U S ZU ZEIGEN !'!! C
o Cc
CE=s====s===s======c========--===========Z=S======S====z===z=zZ==========(C
BLOCKDATA

INTEGER IFELD(5)
COMMON IFELD
END

BLOCK DATA TEST

INTEGER NFELD(5)
COMMON s FELD - NFELD
DATA NFELD - 5,4,3,2,1 7/

END

EXTERNAL QUAD, SUM, SIN, ! 'DIES IST EIN KOMMENTAR
& cos ! SOLCHE KOMMENTARE ERLAUBT DAS
INTEGER IZAHL(5) ! PROGRAMM ARBUS !'!'!?

EXTERNAL TAN, WURZEL, SINHYP -

WRITE (*,X) 'GEBEN SIE EINE REAL-ZAHL EIN :°

READ (%,X) DZAHL

WRITE (X,X) 'BITTE WAEHLEN SIE :°'

WRITE (X%,X) *'1 - SIN, 2 - COS, 3 - TAN DER ZAHL !'°
READ (X,X) IWAHL

IF (IWAHL .EQ. 1) CALL SUB3 (SIN, DZAHL, DERG)

IF (IWAHL .EQ. 2) THEN

CALL SUB3 (COS, DZAHL, DERG)
ELSE IF (IWAHL .EQ. 3) THEN
CALL SUB3 (TAN, DZAHL, DERG)

END IF

WRITE (%,X) 'DAS ERGEBNIS LAUTET:', DERG

CALL SUBO (IWAHL)

IF (REAL(IWAHL).GT.DWURZ(DERG)) CALL SUB1(QUAD,SUM,IZAHL(1),
&QUAD, SUM, IZAHL)

CALL SUB4('CALL SUBO(MINI,MAXI)', 'MINI')

CALL SUBNOT

CALL CALL

CALL ENTRY

WRITE (X,X) 'GEBEN SIE FUENF INTEGER-ZAHLEN EIN:'
READ (X,X) (IZAHL(IZ), IZ = 1, 5)
WRITE (%,X) 'IWAHL EINGEBEN :'
READ (¥%,X) TIWAHL
IF (IWAHL .EQ. 1) THEN
CALL SUBZ2E1 (IZAHL, IERG, QUAD)
ELSE IF (IWAHL .EQ. 2) THEN
CALL SUB2E1 (IZAHL, IERG, SUM)

ELSE

CALL SUB2EZ2 (IZAHL, IERG, SUM)
END IF
WRITE (X%,X) 'DAS ERGEBNIS LAUTET:', IERG
WRITE (X,X) AWURZ(2.), ' IST DIE ACHTE WURZEL VON 2 !'°
WRITE (X,X) VWURZ(FWURZ(2.)), ' IST DIE 20. WURZEL VON 2 !°
END

SUBROUTINE SUBO (IWAHL)

EXTERNAL ENORM

EXTERNAL UNORM

REAL ENORM1(2)

WRITE (X,X) YSUBROUTINE SUBO: ZWEI REAL-ZAHLEN EINGEBEN:'
READ (*¥,X) ENORM1(1), ENORM1(2)

IF (MINI(IWAHL,2).GT. 2)
&ENORMO = QUADNO (ENORM1(1),ENORM1(2),ENORM)

IF (ENORMO .GT. DWURZ(3.0))

&ENORMO = KUBNO (ENORM1(1),ENORM1(2),
&UNORM)

WRITE (X,%) 'ERGEBNIS VON SUBO: ENORMO = ', ENORMO

END

SUBROUTINE SUB1 (SUBEX1,SUBEX2,IZ,SUBEX3,SUBEXY4,IZAHL)
INTEGER IZAHL(5)

WRITE (X,%) 'EXTERNALS IN SUB1: SUBEX1,SUBEX2'

CALL SUBEX3(IZAHL,IERG1)

IERG2 = 5

IF (IERG1.GT.10) CALL SUBEXA4(IZAHL,IERG2)

IERG1 = IERG1 X IZ

WRITE (X,%X) 'ERGEBNIS VON SUB1: IERG1 = ',MINI(IERG1,IERG2)
WRITE (%,%) 'LOGER() WIRD HIER NICHT AUFGERUFEN'

END

BLOCKDATA TEST2

INTEGER LFELD(5)

COMMON /FELD2/ LFELD

DATA LFELD - 3,3,3,3,3 /

END

SUBROUTINE SUB2 (IZAHL, IERG, SUBEXT)

INTEGER IZAHL(5)

ENTRY SUB2E1 (IZAHL, IERG, SUBEXT)

WRITE (X,%) 'ERSTER ENTRY IN SUB2 !!'

CALL SUBEXT (IZAHL, IERG)

ENTRY SUB2E2 (IZAHL, IERG, SUBEXT)

WRITE (X,X) 'ZWEITER ENTRY IN SUB2 !°'

END '

SUBROUTINE SUB3 (FUNC, DZAHL, DERG)

WRITE (%,%) 'SUBROUTINE SUB3 !!!"’

DERG = FUNC(DZAHL)

END

SUBROUTINE SUB4 (CHELP1, CHELP2)

PARAMETER (MAXP=10)

INTEGER IPOS (MAXP)

CHARACTERX(X) CHELP1, CHELP2

CALL INDEX2(CHELP1,CHELP2,IANZ,IPOS,MAXP)

WRITE (%,X) 'CHELP2 WURDE IN CHELP1 ', IANZ, 'GEFUNDEN !
END

SUBROUTINE QUAD (IZAHL, IERG)

INTEGER IZAHL(5)

IERG = IZAHL(1) % IZAHL(1) + IZAHL(2) X TZAHL(2)+IZAHL(3)
& XIZAHL(3) + IZAHL(4) X IZAHL(4) + IZAHL(5)XIZAHL(5)

SUBROUTINE DUMMY (X, Y)
IERG = INT (DWURZ (X) ¥ VWURZ (X)) + MINI (INT(X),INT(Y))
END

SUBROUTINE SUM (IZAHL, IERG)
INTEGER IZAHL(5)
IERG = IZAHL(1) + IZAHL(2) + IZAHL(3) + IZAHL(4)+IZAHL(5)

END

FUNCTION MINI (I1,I2)

IF (I1.LT.I2) MINI = If
IF (I2.LT.I1) MINI = I2

REAL FUNCTION ENORM (IZAHL)
INTEGER IZAHL(5)

CALL SUM (IZAHL, IERG)
ENORM = DWURZ(REAL(IERG))

REAL FUNCTION QUADNO (X,Y,EFUNCQ)

QUADNO = EFUNCQ(X,Y)XEFUNC(X,Y)

REAL FUNCTION KUBNO (X,Y,EFUNCK)
KUBNO = EFUNCK(X,Y)XEFUNCK(X,Y)}XEFUNCK(X,Y)
REAL FUNCTION DWURZ (X)

DWURZ = X XX (1./3.)

REAL FUNCTION VWURZ (X)

VWURZ = SQRT(SQRT(X))

REAL FUNCTION FWURZ (X)
FWURZ = X XX (1./5.)
REAL FUNCTION AWURZ (X)

AWURZ = SQRT(VWURZ (X))

aaoaaQ

o NeNeNolNslNeNeNeNeNoloNeNoNeoNesNoNoNeoNeNoNoNoNoNoNoNe N R

Q Q

Q

LOGICAL FUNCTION LOGER (I)

LOGER

= MOD(I,2) .EQ. O

SUBROUTINE INDEX2 (CSTR1, CSTRZ, IANZ, IPOS, MAXANZ)

AUTOR

S UBROUTTINE I NDEJX2

e+ttt etsses.s. MICHAEL ZANGER -/ PHDR - KFK

ERSTELLUNGSDATUM 05-12/1990
LETZTE AENDERUNG 21.05.1990
PROGRAMMIERSPRACHE ... FORTRAN 77
COMPILER-OPTIONEN OPTIMIZE
RECHENANLAGE VAX 7 IBM
SACHGEBIET FORTRAN-TOOLS

ERWEITERUNG DER INTRINSIC-FUNCTION INDEX(). SAEMTLICHE
VORKOMMEN DER ZEICHENKETTE <CSTR2> IN <CSTR1> WERDE
GESUCHT.

CSTR1
CSTR2 NN
IANZ
IPOS()
MAXANZ

ZU DURCHSUCHENDER CHARACTER-STRING

GESUCHTER CHARACTER-STRING

HAEUFIGKEIT DES VORKOMMENS VON <CSTR2> IN <CSTR2>
POSITIONEN DES VORKOMMENS VON <CSTR1> IN <CSTR2>
MAXIMAL ERLAUBTE ANZAHL VON POSITIONEN

CHARACTERX(*) CSTR1, CSTR2

INTEGER IPOS(MAXANZ)

IPOSH1

= 1

DO 1000 IANZ = 1, MAXANZ
IPOSHZ = INDEX(CSTR1(IPOSH1:), CSTR2)

IF

(IPOSE2 .EQ. 0) GOTO 999

aaQaan

leleoNsoNesNoNoNeoNoloNoNoeNeoNeNoNoNeoNe!

aaaoaoaooaoaaaoaoan

'IPOSH1 = IPOSH1 + IPOSH2
IPOS(IANZ) = IPOSH1 - 1
1000 CONTINUE

111 IPOSH2 = INDEX(CSTR1(IPOSH1:), CSTR2)
IANZ = IANZ + 1 a7
IF (IPOSH2 .GT. 0) THEN
IPOSH1 = IPOSH1 + IPOSH2
GOTO 111
END IF

999 TANZ = IANZ - 1
END

SRR KK RKOKOKOK K KOK K 3K KK KK K K K KK K KOK KK K KK K K K KK K K KK K KK 3K K K K K KKK KK KK KK KK KKK

PROTOCOL DATASET FROM AIT496.TESTBSP1T.FORT

This data set includes also an EXTERNAL cross reference table
which displays all of the references to the externals in the
program (including SUBROUTINEs, ENTRY points and FUNCTIONs) and
the modules in which +they are referenced. From a first
inspection of the table it is evident that no attempt was made
in ARBUS to track the EXTERNAL reference history beyond the
first calling level since its declaration. EXTERNALs declared
but not used within the program are pointed out by the symbol
f—-——=' in the third and fourth column of the table, corre-
sponding to the lower hierarchical module level.

At the end of the report is a 1l1list of external subprograms
(typically operating system service ands/or environment library
subroutines) that are referenced but not defined in the source
code. Additionally the SUBROUTINEs and FUNCTIONs which are
present but not referenced within the source code are also
listed.

KK KR KK KR IKOK K KOK K KKK KKK KK R OK K ORKORK KK KKK KOKKOK KOK KK

KKK LIST OF CALLS FOR EVERY MODULE KKK
SR KK KK KKK KKK K K K K 3K K KK K K 3K K K KK KK KK KKK KK KK OK K K K

THE MAIN-PROGRAM MAIN CALLS:

SUB3, SUBO, SUB1, DWURZ, SUB4, SUBNOT, CALL, ENTRY, SUB2E1,
SUB2E2, AWURZ, VWURZ, FWURZ

THE SUBROUTINE SUBO CALLS:

MINI, QUADNO, KUBNO, DWURZ

THE SUBROUTINE SUB1 CALLS:

SUBEX3, SUBEX4, MINI

THE SUBROUTINE SUBZ2 CALLS:

SUBEXT

THE SUBROUTINE ENTRY SUB2E2 CALLS:

FUNC

THE SUBROUTINE SUB4 CALLS:

INDEX2

THE SUBROUTINE QUAD CALLS:

THE SUBROUTINE DUMMY CALLS:

MINI, DWURZ, VWURZ

THE SUBROUTINE SUM CALLS:

i o e el o e o s R S =l

THE FUNCTION ENORM CALLS:

SUM, DWURZ

THE FUNCTION QUADNO CALLS:

EFUNCQ

THE FUNCTION KUBNO CALLS:

EFUNCK

THE FUNCTION DWURZ CALLS:

B -2 A 2 -

VWURZ

KKK K K K KKK KK KKK KKK ROK K KKK K KK K K K KKK K K KKK KK KK KKK KK KKK K

KKK LIST OF CALLING MODULES FOR EVERY MODULE HHK
3K KK KK S OK K K KK K K KK K KK SOK 3K KK 3K K K KK K K K KK K K K K KK K KK KK KK KK K KKK

THE SUBROUTINE SUBO IS CALLED FROM:

MAIN

THE SUBROUTINE SUB1 IS CALLED FROM:

MAIN

THE SUBROUTINE SUB2 IS CALLED FROM:

THE SUBROUTINE ENTRY SUB2E1 IS CALLED FROM:

MAIN

MAIN

MAIN

MAIN

ENORM

SUB4

THE SUBROUTINE SUBNOT IS CALLED FROM:

MAIN

THE SUBROUTINE ENTRY IS CALLED FROM:

MAIN

SUBO, SUB1, DUMMY

THE FUNCTION ENORM IS CALLED FROM:

SUBO

SUBO

MAIN, SUBO, DUMMY, ENORM

THE FUNCTION VWURZ IS CALLED FROM:

MAIN, DUMMY, AWURZ

THE FUNCTION FWURZ IS CALLED FROM:

MAIN

THE FUNCTION AWURZ IS CALLED FROM:

MAIN

THE FUNCTION LOGER IS CALLED FROM:

SRR KK R ROK K KKK K K K K KKK K KKK KK KKK KOKOK KKK

KKK BLOCK-DATA-SUBROUTINES KKK
KK K K KK KK KK KK KKK K KK K KK K KKK KKK KKK KK K

~NONAME-, TEST, TEST2

SO K ROKKOK KK KK K KK KKK KKK KK CKOKCK KOKK KK

HHKK ENTRYS IN ROUTINES HHKX
HKOK K K 3K KK K KK KK K K KK KK K K KKK K KKK KKK

ENTRYS OF SUB2:

SUB2E1, SUBZ2E2

KK KKK KKK KK K KKK KK K EOK KK KK K KK KKK K K KRR K KK R KKK KR KK

KAKK EXTERNAL FUNCTIONS AND SUBROUTINES: HKHKXK
SR KKK KK KKK K KKK K K K 3K K K K K K 3K 3K K K 3K KK K KK KK K KKK 3K KK KKK KK

EXTERNAL FROM PROCEDURE TO PROCEDURE WITH NAME
QUAD MAIN SUB1 SUBEX1
QUAD MAIN SUB1 ’ SUBEX3
QUAD MAIN SUB2E1 SUBEXT
SUM MAIN SUB1 SUBEX2
SUM MAIN SUB1 SUBEX4
SUM MAIN SUBZ2E1 SUBEXT
SUM MAIN SUBZ2E2 SUBEXT
SIN MAIN SUB3 FUNC
Ccos " MAIN SUB3 FUNC
TAN MAIN SUB3 FUNC
WURZEL MAIN ——— ————
SINHYP MAIN —-———— ————
ENORM SUBO QUADNO EFUNCQ
UNORM SUBO KUBNO EFUNCK

KK KKK KKK KK KK KKK KKK KKK KKK KK K KKK K KK KK KKK AR KKK OKK KKK X

KAXK SUBROUTINES WHICH WERE NOT IN SOURCE CODE KKK
KK K KK K 3K 3K 5K 3K 5K 3K 3K K K K K 3K 3K 3K 3K 3K 3K 3K 3K K 3K KK 5K 3K KK 3K K SK 3K 3K KK SKOK K KKK K KKK KK K

SUBNOT, CALL, ENTRY

KK K K K 3K 3K 3K 3K 3K 5K 5K 3K K K K 5K 3K 3K 3K 3K 3K 3K 3K 5K K 3K 3K 3K 3K K KOK K K 5K K 3K 3K K 5K 3K 3K KK 5K KK KK KK K
KAKXK NOT REFERENCED SUBROUTINES IN SOURCE CODE KKK

KKK KKK KKK KKK K K KKK KKK K KK KK KK KK K KK KK K KK KK K KK KKK KKK K KK KK KK KK KK KOKKOK KK

JADNNAT ‘0JNNd3 ‘ONNd “¥IO0T ‘WIONI

3K KK K KK KKK 3K K K K SKOK KK K KK KKK KKK KK KKK KK KK KK SRR KK KK K KKK KK KK
KKK dd0oD IDUN0S NI SNOILDONNd aIONAFIATY ION KKK
SKOKCK K K KKK KK K K 3K K K KK K 3K K KK 3K K K KK KK K 3K K KKK K KK KKK KK KKK KK KK K

ILX3dNs ‘HXddNS ‘eXdINsS ‘AKKHNA ‘avnd ‘24ns

KK KK KK K K KKK K K K K KKK K KK KK KK K K K KK KKK K KKK K KKK R K KK KKK KKK KK

KKK K KRR KK K K KKK KK K R KKK K K K R KKK OK R ROR RO ORORKOK K KCKK X K

XXX TREE FROM PROGRAM AITA496 .TESTBSP1.FORT kXX
3K KK 3K 3K 3K KK KK 3K KK K K K K K K K KK KK K S K KK K KK SR K KK SOK KK KK KKK

In this file the name of the selected module is printed in the
leftmost part of the page. From it a branching structure expands
including the successive hierarchical module levels up to the
seventh. This constitutes the upper bound of the band structure
and is imposed by the maximum paper sheet width of usual printer
devices. If the user's program has more than 7 levels of module
invocations it 1s possible to obtain a complete calling tree
of its source by attaching the invocation bands reports for
several source code procedures together. However this is a very
laborious solution, thus it is suggested to make instead use
of the plot option which allows the graphic. representation of
up to twenty hierarchical levels. Should also this measure not
be enough, then the user shall repeatedly run ARBUS by declaring
one by one all the names of the modules in the 1last plotted
level as new starting points till the related branchings have
been completed and continue in the same way till the very last
level of every subsequent starting point has been eventually
reached. Yet, in most of the practical cases, this cumbersome
series of operations is not needed.

--X DWURZ X
OK KKK KK KK K

KK KKK KKK KK KKK KKK KK
--% SUB3 Hmmm o X FUNC X
| KK KKK AKOK KK KKK KA KK
I
I
I
| KK KOK KK KK KK
| --% MINI X
| | KKK KOKKOKOK KK
I I
I I
| I
| | KK KK KK KKK KKK KKK KK KK
I | -—*¥ QUADNO ¥-----— ¥ EFUNCQ X
| | KK KKK AR KKK AR K ACKOKOKKOK K
| OOKIOKROKKROKK]
| --% SUBO K——|
| OKEORKEOKAOKKK |
| | KKK KK AKX KACK KOO KK XK
I | -—-% KUBNO ¥-—--- ¥ EFUNCK X
| | KKK HOKOKOKOK KACK KK ACKKKXK
I I
I I
I I
| | KK KK KKK KK
|
I
I

KKK KKK KK XK KKK KK KKK

I
I
|
% LXd4dNS x—-—---- % LIzdns x—-|
SKOK K KKK KKK K KOKKXKOOKOKKOKK |
I
|
i
XORKOKOKOIORKORK |
x KIINI x—-1
Xk |
|
I
|
HOOCKRORROoRK |
X TIVD x——|
KRR |
|
|
|
)y |
% LONENS x—-|
xxokokookk |
|
I
|
SKOK KKK KKK K K KKICKKKORKK |
x CXJIANI x————-— X RANS x—-|
KKK KK KK KKK XRKKORIORK |
, I KKK KK
| ——% NIV x
| KKK R KOK
ook |
x Z2dNMa x--1
xxsokokokoksk |
KKK KKK KK KK |
X ININ x-- |
*oOKoIooRKK | |
| I
| |
I |
XORKKKOKKRoRK | ook |
x hXddNS x--+--x LgNS x——|
xookkoksookk | ook |
I I
| I
I I
KOKKKIKRCKROK | I
x £€Xd4NS x—- |
KKK KK KKK K I
|
I

| KRR KOO XK

| --% SUB2E2 X
| KEKOKKIOROKKK

HKOK KK KKK KKK HOKCKOK KK KR KK

--¥X AWURZ K-—-—-- X VWURZ X
KKK KKK HOK K KKK KKK KK

KK KOKOK KKK

--X VWURZ X
K KKK KR K

OKHOK KKK XK

--X¥X FWURZ X
KK KK KK HOK KK

KK K SR KK K K K 3K K KK K K K K K K K K K K K K K K K K K K KK KK K K OK KKK KK KK KK KKK K KK KK KKK KOK KK

STATISTICS FROM PROGRAM AIT496.TESTBSP1.FORT

NUMBER OF SUBROUTINESc.itiiernnunas 9

NUMBER OF FUNCTIONS . .\t eovmeeeeeeeennn. 9
NUMBER OF BLOCK DATA ROUTINES 3
NUMBER OF ENTRIES . .. vvoetmem e, 2
NUMBER OF EXTERNALS . ..« vvovonnssennennnn. 9
NUMBER OF NOT PRESENT SUBROUTINES 3
NUMBER OF LINES .. oo vvtotaneeneannnnn.. 241
NUMBER OF PROGRAM STATEMENTS 148
NUMBER OF CONTINUATION LINES R 5
NUMBER OF COMMENT LINES .. .vovvnenennnn.. 88
MAXIMUM CALL DEPTH (START PROCEDURE: 0) 3
LENGTH OF TREE DIAGRAM PLOT 0.200 M =

o
—
w
o
=

I

WIDTH OF TREE DIAGRAM PLOT

LENGTH OF TREE DIAGRAM DATASET ... 112 LINES !

7.87 INCHES

5.12 INCHES

Example No. 2

This example reflects essentially the same structure of the
Previous one but VERSATEC call tree plots were added relating
to JCL's where the branching depth and/or the starting point
were changed (s. Figs. 1 to 4). In the diagram where the max.
depth has not been reached a dash mark is attached straight to
the right side of the cases enclosing the names of the proce-
"dures which have some CALLees. This mark is to make the user
aware that "something®" follows on there but does not apbear on
the sheet. An analogous pattern was implemented also in the call
tree report by making use of appropriate printing characters.
In Fig. 5 the tree diagram of ARBUS itself is presented.

//AITH96Z JOB (0496,935,P0000),FERRERO,NOTIFY=AIT496,MSGCLASS=H,
s REGION=4000K,TIME=(1,0)

7/ EXEC F7CLG,PARM.C='LANGLVL(77),ASTER,SOURCE,NOMAP,NOLIST"'
/7C.SYSIN DD DSN=AIT496.BAUM.FORT(ARBUS) ,DISP=SHR

//7/G.SYSIN DD X

1

AIT496 . TESTBSP2.FORT

SUB2

1

AITU496 .CALLTAB.DATA

ATITH496 . TREE.DATA

AITU496 .STATIS.DATA

KKK KKK K K KK KK K K K KKK KK K K KKK K K K K K K 3K KKK KK K K K KK K K KK KK OK K KKK KKK KKK K XK

Ce==========-=s==s====S===========S=======================z=========(C
c Cc
Cc TESTBETISPTIETL 2 c
o c
C========s===s====S====S=-S==S=S==S===S==S=============================(C

CALL WURZEL (A,B,C)
R = FUNW (C)
CALL SUB2 (D)
WRITE (*,X) 'WIE GROSS SOLL N SEIN ?°
READ (X,X) N
IF (N .GT. 10) THEN
CALL SUB4EZ2 (M,N)
ELSE IF (N .GE. 0) THEN
CALL SUB4E4 (M,N)
ELSE IF (N .GE. -10) THEN
CALL SUB4E1 (M,N)
ELSE
CALL SUB4E3 (M,N)
END IF
IF (M .LT. 10000) CALL SUB4E2 (I,M)
IF (I .LT. 100000) CALL SUB4E2 (J,I)

1
-

WRITE (X,%X) 'SPECIALCHECK ''! 3. WURZEL VON I ’
&DWURZ (REAL(I))

END

SUBROUTINE WURZEL (A,B,C)

WRITE (X,%X) 'A,B EINGEBEN:'

READ (X,X) A,B

C = SQRT(A+B)

REAL FUNCTION FUNW (C)
EXTERNAL EXT1, EXT2, EXT3
EXTERNAL EXT4

EXTERNAL EXTS5

EXTERNAL EXT6

INTEGER IFELD(2,2)

DATA IFELD - 0,0,0,0

IF (C.LT.0.0) CALL SUB1(C,D,IFELD(1,1),EXT1,EXT2,EXT3,
& IFELD(1,2))
IF (C.EQ.0.0)> THEN
CALL SUB1(C,D,IFELD(1,1),EXTS,EXT4,EXTS,IFELD(2,1))

ELSE

CALL SUB1(C,D,IFELD(1,1),EXT6,EXT2,EXT3,IFELD(2,1))
END IF
WRITE (X,X) 'D = ',D,' 3. WURZEL VON D = ', DWURZ(D)
FUNW = D
END

e e e e e e e e e e e e e e e s e e e e ——— s — —

SUBROUTINE SUB1 (C,D,I1,EXFUN1,EXFUN2,EXFUN3,I2)

D = EXFUN1(C) X EXFUN2(C) X EXFUN3(C)
It = INT(D)

I2 = - It

END

REAL FUNCTION DWURZX4(X)
DWURZ=XXX(1./3.)
END
REAL FUNCTION EXT1X4(X)
EXT1=SQRT (-X) :
END
REAL FUNCTION EXT2(X)
EXT2=1. 7 X
END
REAL FUNCTION EXT3(X)
IF (X.G6T.0.) THEN

EXT3 = 1.
ELSE

EXT3 = -1.
END IF

REAL FUNCTION EXTU4(X)
EXT4=1./SQRT(X)
END
REAL FUNCTION EXT5(X)
EXT5=X + 1.0
END
REAL FUNCTION EXT6 (X)
EXT6=SQRT (X)
END
SUBROUTINE SUB2 (D)
EXTERNAL EXT7, EXTS8
IF (D .LT. DWURZ(0.5)) THEN
CALL SUB3 (*10, D, EXT7, E, *20)

ELSE
CALL SUB3 (*10, D, EXT8, E, *20)
ENDIF
10 WRITE (X,X¥) 'QUBROUTINE AUSGEFUEHRT (:) E = ', E
GOTO 999

20 WRITE (%,X%) '"SUBROUTINE NICHT AUSGEFUEHRT (1
999 E N D

SUBROUTINE SUB3 (%, D, EXTSUB, E, X)
IF (D .LT. -1.0) THEN
RETURN2
ELSE
IF (D .LT. DWURZ(1.0)) CALL EXTSUB (D,E)
END IF
RETURN 1
END
SUBROUTINE EXT7 (D, E)
E=SIN(D) '
END
SUBROUTINE EXT8 (D, E)
E=COS(D)
END
SUBROUTINE SUB4 (M, N)
LOGICAL LOGER
ENTRY SUB4E1 (M,N)
LOGER = .FALSE.
CALL LOSUB (LOGER, N)
ENTRY SUB4E2 (M,N)
CALL SUM (M, N)
IF (LOGER) M = -M
RETURN
ENTRY SUB4E3 (M,N)
LOGER = .FALSE.

CALL LOSUB (LOGER, N)
ENTRY SUB4E4 (M,N)

M = IFAKUL (M, N)

IF (LOGER) M = -M
RETURN

E N D

SUBROUTINE SUM (M,N)
M = N X (N+1) 7 2

SUBROUTINE LOSUB (LO, N)

LOGICAL LO '

IF (MODULO(N,2) .NE. 0) LO = .NOT. LO
END

FUNCTION IFAKUL (N)
LOGICAL LOHELP
LOHELP = .FALSE.
CALL LOSUB (LOHELP,I)
M =1
Do 1000 I = 2, N
M =MXTI
1000 CONTINUE
IF (LOHELP) THEN
IFAKUL = -M
ELSE
IFAKUL = M
END IF
END

FUNCTION MODULO (M,N)

MODULO = M - M/N X N
END

PROTOCOL DATASET FROM AIT496.TESTBSP2.FORT

KK KK KK K AR KKK KKK R KK KK KKK KK KK ROR KKK K KKK OKOK KKK

KAK LIST OF CALLS FOR EVERY MODULE KKK
K K K K K K K KK K K K K K 3K 5K K 3K 3K 5K KK KKK KK KK KK KK K K KKK KK KK

THE MAIN-PROGRAM MAIN CALLS:

WURZEL, FUNW, SUB2, SUB4E2, SUB4E4, SUBUE1T, SUBUE3, DWURZ

THE SUBROUTINE WURZEL CALLS:

EXFUN1, EXFUNZ2, EXFUN3

THE SUBROUTINE SUBZ2 CALLS:

DWURZ, SUB3

THE SUBROUTINE SUB3 CALLS:

S S o oINS IonICoomEzmZDD=E==ZDZ=Do

EXTSUB, DWURZ

THE SUBROUTINE EXT7 CALLS:

LOSUB

THE SUBROUTINE ENTRY SUB4E2 CALLS:

SUM

THE SUBROUTINE ENTRY SUB4E3 CALLS:

LOSUB

IFAKUL

THE SUBROUTINE SUM CALLS:

e e o e e i o o e e b o e — e e

MODULO

THE FUNCTION FUNW CALLS:

SUB1, DWURZ

THE FUNCTION DWURZ CALLS:

THE FUNCTION EXT4 CALLS:

LOSUB

KKK KK KK K K KKK K K K K 3K KKK KK K K K K K 5K KK K KK KK SO KKK KK KK K K KKK K

KK LIST OF CALLING MODULES FOR EVERY MODULE KKK
3K KK KK K K K KK KK K K K K K K K KK K 3K K 3K 5K K K K KK K KK K K K KK K KK KKK KKK KK KK

THE SUBROUTINE WURZEL IS CALLED FROM:

MAIN

FUNW

MAIN

THE SUBROUTINE SUB3 IS CALLED FROM:

SUB2

THE SUBROUTINE EXT7 IS CALLED FROM:

THE SUBROUTINE EXT8 IS CALLED FROM:

MAIN

MAIN

prdi—— e R R e i s i et e e b crs it e e e

MAIN

pedp =gl e e R B R R R il iy aisl sl i R e it R e

MAIN

SUBA4E2

THE SUBROUTINE LOSUB IS CALLED FROM:

SUB4E1, SUB4E3, IFAKUL

THE FUNCTION FUNW IS CALLED FROM:

MAIN

THE FUNCTION DWURZ IS CALLED FROM:

MAIN, SUB2, SUB3, FUNW

THE FUNCTION EXT1 IS CALLED FROM:

f =g == g e el = e e ol el el e el G]

THE FUNCTION EXT2 IS CALLED FROM:

SUB4EY

THE FUNCTION MODULO IS CALLED FROM:

KK KKK K KK KK KK KR KK KO K ROKROK KKK OROKK K

KX BLOCK-DATA-SUBROUTINES KKK
KK 3K K KK K KKK K K K K KK K K KK K K K OK KK KK KKK K 3K K

XXX THERE ARE NO BLOCK-DATA-ROUTINES IN THE SOURCE CODE XXX

KR KK RKK KKK KR K KK KR KKK OKK KKK KXOK KK

XXX ENTRYS IN ROUTINES KKK
KK KK K KKK K KK K KK K K 3K KK K AOKOK KK KK K K

ENTRYS OF SUBA4:

SUB4E1, SUB4E2, SUB4E3, SUB4E4

KK K KK K K K K K KK K K K 3K K K K K K KK KK 3K K KK K KK K K K KK KK KKK KOK KK

KKK EXTERNAL FUNCTIONS AND SUBROUTINES: HHKK
KK KK K K K K K K K KK KK RO KK K K K KK K K K K KKK KKK KK KKK KK KKK KKK

EXTERNAL FROM PROCEDURE TO PROCEDURE WITH NAME
EXT1 FUNW SUB1 EXFUN1
EXT2 FUNW SUB1 EXFUN2
EXT3 FUNW "~ SUB1 EXFUN3
EXTY ‘ FUNW SUB1 EXFUN2
EXT5 FUNW SUB1 EXFUN1
EXT5 FUNW SUB1 EXFUN3
EXT6 FUNW SUB1 EXFUN1
EXT7 SUB2 SUB3 EXTSUB
EXTS8 SUB2 SUB3 EXTSUB

KKK KKK KKK K K KK KK KK K K KK KKK KK KK K K K K K KKK K R KKK O KOK K KKK KK

KKK SUBROUTINES WHICH WERE NOT IN SOURCE CODE KKK
SRR KK 3K K K K K KK K KK KK KKK KK KK KK K KK K KK K KKK K KK KK KK 3OK K KK KOK KKK

XXX ALL THE CALLED SUBROUTINES ARE PRESENT IN THE SOURCE CODE XXX

K K KKK K KKK R OK K K K KK K KR KK K K K KK KKK K K K KKK K KK K K K R OK K KKK KKK K

KEKXK NOT REFERENCED FUNCTIONS IN SOURCE CODE KKXK
3K 3K KK K K K DK 5K 2K K 3K 3KOK K K 5K K 3K K 3K 5K SK K K K K K K K 3K 3K K 3K KK 3K KK K K KK K KK KK KK K

EXT1, EXT2, EXT3, EXT4, EXTS5, EXT6, EXFUN1, EXFUNZ, EXFUN3

SRR KK KKK KK KK KK K KK KKK K KK KKK KKK KKK KK KK KKK KOK K K K K KK K KK KKK KK KKK KKK KKK K

STATISTICS FROM PROGRAM AITU496.TESTBSPZ.FORT

NUMBER OF SUBROUTINES
NUMBER OF FUNCTIONS . ..ovvevnrnnnn.
NUMBER OF BLOCK DATA ROUTINES
NUMBER OF ENTRIES e
NUMBER OF EXTERNALSoovrvnnnn..

NUMBER OF NOT PRESENT SUBROUTINES ..

NUMBER OF LINES,
NUMBER OF PROGRAM STATEMENTS
NUMBER OF CONTINUATION LINES

NUMBER OF COMMENT LINES

MAXIMUM CALL DEPTH (START PROCEDURE:
LENGTH OF TREE DIAGRAM PLOT
WIDTH OF TREE DIAGRAM PLOT

LENGTH OF TREE DIAGRAM DATASET

........

........

........

.....

.....

0)
0.045 M =
0.070 M =

19 LINES

1.77 INCHES ‘!

2.76 INCHES !

KRR K K K R KR HRRIROR KO OKSRCK R KK K KK KKK KKK KKK KK KK K K K KKK KK KKK KKK K KKK KK KKK K

5K K 3K 3K 3K 5K K K 3K 3K K KK K K K K K K K K K K R K KK KR K
XXX AITH96 .TESTBSP2.FORT XXX
KK 3K 5K K K 3K K 3K KK 3K KK K KK KK K KK K KKK KKK K

KKK K KKK KKK
-—-%X DWURZ X
| KHORKKKCKKK K

HOKKKKKORKKK |

X SUB2 X--—|

KAHOKKKHKOKKK |
| KRORKKKOKK KK

--X SUB3 X--

KKK KKKAKKK

2.4 PARTICULARITIES AND LIMITATIONS

In order to keep the memory size needed by a program run below
5,000 Kbytes, it was decided to fix up the maximum dimensions
of some crucial arrays in the program corresponding to as many
user relevant guantities like the number of subroutines and/or
functions, the number of entries, that of block data subprograms
etc. which can be processed by ARBUS.

Table 1 summarizes the max. allowed values of the code parame-
ters of major interest for the user as provided by ARBUS.

Parameter Description Max. Value
no. of SUBROUTINEs 1600 X)
no. of FUNCTIONs 300

no. of ENTRY points 200

no. of BLOCK DATA subprograms 100

no. of SUBROUTINEs called within 200

the program yet not available
in the program itself

no. of CALL statements within each 300
SUBROUTINE
no. of EXTERNAL declarations 200
max. length (in records) of the 70,000
output data set
max. width (in columns) of the 132 *X)
output data set
max. length (in m) of the VERSATEC 100
plot :
max. width (in m) of ‘the VERSATEC 0.584 XXX)
plot
Table 1. Maximum values of the major code parameters

®) includes ENTRY points and SUBROUTINEs called but not present

in source code
¥XX) corresponding to a 7-fold nested CALL-structure
XXX) corresponding to a 20-fold nested CALL-structure

If the program being analysed contains any couple of procedures
invoking one another (recurrent call schema), then ARBUS
recovers the error and continues genérating the tree giving a
warning message in the job output.

As it was possible to create a correct tree diagram of large
and highly structured codles such as CONTAIN -6/ and TWODANT -7/,
it was felt that the 1limit wvalues given in Tab. 1 may be a
reasonable compromise beltween memory saving requirements and

the user's wish of analysing as much automatically as possible
large computer codes' structures with a reliable (possibly
fault-free) software tool. However all the ARBUS parameters can
be easily reset to higher values, provided the resulting core
memory requirement doesn't exceed 10,000 Kbytes viz the max.
available memory size on the IBM 3090 computer of Kernfor-
schungszentrum.

The execution time depends on the program size and on the ARBUS
options in use. A rough estimate for a run with call tree print
and plot output request would be approximately 4 seconds per
10,000 lines on the above mentioned IBM 3090 system.

| PROGRAM ATTU9G.TESTBSP2.FORT

92-01-14
—1 SUB1 EXFUNZ2 |
— FUNN
EXFUN3
——{ DWURZ |
—]{ DWURZ
. — suB2 | EXTSUB |
—{5UB3

Figure 1.

DWURZ |

—| SUBYER2 —— sum |

— SUBUEU }—— IFAKUL —LOSuB }+—{MoDuLO]
—{ SUBYEL ——]L0OSUB

— SUBUE3 ——LosuB | moDuLo

Complete call tree diagram of the test program
TESTBSP2.FORT

._[42_

PROGRAM RITQQB.TESTBSP2.FUR1J

92-01-1U
{DWURZ]
SUB2 EXTSUB |
SUB3
DWURZ

Figure 2.

Partial call tree diagram of the test program
TESTBSP2.FORT with the subroutine SUB2 as a
starting point

Figure 3.

[PROGRAM AITU96.TESTBSP2.FORT
92-01-14

| ISUBuEZ |-
| [SUBUET |-
—{ SUBUEL }—
—{ SUBUES }—
—{ DWURZ _]

[MAIN }

Partial call tree diagram of the test program
TESTBSP2.FORT with the MAIN program as a start-
ing point and selected branching depth equal "1¥"

qs

" T PROGRAM AITU96.TESTBSP2.FORT
92-01-114

—{ WURZEL |

Gz]
——{ suBe }—
MAIN }——
SUBUE? SUM

SUBYEU

| SUBYEL [——{LOSUB _
—{SuBuES }—FLosus |-
—{DHURZ]

Figure 4, Partial call tree diagram of the test program
TESTBSP2 .FORT with the MAIN program as a start-
-ing point and branching depth equal "2"

- 44 -

PROGRAM AITUSG.ARBUS3.FORT
92-01-14)

—{ FEHLER |
—[INDEX2 |
—{CHCALL |——{ INDEX2]

—| SUCHE2 }—{ FEHLER |

-[5UEHET)

—{ CHFUN |-—] INDEX2

—{ AUSGAB]
o {~|AusMAT J——{FEHLER]
[MAIN -
—{ AUSDAT |

—{ AUSPLO ——{PLOT]
—{ STMBOL |

Figure 5, Call tree diagram of the FORTRAN tool ARBUS

3.

/17

727

/737

s47

/57

76/

777

REFERENCES

RXVP80 - The Verification and Validation System for FORTRAN
Version 4.0, User's Manual, RM-2419, 1985

STREAM77 Siemens System 7.800 Handbook, April 1987

P. Fette,

PLOT-Handbuch, Anleitung fiir die Benutzung der Plotter-
Software, Programmbeschr. Nr. 268, Kernforschungszentrum
Karlsruhe, October 1982

B. Manes,
Private Communication

Siemens System 7.800 FORTRAN77 Reference Manual, October 1985

K.D. Bergeron et al.,

User's Manual for CONTAIN 1.0, A Computer Code for Severe
Nuclear Reactor Accident Containment Analysis, Sandia National
Laboratories, SAND84-1204, NUR-EG/CR-4085, 1985

R.E. Alcouffe, F.W. Brinkley,Jr.; D.R. Marr and R.D. 0'Dell,
User's Manual for TWODANT: A Code Package for Two-Dimensional,
Diffusion-Accelerated, Neutral-Particle Transport, Los Alamos
National Laboratory Report LA-10049-M—-Rev.1, October 1984

	Blank Page

