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Abstract 

A new evaluation of the equation of state of urania between the melting point and 

the critical pointwas carried out in 1986. The purpose of the work presented in 

this report is to make these data available for fast reactor accident analysis codes. 

The basic procedure is to produce analytic data fits for the liquid fuel (i.e. for 

densities larger than the critical value); for the vapor states (i.e. densities below 

critical) a suitably modified Redlich-Kwong equation is proposed. A reference 

analytic representation was produced, which closely fits the evaluated data. 

Furthermore, suitable approximations to the new data for the codes SIMMER-II, 

KADIS, and SAS4A were suggested andin part implemented into the codes. 

Brennstoff-Zustandsgleichung für Codes zur Analyse von Störfällen in Schnellen 

Reaktoren 

Zusammenfassung 

Eine Neuauswertung der Zustandsgleichung für U02 zwischen dem Schmelz­

punkt und dem kritischen Punkt wurde im Jahr 1986 durchgeführt. In dem vor­

liegenden Bericht wird beschrieben, wie diese neuen Daten für Störfall-Codes ver­

fügbar gemacht werden. Das Verfahren besteht darin, analytische Anpassungen 

für den flüssigen Brennstoff (d.h. für Dichten über der kritischen) zu produzieren; 

für die Dampf-Zustände (d.h. für Dichten kleiner als die kritische) wird eine geeig­

net modifizierte Redlich-Kwong-Gleichung benutzt. Eine Referenz-Anpassung 

wurde produziert, die die ausgewerteten Daten mit guter Genauigkeit approxi­

miert. Außerdem wurden geeignete Näherungen für die verschiedenen Störfall­

Cades SIMMER-II, KADIS und SAS4A vorgeschlagen und teilweise in die Codes 

eingebaut. 
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1. Introduction 

A new evaluation of the equation of state (EOS) of urania was carried out in 1986, 

and published in Ref. [1, 2]. The purpose of this evaluationwas to provide reliable 

EOS data for the analysis of hypothetical core disruptive accidents in fat:Jt reactors. 

The Significant Structures Theory (SST) of liquids was used, but it Wßti ext~nded to 

the case of non-stoichiometric liquid material, and to a multicomponcnt vupor 

phase which consists of the species UO, U02, U03, and oxyg~n. Only thi!:i ext.cndcd 

theory provides an adequate description of the urania syst~m. 'l'he modcl pururn-­

eters were fitted to experimental results which became availablc in thc pust dccadc 

[3, 4, 5, 6]. In general, good agreement with the experimental dutn could hc~ ohtnined 

using physically reasonable model param~tcrs. 'J'hc cvuluution uiHo involved uu 

extrapolation to the critical point. The predictcd criticul tempcruture is 10 600 K, 

the critical density is 1560 kg/m3. The pres!-3urc of thc urnnium--beuring specics nt 

the critical point is 158 Mpa, which gives a reasonable vuluc, 0.310, for the critical 

compressibility. The uranium-bearing species are in cquilibrium with un oxygen 

pressure of 230 Mpa at the critical point, so that the total pressul'c ut the criticnl 

point amounts to 388 Mpa. These data certainly deserve more confidencc than ear­

lier evaluations, for once because they imply an extrapolation ofrecent and reliable 

experimental data, but also because the extended model includes non-stoichiometry 

effects which are important in the urania system at high temperatures. 

The present report deals with making the new EOS available for fast reactor core 

disruptive accident analysis codes. Wehave in mind the code SAS4A [7], which is 

used in different laboratories to analyze the initiation phase of core disruptive acci­

dents. This latest SAS code version is presently replacing the older version, SAS3D. 

The coupled neutranies-fluid dynamics code SIMMER-II, which was developed at 

Los Alamos [8], was designed to analyze the transition phase ofcore disruptive acci­

dents. A more advanced version, SIMMER-ID, is presenlly under developments at 

the PNC company in Japan. Furthermore, the disassembly code KADIS [9] is still 

occasionally used at KfK to study energetic power excursions in fast reactors. Each 

of these codes uses a different analytic format for the EOS, so it seems tobe neces­

sary to suggest separate analytic fits for the different codes. Besides, it seems tobe 

appropriate to suggest an extension ofthe format in certain cases, to allow for better 

approximations. In principle, EOS data can be used in accident analysis codes 

either in the form of analytic fits, or in tabular form. The present work concentrates 

on producing analytic fits, mainly because this is what the ubovc mcntioned reactor 
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codes require. The first fits were proposedas early as 1986 [1]; in the meantime they 

were refined especially in the vicinity of the critical point. Note that one wants a 
format for the EOS data in an accident code which, on one side, is simple enough to 

keep the code running time in reasonable limits, but on the other t:iide il:i accurate 

enough to produce physically meaningful results. In the following section, we first 

present a set of accurate analytic fits to the evaluated data, which can be used as a 

reference. The application to the above mentioned accident analysis codes is then 

discussed in the later sections. Note that certain simplifications are necessary when 

the new EOS is introduced in accident analysis codes. As was pointed out in [1, 2], 
the data for liquid uo2 should also be used for the fast reactor mixed oxide fuel, 

(U,Pu) 02. 
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2. The Reference Analytic Representation of the Eguation of State above the 

Melting Point 

The following analytic representation ofthe UOz EOS approximates the evaluation 

with the Significant Structures Theory very closely. It is available in a computer 

routine EOSPL 90, which calculates the pressure and the internal energy as func­

tions of the density, with the temperature as a parameter. The lowest temperature 

is at the melting point, Tm = 3120 K. The original SST evaluationwas carried out 

for different oxygen to metal (0/M) ratios, i.e. for different x values in UOz±x· The 

fits, however, were produced only for the stoichiometric case. It was feit that this is 

accurate enough for accident analysis. The dependence ofthe vapor pressure on the 

OlM of the liquid is significant only in the lower temperature range (of liquid 

UOz±x), where the pressure is low anyway. In this work, piecewise polynomial fits 

will be provided for the "liquid side", i.e. for densities larger than the critical den­

sity (p > pc). For the gas side (p < Pc), the physics based EOS by Redlich and Kwong 

[10] was suitably modified [11] to approximate the SST data. The reason for this 

double approachisthat in the liquid range, the important functions, e.g. the satura­

tion density or the internal energy, vary smoothly and only by relatively small fac­

tors (less than an order of magnitude), so that good accuracy can be obtained with 

polynomial fits. On the other hand, the gas density varies by several orders ofmag­

nitude between the critical density and low gas densities around the boiling point, 

where the ideal gas law is valid. Therefore, an equation based on a simple physics 

model was preferred in this range. 

While polynomial fits can in principle be obtained with any desired accuracy, the 

present approach involves already two approximations. One isthat the extrapola­
tion into the compressed liquid range is performed with the assumption that the 

specific heat Cv depends only on density, not on the temperature. This seems tobe 

accurate enough for the usual fluiddynamics and reactor applications, where pres­

sures are low or moderate, and highly compressed liquids do not occur. 

The second approximation is the use ofthe modified Redling-Kwong EOS, which in 

connection with the vapor pressure curve determines the saturated vapor density. It 
was, however, found that for UOz the density agrees well enough with the vapor 

density obtained from SST. 
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Different analytic approximations are used in the different regions: 

Two-phase region 

Compressed liquid 

Superheated vapor 

Supercritical region. 

2.1 Two-Phase Region and Compressed Liquid 

The two-phase region is the most important one for accident analysis. The data 

needed are the vapor pressure, and both the densities and internal energies of the 

saturated liquid and vapor. Analytic fits were produced for these state variables. 

Note, however, that a complication arises when a consistent thermodynamic treat­

ment of the uranialoxygen system is used. Then there is a partial pressure of atomic 

oxygen (molecular oxygen can be neglected), which is in equilibrium with both the 

liquid urania and the mixture of uranium-bearing vapor species (UO, U02, Uüa). 

The pressure of the uranium-bearing species will also be called the saturation pres­

sure, p8 • The reason for choosing this nomenclature is the following: The uranium­

bearing vapor mixture in equilibrium with the liquid is said tobe at saturation. 

Thus, its density is called the "vapor saturation density", and it seems appropriate 

to label the associated pressure the saturation pressure. It is connected with the 

temperature and the vapor density by a real-gas equation of state, chosen in the 

present work as a modified Redlich-Kwong-EOS. Besides, certain thermodynamic 

relations, e.g. the Clausius-Clapeyron equation, clearly involve only the saturation 

pressure. 

On the other hand, the pressure of the urania system in a two-phase state, in ther­

modynamic equilibrium, is the sum of the saturation pressure and the oxygen pres­

sure. It will be called the "total pressure". It can be assumed that the components of 

boiling fuel are in thermodynamic equilibrium, during the temperature transients 

in a core disruptive accident, so that the total pressure is the one which drives core 

disassembly in accidents, and which is also seen by the measuring devices in experi­

ments, e.g. the pressure transducer in an in-pile pressure measurement. Therefore, 

one should in principle use the total pressure in accident analysis codes. 

The state variables for the compressed liquid are obtained as follows: The specific 

heat Cv is obtained from the SST for the saturated liquid. It is assumed that it de-
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pends, in good approx.imation, only on the density, not on the temperature. Thus, for 

given p and T, one needs the saturation temperature T8 , and Cv at the saturation 

point. The internal energy ofthe compressed liquid is then (s refers to saturation) 

U (T, p) = U (p) + C (T - T ) 
S V S (1) 

When calculating the pressure of the compressed liquid, one must make sure to 

satisfy the thermodynamic relation 

au ap 
-=T--p av aT 

(2) 

This requirement leads to the equation 

dC ( T ) p (T, p) = p (p) + y (T- T)- p2 
_v TIn- - T + T 

s s s dp T s 
s 

(3) 

where the pressure-temperature coefficient y is defined as the derivative ap/aT at 

constant density. In eq. (3), Ys is y takenon the saturation line. To obtain this quan­

tity, we apply the relation (2) to a state on the saturation line. This leads to the 

equation 

( 
dU dT ) 2 s s 

Ty-p=p --+C-
s S S dp V dp 

{4) 

where the derivatives ofUs and Ts on the right hand side are along the saturation 

line. In the following, total derivatives will be used for the quantities on the satura­

tion line because they depend only on one independent variable. 

Eq. (3) gives only the pressure of liquid urania, and does not include the oxygen 

pressure. However, to describe saturated states in thermodynamic equilibrium, the 

pressure should be the total pressure, i.e. the sum of the liquid pressure, and the 

oxygen pressure. It is, however, not obvious how the oxygen partofthe pressure can 

be extrapolated into the compressed liquid state. The simplest way, which will be 

used here, is to replace Ps (p) in eq. (3) by the total two-phase pressure, Pt (p) and 

keep the other terms as they are in eq. (3). As the liquid is compressed, the pressure 

increases rapidly beyond the two-phase pressure, and thus this simple approach is 

completely adequate. 
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The analytic fits used for the two-phase region and for the compressed liquid are: 

Saturationpressure (ofthe U-bearing species) 

1Ciog p (Mpa) =39.187 + 0.1921 x 10- 3T- 34715fl'- 3.8571 ln'l' (5) 
s 

Totalpressure (including oxygen) 

1Ciog ptot (Mpa) =47.287 + 0.3615 x 10- 3 '1'- 36269!1'- 4.8665ln'l' (6) 

Saturation temperature and liquid Cv as a function ofthe liquid density 

a) 2.54 < p < 8.86 (g/cm3), Tm< Ts < 9951.66 K 

T = 3120 + (8.86- p)/0.916 X 10-3 - 1.7 (8.86- p)2 
s 

(7) 

c = 0.2925 + 0.018959 (8.86 - p)- 0.0038921 (8.86 - p)2 
V 

+ 0.5834 X 10-4 (8.86- p)3 (8) 

b) Pc < p < 2.54 (g/cm3), or 9951.66 K < Ts <Tc 

T = 10600-427.13 (p- 1.56)2 - 1120(p- 1.56)3 
s 

+ 1242.5 (p - 1.56)4
- 365.1 (p - 1.56)5 (9) 

c = 0.2597 + 0.010195 (p- 1.56) + 0.01 134 (p- 1 .56)2 
V 

(10) 

In these equations, T8 is in K, p in g/cm3, Cv in J/gK. The subscript c refers to the 

critical point, Tm is the melting temperature. 

The pressure-temperature coefficient y = (ap/aT)p on the saturation line can 

be obtained using the thermodynamic relation, eq. (4). At the critical point, 

y = 0.05227 Mpa/K. 

Note that the analytic fits for the variables needed in eq. (4) produce a smooth be­

havior of the pressure-temperature coefficient in the vicinity of the critical point; 

the only minor weakness isthat the slope of the function Ys (p) is not monotonous. 
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This minor inconsistency can be accepted in the range near the critical point, where 

data are extrapolated, and not well known anyway. 

Interna! energy ofthe saturated liquid U8 (in J/g) 

a) In the range Um~ U ~ 4271.0 (J/g) 

orTm ~ T8 ~ 9000 K, the reference relation gives the Saturation temperature 

T s as a function of U 

T (U) = 3120 + 2.1129 X- 1.4570 X 10- 4 X2 + 4.2737 X 1o-8 x 3 
s 

X=U-U 
m (11) 

The internal energy at the melting point is Um = 1398.6 J/g, see Ref. [12]. 

This relation cannot be inverted analytically. However, an approximate in­

version is 

U = 1398.6 + 0.47419 Y + 1.6387 X 10-S Y2
- 2.3762 X 10- 9 Y3 

s 

Y=T-T 
m (12) 

For given temperature, eq. (12) can be used to find an approximate value for U 8 , 

which can then be improved by iterating on eq. (11). As long as the temperature is 

well below critical, the specific heat Cp (at constant 0/M) is given by the derivative 

dU 
C = _s (13) 

p dT 

Near the melting point, Cp from equation (13) is close to the value 0.485 J/gK, 

which was recommended both by Fink et al. [12], and by Rand et al. [13]. 

b) Interna! energy above 9000 K 

The use of the Redlich-Kwong equation (see Section 2.2) for p < Pc, and the above 

data fit for T8 (p) require that in the vicinity of the critical temperature, U 8 (T8 ) 

must be ofthe form (see below) 

T 'r 
u - u = ( c - )112 

c s const 
(14) 
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where the constant must be suitably chosen. However, this equation holds only in 

the immediate neighborhood ofthe critical point. Therefore, the range 9000 K to Tc 

was again subdivided; in the lower part, T < 9780.38 K, the following equation was 

obtained 

T8 = 9000 + 2.3334 (U- 4271) 

4271 ::::; u s 4605.44 

which corresponds to 

9000 S T5 S 9780.38 

(15) 

In the upper part, close to the critical point, it was preferred to define Us as a func­

tion of ß.p = p- Pc, rather than of the temperature. This way, a polynomial fit is pos­

sible, and the square root appearing in eq. (14) is avoided. One has 

u = u - 162.82 .6.p- 100 (.6.p)2
- 188 (.6.p)3 + 162.96 (.6.p)4

- 35.62 (.6.p)5 (16) 
s c 

This relation holds for p < 2. 7 g/cm3, or T s > 9780.38 K. 

Note that Uc = 4992.9 J/g. The analytical fits for the different regions have the 

samederivatives at their respective boundaries. 

To obtain the state variables in the compressed liquid, one proceeds as follows: 

First, for a given value of the density p (or molar volume V), one finds the satura­

tion temperature T8 , pressure p8 , and internal energy U8 , as well as Cv and dp/dT. 

The internal energy and the pressure are then obtained from the equations (1) and 
(4). 

2.2 Superheated Vapor 

On the vapor side, the EOS must be valid for density variations by several orders of 

magnitude, between high temperature satured vapor, where real gas effects are 

important, and the dilute gas which obeys the ideal gas law. Polynomial fits arenot 

suitable, and it was decided to work with the semi-empirical EOS developed by 

Redlich and Kwong [10]. As mentioned by Mistura et al. [14], this EOS is widely 

used for extrapolating thermodynamic data, especially in the chemical industry, 

and it is quite accurate in the critical region.lt was, however, observed earlier [11] 

that the Redling-Kwong (RK) EOS had tobe modified tobe used for U02 (and also 
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for other materials). The modification suggested is fairly obvious, and it is inter­

esting to see that Eberhard, in a recent publication [15], used exactly the same 

modifications. The RK-EOS reads 

RT a 
p= ---

V - b T1t2 V (V + b) 
(17} 

where V = 1/p is the specific volume (or the molar volume; in this report, the 

specifi.c volume is used). Eq. (17) is a two-parameter EOS, and it is easy to see that 

this equation implies the following value ofthe critical compressibility 

P V 
z = ....:....__: = 0.332 

c RT 
c 

(18} 

which is valid for simple liquids. On the other hand, the critical compressibility of 

U02, as predicted by the SST, is Zc = 0.310. To make the RK-EOS suitable for Zc 

different from 0.332, it was modified as follows 

RT a (T) 

P = V- b
1 

- V (V+ b
2
) (19} 

where a (T) is the function 

a (1') = a (Ttr )0 

c c 
(20} 

Eqs. (19, 20) define a four-parameter EOS. To determine the parameters, we ob­

serve that the critical point is defined by the conditions 

( 
ap ) RT a (T) ( 1 1 ) 
av c = - cv - b )2 + ~ v2 - (V + b )2 = o 

1 2 
(21} 

( 
ip ) 2 RT 2 a (T) ( 1 1 ) 

av2 c = cv - b )3 - ~ . v 3 - v + b )3 = 
0 

1 2 

(22) 

where T, V, p have their critical values. Making the substitutions 

one finds after some simple manipulations that three out of the four parameters, 

namely b10, b2o, and ao, are determined by the critical compressibility Zc. 
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One obtains for Zc = 0.310 

h1 = 0.2204 Vc h2 = 0.446 Vc 

(23) 

We now observe that the eqs. (19, 20) in combination with the saturated vapor pres­

sure curve, eq. (5), determine the specific volume ofthe saturated vapor, Vv. The re­

maining parameter, namely the exponent n, can then be used to obtain the bestfit 

ofV v with the data given by the SST. This leads to the selection n = 0.2, i.e. 

a (T) = a (T/T )0·2 
c c {24) 

The internal energy ofvaporization is then be defined as 

ßU = (T dp - p) (V - V ) 
evap dT v I 

{25) 

where V v and VI refer to the saturated vapor and liquid. Using the relation (2) one 

obtains the internal energy ofthe superheated vapor as a function ofT and V 

(1 n) a (T) V (V + b ) 
U (T V)= U (T) + ßU + - In v 

2 

' s evap b V (V + b ) 
2 V 2 

(26) 

Note that the pressure in the equations (17) to (22) is the pressure ofthe uranium­

bearing species only. The total pressure, including the oxygen pressure, at the satu­

ration density is 

RT a (T) 
p t = V - b - V (V + b ) + (p tot - p s) 

V I V V 2 

(27) 

where Ptot and Ps are given by the equations (5, 6). In the superheated vapor regime, 

one could in principle obtain (for given T) a density dependent equilibrium between 

the different species, UO, U02, U03, and oxygen, assuming that 0/M is constant, 

and taking account of real-gas effects. This was not done in the present work. 

Rather, an approximation was used where oxygen behaves like an ideal gas for 

large volumes, but the tangent (ap/ap)T is zero at the critical point; i.e. 

(ptot (T)- PS (T)) (V V 1 (V V )3) 
p (T V)= --- -

o ' 1-a V 3 V 
(28) 
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for V > V v where a is defined as 

0 = ~ ( Vc )2 
3 V 

(29) 
V 

The total pressure is then 

(30) 

As mentioned above, V v is determined through the equations (5), (19), (20). An 

approximate value for V v can be obtained from the analytic fit 

V 
c 

V 
V 

where 

I 
exp (- 0.25- 0.55 y- 0.241 x 10-3 y5) 

1- (0.3318 y)l/2 

T -T 
c 

y = 1000 

4000 < T < 10085 K 

(31) 

10085 K < T < Tc 

This relation can be used as a first guess for an iterative solution of eqs. (5, 19, 20). 

Ifless accuracy is required, eq. (31) can be used directly. 

2.3 Supercritical Region 

Clearly there is no true theoretical, let alone experimental, information about su­

percritical U02. Therefore, the following extrapolation can only provide a physi­

cally reasonable continuation, which is consistent with the equations for the com­

pressed liquid for densities higher than the critical one, and with the gas equations 

for densities lower than Pc· 

For V < Vc, the equations (1) and (3) are extrapolated directly into the supercriti­

cal region, T >Tc, assuming that Cv and Ys are independentoftemperature. For 
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V > Vc, the equations (19) and (30) are used for the pressure. Although it might be 

desirable to have the same equation over the whole range ofV, it was decided to use 

the mentioned procedure in order to obtain continuity along isochores. Besides, the 

modified RK equation is not valid ifV is very small (V< b1). 

The equation for the internal energy for V > V c is similar to eq. (26). It reads 

0. 8 a (T) V (V c + b z> 
U (T, V)= U + C (T- T) + In----

c V c b2 V c (V + bz> 
(32) 

where Cv has tobe taken at the critical density. 

In the supercritical region, a (T) is no Ionger given by Eq. (20), but must be deter­

mined from the requirement that the equations (3) and (19) give the same p (T, V c) 

at the critical specific volume. This condition reads 

_a_<T_>_-_a_c_ = [ R - y ] (T- T)- P2 d_C_v [Tin_!- T + T ] 
V (V + b ' V - b c c c dp T c 
cc 2' c 1 c c 

(33) 

forT> Tc. 

Thus, a (T) is given by different expressionsforT >Tc. Note, however, that da!dT 

must be continuous at Tc, because otherwise (ap/aT)v would not be continuous. This 

can be seen by differentiating eq. (19). This posesanadditional condition, which can 

be written 

(
dp) R 

yc = dT Tc = V - b
1 

- T V (V + b
2

) 
c c c c 

0.2 a 
c (34) 

When the parameters are inserted, the right hand side is equal to 0.05227 Mpa!K. 

Though the original SST evaluation gave a slightly larger value, the fit in eq. (4) 

was adjusted in the vicinity ofthe critical temperature such as to fulfill the require­
ment(34). 
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2.4 Results and Discussion 

The results for the internal energy, the total pressure, and the pure urania pres­

sure, as obtained by the routine EOSPL90, are shown in Fig. 1, 2 and 3. They are 

valid if the temperature is at or above the melting temperature (3120 K), and for 

densities up to and slightly above the liquid density at melting (8.86 g/cm3). These 

data seem tobe the most reliable ones at the present time, because they are based 

on recent and reliable experimental results. 

Fig. 4 and 5 show the evaluated pressure curve in the 2-phase region, and the com­

parison with experimental data. They were already published in [1], but are repro­

duced here for the reader's convenience. Fig. 4 shows the total pressure as a func­

tion of temperature up to 5000 K. In this range, the evaluated Saturationpressure 

(i.e. pressure ofthe U-bearing species) is only slightly lower than the total pressure; 

the difference amounts to about 9 % at 5000 K. Fig. 5 shows both the total and satu­

ration pressure (Pt and Psat) at still higher fuel enthalpy. For easy comparison with 

the In-pile experiments [3, 4] the fuel enthalpy is used as the variable. Note that Pt 

and Psat are both within the error limits ofthe experiments. At the highest enthalpy 

reached in the experiments (- 3700 J/g), the difference between Pt and Psat amounts 

to a factor of 1.5. 

The fits for the variables in the liquid state (internal energy, density, and Cv) were 

improved at high temperatures, especially in the vicinity ofthe critical point, since 

the firstevaluationwas published [1]. The present equations provide good thermo­

dynamic consistency, and they also approximate the SST data more accurately than 

those given in [1]. 

The program EOSPL90 calculates also the temperature derivatives Cv and dp/dT. 

The equations are obtained in a Straightforward manner from the equations in this 

report, and there is no need to explicitly write them down here. 

To discuss the data at the melting point, we use the relation 

'l'a2 
C =C +-

p V pß (35) 

where the specific heats are in J/gK, a is the liquid volume expansion coefficient, 

and ß the isothermal compressibility (cm3/J). The SST gives the following data at 

the melting point: 



C = 0.2925 (J/gK) 
V 

C = 0.480 (J/gK) 
p 

p = 8.86 (g/cm3) 
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Tm= 3120K 

Note that the derivatives Cv, Cp, a and .ß were revised by a few percent as compared 

to the data in [1]. There is a: rather large difference Cp- Cv. While Cv has the value 

9.5 R, which is about normal for a 3 atomic molecule, Cp = 15.59 R is unusually 

large. It is, however, consistent with both the evaluations by Fink et aL [12], and by 

Rand et al. [13]. Both groups suggest Cp = 0.485 J/gK based on experimental data. 

In addition, the thermal expansion coefficient aisalso weil in agreement with eval­

uations and experiment [12, 13]. The compressibility .ß, however, is significantly 

lower than the value measured by Slagle and Nelson [16]. The experiment gave 

3.6 x 10-5 cm3/J for the adiabatic compressibility; using known values of Cp and a, 

one estimates 4.4 x 10-5 cm3/J for the isothermal compressibility, tobe compared 

with the SSTresult of2.07 x 10-5 cm3/J. 

Combining the experimental value with Cp and a in eq. (35) leads to Cv = 12.7 R. 

This high value indicates that the "excess heat capacity" observed in solid U02 near 

the melting point should also be present in the liquid. The excess heat capacity in 

the solid is attributed to the formation ofFrenkel defects or to electronic disorder, or 

most likely to both ofthem [17]. It is not clear a priori how these phenomena should 

be extrapolated into the liquid. The experimental data, inasfar as they are reliable, 

indicate that there is an excess heat capacity in the liquid state also. The SST, 

which does not model an increased heat capacity, gives a high Cp value due to the 

low compressibility. This is certainly a weakness in the present model. 

2.5 Behaviour Near the Critical Point 

Some effort was needed to arrive at polynomial fits for the liquid in the vicinity of 

the critical point, which reproduce the SST data with adequate accuracy, provide 

thermodynamic consistency, and a smooth joining to the Modified Redlich-Kwong 

EOS on the gas side. Note that at supercritical temperatures, the separation line 

between the two different representations is the critical isochore. To show the re­

sult, the internal energy and the two pressure variables (total pressure and pres­

sure ofthe U-bearing species) are shown, as functions oftemperature and density, 
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in the vicinity ofthe critical point (Fig. 6, 7, 8). It is obvious that smooth behaviour 

ofthese functions could be reached. In some instances, however, derivatives show a 

smalljump (typically < 5 %) instead ofbeing continuout:l. Ii wa::~ nut con::~idered high 

priority to remove these small discontinuities. The behaviour ofthe thermodynamic 

functions and their derivatives near the critical pointwill now be explained in more 

detail. 

The physics of phase transitions and critical phenomena as developed in the 1960's 

and 1970's teils that the so-called "critical exponents" are fractional numbers 

[18, 19]. Moreover, these exponents are universal numbers, i.e. they are the same 

for all liquid-vapor transitions. Especially, the exponent ofthe saturation line is 

ß = 0.325. On the other hand, the van der Waals equation and equations developed 

from it are based on a mean-field theory. In this class of equations, the critical expo­

nents are either integers or half integers (e.g. ß = 0.5 for the saturation line). Both 

the Significant Structures Theory and the Modified Redlich-Kwong EOS belong to 
the latter class. Therefore, the analytic fits were adjusted such that they reproduce 

the mean-field critical exponents. 

The behavior ofthe Reference Analytic Representation in the vicinity ofthe critical 

pointwill now be briefly outlined. The quantity c is defined as 

c = I - TfJ' 
c 

Saturation Line: 

The liquid density PI and the vapour density Pv are 

P /p - l = A c0
·
5 

I e I 

P /p - I = - A c0
·
5 

V C V 

The critical exponent is 0.5 as with the van der Waals equation [17, 18], whereas 

the "universal critical exponent" is 0.325. Note that the coefficients A1 and Av are 

notequal. 

The Pressure and its Derivatives: 

In a mean-field theory, both the saturation pressure and the pressure-temperature 

coefficient y = ap/aT are continuous at the critical point, and the exponent along the 
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critical isotherm is 8 = 3.0. Our numerical fits reproduce this behavior rather 

closely, except that the pressure-temperature coefficient shows a small discon­

tinuity (4.5 %) at the critical point. 

The pressure-temperature coefficient y8 , as calculated from eq. (4), with the data of 

the Reference Analytic Representation (Fig. 9) is smooth in the vicinity ofthe criti­

cal point; the only minor weakness is that the slope is not monotonous, as men­

tioned in Section 2.1. 

The Internal Energy and its Derivatives: 

The specific heat Cv remains finite at the critical point and has the value as pro­

duced by the SST, namely Cv = 0.2597 J/gK. This corresponds to a critical exponent 

a = 0, whereas the universal exponent is a = 0.11. In the supercritical region, the 

derivative aU/ap is connected with y through the equation 

au p - Ty 
s =---

This quantity is continuous when the critical isochore is crossed, as must be. 

Thus, the behaviour of our Reference Analytic Representation is considered satis­

factory. 

2.6 Entropy ofthe Saturated Liquid 

In the analysis of the post-disassembly expansion phal:ie, ihe work potential duc to 

isentropic expansion of the fuel is often used. 'l'hereforc, the cntropy of hoth liquid 

fuel and fuel vapor must be known, with the entropy ofthe l:iUttu·utcd liquid u::~ u kcy 

quantity. It can be obtained from the relation 

dU pdV 
dS=- +-

T 'I' (36) 

Integrating this equation from the melting point along the saturnLion linc to any 

liquid temperature, one finds that the first term dUff, is by far ihe dominant one, 

and the second one is just a minor correction. 
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The range between melting point and critical point i::; divided into two different 

regions: 

Region 1 

Region 2 

Tm < T s < 9000 K 

9000 K < T s < Tc 

The integral ofthe first (and major) contribution to dS can be written 

I 
dU 

T (U) 
8 

(37) 

This integral can be evaluated analytically for Region 1, using the relation (12). 

One obtains for the first contribution (in units J/gK). 

Region 1: 

.6.S (T) = 0.302542ln (T/T ) + 7.7256 X 10- 5 ('1'- 'I' ) - 3.5643 X 10- 9 ('1'2 - '1'2 ) (38) 
1 m m 111 

The second contribution, 

I p~V (39) 

must be evaluated numerically. High accuracy is not needed because this contri­

bution issmall anyway. One obtains 

Region 1: 

(40) 

X= 9000- T 

The entropy ofthe liquid is then 

(41) 

where Sm = 1.17032 J/gK is the entropy of the liquid ut the melting point, sec 

Section 3. The entropy at 9000 K is then 81 = 1.69190 J/gK. 
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In Region 2, the following fit was obtained 

(42) 
X= U- 4271.0 

Note that eq. (42) defines the entropy as a function of internal energy, not of 

temperature. The reason isthat this function smooth in the vicinity of the critical 

point. The value U = 4271.0 corresponds to 9000 K. 

The entropy Sc at the critical point is then 

S = 1.77010 J/gK 
c 

The entropy ofthe saturated vapour can then be found easily from the equation 

ßU + p (V - V
1
) 

S = S + evap s v 
V I T 

(43) 
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3. Properties of Solid Fuel 

The present evaluation is restricted to liquid UOz. For solid oxide fuel, there are 

two high-quality property evaluations available, which will be briefly discussed. 

The thermodynamic properties needed for solid fuel are the enthalpy (which for 

solid fuel is the same as the internal energy), the entropy, and the density. 

First, there is the evaluation for UOz published by Fink et al. [12] of ANL. These 

properties, which have been available for quite a while, were widely used as 

reference data. They are very similar to the data by Rand et al. [13], that emerged 

from an IAEA project. Most ofthe evaluation work for liquid UOz presented in this 

report was performed up to 1989, and the data are normalized suchthat they are 

consistent with the Fink et al. results. This is shown by quoting the data at the 

melting point (Tm= 3120 K) for both solid and liquid fuel: 

Solid Liquid 

Interna} energy (J/g) 1121.6 1398.6 

Entropy (J/gK) 1.0815 1.1703 

Density (g/cm2) 9.65 8.86 

The limitation of the Fink et al. evaluationisthat they refer to UOz; no data for 

mixed oxide are quoted. 

Second, a more recent evaluationwas carried out in 1989 by Rardinget al. at the 

Harwell Labaratory [20], under contract with the Commission of the European 

Communities. While their data for the UOz enthalpy are close to the Fink et al. re­

sults, these authors present an interesting method to obtain the mixed oxide enthal­

py by a suitable interpolation between the UOz and the PuOz data. In addition, the 

authors discuss the effect of non-stoichiometry and burnup on fuel enthalpy. This 

evaluation is probably the best available for mixed oxide. 

In the following, the equations recommended in Ref. [12], which are consistent with 

our data, will be quoted. One has for the enthalpy ofsolid UOz 

for 298.15 < T < 2670 K: 

H<Tl - H (J/g) = 
298.15 

(44) 
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where e = 516.11 K, T* = 298.15 K, c1 = 0.289674, c2 = 1.4302 X 10-5, and 

C3 = 108.455; 
and for 2670 < T s 3120 K: 

HT- H
298

_
15 

(J/g) = 0.618667 T- 808.67 (45) 

The entropy of solid U02 is given by the equations: 

For 298.15 < T < 2670 K: 

l T"' ( 21841 )j ( 21841) 
+ 2C2T + C3 1- 21841 -T- + 1 exp - -T-

(46) 

+ exp (- 27.6747 + 0.013281 T- 1.8925 x 10-6 T2) 

and for 2670 < T < 3120 K 

S(J/gK) = 0.98518 + 0.618667ln(T/2670) (47) 

The theoretical density ofsolid U02 (298.15 < T < 3120 K) is 

Note that the equations for the enthalpy given in the Journal ofNuclear Materials 

andin ANL-CEN-RSD-82-3 [ 12] are not iden tical, though n umerically they agree to 
at least four significant figures. The equation quoted here is from the Journal ofNu­

clear Materials, and is consistent with the equation for the entropy. 
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4. Use ofEguation ofState in Accident Analysis Codes 

4.1 General Simplifications 

As explained earlier, the pressure over liquid U02 is composed ofthe pressure ofthe 

uranium-bearing species (called "saturation pressure" in this report) and ofthe oxy­

gen pressure. The fact that both partial pressures showdifferent dependence on the 

variables, and that the thermodynamic relations involve the saturation pressure 

rather than the total pressure means that the equations are more complex than is 

desirable for accident analysis codes. It is, therefore, suggested to use the saturation 

pressure in these codes, though the total pressure would be more realistic. As dis­

cussed in Section 2 (Fig. 5), the difference becomes important only at extremely 

high temperatures. This means a significant simplification on the gas side because 

Po in eq. (28) is set to zero. Besides, a somewhat simplified set of equations for the 

liquid side is given in Appendix A. It can be used whenever data at extremely high 

temperatures ( > 2/3 Tc) are unimportant, or do not require good thermodynamic 
consistency. 

4.2 Eguation ofState for SIMMER-II 

The analytic EOSin SIMMER-II is strongly simplified [8]. Especially, the saturated 

vapor pressure is represented by a two-parameter curve, 

.. 
* T 

lnp = ln p - -
s T 

(49) 

with the two parameters p* and T*; the specific heat of the solid is assumed 

constant, and the equations used for the gas-side EOS do not represent real-gas 
effects very well. 

An effort was made [21] to replace the gas-side EOSin SIMMER-II by the modified 

Redlich-Kwong EOS. However, the other simplifications remain. Therefore, this 

Section will adress the standard SIMMER-II version, and present a set of fuel EOS 

input data which are recommended for use with fuel typical of SNR-300. Some of 
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the data are interrelated and theserelationswill be made clear. The input data set 
is given in Table I. 

While it is common in thermodynamics to normalize the internal energy (or en­

thalpy) to zero at T = 298.15 K, inSIMMER it is normalized to zero at absolute 

zero. The SIMMER equations are 

(50) 

{51) 

where LlHris the heat offusion. 

If Cvs is determined from the difference in internal energy between 298.15 K and 

3120 K (melting point ofU02), one finds with the data in Section 3 

Thenone has 

1121.6 J c = = 397.45-
VS 3120-298.15 kgK 

Esol (Tm) 

LlHr 

E1 (Tm) 

1240.0 kJ/k.g 

277.0 KJ/k.g 

1517.0 kJ/k.g 

Adding the difference in internal energy between 3120 K (liquidus ofU02) and the 

critical point, ßE = 3594.3 kJ/k.g, one obtains 

Ecrit 5111.3 kJ/k.g 

tobe used in SIMMER-II, for U02 fuel. 

As was mentioned in the introduction, the data for liquid U02 should also be used 

for the fast reactor fuel mixed oxide, (U, Pu)02. In this case, however, the internal 

energy must be normalized slightly differently because the melting temperature 

is lower. This is donein a simple consistent manner, which does not account for 

the slightly different specific heat of mixed oxide. The fuel which was proposed for 

SNR-300 has a melting temperature of 2977.3 K instead of 3120 K. Retaining Cvs 
and ßHr(which is reasonable), one obtains for the internal energy at 3120 K 



Esol (2977.3) 

llHr 
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(3120- 2977.3) CvL 

1183.3 J/g 

277.0 J/g 

69.2 J/g 

1529.5 J/g 

The energy level in the liquid state is 12.5 J/g higher than for pure U02. Therefore, 

also Ecrit should be increased by that difference, i.e. 

Ecrit = 5123.8 kJ/kg 

Ifusers ofSIMMER-ll prefer other data for Cvs, Cv1, and Tm (e.g. for fuel with a dif­

ferent Pu content), they should make sure to use a value for Ecrit which is consistent 

with their data. 

A fit of the liquid fuel density in terms of the SIMMER-ll parameterswas also ob­

tained. The following equations were found forT < 2/3 Tcril: 

pll ( g 3) = 11.7056- 0.908018 X 10-3T- 1.2952 X l0-9T2 

cm 

and for 2/3 T crit < T < T crit 

where 

Ptz 
- = 1 + 3.76744 ~·65 + 4.53873 (2 

p crit 

T 
<=1-­

T. 
cnt 

(52) 

(53) 

At T = 2/3 Tcrit. the two fits have the same value, and the difference in the deriva­

tive is only about 5%. 
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4.3 Eguation ofState for the KADIS Code 

The Karlsruhe core disassembly code KADIS [9] is similar to VENUS-ll [22], which 

was developed at ANL. The code is still occasionally used for parametric studies.lt 

has a choice of several EOS formulas, but the one that was mostly used is the so­

called nANL-EOSn, which was derived by Jackson and Nieholsan [22].1t is based on 

an older evaluation by Menzies [23], and should not be confused with the property 

data by Fink et al. [12]. 

The new EOS which is available in the code now involves a progress in different 

ways: first, the new EOS for liquid fuel is introduced. This means especially that the 

vapor pressure is lower than the one in the ANL EOS. Second, for solid fuel, the 

ANL data for the internal energy [12] are used, rather than a constant specific heat. 

Third, the data for the isentropic expansion are consistent with the ones used for the 

excursion calculation. The new EOS for KADIS neglects oxygen pressure but other­

wise uses the Reference Analytic Representation described in Section 2. In the 

KADIS code, the independentvariables for the EOS are the density and the inter­

nal energy; the EOS routine then calculates the temperature and the pressure. In 

the important case where the fuel is liquid, a mesh cell can be either in a two-phase, 

or a single-phase state. In the first case, the pressure is the fuel vapor pressure (plus 

a sodium vapor pressure if a fuel-coolant interaction is modeled), and the tempera­

ture is obtained from eq. (11), (15), or by inverting eq. (16). If single-phase liquid 

pressure occur in a cell, the code calculates pressure equilibrium between the com­

ponents fuel, steel, and sodium. Single-phase states can occur when the liquid fuel 

by thermal expansion fills the free volume in a cell, especially during sodium - in 

accidents, or when a cell is compressed by rapidly expanding neighboring cells. 

Note that in KADIS single-phase pressures can be calculated erroneously if the 

sodium density is less than the liquid saturation density. 

The EOS routine (subroutine EQUSTA) performes the following calculation. Let p 

be the density of the fuel, smeared over the available free volume in the cell. 

Calculate the saturation temperatures Ts (p), using eqs. (7), (9), and Ts (U) using eq. 

(11). Then, ifTs (p) > Ts (U), the volume required for the fuel tobe in a two-phase 

state is available. Otherwise, the cell is in a single-phase state. The procedure for 

the two-phase case is as described above. In the single-phase case, the fuel tempera­

ture is calculated by solving eq. (3) for the temperature 

T(U, p) = T (p) + (U- U (p))/C 
S S V (54) 
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The eq. (3) for the pressure is used in a simplified form, retaining only the linear 

term in the fuel temperature 

p (U, p) = p (p) + y (T - T (p)) 
s s s (55) 

In cells where the fuel is still solid, the temperature is obtained by an approximate 

inversion of U- T relation proposed by the ANL group [12], eq. (44) or eq. (45). The 

vapor pressure is negligible, and a significant pressure can only occur if the cell be­

comes single-phase. If fuel is melting in a cell, the temperature rises by 1 K between 

the solidus and the liquidus, as in the original KADIS code. Again, pressure can 

only be single phase pressure (caused by the density decrease during melting). The 

pressure equilibrium between the materials present in the cell is calculated using 

the compressibility ofliquid fuel also for the melting fuel. 

These equations were introduced in the EOS subroutine EQUSTA. In addition, the 

subroutines HYDRIN (initialization) and MOLTU (energy in molten fuel) were 

modified. 

When an energetic power excursion is terminated, the hot fuel, which is under high 

pressure, expands and loads the structures by conversion ofthermal to mechanical 

energy. KADIS has the capability to calculate the isentropic work energy ofthe hot 

fuel during the expansion phase. The method described by Reynolds et al. [24] is 

used. Forthis calculation the final state of the KADISrun becomes now the initial 

state of the expansion phase. The calculation is done independently for each cell 

which has a pressure higher than the "final" expansion pressure given by input. 

The method will be briefly outlined. First one calculates, for each cell, the fuel inter­

nal energy Ui and entropy Si (i = initial). For two-phase cells 

u. = u
1 
+ D. u x. 

1 evap 1 (56) 

and 

S. = SI + D. s X. 
1 evap 1 (57) 

where U1, S1, !1 Uevap, and !1 Sevap are functions ofthe (initial) temperature, and Xi 

is the initial "vapor quality" 

m 
V 

x.= ---
1 m

1 
+mv 
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ofthe fuel. In single-phase cells, only liquid fuel exists, and 

U. = U + C (T - T ) 
I S V S (58) 

S. = S + C In (Ttr ) 
I S V S (59) 

where T s = T s (p) is the (initial) saturation temperature. The final state is always 

two-phase, and the "final" vapor quality is obtained from the requirement that the 

final entropy is equal to the initial entropy. The work potential is then the differ­

ence Ui- Ur. 

Forthis calculation (routine MECENG in KADIS) the liquid entropy, us givcn in 
Section 2.6, is needed. 

A comparison calculation was run using the "old" ANL ~~OS and thc ncw I~OS de­

scribed in this report. The case selected is an energetic disassemhly in a rcnd.t~r of' 

the 300 MWe class. The core Ü:i fully voided, the fucl hus u icmpcntlurc dit~lrihution, 

with an average around the melting point. A 21.6 $/s reactivity ramp is posiulalcd. 

The important results are: 

duration of disassembly (ms) 

thermal energy in the molten fuel (MJ) 

mean temperature ofthe molten fuel (K) 

isentropic expansion to 1 bar: 

work energy (MJ) 

final volume (m3) 

isentropic expansion to 10 bar: 

work energy (MJ) 

final volume (m3) 

ANL EOS Ncw l•;os 

5.52 

3373 
3840 

71.2 

301 

11.9 

8.5 

6.29 

3571 
3862 

98.0 

419 

6.6 

4.9 

As the new vapor pressure curve is lower than the old one, shutdown takes longer, 

and the thermal energy in the molten fuel increases. The results for the isentropic 

expansionshowdifferent trends: For the final pressure of 1 bar, the work energy in­

creases by a factor which is larger than the increase in thermal energy. If the final 
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pressure is 10 bar, the work energy even decreases, so that the increase in the ther­

mal energy is more than compensated during the expansion phase. The main reason 

for these different trends is the difference in slope between the two vapor pressure 

curves between 1 and 10 bar, where the new curve is flatter. Therefore, a larger ex­

pansion is needed to reach 1 bar. Besides, the Reynolds et al. [24] data used in the 

older version for the expansion analysisarenot fully consistent with the ANL EOS; 

e.g., the latter uses a constant specific heat, whereas Reynolds et al. proposed a vari­

able specific heat. Thus, the new results are more reliable because the data are con­

sistent, and established by experiments. 

4.4 Equation ofState for the SAS Code 

The code SAS4A is the latest and most advanced one among the SAS codes, that 

were developed over many years at the Argonne National Labaratory [7]. The SAS 

codes are used to analyze the initiation phase of core disruptive accidents. SAS4A is 

at present in a stage of testing and verification at severallaboratories in different 

countries. This procedure should include an updating of the fuel EOS data, and a 

proposal which data should be used will be given in this Section. Note that SAS can 

be used for energetic accidents, where the fuel vapor pressure is the mechanism for 

shutdown, but it cannot calculate single-phase pressures nor motions accross the 

fuel element boxes afterthermal or mechanical failure ofthose. 

The following data are suggested: 

Fuel enthalpy 

solid fuel: data ofHarding et al. [20] for mixed oxide 

heat offusion: 277 kJ/kg 

liquid fuel: eq. (12), with a slight change in normalization if the fuel is mixed 

oxide, and the melting point is lower than 3120 K. See Section 4.3 

Vapor pressure: eq. (5) 

Theoretical density: 

solid fuel: eq. (48) 

liquid fuel: 

p = 8.86- 0.916x 10-3 (T- 3120) 



-28-

This is the inversion of eq. (7); the last term is neglected because it is significant 

only at extremely high temperatures. 

It should be mentioned that this proposal was not discussed in detail with the users 

of SAS4A; thus, difficulties that could arise were not considered, and the ::~uggestion 

must be considered as tentative. 
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5. Summary and Conclusions 

This report describes how an equation of state for liquid fuel, which was evaluated 

in 1986, can be made available and used in fast reactor accident analysis codes. The 

basic procedure is to produce analytic data fits for liquid fuel, (i.e. for densities larg­

er than the critical) and a modified Redlich-Kwong equation for the fuel vapor, (i.e. 

for densities lower than critical) up to and beyond the critical temperature ifneeded 

for parametric studies. A Reference Analytic Representation was produced, which 

closely fits the evaluated data. In addition, formulations for the codes SIMMER-II 

and KADISare prepared and introduced into the codes. It was found by KADIS 

runs that using the new data, both the thermal energy produced in an excursion, 

and the isentropic work potential increase. The increase in thermal energy is ex­

pected because ofthe lower vapor pressure curve. The observed increase in the isen­

tropic work potential may be partly due to an inconsistency in the older duta. A data 

set for the code SAS4A is also suggested, and it is expected that it will be used at an 

appropriate time. 
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Appendix 

A Simplified Analytic Representation ofthe Equation ofState 

The following analytic representation is an alternative to the Reference Represen­

tation. Both are nearly identical to the up to about 9000 K, except that aseparate fit 

for the pressure-temperature parameter Ys is given. In the vicinity of ihe critical 

temperature, this representation is simplified. 'I'herefore, it is eu:::;ier to u::;c, bui 

somewhat less accurate. However, for mosi purposes wherc ihe tcmperaturcs ore 

significantly below critical, it is practically equivalent io the Refcrencc Annlytic 

Represen ta tion. 

Analytic fits for the two-phase region and for ihe comprc:::;:::;ed liquid: 

Saturationpressure (ofthe U-bearing species) 

1l1og p (Mpa)=39.187 + 0.1921 x 10- 3 '1'- 34715(1'- 3.8571 ln'l' 
s 

Saturation temperature, liquid Cv and Ys as a funciion of ihe liquid dcnsiiy 

a) 2.1514 < p < 8.86 (g/cm3), Tm< T5 < 10367.3 K 

T = 3120 + (8.86- p)/0.916 X 10- 3
- 1.7 (8.86- p)2 

s 

c = 0.27813 + 0.044561 (8.86- p)- 0.013082 (8.86- p)2 
V 

+ 9.277 X 10- 4 (8.86 - p)3 

y = 0.1712 + 0.23474 (8.86- p)- 0.057937 (8.86- p)2 + 0.028821 (8.86 p)3 
s 

b) Pc < p < 2.1514 (g/cm3), or 10367.3 K < T5 <Tc 

T = 10600-427.13 (p- 1.56)2
- 681.118(p- 1.56)4 

s 

c = 0.2597 + 0.023710 (p- 1.56)- 0.015218 (p- 1.56)2 
V 

y = 0.05227 + 0.3193 X I 0 - 3 (p- 1.56)2 + 0.11184 (p- 1.5f)):l 
s 
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In these equations, T8 is in K, p in g/cm3, Cv in J/gK. 'rhe sub~:~cripl c r·cfcr1:1 lo lhc 

critical point, Tm is the melting temperature. 

Interna! energy ofthe saturated liquid U8 (in J/g) 

In the range Um s; U s; 4271.0 (J/g) 

or Tm s; T8 s; 9000 K, the saturation temperature T8 is given as a function ofU by 

the equation 

T CU)= 3120 + 2.1129 x- 1.4570 x 1o-4 x 2 + 4.2737 x 1o-8 x 3 
s 

X=U-U 
m 

Interna! energy between 9000 and 10515.5 K 

Ts = 9000 + 2.3334 (U- 4271) 

Interna! energy between 10515.5 K and Tc 

T = T - 0.0161125 (4992.9- U)2 
s c 

4271 s; u s; 4920.48 

which corresponds to 
9000 :5 '1'8 :5 10515.5 

On the vapor side, the modified Redlich-Kwong equation is used, with the same 

parameters as in Section 2, but omitting the terms for the oxygen partial pressure. 
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TableI Fuel Equation ofState Input for SIMMER-11 

Variable Value Descri ption 

cvs 397.45 JlkgK specific heat ofthe solid fuel 

TMLT 2977.3 K melting temperature 

HFUS 277000 Jlkg heat offusion 

ROLE 8991 kg/m3 liquid microscopic density 

CVL 485 J/kg-K Iiquid-phase specific heat 

PSTAR 0.344 x 1011 pa parameters of the 

TSTAR 48000 K vapor pressure curve 

TSUP 20 K superheut 

HSTAR 2.25. 106 J/kg parameiers of the heat of 

ZETA 0.75 vaporization equation 

TCRIT 10600 K critical temperature 

ROLCRT 1560 kg/m3 critical density 

CVG 300 Jlkg-K gas-phase specific heutat 

constant volume 

GAM 1.10332 ratio of constant-pressure 

specific heat to constant-volume 

specific heat the vapor phase 

ENCRIT 5.11. 106 Jlkg internal energy at the critical point 

WTMOL 270 kglkmol molecular weight 

ROGP95 907.7 kg/m3 saturated vapor density at 

T = 0.95 Tcrit 
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o ANL (1972) 
o KfK-INR (1984) 
• ITU ( 1985) 
+ CEA ( 1981) 

--- This evaluation (SST) 

+ 

+ 
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10 4/ T (K) --+ 

Fig.4: Total Pressure over Liquid U02 
Versus Inverse Tempereture (m.p.= melting point) 
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Limonetal (1981) + 
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