KfK 4749 August 1992

WOLGA 2.1 Ein FORTRAN-77-Programm zur Berechnung der kurzzeitigen Submersions-Dosisleistung durch die Gammastrahlung aus einer radioaktiven Abluftfahne

W. Hübschmann, D. Papadopoulos, M. Bär, S. Honců Institut für Meteorologie und Klimaforschung Hauptabteilung Sicherheit

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Meteorologie und Klimaforschung Hauptabteilung Sicherheit

KfK 4749

WOLGA 2.1

Ein FORTRAN-77-Programm zur Berechnung der kurzzeitigen Submersions-Dosisleistung durch die Gammastrahlung aus einer radioaktiven Abluftfahne

W. Hübschmann D. Papadopoulos M. Bär S. Honců

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

Zusammenfassung

Das Rechenprogramm WOLGA 2.1 berechnet die Kurzzeit-Gamma-Submersionsdosis, die durch die radioaktive Abluftfahne eines Einzelemittenten an einem Aufpunkt in Bodennähe erzeugt wird. Dabei wird angenommen, daß die Abluftfahne ihre Richtung und Form beibehält und daß die Radioaktivitätsverteilung in der Abluftfahne einer doppelten Gaußverteilung entspricht. Die Aktivität kann aus einem Kamin oder aus einem Gebäude freigesetzt werden. Der Dosisaufbaufaktor sowie der Schwächungskoeffizient für Photonen in Luft werden nach neueren Berechnungsergebnissen energieabhängig interpoliert. Die Dosisleistung wird für beliebige Aufpunkte oder für ein Polarkoordinaten-Raster - zum Zeichnen von Isodosislinien - berechnet.

Die Aufteilung der Aktivität auf eine endliche Anzahl von Punkten im Raum ist frei wählbar. Sie kann so fein aufgeteilt werden, daß der Fehler des Ergebnisses kleiner als etwa 3 % ist. Der auf die Windgeschwindigkeit von 1 m/s normierte Gamma-Ausbreitungsfaktor wird für 6 Stabilitätskategorien, für Emissionshöhen von 0 bis 200 m und für eine Gamma-Energie von 1 MeV in Form von Diagrammen angegeben. Diese Diagramme sind konsistent mit der Allgemeinen Verwaltungsvorschrift zu §45 der Strahlenschutzverordnung.

Abstract

WOLGA 2.1 - A FORTRAN-77-Code for Calculation of the Short-term Gamma Submersion Dose Rate Caused by Gamma Radiation of a Radioactive Off-gas Plume

The WOLGA 2.1 computer code calculates the short-term gamma submersion dose rate caused by the radioactive off-gas plume of a single source located at a point near the ground. It is assumed that the off-gas plume maintains its direction and form and that a double Gaussian function describes the distribution of radioactivity within the plume. The activity is assumed to be released from a stack or a building. The buildup factor and the mass attenuation coefficient in air are interpolated - dependent on the gamma energy - from recent results of calculations. The dose rate is calculated for up to 600 defined locations or for a polar grid so that isodose charts can be drawn.

The subdivision of the plume into a finite number of volume elements can be chosen freely. It can be so finely divided that the error of the result obtained is less than about 3 %. The gamma dispersion factor normalized to a wind velocity of 1 m/s is shown in diagrams for 6 dispersion categories, for emission levels from 0 up to 200 m and for a gamma energy of 1 MeV. These diagrams are consistent with the *Allgemeine Verwaltungsvorschrift* referring to §45 of the German Radiation Protection Order.

Inhaltsverzeichnis

1.0 Einführung	. 1			
 2.0 Räumliche Verteilung der Aktivität 2.1 Linienquelle 2.2 Flächenquelle 2.3 Volumenquelle 	. 2 . 2 . 3 . 6			
3.0 Berechnung der γ-Dosisleistung 3.1 Linienquelle 3.2 Flächenquelle 3.3 Volumenquelle	. 9 11 12 15			
4.0 Genauigkeit der berechneten Dosis und Ergebnisse				
5.0 Literaturverzeichnis	18			
Anhang A. Beschreibung der Eingabe für WOLGA 2.1	20			
Anhang B. Beispiel für die Eingabe des Programms WOLGA 2.1	23			
Anhang C. Beispiel für die Ausgabe des Programms WOLGA 2.1 C.1.1 Zusatz-Ausgabe auf TSO-HOLD (SPOOL-Datei) für RESTART-Lauf C.1.2 Graphische Darstellung der Ergebnisse (Isolinien)	24 26 27			
Anhang D. Diagramme des normierten Gamma-Kurzzeit-Ausbreitungsfaktors	28			

Abbildungsverzeichnis

1.	Horizontale Aktivitätsverteilung	. 3
2.	Geometrie zur Berechnung der horizontalen Aktivitätsverteilung auf der	
	Emissionsebene in einer Entfernung r _n	. 4
3.	Vertikale Verteilung der Aktivität	. 7
4.	Aufbaufaktor B(E, $\mu\rho$) für γ -Strahlung in Luft	10
5.	Geometrie der Linienquelle und des Aufpunktes	12
6.	Geometrie der Flächenquelle	13
7.	Geometrie zur Bestimmung des Winkelbereichs von a	15
8.	Graphische Ausgabe des Eingabe-Beispiels	27
9.	Normierter Kurzzeit-Ausbreitungsfaktor, H = 0 m.	28
10.	Normierter Kurzzeit-Ausbreitungsfaktor, H = 50 m.	29
11.	Normierter Kurzzeit-Ausbreitungsfaktor, H = 100 m.	30
12.	Normierter Kurzzeit-Ausbreitungsfaktor, H = 150 m.	31
13.	Normierter Kurzzeit-Ausbreitungsfaktor, H = 200 m.	32

1.0 Einführung

Die Berechnung der γ-Dosisleistung aus einer radioaktiven Abluftfahne ist aufgrund des großen Durchdringungsvermögens der γ-Strahlung in Luft und der ungleichmäßigen Verteilung der Radioaktivität in der Atmosphäre relativ aufwendig. In der Literatur sind zur Lösung dieses Problems eine Reihe von Näherungsverfahren publiziert worden (/He-68/, /Vo-70/, /Wi-70/, /Co-68/, /Co-68-1/, /Ro-79/, /Ro-81/, /Mi-83/), wobei meist mehr oder weniger grobe Annahmen bezüglich der Aktivitätsverteilung im Raum getroffen wurden.

Um bei kurzzeitigen Emissionen (z. B. bei einem Störfall) die γ -Dosisleistung annähernd genau berechnen zu können, wurde ein Rechenprogramm mit folgenden Randbedingungen entwickelt:

Die Aktivitätsverteilung wird durch die zum Zeitpunkt der Emission vorherrschende Ausbreitungsrichtung (x), Windgeschwindigkeit (u) und Stabilitätskategorie (j) bestimmt. Es wird angenommen, daß in der Zeit T, während der die Aktivität emittiert wird, die Windrichtung, die Windgeschwindigkeit und die Stabilitätskategorie konstant bleiben.

Ist diese Voraussetzung nicht erfüllt, kann entweder das Programm WOLGA 2.1 mehrmals für die Teilperioden $T_1,T_2...T_n$ ($T_1 + T_2 + \cdots + T_n = T$) mit jeweils konstanten meteorologischen Bedingungen gestartet werden, oder, falls n zu groß und die Emission annähernd konstant ist, die Emission als kontinuierlich angesehen und die Berechnung mit Hilfe der für die Zeit T erstellten meteorologischen Statistik und des Rechenprogramms WOLGA 1 /Ho-86/ durchgeführt werden. Das Rechenprogramm WOLGA 2.1 ist eine revidierte Fassung von WOLGA 2 /Pa-88/ und ersetzt dieses Programm. Es ist konsistent mit der "Allgemeinen Verwaltungsvorschrift zu § 45 der Strahlenschutzverordnung" (AVV) /AV-90/. Da die Dosisfaktoren für Gammasubmersion in /AV-90/ neu definiert sind, ist WOLGA 2.1 nicht mit WOLGA 2 kompatibel.

2.0 Räumliche Verteilung der Aktivität

Die Quelle der radioaktiven Abluft wird als Punktquelle in der Höhe h angenommen, wenn der Gebäudequerschnitt BAU (Kap. Anhang A) gleich Null gesetzt ist. Andernfalls wird Freisetzung aus einem Gebäude mit dem wirksamen Querschnitt BAU angenommen, und die Ausbreitungsparameter σ_y und σ_z werden nach /St-83/ und der gleichlautenden Vorschrift in /AV-90/ erweitert.

Die emittierte Aktivität wird zur Erleichterung des Verständnisses schrittweise in die drei Dimensionen des Raumes (axial, azimutal und vertikal) verteilt. Zunächst wird die emittierte Aktivität in Ausbreitungsrichtung auf einer Geraden in der Emissionshöhe konzentriert angenommen (Linienquelle). Sodann wird die Aktivität jedes Linienelementes auf der Emissionsebene senkrecht zur Ausbreitungsrichtung entsprechend dem horizontalen Ausbreitungsparameter $\sigma_{yj}(x)$ normal verteilt (Flächenquelle). Schließlich wird die Aktivität jedes Flächenelementes der Flächenquelle in z-Richtung entsprechend dem vertikalen Ausbreitungsparameter $\sigma_{zj}(x)$ und unter Berücksichtigung der Reflexion am Boden normal verteilt (Volumenquelle).

Bei jeder der drei Quellenverteilungen wird die an sich kontinuierlich (auf einer Linie, einer Fläche oder im Raum) verteilte Aktivität in den Schwerpunkten der Linien-, Flächen- und Volumenelemente konzentriert angenommen (Punktquelle). Die γ -Dosis an einem Aufpunkt wird als Summe der Dosisbeiträge der einzelnen Punktquellen berechnet.

2.1 Linienquelle

Es wird angenommen, daß ein Emittent der Emissionshöhe h die Aktivität A in der kurzen Zeit T abgibt und daß diese in einem schmalen Sektor in Emissionshöhe konzentriert bleibt (Linienquelle).

Ist λ die Zerfallskonstante des emittierten Nuklids, A die Emissionsrate und u die Windgeschwindigkeit, so ist die Aktivitätskonzentration pro Längeneinheit an der Stelle x = r_n der Linienquelle

$$C_{Ln} = \frac{\dot{A}}{u} e^{-\lambda \frac{r_n}{u}} \left[\frac{Bq}{m}\right].$$
 [2.1]

Die Aktivität der Linienquelle wird in eine Kette einzelner Aktivitätselemente aufgeteilt.

$$\Delta A_{Ln} = C_{Ln} \Delta r = \frac{\dot{A}\Delta r}{u} e^{-\lambda \frac{r_n}{u}} [Bq].$$
 [2.2]

Es ist

$$r_n = n\Delta r$$
; $n = 1, 2, 3, ...$ [2.3]

2.2 Flächenquelle

Die Aktivität ΔA_{Ln} wird auf der Fläche in y-Richtung entsprechend dem horizontalen Ausbreitungsparameter σ_{yi} (x) normal verteilt (s.Abb. 1).

Abbildung 1. Horizontale Aktivitätsverteilung

Dabei ist der Winkelschritt $\Delta \alpha$ in jeder Entfernung r_n zwar konstant, so daß die Breite Δy der Flächenelemente mit wachsendem Abstand von der Ausbreitungsachse größer wird; $\Delta \alpha$ wird aber jeweils so gewählt, daß Δy_0 - die Breite unter der Fahnenachse - in jeder Entfernung r_n gleich groß ist (s. Abb. 2).

Die Fläche ΔF_s (s. Abb. 2) auf der Emissionsebene ist durch folgende Koordinaten gegeben:

$$x_n = r_n - \frac{\Delta r}{2}$$
 [2.4a]

$$x_{n+1} = r_{n+1} - \frac{\Delta r}{2}$$
 [2.4b]

$$y_{s} = r_{n} \tan\left(\frac{2s-1}{2}\Delta\alpha\right)$$
 [2.5]

Abbildung 2. Geometrie zur Berechnung der horizontalen Aktivitätsverteilung auf der Emissionsebene in einer Entfernung r_n

$$y_{s+1} = r_n \tan\left(\frac{2s+1}{2}\Delta\alpha\right)$$
 [2.6]

mit

$$\Delta \alpha = 2 \arctan \frac{\Delta y_0}{2 r_n} \qquad [2.7]$$

Es ist also

$$\Delta F_{s} = (x_{n+1} - x_{n}) \ (y_{s+1} - y_{s}).$$
[2.8]

In diesen Gleichungen sind

- **x, y** Kartesische Koordinaten mit x in Ausbreitungsrichtung und Koordinatenursprung im Kaminfuß
- **r**, α Polarkoordinaten mit Koordinatenursprung im Kaminfuß; der Winkel α wächst von Nord über Ost Süd West Nord.
- **n** Index für den Entfernungsschritt (n = 1, 2, ...)
- s Index für den Winkelschritt (s = 0, ± 1 , ± 2 ... $\pm \frac{1}{2}$) mit $1 + 1 < \pi/\Delta \alpha$.

Die Flächenaktivität ΔA_{Fins} für die Stabilitätskategorie j ist:

$$\Delta A_{Fjns} = \Delta A_{Ln} f_{js}(x) [Bq]$$
(2.9]

mit

$$f_{js}(x) = \frac{1}{2} \frac{1}{\sqrt{2\pi} \sigma_{yj}(x)} \left(\int_{-y_{s+1}}^{y_{s+1}} e^{-\frac{1}{2} \left(\frac{y}{\sigma_{yj}(x)}\right)^2} dy - \int_{-y_s}^{y_s} e^{-\frac{1}{2} \left(\frac{y}{\sigma_{yj}(x)}\right)^2} dy \right)$$

[2.10]

Der Ausbreitungsparameter $\sigma_{yj}(x)$ wird entspr. /AV-90/ eingesetzt. Bei Freisetzung aus einem Gebäude (BAU \neq 0) wird $\sigma_{yj}(x)$ erweitert:

$$\sigma_{\rm yj, BAU} = \left(\sigma_{\rm yj}^2 + \frac{\rm BAU}{\pi}\right)^{\frac{1}{2}}$$

Mit der Hilfsvariablen w und der Definition

$$\mathsf{ERF}(w_{s}) = \frac{1}{\sqrt{\pi}} \int_{-w_{s}}^{w_{s}} e^{-w^{2}} dw \qquad [2.11]$$

und

$$w = \frac{1}{\sqrt{2}} \frac{y}{\sigma_{yj}(x)}$$
[2.12]

erhält man den folgenden Ausdruck für f_{js} $\left(s = \pm 1, \pm 2, ..., \pm \frac{1}{2}\right)$:

$$f_{js}(x) = \frac{1}{2} \left(ERF\left(\frac{y_{s+1}}{\sqrt{2} \sigma_{yj}(x)}\right) - ERF\left(\frac{y_s}{\sqrt{2} \sigma_{yj}(x)}\right) \right).$$
[2.13]

Für den Zentralsektor (s = 0) gilt:

$$f_{j0}(x) = ERF\left(\frac{y_1}{\sqrt{2} \sigma_{yj}(x)}\right)$$
[2.14]

2.3 Volumenquelle

Als Volumenquelle wird die in der Abluftfahne räumlich verteilte Aktivität eines Emittenten verstanden. Die Aktivität ΔA_{Fsjn} wird in der vertikalen z-Richtung nach einer Gaußverteilung der Varianz $\sigma_{Zj}^2(x)$ verteilt. Es wird vollständige Reflexion am Boden angenommen. Die sich damit ergebende Aktivitätsverteilung (s. Abb. 3) wird innerhalb der Höhenschicht

$$\Delta z_i = z_{i+1} - z_i \qquad [2.15]$$

integriert, um die Aktivitätsmenge ΔA_{Vjnsi} (Volumenquelle) zu erhalten:

$$\Delta A_{\text{Vjnsi}} = \Delta A_{\text{Fjns}} \frac{1}{\sqrt{2\pi} \sigma_{zj}(x)} \left\{ \int_{z_{i}}^{z_{i+1}} e^{-\frac{1}{2} \left(\frac{h-z}{\sigma_{zj}(x)}\right)^{2} dz} + \int_{z_{i}}^{z_{i+1}} e^{-\frac{1}{2} \left(\frac{h+z}{\sigma_{zj}(x)}\right)^{2} dz} \right\}$$

[2.16]

$$z_i = i \Delta z; \quad i = 0, 1, 2 \dots$$

Abbildung 3. Vertikale Verteilung der Aktivität

 Δ z wird zweckmäßigerweise so gewählt, daß

$$\frac{h}{\Delta z} - \frac{1}{2} = p; \quad p = 0, 1, 2, ...$$

(p = 6 in Abb. 3), h ist die effektive Emissionshöhe. Der Ausbreitungsparameter $\sigma_{zj}(x)$ wird entspr. /AV-90/ eingesetzt. Bei Freisetzung aus einem Gebäude (BAU \neq 0) wird $\sigma_{zj}(x)$ erweitert:

$$\sigma_{\rm zj, BAU} = \left(\sigma_{\rm zj}^2 + \frac{\rm BAU}{\pi}\right)^{\frac{1}{2}}$$

Es werden die Hilfsgrößen v' und v'' eingeführt

$$\mathbf{v}' = \frac{1}{\sqrt{2}} \frac{\mathbf{h} - \mathbf{z}}{\sigma_{\mathbf{zj}}(\mathbf{x})}$$
[2.17]

$$\mathbf{v}'' = \frac{1}{\sqrt{2}} \frac{\mathbf{h} + \mathbf{z}}{\sigma_{zj}(\mathbf{x})}$$
[2.18]

Aus Gln. [2.16] bis [2.18] folgt (s. Abb. 3):

$$\Delta A_{Vjnsi} = \frac{\Delta A_{Fjns}}{2} [ERF(v'_{i}) - ERF(v'_{i+1}) + ERF(v''_{i+1}) - ERF(v''_{i})]$$
 [2.19]

mit

$$v'_{i} = \frac{1}{\sqrt{2}} \frac{h - z_{i}}{\sigma_{zj}(x)}$$

$$v'_{i+1} = \frac{1}{\sqrt{2}} \frac{h - z_{i+1}}{\sigma_{zj}(x)}$$

$$v''_{i} = \frac{1}{\sqrt{2}} \frac{h + z_{i}}{\sigma_{zj}(x)}$$

$$v''_{i+1} = \frac{1}{\sqrt{2}} \frac{n + z_{i+1}}{\sigma_{zj}(x)}$$

Wir schreiben

$$\Delta A_{\text{Vjnsi}} = \Delta A_{\text{Ln}} f_{\text{js}} f_{\text{ji}}$$
[2.21]

[2.20]

mit f_{js} aus GIn. [2.13], [2.14] und

$$f_{ji} = \frac{1}{2} \left[ERF(v'_i) - ERF(v'_{i+1}) + ERF(v''_{i+1}) - ERF(v''_i) \right]$$
 [2.22]

Mit ΔA_{Ln} aus GI. [2.2] ist

$$\Delta A_{\text{Vjnsi}} = \frac{\dot{A}}{u} e^{-\lambda \frac{r_n}{u}} \Delta r f_{js} f_{ji} \quad [Bq]. \qquad [2.23]$$

Theoretisch würde sich nach GI. [2.16] die Aktivität unendlich weit nach oben erstrecken. Die tatsächlich endliche Aktivitätsverteilung wird durch eine Abschneidevorschrift berücksichtigt, die in Kap. 3.3 angegeben ist.

3.0 Berechnung der *y*-Dosisleistung

Aufgrund des großen Durchdringungsvermögens können γ -Strahlen aus einem großen Bereich der Abluftfahne zur Strahlenexposition am betrachteten Aufpunkt P beitragen. Zur Ermittlung der γ -Dosisleistung sind daher die Dosisbeiträge aller Volumenaktivitätselemente (ΔA_{Vsj}) der Abluftfahne unter Berücksichtigung der Absorption und Streuung der γ -Quanten in Luft zu integrieren.

Die γ -Dosisleistung, die durch die Emission von γ -Quanten des Radionuklids q verursacht wird, erhält man aus

$$\dot{D}_{q} = \sum_{m} 1.6 \ 10^{-10} \ \frac{\text{Gy g}}{\text{MeV Bq s}} \left(\frac{\mu_{a,m}}{d}\right) P_{\gamma, q, m} E_{q, m} \int_{(v)} \frac{C_{q}}{4\pi\rho^{2}} B(E, \mu_{m} \rho) e^{-\mu_{m} \rho} K_{b} dv$$

[3.1]

Hierbei ist

- ρ Abstand zwischen dem Volumenquellelement dv und dem Aufpunkt P (in m)
- $P_{\gamma, q, m}$ pro Zerfall ausgesandte γ -Quanten des Übergangs m (dimensionslos, q Index für Nuklid, m Index für γ -Energie des Übergangs)

 $E_{q,m}$ Energie des γ -Quants des Übergangs m (in MeV)

 $\left(\frac{\mu_{a, m}}{d}\right)$ zugehöriger Massenenergieabsorptionskoeffizient (in m²/g) für Gewebe der Dichte d

μ_m Schwächungskoeffizient für Photonen in Luft

C_q Aktivitätskonzentration des Nuklids q in Luft

 $B(E, \mu_m \rho)$ Dosisaufbaufaktor in Luft

Korrekturfaktor für den Einfluß des Bodens /Ja-85/

Der Dosisaufbaufaktor (Build-up-Faktor) hängt von der Energie der γ -Quanten sowie der mittleren freien Weglänge $\mu\rho$ ab. Eine Berechnung dieses Faktors wurde von Jacob, Paretzke und Wölfel /Ja-84/ publiziert, s. Abb. 4. Durch Interpolation werden Build-up-Faktoren im Energiebereich 0.05 < E_{γ} < 10MeV aus diesen Kurven ermittelt.

Der Schwächungskoeffizient μ_m für Photonen in Luft hängt von der Dichte der Luft, d. h. im wesentlichen von der Lufttemperatur ab. μ_m ist für T = 10° C gegeben und wird, wenn T von 10° C abweicht, nach GI. [3.2] umgerechnet:

Abbildung 4. Aufbaufaktor B(E, $\mu\rho$) für γ -Strahlung in Luft

$$\mu_{\rm T} = \mu_{10} \frac{283.16}{\rm T + 273.16} \quad \text{in m}^{-1}$$
 [3.2]

Der Korrekturfaktor K_b berücksichtigt den Einfluß der Grenzfläche Luft/Boden gegenüber dem halbunendlichen Raum. Er wurde von Jacob und Paretzke berechnet /Ja-85/, abhängig von der Höhe z des Quellpunktes und dem horizontalen Abstand vom Aufpunkt. Die dort angegebene Approximationsformel wurde hier verwendet.

In GI. [3.1] ist C_q die Aktivitätskonzentration innerhalb der Abluftfahne. Die Energieabhängigkeit des Volumenintegrals ist relativ gering, s. /Vo-70/. Die Energieabhängigkeit der γ -Dosisleistung ist vornehmlich im Restterm von GI. [3.1] enthalten. Dieser Restterm wird, wie in /AV-90/, als γ -Dosisfaktor g_{yq} des Radionuklids q bezeichnet. Damit nimmt GI. [3.1] die folgende einfache Form an:

$$\dot{D}_{q} = g_{yq} \int_{(v)}^{0} \frac{C_{q}}{4\pi \rho^{2}} B(E, \mu\rho) e^{-\mu\rho} K_{b} dv \qquad [3.3]$$

 g_{yq} ist z. B. aus /BMU-89/ zu entnehmen. Es ist zu beachten, daß der Faktor 4π nicht, wie in früheren Rechenverfahren (s. z. B. /Ho-86/, /Pa-88/) in g_{yq} einbezogen ist. Die Dosisleistung D_q, normiert auf die Quellstärke A_q, den Dosisfaktor g_{yq} und auf die Windgeschwindigkeit u, wird als γ -Ausbreitungsfaktor χ_{γ} bezeichnet.

•

$$\chi_{y} = \frac{D_{q} u}{g_{yq} \dot{A}_{q}} \left[\frac{s}{m^{2}}\right]$$
[3.4]

Im Programm WOLGA 2.1 wird das Volumenintegral numerisch durch Aufsummieren der Volumenaktivitätselemente ΔA_{Vjnsi} gelöst. Wegen des quadratischen Abstandsgesetzes nimmt die Strahlungsintensität an einem Aufpunkt mit wachsender Entfernung des Strahlers rasch ab. Ist der Raum gleichmäßig mit Aktivität gefüllt, dann tragen die Aktivitätselemente in größerer Entfernung - relativ zum Beitrag der nähergelegenen - kaum noch zur Gesamtstrahlung bei. Daher kann der Bereich, dessen Aktivität bei der Dosisberechnung berücksichtigt wird, begrenzt werden. In horizontaler Richtung soll ein Kreis um den Aufpunkt mit dem Radius R₀ diesen Bereich begrenzen. Der Radius R₀ wird hier "Reichweite der γ -Strahlung" genannt. Es wird jedoch betont, daß es sich um eine scheinbare Reichweite handelt, die sich nur aus den Anforderungen an die Genauigkeit des Rechenprogramms herleiten läßt.

Bei der Volumenquelle ist eine Begrenzung des Bereiches auch in vertikaler Richtung erforderlich. Dabei sorgt nicht nur das quadratische Abstandsgesetz, sondern auch die mit der Höhe rasch abnehmende Aktivitätskonzentration dafür, daß die Dosisbeiträge der Aktivitätselemente ab einer bestimmten Höhe vernachlässigt werden können. Eine entsprechende Abschneidevorschrift wird in Kap. 3.3 angegeben.

3.1 Linienquelle

Die Aktivität ΔA_{Ln} verursacht am Aufpunkt P (x_p, ω) (s. Abb. 5) die γ -Dosisleistung

$$\Delta \dot{\mathbf{D}}_{Ln} = \mathbf{g}_{\gamma} \frac{\mathbf{B}(\mathbf{E}, \mu \rho)}{4\pi \rho^2} \Delta \mathbf{A}_{Ln} \, \mathbf{e}^{-\mu \rho} \, \mathbf{K}_{\mathbf{b}}(\mathbf{E}, \mu \rho', \mu \mathbf{h})$$
 [3.5]

mit

$$\rho' = \sqrt{x_{\rm p}^2 + r_{\rm n}^2 - 2 x_{\rm p} r_{\rm n} \cos(\omega - \phi)}$$
 [3.6a]

$$\rho = \sqrt{{\rho'}^2 + {\mathsf{h}}^2}$$
 [3.6b]

und r_n aus GI. [2.3].

Abbildung 5. Geometrie der Linienquelle und des Aufpunktes

Die Dosisleistung aus der Aktivität der Linienquelle ist

$$\dot{D}_{L} = \sum_{n} \Delta \dot{D}_{Ln}$$
[3.7]

3.2 Flächenquelle

Die Aktivität $\Delta A_{\textrm{Fjns}}$ verursacht am Aufpunkt P $(x_{\textrm{p}},\omega)$ die Dosisleistung

$$\Delta \dot{\mathsf{D}}_{\mathsf{Fjns}} = \mathsf{g}_{\mathsf{y}} \frac{\mathsf{B}(\mathsf{E},\,\mu\rho)}{4\pi\rho^2} \Delta \mathsf{A}_{\mathsf{Fjns}} \,\mathsf{e}^{-\,\mu\rho} \,\mathsf{K}_{\mathsf{b}}(\mathsf{E},\,\mu\rho',\,\mu\mathsf{h})$$
[3.8]

mit ρ aus [3.6b] (s. Abb. 5) und

$$\rho'^{2} = \frac{r_{n}^{2}}{\cos^{2}(\alpha - \phi)} + x_{p}^{2} - 2 x_{p} r_{n} \frac{\cos(\alpha - \omega)}{\cos(\alpha - \phi)}$$
[3.9]

(s. Abb. 6).

Abbildung 6. Geometrie der Flächenquelle

Sucht man die Dosisleistung der gesamten Flächenquelle am Aufpunkt P (x_p , ω), so muß man alle Flächenelemente berücksichtigen, die innerhalb eines Kreises mit dem Radius R = R₀ liegen¹. Um diese Fläche richtig zu erfassen, müssen der Wertebereich des r_n und für jedes r_n der Wertebereich des α festgelegt werden.

Die Summe der ΔD_{Fjns} über alle Entfernungen r_n und alle Sektoren s der Öffnung $\Delta \alpha$ (s. Abb. 6) wird zuerst für konstante r_n über alle $\Delta \alpha$ in den verschiedenen Sektoren und anschließend über alle Entfernungen r_n des Weges (maximal 2R) berechnet. Es werden zwei Fälle unterschieden:

1.
$$R > x_p \cos(\omega - \phi)$$

Nach GI. [2.3] nimmt rn Werte im folgenden Bereich an²

$$0 \le r_n \le x_p \cos(\omega - \phi) + R$$
 [3.10]

2. $R < x_p \cos(\omega - \phi)$

In diesem Fall nimmt die Variable rn Werte im Bereich

$$\mathbf{x}_{p}\cos(\omega - \phi) - \mathbf{R} \le \mathbf{r}_{n} \le \mathbf{x}_{p}\cos(\omega - \phi) + \mathbf{R}$$
 [3.11]

an.

Für jedes r_n nimmt α Werte im Bereich $\alpha_1 < \alpha < \alpha_2$ an (s. Abb. 7), die der Bedingung $\alpha = s\Delta\alpha$ (s = 0, ± 1, ± 2, ...) genügen.

In Abb. 7 ist

$$\mathbf{r}' = \mathbf{x}_{\mathbf{p}} \cos(\omega - \phi)$$
 [3.12]

$$b = \sqrt{R^2 - (r' - r_n)^2}$$
 [3.13]

$$c_1 = b - x_p \sin(\omega - \phi)$$
 [3.14]

$$c_2 = b + x_p \sin(\omega - \phi)$$
 [3.15]

Hieraus erhält man

$$\mathsf{R}=\sqrt{\mathsf{R}_0^2-\mathsf{h}^2}$$

berechnet würde. Für die Volumenquelle ist aber die Kenntnis der Dosisbeiträge der Aktivitäten innerhalb des Kreises R₀ notwendig.

² Entgegen der Ausbreitungsrichtung befindet sich keine Aktivität.

¹ An sich würde es für die Flächenquelle ausreichen, wenn der Radius R aus der Gleichung

Abbildung 7. Geometrie zur Bestimmung des Winkelbereichs von α

$$\alpha_1 = \phi - \arctan \frac{c_1}{r}$$
 [3.16]

$$\alpha_2 = \phi + \arctan \frac{c_2}{r}$$
 [3.17]

3.3 Volumenquelle

Die Aktivität ΔA_{Vjnsi} verursacht am Aufpunkt P (x_p, ω) die Dosisleistung

$$\dot{\Delta D}_{Vjnsi} = g_{\gamma} \frac{B(E, \mu \rho)}{4\pi \rho^2} \Delta A_{Vjnsi} e^{-\mu \rho} K_{b}(E, \mu \rho', \mu z)$$
[3.18]

mit ρ' aus GI. [3.9]. In GI. [3.18] wird die Entfernung

$$\rho = \sqrt{\frac{r_n^2}{\cos^2(\alpha - \phi)} + x_p^2 - 2x_p r_n \frac{\cos(\alpha - \omega)}{\cos(\alpha - \phi)} + z^2}$$
[3.19]

mit $z = \frac{1}{2}(z_i + z_{i+1})$ eingesetzt.

Die Dosisleistung D_v am Aufpunkt $P(x_p, \omega)$ durch γ -Strahlung aus der radioaktiven Wolke wird aus der Summe der ΔD_{Vjnsi} über alle Entfernungen r_n im Kreis R, über alle Winkel α und über alle Höhen i berechnet.

$$\dot{D}_{V} = \sum_{n} \sum_{s} \sum_{i} \dot{D}_{Vjnsi}$$
[3.20]

Die Summation wird in folgender Weise durchgeführt:

Für einen Aufpunkt P (x_p , ω) wird zuerst der Wertebereich von r_n nach GI. [3.10] oder GI. [3.11] und der Wertebereich von α nach GI. [3.16] und GI. [3.17] innerhalb des Kreises R bestimmt. Für das jeweils geltende r werden die Varianzen $\sigma_{zj}(x)$ und $\sigma_{yj}(x)$ ($x = r_n$ in Ausbreitungsrichtung) bestimmt. Für das laufende r_n bzw. x wird nach GI. [3.16] und GI. [3.17] der Wertebereich des Winkels α festgelegt und mit den laufenden Werten r_n und α das z-Feld im Bereich $0 \le z \le z_0$ festgelegt. z_0 wird folgendermaßen bestimmt:

Oberhalb der Emissionsebene (z > h) nimmt der Beitrag der einzelnen Aktivitätsmengen zur Gesamtdosis mit steigender Höhe rasch ab. Diese Abnahme ist sowohl durch die abnehmende Aktivitätskonzentration als auch durch das quadratische Abstandsgesetz bedingt. Daher kann der z-Bereich erstens entsprechend dem $\sigma_{zj}(x)$ -Wert begrenzt werden. Da ERF(2) = 0.9953, muß lediglich bis zur Höhe $z_0 = 2\sqrt{2} \sigma_{zj}(x) + h$ summiert werden, um 99,5 % der Aktivität zu berücksichtigen. Die restliche Aktivität (0,5 %) wird, um die berechnete Dosis nach oben und nicht nach unten abzurunden, jeweils dem letzten Aktivitätspunkt (in der Höhe $z_0 = 2\sqrt{2} \sigma_{zj}(x) + h$) zugeschlagen. Die zweite Begrenzung ergibt sich durch das quadratische Abstandsgesetz und kann ähnlich wie die "Reichweite" R_0 formuliert werden. Z. B. trägt bei Aktivitätsverteilung im Raum mit einer γ -Energie E = 1.0 MeV die Aktivität ab z = 800 m einen Beitrag zur Dosisleistung kleiner als 1 % bei. Daher wird ab einer solchen Grenzhöhe z_G die Summation abgebrochen, auch wenn $z_G < 2\sqrt{2} \sigma_{zj}(x) + h$ ist. Die Grenzhöhe z_G wird durch Wahl des Eingabeparameters IZZ (Kap. Anhang A, Karte A) dimensioniert:

$$IZZ = \frac{Z_G}{\Delta z}$$

4.0 Genauigkeit der berechneten Dosis und Ergebnisse

Durch die notwendige Diskretisierung des Aktivitätsgehalts der Abluftfahne in einzelnen Punktquellen wird die Genauigkeit des Ergebnisses zwangsläufig eingeschränkt. Der Fehler, d. h. die Abweichung von der "exakten" Berechnung der mathematischen Formel (GI. [3.2]) (Auflösung der Aktivitätsfahne in annähernd unendlich viele Punktquellen), steigt mit abnehmender Anzahl dieser Aktivitätspunkte. Dieser Fehler kann auf etwa 3 Prozent beschränkt werden (maximaler Fehler bei allen Entfernungen, Emissionshöhen, Stabilitätskategorien, γ -Energien usw.), wenn folgende Eingabewerte gewählt werden:

$$IZZ = 40$$

$$R_0 = 1000 \quad (in m)$$

$$\Delta y_0 = \Delta r = \Delta z = 20 \quad (in m)$$

Damit wird das Genauigkeitspotential dieser Berechnungsmethode praktisch ausgeschöpft. Als Berechnungsbeispiel wird im Anhang D der γ -Ausbreitungsfaktor $\hat{\chi}_{\gamma}$ (unter der Fahnenachse) für eine Gammaenergie von 1 MeV, für die Stabilitätskategorien A bis F und für verschiedene Emissionshöhen von 0 bis 200 m angegeben.

1.0 Literaturverzeichnis

/AV-90/	Allgemeine Verwaltungsvorschrift zu §45 der Strahlenschutzverord- nung: Ermittlung der Strahlenexposition durch die Ableitung radio- aktiver Stoffe aus kerntechnischen Anlagen oder Einrichtungen. Bundesanzeiger <u>42</u> , Nr. 64a (1990)
/BMU-89/	Der Bundesminister für Umwelt, Naturschutz und Reaktorsicherheit Bekanntmachung der Dosisfaktoren Bundesanzeiger <u>41,</u> Nr. 185a, 329 (1989)
/Co-68/	R. E. Cooper RADOS, A Code to Estimate Gamma Dose from a Cloud of Radio- active Gases. USAEC DP-1098 (Rev. 1), E. I., du Pont de Nemours and Co., Savannah River Laboratory, Aiken S. C. (1968)
/Co-68-1/	R. E. Cooper, B. C. Rusche The SRL Meteorological Program and Off-Site Dose Calculations. USAEC DP-1163, (1968)
/He-68/	J. W. Healy, E. Baker Radioactive Cloud-dose Calculations in Meteorology and Atomic Energy -1968 (Editor D. H. Slade) USAEC Juli 1968, 301 - 377
/Ho-86/	S. Honcu WOLGA 1 - Ein FORTRAN-Programm zur Berechnung der Dosislei- stung durch Gammastrahlung aus der radioaktiven Abluft eines oder mehrerer Daueremittenten. KfK 4108 (1986)
/Ja-84/	P. Jacob, H. G. Paretzke, J. Wölfel Monte Carlo Calculation and Analytical Approximation of Gamma- Ray Buildup Factors in Air. Nucl. Sci. and Eng. <u>87</u> , 113 - 122 (1984)
/Ja-85/	P. Jacob, H. G. Paretzke Air-Ground Interface Correction Factors for γ-Emitters in Air. Health Physics <u>48,</u> 183 - 191 (1985)
/Mi-83/	M. Mills, D. Vogt Summary of Computer Codes for Radiological Assessment. NUREG/CR-3204, p. 198 (1983)
/Na-71/	D. Nachtigall Physikalische Grundlagen für Dosimetrie und Strahlenschutz. Karl-Thiemig Verlag, München (1971)

/Pa-88/	D. Papadopoulos, M. Bär, S. Honcu WOLGA 2 - Ein FORTRAN-77-Programm zur Berechnung der bo- dennahen Dosisleistung durch Gammastrahlung aus der radioak- tiven Abluftfahne aufgrund kurzzeitiger radioaktiver Freisetzungen eines Emittenten. KfK 3980 (1988)
/Ro-79/	F. Rohloff, E. Brunen, H. D. Brenk, H. Geiß, K.J. Vogt LIGA - Ein Programm zur Berechnung der lokalen, individuellen Gammasubmersionsdosis durch Abluftfahnen aus kerntechnischen Anlagen. Jül-1577 (1979)
/Ro-81/	F. Rohloff, E. Brunen LIGA 2 - Ein verbessertes Rechenprogramm zur Berechnung der Iokalen, individuellen Gammasubmersionsdosis durch Abluftfahnen aus kerntechnischen Anlagen. Jül-1736 (1981)
/St-83/	Störfallberechnungsgrundlagen Bundesanzeiger <u>35,</u> Nr. 245a (1983)
/Vo-70/	K. J. Vogt Umweltkontamination und Strahlenbelastung durch radioaktive Ab- luft aus kerntechnischen Anlagen. Jül-737-ST (1970)
/Wi-70/	C. A. Willis, G. A. Spangler, W. A. Rhoades A New Technique for Reactor Siting Dose Calculations Health Physics <u>19</u> , 47 - 54 (1970)

Anhang A. Beschreibung der Eingabe für WOLGA 2.1

Karte A:

	Format (2I5, 4F10.0)
NN	Anzahl der Aufpunkte, NN \leq 600
	NWAY=1 s. Karte D
	$NWAY = 2$ $NN = IANZ \cdot IE$
IZZ	Anzahl der Schritte in z-Richtung
RK	Radius der Kreisfläche der Integration in m (Defaultwert 1000)
DY0	Breite des zentralen Segments in m (Defaultwert 20)
DR	Δ R, Integrationsschritt in radialer Richtung in m (Defaultwert 20)
DZ	Δ z, Integrationsschritt in vertikaler Richtung in m (Defaultwert 20)
Karte B:	Emittent und Charakteristik des emittierten Nuklids
	Format (F10.1, 4E10.3)
Н	h, Höhe des Emittenten in Meter (der Emittent befindet sich im Koordinatenursprung)
Q	A, Quellstärke des Emittenten (z. B. in Bq/Zeitperiode)
G	g _y , Gammadosisleistungskonstante in <u>Sv m²</u> Bq s
ZE	λ , Zerfallskonstante in 1/s
EN	E, Gamma-Energie in MeV
Karte C:	meteorologische Bedingungen
	Format (5F10.1)
CAT	Stabilitätskategorie j (A = 1, B = 2, C = 3, D = 4, E = 5, F = 6)
U	u, Windgeschwindigkeit in m/s
РНІ	$\phi,$ Winkel Nord-Ausbreitungsrichtung im Uhrzeigersinn in Grad ($\Phi=U_{Wind}-$ 180 mit U_W = Windrichtung)
BAU	wirksamer Gebäudequerschnitt in Anströmrichtung, in m ²
ТЕМР	T, Temperatur der Luft in °C (optional; wenn T nicht eingegeben, wird T = 10 °C angenommen)

Karte D:	Steuer-Variable			
	Format (215)			
NWAY	Hilfsvariable zur Programmsteuerung			
	= 1 Berechnung der Dosis an einzelnen Aufpunkten			
	>>> Es folgen Karten E1 und K <<<<			
	= 2 Berechnung der Dosis für einen Raster für Isodosendia- gramme			
	>>>~ Es folgen Karten E2, F ,G, H, I und K $<<<$			
	= 3 Ein abgebrochener Lauf mit NWAY = 2 soll fortgesetzt werden, oder es soll nur aus zuvor berechneten Werten eine Isodosenzeichnung erstellt werden.			
	Die sonstige Eingabe ist identisch mit der Eingabe für NWAY = 2.			
IUNIT	Ausgabe-Einheit für Ausgabe auf Spool-Datei. (Eine richtige Datei würde bei einem Programmabbruch nicht korrekt geschlossen und wäre daher für einen Restart-Lauf nicht verwendbar.)			
	Wurde ein Lauf abgebrochen, oder soll nachträglich eine Zeich- nung erstellt werden, so ist die Spool-Ausgabe in eine perma- nente Datei umzukopieren, die bei einem Restart-Lauf mit NWAY = 3 über die Einheit IUNIT – 1 wieder eingelesen wird.			
	= 0 Die Ausgabe auf Datei wird unterdrückt			
Karte E1:	(IP-mal) für NWAY = 1: Polarkoordinaten der Aufpunkte			
	Format (A40, 2X, F7.1, 1X, F6.2)			
IDENT	Bezeichnung des Aufpunktes			
XP	x _P , Entfernung vom Koordinatenursprung in m			
WF	$\omega,$ Winkel gegen Nord in Grad im Uhrzeigersinn; WF = 0 bezeichnet die Nordrichtung.			
	WF wird im Programm bezüglich der Ausbreitungsrichtung trans- formiert und ins Bogenmaß umgerechnet. Diese neue Winkelko- ordinate heißt WP.			
Karte E2:	für NWAY = 2: Raster-Parameter			
	Format (215, 2F10.0)			
IANZ	Anzahl der Winkel des Rasters			
	Wegen der Symmetrie genügt es, nur für die Winkel von 0° bis 180°, bezogen auf die Ausbreitungsrichtung ϕ , zu rechnen. Bei IANZ = 180/DW + 1 werden die Werte zum Zweck der Zeichnung gespiegelt.			

IE	Anzahl der Entfernungen			
WA	erster Winkel in Grad (falls WA = 0., wird mit WA = Φ begonnen.)			
DW	Schrittweite der Winkel des Rasters in Grad			
Karte F:	für NWAY = 2: Entfernungen			
	Format (7E10.0)			
XP(I), I = 1, IE	Entfernungen des Rasters in m			
Karte G:	für NWAY = 2:			
	Format (E10.0)			
RMASS	Maßstab für die Zeichnung M = 1 : RMASS			
Karte H:	für NWAY = 2:			
	Format (I5)			
NH	Anzahl	der Höhenlinien		
	> 0	Die Niveaus der Höhenlinien werden eingelesen.		
	≤ 0	Die Niveaus der Höhenlinien werden vom Programm auf- grund des Maximums bestimmt. Als Anzahl wird NH verwendet.		
		>>> Es folgt unmittelbar Karte K $<<<$		
	= 0	9 Isolinien werden vom Programm bestimmt.		
Karte I:	für NWAY = 2 falls NH > 0 :			
	Format	(7E10.4)		
HV(I), I = 1, NH	Niveaus der Höhenlinien			
Karte K:	für NWAY = 1 und NWAY = 2:			
	Format	(A72)		
NTEXT	Text, der in Druckausgabe und Zeichnung geschrieben wird (ma- ximale Länge = 72 Zeichen).			

Anhang B. Beispiel für die Eingabe des Programms WOLGA 2.1

//IMK906W2 JOBTIME=7 //**-----//** JES3-Steueranweisungen für WOLGA-2 //**-----//** // EXEC F7CG,IMSL=MATH.PARM.C=ASTER.PARM.G='SIZE=1000K' //C.SYSIN DD DISP=SHR,DSN=IMK906.WOLGA.FORT(WOLGA2) // DD DISP=SHR,DSN=IMK906.WOLGA.FORT(W2ZEICH) //**-----//** Eingabe-Datei fuer Dosiswerte (- Restart -) ==> IUNIT-1 //G.FT32F001 DD DISP=SHR.DSN=IMK906.W0L20UT.DATA //**----//** Ausgabe-Klasse fuer Dosiswerte (Sicherheits-File) ==> IUNIT //G.FT33F001 DD SYSOUT=C,DCB=LRECL=80 //**----//** Eingabe für Isodosenzeichnung (NWAY=2 mit 10 Entf. u. 36 Winkeln). //** Hier wird nur ein Halbkreis (IANZ=19) gerechnet und danach //** die Werte an der Ausbreitungsachse gespiegelt. //**_____ //G.SYSIN DD * 190 40 1000. 20. 20. 20. NN, IZZ, RK, DYO, DR, DZ 100.0 3.70E+10 4.90E-17 1.052E-04 1.00E+00 H, Q, G, ZE, EN 4.0 1.0 135. 0. CA, U, PHI, BAU, TEMP 2 NWAY, IUNIT, KORF 33 1 10 19 0.0 10. IANZ, IE, WA, DW 200.0 50.0E0 100.0E0 400.0 700.0 1200. 2000. 3.0E3 4.0E3 5.0E3 (XP(I), I=1, IE)50000.0 RMASS -7 NH BERECHNUNG DER GAMMADOSIS NACH AVV MIT BODENKORREKTURFAKTOR 11

Anhang C. Beispiel für die Ausgabe des Programms WOLGA 2.1

ANZAHL DER RECHENSCHRITTE IN Z-RICHTUNG : 40DELTA Z : 20.0 MRADIUS DER KREISFLAECHE : 1000.0 MDELTA R : 20.0 M

BREITE DES ZENTRALSEKTORS: 20.0 M

METEOROLOGISCHE BEDINGUNGEN:

AUSBREITUNGSRICHTUNG	135.0 GRAD
WINDGESCHWINDIGKEIT	1.0 M/S
AUSBREITUNGSKATEGORIE	D
LUFTTEMPERATUR	10.0 C

HOEHE DES EMITTENTEN UND CHARAKTERISTIK DES NUKLIDES:

HOEHE QUELLST. GAMMADOSISL. ZERFALL GAMMA-ENERGIE MUE

100.0 3.700D+10 4.900D-17 1.052D-04 1.000D+00 7.921D-03

BERECHNUNG DER DOSIS FUER EINEN PUNKTRASTER AUS 10 ENTFERNUNGEN UND 19 WINKELN UND ZEICHNUNG EINER ISODOSEN-KARTE IM MASSSTAB M=1: 50000.

ENTFERNUNGEN IN M : 50.00 100.00 200.00 400.00 700.00 1200.00 2000.00 3000.00 4000.00 5000.00

1. WINKEL : 135.00 GRAD, SCHRITTWEITE : 10.00 GRAD

ANZAHL DER ISODOSENLINIEN = 7

DIE ISODOSEN WERDEN VOM PROGRAMM BESTIMMT

KOORDINATEN DER AUFPUNKTE DOSISLEISTUNG

NR.	BEZEICHNUNG	ENTF.	WINKEL	DOSIS
1		50.0	135.0	2.280212D-08
2		100.0	135.0	2.667204D-08
3		200.0	135.0	2.911221D-08
4		400.0	135.0	2.867646D-08
5		700.0	135.0	2.597942D-08
6		1200.0	135.0	1.902132D-08
7		2000.0	135.0	1.112333D-08
8		3000.0	135.0	6.209977D-09
9		4000.0	135.0	3.800015D-09
10		5000.0	135.0	2.486549D-09
11		50.0	145.0	2.257702D-08
12		100.0	145.0	2.597805D-08
13		200.0	145.0	2.699581D-08
14		400.0	145.0	2.323279D-08
15		700.0	145.0	1.771721D-08
16		1200.0	145.0	1.038930D-08
17		2000.0	145.0	4.933093D-09
18		3000.0	145.0	2.280922D-09
19		4000.0	145.0	1.202208D-09
20		5000.0	145.0	7.025449D-10
÷				
181		50.0	315.0	9.471379D-09
182		100.0	315.0	5.124908D-09
183		200.0	315.0	1.566853D-09
184		400.0	315.0	1.882906D-10
185		700.0	315.0	1.045395D-11
186		1200.0	315.0	0.000000D+00
187		2000.0	315.0	0.0000000+00
188		3000.0	315.0	0.00000D+00
189		4000.0	315.0	0.000000D+00
190		5000.0	315.0	0.00000D+00

MAXIMUM IM PUNKT 3 (R = 200. M, WINKEL = 135.0 GRAD) = 2.911E-08

WOLGA-	2 # RECH	NUNG VOM 14.01	.1992 #
1	50.0	1.350000D+02	2.280212D-08
2	100.0	1.350000D+02	2.667204D-08
3	200.0	1.350000D+02	2.911221D-08
4	400.0	1.350000D+02	2.867646D-08
5	700.0	1.350000D+02	2.597942D-08
6	1200.0	1.350000D+02	1.902132D-08
7	2000.0	1.350000D+02	1.112333D-08
8	3000.0	1.350000D+02	6.209977D-09
9	4000.0	1.350000D+02	3.800015D-09
10	5000.0	1.350000D+02	2.486549D-09
11	50.0	1.450000D+02	2.257702D-08
12	100.0	1.450000D+02	2.597805D-08
13	200.0	1.450000D+02	2.699581D-08
14	400.0	1.450000D+02	2.323279D-08
15	700.0	1.450000D+02	1.771721D-08
16	1200.0	1.450000D+02	1.038930D-08
17	2000.0	1.450000D+02	4.933093D-09
18	3000.0	1.450000D+02	2.280922D-09
19	4000.0	1.450000D+02	1.202208D-09
20	5000.0	1.450000D+02	7.025449D-10
:			
181	50.0	3.150000D+02	9.471379D-09
182	100.0	3.150000D+02	5.124908D-09
183	200.0	3.150000D+02	1.566853D-09
184	400.0	3.150000D+02	1.882906D-10
185	700.0	3.150000D+02	1.045395D-11
186	1200.0	3.150000D+02	0.000000D+00
187	2000.0	3.150000D+02	0.000000D+00
188	3000.0	3.150000D+02	0.000000D+00
189	4000.0	3.150000D+02	0.000000D+00
190	5000.0	3.150000D+02	0.000000D+00

H = 100 M, KATEGORIE D

C.1.2 Graphische Darstellung der Ergebnisse (Isolinien)

Abbildung 8. Graphische Ausgabe des Eingabe-Beispiels

Anhang D. Diagramme des normierten Gamma-Kurzzeit-Ausbreitungsfaktors

Abbildung 9. Normierter Kurzzeit-Ausbreitungsfaktor, H = 0 m.

Abbildung 10. Normierter Kurzzeit-Ausbreitungsfaktor, H = 50 m.

Abbildung 11. Normierter Kurzzeit-Ausbreitungsfaktor, H = 100 m.

Abbildung 12. Normierter Kurzzeit-Ausbreitungsfaktor, H = 150 m.

Abbildung 13. Normierter Kurzzeit-Ausbreitungsfaktor, H = 200 m.