KfK 5074 August 1992

DoD Manual

U. Bicking, W. Golly, R. Seifert Institut für Angewandte Informatik

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Angewandte Informatik

KfK 5074

DoD Manual

U. Bicking, W. Golly, R. Seifert

.

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

ABSTRACT

The DoD method allows to derive an estimate of the standard deviation for data being inhomogeneous from the statistical point of view. The evaluation of data using DoD does not demand for prior rejection of suspicious values or outlier results. This report includes a comprehensive manual of the computer program DoD and illustrates the handling and functioning of DoD. The DoD manual describes the PC-version its program modules. The theoretical 2.0 including background is given both, in rough outlines in this report and by references describing DoD in full detail. The DoD program package is a menu-guided tool to evaluate up to 200 measurement data. Results are the standard deviation and the median value of these measurement data. As an alternative, conventional evaluation using the Bartschan outlier criterion is also possible and makes the user able to compare the result to that gained with DoD. The measurement data can be displayed numerically and by graphic, as well. The results can be displayed numerically. In addition, the distribution of differences can be displayed by graphic. Therefore, a comfortable graphical output utility is attached to DoD Version 2.0. DoD Version 2.0 is written in FORTRAN 77 and the program modules are compiled and linked with the Ryan Mc-Farland Compiler. The DoD Graphical Utility uses the PLOT88 Library of Plotworks, Inc..

Das DoD-Handbuch

Die DoD-Methode ermöglicht die Ableitung eines Schätzwertes für die Standard-Abweichung von Daten, die - vom Standpunkt der Statistik gesehen - inhomogen sind. Die Auswertung von Daten mit Hilfe der DoD-Methode erfordert keinen vorherigen von verdächtigen Werten oder Ausreißer-Ausschluß Bericht stellt ein ausführliches Ergebnissen. Dieser Handbuch des PC-Programmes DoD dar und illustriert seine Handhabung und Funktion. Das DoD-Handbuch beschreibt Version 2.0 mit seinen Programm-Modulen. Der theoretische Hintergrund wird in diesem Bericht skizziert, für detaillierte Information wird auf Referenzen verwiesen. Das Programm-Paket DoD ist ein menü-geführtes Werkzeug, mit dem man bis zu 200 Meßwerte auswerten kann. Die Auswerte-Ergebnisse sind die Standardabweichung und der Zentralwert (Median) der Meßwerte. Alternativ wird die konventionelle Auswertung mit Hilfe des Bartsch-Ausreißerkriteriums Benutzer den Vergleich offeriert, die dem mit den Ergebnissen der DoD-Methode ermöglicht. Die Meßwerte selbst können sowohl numerisch als auch graphisch dargestellt Die Auswerte-Ergebnisse numerisch werden. können dargestellt werden. Darüber hinaus kann die Verteilung der Differenzen graphisch dargestellt werden. Dafür wurde eine komfortable Graphik-Ausgabeeinheit in die DoD-Version 2.0 eingebunden. Die DoD-Version 2.0 ist in FORTRAN 77 geschrieben und die Programm-Modulen wurden mit dem Ryan Mc-Farland Compiler übersetzt und gebunden. Die DoDbenutzt die PLOT88-Bibliothek Graphik-Einheit von Plotworks, Inc..

<u>Contents</u>

Page

1.	Introduction	1
1.1 1.2 1.3	DoD Summary Generalities System Support	1 1 2
2.	How to Install and to Start the Program DoD	3
3.	Description of the DoD Menus	5
3.1 3.2 3.3 3.4	Main Menu Import Menu: Menu 1 DoD Evaluation Menu: Menu 2 Browse Menu: Menu 3	5 6 7 8
3.4.1 3.4.1.1 3.4.1.2 3.4.2 3.4.2.1 3.4.2.2 3.4.2.3	Numerical Output Menu: Menu 3.1 Numerical Output on Screen: Menu 3.1.1 Numerical Output on Printer: Menu 3.1.2 Graphical Output Menu: Menu 3.2 Graphical Output of Input Data: Menu 3.2.1 Graphical Output of DoDA Values: Menu 3.2.2 Change Plot Parameters: Menu 3.2.3	8 9 12 15 15 17 18
3.5 3.6 3.7	Conventional Evaluation Menu: Menu B DoDA Graphic Menu: Menu D Quit Session: Menu Q	20 22 24
4.	Structure of the Input Data Set	25
5.	Error Messages	27
6.	Further Aspects	29
6.1 6.2	Maximum Number of Values Graphical Data File with HPGL-Format	29 29
7.	Theoretical Background	31
8.	References	33
9.	APPENDIX-I / Examples of Results	35
9.1 9.2	Numerical Results Graphical Results	35 39
10.	APPENDIX-II / Further PC-Program Packages in this Context	41

1. Introduction

1.1 DoD Summary

This is a short description of the main features of the PC program DoD, Version 2.0.

The DoD method (Distribution of Differences) allows to derive an estimate of the standard deviation for data being inhomogeneous from the statistical point of view. DoD does not demand for prior rejection of suspicious values or outlier results. For the theoretical background please refer to KfK 4721 (EUR 11398 EN), "The DoD Method", published in May, 1990.

The estimate of the standard deviation obtained by the DoD method is nearly independent from the magnitude of one single outlier value which belongs to the data group considered. But the quantile of outlier values should not exceed 20% of the data. Assuming that the considered data may contain at least one outlier value, the DoD method should not be applied to data containing less than five values.

For technical reasons this PC version of DoD is limited to 200 values at maximum which can be evaluated using this program. From those 200 values, 200*(200-1)/2=19,900 differences have to be calculated and also to be sorted in order to obtain the DoD estimate of the standard deviation. Compared to version 1.0, the run time for this evaluation was considerably reduced by the use of new and faster algorithms. The run time in performing DoD evaluation of 200 measurement values is now in an order of magnitude of seconds (this was tested using a PC equipped with a processor of the type 386).

1.2 Generalities

DoD Version 2.0 is written in FORTRAN 77 and the program modules are compiled and linked with the Ryan Mc-Farland Compiler. The DoD Graphical Utility uses the PLOT88 Library of Plotworks Ltd.. The DoD Menu Guide uses the 'Ask Utility' of NORTON Utilities.

2 <u>1. Introduction</u>

1.3 System Support

The DoD numerical program modules and the included DoD graphic utilities need a minimum of hardware system configuration:

- a) a computer system (AT-compatible) with at least 256 kByte memory, including a mathematical co-processor,
- b) a Hard Disk drive,
- c) a Floppy Disk Drive (at least 360 kByte),
- d) an EGA/VGA graphic adapter,
- e) a graphical display,
- f) an output device (matrix printer/laser printer)
- g) a PC-DOS version 3.0 or higher.

2. How to Install and to Start the Program DoD

First of all, it should be checked that the following data sets are available on the directory DOD of the original DoD disk:

- ASK.EXE
- BART.EXE
- CDEVICE.EXE
- DEVICE.EXE
- DODA.EXE
- DODM.EXE
- EXPOBART.EXE
- EXPORDAT.EXE
- EXPORDOD.EXE
- GDATA.EXE
- GDODA.EXE
- IMPORT.EXE
- PLOTPARM.EXE
- RET.COM

and that the following data sets are available on the associated subdirectory WS (working space) of the original DoD disk:

- DOD.BAT
- RO.DAT

For optimization of the performance of the DoD program modules, the DoD program has to be installed on the hard disk of the user's computer system. This can be easily performed from the original DoD disk by simple COPY commands to an appropriate directory.

For example: copy a:\dod*.* c:\dod\.

and: copy a:\dod\ws*.* c:\dod\ws\.

The sub-directory WS serves for storaging data sets to be evaluated. The program DoD can be started from subdirectory WS using the command **dod**.

4 Chapter 2: Install and Start DoD

During the use of the DoD program the following data files will be generated:

-	PLOTPARM. INP	actual list of plot parameters
-	DIRLST.LST	last dirlist
4min	DIRLST.BAR	all available '.lba'
-	DIRLST.DOD	all available '.ldm'
citito	'datafile'.LBA	conventional results using Bartsch
63	'datafile'.LDM	DoD results
-	'datafile'.PDA	DoDA-values for graphic
10200	OUTDAT	last browse related to Data Set
40000	OUTDOD	last browse related to DoD
	OUTBART	last browse related to Bartsch
8220	'datafile'.HPG	last generated HPGL file
		(Data or DoDA-values for graphic)

<u>Notice:</u> The term **datafile** stands for the names of input data evaluated.

3. Description of the DoD Menus

The computer program DoD is menu-guided and therefore, it is very user-friendly. This chapter describes the various DoD menus.

3.1 Main Menu

After the command **dod**, the MAIN MENU of the DoD program appears on the screen as follows:

מממממת מספרי מספרים						
DD	DD			DD	DD	
DD	DD	000	000	DD	DD	
DD	DD	00	00	DD	DD	
DD	DD	00	00	DD	DD	
DD	DD	00	00	DD	DD	
			מסממ	מממ		
MAIN MENU: DoD Evaluation Procedure: Enter the Number of Your Choice 1 == Import of Data Files 2 == DoD Evaluation 3 == Browse Inputs or Results B == Conventional Evaluation Using Bartsch D == DoDA Evaluation for Graphic Q == Quit the Session						
Your Choice :						

Choosing one of the options above, the DoD menu-guide system offers various sub-menus to the user.

6 Chapter 3: Description of the DoD Menus

3.2 Import Menu: Menu 1

Choosing menu '1' the user will be enabled to import data files into the working space (WS) which are stored elsewhere in the user's computer system.

After this, all data sets in WS which are associated with the qualifier 'dat' are listed on the screen (using DoD for the first time, only the supplied data set 'ro.dat' is listed in this case), and the screen shows the following text:

DIRECTORY OF C:\DOD\WS

ro.dat

Program Task:

Import of Data File

Enter Source Name of Data File: ===>

Now the program expects the input of the name of a data file to be transferred from anywhere in the user's PC system to the working space of DoD. The input may be as follows:

===>d:\datapool\datafile.dat

This input string may contain 24 characters at maximum from which the name itself (in this example: datafile) must not consist of more than eight characters.

Then, the program transfers the data set 'datafile.dat' from directory 'datapool' of drive 'd:' to the working space. Here, the data set is called 'datafile.dat', and the program returns to the main menu.

<u>Notice:</u> The data set to be transferred must have the qualifier 'dat', and if there already exists in WS a data set called 'datafile.dat' (see the example), the demand will be rejected and the data transfer is terminated.

3.3 DoD Evaluation Menu: Menu 2

With menu '2' the user can perform DoD evaluation of data files being stored in the working space (WS) of the program.

After this, all data sets of WS associated with the qualifier 'dat' are listed on the screen, and the screen shows the following text:

Program Task:

Evaluation by the DoD Method.

da1.dat da2.dat da3.dat da4.dat da5.dat da6.dat da7.dat da8.dat datafile.dat ro.dat

Enter File Name of Measurement Series: ===>

The complete name of data set has to be given as follows:

===>datafile.dat

The name itself (datafile) must not contain more than eight characters.

The program evaluates the data set by the DoD method using the DoDM procedure and shows the result of evaluation on the screen. Furthermore, the program creates a data file called 'datafile.ldm' according to the name of the data set investigated which is complemented by the qualifier 'ldm'. The DoD evaluation results will be written on this data file. Using menu 3, the user is able to browse or to print those numerical results.

<u>Notice:</u> After performing the program run of sub-menu '2', the results of this run remain available in the working space, and the user, therefore, is always able to generate a hardcopy of the evaluation.

8 Chapter 3: Description of the DoD Menus

3.4 Browse Menu: Menu 3

<u>Notice:</u> Examples of printouts are given in APPENDIX-I (Examples of Results).

Menu '3' serves for numerical or graphical output of data or results either on the screen or directed to the associated print device.

After typing 3, the screen shows the following text:

MENU 3: Browse or Print Inputs or Results; Select the Output Option by Typing the Number of Your Choice. 1 == Browse or Print Numerically 2 == Browse or Print by Graphic E == End and Go to MAIN MENU Your Choice :

3.4.1 Numerical Output Menu: Menu 3.1

Choosing sub-menu '1' for numerical output, the following information appears on the screen:

```
MENU 3.1:
Numerical Output;
Select the Output Option by
Typing the Number of Your Choice.
1 == Screen
2 == Printer
E == End and Go to PREVIOUS MENU
Your Choice :
```

3.4.1.1 Numerical Output on Screen: Menu 3.1.1

Choosing '1' in menu 3.1 (numerical output directed to the screen), the following information appears on the screen:

MENU 3.1.1: Browse Numerically; Select the Output Option by Typing the Number of Your Choice. 1 == Browse Input Data 2 == Browse DoD Results 3 == Browse Results Using Bartsch E == End and Go to BROWSE or PRINT Your Choice :

In the case of choosing option '1' (browse of input data), all available data sets related to the qualifier 'dat' are listed and the following information appears on the screen:

Program Task: Browse or Print Data File
 da1.dat da2.dat da3.dat da4.dat da5.dat
 da6.dat da7.dat da8.dat datafile.dat ro.dat
Enter File Name of Measurement Series:
===>

The user is requested to type the complete name of an existing data set given above, for example:

===>da4.dat

and the requested data set is stored on the data file 'outdat' and then, the contents of 'outdat' are listed on the screen.

10 Chapter 3: Description of the DoD Menus

In the case of choosing option '2' (browse DoD results), all available data sets related to the qualifier 'ldm' are listed and the following information appears on the screen:

Program Task: Browse or Print Data File

da1.ldm da2.ldm da3.ldm da4.ldm da5.ldm da6.ldm da7.ldm da8.ldm datafile.ldm ro.ldm

Enter File Name of DoD Results: ===>

The user is requested to type the complete name of an existing data set given above, for example:

===>**da5.ld**m

and the requested data set is stored on the data file 'outdod' and then, the contents of 'outdod' are listed on the screen.

In the case of choosing option '3' (browse results using Bartsch), all available data sets related to the qualifier 'lba' are listed and the following information appears on the screen:

Program Task: Browse or Print Data File
 da1.lba da2.lba da3.lba da4.lba da5.lba
 da6.lba da7.lba da8.lba datafile.lba ro.lba
Enter File Name of Bartsch Results:
===>

The user is requested to type the complete name of an existing data set given above, for example:

===>da8.lba

and the requested data set is stored on the data file 'outbart' and then, the contents of 'outbart' are listed on the screen.

3.4.1.2 Numerical Output on Printer: Menu 3.1.2

In the case of choosing '2' in menu 3.1 (numerical output directed to the printer), the following information appears on the screen:

MENU 3.1.2: Print Numerically; Select the Output Option by Typing the Number of Your Choice. 1 == Print Input Data 2 == Print DoD Results 3 == Print Results Using Bartsch E == End and Go to BROWSE or PRINT Your Choice :

and a very similar procedure follows as described for MENU 3.1.1:.

In the case of choosing option '1' (print of input data), all available data sets related to the qualifier 'dat' are listed and the following information appears on the screen:

Program Task: Browse or Print Data File

dal.dat da2.dat da3.dat da4.dat da5.dat da6.dat da7.dat da8.dat datafile.dat ro.dat

Enter File Name of Measurement Series: ===>

The user is requested to type the complete name of an existing data set given above, for example:

===>da4.dat

and the requested data set is stored on the data file 'outdat' and then, the contents of 'outdat' are directed to the print device.

In the case of choosing option '2' (print DoD results), all available data sets related to the qualifier 'ldm' are listed and the following information appears on the screen:

Program Task: Browse or Print Data File
 da1.ldm da2.ldm da3.ldm da4.ldm da5.ldm
 da6.ldm da7.ldm da8.ldm datafile.ldm ro.ldm
Enter File Name of DoD Results:
===>

The user is requested to type the complete name of an existing data set given above, for example:

==>da5.1dm

and the requested data set is stored on the data file 'outdod' and then, the contents of 'outdod' are directed to the print device.

In the case of choosing option '3' (print results using Bartsch), all available data sets related to the qualifier 'lba' are listed and the following information appears on the screen:

Program Task: Browse or Print Data File

da1.lba da2.lba da3.lba da4.lba da5.lba da6.lba da7.lba da8.lba datafile.lba ro.lba

Enter File Name of Bartsch Results: ===>

14 Chapter 3: Description of the DoD Menus

The user is requested to type the complete name of an existing data set given above, for example:

===>da8.lba

and the requested data set is stored on the data file 'outbart' and then, the contents of 'outbart' are directed to the print device.

3.4.2 Graphical Output Menu: Menu 3.2

After choosing sub-menu '2' in menu 3 (output by graphic), the following information appears on the screen:

MENU 3.2: Output by Graphic THE CURRENT OUTPUT DEVICE: D) COLOR-DISPLAY (EGA/VGA) Select the Graphical-Output-Routine by Typing the Number of Your Choice. 1 == Input Data 2 == DoDA Graphic 3 == Change Plot Parameters E == End and Go to PREVIOUS MENU Your Choice:

3.4.2.1 Graphical Output of Input Data: Menu 3.2.1

Typing 1 in menu 3.2 (graphical output of input data), the following information appears on the screen:

and the user is requested to type the name of an existing data set given above, for example:

===>da8.dat,

or in this case also simply,

===>da8

Then, the requested data set da8.dat is displayed graphically either on the screen, or the output is directed to the print device. The destination of output to the output device depends on the chosen plot parameter to be set in sub-menu '3'. For information, the actual output device is written on the screen (in this example: COLOR-DISPLAY).

<u>Notice:</u> If the print device is not ready or not switched on, the output is automatically directed to the screen (COLOR-DISPLAY) which is the standard output device. If a print output is wanted, the plot parameter has to be set again, after the print device was switched on.

16

3.4.2.2 Graphical Output of DoDA Values: Menu 3.2.2

Typing 2 in menu 3.2 (graphical output of DoDA values), the following information appears on the screen:

and the user is requested to type the name of an existing data set given above, for example:

===>da3.dat,

or in this case also simply,

===>da3

Then, the requested data set da3.dat is displayed graphically either on the screen, or the output is directed to the print device. The destination of output to the output device depends on the chosen plot parameter to be set in sub-menu '3'. For information, the actual output device is written on the screen (in this example: HP-LASER-JET & HP-DESK-JET).

3.4.2.3 Change Plot Parameters: Menu 3.2.3

Choosing '3' in menu 3.2 in order to set plot parameters, the following information appears on the screen:

```
MODIFY THE PLOTTING PARAMETER
         1 LENGTH OF X-AXIS ===>7.002 LENGTH OF Y-AXIS ===>5.00
3 REORIGIN X-COORD.===> 1.00
4 REORIGIN Y-COORD.===> 1.50
5 SIZE FACTOR ===> 1.00
5 SIZE FACTOR ===>
6 LINE WIDTH
                ===> 1
                ===> 2
7 AXIS COLOR
                ===> 7
8 BOX COLOR
9 STATISTIC COLOR ===> 1
10 BOUNDARY COLOR ===> 4
11 GRAPHIC-DEVICE ===> D
    A) NEC/EPSON/LQ1500/IBMPROprinter
    B) HP-LASER-JET & HP-DESK-JET
    C) HP-INKJET
    D) COLOR-DISPLAY (EGA/VGA)
    E) GRAPHIC DATA FILE (HPGL)
TYPE THE NUMBER 1...11, OR Q FOR QUIT
===>
```

With the parameters 1,2 and 5 the user can control the size of the line graph in the graphical output.

With the parameters 3, and 4 the user can determine the position of the line graph in the graphical output.

With the parameter 6 the user can determine the line width of the line graph.

With the parameters 7 to 10 the user can select the colors of the graphical output for graphical devices with color options.

With the parameter 11 the user can select the graphical output device.

The default values as shown in the parameter list above should be used as long as possible.

With parameters 1 to 4 the values are scaled in inches.

With parameters 5 and 6 help is given by the limits of range.

With parameters 7 to 10 help is given by the code list of colors.

Choosing 'Q' in order to quit the sub-menu of plot parameters, the user is prompted for saving or not the plotting parameters as shown.

20 Chapter 3: Description of the DoD Menus

3.5 Conventional Evaluation Menu: Menu B

Menu 'B' offers the user as an alternative the possibility to calculate the standard deviation conventionally using in advance the Bartsch-outlier criterion. Thus, the user is in a position to compare the estimate of the standard deviation evaluated by the DoD method to an estimate derived in the conventional way.

After typing **b** or **B**, all data sets of WS associated with the qualifier 'dat' are listed on the screen, and the screen shows the following text:

Program Task:

Evaluation by the Bartsch Criterion.

dal.dat da2.dat da3.dat da4.dat da5.dat da6.dat da7.dat da8.dat datafile.dat ro.dat

Enter File Name of Measurement Series: ===>

The complete name of data set has to be given as follows:

===>datafile.dat

The name itself must not contain more than eight characters.

The program evaluates the data set in the conventional way computing mean value and standard deviation. Then, the same calculations are performed after rejection of that measurement value which is most suspicious to be an outlier result. Using the Bartsch-outlier criterion, now it will be decided whether or not this value is an outlier. In case of being an outlier, the next suspicious value will be treated in the same way. This procedure will be continued until the last decision amounts to 'the suspicious value belongs to the remaining data set and is not an outlier value'. The final result will be kept on the basis of this situation. The program creates a data file called 'datafile.lba' according to the name of the data set investigated which is complemented by the qualifier 'lba'. The final result of conventional evaluation will be written on this data file. Using menu 3, the user is able to browse or to print such numerical results.

Notice: After performing the program run of sub-menu 'B', the results of this run remain available in the working space, and the user, therefore, is always able to generate a hardcopy of the evaluation.

3.6 DoDA Graphic Menu: Menu D

Using Menu 'D' the user can start an evaluation procedure which calculates all differences of the data to each other. This program part generates a data set serving for an appropriate graphical display of DoD evaluation.

After typing **d** or **D**, all data sets of WS associated with the qualifier 'dat' are listed on the screen, and the screen shows the following text:

Program Task:

Determination of DoDA Values for Graphic

dal.dat da2.dat da3.dat da4.dat da5.dat da6.dat da7.dat da8.dat datafile.dat ro.dat

Enter File Name of Measurement Series: ===>

The complete name of data set has to be given as follows:

===>datafile.dat

The name itself must not contain more than eight characters.

The program calculates all n*(n-1)/2 differences which can be established from the original measurement values, differences in increasing arranges these order, and combines each difference with a quantile according to the whole of differences. The program creates a data file called 'datafile.pda' according to the name of the data set investigated which is complemented by the qualifier 'pda'. The results of DoDA values for graphic will be written on this data file. Using menu 3, the user is able to browse or to print these results by graphic.

In the case the number of differences to be established is greater than 200, the program first reduces the number of difference values to less than or equal to 200, and then the reduced number of values will be stored on the data file 'datafile.pda'. Notice: After performing the program run of sub-menu 'D', the results of this run remain available in the working space, and the user, therefore, is always able to generate a hardcopy of the evaluation.

3.7 Quit Session Menu: Menu Q

In order to complete the DoD session, the user has to choose 'Q' in the main menu.

4. Structure of the Input Data Set

The data format is free. But, the structure of the data must be in such a way that the data to be evaluated are given line by line as first values. All evaluation procedures (menu 2, B, D) and also the browse option (menu 3, browse or print input data) read the data line by line considering only the first value of each line.

In order to illustrate the structure of the input data, please refer to the data set 'ro.dat' which is also supplied to the user.

26 Chapter 4: Structure of Input Data

5. Error Messages

There are only a few possibilities to handle DoD in an incorrect manner, because the user is menu-guided. Examples of incorrect use of DoD may be the missing of initial data sets, incorrect input of data set names, browse or print of results which are not yet evaluated, or request for printout, although the printer is not switched on. In those cases, the program system generates self-explanatory messages which give the user advice how to proceed correctly.

Such messages may be:

- Run Time File is Missing!
- Data File is Missing!
 Goto Import of Data Files First!
- Data File is Missing!
 Run DoD Evaluation First!
- Data File is Missing!
 Run Conventional Evaluation Using Bartsch First!
- Data File is Missing! Run DoDA Evaluation for Graphic First!
- Printer not Ready or not Attached!
- File Name Not Found!

The last message appears in the case an typing error has taken place. Then, the user gets the opportunity twice to input correctly the desired data set name. This does not hold for the import menu (menu 1) where the program returns immediately back to the main menu. In all other menus (2, 3, B and D, as well) the program returns to the main menu after three mistakes took place.

6. Further Aspects

6.1 Maximum Number of Values

The maximum number of values to be evaluated by the PCprogram DoD is limited to 200 values. This was decided with respect to the in-situ applicability of this program. Furthermore, this range was sufficient for all evaluations up to now. But if there are any problems with this restriction that means one wants to evaluate more than 200 values, the user is pleased not to hesitate to contact one of the authors. Then, the authers are anxious to supply the user with a version of DoD which is able to evaluate the desired number of values.

6.2 Graphical Data File with HPGL-Format

The possibility to choose the 'Graphical Data File' option in the Menu 3.2.3 enables the user of DoD to create an graphical data file in HPGL-Format (Hewlet-Packard Graphic Language).

The HPGL data file is stored in the sub-directory WS with the name:

'datafile'.HPG

This HPGL data file can be imported to the text editor 'WordPerfect 5.1' for further wordprocessing applications. Furthermore, these HPGL data files can be send using the DOS copy command to the port (lpt1:, com1:) if there is connected a Hewlett-Packard plotter (HP7475A; HP7470A).

Notice: This HPGL data file may contain either the graphic of measurement data or the graphic of DoDA-values depending on the last performance in menu 3.2 after choosing 'E' for parameter 11 in sub-menu 3.2.3. This transfer to the text editor has to be done separately for each kind of graphic data if both shall be imported, measurement data and DoDAvalues, as well.

7. Theoretical Background

Step by step, the DoD method was developed in the Karlsruhe Nuclear Research Center in the last fifteen years (/1/ to /10/).

Thereby, the conventional way of calculating mean value and standard deviation was used as an alternative. In order to obtain homogeneity of the data material before calculations, an outlier criterion had to be used. Due to the experiences gained with the performance of the IDA-80 Program /11/, the Bartsch-outlier criterion /12/ was chosen.

Both, conventional evaluation and evaluation using the DoD method were implemented in the PC program DoD.

Thus, the PC program DoD enables the user to calculate standard deviations of groups of data even if those contain outliers, and to compare these result to each other.

The **DoD method** uses the total of all n(n-1)/2 absolute differences obtainable from **n** measurement values (realizations of random variables) in order to derive an estimate of the standard deviation. Furthermore, the median value is determined in order to normalize the result by calculating the relative standard deviation. For more detail see /10/. Here the method is described in full detail and examples are given for use.

Another possibility is the conventional evaluation of the data by means of the analysis of variances using the Bartsch criterion. The Bartsch criterion is used at least once. In case of no outlier, the final result of conventional evaluation relates to the first computation comprising all values. In case an outlier was found, the program searches for the next suspicious value and tests that value whether or not it has to be rejected according to the Bartsch criterion. This procedure will be repeated, until the suspicious value considered has not to be rejected. In this case, the final result of conventional evaluation relates to that computation run which is next to the last one.

Also in this program part, the median value of the measurement data is determined. Therefore, the user is able to compare the calculated mean value to the median value.

REMARK:

If there is any problem, please don't hesitate to contact the authors U. Bicking, W. Golly or R. Seifert, c/o Karlsruhe Nuclear Center, P.O.B. 3640, Department IAI, (D-7500) KARLSRUHE 1, Telephone 0049-7247-82/3971, 2292 or 4411. We would appreciate any comment or proposal from user's side which might improve the use of the program.

8. References

- /1/ W. Beyrich, "The Problem of Analytical Interlaboratory Differences in Practical Safguards", Safeguarding Nuclear Materials, Vol.2, IAEA, Vienna, (1976) p. 175
- /2 W. Beyrich, G. Spannagel, "Practical Approach to the Procedure of Judging the Results of Analytical Verification Measurements", Nuclear Safeguards Technology, II, IAEA, Vienna (1979) p. 347
- /3/ W. Beyrich, W. Golly, G. Spannagel, "The DoD-Method: An Empirical Approach to the Treatment of Measurement Data Comprising Extreme Values", 3rd Annual Symposium on Safeguards and Nuclear Material Management, ESARDA-13, Karlsruhe (1981) pp. 289-294
- /4/ R. Beedgen, "Robust Estimation of Standard Deviations Using Ordered Samples", LA-9238-MS, Los Alamos (1982)
- /5/ R. Beedgen, "Statistical Analysis of the DoD-Method", 6th Annual Symposium on Safeguards and Nuclear Material Management, ESARDA-17, Venice (1984) pp. 533-538
- /6/ W. Beyrich, "Study on the DoD Method of Measurement Data Evaluation", KfK 4077/EUR 9616e, Karlsruhe (1986)
- /7/ W. Beyrich, W. Golly, R. Beedgen, G. Spannagel, "The DoD Method of Measurement Data Evaluation", Symposium on Nuclear Material Safeguards, IAEA, Vienna, Austria, Nov. 10-14, 1986, Proceedings 'Nuclear Safeguards Technology 1986', Vol.II, pp. 509-522
- /8/ W. Beyrich, W.Golly, P. De Bievre, "Contribution to the Evaluation of Measurement Data in Practical Safeguards", 11th Annual Symposium on Safeguards and Nuclear Material Management, ESARDA-22, Luxembourg (1989) pp. 341-344

34 Chapter 8: References

- /9/ W. Beyrich, W. Golly, "Evaluation of IDA-80 Data by the DoD Method", KfK 4157/EUR 10533EN, Karlsruhe (1989)
- /10/ W. Beyrich, W. Golly, N. Peter, R. Seifert, "The DoD Method", KfK 4721/EUR 11398EN, Karlsruhe (1989)
- /11/ W. Beyrich, W. Golly, G. Spannagel, P. De Bievre, W. Wolters, "The IDA-80 Measurement Evaluation Programme on Mass Spectrometric Isotope Dilution Analysis of Uranium and Plutonium, Volume I: Design and Results", KfK 3760/EUR 7990e, Karlsruhe (1984)
- /12/ H.J. Bartsch, "Handbook of Mathematical Formulas", Academic Press Inc., New York (1974)

9. APPENDIX-I / Examples of Results

9.1 Numerical Results

********	*****************
LIS	T OF DATA EVALUATED:
*********	*********
Name of	Data File: ro.dat
********	***********
No.	Value
********	*************
1	0.199000
2.	0.300000
3	0.400000
4 5	0.599000
6	0.699000
7	0.800000
8	0.899000
9	0.999000
10	0.999000
11	0.999000
12	0.999000
13	0.999000
14	0.999000
15	1,00000
17	1,00000
18	1.000000
19	1.000000
20	0.999000
21	1.000000
22	0.999000
23	1.001000
24	1.000000
25	1.000000
20	1.000000
27	1 001000
29	1,00000
30	1,00000
31	1.000000
32	1.000000
33	0,999000
34	1.000000
35	1,000000
36	0.999000
37	0.999000
38	0.999000
40	1 00000
40	1.00000
42	0,999000
43	1.001000
44	1.000000
45	1.000000
46	1.000000
47	1.000000
48	1.000000
49	0.999000
***********	U.999000

```
******************************
 NUMERICAL RESULTS OF CONVENTIONAL EVALUATION
USING THE BARTSCH-OUTLIER CRITERION:
Name of Data File:
                  ro.lba
***********
  FINAL RESULT OF CONVENTIONAL EVALUATION:
**************************
  THE DATA GROUP CONTAINS OUTLIERS
  NUMBER OF ELEMENTS =
                   50
  WITHOUT NUMBERS :
                1
                   2
                     3
                        4
                          5678
```

NUMBER OF VALUES CONSIDERED = 42

NO.	INPUT	REJECTED	SORTED
1	0,199000	<==	0.199000
2	0.300000	<===	0.300000
3	0.400000	<==	0.400000
4	0.500000	<==	0.500000
5	0.599000	<==	0.599000
6	0.699000	<===	0.699000
7	0.800000	<==	0.800000
8	0.899000	<==	0.899000
9	0,999000		0.999000
10	0.999000		0,999000
11	0.999000		0.999000
12	0,999000		0,999000
13	0.999000		0.999000
14	0.999000		0.999000
15	0.999000		0.999000
16	1.000000		0.999000
17	1.000000		0.999000
18	1.000000		0.999000
19	1.000000		0.999000
20	0.999000		0.999000
21	1.000000		0,999000
22	0.999000		0.999000
23	1.001000		0.999000
24	1.000000		0.999000
25	1.000000		0.999000
26	1.000000		1.000000
27	1.000000		1.000000
28	1.001000		1.000000
29	1.000000		1.000000
30	1.000000		1.000000
31	1.000000		1.000000
32	1.000000		1.000000
33	0.999000		1.000000
34	1.000000		1.000000
35	1.000000		1.000000

36 0.999000 1.000000 37 0.999000 1.000000 38 0.999000 1.000000 1.000000 39 0.999000 40 1.000000 1.000000 1.000000 1.000000 41 1.000000 42 0.999000 1.001000 1.000000 43 44 1.000000 1.000000 45 1.000000 1.000000 46 1.000000 1.000000 47 1.000000 1.000000 48 1.000000 1.001000 49 0.999000 1.001000 50 0.999000 1.001000 MEAN VALUE = 0.999667 1S-STANDARD DEVIATION = 0.000612 **1S-RELATIVE STANDARD DEVIATION (%)** BASED ON MEAN VALUE = 0.061175 ******* MEDIAN VALUE = 0.999500

9.2 Graphical Results

<u>10. APPENDIX-II / Further PC-Program Packages in this</u> <u>Context</u>

PC-Program Package MEMO

The MEMO PC program package is a tool to calculate the sequence of material balance results (MUF values) from single measurements and the related measurement model (variance/covariance matrix COVA) from the single measurement values, the measurement uncertainties and the related propagation of variances. MUF values and related variance/covariance matrix COVA are essential input parameters for materials balance evaluation programs like PROSA. MEMO Version 2.0 is a menu-guided computer program and, therefore, it is very user-friendly and is applicable in real field use. MEMO Version 2.0 is applicable whenever the amount of material in an inventory component or in a transfer batch is the result of a single measurement or the product of two measurements. The propagation of variances can be performed through the systematic error component as well as through the random error component. MEMO Version 2.0 has the capability to determine MUF and COVA sequentially. This provides a very fast determination in real field use. For more information see "MEMO VERSION 2.0 Manual", U.

Bicking, W. Golly, R. Seifert, KfK report, to be published.

PC-Program Package PROSA

The PROSA PC program package is a statistical tool to decide on the basis of statistical assumptions whether in a given sequence of material balance periods a loss of material might have occurred. The evaluation of the statistical test material balance data is based on procedures. In the present PROSA Version 4.0 the three tests CUMUF test, PAGE's test and GEMUF test are applied to a sequence of material balances. PROSA Version 4.0 supports a real sequential evaluation. That means, PROSA is not only able to evaluate a series of MUF values sequentially after the campaign has finished, but also real sequentially during the campaign. PROSA Version 4.0 is a menu-guided computer program and, therefore, it is very user-friendly and is applicable in real field use. Data input can be performed either by diskette or by key-enter. Result output is primarily an information whether or not an alarm is indicated. This information can be displayed either Therefore, a comfortable numerically or graphically. graphical output utility is attached to PROSA 4.0. PROSA Version 4.0 is a real-sequential program. That means, PROSA is not only able to evaluate a series of MUF values sequentially after the compaign has finished, but also real sequential during the campaign.

42 10. APPENDIX-II / Further Programs

For more information see "PROSA VERSION 4.0 Manual", U. Bicking, W. Golly, N. Peter, R. Seifert, KfK report 4866, May 1991.

PC-Program Package MOCASIN

The MOCASIN PC program package is a statistical tool to determine the detection probabilites of underlied losspatterns using Monte-Carlo simulations. Input of MOCASIN is the measurement model (variance/covariance matrix) of a facility and an underlied loss-pattern. Output are the detection probablities of the three statistical test procedures included in MOCASIN, namely CUMUF test, PAGE's test and GEMUF test. MOCASIN 4.0 is a menu-guided computer program and, therefore, it is very user-friendly and is applicable in real field use. The program package and a manual will be available before

long.