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Experiments on non-isothermal spreading 

Abstract 

Experiments are performed on axisymmetric spreading of viscous drops on glass plates. Two 

liquids are investigated: silicone oil (M-100) spreads to "infinity" and paraffin oil spreads to a 

finite-radius steady state. The experiments with silicone oil partly recover the behaviour of 

previous workers data; those experiments with paraffin oil provide new data. It is found that 

gravitational forces dominate at long enough times while at shorter times capillary forces 

dominate. When the plate is heated or cooled with respect to the ambient gas, thermocapillary 

forces generate flows that alter the spreading dynamics. Heating ( cooling) the plate is found to 

retard (augment) the spreading. Moreover, in case of partial wetting, the finally-approached 

drop radius is smaller (larger) for a heated ( cooled) plate. These data are all new. All these 

observations are in excellent quantitative agreement with the related model predictions of 

Ehrhard and Davis (1991). A breakdown ofthe axisymmetric character of the flow is observed 

only for very long times and/or very thin liquid layers. 

Experimente zur nicht-isothermen Tropfenausbreitung 

Zusammenfassung 

Es werden Experimente zur Ausbreitung achsensymmetrischer, viskoser Flüssigkeitstropfen 

auf Glas vorgestellt. Zwei Flüssigkeiten werden betrachet: Für Silikonöltropfen (M-1 00) 

beobachten wir eine unbeschränkte Ausbreitung, während sich Paraffinöltropfen gegen eine 

stationäre Endkontur entwickelt. Die Silikonölexperimente bestätigen teilweise die Ergebnisse 

früherer Experimentatoren, die Paraffinölexperimente liefern gänzlich neue Daten. Wir finden, 

daß die Schwerkraft fiir lange Zeiten den Ausbreitungsprozess kontrolliert. Für kurze Zeiten 

spielen dagegen Kapillaritätskräfte eine wichtigere Rolle. Wird die Glasplatte gegenüber der 

Umgebung zusätzlich erwärmt oder gekühlt, so treiben thermokapillare Kräfte eine Strömung 

innerhalb des Tropfens. Die Dynamik der Ausbreitung wird dadurch maßgeblich geändert. Ein 

Erwärmung (Kühlung) fuhrt zu einer verzögerten (beschleunigten) Ausbreitung der Tropfen. 

Im Falle der teilweisen Benetzung wird zusätzlich der stationäre Endradius beeinflußt. Er ist 

kleiner (größer) im Falle einer beheizten (gekühlten) Platte. Diese Ergebnisse sind neu. Die 

experimentellen Beobachtungen befinden sich fiir alle Fälle in guter quantitativer 

Übereinstimmung mit dem theoretischen Modell von Ehrhard und Davis (1991). 

Abweichungen von einer achsensymmetrischen Form der Tropfen treten nur fiir sehr lange 

Zeiten und/oder sehr flache Tropfen auf 
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1. Introduction 

The spreading of liquids on solids is of interest to a variety 

of applications such as coating processes, cladding and soldering 

technology, casting etc .. In rnost of these applications non-isothermal 

condi tions are present, leading to the occurence of therrnocapillary 

effects at the free interfaces. A spreading axisyrnrnetric drop on a 

srnooth horizontal plate, subject to a non-isothermal ternperature 

field, thus exernplifies a problern of practical interest. Frorn a 

scientific point of view the application of continuurn rnechanics in 

conjunction with the rnodelling of local, rnicroscopic effects at a 

contact line (contact of liquid, gas, solid) is likewise achallenging 

effort. It involves body forces due to gravity, surface forces at the 

liquid/gas interface due to rnean- capillary and therrnocapillary 

effects, line forces at the rnoving contact line as well as dissipative 

viscous forces, coupled within a free-boundary value problern. 

There is a host of theoretical approaches to the rnodelling of 

spreading drops, subj ect to a variety of approxirnations and 

conditions. A review and classification of these rnodels is given by 

Ehrhard and Davis (1991). These authors, likewise, develop a uniform 

rnodel for the above described spreading of axisyrnrnetric drops, by 

generalizing the approach of Greenspan (1978) to include (i) 

non-isothermal conditions, (ii) rnore general dynarnic wetting behaviour 

and ( iii) a consideration of vertically-acting body forces. Their 

rnodel will be ernployed in the present article to evaluate the 

experimental results. Conversely, the present experirnents will be used 

to validate the theoretical predictions of Ehrhard and Davis. 

There is a nurnber of experimental studies avaiable frorn the 

literature. Several experirnentalists tackle the pure problern of rnoving 
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contact lines in various geometric configurations. Their results 

determine the dynamic wetting behaviour, encoded within the 

contact-angle-versus-speed 

degrees of refinement (see 

characteristic 8 = f(U ) for various 
cl 

e.g. Rose and Heins 1962, Friz 1965, 

Elliott and Riddiford 1967, Schwartz and Tajeda 1972, Hoffman 1975, 

Dussan V. 1979, de Gennes 1985). A detailed consideration of their 

findings is given in section 3.2. 

The isothermal spreading of liquid drops is the subject of a 

nurnber of experimental investigations. Tauner (1979) conducts 

experiments on plane and axisyrnrnetric silicone oil drops, spreading on 

a smooth horizontal glass surface. He extracts spreading laws governed 

by capillary and viscous forces by regarding an initial stage of the 

spreading process. A similar objective is the focus of the 

investigations of Ghen (1988), who essentially confirms Tanner's 

axisyrnrnetric results for the capillary-dominated regime, using 

silicone oil on glass. A combined experimental study on both, 

capillary-dominated and gravity-dominated regimes, is performed by 

Gazabat and Gohen Stuart (1986). They use silicone oils of various 

viscosities on a horizontal glass surface to study axisyrnrnetrically-

spreading drops. Their results provide spreading laws for both regimes 

as well as information on the transition times, depending on various 

parameters. In a recent paper Levinson et al. (1988) address hauging 

silicone oil drops below a horizontal glass plate and, thus, obtain 

spreading laws for conditions where gravitational forces are inverted. 

There is very little work in the literature related to 

non-constant surface tension within this context. Garles and Gazabat 

(1989) study drops in an atmosphere saturated with a volatile 

compound. Due to soluto-capillary effects, they observe strongly 
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accelerated spreading and wavy, three-dimensional instabilities at the 

drop circumference. 

The present article aims to study experimentally the spreading 

of liquid drops of silicone oil and paraffine oil on smooth horizontal 

plates under isothermal and non-isothermal conditions. In detail, we 

investigate: (1) The isothermal spreading of silicone oil and observe, 

consistently with findings by other authors, unlimited spreading in 

conjunction with a mobility exponent of m ~ 2. 8. (2) The isothermal 

spreading of paraffin oil which yields limited spreading these 

results are new. Finally, we address the non-isothermal spreading of 

(3) silicone oil and (4) paraffin oil and find that thermocapillary 

forces have a profound effect on the spreading. Likewise, these 

results are new. Allexperiments of the above groups, (1-4), compare 

well with theoretical predictions of Ehrhard and Davis (1991). 

Additionally, several isothermal experiments by former authors, using 

silicone oil (group 1), are included into a careful comparison. 

2. Problem and model 

We consider the spreading of an axisymmetric drop on a smooth 

horizontal rigid plane, which is kept at a constant temperature T . w 

The drop is composed of a non-volatile Newtonian liquid and surrounded 

by a passive gas whose far-fie1d temperature is T . The geometry is 
CX) 

sketched in figure 1. The shape of the interface between the spreading 

liquid and the ambient gas is given by ~ = h, the contact-line 

position is given by ~ = a, the contact angle is denoted by 8. 

Ehrhard & Davis (1991) have examined such a system and, using 

lubrication theory and a small mobility capillary nurober 

approximation, obtain a dimensionless evolution equation for the drop 
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shape h(r, t). We summarize the conditions and assumptions used in 

deriving this model. The quasi-steady evolution equation for the drop 

shape appropriate to small C 

[h + !:_ h - Gh] + !:_ M h 2 r h } = 0 
rr r r 2 r 

r 
r 

(2 .1) 

is linked initially (t 0) with the following boundary and side 

conditions: 

h(r,O) = h (r), h (1) = 0, 
0 0 

a(O) = 1, 

h (0) 
Or 

0, lim [r h (r)] = 0, 
r~O Orrr 

h
0
r(1) = -1, 

1 

2~ Ir h
0
(r) dr 1. 

r=O 

(2 .2) 

During the evolution of the drop (t > 0) we have the boundary and side 

conditions: 

h(a,t) 0, 

h (0' t) 0, 0, 
r 

(2 .3) 

h (a, t) = -e(t), 
r 

a ( t) 

2~ Ir h(r,t) dr 1. 

r=O 

The above sets of conditions (2.2) and (2.3) retain symmetry and 

smoothness of the drop shape and ensure constant liquid volume. The 

instantaneous contact angle e(t) 

contact line as follows 

e(t) 

depends on the speed a of the 
t 

(2 .4) 

For the above set of equations (2 .1 - 2. 4) Ehrhard and Davis have 

employed the following set of dimensionless variables: 
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The evolution equation (2 .1) involves certain dimensionless groups, 

namely, the mobili ty capillary number C, the Bond number G and the 

effective Marangoni number M. Those are defined by 

2 
(a -a ) .>. J.l K, p g a a 

0 w 00 0 00 

c G M (2. 6) 
a 

() (3-m) 
a a () s .>. w 0 w w 0 

Herein p, .>., aw, a are the properties of the spreading liquid, namely 
00 

viscosity, heat conductivity, surface tension towards the ambient 

helium at temperatures T and T , respectively. Further a, () , V are w 00 0 0 0 

the initial data of an individual drop, namely the radius, contact 

angle and volume . .>. is the heat conductivity of the ambient gas and S 
00 

the thickness of the thermal boundary layer established above the 

drop. The contact-line relation (2.4) comes from the dimensional 

characteristic relating the contact-line 

angle(), 

u 
cl 

speed U 
cl 

to the contact 

(2. 7) 

Herein m ~ 1 is the so-called mobility exponent, K. > 0 is an empirical 

constant and () > 0 is the (static) advancing contact angle. Note that 
A 

we employ scripts for physical quantities and italic lettering for 

dimensionless quantities. 

The above dimensionless groups describe the relative 

importance of various physical mechanisms. The mobility capillary 
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nurober C measures the ratio of the initial mobility speed ~8m to the 
0 

speed given by viscous forces and mean surface tension. The Bond 

nurober G relates gravitational forces and mean surface tension and 

thus allows us to judge the significance of gravity. The Marangoni 

nurober M provides a measure for the relative importance of 

thermocapillary effects with respect to mean capillary effects. It 

involves quantities, which determine the heat transfer at the 

liquid/gas interface. For M > 0 (M < 0) the plate is heated (cooled) 

with respect to the ambient gas. 

The assuroptions and approximations used to derive the above 

model might be summarized as follows: 

1. A slip law is posed to relieve the contact-line singularity. 

2. The plate is isothermal and the heat transfer at the liquid/gas 

interface is modelled by a heat transfer coefficient measured by the 

Biot nurober B, 

a 8 ). 
B 

0 0 00 
(2. 8) 

B « 1 since the interface is nearly adiabatic. 

3. The interface surface tension is linear in temperature. 

4. Lubrication theory (for thin drops) is employed so that 8 « 1 as 
0 

usual, the mobility capillary nurober is small. 

5. In the analysis of the evolutionary system (2.1)-(2.3), C -7 0 so 

that the spreading is limited by the mobility of the contact line (and 

not by slippage); equation (2.1) thus has no time derivative. In this 

case at leading order in C, the slip coefficient that would normally 

appear in equation (2.1) may be set to zero. 

Based on the above summary of the model by Ehrhard & Davis 

(1991) we use that model for a set of simulations demonstrating the 
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influence of the temperature field. Figure 2 shows the evolution of 

the drop shape for three typical situations, namely a cooled plate 

(M = -0.05), an isothermal plate (M = 0) and a heated plate (M = 0.2). 

The initial and subsequent drop contours are plotted in time steps of 

fit = 0. 4. We clearly infer the effect of the temperature field onto 

the development of the drop. For a cooled (heated) plate the spreading 

is augmented (retarded) with respect to the isothermal case. The drop 

contour for t ~ oo, which is given by the dashed lines, is flatter 

(steeper) if the plate is cooled (heated). The above phenomena are 

caused by thermocapillarly-driven flows within the drop, which alter 

the pure-spreading flow field present in the isothermal situation. 

Note that due to the separate scalings of the two spatial coordinates, 

a thin drop with a » h in real dimensions, appears strongly stretched 

in dimensionless coordinates r, z. Thus figure 2 does show thin drops. 

3. Experimental methods 

We aim to assess experimental data of spreading drops subject 

to a variety of thermal conditions. We mainly concentrate in this 

first experimental approach towards non- isothermal spreading on the 

rneasurernent of the wetted area underneath the drop. For this purpose 

we apply an optical Schlieren-type technique. The second goal is the 

establishment of extrernely carefully-controlled thermal conditions. 

These are the rnain ideas leading to the following setup and rnethods. 
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3.1 Setup of the experiment 

Figure 3 illustrates the experimental setup. The actual 

experiment takes place within a closed plexiglas cylinder of 200 mm in 

diameter, where the spreading drop (silicone oil or paraffin oil) is 

placed upon a temperature controlled glass surface. The positioning is 

performed by means of an inj ection needle, whereas the mass of any 

individual drop is determined at an accuracy of ± 1 ~g by difference 

weighing using a precision scale. 

The horizontal surface on which the spreading takes place is 

composed of a copper cylinder 130 mm in diameter covered on top by a 

thin glass plate. The copper cylinder is kept at constant temperature 

Tw by circulating coolant (accuracy ± 0.1 °C). The glass plate is 

160 ~m in thickness and is held by adhesive forces provided by a thin 

oil film between glass plate and copper cylinder. Thus an intimate 

contact is established which guarantees several advantages. (i) The 

"flexible" glass plate is kept at a precisely-plane position attached 

to the top of the copper cylinder. (ii) A reproducible smooth surface 

is provided with defined chemical properties. (iii) A 

perfectly-conducting thermal boundary condition is approximately 

realized. The effect of the glass plate and the oil film on the 

thermal boundary condition has been checked by calculating temperature 

profiles across those layers for typical heat fluxes. We find that the 

temperature difference across the added layers is always less than 2 % 

of the totally-applied temperature difference T -T w 00 
Thus, the 

perfectly-conducting boundary condition provided by the copper 

cylinder is maintained to a reasonable degree. The experimental module 

described above can be adjusted to a horizontal position by means of 

three micrometer screws and a precision gauge. 
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We employ a helium atmosphere within the plexiglas cylinder as 

ambient gas. Helium, featuring a high heat conductivity A , is choosen 
CO 

to enforce thermal effects. To provide a constant helium temperature 

T for non-isothermal situations, i.e. for T ~ T , it is necessary to 
CO W CO 

set up a flow inside the ambient helium together with an adequate 

temperature control. During the spreading process we establish a weak 

stagnant point flow entering radially at the top of the plexiglas 

cylinder and proceeding vertically downwards towards the horizontal 

glass plate. The helium leaves the plexiglas cylinder through the 

coaxial gap between copper and plexiglas cylinder. We use an average 

axial velocity of u ~ 10 mmjs for the flow in the plexiglas cylinder 

while just above the drop we expect a radially-directed flow with 

significantly lower velocities. We have double-checked very careful.ly 

the ambient helium flow with respect to the development of distortions 

of the liquid flow inside the drop. During preliminary measurements we 

sought a "critical gas flow rate" which causes first evident changes 

in the isothermal spreading laws. Later, the gas flow rate is set at 

25 % of this "critical" rate. 

The helium entering the experimental volume is conditioned at 

a temperature T and additionally inside the plexiglas cylinder copper 
CO 

sheets at the circumference are kept at T by circulating coolant. 
CO 

Thus the helium hits the glass plate with a fairly-well defined 

temperature, whereas temporal fluctuations may lead up to ± 0.5 °C 

amplitudes for an applied temperature span of T -T = ± 25 °C, Three 
W CO 

PT-100 resistor thermometers monitor temperatures of the ambient 

helium Tco at two locations in a horizontal plane 5 mm above the glass 

plate, and T at the top surface of the copper cylinder. The accuracy 
w 

of the temperature measurements is ± 0.01 °C, 
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The optical measurement of the wetted area ~(t) is based on a 

Schlieren system using reflection. We use a Hg vapour light source 

tagether with a spatial filter and various lenses to provide a 

parallel beam of 10 cm in diameter, This parallel light enters the 

test section vertically through a glass cover. After reflection at the 

drop and the glass plate, respectively, the light passes a beam 

splitter to be spatially filtered by a pin-hole in the Fourier plane. 

A square-pixel CCD camera finally records the image for further 

digital processing. 

The above technique takes advantage of the following physics. 

The unwetted glass plate, as well as the middle region of the drop, 

reflect the light in a parallel manner. This parallel light passes the 

low pass filter in the Fourier plane and is recorded by the CCD camera 

as bright. In cantrast, non-parallel reflected light from the outer 

inclined drop surface areas is stopped by the filter and appears dark. 

Thus, we obtain a high cantrast picture of the drop as shown 

schematically in figure 3. Subsequent image processing accepts the 

outer contour as the circumference of the drop. The nurober of pixels 

inside this closed contour is determined and tagether with an initial 

calibration a highly accurate measurement of the wetted area ~(t) is 

inferred. The relative error of the area measurement proves to be less 

than 0.1 %. From &'i(t) the radius a(t) is calculated by assuming a 

circular shape. 

During the whole measuring protocol we consider three 

different thermal conditions: (I) isothermal situation, T = T · (II) 
W co' 

heated plate, T -T = + 25 °C' 
W CO 

1 (III) cooled plate, T -T = - 25 °C. 
W CO 

Thereby, the plate temperature, which is closely linked to the average 

liquid temperature, is always kept at T = + 25 °C. This allows us to 
w 
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maintain the thermophysical properties of the spreading liquid 

constant to a reasonable degree for all cases I-III. Note that 

conditions II and III represent two symmetric situations with the 

plate being heated (cooled) by identical temperature spans above 

(below) the ambient helium temperature. 

We use two different liquids, namely silicone oil Bayer M-100 

and paraffin oil in our experiments. A new glass plate is prepared and 

fixed onto the copper cylinder for each drop. The preparation of the 

glass plate depends on the test liquid. In the case of silicone oil 

the plate is cleaned using ethanol in an ultrasonic bath for about 10 

minutes. The glass plates are kept afterwards for at least two days 

within a dust-free container to ensure complete evaporation of the 

ethanol, In the case of paraffin oi.l an identical procedure is 

followed using destilled water instead of ethanol. The dynamic wetting 

behaviour of these liquids on such prepared glass will be discussed in 

the following section. 

3.2 Scaling and preliminary measurements 

In order to allow a comparison of various test liquids and 

model predictions we apply the scaling laws (2.5, 2.6) to the 

experimental data. In (2.5, 2.6) there are several quantities which 

need to be fixed during preliminary measurements or from limiting 

behaviour. In the following section these methods are explained. 

We have determined the dependence of various properties such 

as surface tension a(T), viscosity ~(T) and density p(T) of our actual 

test fluids within the appropriate temperature range. Those data are 

summarized in Table I and accordingly used throughout all scalings and 

dimensionlass groups. 
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The measurement of the initial contact angle 0 and the 
0 

mobility capillary number C allows us to assess whether the 

assumptions defined by theory, namely lubrication approximation 

(0 « 1) and small mobility capillary number approximation (C « 1), 
0 

are adequately satisfied. The initial contact angle 0 of each drop is 
0 

estimated from its volume V (from mass measurement) by assuming a 
0 

spherical cap. We vary the initial contact angle 0 in the range 
0 

6.9° ::5 0 ::5 18.3° for silicone oil/glass, (3 .1) 
0 

12.8° ::5 0 ::5 20.3° for paraffin oil/glass. (3 .2) 
0 

The mobility capillary numbers C are in the range 

0.53 10-2 
::5 c ::5 8.20 10-2 

for silicone oil/glass, (3 .3) 

0.59 10-2 
::5 c ::5 2.72 10-2 

for paraffin oil/glass. (3 .4) 

Clearly, the range of mobility capillary numbers proves the 

quasisteady approach (C -? 0) to be a good approximation, while the 

lubrication approximation might lead to inaccuracies due to initial 

contact angles of up to 0 ~ 0. 35. 
0 

The determination of the Marangoni number M requires us to 

quantify the heat transfer conditions at the liquid/helium interface, 

encoded within the thermal boundary-layer thickness S. Forthat reason 

we determine for two cases, viz. T w T 
00 

± 25 °C, the vertical 

temperature profiles above the spreading drop using 0.25 mm diameter 

thermocouples. The Marangoni numbers Mare respectively: 

T - T w 00 
+ 25 °C: M ~ + 0.085, (3 .5) 

T - T w 00 
- 25 °C: M ~ - 0.06, (3. 6) 

for both silicone oil and paraffin oil. Equations (3.5) and (3.6) 

involve a confirmation for the near-adiabatic thermal boundary 

condi tion at the liquidjhelium interface. I t should be kept in mind 

that this method does not allow for a precise non-intrusive 
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measurement of local temperatures within the helium. Thus, estimates 

(3.5) and (3.6) have tobe interpreted carefully. 

The dynamic wetting behaviour in dimensional form is encoded 

within the constitutive equation (2.7) with U at, 
cl 

(3. 7) 

We take an indirect approach to determine the constants within 

equation (3.7). The advancing (static) contact angle 0 is estimated 
A 

from the final drop size. In detail we find for silicone oil that no 

steady state exists as t -7 oo, and therefrom 0 :;;;;: 0. In contrast, the 
A 

paraffin oil experiments lead to a steady drop shape as t -7 oo, which 

allows for an identification of the advancing contact angle in a 

accuracy range 6.8° ::50::5 9.2°. The average value, 0 :;;;;: 8.6°, is used 
A A 

henceforth. 

The mobility exponent m is determined using the isothermal 

silicone oil experiments. As t -7 oo those drops follow to a good 

approximation the law 

(3. 8) 

while the model of Ehrhard and Davis (1991) predicts for isothermal 

axisymmetric drops under gravity the behaviour 

1 

t -7 oo; a cx: t(Zm+l) • (3. 9) 

Therefore, regressing the experimental data to the model (3.8) allows 

to identify the mobility exponent m. We find a narrow range of 

2.64 ::5 m ::5 2.95 and henceforth use the average value m = 2.8. Although 

the determination of the mobility exponent has been performed using 

the silicone oil experiments, it defines the type of functional 

dependency in equation (3. 7). Since the underlying physics is not 

changed when silicone oil is replaced by paraffin oil, we assume the 
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same type of functional dependency. Thus the above mobility exponent 

should likewise hold for paraffin oil on glass. For given 0 , 0 , m 
0 A 

the constant "' in equation (3. 7) can be derived from the measured 

radius a(t) by differentiation, i.e. 

"' = 
(3 .10) 

at(to) 

(0 - 0 )m 
0 A 

From this equation "' computes to: 

for silicone oil/glass, 

(3 .11) 
-3 

"' = 8. 7 10 mjs for paraffin oil/glass. 

We summarize the data obtained for the dynamic-wetting 

behaviour by presenting the corresponding functions graphically. In 

figure 4 the contact angle 0 is plotted as function of the (advancing) 

speed of the contact line at for both, silicone oil on glass (a) and 

paraffin oil on glass (b). It should be kept in mind, that these laws 

have not been obtained by direct measurements. The consistency of this 

method will be ensured below. 

Our indirect findings concerning the dynamic wetting behaviour 

of our liquids on glass can be supported by direct investigations on 

the dynamic contact angle conducted by other authors. De Gennes 

(1985), citing experiments by Hoffman (1975), concludes that the 

functional form of 0 = f(at) should be universal and independent of 

the choice of materials. Moreover, Hoffman' s experiments suggest a 

model of type (3. 7) for both complete wetting ( 0 = 0) and partial 
A 

wetting (0 > 0). For small speeds of the contact line his data yield 
A 

a mobility exponent of m = 3.0 ± 0.5 (see de Gennes). Likewise, 

results by Rose and Heins (1962), Friz (1965) and Schwartz and Tajeda 

(1972) propose from their experimental data and physical reasoning 
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that 

1/3 

tan 0 ~ 3.4 } (3 .12) 

where additionally a dependence on dynamic viscosity J.t and surface 

tension a is obtained. For 0 « 1, equation (3.12) recovers a mobility 

exponent of m = 3 for cases of complete wetting. Calculating the 

constant ~ in equation (3.7) via equation (3.12) gives 

~ = 3.95 -3 
10 mjs for silicone oil/glass, (3 .13) 

-3 
~ = 6 . 4 7 10 m/ s , for paraffin oil/glass, (3 .14) 

which compares reasonably well with our indirect findings (3.11). 

Besides these more general findings on contact-line dynamics 

there are measurements directly related to our liquids. Hoffman' s 

experiments include measurements of the advancing dynamic contact 

angle exhibited by silicone oil in a glass capillary tube. These data 

are in excellent agreement with our indirect findings. Rose and Heins 

conducted measurements for paraffin oil using a similar glass-tube 

geometry. Their data confirm 0 ~ 10° as well as the functional 
A 

dependency of the contact angle on the speed of the contact line. 

Concerning some discrepancies within the data for paraffin oil with 

respect to the precise values of ~ and 0 , we stress that both the 
A 

experiment of Rose and Heins and our indirect measurements exhibit 

considerable scatter of the data. Thus, in contrast to the silicone 

oil case, a more precise determination is not really accessible from 

those measurements. 

4. Results for silicone oil/glass: unlimited spreading 

From the dynamic-wetting behaviour of silicone oil on glass, 

encoded in figure 4a, it can be concluded that, given an initial 
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contact angle 8 > 0, 
0 

a drop will spread and therefore 

decrease its actual contact angle 8 as time progresses. Since 8 ~ 0, 
A 

every positive contact angle 8 will correspond to a speed at > 0, and 

hence the drop will spread forever. This behaviour is attributed to 

cases 8A ~ 0 and is typically observed for spreading of silicone oil 

on glass. In the following sections we firstly present isothermal 

spreading results for this case. This demonstrates the ability of our 

overall experimental procedure to recover experimental observations 

reported by other investigators. A careful comparison is conducted. 

Secondly, results for non-isothermal conditions are presented. These 

types of experiments have never been performed before and thus give 

new results. 

4.1 Isothermal conditions 

In figure 5 we show the development of three typical drops of 

different volurnes V, obtained under isothermal conditions, i.e. 
i 

T = T (M = 0). The drop radius a is plotted as function of time t, 
W CO 

in double-logarithmic coordinates. From the definition (2.6) of the 

Bond nurnber G we can infer three different Bond nurnbers G for three 
i 

different initial radii a 
O,i 

In particular the Bond nurnber G 

increases quadratically with the initial drop radius a , implying that 
0 

gravitational forces are more important for large drops than for small 

drops. This interrelation is reflected by the growth behaviour of the 

drops shown in figure 5. From the regression of the experimental data 

of each drop for both small and large times we obtain 

c 
t -7 0: a o:: t 0 

' 
(4 .1) 

c 
t -7 co; ao:: t CO (4.2) 
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with c < c . This indicates that a transition occurs from an 
0 00 

initially small slope towards a larger slope as t increases. The 

different slopes can be attributed to different effects that controll 

the process as discussed by Ehrhard and Davis (1991). At small times 

capillary forces are dominant, causing a smaller slope c . As the drop 
0 

develops, the height approaches zero and the interface curvature tends 

to infinity. Therefore, at large times gravitational forces control 

the process, causing a larger slope c . Consistently, one would expect 
00 

this transition to occur earlier when the Bond number is larger, i.e. 

for larger drops. By comparing the intersections of the asymptotic 

laws in figure 5 we find, indeed, this tendency proven. 

The above findings about the isothermal spreading of silicone 

oil, including the effect of gravity, are not all new. Various authors 

have come to identical conclusions from experimental (cf. Cazabat and 

Cohen Stuart 1986) and from theoretical (cf. Ehrhard and Davis 1991) 

points of view. Our measurements within the isothermal and 

helium-rinsed setup ensure, however, a negligible effect of the 

stagnant-point flow above the spreading drop. This can be concluded 

from our recovering of the typical time laws as found by other 

experimentalists using non-rinsed setups. A quantitative comparison of 

the exponents within equations (4.1) and (4.2) will be made below 

using Table II. 

In the next step we take our set of isothermal data and apply 

the scaling laws (2. 5) . Addi tionally, we include original data from 

Cazabat and Cohen Stuart and Chen and scale those accordingly. This 

procedure allows for a scaled comparison of both, a set of drops with 

vastly different viscosities and volumes, and our different 

theoretical predictions. It should be mentioned that our knowledge of 
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the fluid properties of the previous experiments is incomplete wi th 

respect to temperature dependencies. Therefore, scaling of these 

authors' data relies eventually on non-precise fluid properties. 

Figure 6 shows, likewise in double -logari thmic coordinates, 

the non-dimensionalized drop radius a(t). The present experiments are 

given by the closed symbols e, while the experiments of Cazabat and 

Cohen Stuart and of Chen are encoded using open symbols D and b., 

respectively. The experiments are conducted in a Bond number range of 

0.5 ~ G ~ 16.4 and therefore we get a family of experimental curves. 

By analyzing those curves more closely we find that the lower curves 

belong to low Bond numbers and the upper curves to high Bond numbers. 

Thus, with very few exceptions, the curves are sorted with respect to 

Bond number. 

These experimental findings are in accordance with the 

theoretical predictions. By varying the Bond number G within the 

model, we find a family of curves. The limiting curves for G = 0.5 and 

G = 16.4 are given as solid lines in figure 6. The model predictions 

and the experimental behaviour are in excellent agreement. There are 

very few data points outside the theoretical range; these outside data 

are from experiments by Cazabat and Cohen Stuart or Chen, for small 

times. As previously explained, those slight discrepancies might be 

attributed to non-precise knowledge of the related fluid properties. 

Moreover, during this early stage of spreading the initial drop shape 

still may still have some influence. The initial drop shape, however, 

depends on the handling of the injection needle during positioning and 

therefore is accidental. 

In Table II we show a comparison between the slopes obtained 

by various experimentalists. The corresponding viscosity range is 
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0.02 ~ ~ ~ 13.0 Pas. By regressing the experimental data to a model 

of type (4.1) and (4.2), the slopes can be inferred; these arevalid 

within the capillary-dominated and the gravity-dominated regimes, 

respectively. For capillary-dominated spreading 0.105 ~ ii ~ 0.112 is 

confirmed by all experimentalists, while for gravity-dominated 

spreading we get 0 .129 ~ ii ~ 0 .145. As shown from figure 6, the 

present experiments cover a sufficient range in time to permit a 

reliable determination of the slope in the gravity-dominated regime. 

4.2 Non-isothermal conditions 

In figure 7 we present in an equivalent, non-dimensionalized 

form, our results for non-isothermal conditions. Two experimental 

families of curves are shown. The family encoded with open symbols 

relates to the cooled plate, while the family encoded with closed 

symbols relates to the heated plate. We recognize a different 

behaviour of the drops depending on the thermal conditions. The cold 

plate obviously augments the spreading process while the hot plate 

retards it. Within each family of curves a range of Bond numbers is 

represented, due to a variety of drop sizes. The lower curves 

correspond to small Bond numbers and the upper curves correspond to 

large Bond numbers. This means that within each family of drops, the 

curves again sort with Bond number. The actual range of Bond numbers 

is 1.5 ~ G ~ 14.2. 

For comparison we have included three theoretical curves 

calculated for an average Bond number of G = 10 and three thermal 

conditions, namely the heated plate (M = + 0. 04), the cooled plate 

(M =- 0.04) and the isothermal situation (M = 0). The latter 

represents essentially an average behaviour of all isothermally 
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conditioned drops shown in figure 6. For clarity we do not include the 

ranges of Bond nurobers, which would break up every single solid curve 

into two range-limiting curves. The influence of the Bond nurober in 

this case is, however, identical to that described for the isothermal 

situation. If we compare the theoretical curves, found forM=± 0.04, 

with the experimental data we find reasonable agreement. Deviations 

are only present for the case of the cooled plate at large times. Here 

the model predicts a faster spreading than the experiments suggest. 

This discrepancy, observed for very thin liquid layers, might be 

attributed to three-dimensional effects which are described in chapter 

6. 

As seen from figure 7, we get agreement between model and 

experiments for M = ± 0.04. In contrast, our preliminary measurements 

(see section 3. 2) suggested values of M = + 0. 085 and M = - 0. 06, 

respectively, for the Marangoni nurober. Here a considerable 

discrepancy remains. In view of the method applied to determine the 

actual Marangoni nurober experimentally, these results should be taken 

only as "order of magnitude" determinations; such a method is strongly 

intrusive. 

5. Results for paraffin oil/glass: limited spreading 

In contrast to the experiments in chapter 4, paraffin oil on 

glass exhibits partial wetting. Thus, given an initial contact angle 

0 > 0 (cf. figure 4b) the drop is expected to spread (at > 0) until 
0 A 

it approaches an actual contact angle 0 ~ 0 . As t -7 co we therefore 
A 

expect a steady drop shape, whereas the final drop radius, a , will be 
CO 

affected by the thermal conditions (i.e. Marangoni nurober M). The 

pertinent correlation, given by Ehrhard and Davis (1991), leads to a 
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decrease (increase) of the final drop radius a if the plate is heated 
Cl() 

(cooled) with respect to the ambient gas. 

5.1 Non-isothermal conditions 

Our results for paraffin oil on glass, subject to 

non-isothermal conditions, are shown in figure 8. The data plotted as 

closed symbols relate to the heated plate; accordingly open symbols 

represent the behaviour observed for the cooled plate. We recognize an 

asymptotic approach of all curves to a steady final drop radius (note 

the logarithmic time scale). This result is characteristically 

different from the observations in the case of complete wetting (see 

section 4). In particular for conditions of a heated (cooled) plate 

the drops spread more slowly (rapidly) and approach a smaller (larger) 

final radius. With different drop volurnes, we realize a range of Bond 

numbers within these experiments, namely G = 2.9, 8.2 (heated plate) 

and G = 2.7, 14. (cooled plate). In contrast, the theoretical curves 

(solid lines) are calculated for an average Bond nurnber of G = 10 and 

Marangoni nurnbers M = ± 0. 04. Consistently, the lower experimental 

curves in both cases are associated with low Bond nurnbers. Thus, the 

effect of gravity, which has been discussed in section 4.1 for 

complete wetting, is completely analogous for the partially-wetting 

experiments. 

Even though there are some imperfections with respect to the 

smoothness of the experimental curves, we detect a reasonable 

agreement between model predictions and experiments. In particular, 

the effect of Marangoni nurnber Mon both, the time laws, and the final 

drop radius, is demonstrated. As discussed above, we assurne a mobility 

exponent m = 2.8, as determined from the completely-wetting 
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experiments with silicone oil on glass, to be likewise valid for the 

paraffin oil experiments featuring partial wetting. In fact, the 

theoretical curves in figure 8 are computed using m = 2.8. By varying 

the mobility exponent within a range 2 ~ m ~ 3 we find no major 

changes to the theoretical curves. Thus, the agreement would be valid 

for all these values of m. These findings imply that a precise 

determination of the mobility exponent m, purely on the basis of our 

paraffin oil experiments (partial wetting) is hardly possible. 

5.2 Transient conditions 

In this section we focus our attention on the question of how 

the thermal conditions affect the approach towards a final steady 

state of the drop. For that reason we conduct one experiment, wherein 

initially, conditions of a heated plate are realized. These conditions 

(M > 0) are expected to slow down the spreading and the drop will 

approach a "small" final diameter. At t ~55 a change of temperatures 

is initiated, corresponding to a transition from conditions of the 

heated plate (M > 0) to conditions of the cooled plate (M < 0). For 

this transition we need a time span of ~t ~ 32. The start and end of 

the transient is marked in figure 9 by vertical dashed lines. 

When we focus on the experimental data (open symbols) in 

figure 9, we recognize the expected response of the drop to the change 

of thermal conditions. A strong acceleration of the spreading occurs 

showing as a ramp-type time behaviour during the transient period. 

Thus the approach towards a "small" final drop radius ( corresponding 

to the M > 0 case) is interrupted and an approach towards a "large" 

final drop radius (corresponding to the M < 0 case) is developing. 

From the behaviour of this single drop, the effect of thermal 
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conditions becomes quite obvious. For comparison we have included 

solid lines, corresponding to theoretical predictions for the cases 

M = ± 0.04 and an average Bond number of G = 10. 

6, Three dimensional effects 

There are several situations, which potentially lead to drops 

that no longer have circular shape. Firstly, if drops develop toward 

an extended very thin liquid layers, one expects surface roughness to 

be of similar length scale as the layer thickness. This causes at 

first a more or less stochastic distortion of the ideally-circular 

drop perimeter. Given such conditions, it is clear that a 

two-dimensional model will fail to describe the evolution of the drop. 

In fact, we occasionally have observed such "rough" drop contours, and 

have discarded these data from further processing. 

Secondly, Carles and Cazabat (1989) have found 

three-dimensional instabilities which occur during the "accelerated" 

spreading of oil drops. They use an atmosphere saturated with a 

volatile compound in order to alter surface tension in a transient 

manner; this causes an "acceleration" of the spreading. During our 

measurements those phenomena did likewise occur, sometimes for large 

times. In figure 10 we show two examples of wavy instabilities at the 

drop circumference, as observed for two different drop sizes under 

isothermal conditions at large times. Shown is one quarter of each 

drop of the completely-wetting system silicone oil/glass. A 

preliminary determination of the instability wavelength gives A = 2.0 
a 

mm and A = 2.2 mm, whereas a dependence on the drop radius is 
b 

difficult to infer from our sparse data. Carles and Cazabat, though, 

have observed a weak increase of the wave length with increasing drop 
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radius, which we could confirm. 

Our observations concerning these effects do not allow for a 

clear judgement under what conditions such instabilities do occur; 

they have been observed more or less randomly for all thermal 

conditions, usually at large times. Since a comparison to a 

two-dimensional model is envisioned, we have ignored these data in all 

of our figures 5 to 10. A detailed experimental study on those effects 

is beyond the scope of the present investigation and beyond the 

capabilities of the employed techniques. 

7. Discussion and conclusion 

We have conducted experiments on the spreading of axisymmetric 

drops, subj ect to three different thermal conditions: i) isothermal 

conditions, ii) heated-plate conditions, iii) cooled-plate conditions. 

Two classes of dynamic wetting behaviour have been examined, namely 

the completely-wetting system silicone oil/glass and the 

partially-wetting system paraffin oil/glass. The experimental data are 

used to validate the theoretical model proposed by Ehrhard and Davis 

(1991) in which the contact angle 0 is related to contact-line speed 

U by U = K. (0-0 )m the mobility capillary number is small, and 
cl cl A ' 

lubrication theory applies. 

7.1 Unlimited spreading 

For the completely-wetting system silicone oil/glass under 

isothermal conditions, we confirm the results of Cazabat and Cohen 

Stuart (1986) and Chen (1988), who observe that after an initial 

transient, the spreading, which is capillary-controlled, develops 

towards a gravity-controlled spreading with larger spreading rates. 
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The time history of the position of the contact line (drop radius) 

a(t) is in good agreement throughout the entire time interval with 

both previous experimental findings and theoretical predictions. The 

effect of gravity, as measured by the Bond number G, is affected by 

different initial drop volumes and material properties. It proves to 

be correctly reflected by the theory. The above observations wi th 

respect to isothermal conditions suggest a mobility exponent of 

m ~ 2.8. They, moreover, demonstrate that the scaling laws (2.5) are 

adequate for comparing experiments with different drop volumes and 

viscosities. 

The non~ isothermal conditions lead to a retardation 

(augmentation) of the spreading when the plate is heated (cooled) with 

respect to the ambient gas. Thus, time histories for spreading under 

non- isothermal conditions are clearly distinguished from those under 

isothermal conditions. The effect of gravity is observed throughout 

each subgroup of curves, as large drops (large G) tend to enter the 

gravity-dominated regime at earlier times, and thus, spread faster. 

All the above experimental findings are in good agreement with the 

predictions of Ehrhard and Davis (1991), using M = ± 0.04. 

7.2 Limited spreading 

A second set of experiments is performed using the 

partially-wetting system paraffin oil/glass. The experiments give, 

again, a retarded (augmented) spreading for the case of the heated 

(cooled) plate. The final radius approached is likewise affected by 

the thermal conditions; the drop spreads to a smaller (larger) radius 

if the plate is heated (cooled). The latter effect is decidedly 

demonstrated by a transient experiment using one single drop. The 
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predictions of Ehrhard and Davis (1991) relating to this situation 

give quantitative agreement if one takes M = ± 0.04. Even though there 

is no direct measurement of the mobility exponent in this 

partially-wetting system, there is evidence that m = 2.8 applies. 

The present work, for the first time, experimentally confirms 

the influence of thermocapillary effects on the evolution of a 

spreading drop. We rely on measurements of the wetted area rA(t), 

rather than measuring drop profiles, temperature fields or velocity 

fields. When the spreading is observed for very long times and/or very 

thin liquid layers one sees a substantial deviation from the 

axisymmetric drop. This is not suprising (cf. Carles and Cazabat 1989) 

and occurs through an either noisy or wavy disturbance at the drop 

circumference. This disturbances may lead to a three-dimensional 

instability, which, at least for larger amplitudes, limits the 

validity of the axisymmetric model. 

There is the potential for a further instability to occur, 

namely a two-dimensional instability of the interface which maintains 

axisymmetry. Ehrhard and Davis (1991) have conjectured the existence 

of such a Marangoni instability in the heated-plate situation. 

However, we do not observe any indication for such an instability, 

though, our measuring technique may not resolve small amplitude waves 

at the interface. 
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Figure caption 

Figure 1: Sketch of the problern geometry. 

Figure 2: Evolution of the drop shape h(r,t) as predicted for various 

thermal conditions. Parameters are G = 0, 8 = 0. 25, 
A 

m = 2.8, a time step of ßt 0.4 is used to create 

a number of succesive contours. Dashed contours are obtained 

for t -7 "'· 

Figure 3: Sketch of the experimental setup. 

Figure 4: Wetting behaviour of the employed liquids on glass, 

as determined by indirect measurements: (a) silicone oil, 

(b) paraffin oil. 

Figure 5: Isothermal spreading of silicone oil on glass, the 

perfectly-wetting system: drop radius as function of time 

for three drops of different volumes. 

Figure 6: Isothermal spreading of silicone oil on glass, the 

perfectly-wetting system: drop radius as function of time, 

in dimensionless form. Experimental data are included from 

Cazabat and Cohen Stuart (1986) (symbols 0) and Chen (1988) 

(symbols b.). Present experiments are given by symbols 0. 

Parameters of the theory (solid lines) are M = 0, 8 0, 
A 

m = 2.8. 

Figure 7: Non- isothermal spreading of silicone oil on glass, the 

perfectly-wetting system: drop radius as function of time, 

in dimensionless form. Experimental data are given by 

closed symbols (heated plate) and open symbols (cooled 

plate). Parameters of the theory (solid lines) are G = 10, 

8 = 0, m = 2.8. 
A 
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Figure 8: Non-isothermal spreading of paraffin oil on glass, the 

partially-wetting system: drop radius as function of time, 

in dimensionless form. Experimental data are given by 

closed symbols (heated plate) and open symbols (cooled 

plate). Parameters of the theory (solid lines) are G- 10, 

9A = 0.55, m = 2.8. 

Figure 9: Transient experiment of paraffin oil on glass, the 

partially-wetting system: drop radius as function of time, 

in dimensionless form. Experimental data are given by 

symbols o, start and end of the transient change of thermal 

conditions are marked by vertical dashed lines. Parameters 

of the theory (solid and dashed lines) are G = 10, 

9 = 0.55, m = 2.8. 
A 

Figure 10: Examples for wavy instabilities at the drop circumference. 

Shown are quarters of the wetted area ~(t) for two drops of 

different size for silicone oil on glass, the 

completely-wetting system, at a late stage. 
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Tables 

material properties: silicone oil 

viscosity [10- 3 Pa s1 J.L = 200.98 - 3.615 T + 0.024 Tz 

surface tension [N m- 11 a = 20.465 - 0.045 T 

density 
-3 

999.18 1.144 0.0025 Tz [kg m 1 p = - T + 

heat conductivity [W m -1K-1 1 A = 0.163 (for T ~ 25 oc) 

paraffin oil 

viscosity [10- 3 Pa s] J.L = 408.70 - 18.75 T + 0.25 Tz 

surface tension [N m-11 a = 28.938 - 0.179 T 

density 
- 3 

899.67 1.0 T [kg m 1 p = -

heat conductivity [W m- 1
K-

11 A = 0.130 (for T ~ 25 oc) 

Helium 

- 1 - 1 
0.150 (for T ~ 25 oc) heat conductivity [W m K 1 A = 

Table I: Employed material properties, T has tobe used in units of 
{oC1 • 

Reference axisymmetric drops dominant viscosity 
n 

force [Pa s1 a cx t -
n n 

Tanner (1979) 0.109 0.106 - 0.112 ST 1.008, 13.0 

Cazabat and 0.105 0.094 - 0.125 ST 
Cohen Stuart (1986) 0.020, 1.0 

0.129 0.118 - 0.137 G 

Chen (1988) 0.106 0.080 - 0.123 ST 0.195 

Present results 0.112 0.089 - 0.122 ST 
0.125 

0.145 0.128 - 0.165 G 

Table II: Isothermal spreading results for silicone oil on glass. ST 
and G denote surface tension controlled and gravity controlled, 
respectively. 
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