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Magnetohydrodynamic flows in ducts with insulating coatings 

Abstract 

An effective insulation of the electrically conducting channel walls leads to 

tolerable magnetohydrodynamic (MHD) pressure drop in liquid metal flows in 

self-cooled fusion reactor blankets. Such insulation prohibits closed current circuits over 

conducting walls and reduces total current, which determines pressure drop and flow 

distribution, caused by the interaction of the flowing liquid metal and the strong 

plasma--confining magnetic field. 

Several kinds of insulation are currently under development. One is the so called 

flow channel insert technique, where the insulating ceramic is protected against the 

liquid metal by thin steel sheets. Recently, direct insulating ceramic coatings have been 

proposed, which should resist corrosion during the whole Operation time of a fusion 

blanket. It is not necessary that these coatings provide a perfect insulation, because even 

a finite coating resistance is enough to reduce the pressure drop by orders of magnitude. 

The aim of this paper is to provide material scientists or blanket designers with 

sufficient data on MHD insulation requirements. Reduced insulation properties, which 

may arise during blanket live time by impurities, corrosion, irradiation darnage or by 

small cracks, can be allowed up to a certain limit. The increase in pressure drop and the 

change in flow pattern are quantified, if the coating resistance falls below this limit. 
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Magnetohydrodynamische Strömungen in Kanälen mit 
isolierenden Beschichtungen 

Zusammenfassung 

Magnetohydrodynamische (MHD) Druckverluste in Flüssigmetallströmungen selbstge­

kühlter Blankets von Fusionsreaktoren werden durch eine wirksame elektrische Isolation 

der Kanalwände auf ein akzeptables Maß reduziert. Eine solche Isolation verhindert 

geschlossene Stromkreise über elektrisch leitende Wände und reduziert die gesamte 

Strornclichte. Die Wechselwirkung elektrischer Ströme mit den starken Magnetfeldern, 

die das Plasma einschließen, bestimmt den Druckverlust und die Strömungsverteilung 

der Flüssigmetallströmung. 

Momentan werden verschiedene Isolationsmöglichkeiten untersucht. Eine ist die soge­

nannte Strömungskanal-Einsatz-Technik, bei der die keramische Isolationsschicht durch 

dünne Stahlschichten vor dem Flüssigmetall geschützt wird. In jüngster Zeit werden 

direkt isolierende keramische Beschichtungen vorgeschlagen, die während der gesamten 

Betriebszeit eines Blankets Korrosionsprozessen widerstehen. Dabei ist es nicht notwen­

dig, daß diese Beschichtungen eine vollständige Isolation erreichen, da selbst endliche 

Schichtwiderstände die Druckverluste um Größenordnungen reduzieren. Ziel dieser 

Arbeit ist es, Materialwissenschaftlern oder Blanket-Designern Daten über erforderliche 

Isolationswerte zu liefern. Reduzierte Isolationseigenschaften, die während der Lebens­

dauer eines Blankets durch Verunreinigungen, Korrosion, Strahlungsschäden oder durch 

feine Risse verursacht werden, sind bis zu einer gewissen Grenze zulässig. Die Zunahme 

des Druckverlustes und die Änderung der Strömungsverteilung werden quantifiziert, falls 

der Schichtwiderstand unter diese Grenze fällt. 
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1 Introduction 

The idea to use insulating coatings to provide sufficient pressure drop reduction in 

fusion blanket components is very old. Recently Malang (1991, 1992) defined required 

coating resistance, to decrease pressure drop by more than one order of magnitude 

compared to the other insulation method (flow channel inserts). These coatings prohibit 

a closed current circuit over good conducting channel walls, which results in very small 

total current, induced inside the fluid, and in a strong reduction of magnetohydrody­

namic (MHD )-pressure drop. 

Blanket concepts with poloidal flow direction suffered in the past by unacceptable 

pressure drop. With insulating coatings they become very attractive because of their 

much simpler design (see Malang et al. 1992) compared especially to the 

poloidal-radial-toroidal-radial-poloidal one, currently considered as the reference 

concept at KfK (Malang et al. 1991). 

In reality, however, a perfect insulation can not be achieved. Even ceramic 

insulation materials have small but still finite conductivity fJj or large but not infinite 

resistivity Pi = 1/ fJj. The efficiency of an insulating layer of thickness Oi can be 

measured by the product PiOi, called throughout this report as coating resistance. As an 

example alumina is considered as insulating material for blankets with Pb17Li as liquid 

metal (Malang et al. 1992). Its specific resistance Pi>1 010 0· m in the relevant 

temperature range of 400oC together with a layer thickness of 10p,m, which seems tobe 

a suitable value for technical applications, would provide almost perfect insulation 

conditions with PiOi = 105 0 · m2• However this value may be reduced significantly by 

metallic impurities in the ceramic layer, by corrosion processes, by irradiation darnage or 

by small cracks. Promising insulation materials for Li as liquid metal are proposed by 

Sze et al. (1992). 

A reduction of the coating resistance has an influence on the pressure drop. Rough 

estimates of this influence have been made by Malang 1991 and by Sze et al. 1992. They 

considered the MHD-flow in a geometry, relevant to poloidal flow concepts, namely the 

reetangular duct with two walls parallel to the orientation of the magnetic field JJ, and 

the other two perpendicular to it, called side walls and Hartmarm waUs, respectively. In 

their simplified model they supposed a slug flow velocity profile and considered mainly 

the influence of finite coating resistance at the side walls on pressure drop. 
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The present analysis shows that there is a strong dependence of the pressure drop 

on coating resistance, but only in a certain range of it. Furtherrnore, there is a strong 

influence of the coatings at Hartmann walls on the flow structure. Over a large range of 

coating resistance the velocity distribution even in fully developed channel flow is nei­

ther of slug flow type, nor sirnilar to other fully developed MHD-velocity profiles. In a 

special range of pararneters, as shown in this report, this rnay lead to unfavorable 

conditions, where nearly the whole core is stagnant and all volurne flux is carried by jets 

at the side walls. 



2 Formulation 

Consider the steady flow of a viscous conducting incornpressible fluid in a duct in 

a strong uniform external rnagnetic field ß = ß0 • 

The dirnensionless inertialess and inductionless equations governing the problern 

are 

- 2 2 
II V v + ixß0 =V p, {2 .1 a) 

i = -V~ + vx Bo, (2.1b) 

V·v=O, (2.1c) 

V· j = o, (2.1d) 

where the fluid velocity v, the electric current density i, the electric potential ~ and the 

pressure p are norrnalized by v0 ( the average fluid velocity at a fixed cross section of the 

duct ), uv0ß0, v0B0L and uv0B0
2L, respectively; II = B0L..ju / pv is the Hartmann nurnber. 

The boundary condition for fluid velocity at each wall is the non-slip condition 

V= 0. (2.1e) 

To obtain the conditions for the electrical variables consider a thin conducting 

wall covered by an insulating coating (see fig.2.1). The curvilinear coordinate systern 

{ n, s, t) is induced by the inside surface of the wall. The boundary condition on the 

wall-coating interface reads 

(2.1f) 

It is equivalent to the thin-wall condition, derived by Walker (1981) for flows in 

ducts with no coating. In equation ( 2. 1 f) ~w( s, t) is the wall potential; c ( s, t) = 

uwhw{s, t)/uL is the wall conductance ratio; uw,hw are the conductivity and the 

thickness of the wall; V w is the gradient in the plane ( s, t) of the wall; - i · n is the 

current, entering the wall frorn the coating. 
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Fluid 

t~ 

Coating 

Fig. 2.1 Curvilinear coordinates 

Since the coating is very thin, it can conduct current only in the normal direction, 

so that 

(2.1g) 

on the wall, and - i · n in both equations ( 2. 1 f) and ( 2. 1 g) denotes the current, 

entering the wall with coating from the fluid; "' = (pioi)u/L is the nondimensional 

coating resistance. 

The conditions (2.1j, g) aretobe used simultaneously. In principle, if it does 

not lead to a confusion in some limiting cases, a single condition can be obtained from 

the two in order to exclude either wall potential, or the current. 



For the fully developed flow in reetangular duct the conditions ( 2. 1 f, g) at the 

top, for example, read (see fig.2.2) 

Excluding wallpotential from (2. 2a, b} gives 

. ß2r/J ß2. 
)y =- c7JZ2 + cx;~ at y = 1. 

Excluding the current from ( 2. 2a, b) leads to the condition 

-d 

ß 2r/Jw 
~ - ~w = - cx:azr . 

~ lj 

tß 
0 

d 
z 

Fig. 2. 2 Reetangular duct geometry 

(2.2a,b) 

(2. 3} 

(2.4) 
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3 Numerical solution 

To study the influence of the coatings on pressure drop and flow distribution consider a 

fully developed MHD-flow in a square duct. Under relevant fusion blanket conditions 

the conductivity of the channel walls is much higher than those of the Hartmann layers 
1 

( c>>Af-1) and even higher than those of side layers ( c>>Af-2 ). In this chapter the 

MHD-channel flow in a perfectly conducting duct ( c --. oo ) , covered by the coating, is 

considered, because the effect of finite coating resistance should be most expressed in this 

case. Preliminary results were presented by Bühler (1992). 

For a. numerical solution the C..-eneral Core .Flow Solut.io.n code is used (see Bühler 

1991). The thin wall boundary condition which is used in this code as electrical boundary 

condition was extended to the condi tions ( 2. 1 f, g). 

The influence of finite coating resistance on the pressure drop is shown in fig.3.1 

for the range of the Hartmann nurober Af = 102 + 104. As expected, for small values of"' 

the nondimensional pressure drop tends to that in MHD-flows in good conducting 

channels (k=- öp / öx --. 1, as "' --. 0). As the insulation is improved to values 

"' > > 0. 1 the pressure drop significantly reduces. Increasing of the coating resistance by 

one order of magnitude gives a reduction of pressure drop also by one order of 

magnitude. A considerable reduction of pressure drop is only possible until the limiting 

case of perfect insulation is reached. A further improvement of the insulation has no 

effect on pressure drop. Nearly perfect insulation conditions are reached if "'is related to 

the Hartmann nurober by 

"'>> Af. (9.1) 

This relation determines the required condition for ceramic coatings to provide pressure 

drop as in insulating channels. 
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From fig.3.1 one may conclude that it is possible to find a suitable value for the 

coating resistance K-, smaller than those required for perfect insulating conditions, if 

some acceptable pressure drop is allowed. However this choice has to be done carefully, 

taking into account fl.ow distribution over the cross-section (see fig.3.2). If K- < < 1 or K­

>> 103, the velocity profiles (not shown on fig.3.2) are of slug-type, corresponding to 

the insulating and perfectly conducting limits, respectively. If the coating resistance is 

small (fig.3.2a), thin high-velocity jets form along the side walls. As the coating resis­

tance increases, the amount of fluid, carried by these jets increases and the core velocity 

decreases at the same time. The velocity profile on fig.3.2b is similar tothat in a channel 

with insulating side walls and highly conducting top and bottarn (see Hunt 1965). The 

core is virtually stagnant and all volume fl.ux is carried by the two jets at the side walls. 

When K- increases further, the thickness of the side layers increases, and the velocity 

profile in the core no langer is of slug-type. At K- = 100 there is no distinct core and 

layers (fig.3.2c). The velocity in the center of the duct increases. At K- = 1000 (fig.3.2d) 

the velocity profile is of almost slug-type. 

In fully developed flows in symmetric reetangular ducts with thin conducting 

walls without coatings the velocity in the core is always of slug-type. Velocity profiles 

on fig.3.2 are very unusual, especially that at K- = 1 00. To clarify the physical reasons 

for the effects described in this chapter an asymptotic solution has been developed as 

Jf-+ m. 
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4 Asymptotic solution 

First, a particular case of completely insulating side walls is considered. The 

resistance of the coatings on Hartmann walls is supposed to be high ("' > > 1). The 

symmetric problern with respect to z and y, formulated for the fluid velocity v and the 

induced magnetic field b (these arebothin the x-direction) reads (see Shercliff 1965) 

!J.v + ~ = -kJI2, {4 .1 a) 

!J.b+~=O, (4.1b} 

V= 0, b = 0, at z = d, (4.1c,d) 

8v {}b 
rz=O,rz=o, at z = o, (4.1e,f) 

8v 
ay=O, b=O, at y = 0, (4.1g,h) 

V= 0, 
{}b. {}2b 

Cfly + b = CK7JZ2, at y = 1. (4.1i,J) 

Here, k=-8pj8x; c is the wall conductance ratio of the top; 11=82/8y2+82j8z2. 

The boundary condition (4 .1i) can be obtained from the condition (2. 3} and 

the Ampere's and Ohm's laws, which read 

{4. 2a) 

(4. 2b) 

. The condition of constant average velocity in duct cross-section requires that 

1 d 

J dyJ vdz = d (4.1k) 
0 0 



An exact solution to the problern ( 4. 1), similar to that of Hunt(1965) for the 

duct with no coating, has been obtained by Shishko (1988) in terms of Fourier series. 

The exact solution is dif:ficult to analyze at large Hartmann numbers. The direct 

application of matched asymptotic expansions to the problern ( 4. 1) leads to a solution 

in a compact form with less effort. 

At large Hartmann numbers the :flow exhibits the following subregions (see 

fig.4.1): 

- the inviscid core C; 

- the Hartmann layer Hat the top with 0( M- 1) thickness, 
1 

- the side layer S with O(Af-2 ) thickness. 

The other subregions, not shownon :fig.4.1, arenot important for the present analysis. 

- electric current lines 

c I s 
I 

-1/21 
~ 

d 
0 z. 

Fig. 4.1 Flow subregions at Jarge Hartmann numbers and sketch of electric current lines. 
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4.1 The core 

N egleeting viseous terms in the eqs. ( 4 . 1 a, b) gives 

Vc= f(z), bc= -k.Aiy, (4.3a,b) 

where f ( z) is an integration funetion. The symmetry eonditions ( 4. 1 e-h) have 

already been taken into aeeount. 

In the eore the eurrent is uniform and flows only in the z -direetion, sinee 

{4. 3c) 

4.2 The Hartmann layer 

The solution in the Hartmann layer, whieh satisfies the non-slip eondition 

( 4. 1 i )and the eonditions of matehing the eore variables reads 

(4.4a) 

(4.4b) 

where YH=AI{y-1) is the stretehed Hartmann-layer variable. 

Substituting ( 4. 4 b) into boundary eondition ( 4 .1j) determines the unknown 

funetion f ( z) to give 

f { z) = Aeoshßz + k1] , 
where 

J cN+1 c+1 ß = ~ ; 1J = c+AI- 1; 

A is a eonstant of integration. It has to be determined from the eonditions of matehing 

the solution ( 4. 4) with the solution in the side layer. 



From the analysis of the flow in the side layer and adjacent Hartmann layer for 

the range of "' considered here it follows that there is no jump in the induced magnetic 

field on the top across the layer, so that the boundary condition ( 4. 1 d) is applied to 

the function ( 4 . 4 b) directly. This gives 

(4. 6} 

The electric current density in the Hartmann layer is 

(4. 7a} 

where 
. - 1 f ' ( )eYH . - k f( )eYH )yH- JT Z ' JzH- - Z • {4. 7b, c) 

Variation of functions f ( z) and f' ( z) with "'is shownon fig.4.2 and fig.4.3. 

4.3 Flow rate and pressure gradient 

The velocity in the side layer is of the same order as in the core, so that the side 

layer carries no volume flux to the main order. Thus, it is not considered herein detail. 

Since all volume flux is carried by the core, the flow rate is calculated by 

integrating the expression (4. 3a} over the duct's cross-section. This gives 

1 d 

Q = J dyJ f(z}dz = k{ -j-tanhßd {M-TJ} + 'fJd} . 
0 0 

(4. 8} 

Substituting ( 4. 8) into ( 4. 1 k) determines the pressure gradient. This gives 

k- ßd 
- tanhßd ( M-rJ) + TJßd · (4. 9} 
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4.4 Flow structure 

When an electrically conducting fluid flows across magnetic field lines, a uniform 

current is induced in the core in the z-direction (see fig. 4.1 and eq. 4. !Je). It enters 

the layer S at the side wall at z = 1. Since the side wall is insulating, the current turns 

and flows within the layer almost along magnetic field lines. When the current 

approaches the corner z=d, y=1, it splits into two parts. The first part enters the 

conducting top through the coating with high resistance. The second part flows along the 

Hartmann layer in the - z -direction. The resistance of the Hartmann layer is also high, 

and equal to Al. If there was no coating, all current would enter the top directly from the 

side layer. Only negligible arnount of current would flow along the Hartmann layer. 

Since the coating is present, parts of current conducted by the top and the Hartmann 

layer are determined by the values of K,- 1, the conductance of the coating, and Al- 1, the 

conductance of the Hartmann layer, provided c>>M- 1, i.e. the top is much better 

conductor than the Hartmann layer. Since part of current leaves the Hartmann layer to 

the top at any cross-section z=const, the amount of current, flowing in the - z -direction 

in the former, decreases with z. This leads to variation of iznwith z, and since jxßis to 

be balanced by viscous term (eq. 4.1 a), it results in variation of the velocity with z in 

the Hartmann layer and in the core. 

If K,) >Al, the resistance of the insulating coating becomes very high. All current is 

conducted by the Hartmann layer. The channel may be considered as fully insulated 

with 

k = Jt!-1, (4.10a) 

Vc = f(x) = 1. (4.10b) 

If K,=0(1) and c>>M- 1, only a part of the top, which is above the side layers is 

affected by the presence of the coating (fig. 3.2a). The core velocity decreases to zero (to 
1 

be more precise, it is of the order of M-2 ), as in the case of no insulation. 

If c>>M- 1 and 1 ((K,((A/, the core velocity reads 
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Vc = f ( z) = kAI exp [ rr ( z- d)] , (4.11a) 

where 
k = dc 

c{J!K, + d{1+c) 
(4.11b) 

The velocity profile is virtually like that with thick layers of thickness 0( ~· 

According to the terminology used by Walker (1981), these "layers" may be called as 

outer ones, while the usual side layers of thickness o(Art) are called as inner ones. We 

would like to stress, however, that if "' is treated as being of the order Al, these "outer 

layers" are obtained from the consideration of the equations governing the flow in the 

core under the boundary (and matching) conditions applied to the core variables with 

the only reference to the Hartmann layer. Hence, the "outer layers" are nothing special 

but parts of the core ( eq. 4. 6): in the center of the channel there is a uniform part, and 

the exponential functions describe the flow closer to the side walls. 

Consider now a duct with all walls conducting. If side walls are conducting, the 

boundary condition 

öb ß2b 
Caz + b = CK7Jij2 at Z=1 (4 .12) 

1 

holds. After introducing the stretched variable ~ ={1/ ( z- d), and assuming that c> > Al-2 

it reads 

(4 .13) 

The order-of-magnitude arguments show that if K<<{Jl the side wall is not 

affected by the coating and may be considered as perfectly conducting. Only a part of 

the top above the side layer is affected. This may Iead only to the different profile of the 

side-wall jet along magnetic field lines, with respect to the case of no insulation. If "' 

becomes much higher then {1/, the side wall becomes insulating, but the top wall is still 

good conductor, except in the vicinity of the side wall of thickness of the order fK71/, 
where the outer layer is formed (see eq. 4. 6). This gives a velocity profile a) on fig. 3.2. 

Then the asymptotic solution, derived in this section and the discussion apply with all 

consequences for changes of the velocity profile reflected on fig. 3.2. Hence, when K 

increases from zero to infinity, first the side wall becomes insulating, and then the :flow 

structure is determined by the Hartmann layer. 



5. Conclusion 

Insulating coatings at channel walls reduce the pressure drop by orders of magni­

tude, even if no perfect insulation is achieved. MHD-flow conditions close to the perfect 

insulating case are achieved, if the nondimensional coating resistance "' is one order of 

magni tude larger than the Hartmann number lf ( "'> > lrl) . The nondimensional MHD­

pressure drop is of the order of Jrl- 1 which is extremely small for fusion relevant applica­

tions, where the Hartmann number is of the order lf = 104 + 1 os. Undersuch conditions 

poloidal blanket concepts become very attractive, due to their simpler design. 

However, one should be careful if the value of "' may fall below the value of Al 

initially or during the operation time of a fusion blanket. A reduction of "' can be caused 

for example by impurities in the ceramic, by corrosion, by irradiation darnage or by 

small cracks. If "'lies in the intermediate range 1((K,((Jrlthe pressure drop may still be 

at acceptable values. However, the velocity distribution in the channel cross section may 

become unsuitable for efficient convective heat removaL If "' approaches the order {Jl 
nearly the whole core becomes almost stagnant. For smaller values of "' ("'<<1) the 

velocity profile tends to the slug flow profile as in highly conducting channels, but at the 

sametime the pressure drop exceeds the tolerable limit. 

In the intermediate range of k one of the suggestions to the designers is to use 

ducts with cross section other than rectangular, or to turn reetangular ducts at certain 

angle to the magnetic field. This allows to avoid undesirable velocity profiles with stag­

nant regions. The cost for this is only relatively small increase in pressure drop. 

The flows in ducts with non-perfect insulation can be considered from another 

point of view, namely as flows in ducts with contact resistance on the fluid-wall inter­

face. These may be present in laboratory experiments, if electrical contact between the 

fluid and the walls is poor. It especially holds for such working fluids as mercury. The 

most probable reason for the deviation between some classical theoretical and experi­

mental results on fully developed flows in reetangular ducts (see Branover 1978) is the 

contact resistance between mercury and copper, so that the deviation is caused by the 

effects described in this paper. 

In the present paper we present only the results on fully developed flows in ree­

tangular ducts. Flows in ducts with more general geometries and three-dimensional 

flows will be considered in a journal paper. 
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