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ABSTRACT

Fully developed liquid-metal flow in a straight rectangular duct with
thin conducting walls is investigated., The duct is divided into a number
of rectangular channels by electrically conducting dividing walls. A
strong uniform magnetic field is applied parallel to duct outside side
walls and dividing walls and perpendicular to the top and the bottom
walls. The analysis of the flow is performed by means of matched
asymptotics at large values of the Hartmann number M. The asymptotic
solution obtained is valid for arbitrary wall conductance ratio of the
side walls and dividing walls, provided top and bottom walls are much
better conductors than the Hartmann layers. The influence of the
Hartmann number, wall conductance ratio, number of channels and duct
geometry on pressure losses and flow distribution is investigated. If
Hartmann number is high, the volume flux is carried by the core,
occupying the bulk of the fluid and by thin layers of thickness of the

1/2. In some of the layers, however, the flow is reversed. As

order of M
channel number increases the flow in the channels close to the center
becomes of Hartmann type with no jets at the side walls. Estimation of
pressure-drop increase in radial ducts of a self-cooled liquid-metal

blanket with respect to flow in a single duct with walls of same wall

conductance ratio gives the upper limit of 30 per cent.







VOLL ENTWICKELTE FLUSSIGMETALLSTROMUNG
IN PARALLELEN KANALEN MIT RECHTECKIGEM
STROMUNGSQUERSCHNITT IN EINEM STARKEN

HOMOGENEN MAGNETFELD ‘

Zusammenfassung

Mehrkanaleffekte in magnetohydrodynamischen (MHD) FIUSsigmetaII—
strdmungen entstehen bei der Durchstrémung von parallelen Kanalen auf-
grund der elektrischen Kopplung dieser Kanale Gber elektrisch leitende Ka-
nalwéande. Diese Effekte werden am Beispiel einer voll eingelaufenen MHD-
Stromung in einem Kanal von rechteckférmigem Querschnitt untersucht,
der durch dianne elektrisch leitende Zwischenwande in einzelne Unterkana-
le aufgeteilt wird. Das angelegte starke Magnetfeld ist parallel zu diesen
Zwischenwanden und senkrecht zur oberen und unteren Kanalwand orien-
tiert. Berechnungen fir grof3e Hartmann-Zahlen (M) werden mit der Metho-
de der "matched asymptotic expansions” durchgefihrt. Die berechnete
asymptotische Lésung ist fur beliebige Leitfahigkeiten der Zwischenwande
und der beiden duBeren Seitenwénde giltig, sofern diese besser leitend sind
als die Hartmann-Grenzschichten. Untersucht werden die Druckverluste und
Geschwindigkeitsverteilungen in Abhangigkeit von der Hartmann-Zahl, der
Wandleitfahigkeit und der Anzahl der Teilkanéle sowie ihrer Geometrie. Fur
groBe Hartmann-Zahlen flieBt der Volumenstrom im wesentlichen im Kern
und in dinnen Schichten von der GréBenordnung M-1/2.In einigen Gebieten
ist die Stromungsrichtung umgekehrt. Mit wachsender Kanalanzahl ent-
wickelt sich im mittleren Kanal eine Hartmannstromung ohne Geschwindig-
keitsiberhhungen an den Seitenwanden. Eine Abschdtzung der Druckver-
lustzunahme in den radialen Kanélen eines selbstgekuhlten Flissigmetall-
blankets bezogen auf die Stromung in einem Einzelkanal mit Wanden glei-
cher elektrischer Leitfahigkeit, liefert einen oberen Wert von 30 %.







CONTENTS

Introduction
Formulation of the problem
2.1 Governing equations
2.2 Boundary conditions
Asymptotic solution
3.1 The core C and the Hartmann layer H
3.2 Side layers SR and SL
3.3 Composite solution and flow rates
Results and discussion
4.1 Single channel
4.2 Two channels
4.3 Three channels and more
Conclusions
References

Appendix A: Hartmann layer HS

14

15

17

21

22

23

28

32

34

35

45

46

49







. INTRODUCTION

In a concept of self-cooled liquid-metal blanket for Tokamaks,
the first wall is cooled by liquid metal flowing in radial-toroidal
bends [1]. Toroidal ducts are aligned with magnetic field lines to avoid
pressure losses caused by strong magnetohydrodynamic interaction. These
ducts are fed by the radial ones in which the coolant flows
perpendicular to the magnetic field over a short distance. Toroidal
ducts are electrically coupled by common electrically conducting
dividing walls. This results in the so-called "Multi-Channel Effect"
(MCE) caused by leakage currents crossing all channels ([2]. MCE is
expressed in additional pressure drop with rtespect to the flow in
electrically separated channels and in nonuniform flow distribution
among coolant ducts. To suppress leakage currents in radial ducts, i.e.
to separate them electrically, Flow Channel Inserts (FCI) are suggested

[3]. Without FCI, MCE is present in radial ducts as well,

Contribution to the total pressure drop due to MCE in
radial-toroidal bends results from two electric current loops. The first
one is two-dimensional in a sense that current flows in planes
perpendicular to the main-flow direction. This current is induced in the
radial ducts, if FCI are not used; it brings the only contribution to
the total MCE far from the junction between ducts in the region of fully
developed flow. The second current loop near the junction between radial

and toroidal ducts produces three-dimensional pressure drop.




The importance of MCE and its influence on pressure losses has
been pointed out first by Madarame, Taghavi & Tillack ([2]. They
estimated three-dimensional pressure drop in the second wall orifice of
BCSS blanket in a multiple duct geometry. The results were obtained by
assuming that the top wall was thick, and that the wall conductance
ratio ¢ of the thin side walls and the Hartmann number M satisfy the

relation ¢ » M_I/Z

. On the basis of slug and fully developed flow models
they predicted that pressure drop in the orifice can become very large
because of leakage current effects. Pressure drop in a multiple duct
system rapidly increases with the number of channels; it is determined
by the ducts close to the center where the flow becomes of Hartmann type
(no jets at the side walls)l . When the number of channels exceeds 20,

pressure drop becomes 10 to 100 times higher than that in a single duct,

that makes it almost impossible to pump a coolant through the blanket.

The increase of the pressure drop by a factor of 100 is mainly
due to the fact that the top wall is thick. A thick wall perpendicular
to the magnetic field in the limit Mso acts like a very good conductor
and creates a pressure gradient of the order 1. This is not the case in
a duct with thin conducting walls with ¢<l, in which pressure gradient
is proportional to ¢. In the reference concept of blanket the radial

ducts have thin conducting walls with wall conductance ratio in the

The reader may prefer to use the term "slug flow", or more precise term

"flow in a duct with perfectly conducting side walls".

10




range 0.02+0.04 with FCI and about 10 times these values if FCI are not
used. Therefore, pressure drop due to MCE is expected to be much smaller
than in a duct with a thick top wall. Nevertheless, MCE is one of the
critical issues for the reference concept; 1t requires thorough
consideration.

172 all current leaving the core enters side walls;

If ¢ » M
currents carried by the side layers are neglected. In this case the
analysis of the flow, especially in three dimensions, simplifies
considerably (see [4,5], for example). Even if this relation .for
blanket-relevant range of parameters does not hold (Hartmann number

1/2

varies within the range 3000:4000), the assumption ¢ » M is usually
made [4,5], which is the basis for the so-called Core-Flow Approximation
(CFA). The range of validity of CFA with reference to multiple duct flow

is discussed in Sec. 4,

If pressure drops in all channels are equal, MCE results in
nonuniform flow distribution among them. One of the possible ways to
even that has been suggested by Hua & Picologlou [6], who studied
liquid-metal flow through a manifold that fed the array of nine
electrically coupled rectangular ducts. On the basis of CFA they found
that nonuniform flow partition may be reduced or even eliminated by

properly chosen combination of wall conductance ratios.
McCarthy et. al. [4,7] investigate fully-developed flow in

multiple thin-walled rectangular ducts in a different context, when

applied magnetic field is parallel to the top and bottom and

11




perpendicular to the side walls and the dividing walls.

In all cited papers, except in the work by Madarame, Taghavi &
Tillack {2], variation of pressure drop with channel number has not been
studied, Since the number of coolant channels in the reference concept
is 29 in inboard and 38 in outboard blankets [3], this dependence
becomes very important. Forthcoming experimental studies of MCE in
radial-toroidal bends [3] with both electrically coupled and separated
radial ducts require theoretical predictions of pressure drops and flow
rate distribution among channels for a wide range of flow parameters,
namely the Hartmann number, wall conductance ratio, number of channels
and duct geometry. The aim of the present paper 1s to provide such an
investigation in the radial branch of a multi-channel bend away from the
junction between radial and toroidal ducts, i.e. in the region of fully
developed flow. Fully developed multiple channel flow problem is
analysed by means of singular perturbation theory as the Hartmann number
M tends to infinity. This theory has been successfully applied by many

authors to the flow in a single channel [8,9].

Walker [9] treats the flow in a thin-walled duct with all walls
having the same wall conductance ratio ¢ with the restriction M-1<c<1.
The solution is obtained for three different cases:

i) ¢ < M'l/z,
i1y ¢ - om 1%y,

iii) ¢ » wi/?,

12




In the present paper it is assumed that top and bottom walls
have the same wall conductance ratios. The restrictibn c €1, as well as
dividing the solution procedure on the three cases i) to iii) are not
necessary, and therefore in the present study these restrictions are
relaxed. Since top and side wall conductance ratios c, and cg have
different influence on the flow structure (the increase of c, results
generally in increasing volume flux carried by the side layers, while
the effect of increasing c_ is opposite ) they are treated as
independent parameters. The value of cg is considered as arbitrary
(including limiting cases of insulating and perfectly conducting walls).

-1

For the value of c, the assumption c, » M 7, which holds for

liquid-metal blankets, is retained in order to keep the side-layer
problem tractable by analytical methods. To summarize, the present

solution is obtained under the following assumptions:

i) the applied magnetic field is strong, i.e. M » I1;
ii) top and bottom walls have the same wall conductance ratios c =Cpi
iii) top and bottom walls are much better conductors than the

Hartmann layers, i.e. ct> M

13




2. FORMULATION OF THE PROBLEM

Consider steady flow of a viscous conducting incompressible
fluid along n electrically coupled straight rectangular channels of
infinite length (see Fig. 1) due to pressure drop imposed in the
z-direction. Pressure drop may vary from one channel to the other. A
strong uniform external magnetic field §e= Bo gy is applied parallel to
channel side walls and perpendicular to the top and the bottom walls.
All channels have the same height 2a. The walls parallel to the magnetic
field, i.e. the outside side-walls and the dividing walls, are numbered
from 1 to n+l from the left to the right. They have thicknesses hgi) and
(1)
s

e s i , ~
conductivities o and are placed at x=x( ) (i=1,...,n+1). The value of

LD
ey

is set to zero. The distance between the side walls is denoted by
gD (D) (1) BV

(1)

conductivities o, are placed at y=a (i=l,...,n). The problem is

i.e. The top walls having thicknesses and

symmetric with respect to y=0, and hence the flow in the upper half of

the duct y=0 is considered subject to appropriate symmetry conditions at

y=0. y

T 2
Ch.1 |[2e chi (17" | chin

l hel) h i)

| |t e B

D \X@)_” 0 D ) )

Bottom wall

Fig.l1 Schematic diagram ot the flow in multiple rectangular ducts
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21 GOVERNING EQUATIONS

The problem can be formulated in terms of fluid velocity and
either electric potential or induced magnetic field. In this paper we
follow the latter classical formulation for fully developed flow [10].

In this case the dimensionless equations governing the flow in channel i

(i=1,...,n) read

. (i) ,
vy g; - k2 (2.1a)

. (i)
2p (1), 8V
v 0, (2.1b)

where

(x, y, z) is the cartesian coordinate system,

V(l), b(l) are the fluid velocity and the induced magnetic

field, respectively; these are  both in the
z-direction,

k(i)= dp;i)/dz is the pressure gradient,

p;i) is the total pressure,

M=Boa(o/pz/)l/2 is the Hartmann number,

v, o, p are the kinematic viscosity, density and conductivity
of the fluid, respectively,

M is the magnetic permeability,

2

V2 = 62/6x + 62/6y 2 is the Laplace operator.

The length, the fluid velocity, the induced magnetic field and

the pressure are normalized by a, v, (characteristic fluid wvelocity,

15




which will be determined later), uvo(pva)l/z, aavoBi, respectively.

(1)

Once the functions v

(i)

i .
and b( ) are known, the electric current

density j (1)

(normalized by voBoa) and the electric potential &

(normalized by VoBoa) can be calculated from Ampére'’s law

j(i)= M-lcurl[b(i)gz Jz

(i) (i)
_ ,-18b _ -1db
=M 5; e M I 9y, (2.2a)
and Chm's law
oD (D Dy ppe

i (i)
- {-M_l 9b "7 V(l)]gx syl (2.2b)

ay ax ?y ’

From equation (2.2a) it follows that the function b(l) is a
stream function for the vector field j(l{

Hence, lines of constant

5 (D)

are electric current lines.

16




221 BOUNDARY CONDITIONS

The boundary conditions for the fluid velocity are the non-slip
conditions on the walls, If duct walls are thin, i.e. the wall thickness

hw satisfies the relation hw < 1, the thin-wall condition
e & _y (2.3a)

holds on the fluid-wall interface [11], where n is unit vector normal to
the wall, into the fluid; cw=awhw/aa is the wall conductance ratio. The
thin-wall condition is not wvalid at duct corners, where the two thin
walls carrying currents in directions perpendicular one to the other
join. However, the effect of the corners is local and in most cases has
no influence on the flow in the bulk of the fluid [12]. The thin-wall
condition (2.3a) was obtained by assuming that a solid wall separates
conducting fluid from insulating medium. If a wall separates two regions
occupied by conducting fluids with the same properties (see Fig. 2), the
similar reasoning as that used by Shercliff [11] leads to the two

conditions

(1)
8b"_ (), (2) (2.3b)

w apl

= - = (2.3¢)

where unit vector n. is normal to the wall, into the region j; b(J) is

the induced magnetic field in the region j (j=1,2). The equation (2.3c¢c),

17




together with (2.2a), indicates that tangential component of the
electric current in the fluid is continuous across the wall. The
equation (2.3b) determines the +wvalue of this current, which is
proportional to the jump of the induced magnetic field across the wall.
If a wall is a perfect conductor, i.e. c, = o, the conditions (2.3b) and
(2.3c) lead to Bb(l)/agl = ab(z)/aq =0, which hold also in Shercliff'’s
case. However, if c, = 0, the condition (2.3b) becomes b(1)=b(2), i.e.
the induced magnetic field, together with the normal component of the
electric current, become continuous across the wall. In contrast to the
Shercliff’'s case in the limit CW#O the wall does not become insulating
because it separates two conducting media, and hence electric current

can cross the wall with no resistance. In this limit the wall should be

considered of zero thickess still being electrically conducting.

- hy €1
————)—K/ <
Conducting / Conducting
fluid. = s
Region 1 7 Region 2
Ny nz
Thin wall e

Fig. 2 Thin wall dividing two regions of conducting fluid
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For the present geometry condition (2.3a) holds on the outside
side walls and the top wall, whereas the conditions (2.3b) and (2.3c)

hold on the dividing walls.

When applied to the channel i (i=1,...,n), the mnon-slip
conditions, the conditions (2.3) and the symmetry conditions with

respect to y give

, , (i) , . ,
viPo, DT () p (D) at x=x1)  (2.1c,q)
s 9dx i
ab sax = bV sax  ar x=x™) im, (2.1e)
; , (i) , , ,
V(l)=0, c(l+l)-a—2 = -b(l)+ e,b(l+1) at X=x(l+1), (2.1f,g)
s ax i
ab ) sax = ap(FD) 454 at  x=x(1t1) (2.1h)
, : (i) ,
(1) _ (1) ab* "7 _ (i) _ ;s
v /=0, c, 3y b at y=1, (2.11i,3)
(i) ,
%;’7 —o, » o at  y=0, (2.1k, 1)
where
0 for i =1 1 for i #n
& = y € .= ’
: 1 for i =1 * 0 for i =n
(1), (1) (1), (1) (i+l1), (i+1)
g (e e (% s 1) %s Ps
t oa ' s ca ' s oa

19




are the top-, the left-, and the right- wall conductance ratios of
channel i, respectively.

. . (i) (1)
In duct flows either pressure gradients k or flow rates Q

in each channel are specified. If pressure gradients are fixed, the flow

rates are calculated from the equations

L (D)
o= 2de j v ax, (2.4)
0 1)
(1)

For given flow rates (@ the expression (2.4) provides the system of
equations for the determination of pressure gradients. In both cases the

characteristic velocity v, is defined as average velocity in the whole

duct, i.e.

Q{1 o (tD). (2.5)

I~

i=1

20




3 ASYMPTOTIC SOLUTION

The problem (2.1) 1is treated by means of matched asymptotics.

According to this method the flow region is divided into the following

subregions (Fig. 3):

- (Ci) the inviscid core regions,
- (Hi) the Hartmann boundary layers near the top wall adjacent to the
cores with O(M_l) thickness,
- (SRi)’ (SLi) the side layers at the side walls; these are of
O(M_l/z) thickness,
(ue

- (HS) the Hartmann layers mnear the top wall adjacent to the side

layers , with a thickness of O(M-l) and a length of O(M-l/z).

Channel i-1 Channel i 1. Channel i+1
v J ]
Higt Hs | Hs + \Hi 1 Hs | HS iHitt
'"\("T “““““ Tt ""T”T"'“"T" o
: I i l
| i ] |
i | [ |
| I 1 i
1 ! l l
Gig VSRiq SLi b G SRy PSLig) Cigg
i l l :
i 1 | ]
| A o
-1/2, ! -
om 7! e —i EM___)
: ! ! .
' ' g I I Lo -
y=0 x = x =+

Fig. 3 Flow subregions at large Hartmann number
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In addition, there are regions with both dimensions of O(M_l) at
the channel corners. They need not to be analysed in detail for the
determination of the leading term in each asymptotic expansion for the

other regions [13].

31 THE cORE C AND THE HARTMANN

LAYER H

In regions Ci and Hi the flow is essentially one-dimensional.
The velocity and the induced magnetic field do not depend on the
variable x, and the flow is the same as the Hartmann flow. The flow in

the core and adjacent Hartmann layer is described by the functions [8]

vgi)= k(i)ni, (3.1a)

(e Py, (3.1b)
) ) y

vgl)= Vgl)(l-e ", (3.2a)
. , LY

b{H- bgl) + v, (3.2b)

where yk=M(y—1) is the stretched Hartmann-layer variable and
(1)
o
* c(l)+M-l
t
While deriving formulas (3.2) the only assumption has been made that

M»l, and exponentially small terms only have been neglected. The

22




. i i , . . ;
functions Vg ) and bg ) are composite asymptotic expansions, which are

valid in regions Ci and Hi to any order in M.

The functions (3.1) determine the flow in the cores of all
channels. However, these functions evidently fail to describe the flow
near the side walls parallel to the magnetic field lines where side

layers appear, which carry part of the volume flux.

32 SIDE LAYERS SR aAnND SL

In each channel of the multiple duct there are two side layers.
One of them is at the left wall with number i (region SLi); the other
one is at the right wall with number i+l (region SRi)' The thickness of

1/2. If the channel width d(i) is of

both layers is of the order of M
the same order, the core disappears and the two side layers merge into a
single one. This case is not covered by the present investigation, and
special but straightforward treatment is necessary. However, in the
reference concept of liquid-metal blanket radial ducts have square
cross-section, so that in the present paper d(i) is supposed to be of

the order 1. Under this condition the two layers split, and may be

treated separately.

Consider side-layers at the wall i, which is the left side wall
of channel i and the right side wall of channel i-1. In contrast to the
core, the flow in the side layer near the wall i must be treated in

channels i and i-l1 simultaneously due to coupling between the induced

23




magnetic fields in these channels (see 2.3d,e,g,h).

The vicinity of the side wall x=x(l) is stretched by introducing

a variable
§i=Ml/2[x - x(i)]. (3.3)

Substituting (3.3) into equations (2.la,b) and similar equations
governing the flow in channel i-1 and keeping main terms in these

equations as M = « gives

g2y (1) (1)

e i/ (3.4a)
3¢, dy
S
+ -0, for £.= 0; (3.4b)
0¢ z dy '
i
and
azvgi-l) 3b§i-1) (i-1)
5 = -k M, (3.4¢c)
¢, dy
-0, for £ < O. (3.4d)
2 ‘ i
8¢, dy

The boundary conditions for the system (3.4a-d) with respect to
§i are obtained from the conditions (2.lc-e) on the wall i and the
conditions of matching the core-flow solutions in channels i and i-1.

These give

v(i)=o, VD at ¢.=0, (3.4e,1f)
SL SR 1

24




o (1)

d
(i), 1/2 sL (i) (i-1) P
cg M EE;_ = DSL - SibSR , at 51—0, i=n+1, (3.4g)
(i-1)
(i), 1/2 SR B (i) (i-1) P
Cs M gg;— = eibSL - bSR , at 51—0, i=1, (3.4h)
ng) > vgi), bgi) 5 bgi) as £, (3.44,3)

)

V(i—l)=> Vgi—l)

b(i-l)=}' b(i_l) as §‘=> -, (3'4k’1)
SR SR c 1

The conditions for the system (3.4a-d) with respect to y are the

symmetry conditions

av (1)

S _ (1)_ t y-0, €20 (3.4m,n)
3y =0, bSL = a y=0, 61_ s .Am,n
3V§;-1) (i-1)

3y = 0, bSR =0 at y=0, fis 0, (3.40,p)

and the boundary conditions at y=1 which are obtained from the
conditions of matching with the Hartmann layer (region HS) wvariables

(see Appendix A). They read

vsi){1+Mc£i)} + bgi)= k(i)M[l+c£i)J at y=1, giz 0, (3.4q)

Vgé-l)[l+Mcgi—l) ]+b§i-l)=k(i—l)M[1+C£i-1)] at y-1, §,< 0. (3.41)

25




The equations (3.4) constitute the problem governing the flow in
the shear layers at the wall i. By this moment no assumption has been
made on the values of wall conductance ratios. An analytic solution to
the problem (3.4) can be obtained if Mcgi)> 1 for all i, i.e. the top
(and the bottom) walls of all channels are much better conductors than
the Hartmann layers., Under this assumption conditions (3.4q) and (3.4r)

become

VS(IJ:)= Vc(:l) at y=1, 512 o, (3-4CI')
Vgi-1)= Vc(i'l) at y=I, 615 0. (3.41")

The solution to the problem (3.4) obtained by means of finite

Fourier transform with respect to y reads

"s(f)= Vﬁ”* Z VL(i'j)(ii) cos By, (3.5a)
j=0
bs(i)= bc(i)+ Z BL(i’j)('fi) sin By, (3.5b)
j=0
V§i'1)= Vgi'1)+ Z Vgi—l,j)(si) cos ﬂjy, (3.5¢)
j=0
bgi-1)= bgi'1)+ Z Bgi-l,j)(gi) sin ﬂjy, (3.5d)
j=0

26




where

N

v ) = et 0 |el P sin qe 1+ 0T cosy 16 1]
B e = exptrjieg |l P eosy e 1 - 0@ P sim 16 1],

-~ o

L. w,y M . . :
Cfl’J) J /M [k(l)_ 5,k(l-l)] - V(l)ﬂ.a.. )
B [61+1+aij/_ﬂ} 1 ¢y

. wy M . .
Cgl,J) _ j { / [ e Eik(1+l)]

ﬁj [e 2T ,J,f‘ﬁ}

()
Ve ﬂjai+l,j }

(i,5) _ (i) 1 _ ./

D = v, e ﬁj—{ﬁsz, e ﬂj/2,
_ oy 1ydal _ (1)

wj— 2(-1) ﬂj s aij = cs 7j.

While deriving the solution (3.5) terms O(M—l/z) have been neglected
with respect to those retained. Throughout this paper this is done all

the time when it is possible.

The second terms in the right hand side of each of the equations
(3.5a) to (3.5d) represent the excess of the side-layer velocity and the
(1)

induced magnetic field over the core ones. If c, ==, these terms are of

the order 1; if cgl)=0, they are of the order ¥y M. It holds for layers
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at both outside and dividing walls provided the difference between

pressure gradients in the neighbouring channels is of the order I.

33 COMPOSITE SOLUTION
AND FLOW RATES
If pressure gradients k(l) are specified, the equations (3.1),

(3.2), (3.5) and the solution to the problem governing the flow in the

layer HS (see Appendix A) give

L) [ Dy (). Vgi)J[l_exp(yﬂ)J, (3.6a)
p(1)_ [ bgi)+ bgi)- bgi)J[l—eXp(yH)]. (3.6b)

These expressions represent the unique first-order asymptotic solution

to the problem (2.1) in the whole duct apart from the corners.

The volume flux carried by the core, the left and the right side
layers, calculated by integrating equation (3.la) over the cross-section
of channel i, and the equations (3.5a) and (3.5c¢) over the side layer

regions, are

Qgi)= Zk(i)nidi, (3.7

Do w2

SL
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-]

v/ [ k(i)-aik(i’l)]}z ﬂ}7/2(1+6i+aij/—ﬁ)-l, (3.7b)

=
(i)  ,-1/2 (i)
QSR =M Qc *
+ /oM [ k(i)-eik(i+1)]§: ﬁ}7/2(1+ei+ai+l’j/“ﬁ)'1. (3.7¢)
=)

Total flow rate in the channel i is equal to the sum of the three flow

rates, i.e.
Q(i)= Q(i)+ Q(i)+ Q(i)_ (3.8)

c SL SR

If the difference between pressure gradients in neighbouring

-1/2

channels is of the order M , or the side-wall 1is perfectly
conducting, both side-layer volume fluxes Qgi) and Qgi_l) at this wall

are neglegible compared to core one. In the other cases the first terms
in the right-hand side of the equations (3.7b) and (3.7c¢c) are neglegible
with respect to the second ones., Side-layer volume fluxes at the wall i

become proportional to the difference between pressure gradients and are

(1)__o(i-1).

If left side layer in channel i
SL SR

of opposite sign, since Q
carries volume flux in the main-flow direction, the flow in the right
side-layer in channel i-1 is reversed, and vice versa.

The side-layer volume fluxes Q(l) and Q(l) may be expressed in

SL SR

terms of side-wall currents by integrating equations (3.4b) and (3.4d)
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with respect to §i once and with respect to y twice, taking into account

the boundary conditions (3.4q') and (3.4r'). This gives

11
Qgi)= ”—1/2%(1) + f dy f J'},,SL(X(i),t) dt, (3.9a)
o vy
11
oiy- u %t [ar ] JY,SR(x(l),t) dt, (3.9b)
0 ¥y
where
; , e (-1)Ysin gy
J SL(x(l),y)=£{k(l)-61k(l 1)]2 572 ] , (3.9¢)
7 . 5 [6.+l+a, /_H}
J=0"j 1 ij
and
; : . 2 (—l)jsin 8.y
J'y SR(x(l),y)=£[k(l)-eik(l+l) JZ J (3.9d)

3/2
ﬂj [6i+1+ai+l,j

7

j=0

are tangential to the wall components of the electric current estimated
on the right and the left wall surfaces, respectively. From (3.%a) and
(3.9b) it follows that the flow rate carried by a side layer is
proportional to the average amount of the electric current carried by

the wall in the y-direction.

If pressure gradients are unknown, but the flow rates are given,
substituting the expression (3.8) into the equation (2.4) results in a
three-diagonal system of 1linear algebraic equations for  the

determination of pressure gradients, namely
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sa . kD a4 kB ea o (G o) 3 g
ivi-1,1 i,i ivi+l,1i

where

=]
_,3/2 -7/2 -1
Ai-l,i_ 2 /M ﬂj (l+6i+ai,j‘/_M) ,
j=0
a
372 -7/2 -1
Ai+1,i- 277/ M }: ﬂj (1+ei+ai+l’j/—ﬁ) ,
Jj=0
Al,l =2di"1 ) Al-l,i } i+1,i°
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4 RESULTS AND DISCUSSION

For the sake of simplicity in the following discussion we assume

that the flow is symmetric with respect to duct’s midplane x=x(n+1)/2.

41 SINGLE CHANNEL

W_ D) 4Dy o@D _pg
S

In a single symmetric duct (n=1, cq ,

cgl)=ct) the volume flux carried by each side layer is
(=)
(1)_,(1)_ (1) 3 -7/2 -1
Q. =Q = k2 /M B (1+csvj/”ﬁ) : (4.1a)
J=0

Typical M-shape velocity profile with distinct core and side layers at

both side walls is shown on Fig. 4.

7.0
6.0 -
5.0 ”
4.0 -
3.0-

2.0 -

Fig. 4. Fluid velocity in a single duct (n=1) at y=0. Here

eMacP e 9.1, a@g; mm1000.
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The equation (3.10) gives

o0 "l
I+c
k- g ld —t 272/ Z ﬂ}7/2(l+csvj/_M I s

t 7=0

provided e¢<l, the expression (4.1b) reduces to Walker's

1/2,

For c¢=c =c
t s

one for the pressure gradient in his case ii), i.e. for c=0(M

If cs> M-l/z (core-flow approximation), the equation (4.1b)

leads to a well-known formula for the pressure gradient

‘1
k(l)={1+i+——2——} (4.2a)
Ct S

(see [14], for example). The volume fluxes carried by the side layers in

this case are

-1
(1)_,(1) 1 2
QSL =QSR ={3CS [l'fc—t] + a} . (4. Zb)

From (4.2a) it follows that as c, = 0 the wvalue of k(l) also tends to

zero, which means that in this limit the approximation cs> M-l/z is not
valid, Instead, the expression (4.1) for cs=0 gives the value
dc
P C (4.3)
d + 2§‘ct/—1‘71

where ¢= 0.299. If in addition ctf M»» 1, i.e. the Hartmann wall and the
core are much better conductors than the side layers, the resistance for
the electric current is mainly determined by the latter. Then formula

(4.3) reduces to that by Hunt [15]
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(1) d ,-1/2
K= e M ,

(4.4)
i.e. the pressure gradient becomes independent of c, and the top and
bottom walls may be treated as perfect conductors. The magnitude of the

1y

core velocity is of O(M 2) and the side layers carry all volume flux.

42 TwoOo CHANNELS

If a duct is divided into two channels (n=2, c£1)=c§3)=cs,

d1=d2=d, Q(l)wQ(2)=2d, c£1)=c£2)=ct), the symmetry conditions
ab(l)/ax=6b(2)/6x=0 hold at the dividing wall X=X(2). These conditions
are the same as those for a perfectly conducting wall. The wall

(2)
S

conductance ratio c does not enter the problem, and therefore, the
dividing wall acts like a perfect conductor. As a result there are no
jets at the middle side wall, the side layers at this wall carry no O(1l)
volume flux, and the only role of the side layers is to satisfy the
non-slip condition at the dividing wall ( see Fig. 5). The two-channel
duct behaves like a single duct of the width 2d, and the pressure

gradients in both channels in the case cs> M_I/Q are obtained from

(4.2a) to give

-1
k(l)=k(2)={l+ 1, 1 } . ~ (4.5)
S
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X
Fig.5, Fluid velocity in a duct divided into two channels (n=2) at

y=0. Here o{P=c(P=0.1; dPs for a1l i; me1000.

Similar results to those in a previous section for different
combinations of wall conductance ratios and the Hartmann number may be

obtained for a two-channel duct by substituting 2d instead of d.

43 THREE CHANNELS AND MORE

Consider first the flow with equal pressure gradients in all
channels. In this case the volume fluxes carried by the side layers at
the dividing walls are much smaller that those carried by the cores.

Therefore, in the middle channel the flow is of Hartmann type (no jets
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at the side walls). If top wall conductance ratios are equal, the core
velocity is continuous across the dividing walls. The average velocity
in the outer channels is higher than in the middle one because two side
layers at the outside side walls carry part of a volume flux. The flow
structure is qualitatively the same as that in a single channel having
width d= d(1)+d(2)+d(3), except that velocity takes zero value at the
dividing walls. Therefore, formula (4.1b) applies for calculating

pressure gradient.

Consider now the case of fixed flow rates. Without loss of
generality we may assume that they are equal and that channels have
square cross-section, i, e, d(l)=2 for all i.

If cgl)> M_l/z, an explicit solution of the system (3.10) is

easy to obtain in a compact form. It reads

14c¢?
P N PN € L S B (4.6a)
s s 0(2)
£
(1)
1+c
k(2)= 3A_1 30(1) + 0(2) 6c(1)———t— + 1 , (4.6b)
s s s c(1)
t

where

(2) (1) (2)

1+c 1+c 1+c

A = {écgz) ‘“7%7‘ +1 } [ 6c§1) t 41 } + 3 t (1)
C

t

Volume fluxes carried by the side layers are
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(_ 1 (4.7a)

Q" ~ (D
S
(2) (1) 1 (2) (1)
o{?’- -q{1’- @ [k k ]. (4.7b)
S

On the basis of the expressions (4.6) and (4.7) the most
essential features of the MCE in the case of fixed flow rates may be

described.

When electrically conducting fluid flows across magnetic field
lines, the electric current oy*xge is induced by the core velocity of
each channel in the -x -direction (see Fig. 6). The electric circuit
conducting current consists of cores, side walls, side layers and top
and bottom walls of all channels. Electrical conductance of the circuit
determines the values of the induced currents, which in turn determine
pressure gradients in all channels, since jgi)= -gxk(i) (eq. 2.2a and
3.1b). Due to the assumptions imposed the Hartmann layers conduct
neglegibly small currents and thus play no role for the determination of
pressure gradient. Side walls and side layers represent parallel
resistance to the electric current in the y-direction. If cgi)> M-l/z,
i.e. side walls are much better conductors than the side layers, the
latter may also be excluded from consideration. All current induced in

the core enters the side walls and the conductance of the circuit is

determined by wall conductance ratios.
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Fig. 6 Schematic diagram of electric currents in a duct divided into

three channels.

Since channels are electrically connected, the induced current
can cross all of them and complete its circuit in the outside side-walls
of the outer channels and the top wall (path ABCDEFGHA). If there were
no dividing walls, the electric current would flow as a uniform core
current from one outside side wall to the other. In the presence of
electrically conducting dividing walls part of the induced current may
flow along them in the y (or -y) - direction. Consider wall CH dividing
channels 1 and 2. If channels 1 and 2 were separated, the electric
current induced in channel 1 would flow in the direction CH, whereas the
current induced in channel 2 - in the direction HC. Since the dividing
wall CH is thin and the current flowing along it must be uniform, parts

of the currents induced in channels 1 and 2 cancel because of their
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opposite directionsz. The remaining current is proportional to the
difference between the core currents induced in channels 1 and 2, or
equivalently, to the absolute value of the difference between pressure
gradients |k(1)—k(2)|. The direction of this current and the sign of the
side-layer volume flux at the dividing walls are determined by the sign
of this difference (see 4.7b). If k(2)>k(l) (current induced in channel
2 1is stronger), the wall current is in the direction HC and an
additional current path is HCDGH. The fluid at the dividing wall flows
in the main-flow direction in the channel 2, whereas in the side layer
of channel 1 the flow is reversed (see Fig. 7). If k(2)<k(l), the
current is in the direction CH; an additional current path is HGDCH and
the flow direction at the wall is opposite to the previous case (Fig.8).
k(2) (1)

From (4.6) follows that the sign of the value is determined by

the sign of the expression

+ 1;. (4.8)

r o o) (D)
S )

The value of T may be considered as the measure of the difference

e (P ()

N N I' is positive,

between conductances of the two circuits.

i.e. k(2)>k(l). Pressure gradients in all channels are equal if I'=0.

2 ; . . , ; .
In a thick wall electric currents can flow in opposite directions

without interaction.
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Fig. 7. Fluid velocity in a duct divided into three channels (n=3;

fixed flow rates) at y=0. Here cgl)-——-cg‘?):O.l; c£2)=0.2;
e0.1; a2 for a11 i; m-1000.
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Fig. 8. Fluid velocity in a duct divided into three channels (n=3;

fixed flow rates) at y=0. Here c£1)=c£3)=cs(l)=0.2;

ePec’Po0.1; aPaz for all i; n-1000.
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The electric current in the outside side walls is proportional
to the induced magnetic field at the wall while in the dividing walls it
is proportional to a jump in induced field across the wall ( see
equations 2.3 ). Thus a dividing wall acts like a better conductor than
an outside side wall, even if their wall conductance ratios are equal.
For equal top wall conductance ratios this means that wvolume flux
carried by the layers at the dividing walls is smaller in magnitude than

that at the outside side walls.

Variation of the pressure gradients with the side-wall
conductance ratio cg (the same for all side walls) and the Hartmann
number is shown on Fig. 9 and 10, respectively. The effect of the finite
Hartmann number 1is to provide an additional path for the electric
currents along the side layers and therefore to increase pressure drop.
As M3, pressure gradients tend to finite values given by CFA (see
equations 4.2a, 4.5 and 4.6), which is in 5 per cent accuracy with exact

values for ¢=0.1 and M=1000 (see Fig.10).

CFA overestimates volume flux carried by the side layers. Thus,
in situations where side layers play minor role, i.e. carry less volume
flux, it should give better results. From Fig. 10 it follows that the
best results CFA gives for the middle channel in a three-channel duct,
where the flow is almost of Hartmann type. Therefore, in a fully
developed multiple duct flow the range of wvalidity of the CFA is wider

that in a single-duct flow.
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Fig. 9 Variation of pressure gradients with side-wall conductance

ratio for n=I+3. Here c£1)=0.1; a2 (ic12n); M=3000.
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Fig. 10. Variation of pressure gradients with the Hartmann number for

Beeop.1; aaz for a1n 1.

n=1+3. Here c
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TABLE 1 VARIATION OF PRESSURE GRADIENTS WITH CHANNEL

NUMBER FOR EQUAL FLOW RATES ( c=0.1, M=3000 ).

No. of channels Pressure gradients k(i)*IOZ
i=1 2 3 4 5 6
1 7.194
2 7.997
3 8.070 8.838
4 8.076  8.913
5 8.077 8.919 8.987
6 8.077 8.920 8.994
7 8.077 8.920 8.994 9.000

If number of channels is more than three, the flow features
remain the same as for n=3. Variation of the pressure gradients with
channel number is given in Table 1. Pressure gradients in ducts close
to the center very soon reach the value k=0.09. The latter may be

calculated by formula

HART (ct+M_l)/(1+Ct)' (4.9)

Therefore, the upper limit for the increase in pressure gradients with

respect to the flow in a single duct is given by the ratio of
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expressions (4.9) and (4.1b). For wall conductance ratio in the range
0.02+0.4 and Hartmann number in the range 3000+4000 pressure gradients

do not increase by more than 30 per cent.
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5 CONCLUSIONS

The pressure drop due to MCE in a fully developed flow is found
to be not high. The maximum value of the pressure gradient is given by
the expression (4.9), which is reached when the channel number exceeds
7. If top wall conductance ratios in all ducts are equal, this value is
reached in the ducts close to the center because jets at the dividing

walls carrying part of a volume flux disappear.

For the effective cooling of the blanket first wall one would
prefer to have equal flow rates in coolant ducts with minimum pressure
losses. Therefore, the case of equal both flow rates and pressure
gradients seems to be optimal. The analysis for the three-channel duct
shows that this can be achieved simply by relating side- and top- wall
conductance ratios ( see expression 4.8). The same conclusion applies
for ducts with more than three channels. To achieve optimal flow
distribution the top wall conductance ratios of all channels, except the
outer omnes, should be made equal first. Then the formula (4.8) applies

for the first and the second channels with I'=0,

To make the final conclusion about the importance of MCE in the
concept of self-cooled liquid-metal blanket one has to analyse the

pressure drop in multi-channel bends. It will be addressed in another

paper.
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APPENDIX A HARTMANN LAYER HS

The problem governing the flow in the Hartmann layer at the wall

i in channel i is

32V§i) 3W§i) azwgi) avgi)
+ =0, —_— — =0 , (Aa,b)

a 2 i) d 2 a

Va Ty Yy Ty

(i)

(1)_ (1) HS _ (1) (i) _
Vis = 0, h M ayH = - WHS+ k c, M at yH—O, (Ac,d)

(i), (i) (1) (1) (i)

Vis 2 Var (51,1), Wog o bSL (Ei,l)-bc as  y s, (Ae,f)

where w(i)= b(i) - b(i).

HS HS c

The solution to the problem (Aa-f) is

V(Do vs(ﬁ)(gi,l)[ I - exp(yﬂ)], (ag)
WD v e ey + P, -k« Pn, (Ah)

Substituting (Ag) and (Ah) into the condition (Ad) gives the
relation between functions Vgi)(fi,l) and bgi)(ﬁi,l) and hence the

boundary condition for side layer variables at y=I, namely

Vgi)(éi'l)[cgi)M +1 J - v+ Py [l+c£i)]. (A1)
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