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A 8 s T R A c T 

Fully developed liquid-metal. flow in a straight reetangular duet with 

thin eondueting walls is investigated, The duet is divided into a number 

of reetangular ehannels by eleetrieally eondueting dividing walls. A 

strong uniform magnetie field is applied parallel to duet outside side 

walls and dividing walls and perpendieular to the top and the bottom 

walls. The analysis of the flow is performed by means of matehed 

asymptoties at large values of the Hartmann number M. The asymptotie 

solution obtained is valid for arbitrary wall eonduetanee ratio of the 

side walls and dividing walls, provided top and bottom walls are mueh 

better eonduetors than the Hartmann layers. The influenee of the 

Hartmann number, wall eonduetanee ratio, number of ehannels and duet 

geometry on pressure losses and flow distribution is investigated. If 

Hartmann number is high, the volume flux is earried by the eore, 

oeeupying the bulk of the fluid and by thin layers of thiekness of the 

order of M- 112 . In some of the layers, however, the flow is reversed. As 

ehannel number inereases the flow in the ehannels elose to the eenter 

beeomes of Hartmann type with no jets at the side walls. Estimation of 

pressure-drop inerease in radial ducts of a self-eooled liquid-metal 

blanket with respeet to flow in a single duet with walls of same wall 

eonduetanee ratio gives the upper limit of 30 per eent. 
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VOLL ENTWICKELTE FLÜSSIGMETALLSTRÖMUNG 

IN PARALLELEN KANÄLEN MIT RECHTECKIGEM 

STRÖMUNGSQUERSCHNITI IN EINEM STARKEN 

HOMOGENEN MAGNETFELD 

Zusammenfassung 

Mehrkanaleffekte in magnetohydrodynamischen (MHD) Flüssigmetall

strömungen entstehen bei der Durchströmung von parallelen Kanälen auf

grund der elektrischen Kopplung dieser Kanäle über elektrisch leitende Ka

nalwände. Diese Effekte werden am Beispiel einer voll eingelaufenen MHD

Strömung in einem Kanal von rechteckförmigem Querschnitt Untersucht, 

der durch dünne elektrisch leitende Zwischenwände in einzelne Unterkanä

le aufgeteilt wird. Das angelegte starke Magnetfeld ist parallel zu diesen 

Zwischenwänden und senkrecht zur oberen und unteren Kanalwand orien

tiert. Berechnungen für große Hartmann-Zahlen (M) werden mit der Metho

de der "matched asymptotic expansions" durchgeführt. Die berechnete 

asymptotische Lösung ist für beliebige Leitfähigkeiten der Zwischenwände 

und der beiden äußeren Seitenwände gültig, sofern diese besser leitend sind 

als die Hartmann-Grenzschichten. Untersucht werden die Druckverluste und 

Geschwindigkeitsverteilungen in Abhängigkeit von der Hartmann-Zahl, der 

Wandleitfähigkeit und der Anzahl der Teilkanäle sowie ihrer Geometrie. Für 

große Hartmann-Zahlen fließt der Volumenstrom im wesentlichen im Kern 

und in dünnen Schichten von der Größenordnung M-1/2. ln einigen Gebieten 

ist die Strömungsrichtung umgekehrt. Mit wachsender Kanalanzahl ent

wickelt sich im mittleren Kanal eine Hartmannströmung ohne Geschwindig

keitsüberhöhungen an den Seitenwänden. Eine Abschätzung der Druckver

lustzunahme in den radialen Kanälen eines selbstgekühlten Flüssigmetall

blankets bezogen auf die Strömung in einem Einzelkanal mit Wänden glei

cher elektrischer Leitfähigkeit, liefert einen oberen Wert von 30%. 
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I. INTRODUCTION 

In a concept of self-cooled liquid-metal blanket for Tokamaks, 

the first wall is cooled by liquid metal flowing in radial-toroidal 

bends [1]. Toroidal ducts are aligned with magnetic field lines to avoid 

pressure losses caused by strong magnetohydrodynamic interaction. These 

ducts are fed by the radial ones in which the coolant flows 

perpendicular to the magnetic field over a short distance. Toroidal 

ducts are electrically coupled by common electrically conducting 

dividing walls. This results in the so-called "Multi-Channel Effect" 

(MCE) caused by leakage currents crossing all channels [ 2] . MCE is 

expressed in additional pressure drop with respect to the flow in 

electrically separated channels and in nonuniform flow distribution 

among coolant ducts. To suppress leakage currents in radial ducts, i.e. 

to separate them electrically, Flow Channel Inserts (FCI) are suggested 

[3]. Without FCI, MCE is present in radial ducts as well. 

Gontribution to the total pressure drop due to MCE in 

radial-toroidal bends results from two electric current loops. The first 

one is two-dimensional in a sense that current flows in planes 

perpendicular to the main-flow direction. This current is induced in the 

radial ducts, if FCI are not used; it brings the only contribution to 

the total MCE far from the junction between ducts in the region of fully 

developed flow. The second current loop near the junction between radial 

and toroidal ducts produces three-dimensional pressure drop. 

9 



The importance of MCE and its influence on pressure losses has 

been pointed out first by Madarame, Taghavi & Tillack [2]. They 

estimated three-dimensional pressure drop in the second wall orifice of 

BCSS blanket in a multiple duct geometry. The results were obtained by 

assuming that the top wall was thick, and that the wall conductance 

ratio c of the thin side walls and the Hartmann number M satisfy the 

relation c ~ M- 112 . On the basis of slug and fully developed flow models 

they predicted that pressure drop in the orifice can become very large 

because of leakage current effects. Pressure drop in a multiple duct 

system rapidly increases with the number of channels; it is determined 

by the ducts close to the center where the flow becomes of Hartmann type 

(no jets at the side walls)
1 

. \·Jhen the number of channels exceeds 20, 

pressure drop becomes 10 to 100 times higher than that in a single duct, 

that makes it almost impossible to pump a coolant through the blanket. 

The increase of the pressure drop by a factor of 100 is mainly 

due to the fact that the top wall is thick. A thick wall perpendicular 

to the magnetic field in the limit M~ acts like a very good conductor 

and creates a pressure gradient of the order 1. This is not the case in 

a duct with thin conducting walls with c~1, in which pressure gradient 

is proportional to c. In the reference concept of blanket the radial 

ducts have thin conducting walls with wall conductance ratio in the 

1 

The reader may prefer to use the term "slug flow", or more precise term 

"flow in a duct with perfectly conducting side walls". 
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range 0.02+0.04 with FCI and about 10 times these values if FCI are not 

used. Therefore, pressure drop due to MCE is expected tobe much smaller 

than in a duct with a thick top wall. Nevertheless, MCE is one of the 

critical issues for the reference concept; it requires thorough 

consideration. 

If c ~ M-
112 

all current leaving the core enters side walls; 

currents carried by the side layers are neglected. In this case the 

analysis of the flow, especially in three dimensions, simplifies 

considerably (see [4,5], for example). Even if this relation for 

blanket-relevant range of parameters does not hold (Hartmann number 

varies within the range 3000+4000), the assumption c ~ M- 112 
is usually 

made [4,5], which is the basis for the so-called Core-Flow Approximation 

(CFA). The range of validity of CFA with reference to multiple duct flow 

is discussed in Sec. 4. 

If pressure drops in all channels are equal, MCE results in 

nonuniform flow distribution among them. One of the possible ways to 

even that has been suggested by Hua & Picologlau [ 6], who studied 

liquid-metal flow through a manifold that fed the array of nine 

electrically coupled reetangular ducts. On the basis of CFA they found 

that nonuniform flow partition may be reduced or even eliminated by 

properly chosen combination of wall conductance ratios. 

McCarthy et. al. [4,7] investigate fully-developed flow in 

multiple thin-walled reetangular ducts in a different context, when 

applied magnetic field is parallel to the top and bottarn and 
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perpendicular to the side walls and the dividing walls. 

In all cited papers, except in the work by Madararne, Taghavi & 

Tillack (2], variation of pressure drop with channel nurnber has not been 

studied. Since the nurnber of coolant channels in the reference concept 

is 29 in inboard and 38 in outboard blankets [ 3] , this dependence 

becornes very irnportant. Forthcorning experimental studies of MCE in 

radial-toroidal bends (3] with both electrically coupled and separated 

radial ducts require theoretical predictions of pressure drops and flow 

rate distribution arnong channels for a wide range of flow pararneters, 

narnely the Hartmann nurnber, wall conductance ratio, nurnber of channels 

and duct geornetry. The airn of the present paper is to providc such an 

investigation in the radial branch of a rnulti-channel bend away frorn the 

junction between radial and toroidal ducts, i.e. in the region of fully 

developed flow. Fully developed multiple channel flow problern is 

analysed by rneans of singular perturbation theory as the Hartmann nurnber 

M tends to infinity. This theory has been successfully applied by rnany 

authors to the flow in a single channel [8,9]. 

Walker (9] treats the flow in a thin-walled duct with all walls 

having the sarne wall conductance ratio c with the restriction M- 1~c~1. 

The solution is obtained for three different cases: 

i) c ~ 
-1/2 

M ' 

ii) c = O(M-1/2), 

iii) c ~ 
-1/2 M . 
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In the present paper it is assumed that top and bottom walls 

have the same wall conductance ratios. The restriction c ~ 1, as well as 

dividing the solution procedure on the three cases i) to iii) are not 

necessary, and therefore in the present study these restrictions are 

relaxed. Since top and side wall conductance ratios ct and c
8 

have 

different influence on the flow structure (the increase of ct results 

generally in increasing volume flux carried by the side layers, while 

the effect of increasing c 
s 

is opposite ) they are treated as 

independent parameters. The value of c is considered as arbitrary 
s 

(including limiting cases of insulating and perfectly conducting walls). 

For the value of ct the assumption ct ~ 
-1 

H ' which holds for 

liquid-meta! blankets, is retained in order to keep thc side-layer 

problern tractable by analytical methods. To summarize, the present 

solution is obtained under the following assumptions: 

i) the applied magnetic field is strong, i.e. H ~ 1; 

ii) top and bottom walls have the same wall conductance ratios ct=cb; 

iii) top and bottarn walls are much better conductors than the 

-1 
Hartmann layers, i.e. ct~ H . 
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2. FORMULATION 0 F T H E PROBLEM 

Consider steady flow of a viscous conducting incompressible 

fluid along n electrically coupled straight reetangular channels of 

infinite length (see Fig. 1) due to pressure drop imposed in the 

z-direction. Pressure drop may vary from one channel to the other. A 

strong uniform external magnetic field Be= B e is applied parallel to 
- 0 -y 

channel side walls and perpendicular to the top and the bottarn walls. 

All channels have the same height 2a. The walls parallel to the magnetic 

field, i.e. the outside side-walls and the dividing walls, are numbered 

from 1 to n+1 from the left to the right. They have thicknesses h(i) and 
s 

conductivities a(i) and are placed at x=x(i) (i=1, ... ,n+l). The value of 
s 

x(
1

) is set to zero. The distance between the side walls is denoted by 

d(i), i.e. d(i)=x(i+1)_ x(i). The top walls having thicknesses h~i) and 

(i) 
conductivities a t are placed at y=a (i=1, ... ,n). The problern is 

symmetric with respect to y=O, and hence the flow in the upper half of 

the duct y~O is considered subject to appropriate symmetry conditions at 

y=O. 

f Topwall 

J Ch.1 

l 
h (i) 
s 
~ 

x(1) \ x(2) ... x(i) 

Bottomwall 

t Side 
Vwall~~ 

Ch.i Ch.n 
h (i + 1) 

s 
~ ~ --E--

Fig.l Schematic diagram ot the flow in multiple reetangular ducts 
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2. 1. GOVERNING EQUATIONS 

The problern can be formulated in terms of fluid velocity and 

either electric potential or induced magnetic field. In this paper we 

follow the latter classical formulation for fully developed flow [10]. 

In this case the dirnensionless equations governing the flow in channel i 

(i=l, ... ,n) read 

where 

..,2 (i) 8b(i) 
v V +/1-

ßy 

(x, y, z) is the cartesian coordinate system, 

(2.la) 

(2.lb) 

(i) (') 
v , b 1. are the fluid velocity and the induced magnetic 

field, respectively; these are 

z-direction, 

is the pressure gradient, 

(i) 
Pm is the total pressure, 

11=B a(ajpv)
112 is the Hartmann number, 

0 

both in the 

v, a, p are the kinernatic viscosity, density and conductivity 

of the fluid, respectively, 

is the rnagnetic perrneability, 

a2;ax 2 + a2;ay 2 
· h L 1 1s t e ap ace operator. 

The length, the fluid velocity, the induced rnagnetic field and 

the pressure are norrnalized by a, v (characteristic fluid velocity, 
0 
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which will be deterrnined later), ~v (pva) 112 , aav B2 , respectively. 
0 0 0 

Once the functions v(i) and b(i) are known, the electric current 

density j (i) (norrnalized by v B a) and the electric potential tf?(i) 
0 0 

(norrnalized by v Ba) can be calculated frorn Arnpere's law 
0 0 

-18b (i) 
M - e ay -x 

and Ohm' s law 

-1ab(i) 
M -

8 
e , 

X -y 

r?;r.. (i)= _ J' ( i)+ ( (i) ) Be v"' v e x 
-z -

-M [ 
-1 ( ')] -1 ab(i) 

v l e_x + M - e ax -y 

(2.2a) 

(2.2b) 

Frorn equation (2. 2a) it follows that the function b (i) is a 

strearn f . f h f. ld ' ( i) H 1' f unct~on or t e vector ~e J . ence, ~nes o constant 

b(i) are electric current lines. 
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2. 1 ß 0 U N D A R V CONDITIONS 

The boundary conditions for the fluid velocity are the non-slip 

conditions on the walls. If duct walls are thin, i.e. the wall thickness 

h satisfies the relation h ~ 1, the thin-wall condition w w 

ab 
cw an b (2.3a) 

holds on the fluid-wall interface [11], where ~ is unit vector normal to 

the wall, into the fluid; c =a h laa is the wall conductance ratio. The 
w w w 

thin-wall condition is not valid at duct corners, where the two thin 

walls carrying currents in directions perpendicular one to the other 

join. However, the effect of the corners is local and in most cases has 

no influence on the flow in the bulk of the fluid [12]. The thin-wall 

condition (2. 3a) was obtained by assuming that a solid wall separates 

conducting fluid from insulating medium. If a wall separates two regions 

occupied by conducting fluids with the same properties (see Fig. 2), the 

similar reasoning as that used by Shercliff [ 11] leads to the two 

conditions 

(2.3b) 

(2.3c) 

where unit vector n. is normal to the wall, into the region j; b(j) is 
-j 

the induced magnetic field in the region j (j=l,2). The equation (2.3c), 
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tagether with (2.2a), indicates that tangential component of the 

electric current in the fluid is continuous across the wall. The 

equation (2.3b) determines the value of this current, which is 

proportional to the jump of the induced magnetic field across the wall. 

If a wall is a perfect conductor, i.e. c ~ oo, the conditions (2.3b) and 
w 

(2.3c) lead to 8b(l) j8n = 8b(2);an =0, which hold also in Shercliff's 
-1 -2 

case. However, if c ~ 0, the condition (2.3b) becomes b(l)=b(2), i.e. 
w 

the induced magnetic field, tagether with the normal component of the 

electric current, become continuous across the wall. In cantrast to the 

Shercliff's case in the limit c ~0 the wall does not become insulating 
w 

because it separates two conducting media, and hence electric current 

can cross the wall with no resistance. In this limit the wall should be 

considered of zero thickess still being electrically conducting. 

Conducting 
fluid. 
Region 1 

~ 
Thin wall 

h ~1 w 

Conducting 
fluid. 
Region 2 

n2 

Fig. 2 Thin wall dividing two regions of conducting fluid 
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For the present geometry condition (2.3a) holds on the outside 

side walls and the top wall, whereas the conditions (2. 3b) and (2. 3c) 

hold on the dividing walls. 

When applied to the channel i (i=1, ... ,n), the non-slip 

conditions, the conditions (2.3) and the symmetry conditions with 

respect to y give 

(i)8b(i) 
c -

s ax 
(2.lc,d) 

at x=x(i) i,t-1 , , (2.le) 

(i+1)8b(i) 
c -

s ax 

ab(i) ;ax = 8b(i+1 ) ;ax ( '+1) at x=x L , (2.lh) 

where 

8 .= { 0 
1_ 1 

(i) 
and c = 

t aa 

0, 

(]_.) ab ( i) ( ·) 
-b 1_ 

ct ay 

for i 1 

for i ,t. 1 

(i) 
a(i)h(i) 

s s 
c = 

s aa 

19 

at y=1, (2.1i,j) 

at y=O, (2.lk,l) 

for i ,t. n 

for i = n 

a (i+1) h (i+1) 
(i+1) s s c = ------
s aa 



are the top-, the left-, and the right- wall conductance ratios of 

channel i, respectively. 

In duct flows either pressure gradients k(i) or flow rates Q(i) 

in each channel are specified. If pressure gradients are fixed, the flow 

rates are calculated from the equations 

1 x(i+l) 

Q(i)= 2Jdy J v(i)dx. 

0 (i) 
X 

(2.4) 

For given flow rates Q(i) the expression (2.4) provides the system of 

equations for the determination of pressure gradients. In both cases the 

characteristic velocity v is defined as average velocity in the whole 
0 

duct, i.e. 

(2.5) 

20 



3. A S Y M P T 0 T I C SOLUTION 

The problern (2 .1) is treated by means of matched asymptotics. 

According to this method the flow region is divided into the following 

subregions (Fig. 3): 

(C.) the inviscid core regions, 
1 

- (H.) the Hartmann boundary layers near the top wall adjacent to the 
1 

cores with O(M- 1) thickness, 

(SR.), (SL.) the side layers at the side walls; these are of 
1 1 

O(M- 112) thickness, 

- (HS) the Hartmann layers near the top wall adj acent to the side 

layers , with a thickness of O(M- 1) and a length of O(M- 112). 

Channel i- 1 Channel 

I 
Hj-1 I HS ---\- r----

I 
I 
I 
I 
I 
I 

ci_ 1 1 SRi _1 I 
I 
I 
I 
I 

o (M-1/2L: 

y = 1 

I 
HS I -----t--

Slj Cj 

I
I 
I 
I 

- I 
I 
I 

SR· I 

Channel i + 1 

HS : Hi+ 1 

----:--~--
1 
I 
I 
I 
I 
I 

Slj-J- 11 Cj + 1 
I 
I 
I 
I 
I 

: O(M-1/2) 
1-..(---'------' 

I 
I 
I 

J - -·-·-·~·-·-·-·-·~·-·-·- -·-·-·L·-·-·--'- ')(' . -'- (') (i + 1) 
y=O x=x 1 x=x 

Fig. 3 F1ow subregions at 1arge Hartmann nurober 
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In addition, there are regions with both dimensions of O(M- 1) at 

the channel corners. They need not to be analysed in detail for the 

determination of the leading term in each asymptotic expansion for the 

other regions [13]. 

3. 1 T H E C 0 R E C AN D T H E HARTMANN 

LAYER H 

In regions Ci and Hi the flow is essentially one-dimensional. 

The velocity and the induced magnetic field do not depend on the 

variable x, and the flow is the same as the Hartmann flow. The flow in 

the core and adjacent Hartmann layer is described by the functions [8] 

(i) 
V = 

c 

where y=M(y-1) is the stretched Hartmann-layer variable and 
H 

YJ .= 
1. 

1+c (i) 
t 

(i) -1' 
ct +M 

(3.la) 

(3.lb) 

(3.2a) 

(3.2b) 

While deriving formulas (3. 2) the only assumption has been made that 

~1, and exponentially small terms only have been neglected. The 
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functions v(i) and b(i) are composite asymptotic expansions, which are 
H H 

valid in regions C. and H. to any order in M. 
1 1 

The functions (3 .1) determine the flow in the cores of all 

channels. However, these functions evidently fail to describe the flow 

near the side walls parallel to the magnetic field lines where side 

layers appear, which carry part of the volume flux. 

3. 2 S I D E LAYERS SR AN D SL 

In each channel of the multiple duct there are two side laycrs. 

One of them is at the left wall with number i (region SL.); the other 
1 

one is at the right wall with number i+1 (region SR.). The thickness of 
1 

both layers is of the order of M- 112 . If the channel width d(i) is of 

the same order, the core disappears and the two side layers merge into a 

single one. This case is not covered by the present investigation, and 

special but Straightforward treatment is necessary. However, in the 

reference concept of liquid-metal blanket radial ducts have square 

cross-section, so that in the present paper d(i) is supposed to be of 

the order 1. Under this condi tion the two layers spli t, and may be 

treated separately. 

Consider side-layers at the wall i, which is the left side wall 

of channel i and the right side wall of channel i-1. In cantrast to the 

core, the flow in the side layer near the wall i must be treated in 

channels i and i-1 simultaneously due to coupling between the induced 
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rnagnetic fields in these channels (see 2.3d,e,g,h). 

The vicinity of the side wall x=x(i) is stretched by introducing 

a variable 

(3.3) 

Substituting (3.3) into equations (2.la,b) and sirnilar equations 

governing the flow in channel i-1 and keeping rnain terrns in these 

equations as M 9 oo gives 

a2v(i) ab (i) 
-k(i)M, SL SL 

(3.4a) 
a~.2 

+ ---
ay 

~ 

a2 b (i) av(i) 
SL SL 

0 ' for ~ .~ 0; (3.4b) 
ae.2 

+ 
ay 

~ 

~ 

and 

a2v(i-1) ab(i-1) 
-k(i-1)M SR SR 

(3.4c) 
ae.2 

+ ' 
ay 

~ 

a2b(i-1) av(i- 1 ) 
SR SR 0 for ~ ,:::; 0. (3.4d) 

ae.2 
+ ' 

ay 
~ 

~ 

The boundary conditions for the systern (3.4a-d) with respect to 

~. are obtained frorn the conditions (2 .lc-e) on the wall i and the 
~ 

conditions of matehing the core-flow solutions in channels i and i-1. 

These give 

at ~ .=0, 
~ 

(3.4e,f) 
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v(i) =* v(i) 
SL C ' 

at e.=O; i~n+1, (3.4g) 
1. 

at e.=O; i~1, 
1. 

as e .=* oo, 
1. 

(3.4h) 

(3.4i,j) 

b(i-1)=* b(i-1) as e-=* -oo. 
1. 

(3.4k,l) 
SR C 

The conditions for the system (3. 4a-d) with respect to y are the 

symmetry conditions 

av(i- 1) 
SR 

-=--- = 0, ay 

at y=O, e.~ 0, 
1. 

at y=O, e .:5 0, 
1. 

(3.4m,n) 

(3.4o,p) 

and the boundary conditions at y=1 which are obtained from the 

conditions of matehing with the Hartmann layer (region HS) variables 

(see Appendix A). They read 

at 

25 

y=1, e .~ o, 
1. 

(3.4q) 

(3. 4r) 



The equations (3.4) constitute the problern governing the flow in 

the shear layers at the wall i. By this rnornent no assurnption has been 

rnade on the values of wall conductance ratios. An analytic solution to 

the problern (3.4) can be obtained if Mc~i)~ 1 for all i, i.e. the top 

(and the bottorn) walls of all channels are rnuch better conductors than 

the Hartmann layers. Under this assurnption conditions (3.4q) and (3.4r) 

becorne 

(i) (i) 
V =V 

SL C 

(i-1) (i-1) 
V =V 

SR C 

at y=1, c~ 0, 
.L 

at y=1, e .s 0. 
.L 

(3.4q') 

(3 .4r') 

The solution to the problern ( 3. 4) obtained by rneans of finite 

Fourier transform with respect to y reads 

Cl) 

(i) v(i) + I v(i,j)(e.) cos ß.y, (3.5a) V = 
SL c L .L J 

j=O 

Cl) 

b(i)= b(i)+ I B(i,j)(e.) sin ßjy' (3.5b) 
SL c L .L 

j=O 

Cl) 

(i-1) (i-1) I v 0 -1 ,j) (e .) cos ß.y, (3. Sc) V =V + 
SR c R .L J 

j=O 

Cl) 

b(i-1)= b(i-1)+ I B(i-1,j)(e.) sin ßjy' (3.5d) 
SR c R .L 

j=O 

26 



where 

v(i 1 j) (e .) 
L,R ~ 

exp (- 1 . I e . I) [c ( i 1 j) s in1 . I e . I + D ( i 'j) COS1 . I e . I] ' 
J ~ L,R J ~ J ~ 

B ( i 1 j) ( e . ) = exp (- 1 . I e . I ) [c ( i 1 j) COS1 . I e . I - D ( i 1 j) s in1 . I e . I] 
L,R ~ J ~ L,R J ~ J ~ ' 

c(i1j) 
L 

c(i,j) 
R 

(i) } - v ß .a. 1 . ' c J ~+ 1) 

v(i) w 
c j 1 

w.= a .. 
J ~) 

While deriving the solution (3.5) terms 0(!1-
112

) have been neglected 

with respect to those retained. Throughout this paper this is done all 

the time when it is possible. 

The second terms in the right hand side of each of the equations 

(3.5a) to (3.5d) represent the excess of the side-layer velocity and the 

induced magnetic field over the core ones. If c(i)=oo 1 these terms are of 
s 

the order 1; if c(i)=O they are of the order ;-M. It holds for layers 
s ' 
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at both outsüle and dividing walls provided the difference between 

pressure gradients in the neighbouring channels is of the order 1. 

3. 3 COMPOSITE SOLUTION 

AN D F L 0 W R AT E S 

If pressure gradients k(i) are specified, the equations (3.1), 

(3.2), (3.5) and the solution to the problern governing the flow in the 

layer HS (see Appendix A) give 

(3.6a) 

(3.6b) 

These expressions represent the unique first-order asymptotic solution 

to the problern (2.1) in the whole duct apart frorn the corners. 

The volurne flux carried by the core, the left and the right side 

layers, calculated by integrating equation (3.la) over the cross-section 

of channel i, and the equations (3.5a) and (3.Sc) over the side layer 

regions, are 

( .) (i) 
Q .l = 2k d YJ • • ' c .l .l 

(3.7a) 
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<X) 

+ & [ k(i)_5 .k(i-1)]\ ß~l/2(1+5 .+a .. 1!1)-1, 
~ L J ~ ~J 

(3. 7b) 

j=O 

<X) 

(3.7c) 

Total flow rate in the channel i is equal to the sum of the three flow 

rates, i.e. 

If the difference between pressure gradients in neighbouring 

channels is of the order -1/2 
M ' or the side-wall is perfectly 

d · b h 'd 1 1 fl Q(i) and Q(i- 1) at th~s wall con uct~ng, ot s~ e- ayer vo ume uxes ~ 
SL SR 

are neglegible compared to core one. In the other cases the first terms 

in the right-hand side of the equations (3.7b) and (3.7c) are neglegible 

with respect to the second ones. Side-layer volume fluxes at the wall i 

become proportional to the difference between pressure gradients and are 

of opposite sign, since Q(i) =-Q(i- 1 ). If left side layer in channel i 
SL SR 

carries volume flux in the main- flow direction, the flow in the right 

side-layer in channel i-1 is reversed, and vice versa. 

The side-layer volume fluxes Q(i) and Q(i) may be expressed in 
SL SR 

terms of side-wall currents by integrating equations (3.4b) and (3.4d) 
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with respect to e. once and with respect to y twice, taking into account 
~ 

the boundary conditions (3.4q') and (3.4r'). This gives 

1 1 
Q(i) = 

SL 

M-1/2Q(i) 
c +I dy I · (x(i) t) 

Jy, SL ' 
dt, (3.9a) 

0 y 
1 1 

Q(i) = 

SR 

M-1/2Q(i) 
c +I dy I 

· (x(i) t) 
Jy, SR ' 

dt, (3.9b) 

0 y 

where 

CO j • 
. (i) -h[ (i) (i-1)]\ (-1) Sln ßjy 

Jy,sL(x ,y)- 2 k -oik L 3!2[ J , 
. 0ß. s .+1+a .. n 

J= J - ~ ~J 

(3.9c) 

and 

Jf (-l)jsin ßf 
. oß~/2l€ .+1+a. 1 .nJ J= J ~ ~+ ,) 

(3.9d) 

are tangential to the wall components of the electric current estimated 

on the right and the left wall surfaces, respectively. From (3.9a) and 

(3.9b) it follows that the flow rate carried by a side layer is 

proportional to the average amount of the electric current carried by 

the wall in the y-direction. 

If pressure gradients are unknown, but the flow rates are given, 

substituting the expression (3.8) into the equation (2.4) results in a 

three-diagonal system of linear algebraic equations for the 

determination of pressure gradients, namely 

30 



5 .A. .k(i-1) + A .. k(i) + E .A. 
1 

.k(i+1) = Q(i), 
L L-1,L L,L L L+ ,L 

(3.10) 

where 

00 

A. 1 .= -23/2 fl1 \ ß-.7 /2 (1+5 .+a. .1!1) -1, 
L- ,L L J L L,J 

j=O 

00 

A. . =2d. 17. - A. 
1 

. - A. 
1 

.. L,L L L L- ,L L+ ,L 
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4. RESULTS A N D DISGUSSION 

For the sake of simplicity in the following discussion we assume 

that the flow is symmetric with respect to duct's midplane x=x(n+l)/2. 

4. 1 S I N G L E CHANNEL 

In a single symmetric duct (n=l c(l)=c(2)=c d(l)=d, Q(l)=2d, 
' s s s' 

c~l)=ct) the volume flux carried by each side layer is 

CO 

Q(l)=Q(l)= k(1) 12- ruM L -7/2 ru -1 
1 n ß. (l+c 1.1 M) . 

SL SR J s J 
(4.la) 

j=O 

Typical M-shape velocity profile with distinct core and side layers at 

both side walls is shown on Fig. 4. 

Fig. 4. 
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0.0 0.2 0.4 O.G O.ß 1.0 1.2 1.4 l.G l.ß 2.0 

X 

Fluidvelocity in a single duct (n=l) at y=O. Here 

c(l)=c(l)=c(2)=0 1· d(i)=2,· M=lOOO. 
t s s ' ' 
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The equation (3.10) gives 

(4.1b) 

For c=c =c , provided c~1, the expression (4.1b) reduces to Wa1ker's 
t s 

one for the pressure gradient in his case ii), i.e. for c=O(M- 112). 

If c ~ M- 112 
(core-f1ow approximation), the equation (4.1b) 

s 

1eads to a we11-known formu1a for the pressure gradient 

(4.2a) 

(see [14), for examp1e). The vo1ume f1uxes carried by the side 1ayers in 

this case are 

Q(1)=Q(1)={3c [1~] + ?}-
1 

(4.2b) 
SL SR S Ct d 

From (4.2a) it fo1lows that as c 9 0 the value of k(
1

) also tends to 
s 

h . h h ' hi 1' . h · · M- 1/ 2 
zero, w ~c means tat ~n t s ~m~t t e approx~mat~on c ~ 

s 

valid. Instead, the expression (4.1) for c =0 gives the value 
s 

(4.3) 

is not 

where r= 0.299. If in addition ct;-M ~ 1, i.e. the Hartmannwall and the 

core are much better conductors than the side layers, the resistance for 

the electric current is mainly determined by the 1atter. Then formu1a 

(4.3) reduces tothat by Hunt [15) 
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(4.4) 

i. e. the pressure gradient becomes independent of ct and the top and 

bottom walls may be treated as perfect conductors. The magnitude of the 

core velocity is of O(M- 112) and the side layers carry all volume flux. 

4. 2 Two CHANNELS 

If a duct is divided into two channels (n=2, 

d
1

=d
2

=d, Q(l)_Q(
2 )=2d, c~1 )=c~2)=ct)' the sylllmetry conditions 

8b(1);ax=8b(2);ax=O hold at the dividing wall x=x(2). These conditions 

are the same as those for a perfectly conducting wall. The wall 

conductance ratio c(
2) does not enter the problem, and therefore, the 

s 

dividing wall acts like a perfect conductor. As a result there are no 

jets at the middle side wall, the side layers at this wall carry no 0(1) 

volume flux, and the only role of the side layers is to satisfy the 

non-slip condition at the dividing wall ( see Fig. 5). The two-channel 

duct behaves like a single duct of the width 2d, and the pressure 

gradients in both channels in the case 

(4.2a) to give 
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s 

-1/2 
M are obtained from 

(4.5) 
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Fig.S. Fluid velocity in a duct divided into two channels (n=2) at 

y=O. Here 

Sirnilar results to those in a previous section for different 

cornbinations of wall conductance ratios and the Hartmann nurnber rnay be 

obtained for a two-channel duct by substituting 2d instead of d. 

4. 3 T H R E E CHANNELS AN D M 0 RE 

Consider first the flow with equal pressure gradients in all 

channels. In this case the volurne fluxes carried by the side layers at 

the dividing walls are much smaller that those carried by the cores. 

Therefore, in the middle channel the flow is of Hartmann type (no jets 
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at the side walls). If top wall conductance ratios are equal, the core 

velocity is continuous across the dividing walls. The average velocity 

in the outer channels is higher than in the middle one because two side 

layers at the outside side walls carry part of a volume flux. The flow 

structure is qualitatively the same as that in a single channel having 

width d= d(1 )+d(2 )+d(J), except that velocity takes zero value at the 

dividing walls. Therefore, formula (4.lb) applies for calculating 

pressure gradient. 

Consider now the case of fixed flow rates. Without loss of 

generality we may assume that they are equal and that channels have 

square cross-section, i. e. d(i)=2 for all i. 

If c(i)~ M- 112 , an explicit solution of the system (3.10) is 
s 

easy to obtain in a compact form. It reads 

where 

_1+---;c-::-:~2-) +1 } [ 
(2) 

ct 
+ 1 l + 3 

Volume fluxes carried by the side layers are 
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(4.6b) 

(2) 
1+c t (1) 

(2) es 
ct 



Q(l) = _1_ k(1) (4.7a) 
SL Je (1) 

s 

Q(2) = -Q(l)= 1 [k ( 2) - k (1 ) ] . (4.7b) 
SL SR 3c(2 ) 

s 

On the basis of the expressions (4.6) and (4.7) the most 

essential features of the MCE in the case of fixed flow rates may be 

described. 

When electrically conducting fluid flows across magnetic field 

lines, 
e 

the electric current a~*X~ is induced by the core velocity of 

each channel in the -x -direction (see Fig. 6). The electric circuit 

conducting current consists of cores, side walls, side layers and top 

and bottom walls of all channels. Electrical conductance of the circuit 

determines the values of the induced currents, which in turn determine 

pressure gradients in all channels, since j(i)= -e k(i) (eq. 2.2a and 
C -X 

3.lb). Due to the assumptions imposed the Hartmann layers conduct 

neglegibly small currents and thus play no role for the determination of 

pressure gradient. Side walls and side layers represent parallel 

resistance to the electric current in the y-direction. If c(i)~ M- 112 , 
s 

i. e. side walls are much better conductors than the side layers, the 

latter may also be excluded from consideration. All current induced in 

the core enters the side walls and the conductance of the circuit is 

determined by wall conductance ratios. 
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Fig. 6 Schematic diagram of electric currents in a duct divided into 

three channels. 

Since channe1s are e1ectrica11y connected, the induced current 

can cross a11 of them and comp1ete its circuit in the outside side-wa11s 

of the outer channe1s and the top wa11 (path ABCDEFGHA). If there were 

no dividing wa11s, the e1ectric current wou1d f1ow as a uniform core 

current from one outside side wa11 to the other. In the presence of 

e1ectrica11y conducting dividing wa11s part of the induced current may 

f1ow a1ong them in the y (or -y) direction. Consider wa11 CH dividing 

channe1s 1 and 2. If channe1s 1 and 2 were separated, the e1ectric 

current induced in channe1 1 wou1d f1ow in the direction CH, whereas the 

current induced in channe1 2 - in the direction HC. Since the dividing 

wa11 CH is thin and the current f1owing a1ong it must be uniform, parts 

of the currents induced in channe1s 1 and 2 cance1 because of their 
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. d' . 2 oppos1te 1rect1ons . The rernaining current is proportional to the 

difference between the core currents induced in channels 1 and 2, or 

equivalently, to the absolute value of the difference between pressure 

gradients lk(l)_k(2 )1. The direction of this current and the sign of the 

side-layer volurne flux at the dividing walls are deterrnined by the sign 

of this difference (see 4.7b). If k(2 )>k(l) (current induced in channel 

2 is stronger), the wall current is in the direction HC and an 

additional current path is HCDGH. The fluid at the dividing wall flows 

in the rnain-flow direction in the channel 2, whereas in the side layer 

of channel 1 the flow is reversed ( see Fig. 7) . the 

current is in the direction CH; an additional current path is HGDCH and 

the flow direction at the wall is opposite to the previous case (Fig.8). 

Frorn (4.6) follows that the sign of the value k(2 )-k(l) is deterrnined by 

the sign of the expression 

r (4.8) 

The value of r rnay be considered as the rneasure of the difference 

between conductances of the two circuits. If c(2
)= c(l) r is positive, t t , 

i.e. k(2 )>k(l). Pressure gradients in all channels are equal if r=O. 

2 In a thick wall electric currents can flow in opposite directions 

without interaction. 

39 



~ 

Fig. 7, 

Fig. 8. 

7.0 

G.O-

CJ.O-

'1.0-

:3.0-

:!.0-

1.0 - ./\ 
V V 

0.0-

-1.0 -

-:~.0 -

-:1.0- --r-~---.~---.~----,~c------,,,-----,l,---l,--,-l-r-l-r-,-1 
0.0 O.S 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 G.O 

X 

Fluid velocity in a duct divided into three channels (n~J; 

fixed flow rates) at y=O. Here 

c(i)=O.l; d(i)=2 for all i· M=lOOO. 
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Fluidvelocity in a duct divided into three channels (n=3; 

fixed flow rates) at y=O. Here c~l)=c~J)=c;l)=0.2; 

c(2)=c(2 )=0 1· d(i)=2 for all i· M=lOOO. 
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The electric current in the outside side walls is proportional 

to the induced magnetic field at the wall while in the dividing walls it 

is proportional to a jump in induced field across the wall ( see 

equations 2.3 ). Thus a dividing wall acts like a better conductor than 

an outside side wall, even if their wall conductance ratios are equal. 

For equal top wall conductance ratios this means that volurne flux 

carried by the layers at the dividing walls is smaller in magnitude than 

that at the outside side walls. 

Variation of the pressure gradients with the side-wall 

conductance ratio c (the same for all side walls) and the Hartmann 
s 

number is shown on Fig. 9 and 10, rcspectively. The effect of the finite 

Hartmann number is to provide an additional path for the electric 

currents along the side layers and therefore to increase pressure drop. 

As H=}<O, pressure gradients tend to finite values given by CFA (see 

equations 4.2a, 4.5 and 4.6), which is in 5 per cent accuracy with exact 

values for c=O.l and H~lOOO (see Fig.lO). 

CFA overestimates volurne flux carried by the side layers. Thus, 

in situations where side layers play minor role, i.e. carry less volume 

flux, it should give better results. From Fig. 10 it follows that the 

best results CFA gives for the middle channel in a three-channel duct, 

where the flow is almost of Hartmann type. Therefore, in a fully 

developed multiple duct flow the range of validity of the CFA is wider 

that in a single-duct flow. 
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TAB L E 1. VARIATION OF PRESSURE GRADIENTS WITH CHANNEL 

NUMBER FOR EQUAL FLOW RATES ( c=0.1, M=3000 ). 

No. of channe1s Pressure gradients k(i)*l02 

i=l 2 3 4 5 6 

1 7.194 

2 7.997 

3 8.070 8.838 

4 8.076 8 0 913 

5 8 0 077 8.919 8.987 

6 8.077 8.920 8.994 

7 8 0 077 8 0 920 8.994 9.000 

If number of channe1s is more than three, the f1ow features 

remain the same as for n=3. Variation of the pressure gradients with 

channe1 nurnber is given in Tab1e 1. Pressure gradients in ducts c1ose 

to the center very soon reach the va1ue k=O. 09. The 1atter may be 

ca1cu1ated by forrnu1a 

k 
HART 

(4.9) 

Therefore, the upper 1imit for the increase in pressure gradients with 

respect to the f1ow in a sing1e duct is given by the ratio of 
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expressions (4.9) and (4.lb). For wall conductance ratio in the range 

0.02+0.4 and Hartmann number in the range 3000+4000 pressure gradients 

do not increase by more than 30 per cent. 
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5. C 0 N C L U S I 0 N S 

The pressure drop due to MCE in a fully developed flow is found 

to be not high. The maximum value of the pressure gradient is given by 

the expression (4.9), which is reached when the channel number exceeds 

7. If top wall conductance ratios in all ducts are equal, this value is 

reached in the ducts close to the center because jets at the dividing 

walls carrying part of a volume flux disappear. 

For the effective cooling of the blanket first wall one would 

prefer to have equal flow rates in coolant ducts with minimum pressure 

losscs. Thorafore, the case of equal both flm•7 rates and pressure 

gradients seems to be optimal. The analysis for the three-channel duct 

shows that this can be achieved simply by relating side- and top- wall 

conductance ratios ( see expression 4.8). The same conclusion applies 

for ducts with more than three channels. To achieve optimal flow 

distribution the top wall conductance ratios of all channels, except the 

outer ones, should be made equal first. Then the formula (4.8) applies 

for the first and the second channels with r=O. 

To make the final conclusion about the importance of MCE in the 

concept of self-cooled liquid-metal blanket one has to analyse the 

pressure drop in multi-channel bends. It will be addressed in another 

paper. 
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APPENDIX A:. HARTMANN LAYER HS 

The problern governing the flow in the Hartmann layer at the wall 

i in channel i is 

(i) 
V = 0, 

HS 

a (i) 
c(i)H WHS = - W + k(i) (i)H at y =0, 

t ßy HS ct !! 
H 

(') ( i) 
V ~ => V (e., 1), 

ns sL ~ 
as Y =}-<X> 

H ' 

(i) (.) (.) where w = b ~ - b ~ . 
HS HS C 

The solution to the problern (Aa-f) is 

(Aa,b) 

(Ac,d) 

(Ae,f) 

(Ag) 

(Ah) 

Substituting (Ag) and (Ah) into the condition (Ad) gives the 

relation between functions v(i)(t:.l) and b(i)(t:.l) 
SL ~~' SL ~~' 

and hence the 

boundary condition for side layer variables at y=l, namely 

(Ai) 
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