KfK 5162 April 1993

Ergebnisse von REM-Mikrobereichsanalysen des DWR-Bündelabschmelzexperiments CORA-13

J. Burbach Institut für Materialforschung Projekt Nukleare Sicherheitsforschung

Kernforschungszentrum Karlsruhe

μ.

Kernforschungszentrum Karlsruhe

Institut für Materialforschung Projekt Nukleare Sicherheitsforschung

KfK 5162

Ergebnisse von REM-Mikrobereichsanalysen des DWR-Bündelabschmelzexperiments CORA-13

J. Burbach

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

١.

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

Kurzfassung

Im CORA-Versuchsprogramm des Kernforschungszentrums Karlsruhe (KfK) wird das Brennelementverhalten bei Temperaturen bis über 2000°C untersucht, die durch elektrische Beheizung von Brennstäben erreicht werden. Die CORA-Versuche werden im Rahmen des Projekts Nukleare Sicherheitsforschung (PSF) durchgeführt. Die Versuche sind Teil des KfK-Programms zur Untersuchung schwerer Kernschäden bei Unfallabläufen in Leichtwasserreaktoren (LWR).

Die Auswertung der CORA-Experimente erfolgt zum einen auf der Grundlage der Meßwerte und der Videoaufzeichnungen während des Experiments, zum anderen mittels umfangreicher zerstörender Nachuntersuchungen an Schliffproben von dem überhitzten Brennstabbündel. In diesem Bericht werden die Analysenergebnisse von Mikrobereichsuntersuchungen mit dem Rasterelektronenmikroskop (REM) an fünf Querschliffen des Brennstabbündels CORA-13 dargestellt.

Das Experiment CORA-13 wurde von der OECD/NEA als internationales Standardproblem (ISP-31) für einen Vergleich verschiedener Rechenprogramme, die die Bündelzerstörung beschreiben sollen, ausgewählt. Aus diesem Grunde wurde das Brennstabbündel intensiv metallografisch und chemisch-analytisch nachuntersucht.

Results of SEM Microrange Analyses of the PWR Bundle Meltdown Experiment

CORA-13

Abstract

Under the CORA experimental program conducted at the Karlsruhe Nuclear Research Center (KfK) the fuel element behavior is studied at temperatures up to beyond 2000°C, reached by electric heating of fuel rods. The CORA experiments are performed within the framework of the Nuclear Safety Project (PSF). The experiments make part of the KfK program on studying severe core damage occurring in accidents developing in light water reactors (LWR).

The CORA experiments are evaluated both on the basis of the values measured and video recordings during the experiment and by means of comprehensive destructive post-test examinations on microsections prepared from the overheated fuel rod bundle. This report is a presentation of the analytical results of microrange examinations on five transverse microsections of the CORA-13 fuel rod bundle using the scanning electron microscope (SEM).

The CORA-13 experiment was selected by OECD/NEA as an international standard problem (ISP-31) for a comparison to be made among various computer codes elaborated to describe the destruction of the bundle. For this reason, the fuel rod bundle was subjected to intensive post-test examinations, including metallographic examinations as well as chemical analyses.

Inhaltsverzeichnis

1. Einleitung, Vorbemerkung	1
2. Cora-Versuch Nr. 13	1
3. Querschliff- und Entnahmepositionen	5
4. Beschreibung der Analysengeräte	11
5. Ergebnisse der Mikroanalysen	13
5.1 Versuchsprobe C <u>ORA-13-e</u>	13
5.1.1 EDX-Analysenpositionen	13
5.1.2. Homogenität innerhalb einer Schmelzzone	15
5.1.3 Integrale Analysenergebnisse der Schmelzen	26
5.1.4 Phasenanalysen in den Schmelzen (Punktanalysen)	31
5.1.5 Einzelreaktionen außerhalb der Hauptschmelzen	34
5.1.6 Reaktionen im Absorberstab	37
5.2 Versuchsprobe CORA-13-g	45
5.2.1 EDX-Analysenpositionen	45
5.2.2 Integrale Analysenergebnisse der Schmelzen	46
5.2.3 Phasenanalysen in den Schmelzen (Punktanalysen)	49
5.2.4 Reaktionen im Absorberstab	53
5.3 Versuchsprobe <u>CORA-13-j</u>	57
5.3.1 EDX-Analysenpositionen	57
5.3.2 Integrale Analysenergebnisse der Schmelzen	58
5.3.3 Phasenanalysen in den Schmelzen (Punktanalysen)	61
5.3.4 Schmelze in der Absorberstabzone	64
5.3.5 Einzelreaktionszonen	65
5.4 Versuchsprobe <u>CORA-13-k</u>	68
5.4.1 EDX-Analysenpositionen	68
5.4.2 Integrale Analysenergebnisse der Schmelzen	70
5.4.3 Phasenanalysen in den Schmelzen (teils Punktanalysen)	73
5.5 Versuchsprobe <u>CORA-13-I</u>	80
5.5.1 EDX-Analysenpositionen	80
5.5.2 Integrale Analysenergebnisse der Schmelzen	82
5.5.3 Phasenanalysen in den Schmelzen (Punktanalysen)	86
6. Phasenverteilung in den Schliffproben Nr, e, g, j, k und l	94
7. Zusammenfassung und Diskussion	96
8. Danksagung	100
9. Literatur	101

1. Einleitung, Vorbemerkung

Im Rahmes des CORA-Versuchsprogramms wurden bisher 19 Brennstabbündelexperimente mit UO2 durchgeführt. Die Versuche zielen auf das physikalischchemische Verhalten eines Brennelements bei schweren Reaktorstörfällen im Druckwasserreaktor (DWR) oder im Siedewasserreaktor (SWR) hin. Neben dem Verhalten der Absorbermaterialien Silber-Indium-Kadmium (DWR) bzw. Borkarbid (SWR) sollen die vielfältigen Wechselwirkungen der diversen Brennstabmaterialien bei hohen Temperaturen erforscht werden [1, 2]. Das Institut für Materialforschung I (IMF I) hat die Aufgabe übernommen, sowohl die umfangreichen metallografischen Untersuchungen als auch die Materialanalysen im Mikrobereich mit Hilfe des Rasterelektronenmikroskops (REM) und seines angeschlossenen Energiedispersiven-Röntgenspektrometers (EDX) durchzuführen. Für die Auswertung des Mikrobereichs wird das gesamte CORA-Brennstabbündel nach dem Versuch mit einer Plexiglasabgußform umgeben und mit Epoxidharz ausgegossen. Nach dem Zersägen und metallographischen Präparieren der Abschnitte [3], stehen für die Untersuchungen dann etwa 140 mm x 140 mm große Schliffplatten mit hoher Oberflächengüte für die Auswertung der chemischen Reaktionen zur Verfügung.

2. CORA-Versuch Nr. 13

Ziel des mit Original-DWR-Hüllrohren und UO₂-Tabletten ausgestatteten Test ist es, Materialdaten über das Verhalten eines Brennelements im Druckwasserreaktor (DWR) beim Überhitzen auf über 2000°C und anschließendem Abschrecken in Wasser zu erhalten. Die gewonnenen Ergebnisse werden im Rahmen der Zusammenarbeit mit der Organisation for Economic Co-Operation and Development für ein International Standard Problem (OECD/ISP), für den Vergleich mit Modellrechnungen für schwere Störfälle herangezogen. Die Versuchsdurchführung von CORA-13 sowie die gemessenen Versuchsdaten und die zerstörungsfreien Nachuntersuchungsergebnisse sind in einem KfK-Bericht beschrieben [4]. Zur schnellen Orientierung über die Versuchsparameter, technische Ausführung der Brenn- und Absorberstäbe und deren Anordnung im Brennstabbündel siehe Abb. 1 und Abb. 2 sowie Tab. 1.

2

210°

Abb. 2 Rod designation of test bundle CORA-13

Tabelle 1

Daten der Komponenten und der Versuchsparameter vom CORA-13-Bündel

Bündelgröße Anz. der beheizten Stäbe Anz. der unbeheizten Stäbe Gitterabstand Stabaußendurchmesser Hüllmaterial Hüllwanddicke Länge beheizter Stäbe Länge unbeheizter Stäbe Heizerlänge Heizerdurchmesser Heizermaterial Brennstabtabletten U-235 Anreicherung Pelletaußendurchmesser Abstandshalter	beheizt unbeheizt (nominal) - Material - Länge - Positionierung	25 Stäbe 16 7 14,3 mm 10,75 mm Zircaloy-4 (1) 0,725 mm 1960 mm 1672 mm 1000 mm 6 mm Wolfram UO2-Ringtabletten UO2-Ringtabletten UO2-Volltabletten 0.2 % 9,1 mm Zry-4, Inconel 718 (2) Zry-4 = 42 mm Inc. = 38 mm unten (-5mm) Zry-4 mitte(+ 496 mm) Inc.
Bündelrohr	- Material - Wanddicke -Außenabmessungen	oben (+ 880 mm) 2ry-4 Zry-4 1,2 mm 89.4 mm x 90.4 mm
Rohrbündelisolation	- Material - Dicke	ZrO ₂ -Fiber 19 mm
Mo-Elektrode	- Durchmesser - Länge	8,6 mm 300 mm
Cu-Elektrode	- Durchmesser - Länge	8,6 mm unten 186 mm oben 669 mm
Absorberstab	- Anzahl - Material	2 80Ag, 15 ln, 5 Cd (Gew%)
Absorberstab-Führungsrohr	- Hüllmaterial -Hülle außen - Hülle innen - Stablänge - Materialposition - Material - Außendurchmesser - Wanddicke d. Rohres	Rostfreier Stahl (3) 11,2 mm 10,2 mm 1660 mm -189 mm - + 1300 mm Zry-4 13.8 mm 0,8 mm

Thermoelement	-Schenkel - Isolation - Hüllrohr	WRe5/WRe26 HfO ₂ innen Ta außen Zry-4
Maximale Stabtemperatur Aufheizgeschwindigkeit Systemdruck Beendigung des Experiments Flutrate		2200°C 1K/s 1bar Abschrecken in Wasser 1 cm/s
(1) Zircaloy-4	Sn 1.2 - 1. 7, Fe 0. 18 - 0. 25,	Cr 0.07 - 0. 13, (Zr ~ 98)
(2) Inconel 718	52.5 Ni, 19 Cr, 3 Mo, 0.9 / ≤0.35 Si, ≤ 0. 35 Mn	Al, 5.1 Nb, 0.9 Ti, 19 Fe,
(3) Rostfreier Stahl (1.4919)	Cr 16 - 18, Ni 12 - 14, Mo 2 - (Fe ~65 ±3)	- 2.5, Si ≤ 0.75, Mn 2,

3. Querschliff- und Entnahmepositionen

Das CORA-13-Testbündel (Abb. 3 und 4) wurde nach dem Einbetten in Epoxidharz in 28 gleichgroße Probenquerschnitte zersägt. Die Querschnitte wurden im gleichmäßigen Abstand von 50 mm über das ganze Bündel gelegt und anschließend an der Oberseite teilweise geschliffen und poliert (siehe Tabelle 2). Für die metallographischen Untersuchungen wurden 10 und für die Mikrobereichsuntersuchungen mit dem REM/EDX davon 5 Querschliffplatten ausgewählt (Tabelle 3). Wesentliche Auswahlkriterien waren der Temperaturverlauf während des Experimentes (Tabelle 4) in dieser Bündelebene, Umfang der chemischen Wechselwirkungen, sowie Schadens- und Schmelztypen in der Querschliffprobe. In Tabelle 4 sind unter "Transient" die beim Aufheizvorgang erreichten Temperaturen angegebenen, unter "Quenching" diejenigen bei zusätzlicher Überhitzung durch Wasserdampf/Zircaloy-Reakton beim schnellen Fluten des heißen Brennelementes.

Abb. 3: Unterer Teil des Brennstabbündels von CORA-13 mit den Querschnittpositionen Nr. e (148 mm) und Nr. g (248 mm)

Abb. 4: Brennstabbündel von CORA-13 mit den Querschnittpositionen Nr. j (398 mm), Nr. k (448 mm) und Nr. l (498 mm)

Probe	Proben- länge	Axiale unten	Lage oben	Bemerkungen
13-a	48 mm	-93 mm	-45 mm	Unteres Reststück
Schnitt	2 mm			Unterer Abstandshalter
13-b	41 mm	-43 mm	- 2 mm	
Schnitt	2 mm			
13-c	48 mm	O mm	48 mm	
Schnitt	2 mm			
13-d	48 mm	50 mm	98 mm	
Schnitt	2 mm			
13-е	48 mm	100 mm	148 mm	Oben pollert: 148 mm
Schnitt	2 mm			
 13-f	48 mm	150 mm	198 mm	
Schnitt	2 mm			
13-g	48 mm	200 mm	248 mm	Oben poliert: 248 mm
Schnitt	2 mm			
13-h	48 mm	250 mm	298 mm	
Schnitt	2 mm			
13-i	48 mm	300 mm	348 mm	Oben poliert: 348 mm
Schnitt	2 mm			
13-J	48 mm	350 mm	398 mm	Oben poliert: 398 mm
Schnitt	2 mm			
13-k	48 mm	400 mm	448 mm	Oben poliert: 448 mm
Schnitt	2 mm			
13-1	48 mm	450 mm	498 mm	Oben poliert: 498 mm
Schnitt	2 mm			
13-m	48 mm	500 mm	548 mm	Oben poliert: 548 mm
Schnitt				

Tab. 2: Schnittplan der Querschnitte von CORA-13

13-n	48		550	mm	598	mm						 e, u , , e u fi	
Schnitt	2	mm										 ana kati kati kati kati 448	
13-0	48	mm	600	mm	648	mm						 	
Schnitt	2	mm										 	
13-p	48	mm	650	mm	698	mm	Oben	poli	ert:	698	mm		
Schnitt	2	mm											
13-q	48	mm	700	mm	748	mm						 	
Schnitt	2	mm										 	
13-r	48	 mm	750	mm	798	mm						 	
Schnitt	2	mm										 	
13-s	48	mm	800	mm	848	mm	Oben	poli	ert:	848	mm		
Schnitt	2	mm										 	
13-t	48	mm	850	mm	898	៣៣						 	
Schnitt	2	mm											
13-u	48	mm	900	mm	948	mm							
Schnitt	2	mm										 	
13-v	48	mm	950	mm	998	mm	Oben	polie	ert:	998 998	mm	 9 mi in mi in in in	
Schnitt	2	mm										 	
13-w	48	mm	1000	mm	1048	mm						 	
Schnitt	2	mm					, a a a a a a a a a a a a a a		a Min kay ing janj			 	
13-×	48	mm	1050	mm	1098	mm			* *** *** *** ***	679 976 976 478		 	
Schnitt	2	mm									که بدو هن هو هن هه هه او او بدو هه		
13-у	48	mm	1100	mm	1148	mm				.	80 107 13 18 19 64 84 86 19 19 18	 	
Schnitt	2	mm			*********	1 w w w						 	
13-z	48	mm	1150	mm	1198	mm					re ini ta ini ta ini na mi ini ini ini	 	
Schnitt	2	mm								ra 144 444 9 94		 	
13-z1	48	mm	1200	mm	1248	mm					an an an air an an an an an an	 	
						-						 	

Schliff-Nr.	Bündelhöhe mm	Untersuchungen wurden durchgeführt mit			
		Lichtmikroskop	REM/EDX		
13-е	148	ja	ja		
13-g	248	"	"		
13-i	348	"	nein		
13-j	398		ja		
13-k	448	"	"		
13-l	498	"	11		
13-m	548	"	nein		
13-р	698	"	"		
13-s	848	"	//		
13-v	998	"	11		

Tab.3: Liste der untersuchten Querschliffe

Tab. 4 : Maximum temperatures during test CORA-13

Elevation [mm]	Transient	(at time)	Quenching
-50	750°C		
50	850°C		
150	1050°C		
350	1700°C	(4600 s)	2000°C
550	1850°C	(4300 s)	2150-2250°C
750	1850°C	(4150 s)	2200-2300°C
850	1850°C	(4100 s)	2200-2300°C
950	1850°C	(4200 s)	2200-2300°C
1050	1850°C	(4300 s)	2150-2250°C
1150	1850°C	(4600 s)	2150-2250°C
1250	1500°C	(4600 s)	1800-2100°C
1350	1000°C	(4600 s)	1600-1800°C
1450	300°C		600-700°C

4. Beschreibung der Analysengeräte

Für die vielfältigen Wechselwirkungsprozesse zwischen den Komponenten eines LWR-Brennelements, benötigen wir eine Reihe von Geräten zur Untersuchung von Mikrostrukturen und deren chemischen Zusammensetzungen. In Folge werden diese Analysengeräte beschrieben.

- a) Für die Lichtoptische Auswertung steht ein Mikroskop vom Typ MEF 3 der Fa. Leica/Stuttgart zur Verfügung. Neben makroskopischen Abbildungen ab dreifacher Vergrößerung wird das Gerät für die metallografische und keramografische Deutung des Gefüges sowie für dessen Abbildung bis etwa 1500-facher Vergrößerung benutzt.
- b) Mikrobereichsuntersuchungen von etwa 100-fach bis 100000-facher Vergrößerung werden mit dem Rasterelektronenmikroskop (REM) [5] vom Typ JSM 6100 der Fa. Jeol/Japan ausgeführt. Das Gerät verfügt über eine besonders große Probenkammer, die die Manipulation an den sehr großen Querschliffen (140 x 140 mm) von CORA-13 erlaubt. Weitere, für das Arbeiten an den Versuchsproben wichtige REM Gerätedaten sind:
 - Auflösung bis 4 nm
 - Beschleunigungsspannung von 300V bis 30KV
 - Optimale Bildqualität auch im Niedervoltbereich von 300V bis 3kV
 - Großer Verfahrweg der Probenbühne
 - Probenstrom und Strahlstrommessung
 - Flächen-, Linien-, Punkt- und Teilflächenrasterung
 - Leistungsstarkes Vakuumsystem das trotz der etwas ausgasenden CORA-Proben ein guter Vakuum erzeugt.
- b1) Das Gerät verfügt serienmäßig über einen Sekundär-Elektronendetektor (SED) [4], der sich besonders zur Abbildung von rauhen Oberflächen und Brüchen, sowie im unteren Beschleunigungsspannungsbereich von 300V bis 3kV zur Ablichtung geringster Oberflächenbeläge eignet. Der SED zeichnet sich außerdem durch eine hohe laterale Auflösung von 4 nm und sehr große Tiefenschärfe aus.
- b2) Um die vielen unterschiedlichen Reaktionsphasen die bei den chemischen Wechselwirkungen mit den CORA-Versuchsbündelmaterialien entstehen hinreichend gut abbilden zu können, wurde das REM zusätzlich mit einem Rückstreu-Elektronendetektor (RED) [5] der Fa. Robinson /Australien ausge-

stattet. Der Vorteil dieses Detektors liegt in der extrem guten Trennung von geringsten Materialunterschieden. Er eignet sich für die Untersuchung von glatten Probenoberflächen (geschliffen und poliert). Die laterale Auflösung beträgt nur 8 nm und ist deutlich schlechter als die des SED. Die Ansprechspannung beträgt etwa 2kV. Die in diesem Bericht gezeigten REM-Bilder stammen alle vom RED und wurden bei 15 kV Anregungsspannung erzeugt.

c) Das wichtigste Zusatzgerät das am REM angeflanscht ist, ist das energiedispersive-Röntgenspektrometer (EDX) [6] vom Typ Microanalyst 8000 der Fa. Kevex/USA. In Verbindung mit dem Si (Li)-Detektor vom Typ Quantum, ebenfalls von der Fa. Kevex, ist es möglich, alle Elemente ab Bor bis Uran qualitativ zu analysieren und darüber hinaus die Elemente von Natrium bis Uran vollquantitativ zu erfassen.

Das als Vielkanalanalysator aufgebaute Gerät ist die Kombination eines aus Mikroprozessorbasis und Firmensoftware zusammengestellten Grundgerätes mit einem leistungsfähigen Kleinrechnersystem, in Verbindung mit einem Wechselplattenspeicher, sowie einem Graphik-Matrixdrucker. Ein speziell für die energiedispersive Mikroanalyse entwickeltes Programmpaket das "Quantex-Ray" enthält eine Vielzahl von Methoden zur Spektrenbearbeitung. Dies sind verschiedene Untergrundkorrekturen, sowie Peakentfaltungen, Eliminierung von Escape-Linien, Korrektur der Absorptions- und Fluoreszenzeffekte (ZAF-Korrektur) etc.. Für die guantitative Mikroanalyse erlaubt das Programm, daß Standards und Probe unter verschiedenen Bedingungen aufgenommen und sowohl K-, als auch L- und M-Linien zur Analyse herangezogen werden können. Schließlich sind noch eine Vielzahl von graphischen Darstellungsarten für die Analysenergebnisse möglich. Der angeschlossene Quantum Si (Li)-Halbleiterdetektor zum Nachweis aller Elemente von Bor bis Uran hat ein Auflösungsvermögen von 109 eV (Fluor Ka-Strahlung, 677 eV) und 146 eV (Mangan K α -Strahlung, 5,89 Kev) bei einer aktiven Fläche von 10 mm². Der Detektor ist mit einer Neigung von 40° am REM angeflanscht. Die schräge Anordnung erlaubt das Heranfahren der aktiven Detektorfläche bis unmittelbar an die zu untersuchende Probenoberfläche. Dies erst ermöglicht die EDX-Untersuchungen an den sehr großen CORA-Versuchsproben. Da die guantitative Analyse von Sauerstoff nicht möglich ist, sind alle Analysenergebnisse ohne Berücksichtigung von O auf 100 % normalisiert.

5. Ergebnisse der Mikroanalysen

In den Abschnitten 5.1 bis 5.5 wird ein Teil der angefallenen Analysenergebnisse von den CORA-13-Schliffproben Nr. e, g, j, k und I dargestellt. Die Wiedergabe der Ergebnisse erfolgt in Abschnitt 5.1 ausführlich. In den Folgeabschnitten 5.2 bis 5.5 wird versucht nur noch das Wichtigste zu zeigen. Ziel der Darstellungen ist es, einen Vergleich der vorhandenen Schmelzreaktionszonen bei unterschiedlichen Brennstabbündelhöhen, die unterschiedlichen Temperaturen entsprechen, zu erarbeiten. In Abschnitt 5. 1. 2 wird die Homogenität innerhalb eines Schmelzbereiches untersucht, und die quantitativen Analysenwerte sowie die Abweichungen werden angegeben.

5.1 Versuchsprobe CORA-13-e

Brennstabbündelhöhe 148 mm

5.1.1 EDX-Analysenpositionen

Die Nummerierung von Positionen stammt von den lichtoptischen Untersuchungen

Maßstab 1:1

- 14 ---

5.1.2. Homogenität innerhalb einer Schmelzzone

Zur Überprüfung inwieweit innerhalb eines Schmelzbereiches die einzelnen Integralanalysen einen repräsentativen Wert für die Schmelze darstellen, wurde die Zusammensetzung der Schmelze um den Bereich Nr. 18, an zehn verschiedenen Positionen untersucht (Abb. 5 bis 14). Die RE-Abbildungen zeigen teilweise größere Unterschiede in der Phasenzusammensetzung. Die EDX-Integralanalysen (siehe unten) zeigen, daß die Standard-Abweichungen jedoch nicht zu groß sind. Im Bezug auf den Mittelwert ist die Abweichung bei den dominierenden Elementen Zirkon und Silber mit ± 5 bis 6 % tolerierbar. Für die weiteren Analysen von Schmelzzonen erscheint die Messung an fünf Positionen als ausreichend.

Element	Linie	Mittlere Gew. %	Standard- Abweichung
Cr	К	1.71	0.33
Mn	К	0.11	0.08
Fe	К	5.15	0.61
Ni	K	2.09	0.20
Zr	L	41.90	2.01
Ag	L	39.12	2.51
Cď	L	2.46	0.49
In	L	7.47	1.20

Cora-13 / Probe e / L. Op. um Abbildung Nr. 18 Integralanalysen Bereich a bis k Anzahl der Analysen: 10

Abb. 5 / Bereich a

Abb. 6 / Bereich b

Abb. 7 / Bereich c

Abb. 8 / Bereich d

Abb. 9 / Bereich e

Abb. 10 /Bereich f

Abb. 11 / Bereich g

Abb. 12 / Bereich h

Abb. 13 / Bereich i

Abb. 14 / Bereich k

5.1.3 Integrale Analysenergebnisse der Schmelzen

In den Abbildungen Nr. 15 bis 18 werden die Mittelwerte sowie die Standardabweichungen (in Gew. %) von acht verschiedenen Schmelzen der Probe e mit jeweils einer repräsentativen REM-Abbildung dargestellt. Die Tabelle 5 zeigt die Zusammenfassung der Analysenergebnisse.

Die Analysen lassen erkennen, daß in dieser Schliffebene fast nur Zr-Stahl-Absorber Schmelzen zu finden sind. Uran ist nur in Position 26 und 28 in kleinen Mengen zu finden. In Position 28 könnte es sich um eine Reaktion handeln, die tatsächlich in dieser Probenebene e stattgefunden hat. Das Zry-4-Hüllrohr, in unmittelbarer Nähe der analysierten Schmelze, ist zerstört und der UO₂-Brennstoff liegt frei. Bei der Schmelze der Position 26 besteht der Verdacht, daß das Material aus einer höheren und heißeren Bündelposition auf die Ebene Nr. e herabgelaufen ist und hier lediglich erstarrte. Im übrigen kann von keiner Schmelzzone mit absoluter Sicherheit behauptet werden, daß die Reaktionen nur hier und nicht in einer höher gelegenen Bündelebene stattgefunden haben. Vielmehr muß davon ausgegangen werden, daß Schmelzreaktionen mit den Brennelementkomponenten in höher liegenden Ebenen stattgefunden haben und daß die Schmelzen sich dann verlagerten.

Typ der Schmelze	Pos.	Nr.	Zr	Fe	Cr	Ni	Ag	In	Cd	U	
metallisch	18	Mittelwert Abweichung	41,9 ± 2	5,2 ± 0,6	1,7 ± 0,3	2,1 ± 0,2	39,1 ± 2,5	7,5 ± 1,2	2,5 ± 0,5	-	
metallisch	19	Mittelwert Abweichung	47,2 ± 0,5	3,4 ± 0,7	0,8 ± 0,1	1,6 ± 0,2	35,6 ± 2,4	8,3 ± 1,1	3,1 ± 0,4	-	
metallisch	а	Mittelwert Abweichung	35,3 ± 2,3	2,8 ± 0,4	0,7 ± 0,3	1,4 ± 0,2	46,3 ± 3,4	10,2 ± 1,4	3,3 ± 0,5	-	
metallisch	23	Mittelwert Abweichung	42,3 ± 1,8	4,8 ± 0,8	1,3 ± 0,6	2 ± 0,2	39,3 ± 2,2	7,3 ± 0,8	2,6 ± 0,5		
metallisch	25	Mittelwert Abweichung	47,1 ± 0,6	3,7 ± 1,2	1,3 ± 0,7	1,5 ± 0,4	37,9 ± 3,9	4,9 ± 1,2	2,4 ± 0,5	-	Ta 1,1
metallisch	29	Mittelwert Abweichung	50,4 ± 3,9	4,6 ± 1	1,4 ± 0,7	1,9 ± 0,2	32,7 ± 3,2	6,3 ±0,9	2,6 ± 0,2	-	
metallisch	28	Mittelwert Abweichung	47,1 ± 2,6	4 ± 0,7	1 ± 0,3	1,7 ± 0,4	35,5 ± 3,2	7,2 ± 0,7	1,3 ± 0,8	2,3 ± 0,9	
metallisch	26	Mittelwert Abweichung	8,3 ± 1,4				75,2 ± 1,4	10,7 ± 0,2	3,6 ± 0,7	2,1 ± 0,7	

Tab. 5: Zusammenstellung der Integralwerte in der Schmelze von Probe e. Angaben in Gew.-%.

CORA-13 / Probe e L.Opt. Nr. 18 Integralanalusen		e i P	bbildungen unc nalysenergebni n Abschnitt 5. estellt	Einzel= .sse sind 1.2 dar=
C) manual	t insta	Mittlere	Standard-	Anzahl der
C.emeric C.	C15516		нометский	Husilaeu:10
Lr.	F , 1	1 1	ెల్లే చిచి	
Piri	ĸ	0.11	0.08	
Fe	к	5.15	0.61	

2.09

41.90

39.12

2.46

7.47

0.20

2.01

2.51

0.49

1.20

CORA-13 / Probe e L.Opt. Nr. 19 Integralanalysen

Mi

Zr

Ag

Сď

Iri

к

Ł

L

Ł

L

		Mittlere	Standard-	Anzahl der
Element	Linie	GewFrozent	Abweichung	Analysen: 5
Cr	ĸ	0.81	0.14	
Mri	к	0.08	0.04	
Fe	ĸ	3,36	0.67	
Mi	к	1.58	0.24	
Zr	L	47.23	0.47	
Ag	L	35.61	2.43	
Cd	Ł	3.07	0.42	
Iri	L	8.26	1.08	
		Abb. 15		

CORA-13 / Probe e L.Opt. Nr. REM a Integralanalysen

			JUA VAR	00 LOSH	<u>L'I</u>
		Mittlere	Standard-	Anzahl dem	^
Element	Linie	GewProzent	Abweichung	Analysen:	5
Cr	к	0.67	0.26		
Mri	к	0.11	0.03		
Fe	ĸ	2.73	0.35		
Mi	к	1.36	0.23		
Z٣	Ł	35, 32	2.31		
Au	L	46.26	3.44		
Cđ	Ł	3, 30	0.52		
In	L	10.19	1.43		
1 11	S	1	18 / 55		

— 28 —

CORA-13 / Probe e L.Opt.~Nr. 23 Integralanalysen

		mittlere	Standard-	Anzahl der
Element	Linie	GewProzent	Abweichung	Analysen: 5
Cr	к	1.33	0.61	(jeweils bei
Þiri	к	0.08	0.06	500-facher
Fe	к	4.84	0.77	Vergroesser,)
14 i	к	1.98	0.19	
Zr	L	42.31	1.75	
Ag	L	39.28	2.19	
Cd	L	2.93	0.45	
In	Ł	7,26	0.81	

CORA-13 / Probe e L.Opt. Nr. 25 Integralanalysen

Element	Linie
Cr	к
pire	к
Fe	к
Mi	к
Zr	Ł
Ag	L
Cd	L
Iri	L
Ta	М

CORA-13 / Probe e L.Opt.~Nr. 29 Integralanalysen

Element	Linie
Cr	к
Mrs	к
Fe	к
Ni	к
Zr	L
Ag	L
Cd	L
Iri	L

Standard-Abweichung 0.71 0.03 0.98 0.23 3.88 3.23 0.24 0.87

Anzahl der Analysen: 5 (yeweils bei 500-facher Vergroesser.)

CORA-13 / Probe e L.Opt. Nr. 28 Integralanalysen

		mittlere	Standard-	Anzahl der
Element	Linie	Gew Prozent	Abweichung	Analysen: 5
Cr	к	1.02	0.30	-
Mri	к	0.10	0.03	
Fe	к	4.00	0.65	
Ni	к	1.65	0.40	
Zr	L	47.05	2.60	
Ag	L	35.47	3.21	
Cd	L	1.25	0.76	
Iri	L	7.16	0.70	
U	м	2.23	0.87	

CORA-13 / Probe e L.Opt.~Nr. 26 Integralanalysen

		mittlere	Standard-	Anzahl der
Element	Linie	Gew Prozent	Abweichung	Analysen: 5
Zm	L	8.23	1.36	(yeweils bei
Ag	L	75.21	1.37	500-facher
Cd	L	3.63	0.67	Vergroesser,)
Irs	L	10.73	0.19	
U	м	2.14	0.68	

- 31 ---

5.1.4 Phasenanalysen in den Schmelzen (Punktanalysen)

Zur Deutung der chemischen Reaktionen wurden neben den integralen Analysen auch sogenannte Punktanalysen durchgeführt. Hierbei wird der Elektronenstrahl des REM's punktförmig (etwa 0,1 μ m Ø) auf eine zu analysierende Probenposition fixiert. Die Probenposition entspricht jeweils einer typischen Phase, die bei der Reaktion der Bündelkomponenten miteinander während der Temperaturtransiente oder bei der Abkühlung entstanden ist. In den Abbildungen Nr. 19 und 20 werden die Analysenergebnisse der zwei größten Schmelzzonen von der Probe Nr. e, die Positionen 18 und 23 wiedergegeben. In der vergleichenden Gegenüberstellung der Ergebnisse von Tabelle 6 wird ersichtlich, daß die zwei Schmelzen im wesentlichen aus insgesamt vier identischen Phasen bestehen.

Analysen Position			Elemente, in Gew. % ermittelt mit REM/EDX (O kann aus technischen Gründen nicht quantitativ ermittelt werden. Die Prozentwerte wurden ohne O auf 100 % normalisiert)								
Schmelze 18	Schmelze 23	0	Cr	Mn	Fe	Ni	Zr	Ag	Cd	In	U
1		ja					44	54	0,7	1,7	
	2	ja					45	52	1,4	0,9	
	4	ja					44	54	0,3	1	
	9						45	53	1,4	1	
5								89	6,9	4,5	
	5							87	11	3,1	
	8							87	8,6	4,2	
3			4,2	0,2	11	5,1	71	5,7	1,7	1,4	
6			4,2	0,2	12	5	70	5,7	1,7	1,4	
	1		2,5	0,2	11	4,5	71	7,4	2,3	1,4	
	6		5,2	0,2	13	4,2	69	6,2	1,7	1,2	
2			22	0,9	30	1,6	46				
	3		22	0,8	29	1,7	45				1,8
	7		23	1	28	1,6	45		0,8	0,2	
4			0,1	0,1	5,4	3,5	46	20	1,5	23	

Tab. 6:Phasenvergleich in den zwei Hauptschmelzen der Positionen Nr. 18 und
Nr. 23 des Querschliffes Nr. e

Abb. 19 / Pos. 18

- 32 -

Abb. 20 / Pos. 23

- 33 -

5.1.5 Einzelreaktionen außerhalb der Hauptschmelzen

Untersucht wurden die Kontaktbereiche von Uranoxid mit dem Zry-Hüllrohr (Abb. 21 und 22). In den Analysenpositionen Nr. 12 und Nr. 14 von Probe e (siehe auch Übersichtsaufnahme in Abschnitt 5.1.1) wurden an den unmittelbaren Berührungsstellen von Brennstoff und Hülle eine Reihe von Reaktionsphasen im Mikrobereich ermittelt. Hierbei handelt es sich um die Reaktion einer von oben herablaufenden Schmelze, die zwischen dem Brennstoff und der Zry-Hülle chemische Kontaktreaktionen auslöste. Deutlich erkennbar ist, daß die heiße Absorbermateriallegierung bereits in diesem Stadium heftig mit dem Zry-Hüllrohr reagiert und daß das UO₂ bereits gering vom Zr aufgelöst wird (L. Opt. Nr. 14).

Abb. 21 / Pos. 12

- 35

Abb. 22 / Pos. 14

- 36 -

5.1.6 Reaktionen im Absorberstab

Der Absorberstab besteht aus dem Edelstahlhüllrohr und der Absorbermaterialfüllung aus 80 % Silber, 15 % Indium und 5 % Cadmium (Gew. - %). Der Absorberstab ist mit einem Führungsrohr aus Zry-4 umgeben. Bei den Analysen (siehe Abb. 23 bis 28) wurde folgendes ermittelt:

- Bereich Nr. 1: besteht aus einer Anschmelzreaktion. Das Zry-Führungsrohr wurde von außen chemisch angegriffen.
- Bereich Nr. 2: besteht in seinem Kern noch aus Zry-4.
- Bereich Nr. 3: besteht aus einer metallischen Schmelze, die aus den darüberliegenden, heißeren Ebenen stammt. In Kontakt mit dem Zry-4 kommt es zu chemischen Reaktionen.
- Bereich Nr. 4: das Edelstahlrohr ist an dieser Stelle noch unversehrt.
- Bereich Nr. 5: die Absorberlegierung zeigt bei der Integralanalyse gering Anteile von Zr und den Stahlkomponenten. In den Punktanalysen, einzelnen Phasen der Legierung, wird dies erhärtet (Abb. 29).

Probe Nr. e/Analysenpositionen

Bereich Nr 10

Absorbermaterial

Abb. 23 / Übersicht

9-Jun-1992	14:32:52				
CORA-13 / Pr	obe e / zu	J_L.Op.Nr.	10	, ~ .	1
Bereichsanal Vosta - 200	lyse Pos.l	(a) Dise 1	C	Preset=	100 secs
Flement		Atom~%			
		se i	and a start		
	rruzen. M	不)	ALL TOTAL		
				State T	
Mn KA	0.22	0.39	· · ·	Vist N	
Fe KA	1.04	1.84		A A	
Zr LA	47.83	51.77			A Star
Ĥợ LÃ	39.32	35,99			STAN P
Cd LA	2.52	2.21			
In LÃ	9.07	7.80			
Gesamt:	100.00				Nge anar
			abaa `	15KU X58	9 100m WD39
		5 5 5 5 5	.		
*Beachte: F	ist∎ ■	auf 100%	normalisie	ert	
**Beachte: k	(-Verh, [=]	<−Verh. x	R		
Quantex > wobe	i R=Refer	nzwert(St	:andard)/Re	eferenzwert(f	Probe)
k\$%3<** * /T	12			1 2 the sector of the sector o	a al man in quay to stand in the second state
4- 0.000	Range=	10.230	keV		10.110
			Int	tegral 5 =	2

Abb. 24 / Bereich 1

-- 39 --

Abb. 25 / Bereich 2

Abb. 26 / Bereich 3

Abb. 27 / Bereich 4

Abb. 28 / Bereich 5

- 43 —

Abb. 29 / Absorbermateria

- 44 -

5.2. Versuchsprobe CORA-13-g

Brennstabbündelhöhe 248 mm

5.2.1. EDX-Analysenpositionen

Die Nummerierung von Positionen stammt von den lichtoptischen Untersuchungen

Maßstab 1:1

Bereich A

21

Maßstab 3:1

5.2.2 Integrale Analysenergebnisse der Schmelzen

Die in Tabelle 7 zusammengefaßten Analysenergebnisse zeigen, daß die verschiedenen Schmelzen aus einem einzigen Schmelztyp bestehen. Der Anteil von etwa 2,5 Gew. % Tantal stammt von den Thermoelement-Hüllrohren. Da die Thermoelemente außerhalb der Schmelzen noch intakt aussehen, muß auch in dieser Probenebene davon ausgegangen werden, daß die Schmelzen von höherliegenden Ebenen stammen (siehe auch Abbildung 30 und 31).

Pos.	Nr.	Zr	Fe	Cr	Ni	Ag	In	Cd	U	Та
18	Mittelwert	57	7,4	2,5	2,6	19,4	4,2	0,7	3,8	2,4
	Abweichung	4,4	1,4	0,8	0,3	2,6	0,6	0,2	0,7	1,2
20	Mittelwert	49,3	6,5	2	2,4	28,8	5,6	1,1	3,1	1,3
	Abweichung	2,1	0,9	0,6	0,2	2,9	0,5	0,4	0,9	1,3
21	Mittelwert	50,7	7,8	2,4	2,9	24	5,5	0,8	3,8	2,2
	Abweichung	0,9	0,4	0,3	0,2	0,7	0,5	0,4	0,8	0,6
19		54	8,1	3	2,6	20,2	4,2	0,2	4,2	3,5

Angaben in Gew. %.

Tab. 7:Zusammenstellung der Integralwerte in der Schmelze vom Querschliff
Nr. g

CORA-13 / Probe g L.Opt.~Nr. 18 Integralanalysen

Element Cr Fe Ni Zu	Linie K K K
Lr Fe	ĸ
Ni	ł<
Zm	L
Ag	Ĺ
Cd	L
Ir: T-	L.
) ex } :	171 M
~	1.1

CORA-13 / Probe g L.Opt.∼Nr. 19 Integralanalyse

Elem	ent	Gew	Atom-%
& Li	nie	Prozent	*)
Cr	ка	2.99	5.23
Fe	КА	8.05	13.10
刺主	КА	2.63	4.08
Zm	LA	54.01	53,78
Ag	LA	20.15	16.97
Cd	LA	0.19	0.16
Iri	LA	4.18	3.31
Ta	MA	3.54	1.77
U U	MA	4.25	1.62
		Abb. 30	

CORA-13 / Probe g L.Opt.~Nr. 20 Integralanalysen

		mittlere	Standard-	Anzahl de
Element	Linie	GewFrozent	Abweichung	Analysen:
Cr	к	2.00	0.57	
Fe	к	6.51	0.94	
Nii	к	2.41	0.17	
Zr	L	49.32	2.10	
Ag	L	28.76	2.91	
Cd	L	1.09	0.44	
Iri	L	5,55	0.45	
Ta	M	1.27	1.27	
U	м	3.10	0.88	

— 48 —

CORA-13 / Probe g L.Opt.~Nr. 21 Integralanalysen

		mittlere	Standard-	Anzahl der
Element	Linie	GewFrozent	Abweichung	Analysen: 5
Cr	ĸ	2.37	0.27	
Fe	ĸ	7.87	0.40	
Ni	ĸ	2.88	0.22	
Zr	L	50.71	0.93	
Ag	Ł	23.97	0.74	
Cd	L	0.75	0.37	
Iri	L	5.46	0.53	,
Ta	М	2.20	0.59	
U	\$A	3.80	0.82	

Abb. 31

5.2.3 Phasenanalysen in den Schmelzen (Punktanalysen)

In den drei ausgewählten Schmelzbereichen Nr. 19, 20 und 21 (Abb. 32 bis 34) finden wir insgesamt vier verschiedene Phasentypen (siehe Tab. 8):

- 1. Eine Zr, Stahl, U-Phase in den Positionen 3/19, 3/20 und 5/21.
- 2. Eine Zr, Absorber, Stahl-Phase in den Pos. 1/19, 2/20 und 2/21.
- 3. Eine Ta-haltige Zr-Stahl-Phase in den Pos. 2/19, 1/20 sowie 3 und 4/21.
- 4. Eine stark uranhaltige Phase mit Zr, Fe, Ni und den Absorberbestandteilen in den Pos. 4/19 und 1/21.

An Posi Sc	alyse tion hmel	en- von ze	Elemente in Gew %									
19	20	21	Cr	Mn	Fe	Ni	Zr	Ag	Cd	In	Та	U
3	3	5	14 14 18	0,2 0,6	18 18 33	1,5 1,5	62 62 45					4,6 4,3 3,6
1	2	2	0,9		4,1 5,1 2,4	2,6 2,6 1,6	51 48 47	29 31,5 41	1,4 1,8 4,2	8,7 6,5 4,2		3,2 3,3
2	1	3 4	6,8 6,9 11 10	0,2	13 13 19 19	2,2 2,5 2,6 2	59 60 54 56	1,3 1,5			15,6 13,5 12,3 11,7	2,2 2 1,4 1,6
4		1			12 12	7 5	52 47	4 6	0,6	1,8		25 28

Tab. 8:Phasenvergleich in den drei Schmelzbereichen Nr. 19, 20 und 21
von Schliffprobe Nr. g

Abb. 32 / Pos. 19

- 50 -

Abb. 33 / Pos. 20

- 51 -

Abb. 34 / Pos. 21

- 52 -

5.2.4 Reaktionen im Absorberstab

Der Absorberstab läßt in der Probenebene Nr. g starke Reaktionen sowohl mit dem Stahl-Hüllrohr als auch in der Absorberlegierung erkennen. Das Zry-Absorberstabführungsrohr ist weitgehend chemisch aufgelöst, seine Zr-Bestandteile sind bis in das Stabzentrum vorgedrungen (Abb. 36 und 37). Die mechanische Stabilität des Führungsrohres wird lediglich durch eine dünne Oxidschicht auf der Oberfläche gewährleistet. Die Röntgenverteilungsbilder von Ag, Fe, Cr und Zr in Abb. 38 veranschaulichen die Verteilung der Absorberstabmaterialien (durch Peaküberlappung von In und Cd mit Ag können nur von Silber EDX-Verteilungsbilder erstellt werden).

Maßstab 5:1

Abb. 35: Querschliff des Absorberstabes (Bereich B)

Abb. 36

- 54 -

Abb. 37

- 55 -

CORA-13 / Probe g Reaktionszone von Absorbermaterial und Huellrohr

— 56 —

R-BE-Abbildung mit EDX-Roentgenvertei= lungsbildung von Ag,Zr,Fe und Cr aus der Kontaktzone von Absorbermaterial und Huellrohr bzw. Absor= berstabfuehrungsrohr.

Fe-Verteilung

Zr-Verteilung

Cr-Verteilung

Abb. 38

5.3 Versuchsprobe CORA-13-j

Brennstabbündelhöhe 398 mm

5.3.1 EDX-Analysenpositionen

Die Nummerierung von Positionen stammt von den lichtoptischen Untersuchungen

5.3.2. Integrale Analysenergebnisse der Schmelzen

In der Brennstabbündelhöhe von 398 mm zeigen alle Komponenten des Bündels starke chemische Veränderungen. Die Brennstabhüllrohre sind größtenteils in die Schmelze übergegangen oder oxidiert. Von den Absorberstäben ist ein Stab fast vollständig aufgelöst, der zweite ist zum Bestandteil der großen Schmelzzone geworden.Die analysierten Schmelzbereiche Nr. 11, 12, 14 und REM b (Abb. 39 und 40) zeigen von den neun hauptsächlich vorhandenen Elementen folgendes Streuband:

Crom	0.9 % bis	1.6 %
Eisen	3,7 % bis	6,7 %
Zirkon	53 % bis	66 %
Moybdän	0,2 % bis	2,3 %
Silber	5 % bis	10 %
Indium	1,7 % bis	6,8 %
Tantal	1,3 % bis	3,1 %
Wolfram	0,6 % bis	2,9 %
Uran	11% bis	20 %

Angaben jeweils in Gew. - %

59

CORA-13 ∕ Probe j L.Opt. Nr. 11 Integralanalysen

Element	Linie
Cr	к
Fe	к
Zr	Ł.
Mo	L
Ag	L
In	L Í
Та	м
ш	М
U	М

mittlere	Standard-	Anzahl der
GewProzent	Abweichung	Analysen: 5
1.23	0.14	
5.14	0.32	
63.72	1.01	
0.16	0.11	
10.43	0.67	
3.19	0.66	
2.11	0.38	
0.62	0.21	
13.39	1.17	

CORA-13 ∕ Probe j L.Opt. Nr. 12 Integralanalysen

		mittlere	Stundard-	Anzahl der
Elemer	t Linie	Gew Prozent	Abweichung	Analysen: 5
Cr	K	0.93	0.19	
Fe	к	4.17	0.98	
Zr	L	65.55	2.66	
Mo	L	0.21	0.11	
Ag	Ł	6.72	1.81	
Iri	L	2.03	0.49	
Ta	м	1.28	0.54	
ы	þi	0.64	0.30	
U	м	18.47	1.61	
Ni auch	vorhanden	(Rechenkapazitaet	nur fuer ?	3 Elemente)

5

CORA-13 / Probe j L.Opt. Nr. 14 Integralanalysen

mittlere	Standard-	Anzahl de
GewProzent	Abweichung	Analysen:
0,92	0.22	
3.73	0.88	
60.57	2.85	
2.34	0.63	
5.09	1.32	
1.75	0.59	
3.14	1.03	
2,90	0.98	
19.55	0.35	

CORA-13 / Probe j L.Opt. Nr. REM b Integralanalysen

		mittlere	Standard-	Anzahl der	r
Element	Linie	GewProzent	Abweichung	Analysen:	5
Cr	к	1,55	0.19	-	
Fe	к	6.68	0.65		
Zr	L	53, 53	1.43		
Ma	L	0,39	0.17		
Ag	L	16.12	2.61		
Iri	L	6.81	2.56		
Ta	М	2.64	0.27		
ы	М	1.06	0.22		
U	М	11.23	2.02		

Abb. 40

5.3.3 Phasenanalysen in den Schmelzen (Punktanalysen)

In der Bündelebene Nr. j findet man Schmelzphasen die nur aus Zr bestehen, daneben sind Zr-U-Phasen sowie Bereiche in denen sämtliche Bündelmaterialien eine Legierung bilden festzustellen. Siehe Tabelle 9 sowie Abbildung 41 und 42.

Analyser von Sc	n-Position hmelze	Elemente in Gew. %										
11	12	0	Cr	Fe	Ni	Zr	Мо	Ag	In	Та	w	U
1	4					100 100	, ,					
2	2	ja ja				74,6 69,3						25,4 30,2
3	1		0,8 1,4	12,1 11,8	2,2 2,2	29,2 32,4		0,4	0,1			55,7 51,8
4			5	11,4	1	54,1		0,8	0,1	21,4		6,3
5 6	3		4,4 3,8 3,1 4,6	11,6 11,8 10,8 10,3	1,7 ja 1,7 ja	54,2 54,5 54,9 51	2,1 1,8 ja 3,3	1,7 2,6 3,5 1,2	0,8 1,8 0,5	12,8 8,2 8,9 13,5	3,5 1,7 3,4 8	7,9 9,8 12,6 7,8

 Tab. 9:
 Phasenvergleich in den Schmelzbereichen Nr. 11 und 12 von Probe j

Abb. 41 / Pos. 11

- 62 -

Abb. 42 / Pos. 12

- 63 -

5.3.4 Schmelze in der Absorberstabzone

Als Bestandteil der sich über einen Großteil der Schliffprobe Nr. i erstreckenden Schmelze ist der ursprüngliche Absorberstab nur noch schwer zu erkennen. In dieser Zone wurden fünf EDX-Analysen angefertigt. (Abb. 43). Die Analysenwerte passen sehr gut in das bei Abschnitt 5.3.2 ermittelte Streuband der Integralergebnisse der großen Schmelze. Die Absorberstäbe sind oberhalb der Stabhöhe von 398 mm nicht mehr vorhanden, da sie abgeschmolzen sind.

der

CORA-13 / Probe j L.Opt. Nr. REM a Integralanalysen

Element	Linie	GewFrozent	Abweichung	Analysen: 5
Cr	к	0.75	0.14	
Fe	к	3.86	0.86	
Zm	L	59.61	4.70	
Ma	L	3.40	0.95	
Ag	L	5.22	0.91	
In	L	2.16	0.41	
Ta	М	2.76	0.72	
4	М	3.24	0.83	
U	М	18,99	3.16	

5.3.5 Einzelreaktionszonen

Als Einzelreaktionen sehen wir bei der Analyse des Randes der Schmelze (L. Opt. Position Nr. 19) einmal die oxidierte Zr-U-Phase und zum anderen eine Verbindung aus dem Heizermaterial Wolfram, dem Thermoelementematerial Tantal sowie aus den Bestandteilen der Stahllegierung. In dem Zwischenraum von dem Brennstabhüllrohr und dem Uran-Pellet (L. Opt. Pos. 24) erkennt man ein Vielphasengemisch mit größeren Anteilen von Absorbermaterial-Phasen. In den metallografischen Untersuchungen wurden diese Absorbermaterialien als unbekannte gelbe Phasen bezeichnet (siehe Abb. 44 und 45).

Abb. 44 / Pos. 19

- 66 -

Abb. 45 / Pos. 24

- 67 --

5.4 Versuchsprobe CORA-13-k

Brennstabbündelhöhe 448 mm

5.4.1 EDX-Analysenpositionen

Die Nummerierung von Positionen stammt von den lichtoptischen Untersuchungen

Bereich B

EDX-Analysenpositionen Probe Nr. k.

5.4.2 Integrale Analysenergebnisse der Schmelzen

Die integralen Analysenwerte in der Bündelhöhe Nr. k sind sehr unterschiedlich (Tab. 10 bzw. Abb. 46 und 47). Die gesamte Schmelze ist weitestgehend oxidiert. Manche Bereiche sind wieder mit W von Heizer und Ta von den Thermoelementen angereichert. Alle Bündelkomponenten sind stark zerstört.

Typ der Schmelze	Pos. Nr	Zr	Fe	Cr	Ni	Ag	In	Cd	υ	Та	w	Мо	Sn
oxidisch	Mittelwert 11	69,8	2,1	0,6	-	3,6	-	-	23,9	-	-	-	-
	Abweichung	1,7	0,4	-	-	0,7	-	-	2,3	-	-	-	-
11	Mittelwert	57,8	4,7	4,2	7,4	2,8	-	-	14,1	-	-	-	9,5
	Abweichung	2,4	0,9	0,9	0,9	1,1	-	-	1,2	-	-	-	2
"	Mittelwert 18	38	4,6	1	-	4,9	2,4	-	31,1	4,9	6,7	6,5	-
	Abweichung	3	1,2	0,2	-	1,1	0,5	-	7,8	3,2	4,2	1,9	-
	Mittelwert 21	41,3	2,8	0,6	0,8	2,4	-	-	45,5	3,1	-	3,6	-
	Abweichung	1,7	1,5	0,5	0,3	1,2	-	-	9,1	2,2	-	2,2	-

Tab. 10:Zusammenstellung der Integralwerte in der Schmelze von Probe k
(Angaben in Gew. %. Ohne Berücksichtigung von Sauerstoff-Anteile wurden alle
Werte auf 100 % normalisiert).

- 71 -

CORA-13 / Probe k L.Opt. Nr. 11 Integralanalysen

		mittlere	Standard-
Element	Linie	GewProzent	Abweichung
Cr	к	0.57	0.03
Fe	к	2.11	0.39
Zr	L	67,84	1.71
Ag	L	3.59	0.68
U	м	23.83	2.27
0	KA	vorhanden	

Ar:	c at	11	der
An	aly	'SE	171.2

5

CORA-13 / Probe k L.Opt. Nr. 14 Integralanalysen

		mittlere	Standard-
Element	Linie	GewProzent	Abweichung
Cr	к	4.17	0.88
Fe	к	4.68	0.86
Ni	к	7.41	0.87
Zr	L	57.39	2.42
Ag	L	2,84	1.05
Sn	L	9.45	1.97
U	М	14.06	1.16
0	KA	vorhanden	

Anzahl der Analysen: 5

CORA-13 / Probe k L.Opt. Nr. 18 Integralanalysen

Lini
к
к
L
L
L
Ł
М
М
М
КА

Standardmittlere Gew. -Prozent Abweichung 0.20 0.99 4.61 1.24 38.01 3.06 6.47 1.86 4.86 1.03 2.38 0.54 4.91 3.22 6.69 4.21 31.07 7.80

Arizahl	de	r~•
Analys	eria	้ธ
rine zy s		0

vorhanden

-- 72 ---

CORA-13 / Probe k L.Opt. Nr. 21 Integralanalysen

					.
		181551ere	Standard-	HNIADI OG	r.
Element	Linie	Gewfrozent	Abweichung	Analysen:	5
Cr	к	0.63	0.46		
Fe	к	2.78	1.51		
i4i	к	0.82	0.32		
Zr	L	41.28	1.65		
Mc	L	3.56	2.21		
Ag	L	2.35	1.18		
Ta	М	3.10	2.24		
u	М	45,48	9.12		
0	KA	vorhander	1		

5.4.3 Phasenanalysen in den Schmelzen (teils Punktanalysen)

Die Vielzahl der unterschiedlichen Phasenzusammensetzungen, die in dieser Brennstabebene zu finden sind, verdeutlicht die Abb. 48 bis 53. Neben den unterschiedlichen Zusammensetzungen fallen besonders die Konzentrationsunterschiede bei den U-Zr-O-Phasentypen auf. In Tab. 11 ist eine Zusammenstellung der in Bündelhöhe Nr. k gefundenen (U, Zr)O₂-Mischoxidverbindungen aufgeführt.

Bereich Nr.	Analyse Nr.	Schmelztyp	Zr	U	Fe
18	1	oxidisch	18,7	81,3	
18	8	oxidisch	39,1	60,9	
21	1	oxidisch	18,7	80,4	0,9
21	3	oxidisch	40,9	59,1	
21	4	oxidisch	36,9	63,1	
25	1 + 2	oxidisch	68,1	31,9	
25	4	oxidisch	11,3	88,7	
28	3	oxidisch	91	9	
33	2	oxidisch	10,8	89,2	
REM a	integral	oxidisch	78	22	an a

Tab. 11: Zusammenstellung der ermittelten (U,Zr)O₂-Mischoxidverbindungen (Angaben in Gew. %. Ohne Berücksichtigung von Sauerstoff wurden alle Werte auf 100 % normalisiert).

Abb. 48 / Pos. 18

- 74 -

3-Hug-199 CORA-13 /	2 14:44:14 Probe k / l		1.				7								1	X
Punktanaly	se Pos.1	· .	p			6	•									
Vert≈ 2	000 counts	Disp = 1			4		1		lag de				62			
Element	Gew	Atom-%				às.	127	27								
& Linie	Prozent	*)			r X			15	Ľ.						- -	
Fe KA	0.39	2.85						4	$\overline{\Lambda}$				Ċ,			
Zr LA	18.69	36.68						-				Ż				
U MA	80.42	60.47	5										1			e G
Gesamt:	100.00					and a second s										
0 KA	vorhanden			95 (182		SK II		X.		ł	1	8 P		¢.	
			**************************************					Element	in % (ED:	X-Analys	e)					
			Pos.	0	Cr	Mn Fe	Ni	Zr	Мо	Ag	Cd	ln	Sn	Та	w	υ
			1	ja		0,9		18,7								80,4
1			2		1,7	12	2,5	63,4	5,7	4,5						10,3
											1		1 1			
			3	ja	-			40,9								59,1
			3 4	ja ja	~			40,9 36,9								59,1 63,1
			3 4 5	ja ja				40.9 36,9 100								59,1 63,1
			3 4 5 Integral Analyse	ja ja ja	0,63 ± 0,46	2,78 ± 1.5	0,82 1 ±0,32	40,9 36,9 100 41,28 ± 1,65	3,56 ±2,21	2,35 ±1,18				3,10 ±2,24		59,1 63,1 45,48 ±9,12
*Beachte:	Atom-% ist	tjauf 100:	3 4 5 Integral Analyse ≪ ∩ Q F	ja ja ja	0,63 ±0,46 31 1	2,78 ±1,5 \$ 1 @ r	0,82 1 ± 0,32	40,9 36,9 100 41,28 ±1,65	3,56 ± 2,21	2,35 ±1,18				3,10 ±2,24		59,1 63,1 45,48 ±9,12
*Beachte:	Atom-% is	t auf 100:	3 4 5 Integral Analyse S î Q ř X R	ja ja ja	0,63 ±0,46 31 1	2,78 ±1,5 \$ 1 € r	0,82 1 ±0,32	40,9 36,9 100 41,28 ±1,65	3,56 ±2,21	2,35 ±1,18				3,10 ± 2,24		59,1 63,1 45,48 ±9,12
*Beachte: **Beachte:	Atom-% ist k-Verh.	t auf 100 k-Verh. :	3 4 Integral Analyse S n Q ř X R	ja ja ja	0,63 ±0,46 § 1 1	2,78 ±1.5 \$ 1 € T	0,82 1 ± 0,32	40,9 36,9 100 41,28 ±1,65	3,56 ±2,21	2,35 ±1,18				3,10 ±2,24		59,1 63,1 45,48 ±9,12
*Beachte: **Beachte: Quantex?wo	Atom-% ist k-Verh. = beiR=Refer	t auf 100 k-Verh.) renzwert({	3 4 Integral Analyse In O F X R D t a.n d	ja ja ja M	0,63 ±0,46 2 1 1 2 ()	2,78 ±1,5 sier /Ref	0,82 1 ±0,32	40,9 36,9 100 41,28 ±1,65	3,56 ±2,21	2,35 ±1,18	² ;~ ,			3,10 ±2,24		59,1 63,1 45,48 ±9,12
*Beachte: **Beachte: Quantex?wo	Atom-% ist k-Verh. beiR=Refer	t auf 100 k-Verh.) renzwert({	3 4 5 Integral Analyse An Q P X R B t a.n d	ja ja ja ja ja	0,63 ±0,46 2 1 1	2,78 ±1,5 \$ 1 € r / R ∈ f	0,82 1 ±0,32 • t. • œ F• €	40,9 36,9 100 41,28 ± 1,65	3,56 ±2,21	2,35 ± 1,18 ± ()) j i			3,10 ±2,24		59,1 63,1 45,48 ±9,12
*Beachte: **Beachte: Quantex >wo	Atom-% ist k-Verh. = beiR=Refer 12 B Range	t auf 100 k-Verh.) renzwert({ 4 = 10.230	3 Integral Analyse An O P X R Bt a.n d IS A ke V	ja ja ja M1.3	0,63 ±0,46 1 1	2,78 ±1.5 \$ i e r /Ref	0,82 1 ±0,32 • t	40,9 36,9 100 41,28 ±1,65	3,56 ±2,21	2,35 ±1,18 ± (f) ;; ;	o b 		3,10 ±2,24		59,1 63,1 45,48 ±9,12

Abb. 49 / Pos. 21

— 75 —

Abb. 50 / Pos. 28

- 76 -

30-Jul-1992 0 CORAL13 / Pro	37:39:23 bbe k / L	.0s.Nr.2	5			-	•			2	€ •	- y				
Punktanalyse	Pos.1	1					1		, also	1		2				
Vert= 2616	5 counts	Disp= 1		•					- B	•	le				Ň	
Element	Gew.~	Atom∼%						3				*				
& Linie	Prozent	*)	بر برج						R. R.	ŕ,^						(1) 10
Zr LA	68.08	84,77				S		-2		1		ġ	Ś		<2	
U MA	31.92	15,23			÷] •	- 7		<u>,</u>			7		Ĵ.	•		
Gesamt:	100.00		2				2.5	ſ.			5	\hat{A}		÷.	5	
O KA	Corhande	n				! .)		se.	5				•		1	
							1 51	ħ^		4				U m	ШD	79
	(a)						- Ander	Y Y (1)		Bonnell	Williams	· · · 2 · · ·	With the state of	S	Contraction of the	in it a
		[R.					Fl	ement i	a % (FD)	(-Analy	se)				
			Pos.		Cr Mr	Fe	Ni	Ele Zr	ement ii Mo	n % (ED) Ag	(-Analy Cd	se)	Sn	Та	w	
			Pos.	0 ja	Cr Mn	Fe	Ni	Ele Zr 68,1	ement in Mo	n % (ED) Ag	(-Analy Cd	se)	Sn	Ta	w	U 31,9
			Pos. 1 2	O ja ja	Cr Mn	Fe	Ni	Ele Zr 68,1 68,1	ement in Mo	n % (ED) Ag	(-Analy Cd	se) In	Sn	Та	w	U 31,9 31,9
			Pos. 1 2 3	O ja ja	Cr Mn	Fe	Ni	Ele Zr 68,1 68,1 46,3	ement in Mo	Ag 51.8	(-Analy Cd	se) In 1,1	Sn	Та	W	U 31,9 31,9
			Pos. 1 2 3 4	O ja ja ja	Cr Mr	Fe	Ni	Ele Zr 68,1 68,1 46,3 11,3	ement ii Mo	Ag 51,8	(-Analy Cd	se)	Sn	Ta	W	U 31,9 31,9 88,7
			Pos. 1 2 3 4 5	O ja ja ja	Cr Mr	.Fe	Ni	Eld Zr 68,1 68,1 46,3 11,3 49,5	ement in	Ag 51,8	(-Analy Cd 0,8 0,5	se) In 1,1 25	Sn 	Ta	w	U 31,9 31,9 88,7
			Pos.	O ja ja ja	Cr Mn	Fe	Ni	Ele Zr 68,1 68,1 46,3 11,3 49,5 59,2 54,3	ement in	Ag 51,8 11,2 1,5	C-Analy Cd 0,8 0,5	se)	Sn 12,8	Ta	w	U 31,9 31,9 88,7 7,4
*Beachte: At	tom-% ist	auf 100	Pos. 1 2 3 4 5 6 Integral Analyse	O ja ja ja ja	Cr Mn	Fe 1 12,8 7	Ni 2.2 1,5	Ele Zr 68,1 68,1 46,3 11,3 49,5 59,2 54,3	ement in Mo	Ag 51,8 11,2 1,5 11,1	(-Analy Cd 0,8 0,5	se) In 1,1 25	Sn 12,8 2,6	Ta 	w	U 31,9 31,9 88,7 7,4 18,3
*Beachte: At	tom-% ist	auf 100 Luvanu	Pos. 1 2 3 4 5 6 Integral Analyse	O ja ja ja ja	Cr Mr 	Fe 1 12,8 7	Ni 2,2 1,5	Ele Zr 68,1 68,1 46,3 11,3 49,5 59,2 54,3	ement in Mo	Ag 51.8 11.2 1.5 11.1	C-Analy Cd 0,8 0,5	se)	Sn 12,8 2,6	Ta 	w	U 31,9 31,9 888,7 7,4 18,3
*Beachte: At **Beachte: k-	tom-% ist	auf 100 k-Verh.	Pos. 1 2 3 4 5 6 Integral Analyse X T	O ja ja ja ja	Cr Mn	Fe	Ni 2,2 1,5	Ele Zr 68,1 68,1 46,3 11,3 49,5 59,2 54,3	ement in Mo	Ag 51,8 11,2 1,5 11,1	C-Analy Cd 0,8 0,5	se)	Sn 12,8 2,6	Ta 	w	U 31,9 31,9 88,7 7,4 18,3
*Beachte: At **Beachte: k Quantex >wobe	tom-% ist -Verh. = R=Refer	auf 100 k-Verh. enzwert()	Pos. 1 2 3 4 5 6 Integral Analyse X R Stanc	O ja ja ja ja	Cr Mr 	Fe 1 12,8 7	Ni 2,2 1,5	Eli 2r 68,1 68,1 46,3 11,3 49,5 59,2 54,3 		Ag 51,8 11,2 1,5 11,1	(-Analy Cd 0,8 0,5	se) In 1,1 25	Sn 12,8 2,6	Ta 11,8 3,2	w	U 31,9 31,9 888,7 7,4 18,3
*Beachte: At **Beachte: k- Quantex>wobe 	tom-% ist -Verh. R=Refer 12 3	auf 100 k-Verh. enzwert(1 4	Pos. 1 2 3 4 5 6 Integral Analyse X R S t a.m c	O ja ja ja ja ja či l	Cr Mn 	Fe 1 12,8 7	Ni 2,2 1,5	Ele Zr 68,1 46,3 11,3 49,5 59,2 54,3 		Ag 51,8 11,2 1,5 11,1	(-Analy Cd 0,8 0,5	se) In 1,1 25	Sn 12,8 2,6	Ta 11.8 3,2	w	U 31,9 31,9 88,7 7,4 18,3

Abb. 51 / Pos. 25

— 77 —

				いていていていていていていていていていていていていていていていていていていて	るいたかとうないで	「大」の成りたという		BEREY JEW X200 Manual 1023	Element in % (EDX-Analyse)	Pos. O Cr Mn Fe Ni Zr Mo Ag Cd In Sn Ta W U	1 ja · 0,3 3,4 62,5 33,8	2 ja 10,8 89,2	Integral ja 6,8 34,2 59 Analyse		lormæl i %iært		andard)/Referenzwert(Probe)	15 15 16 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	<ev -="" 0="10,110" integral="" th="" •<=""></ev>
0p.Nr.33 Disp= 1	Ĥtom~×		ب م		64. 23 60										auf 100%	× *	hzuert(5t)		19,339
87:58:58 86:58 70:51 70:4 70:4 70:4 7 7:58 7:58 7:58 7:58 7:58 7:58 7:58 7:	Gew.	ភ្នំ ភ្ល ភ្ល ភ្ល ភ្ល ភ្ល	e B	থ ক ত	रा ज र ज	50 50 50 50 50 50 50 50 50 50 50 50 50 5	188.00	vorhanden				**********	unnuğ	21111111	tom-~ ista	「 べきとけ・ ・ べき、 ・ ・ 、 い ・ 、 ・ 、 ・ 、 ・ 、 ・ 、 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	I REREFERE		Range :
29-Jul-1992 CORA-13 / Pr Punktanalyse Vert= 200	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	۵ 	CL کے لی	a L L	E E	E C	€ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	E E E							*Beachte:	**Beachte:	Quantex>wobe		9 88 A

Abb. 52 / Pos. 33

		mittlere	Standard-	Anzahl der
Element	Linie	GewProzent	Abweichung	Analysen: 5
Zr	L	77.99	3.18	
U	М	22.01	3.18	
0	KA	vorhanden		

Abb. 53

5.5 Versuchsprobe CORA-13-l

Brennstabbündelhöhe 498 mm

5.5.1 **EDX-Analysenpositionen**

Die Nummerierung von Positionen stammt von den lichtoptischen Unter-suchungen

Bereich A

EDX-Analysenpositionen Probe Nr. l

5.5.2 Integrale Analysenergebnisse der Schmelzen

Metallische Phasen sind in der Bündelhöhe 498 mm nur noch in sehr kleinen Mengen zu finden (Abb. 54 bis 56). Die in diesem Abschnitt zusammengestellten Ergebnisse beinhalten alle einen großen Oxidanteil. In Tabelle 12 werden die Analysenergebnisse zusammengefaßt (die Werte sind ohne Berücksichtigung der O-Anteile auf 100 % normalisiert).

Typ der Schmelze	Pos. Nr.	Zr	Fe	Cr	Ni	Ag	U	Та	w	Мо	Sn
oxidisch	Mittelwert	26	0,7	0,3		1	69,7	1,9	0,9	0,5	
	Abweichung (±)	0,5	0,4	0,1			1,7	0,4	0,8	0,3	
oxidisch	Mittelwert	12,5	1		0,5	-	47,4	-	34,8	3,7	
	Abweichung (±)	2,6	0,1	-	0,2		10		11,3	1	
oxidisch	Mittelwert	12	0,5	-	-	-	69,4	l	16.9	1,3	
	Abweichung (±)	0,2	0,2	-			7,4		8,2	0,5	
oxidisch	Mittelwert RFM a	34,7	-	-	-	1	65,3	67	-	-	
	Abweichung (±)	3,6					3,6	-			
oxidisch	Mittelwert RFM b	48,3	1,9	1,9	0,5	2,9	42,9	0,7	-	0,6	1,4
	Abweichung (±)	1,7	0,4	0,4	0,1	0,6	2,7	0,4	-	0,4	0,4
oxidisch	Mittelwert REM o	33,9	-	-	-	-	66,1		a	-	
	Abweichung (±)	1,6					1,6				

Tab. 12: Zusammenstellung der Integralwerte von Probe l

CORA-13 / Probe l L.Opt. Nr. 14 Integralanalysen

Element	Linie	
Cr	к	
Fe	ĸ	
Zr	L	
Mo	Ł	
Ta	М	
W	М	
U	м	
0	KA	

	E State St	
mittlere	Standard-	Anzahl der
GewProzent	Abweichung	Analysen: 5
0.32	0.07	
0.74	0.40	
26.02	0.53	
0.48	0.26	
1.89	0.37	
0.89	0.79	
69.66	1.66	
vorhanden		

CORA-13 / Probe 1 L.Opt. Nr. 16 Integralanalysen

		mittlere	Standard-	Anzahl der
Element	Linie	Gew Prozent	Abweichung	Analysen: 5
Cr	к	0.24	0.03	
Fe	к	0.97	0.08	
14 i	ĸ	0.51	0.20	
Zr	L	12.48	2.58	
Mo	۱.	3.71	0.98	
ш	М	34.75	11.30	
U	М	47.35	9.98	
0	KA	vorhande	rs	
	A	Abb. 54		

CORA-13 / Probe l L.Opt. Nr. 20 Integralanalysen

Element	Linie
Fe	к
Zr	L
Ma	L
W	М
U	м
0	KA

nittlere	Standard-	Anzahl der
3ewProzent	Abweichung	Analysen: 5
0.54	0.19	·
11.95	1.25	
1.29	0.46	
16.85	8.24	
69.37	7.37	
vorhanden		

er : 5

CORA-13 / Probe l L.Opt. Nr. REM a Integralanalysen

Element	Linie	mittlere GewProzent	Standard- Abweichung	Anzahl d Analysen
Zr	Ł	34.65	3.60	
U	М	65.35	3.60	
0	KA	vorhanden	:	

CORA-13 / Probe l L.Opt. Nr. REM b Integralanalysen

Linie

ĸ

к

к

L

Ł

L

L M

М

KA

Element

Cr

Fe

14 i

Zm

Mer

អង្គ

Sn

Ta

U O

mittlere	Standard-	Anzahl der
GewProzent	Abweichung	Analysen: 5
0.43	0.10	
1.93	0.36	
0.46	0.13	
48.25	1.68	
0.63	0.39	
2.90	0.60	
1.78	0.43	
0.71	0.44	
42, 91	2.72	
vorhande	**	

CORA-13 ∕ Probe l L.Opt. Nr. REM e Integralanalysen

		mittlere
Element	Linie	Gew Prozent
Zr	Ł	33. 87
U	м	66.13
0	KA	wornstaden

Standard-Abweichung 1.62 1.62 Anzahl der Analysen: 5

Abb. 56

In Tabelle 13 wird versucht einen Überblick über die Zusammensetzung der gefundenen Phasentypen zu geben. Aufgeführt sind 19 Phasentypen, wobei 11 Typen mit dem Heizermaterial Wolfram legiert sind. Die Menge an W-haltigen Phasen, bezogen auf die Gesamtschmelze ist klein gegenüber den übrigen Phasen (Siehe auch Abb. 57 bis 63).

Phasentyp Nr.	Analysenposition u. Bereich Nr.	Analysierte Elemente
à	2/14, 1/21, 2-3 + 5/24, 2 + 4/REM b, 1 REM c	Zr, U, O
b	3/REM b	Zr, Sn
C	1/24	Zr, Fe, Ag, U, O
d	4/24	Zr, Fe, Cr, Ni, Ag, In, Cd, U, Sn
e	3 + 4 REM c	Ag, In, Cd, Sn, O
f	4 + 5/14	Zr, U, Ta, O
g	4 + 5/13	Zr, Fe, Cr, U, Ta, O
h	1/REM b	Zr, Fe, Cr, Ni, Ag, U, Mo, Ta
i	5/16, 5 + 6/21	Zr, U. W. O,
j	3/16	Zr, U, Mo, W. O
k	2/16	Zr, Fe, Cr, Ni, W, O
I	3/14	Zr, Cr, U, Ta, W, O
m	4/21	U, W, O
n	3/13	Fe, Mo, W
0	1/14, 2/13	Fe, Cr, Ni, Mo, W
р	2/REM c	Fe, Ni, Mo, Sn, W
q	1/13	Fe, Cr, Ni, Mo, Sn, W
r	2 + 7/21, 1 + 4/16	Mo, W
S	3/21	Mo, Ta, W

Tab. 13: Zusammenstellung der Phasentypen von Bündelhöhe 498 mm

Abb. 57 / Pos. 13

- 87 -

, 		·····	7	1									4	7	2	2,	,66 1,66		1 1.1.1.11.11.11.11.11.11.11.11.11.11.11		k; 6%		
			4	¥.	ан , ј								2	2 9		×	89 69 ,79 ±1				Church State	*	ំបែ) របែ របែ
1				5.	27	H			2		5	G		4,		_	9 0,1 37 ±0,1	4				1) 7	⊐ <i>1</i> 0-
	¥-			a A		١.		¥	1		Ta			65,	4,1	Ľ,	8°-1					<u>in</u> -	
- Area	Čì:	20	Ž	Line of	髌	\sim					п г					-				0). Vi	لد ا
	к,		e Serie	Ð,			•	2 2		Analyse	J.]		ĨĻ.	444	00	
	-20	iner!		ŵ		,	•		3	% (EDX-	Pi Pi									نړ ک	1		u
*		<u>Ş</u> ;	li.				8	Ç.		ient in 9			e	4		_	2 2	ł		も よ い ろ	ž iv		co
* 10	١.	_\		1			,¢	() (۶.	Elen	Zr	-	27.	2	26.	8,4	26,0			۲۹ 52 18		Ľ^	<u>بر</u>
18 °,	1		٤.		•)		Э		N.	6 1.7		_		-	74	-4-it		10 11 12			10 10 10
Þ. 1											u u	28					3 -	li en	miiii	تة 111			ند حد
	>									*	2	2	-	ŗ		_	,32 0,07	 \$/}		n.	111	ம	ŢIJ
					3. es	•	۰ که ۱	<u>)</u>				-	e	ja 9	ja	eí	ie 0, ±1			ð			
					2 1974 (1	,			1.00		<u> </u>				_		al Se	l ä		57 57			7 -
	ł			4							Pos.	-	2	m	4	5	Integi Analy		ũĽ.	் ப		<u></u>	1.
5										L		I			ł	İ		۔ <u>ک</u>	×	4) (1)		Ę	Q
· ····································		27 2 2			ter ter	5	a. G	<u>ນ</u> ນັ່ງ										<u> </u>	• ,	،رے، (سے		۹ ۲ ۲۰۰۴	ů I
			,		<u>7</u>	rd Vo	rð	ŵ	m 0									·	 	1 2 1 1	معيام	Ľ	
0 th		È	×															ne Ne	7	14 2	in in		
																		44	<u></u>	<u>9</u> .5	ملمثاني		55
A /	(4) (4) (4)	1	42 		? ⊺-:	<u>17</u>	<u>m</u>	្រុ	7	ر								•••• •:	-	4) 4-	يويد ما ـ	<u></u>	n Tr
		Ē	222 1:4 1:1		ي ۲		۲.2.» ۳			5								255		Cr Tr	200	Ē	
e c 5 e c	50	ŝ	s. CL			ξġ		V a V a V	Ū	Š								Mo	- <u>a</u> s	สีญั		.u	
	ت ه ايت ا	•·····•	MINTERSEX (ünanan	mmm												mź.	1 10	n ar			
	901 901		.7 .		y		r		·											ۍ ۳ د		е С	360
		بر ۲	۶.۶ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰		ч. н . 22	<u></u>	ка. <u>11</u>	·	<u>}.</u>	1 2 2 2								نده جـــه ر	بنية. مريد	ゴ へ、 ×			
		ű U	د و و		4	a.	· •••••	a		(1) (1)								ີ ເ	0 10	2 4 4			
	2 . 4 .2 2 X		03		<u>(</u>)	à	A	A	<u> </u>	(J)								n EE	រ រ	с 10	New Construction		_
	8 41.0 - ∑⇒																	*	×	õ	1	' %	ē.

Abb. 58 / Pos. 14

1

	7-Aug-1992	17:03:48					Ċ7		30			S.		æ	1	10		
	CORA-13 / P	robe 1 / L	.0p.Nr.16			$\frac{1}{2}$	Ś	1	1	\mathbf{x}			Kara (
	Punktanalyse	e Pos.1	<u> </u>			20	2		~				8					
	Vert= 40	12 counts	Disp= 1	80		e de la compañía de		. {	- China				Ľ,		Z			
	Element	Gew	Atom-%					- (h . T						S.	
	& Linie	Prozent	*)															S.
******	Mo LA	14.03	23.83	Ś				Ś		Â.		à			Ś	Ż		3
	W MA	85.97	76.17		÷		2		×									S.
	Gesamt:	100.00		2	Ś			1		(not					1.00 - 49 - 49)	S
					1							Ę		S 4				
				2	9	016		15)	Щ÷	`X	1.0			1	2.	١Û.	ШŪ	39,
]						El	ement in	% (EDX-/	Analy	yse)					
				Pos.	0	Cr	Mn	Fe	Ni	Zr	Мо	Ag	Cd	In	Sn	Та	w	υ
				1							14						86	
				2	ja	0,8		16,4	3,3	3,1							76,4	
				3	ja					16,2	2,7			\square			6,5	74,6
				4							14,5		⊢	-			85,5	
				5	ja in	0.24		0.07	0.51	2,3	2.71			-			83,6	14,1
				Analyse	Ja	0,24 ±0,03		±0,08	± 0,20	± 2,58	± 0,98					±	4,75 11,30	± 9,98
	*Beachte:	Ătom-% ist	auf 100%	nori	n.z	lis	i i	ert										
Í	**Beachte:	k-Verh. =	k-Verh. x	R														
	l∯uantex>unh	a a ei R≈Refer	enzuert(S	tanda	٩ŕ	d)/	Ŕ	¢fa	r r i	ነጀዞ	rrt.	(p.	nt		j		
							 			م مالم	من ، مرتب محاصدات				·····	-		żuż.
	11	12 13	4	15		lÉ	Či			·		8			.	9		
	••• U.UUU	Kange=	10,630	кеү]	[n	teg	ra.	15	z :			1 6	1.	11	<u>،</u> اک	-•• 0

Abb. 59 / Pos. 16

.

- 89 --

Abb. 60 / Pos. 21

- 90 -

Abb. 61 / Pos. 24

- 91 -

				Ŧ		5KU X2,888 18Pm WD39	Element in % (EDX-Analyse)	e Ni Zr Mo Ag Cd Sn Ta W U	9 2.1 63.8 2.3 4.6 1.6 2.7 8.7	16.3 83.7	98.2 1.8	47,8 52,2	33 0.46 48.25 0.63 2.90 1.78 0.71 42.91 ,36 ±0.13 ±1.68 ±0.39 ±0.60 ±0.43 ±0.44 ±2.72	4.°		ferenzuert(Probe) 		
						-		Mn Fe	11,				0,1	813 			<u>e</u>	T U F I
South Providence	1			• 1		000		3	2,3		\rightarrow		a 0,43 ±0,10			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	uman ali k	
e								0		<u>, e</u>			 	E		10 ag		(3 -
								Pos.	-	~	m	4	Integra Analys		o2			20 22
kili. vers		(<u>7</u>)	រេះ បា	₹``~~ ` \ ~~~{	n) Ad	<u>د رو</u>] * ('}	ম্পু এ	1			×	((ال		
		ທົ	* جـــة	(<u>)</u>	ល់ យ	τŰ	ຕົ	م. ایستند	÷	,	nĵ			4 1 1 2				E -
		177	1777	177	ነምር	1774	rd	ra	1	0	ញ	ž	¥`4	(ئے)۔ 1998ء 1944ء	££			ររ ស ររ
		ia oj	b) -	ВЭ rui	ē.	id od	ui T		ř r		α α	ĩ	n N	3. 1		ал С <u>Е</u> 11 Д		
- <u>a</u> a			}	mannn	ک روزن			anad)	mi			ر التتار	5°) 100000		<u>a</u> : []		<u>n</u>	*
	4) & 5			CC Sec	/ <u>]</u>	X.1. 3	\$	11) 1								ex>uobe1		а, <u>р</u> иа
	01 03	, δ ξξ	81 L.	e ganet sen gane Na sa	1. 1.	2	C) C	င ဟ	f	<u>.</u>	;	¢	ር። ፲፲	10 43 53 天	(1) 和 (2) 米 米	anan é Anan é	unen 100 dekaltoreki 000 ese	.

Abb. 62 / Pos. REM b

Abb. 63 / Pos. REM c

93

6. Phasenverteilung in den Schliffproben Nr, e, g, j, k und l.

In den REM/EDX untersuchten Querschnitte Tab. 14 wird ein Verteilungsprofil der Phasen bei steigenden Höhen, d. h. auch Temperaturen, sichtbar.

Auswahl von	Schliffprobe Nr.								
Phasentypen in den Proben	e 148mm	g 248 mm	j 398 mm	k 448 mm	l 498 mm				
Zr	+		+	+	+				
Zr, Ag, In, Cd	+			+					
Zr, Fe, Cr, Ni	+	+		+					
Zr, Ag, In, Cd, O	+			+					
Zr, Fe, Cr, Ni, Ag, In, Cd	+	+							
Zr, Sn, Ni				+					
Ag, In, Cd	+	+	+	+					
Ag. In, Cd, Sn					+				
Stahl (Cr, Fe, Ni etc.)	+	+							
U, O	+		+						
U, Zr									
U, Zr, O			+	+	÷				
U, Zr, Ag, in, Cd	+								
U, Zr, Fe, Cr, Ni		+	+	+					
U, Zr, Ni, Fe				+					
U, Zr, Sn, Ni, Cr	a da si tila di di setti ili 1999 e pri scrimi tra con e santo da		+						
U,Zr,Sn, Ag, In, Ni, Cr, Fe			+	+	+				
U, Zr, Sn, Ni, Fe				+					
U, W, O				299-2992-9993-999-999-999-999-999-999-99	+				

Tab. 14:Zusammenfassung der identifizierten Phasentypen, in den
untersuchten Schliffproben, von CORA-13.
+ bedeutet Phasentyp identifiziert

Auswahl von	Schliffprobe Nr.									
Phasentypen in den Proben	e 148mm	g 248 mm	j 398 mm	k 448 mm	l 498 mm					
Ta, U, Zr, Ag, Cr, Fe, Ni		+	+	+						
Ta, U, Zr, Sn, Ni, Fe, Cr			+							
Ta, U, Zr, Mo, Fe, Cr, Ni				+	+					
Ta, U, Zr, Cr, Fe, O					+					
Ta, U, Zr, O					+					
W, Ta, Mo				+						
W, Ta, Mo, Zr			+							
W, Ta, Mo, Zr, Cr, Fe			+	+						
W,Ta,Zr,U,Cr,Fe, Ni,Ag,In			+	+						
W, U, Zr, Fe				+						
W, Sn, Mo, Fe, Cr, Ni	ten Brita de Grand Thuring and Anglancia a discontra pagasa				+					
W, Mo, Fe					+					
W, Ta, U, Zr, Cr, Fe					+					
W, Mo, Fe, Cr, Ni					+					
W, Mo					+					

Tab. 14:Zusammenfassung der identifizierten Phasentypen, in den
untersuchten Schliffproben, von CORA-13.
+ bedeutet Phasentyp identifiziert

7. Zusammenfassung und Diskussion

Durch Einzeleffektuntersuchungen wurde bereits ein umfassendes Wissen über die Wechselwirkungen von Zircaloy mit Wasserdampf, [7,8] UO₂ mit geschmolzenem Zircaloy-Hüllmaterial [9], Inconel 718 mit Zircaloy [10], (Ag In, Cd)-Absorber mit Zircaloy [11] sowie Stahl mit Zircaloy [11] erarbeitet. Die Deutung der in der CORA-Versuchsanlage ablaufenden Multi-Effekte, die das Resultat simultan einhergehender chemischer Reaktionen aller Einzelwechselwirkungen darstellt, ist erheblich komplexer als die der ohnehin zum Teil komplizierten Einzeleffekte. In dem vorliegenden Bericht wird versucht, einen repräsentativen Überblick der chemischen Wechselwirkungen in Abhängigkeit der Temperatur (Bündelhöhe) zu geben. Die Auswertearbeit, besonders die Temperaturzuordnung zu den beobachteten Reaktionseffekten wird erschwert durch:

- Die aus heißeren und aus höhergelegenen Bündelebenen herablaufenden
 Schmelzen, die die Zuordnung zu einer maximalen Versuchstemperatur nahezu unmöglich machen.
- Das Versagen der Thermoelemente bei etwa 2000°C, wodurch eine eindeutige Temperaturmessung oberhalb 2000°C nicht mehr möglich ist.
- Die teilweise Beteiligung des W-Heizermaterials an den chemischen Reaktionen, die jedoch das Bündelverhalten nicht global beeinflußt.

In den mit dem REM/EDX untersuchten Schliffebenen wurde folgendes ermittelt:

Probe Nr. e (148 mm)

Auf der untersten untersuchten Bündelhöhe fanden nur Kontaktreaktionen von herablaufenden oder herabtropfenden Schmelzen, aus höhergelegenen, d. h. heißeren Bündelebenen, mit den Komponenten des Brennstabbündels statt. Die Schmelzen bestehen fast nur aus Zirkon, Stahl und den Bestandteilen der Absorberlegierung. Die Zusammensetzung der Schmelzen, die man auch als die ersten Schmelzen des Bündels ansehen kann, deutet darauf hin, daß das Versagen durch chemische Wechselwirkung der Absorberstäbe bzw. seiner Komponenten wie Zry-Führungsrohr, Stahl-Hüllrohr oder Inconel-Abstandshalter ausgelöst wurde. Der Absorberstab selbst zeigt schwache Kontaktreaktionen. Die beobachteten geringen Mengen an Zirkon- und Stahlbestandteilen in der Absorberschmelze stammen vermutlich vom abgeschmolzenen Teil oberhalb der Schliffebene e.

Kurzfassung der wichtigsten Analysenergebnisse:

<u>Schmelze</u>: metallisch ~40 % Zr, ~7 % Stahl, ~52 % Absorber Phasen: metallisch, etwa vier verschiedene Phasentypen

Absorberstäbe: fast keine Veränderung im Stab

Probe Nr. g (248 mm)

In der 100 mm höher gelegenen Schliffebene Nr. g findet man nur einen einzigen Schmelztyp, der etwa die gleiche chemische Zusammensetzung in allen Integralanalysen zeigte. In der erstarrten Schmelze wiederum, findet man vier verschiedene Phasen. Neben den Stahl- und Absorberbestandteilen sind noch Zirkon und Uran aus den Brennstäben, sowie geringe Mengen an Tantal von den Thermoelementen an der Phasenbildung beteiligt. Die Mehrzahl der Brennstäbe im Bündel sind noch intakt. Der Absorberstab zeigt starke chemische Veränderungen. Da in dieser Probenebene auch Ta von den Thermoelementen gefunden wurde, diese aber noch keine wesentlichen Reaktionen zeigen, muß vermutet werden, daß die Ta-haltige Schmelze ebenfalls von höheren Schliffebenen stammt.

Kurzfassung der wichtigsten Analysenergebnisse:

<u>Schmelze:</u> metallisch, ~ 52 % Zr, ~ 12 % Stahl, ~ 29 % Absorber, ~ 4 % U, ~ 2 % Ta

<u>Phasen:</u> metallisch, etwa vier verschiedene Phasentypen

Absorberstäbe: deutliche chemische Reaktionen

Probe Nr. j (398 mm)

Diese Versuchsprobe zeigt in allen Bereichen starke chemische Veränderungen der Bündelkomponenten. Die Schmelze besteht aus allen Legierungselementen der Bündelkomponenten, außerdem sind geringe Mengen des Heizermaterials "Wolfram" und des Thermoelementhüllmaterials "Tantal" vorhanden. Die Schmelze ist noch überwiegend metallisch, lediglich an der Schmelzoberfläche bildet sich eine dünne Oxidschicht. Die Bestandteile des Absorberstabes bilden mit der Gesamtschmelze eine Legierung. Die Absorberstäbe sind bereits ab der Bündelhöhe von 398 mm und höher vollständig verschwunden. Bei den Analysen der oxidierten Oberflächen der Schmelze findet man die typischen Uran-Zirkon-Sauerstoff-Phasen. Die Brennstäbe sind in dieser Bündelhöhe bereits alle chemisch angegriffen. Die Thermoelemente sind noch vorhanden, obwohl deren Hüllrohre bereits Veränderungen zeigen.

Kurzfassung der wichtigsten Analysenergebnisse:

- <u>Schmelze:</u> metallisch, Oberfläche (Rand) oxidiert ~ 60 % Zr, ~7 % Stahl, ~ 11 % Absorber, ~ 16 % U, ~ 2 % Ta, ~ 1 % Mo, ~ 1,5 % W
- <u>Phasen:</u> teils metallisch und teils oxidisch, mindestens fünf verschiedene Phasentypen

Absorberstäbe: sind zum Bestandteil der Schmelze geworden

Probe Nr. k (448 mm)

In dieser Höhe ist die Bündelzerstörung und die Oxidation des Zircaloys stark fortgeschritten. Die Zusammensetzung der Schmelzen ist sehr unterschiedlich. Stark vertreten ist die Uran-Zirkon-Sauerstoff-Phase. Bei den Untersuchungen wurde eine Vielzahl von verschiedenen Zusammensetzungen dieser (U, Zr)O₂ Phasen gefunden.

Kurzfassung der wichtigsten Analysenergebnisse:

- <u>Schmelze:</u> ~ 60 % metallisch, die Zusammensetzung der Elemente schwankt sehr stark ~ 40 % bis 70 % Zr, ~15 % bis 45 % U, restliche Elemente in unterschiedlichen Anteilen
- <u>Phasen:</u> oft oxidisch, mindestens acht verschiedene Phasentypen

Absorberstäbe: vollständig abgeschmolzen

Probe Nr. I (498 mm)

Die höchstgelegene Schliffebene kann als vollständig oxidiert angesehen werden. Die Schmelzen sind in ihrer Zusammensetzung noch vielseitiger, die Anzahl der beobachteten Phasen ist sehr hoch (ca. 20). Die CORA spezifischen Strukturmaterialien wie Wolfram vom Heizer und Tantal von den Thermoelementen sind in einer Vielzahl von Phasen zu beobachten, die Mengen sind jedoch im Vergleich zu den typischen Brennstabbündel-Reaktionsphasen sehr klein und haben keinen Einfluß auf das integrale Reaktionsverhalten.

Kurzfassung der wichtigsten Analysenergebnisse:

- Schmelze: fast zu 100 % oxidisch, die Zusammensetzung schwankt sehr stark. ~ 12 bis 48 % Zr, ~43 bis 70 % U, andere Elemente in unterschiedlichen Anteilen
- <u>Phasen:</u> oxidisch (mit wenigen Ausnahmen), mindestens zwanzig verschiedene Phasentypen.

Absorberstäbe: vollständig abgeschmolzen

<u>Anmerkung</u>: Alle Prozentangaben in Gew.- %. Da aus technischen Gründen Sauerstoff nicht quantitativ ermittelt werden kann, wurden die Prozentwerte (ohne O) auf 100 % normalisiert.

Die Analysenergebnisse zeigen, daß während der Temperaturtransiente die Absorberstäbe zuerst versagen. In Vorversuchen wurde bereits der große Einfluß des niedrig schmelzenden (Ag, In, Cd)-Absorbermaterials auf das Brennelementeversagen erforscht [10]. Der Einfluß der bereits bei 800°C schmelzenden Absorberlegierung macht sich im Brennstabbündel bemerkbar, wenn das Edelstahlhüllrohr mechanisch und/oder chemisch versagt und die Schmelze austritt. Die auslaufende Absorberlegierung reagiert dann heftig mit dem Zry-Führungsrohr und löst dieses chemisch auf.

Die Oxidation der Schmelze nimmt mit steigender Brennstabbündelhöhe, d. h., Temperatur zu. Während in der Probenhöhe e (148 mm) noch keine oder nur sehr geringe Oxidationsreaktionen festzustellen sind, kann die Probe I (498 mm) als vollständig oxidiert angesehen werden. Grund für die Zunahme der Oxidation in den höheren Probenebenen ist sowohl die höhere Temperatur während des Versuchs, als auch der längere Zeitraum bis zum Eintauchen in das von unten kommende Wasser-Abschreckbad, was einhergeht mit einer längeren Oxidationszeit bei gleichzeitig erhöhtem Dampfangebot. Durch Sauerstoffaufnahme bildet sich auf der Zry-Hüllrohroberfläche α -Zr(O) und ZrO₂ was den Schmelzpunkt von etwa 1760°C auf über 2700°C erhöht.

Neben dem Absorberstabversagen und der Oxidation des Zry-Hüllrohrmaterials durch Wasserdampf sind noch die chemischen Wechselwirkungen zwischen dem UO₂-Brennstoff und dem Zircaloy (Zry)-Hüllmaterial von ausschlaggebender Bedeutung. In Einzeleffektuntersuchungen wurde ermittelt [8], daß das UO₂ bereits 1000°C unterhalb seines Schmelzpunktes von der Zry-Schmelze verflüssigt (chemisch aufgelöst) werden kann. Das geschmolzene Zircaloy reagiert chemisch sowohl mit dem UO₂ als auch mit dem auf der Hüllrohr-Außenoberfläche entstehenden ZrO₂. Die Anfangs noch metallische (U, Zr)-Legierung wird bei fortschreitender Sauerstoffaufnahme in eine keramische (U,Zr)O₂-Phase umgewandelt.

Die ermittelten chemisch-analytischen Nachuntersuchungsergebnisse der verschiedenen Reaktionszonen und Schmelzen des überhitzten Bündels CORA-13 stellen eine gute Datenbank für eine detaillierte Deutung der ablaufenden chemischen Wechselwirkungen während der Temperaturtransiente und der Abschreckphase dar. Diese Deutung ist nicht Aufgabe dieses Berichtes; sie wird an anderer Stelle vorgenommen werden.

8. Danksagung

Für die Unterstützung bei der Erstellung dieses Berichtes danke ich Herrn Dr. P. Hofmann, Institut für Materialforschung (IMF I), sowie Herrn Prof. Dr. W. Dienst (IMF I) für die kritische Durchsicht des Manuskriptes. Für die Überlassung der in diesem Bericht verwendeten Abb. Nr. 1 bis 4 sowie den Tab. Nr. 2 und Nr. 4 wird Herrn L. Sepold von der Hauptabteilung Ingenieurtechnik (HIT) gedankt. Für die im Bericht verwendeten lichtoptischen Übersichtsaufnahmen (M 1:1) sowie für die Präparation der für quantitative REM/EDX-Analysen nur mit hoher Oberflächengüte verwendbaren CORA-Schliffproben wird Herrn L. Anselment (HIT) gedankt. Für die lichtoptischen Untersuchungen die für die Auswahl und Orientierung der anschließenden REM/EDX-Analysen eine hilfreiche Vorarbeit darstellte, sowie für die Bereitstellung der in diesem Bericht gezeigten lichtoptischen Übersichtsaufnahmen (M 3:1 und M 5:1) danke ich Herrn H. Metzger (IMF I).

9. Literatur

- S. Hagen, K. Hain, "Out-of pile Bundle Experiments on Severe Fuel Damage (CORA-Programm): Objectives, Test Matrix and Facility Description", KfK 3677, 1986
- [2] S. Hagen, F. Seibert, L. Sepold, P. Hofmann, G. Schanz, G. Schumacher, "Influence of Reflood in the CORA Severe Fuel Damage Experiments", Heat Transfer and Fuel Behavior in Nuclear Reactor Accidents, 27th AS-ME/AIChE/ANS National Heat Transfer Conference, Minneapolis, 28 - 31 July 1991, AIChE Symposium Series 283, Vol. 87, ISBN-0-8169-0548-7, pp. 120 -129
- [3] L. Sepold, KfK Interner Bericht, 1988
- [4] S. Hagen, P. Hofmann, V. Noack, G. Schanz, G. Schumacher, L. Sepold, "Results of SFD Experiment CORA-13 (OECD International Standard Problem 31)", KfK 5054, 1992
- [5] L. Reimer, G. Pfefferkorn "Raster-Elektronenmikroskopie", Springer-Verlag, Berlin-Heidelberg-New York, 1977
- [6] Brümmer "Mikroanalyse mit Elektronen- und Ionensonden" VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1980
- [7] S. Leistikow, G. Schanz, H. v. Berg, "Untersuchungen zur temperaturtransienten Dampfoxidation von Zircaloy 4 - Hüllmaterial unter hypothetischen DWR-Kühlmittelverlust-Störfallbedingungen", KfK 2810, 1979
- [8] S. Hagen, H. Malauschek, K.-P.Wallenfels, S. O. Peck, "Temperature Escalation in PWR Fuel Rod Simulators due to the Zircaloy/Steam Reaction: Bundle Test ESBU 1, Test Results Report", KfK 3508, 1983
- [9] P. Hofmann "Chemische Auflösung von festem UO2-Brennstoff durch geschmolzenes Zircaloy-Hüllmaterial", KfK 4000, 1986, 4200-56 - 86
- P. Hofmann, M. Markiewicz, "Chemical interaction between as-received and pre-oxidized Zircaloy-4 and Inconel 718 at high temperatures", KfK 4729, 1992
- [11] P. Hofmann, M. Markiewicz, "Chemical Behavior of (Ag, In, Cd) Absorber Rods in Severe LWR Accidents", KfK 4670, 1990