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Solution Methods for Large Systems of Linear Equations in BACCHUS 

The computer programme BACCHUS is used to describe steady state and transient 

thermal-hydraulic behaviour of a coolant in a fuel element with intact geometry in a fast 

breeder reactor. In such computer programmes generally !arge systems of linear 

equations with sparse matrices of coefficients, resulting from discretization of coolant 

conservation equations, must be solved thousands of times giving rise to !arge demands 

of main storage and CPU time. Direct and iterative solution methods of the systems of 

linear equations, available in BACCHUS, are described, giving theoretical details and 

experience with their use in the programme. Besides use of a method of lines, a Runge­

Kutta-method, for the solution of the partial differential equation is outlined. 

Lösungsmethoden für große lineare Gleichungssysteme in BACCHUS 

Das Computerprogramm BACCHUS wird zur Beschreibung stationärer und transienter 

thermohydraulischer Kühlmittelzustände in Brennelementen mit intakter Geometrie für 

Schnelle Brüter benutzt. In solchen Computerprogrammen werden normalerweise viele 

tausendmal große lineare Gleichungssysteme mit schwach besetzten Koeffizientenma­

trizen gelöst, die sich aus der Diskretisierung der Erhaltungsgleichungen ftlr das 

Kühlmittel ergeben. Deshalb werden viel Speicherplatz und lange Rechenzeiten benötigt. 

Direkte und iterative Lösungsmethoden ftlr diese linearen Gleichungssysteme, die in 

BACCI-IUS verfligbar sind, werden beschrieben. Dabei werden theoretische Einzelheiten 

und Erfahrungen aus ihrer Benutzung im Programm genannt. Außerdem wird die Benut­

zung einer Linienmethode, eines Runge-Kutta-Verfahrens, zur Lösung der partiellen 

Differentialgleichungen dargelegt. 
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1.0 lntroduction 

BACCHUS is a computer programme to describe three-dimensional thermal-hydraulic 

behaviour of a coolant in a fuel element with intact geometry in a fast breeder reactor 

for nominal and accident conditions. I ts first three-dimensional single-phase version has 

been documented in [1], details being given in [2]. A detailed description ofthe latest 

version is given in [3]. lt contains all current modelling features of the various pro­

gramme versions available earlier. Among them are those for two-phase flow and local 

blockages. 

In computer programmes like BACCHUS discretization of the conservation equations 

for mass, momentum, and energy, to be solved for the coolant, generally leads to sets of 

linear algebraic equations. In BACCHUS such systems of linear equations are derived 

for coolant pressure, coolant enthalpy, and, furthermore, for temperaturein the fuel 

pms. 

For programme applications, irrespective ofwhether large fuel elements in a commercial 

reactor are to be considered or Iabaratory experiments are dealt with, total CPU times 

may be several hours even on the fastest computers. A substantial portion of the total 

CPU time, say 50 to 80 percent, is spent for the solution of the systems of linear 

equations. Storage demands may belarge likewise. For calculations concerning the local 

blockage experiment Mol 7Cj7, documented in [4], nearly the whole available main 

storage region of 48 MByte of the vector computer VPSO was needed for the pro­

gramme; more than one half of this region was necessary for the solution of the systems 

of linear equations. Moreover the precision demands for the solution are large. Details 

will be given later. 

Because of these large demands it is worthwhile to spend some ideas on these numerical 

aspects of the code. In current textbooks solution methods can easily be found, but it 

turns out that the large demands of minimum storage, minimum CPU time, and maxi­

mum precision are not easily fulfilled. Therefore it is the aim of this report to present 

solution methods for the systems of linear equations available in BACCHUS, to com­

pare them, to summarize some experience, and so give some suggestions for application 

of the code which may also be helpful for other codes. As direct methods LU decom­

position and Gauss elimination are presented in this report, as iterative methods a block 

method and the ADI method. As an alternative method for the solution of the partial 

differential equations a method of lines, a Runge-Kutta method, is outlined. lt works 

without setting up systems of linear equations. Besides some theoretical background 

about matrices is summarized and some characteristics of the matrix of coefficients as 

used in BACCHUS are given. 



2.0 Derivation of Systems of Linear Equations in BACCHUS 

To describe three-dimensional transient thermal-hydraulic behaviour of the coolant in a 

fast breeder reactor bundle with the computer code BACCHUS the solution domain is 

divided into a number of control volumes containing fluid and solid material. For the 

location of the variables for the coolant staggered meshes are used [2], [3]. The radial 

and azimuthal discretization of the fuel bundle is shown in Figure 1 on page 3. The 

radial discretization shown in this figure corresponds to the coarse one used usually. For 

special applications the spacing between subsequent pin rows (except for IC= 1) can be 

discretized by two control volumes (fine discretization) as it is used in [ 4]. For a 169-pin 

bundle as it was to be used for SNR 300 eight control volumes in the radial direction 

are necessary for coarse radial discretization. In the azimuthal direction the bundle is 

divided into 6, 12 or 24 sectors according to the problern to be investigated. Due to the 

coupling of adjacent cells there is also a coupling between the first and the last sector in 

a ring. Sometimes this gives some difficulties for the solution of the system of linear 

equations. The number of axial sections in the bundle (planes) is arbitrary, and the axial 

length of the control volumes need not be equidistant. The first and the last control 

volume in the axial direction are dummy meshes used to impose boundary conditions. 

As a minimum about 40 cells in the axial direction are used as in [5]; 120 cells are used 

in [ 4]. 

For the fluid portians in the control volumes the conservation equations for coolant 

mass, momentum, and energy are solved for every control volume and for every time 

step. In BACCHUS the coolant continuity and momentum equation are combined to 

form a Poisson like equation für pressure. In every time step first this pressure equation 

is solved, then coolant velocity components are derived from the momentum equation 

and coolant temperature from enthalpy equation. Finally heat conduction equation for 

the pins is solved giving actual heat fluxes between pins and coolant. In every time step 

the solution scheme must be repeated several times to satisfy all conservation equations 

simultaneously. In these iterations always the latest values for physical quantities are 

used. In literature this iteration process is usually called outer iteration. 

As an example for the treatment of the basic equations in BACCHUS we consider the 

single-phase coolant enthalpy equation in a simple form 

oph ~ at +V • (pvh) =V • (pC>:Vh) + Q (1) 

where h, v, C>:, p are coolant enthalpy, velocity, thermal diffusivity, and density, respec­

tively, t is time, and Q heat source. The thermal diffusivity is given by 
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Figure 1. Radial and azimuthal discretization in BACCHUS 
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where A and Cp are coolant thermal conductivity and specific heat, respectively. The con­

servation equations are integrated over the respective fluid control volume using the 

Gauss theorem and divided by the total cell volume. Explicit time derivative is discre­

tized by forwardtime difference scheme, in convection and diffusion terms enthalpy is 

discretized with new time values. This yields 

(3) 

for averaged values in a given control volume. n is the index of the old time step. e and 

Yi are volume porosity and surface permeahilities of the given control volume, ~Xi is the 

distance between adjacent enthalpy locations in the respective coordinate direction. The 

sum extends over the six surfaces of the control volume in question and contains values 

which are averaged over the respective surface. Even values of index i refer to positive 

coordinate direction. For spatial discretization first order upwind differences for convec­

tive terms and central differences for diffusive terms are used. For time discretization 

forward differences are used; convective and diffusive fluxes are treated implicitly in 

time. Rearranging gives an equation for averaged enthalpy at the new time Ievel n + 1 

which has the same form as a discretized Poisson equation 

6 

ao hg+ 1 + I>i hf+ 1 = bo (4) 
i=1 

Enthalpy in the given control volume, here labeled "0", is coupled with enthalpy in the 

six surrounding control volumes. The coefficients in eq. (4) are given by 

Yi ( pcx ) a·=--- kpv·+--
1 ~X· I I ~X· 

I I 

i = 1(1)6 (5) 

6 

I pcx ep 
a0 = (1 - k) pv +-+ -

I I ~X· ~t 
i=l I 

(6) 
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ki is 0 or 1 according to the prescription of upwind differencing. Evidently the coeffi­

cients arenot constant for the whole solution domain so that fast Fourier transforms 

arenot applicable. 

(7) 

An equation of similar form as eq. (4) is obtained for pin temperature when heat con­

duction is treated three-dimensionally as it is possible in BACCHUS since some time 

[6]. Formally this equation corresponds to coolant enthalpy equation for stagnant sodi­

um. 

A similar equation is also obtained for coolant pressure when the coolant continuity 

and momentum equation are combined. The definition of the coefficients ai is lengthier 

than for enthalpy in eq. (5) [3], but ai < 0 for all coefficients. Furthermore 

6 

a0 = - I ai + c0 c0 2 0 
i= 1 

instead of eq. (6). For the single-phase pressure equation and for the separated phases 

model c0 = 0, for the two-phase slip model pressure equation this term refers to fluid 

compressibility. 

As an equation of the form of eq. ( 4) exists for every control volume of the solution 

domain, a system of linear equations results which can be written in matrix form 

(8) 

(9) 

with dim A = n if the given discretization comprises n cells. x stands for coolant pres­

sure, coolant enthalpy, or pin temperature. 

As a measure for precision of the solution of pressure equation local mass imbalance is 

used. If it exceeds 10-8 kg/s for a total mass flow of the order of magnitude of 1 kg/s, 

two-phase flow calculations are not possible. As a nearly trivial request to meet this 

precision 8-byte words must be used for allreal variables in the whole programme. 
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3.0 Some Properties of the Matrix of Coefficients 

Definitions and theorems for matrices considered in this and the following sections and 

some theoretical background for matrices are given in Appendix A. 

To set up the matrix of coefficients in eq. (9), we number the control volumes subse­

quently as follows. For the coolant control volumes we begin at the bundle inlet and 

number the rings subsequently in clockwise direction beginning with the innermost ring. 

Having numbered the first plane we continue with the next plane until we reach the 

bundle outlet. The control volumes in the pins are numbered similarly. 

The resulting structure of the matrix of coefficients is shown in Figure 2 on page 7 for 

the case of three physically relevant axial, four radial, and six azimuthat control vol­

umes. The nonzero entries are marked by crosses. The matrix has a regular block struc­

ture. For any number r of physically meaningful axial meshes, i. e. without the dummy 

meshes, it can be written as a block tridiagonal rnatrix 

Al BI 
CI A2 B2 

A = C2 A 3 B3 (10) 

where the submatrices correspond to the large boxes in Figure 2 on page 7. The block 

matrices Ai are again block tridiagonal matrices 

B'I 
A'2 B'2 
C'2 A'3 B'3 

C' A' p p 

( 11) 

for p rings in a plane. The submatrices correspond to the small boxes in Figure 2 on 

page 7. In block matrices A'i the off-diagonal elements are due to the azimuthal coupl­

ing. The singular off-diagonal nonzero entries in the corners of submatrix A'i are a con­

sequence of the azimuthal coupling of the first and the last sector in a ring. Block matri­

ces B'i and Ci in eq. (11) give the radial coupling and block matrices Bi and Ci in eq. 

(10) are due to the axial coupling of control volumes. B'i• Ci, Bi and Ci are therefore 

diagonal matrices. 
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X X X X X 
X X X X X 

X X X X X 
X X X X X 

X X X X X 
X X X X X 

X X X X X X 
X X X X X X 

X X X X X X 
X X X X X X 

X X X X X X 
X X X X X X 

X X X X X X 
X X X X X X 

X X X X X X 
X X X X X X 

X X X X X X 
X X X X X X 

X X X X X 
X X X X X 

X X X X X 
X X X X X 

X X X X X 
X X X X X 

X X X X X X 
X X X X X X 

X X X X X X 
X X X X X X 

X X X X X X 
X X X X X X 

X X X X X X X 
X X X X X X X 

X X X X X X X 
X X X X X X X 

X X X X X X X 
X X X X X X X 

X X X X X X X 
X X X X X X X 

X X X X X X X 
X X X X X X X 

X X X X X X X 
X X X X X X X 

X X X X X X 
X X X X X X 

X X X X X X 
X X X X X X 

X X X X X X 
X X X X X X 

X X X X X 
X X X X X 

X X X X X 
X X X X X 

X X X X X 
X X X X X 

X X X X X X 
X X X X X X 

X X X X X X 
X X X X X X 

X X X X X X 
X X X X X X 

X X X X X X 
X X X X X X 

X X X X X X 
X X X X X X 

X X X X X X 
X X X X X y 

X X X X X 
X X X X X 

X X X X X 
X X X X X 

X X X X X 
y X y y X 

Figure 2. Structure of matrix of coefficients 

7 



Evidently the matrix is sparse. No more than seven entries in a row are nonzero for a 

total of n entries. The matrix is a band matrix. The bandwidth is just the number of 

control volumes in a plane. Even within the bandwidth the matrix is sparse. 

For all systems of linear equations we obtain in BACCHUS 

a··<O i-~-J· IJ- r (12) 

The unequality holds only for the six entries corresponding to the terms of the sum in 

eq. ( 4). For higher order difference schemes as they are described in [7] for a two-di­

mensional testproblern more than six entries of the matrix of coefficients would be non-

. zero. We get furthermore 

(13) 

Therefore the matrix of coeflicients is an L-matrix. 

The matrix of coefficients is asymmetric for pressure and enthalpy equations, and hence 

it is not positive definite (theorem 14 in Appendix A). Multiplication of the matrix of 

coefficients with its transposed would give a symmetric matrix but the condition number 

of the matrix and hence the accuracy of the solution would be deteriorated [8]. 

The matrix of coefficients for pressure with c0 = 0 in eq. (8) is irreducibly diagonally 

dominant because it is derived from a boundary value problem. Boundary conditions 

give unequality in eq. (8) for one plane. For other systems oflinear equations it is strict­

ly diagonal dominant. Hence the matrix is nonsingular (theorem 7 in Appendix A). 

From theorem 16 in Appendix A it follows moreover that the matrix is an M-matrix. 

Consequently A-1 > 0, B1 is non-negative, irreducible, and convergent (theorem 33 in 

Appendix A). The second line of eq. (A.42) holds (theorem 37 in Appendix A). 

For all systems of linear equations the matrix of coefficients has Property A because 

only central and upwind differencing are used for the discretization of the conservation 

equations. Proof: We denote the cells by the three indices i, j, and k corresponding to 

the coordinate directions. A cell (i,j,k) is coupled only with its six nearest neighbours. So 

the ordering vector can be given the components Yi = mod((i + j + k), 2). lf higher order 

discretization schemes are used, where cell (i,j,k) is also coupled with, say, cell (i-1 ,j-1 ,k) 

or with cell (i-2,j,k), the matrix of coefficients does not have Property A. 
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4.0 Direct Solution Methods in BACCHUS 

In literatme generally LU decomposition and Gaussian elimination are described as di­

rect methods. Sometimes the links between these two methods are also outlined. Since 

both methods are available in BACCHUS, they are described here. lt is assumed in this 

section that the matrix of coefficients is nonsingular because the case of singular matri­

ces is not relevant for BACCHUS. 

4.1 LU Decomposition 

Instead of solving 

(14) 

we try a decomposition of A into the product of an upP,er matrix U and a lower matrix 

L 

A=LU . ( 15) 

From theorem 3 in Appendix A and the fact that 

det A = det L det U (16) 

it can be shown that 

lii, uii i= 0 , i = 1 ( 1 )n (17) 

Instead of solving eq. ( 14) we have to solve 

(18) 

To solve eq. (18) we set 

(19) 

and first solve 

(20) 
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for y and then use eq. (19) to solve for x. 
Once the decomposition of Ais done, the solution of eqs. (20) and (19) is simply ob­

tained by forward substitution similarly to eqs. (A.8) and (A.ll) 

( 

i-1 ) 

Yi =+ bi- ItikYk 
11 k=1 

i = 2(1)n 

and backsubstitution, respectively. 

Yn 
X=--

n Unn 

(21) 

(22) 

In Iiterature this method is recommended when several systems of linear equations with 

the same matrix of coefficients but with different right-hand sides are to be solved. In 

this case the LU decomposition must only be done once, and the various right-hand 

sides of eq. (14) can be treated simultaneously in eq. (21) because the right-hand sides in 

eqs. (20) and (19) mainly depend on the matrix coefficients and not on the right-hand 

sides of eq. (14). 

A decomposition according to eq. (15) is not always possible for a nonsingular matrix 

A, but it can be shown [9] that for any nonsingular matrix A such a decomposition 

exists after certain permutations of rows. 

From eq. ( 15) we get n2 equations for the elements of L and U according to the rules of 

matrix multiplication, but since the main diagonals of both matrices, L and U, are non­

zero, there are n2 + n unknowns. In practice all diagonals of one of these two matrices 

are set to one. In Iiterature two methods are known, the Crout method [10] where 

Uii = 1 and the Doolittle method [11] where lii = 1. For the latter the LU decomposition 

is done as follows. 

u1 = a1i j = l(l)n 
i-1 

uii = aii- I likuki i = 2(1)n j = i(l)n 
k=1 

(23) 

10 



(24) 

The i-th row of L and the i-th column of U are calculated alternatingly and stored sub­

sequently, but without the main diagonal of L. 

4.2 Gaussian Elimination 

Another well-known m~thod is Gaussian elimination, described in many textbooks as 

[9], [12]. For the time being it is assumed that all main diagonal entries are nonzero. 

(This assumption is always fulfilled in BACCHUS.) In a first step the first equation is 

multiplied by 

a·l 1 __ I_ 

il- all i = 2(1)n 

and subtracted from equation i for i = 2( 1 )n. In a second step the second equation is 

multiplied by 

a·2 1 __ I_ 

i2- a22 

(25) 

(26) 

and subtracted from equation i for i = 3(1 )n. This process is continued to transform eq. 

(14) into 

(27) 

with an upper diagonal matrix U. The unknowns in eq. (27) are obtained by backsubsti­

tution similar to eq. (22). 

The forward elimination can also be described by matrix multiplication: For the first 

step according to eq. (25) the original matrix is premultiplied by a lower triangular ma­

trix G with 

1 =.J 
j=l, i=Fj 
else 

(28) 

11 



as it is pointed out in [9]. A matrix like G which differs from a unity matrix only as it 

can contain nonzero elements in one column is called Frobenius matrix. lts inverse H is 

given by 

1 = J 
j=l,i~j 

else 
(29) 

One of the simplest cases for Gaussian elimination is for tridiagonal matrices. These are 

band matrices with a bandwidth of 1. For n = 6 a tridiagonal matrix has the form 

X X 
X X X 

X X X 
X X X 

X X X 
X X 

lt can be seen that x1 has only to be eliminated from the second equation, then x2 has 

only to be eliminated from the third equation and so on. Backsubstitution is also very 

simple. So tridiagonal systems are very easy to program, need negligibly small storage 

( only the three diagonals and some auxiliary arrays) and small computing time. The sol­

ution algorithm according to Thomas is often cited in Iiterature as [13] and [14]. De­

tails are given in Appendix B. For moredimensional problems, however, it cannot be 

used directly. 

For any matrix of coefficients the solution procedure described above fails evidently if a 

main diagonal element is zero (see eqs. (25) and (26)). It can be shown, however, that 

for a nonsingular matrix A this case can be circumvented by interchanging rows or col­

umns (pivoting). This corresponds to a multiplication of the original system of linear 

equations with permutation matrices. E. g. interchanging rows 1 and r is done by pre­

multiplication of A with permutation matrix P [9] with 

{ 

i=j, buti~ 1, r 
i = 1 and j = r 
i = r and j = 1 

0 else 

(30) 

lt can be shown [15], [16] that there are close Connections between LU decomposition 

and Gaussian elimination. Therefore there are some common features of these two 

methods: For a nonsingular matrix they can always be used. For diagonal dominant 

matrices pivoting is not necessary though some people recommend it nevertheless. The 

matrix of coefficients and the right-hand side of the equation can be overwritten during 

12 



the solution procedure. In this way much storage can be saved. The band structure of 

the matrix of coefficients is preserved during the solution procedure. This feature is used 

to save storage and computer time: only the matrix band is stored, and matrix multipli­

cations are only done within the band. However, there is a fill-in within the band of the 

matrix. Therefore the whole band must be stored and handled. As a consequence stor­

age and CPU time requirement are proportional to the total number of meshes and to 

the bandwidth of the matrix of coefficients. For large problems this means large efforts. 

Since the bandwidth is given by the numbering conventions of the unknowns, a bad 

sequence may have drastic effects on computational requirements. 

When roundoff errors influence the numerical solution of a system of linear equations, 

the numerical solution can be improved iteratively [8], [12] in the following manner. 

Let the numerical solution of eq. (14) be x(l>, Defining 

(31) 

and solving 

A ~)2(1) = f(l) (32) 

for ~x(l), it can be shown that 

(33) 

is a better approximation of the correct solution This procedure can be used iteratively 

[8]. Up to now it was not thought necessary to use such an improvement in 

BACCHUS, but it might be necessary for future applications. In such a case LU decom­

position would in principle be more favourite, because L und U need only be calculated 

once. A good vectorization of the respective subroutines is, however, necessary. 

4.3 Considerations for BA CCHUS 

Since for all applications in BACCHUS the number of planes is larger than that of sec­

tors or rings, the numbering conventions for the control volumes are intended to keep 

storage and CPU time requirements as low as possible. lf the numbering would not fol­

low the coordinate directions somewhat smaller bandwidths may be possible, but the 

additional computational efforts to renumher the meshes would probably outweigh the 

gain in bandwidth. 
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As a consequence of the numbering conventions in BACCHUS, storage and CPU time 

requirements are proportional to the number of meshes in the axial direction and pro­

portional to the square of the number of meshes in the radial and the azimuthal direc­

tion. So when the axial discretization is refined computational efforts increase less than 

when azimuthal discretization is refined or when a bundle with more pin rows is to be 

considered. 

To solve systems of linear equations directly it is also possible to use methods based on 

the division of the matrix of coefficients into block matrices. A solution procedure is 

given in [14] for a blocktridiagonal matrix andin [17] for general block matrices. In 

the case of a blocktridiagonal matrix decomposition, eq. (10), the inverse of every main 

diagonal block matrix Ai must be calculated explicitly, and it was thought that this costs 

rather much computing time. The off-diagonal block matrices are diagonal matrices re­

ducing computational effort for matrix multiplication according to eqs. (A.3) and (A.4). 

Sometimes direct solution routines are published which are said to be very fast or to use 

a very small amount ofadditional storage. Same ofthem, collected by [18], have been 

tried in BACCHUS. However, the advantages ofthese solution routines are only true 

for cases with only little fill-in. In cantrast the whole band is filled with non-zero ele­

ments for problems under consideration in BACCHUS and therefore no method of this 

kindwas suitable up to now. 
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5.0 Iterative Solution Methods in BACCHUS 

In cantrast to direct methods explained in the previous section storage and CPU time 

requirements for iterative methods are generally proportional to the number of meshes. 

Therefore storage increases much slower with increasing problern size than for direct 

methods. CPU time requirement should therefore also increase with the number of 

meshes. Since, however, convergence for larger problems may be slower than for small 

ones, it is more difficult to assess CPU times than storage. 

5.1 SOR 

Though successive overrelaxation is rather old and somewhat obsolete, it is still men­

tioned in more recent textbooks [19]. It has been studied extensively in [13] for certain 

classes of matrices. Further classes of matrices for which overrelaxation can improve 

convergence are given in [15]. It was the first solution method implemented in 

BACCHUS (which did not contain azimuthal discretization at that time [20]). In prac­

tice this method is executed as follows. For every iteration (index k) first a Gauss-Seidel 

iteration step is made, i. e. equation i of system eq. (9) (i = 1, ... n) is solved for Xi using 

the latest values for all other unknowns. This yields a provisional solution 

~k = -
1 (b· -~ a .. x·) I ajj I i....J IJ J 

i=l 
j,.H 

(34) 

for iteration number k, and the final solution is then given by 

k k- I (llk k- I) 
Xi = Xi + W Xj - Xj (35) 

These two equations are equivalent to 

( 

i-1 n ) 
k k-1 w k k-1 

X· =(1-w)x· +- b·- ~a .. x·- ~ a .. x. 
I I aii I 6 IJ J i....J IJ J 

i=l j=i+l 

(36) 

So the difference between subsequent Gauss-Seidel iterations for Xi is multiplied by a 

given factor w. For w > 1 the provisionally computed difference, eq. (34), is increased 

( overrelaxation), otherwise it is increased (underrelaxation). The essential task for SOR 

is to determine w. In practice this is done approximately. Such methods are described in 

literature, some of them have been tested in BACCHUS and are documented in [2]. 
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lntuitively it is clear that overrelaxation improves convergence if the difference between 

subsequent iterations is a monotonaus function of iteration number and that underre­

laxation gives an improvement if this difference oscillates. Another way of understand­

ing overrelaxation is to consider the residuum 

i-1 n 

r= aiixi + Iaijxf + I 
k-1 

aiixi - bi 
j=1 j=i+1 

and to apply a Newton-Raphson iteration 

::1 k-1 
k k -1 uXj 

xi = xi - w --
0
-r- r 

The partial derivative in eq. (38) is obtained from eq. (37): 

::1 k-1 
uXj 

or 

5.2 ADI Methods 

5.2.1 Procedure 

(37) 

(38) 

(39) 

When the first two-dimensional version of BACCHUS was extended to a three-dimen­

sional code, SOR was not accurate enough. The reason has not been investigated in 

detail; it was thought, however, that the alternating direction implicit (ADI) method 

would improve the situation. 

The idea of this method is a matrix splitting. Instead of solving one large problem, a 

number of smaller ones, more easily to solve, are created. In case of ADI the splitting is 

related to the coupling of cells in the three coordinate directions. In a first step only 

axial coupling is kept on the left-hand side of the system of linear equations, the rest 

being put on the right-hand side. In the second step only radial coupling is kept on the 

left-hand side, in the third step only azimuthat coupling. Several variants are known in 

Iiterature [13], [14]. The oldest one has been proposed by Peaceman and Rachford 

[21]: 
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(Az + rl) i<1> = b- (A;- rl) x<n> 

(Ar+ rl) "X<2
> = b - (A;- rl) x<l) 

(As + r I) i<3
> = b - (A; - rl) i<2

> 

x<n + 1) = ){(3) 

(40) 

Az, Ar, As are matrices the nonzero entries of which consist only of coefficients related 

to the coupling in axial, radial, and azimuthat direction, respectively, formally written as 

Az = {az-•- (az- + az+), az+} 

Ar= {ar-•- (ar- + ar+), ar+} 
As = {as~•- (a8 _ + as+), as+} 

Besides 

Aj=A-Ai l=z,r,s 

(41) 

(42) 

and r is a non-negative real number influencing convergence behaviour. For the right­

hand side of the eq. ( 40) always the latest results for the unknowns are used, beginning 

with the results from iteration n. The third step gives the results for iteration number 

n+ 1. 

For every step of eq. (40) the equations are rearranged in such a way that the matrix on 

the left-hand side is tridiagonal so that the Thomas algorithm can be used. The use of 

this fast solution algorithm is the main reason for the development of ADI methods. 

To get an idea of the meaning of the relaxation parameter r we consider the Poisson 

equation 

.1u = p 

as 

ou lim -= .1u- p 
t-+oo ot 

(43) 

(44) 

and instead of solving eq. (43) we solve eq. (44). As a simple case we consider a two-di­

mensional case with equal spacing dx for both coordinate directions, using forward dif­

ferences for the left-hand side and central differences for the right-hand side of eq. ( 44). 

For the Peaceman-Rachford variant ofthe ADI method, eq. (40), r turnsouttobe 
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(45) 

and the choice of r in eq. (40) is equivalent to the choice of a time step L\t in eq. (44) 

[12]. 

The Peaceman-Rachford variant of ADI method described above has the disadvantage 

that the matrices on the right-hand side are evidently not tridiagonaL Therefore evalu­

ation of the right-hand sides of eqs. ( 40) is computer time consuming, and efforts have 

been made to remove this drawback (see e. g. [14]). The bestvariant known to the 

authors is that of Messina and Londrillo [22]. lt is the one which is actually available in 

BACCHUS. 

(A
2 
+ rl) x(l> = b- A x<n> 

(Ar+ rl) x<2
> = r i<1

> 

(As + r I) x<3> = r x<2> 
X(n +I)= X(n) + 2 X(3) 

(46) 

In this variant only in the first step a matrix vector multiplication has to be performed. 

J nspection shows, however, that the right-hand side of the first step gives the residuum 

of the last iteration, and this value may be used as a convergence criteria. In this and in 

other variants of the AD I method the meaning of r is not so simple as for the Peace­

man-Rachford variant, but it can be shown that r must be nonnegative for convergence 

reasons. 

5.2.2 Determination of Relaxation Parameter r 

For further considerations we write Messina-Londrillo variant of the ADI method, eq. 

(46), similarly to SOR and other stationary iterative methods according to eq. (A.20) in 

Appendix A. 

~(n + I) ~(n) ~ x = Bx + c (A.20) 

According to theorem 26 in Appendix A the ADI method converges if the spectral radi­

us S of the iteration matrix B is less than unity. N ow, the iteration matrix for eq. ( 46) 

can be written as 

(47) 
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[23] and it can be seen that S(B) = f(r, ... ).So the spectral radius ofthe iteration matrix 

can be minimized by choosing an appropriate value of r. Theory shows, however, that 

even in this case convergence is not better than for point SOR [12]. This is disappoint­

ing because computational effort is much larger for ADI than for point SOR method. 

However, convergence is accelerated substantially, if r is varied cyclically. Several cycles 

may be done before the iterations are ended. 

To get an impression of the spectrum of eigenvalues AK of B, it has been computed for 

a case with 40 axial, 6 azimuthal, and 4 radial meshes in Figure 3 on page 20. In this 

figure p is the portion of eigenvalues in the interval AK - 0.05 :::;; AK < AK + 0.05. For 

r= 1 most eigenvalues are greater than 0.5. For larger values ofr there isadustering 

araund AK = 0 which fades for r= 1000. In this case most eigenvalues are positive. 

In general it is not possible to calculate the eigenspectrum of the iteration matrix, and 

since "the determination of an optimal sequence of r's for an arbitrary elliptic problern is 

an unsolved problem, a heuristic solution should be found" [12]. Under strong assump­

tions, i. e. for a common set of eigenvectors for the respective matrices, the eigenvalues 

of B are given by the eigenvalues of Az, As,Ar and by r to be 

(48) 

Though these assumptions are surely not fulfilled in general, eq. (48) is used in 

BACCHUS for a heuristic procedure. lt is described in detail in [23] and runs as fol­

lows. Minimum, maximum, and average values for Az, As, Ar are assessed from the coef­

ficients of the respective matrices. Out of these values 27 tripels are formed and inserted 

into eq. (48). lt is assumed that this procedure gives representative values Ah for the 

eigenspectrum of B. 

To illustrate this procedure values of Ah are plotted for various r for three triples in 

Figure 4 on page 21. For small values ofr the curves begin near Ah = 1, have a mini­

mum somewhere, and either take the value Ah = 0 or come close to it. Experience for all 

computational cases examined up to now shows a similar behaviour for all 27 triples. 

Experience shows further that the ADI method converges optimally if r is varied cy­

clically between the minimum and the maximum values of r for which the 27 curves 

cross the line Ah = 0 or come close to it. As an example we suppose that the three 

curves given in Figure 4 on page 21 are envelopes for all 27 curves. Then r should be 

varied cyclically between about 5 and 2000. Since r spans a large range, generally over 

several orders of magnitude, r is not changed linearly for the cyclic variations but ac­

cording to 
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Figure 3. Eigenvalue distribution for various values of r 
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Figure 4. Relation between A and r for various triples 
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( 
rmin ) ~=jl 

ri = r min -r-­
max 

j = l(l)m 

for step number j in a cycle of m variations of r. 

5.2.3 Handling of Azimuthai Coupling 

(49) 

In the third step of the ADI method when the azimuthal coupling is on the left-hand 

side ofthe equations (see eq. (46)) the system oflinear equations is not tridiagonal, but 

cyclic as it is shown schematically below for one ring with six sectors 

X X X 
X X X 

X X X 
X X X 

X X X 
X X X 

To use the Thomas algorithm nevertheless, the coupling between the first and the last 

sector in a ring, i. e. the singular non-zero elements at the top right and the bottarn left 

are put on the right-hand side of the equation. In this manner there are some conver­

gence difficulties just at the link between the first and the last sector. They can be over­

come if in this part of the solution procedure two sweeps are done instead of one. In the 

first sweep the Sectors are numbered as shown below for the case of six Sectors in a 

bundle. 

1 
6 2 
5 3 

4 

In the second sweep the sectors are renumbered in the following manner. 

4 
3 5 
2 6 

1 

In this way the coupling between the first and the last sector is positioned at different 

locations in the bundle cross section, and convergence is improved. As a further im­

provement this procedure has been replaced by the direct solution of the circular matrix 

as it is described in Appendix B. 
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5.3 Iterative Block Method 

5.3.1 Procedure 

Since Gaussian elimination and LU decomposition need much storage it has been tried 

to overcome this difficulty by using the group Gauss-Seidel or group overrelaxation 

method. Physically this means the following. The bundle is divided axially into q blocks 

as shown in the left part of Figure 5 on page 24 for q = 3. Allblocks (generally except 

the last one) have the same length and so contain the same number ~j of planes. So the 

matrix of coefficients is partitioned into a block tridiagonal system 

A= (50) 

If a block contains all meshes of a single plane, the submatrices in eq. (50) correspond 

those of eq. (10). 

Irrespective of the block size, i. e. of the value of ~j, the system of linear equations 

within a block is solved with a direct method, the coupling between adjacent blocks 

being put on the right-hand side of the system of linear equations. Therefore in a given 

time step iterations over the blocks are necessary. Convergence is reached in a given 

time step, when the modulus of the residuum, defined by 

(51) 

becomes smaller than a given limit. Convergence may be accelerated by overrelaxation. 

In this way a number of smaller systems of linear equations is solved instead of a large 

one. lf a block consists of all nodes in a single plane the bandwidth of the matrix of 

coefficients is given by the number of sectors, otherwise by the number of cells in a 

plane as for the matrix of coefficients of the whole system of linear equations. In this 

way storage demands are decreased but computing time is increased because of the iter­

ations over the blocks. 
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5.3.2 Theoretical Considerations 

It has been tested that BJ (n) is a CO-matrix when a block consists of one plane. The 

ordering vector contains '1' for the first plane, '2' for the second, and '3' for the third 

plane in analogy to theorem 25 in Appendix A. 

Generally, when a block consists of one or several planes, the matrix of coefficients, A, 

is block tridiagonaL The submatrices on the diagonal of A contain the coupling within a 

plane and, if several planes form a group, the coupling of the various planes within the 

group. The off-diagonal submatrices contain the coupling between subsequent groups. 

lf one plane forms a group, these submatrices are diagonal matrices and hence nonsin­

gular. The matrix of coefficients has Property A<n) because it is block tridiagonal, and it 
1\ 1\ 

is a n - CO - matrix according to the definition of n - CO - matrix. So ß(n) and C(n) 

are CO-matrices. Since for our grouping the sequence of the cell numbering is not 
1\ 1\ 

changed, ß(n) = ß(n) and C(n) = C(n) (theorem 42 in Appendix A). D<n) is nonsingular be-

cause its submatrices are irreducibly diagonally dominant. Since A is a n - CO-matrix, 

remaining portion 

remaining portion 

normallength 

normallength 

normallength 

normallength 
halflength 

Figure 5. Axial cut through a bundle for iterative block method. The left part shows the partition­

ing of the bundle into blocks, the right part shows the block arrangement for every sec· 

ond sweep. 
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Ais also an- GCO- matrix (theorem 44 in Appendix A). The other implications of 

theorem 44 in AppendixAare also valid. As a consequence the relations between the 

eigenvalues ofthe group Jacobi and the group SOR method indicated in theorem 45 in 

AppendixAare valid. 

For the group SOR method it is not clear from the above theorem that. the spectral 

radius of the iteration matrix is less than unity. lf it is the case the group SOR method 

converges. For a given matrix of coefficients the eigenvalues can be calculated. The iter­

ation matrix related to the group Jacobi method can be obtained when the inverse of 
DCn) is calculated. Mathematically this is rather easy as this inverse is composed of the 

inverses of the respective block matrices Di of DCn) but it gives a result only for a special 

case. Therefore it is left to inspect the results of a given case to see whether the group 

SOR method converges. 
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6.0 Runge-Kutta Methods 

To solve systems of linear equations is not the only possibility to solve partial differen­

tial equations numerically. So methods of lines [24] consist of discretizing a partial dif­

ferential equation for all variables but one. In this manner formally an ordinary differen­

tial equation is obtained. As an example we consider enthalpy equation (eq. (1)) and 

write it in a very short form as 

a ~ at (ph) = R(h, V, Q ... ) (52) 

where the right-hand side contains all other terms, i.e. convective and diffusive fluxes 

and heat source, all of them discretized in the usual manner ( eq. (3)). We differentiate 

the left-hand side of the equation to get 

a ah op 
-(ph)=p-+h-ot at at (53) 

We substitute eq. (53) into eq. (52), and put the last term of eq. (53) on the right-hand 

side of eq. (52) using forward differencing. So we get formally an ordinary differential 

equation in time for enthalpy. Since it can be written for every enthalpy node, we get a 

set of ordinary differential equations of the following form 

(54) 

To solve eq. (54) we use a method of the theory of ordinary differential equations, 

namely an explicit Runge-Kutta method of order four. lts idea is as follows. We sup­

pose that a solution of eq. (54) at step i, Yi is known and that the solution of eq. (54) at 

step i + 1, Yi + 1, is to be calculated, the step width being hi. We try 

m 

Yi+1 =yi+ hiiAjkj 
i=1 

~ 

where kj are values ofthe right-hand side ofeq. (54) at given positions: 

j-1 

ki = f(x + ajhi, Yi + hii bjsks) j = 2(1)m 
s = 1 

26 

(55) 

(56) 



Coefficients Aj, aj, and bis are determined from expansions of eqs. (54) and (55) into 

Taylor series. For the widely used case m = 4 this has been done in [25]. lt turns out 

that some open parameters remain, giving rise to various sets of formula. Parameter sets 

for a large number of explicit Runge-Kutta methods are given in [17]. 

In BACCHUS the classical Runge method is implemented: 

h· __., __., _... __., 
Yi+ I= Yi + -t (kl + 2k2 + 2k3 + k4) 
~ ~ 

k1 = f(xil Yi) 

~ ~ hi ~ kl 
k2 = f(xi + T , Yi + 2) (57) 

~ 

~ ~ hi ~ k2 
k3 = f(xi + 2 , Yi + 2) 

~ ~ 

k4 = f(xi + hio Yi + k3) 

Other variants are also listed in [25]. Same of them may give a higher accuracy than the 

Runge formula, but up to now they arenot implemented in BACCHUS because there is 

an approximation used in the code which might influence accuracy more: Neither veloc­

ities in convect~e an~ diffusive fluxes nor material property data are updated for the 

calculations of k1 ... ~ in eq. (57). In the original version updating would have required 

much computing time. Besides when the Runge-Kutta method was implemented it was 

not clear whether stability would be decreased by this measure. 

Runge-Kutta methods have the great advantage that no results of previous integration 

steps are needed. Their disadvantage is that no well-defined measure of accuracy exists. 

So a heuristic method must be used [25]. 
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7.0 Experience gained with BACCHUS 

Implementation of the various solution methods extended over many years and was 

generally done when problems arose for a given application of the programme. So expe­

rience is only gained for a given status of programme development, and the advantages 

or disadvantages of a solution method may change, when further programme develop­

ment is done. For time reasons it is not possible to repeat a whole comparison of meth­

ods when the status of the programme had changed. This makes a direct comparison of 

the various methods somewhat difficult. 

7.1 Test Cases 

For comparison between Gaussian elimination and ADI method three test cases have 

been chosen (Table 1). There are a small problern case with about 1000 meshes, a medi­

um problern case with about 3400 meshes and a large problern case with about 14000 

meshes. The small case corresponds to calculations for 37-pin KNS experiments, the 

intermediate one to a 127-pin KNK fuel element, the large one to calculations for the 

19-pin local blockage Mol 7C/7 experiment. Details about these three cases are given in 

[23]. 

Problem size Region/MByte CPU time/s 

N * N *N z s r nodes code Gauss ADI Gauss ADI 

40 * 6 * 4 960 2.7 0.3 ~o 30 57 

41 * 12 * 7 3444 8 4.4 ~ 0.1 513 306 

120 * 24 * 5 14400 19 27 2.6 

Table l. Main storage region and CPU times for three representative cases on VPSO. Gauss me­

ans Gaussian elimination. CPU times refer to quasi steady state cases. 

The implementation of the block iterative method has been made at the same time as 

essential improvements for ADI method have been made. When the ADI method was 

available testing oftheblock iterative method has not been made so extensively for se­

veral problern sizes as for ADI method for time reasons. Instead tests have only been 

made with a small test case. lt is rather an artificial case with 23 axial, six azimuthal, 

and 5 radial meshes. Eight grid spacers and a local blockage were simulated as shown in 

Figure 6 on page 29. This configuration was chosen because on the one hand it is a 

small problern quickly to solve and on the other hand it is a hard problern for geomet­

rical reasons. 
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spacer grid 

Figure 6. Test case for iterative block method, axial cut. At inlet velocity and temperature are 

prescribed, at outlet pressure. 

7.2 Direct Methods 

In BACCHUS both, LU decomposition following the Doolittle method and Gaussian 

elimination, are implemented. The routines for LU decomposition have been delivered 

by Centre d'Etudes Nucleaires at Grenoble and are optimized for scalar computers. The 

programme structure has, however, been found difficult to vectorize [18]. 

For this reason Gaussian elimination is also implemented. The routine has been taken 

from SSL2 library available at KfK and has been further optimized for VP50 [18]. For 

a small problern with 23 axial, 6 azimuthal, and 5 radial meshes it has been seen that 

even on a scalar computer (IBM 3090-601) this Gaussian elimination routine is about 

20 % faster than LU decomposition. 

Storage demands for the code without the solution routines for the systems of linear 

equations and for the solution routines are listed in Table 1 on page 28 for the three 

test cases mentioned in the previous section. Storage for LU decomposition is the same 

as for Gaussian elimination. For the small case storage requirement for Gaussian elimi-
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nation is negligible, for the medium case it is about one half of the rest of the code, for 

the large case it is more than the rest of the code. Further comparison will be given 

later. 

7.3 Iterative Methods 

7.3.1 SOR 

SOR methods are no Ionger used because of their bad convergence. When the iterative 

block method has been developed, however, some investigations have been done on the 

basis of the test case for the iterative block method (Figure 6 on page 29). In particular 

it has been tested that the eigenvalues of B1, calculated from eqs. (A.22) and (A.6) are 

real and occur in pairs ± ..t with lll ::;; 0.999995507. This result corresponds to [26]. 

Since the spectral radius is below unity, the Gauss-Seidel method and underrelaxation 

converge. The optimum overrelaxation parameter, calculated from eq. (A.43) is 

Wb= 1.9940. Generally convergence for our problems is only assured for w~l according 

to theorems 29 and 34 in Appendix A. 

U sing a computer program to test Property A and the consistent ordering of a given 

matrix of coefficients, it has been seen that it is not consistently ordered. By the same 

way it has been seen that this is a consequence of the azimuthal coupling for IT = 1 and 

IT = NTH; if this coupling is suppressed, the matrix is consistently ordered. In this case 

a compatible ordering vector can be constructed in the following manner. The compo­

nent which corresponds to cell (i,j,k) has the value i + j-1 + k-1. 

Furthermore it has been tested that because of this azimuthal coupling an indexing of 

the cells first in the radial and than in the azimuthal direction does not Iead to a consist­

ent order, neither. Eqs. (A.43) to (A.46) arenot applicable because the matrix of coeffi­

cients is not consistently ordered. Only eq. (A.38) is valid. 

I t can be seen that a ring and hence the whole matrix can be consistently ordered if e. g. 

für six azimuthal sectors the cells in a ring are not labeled 

6 
5 

1 

4 

2 
3 

but 2 
4 

1 

6 

3 
5 

This indexing has, however, not been tested. I t is possible that the insufficient accuracy 

which was obtained, when the first two-dimensional version of BACCHUS was extended 

to a three-dimensional code, was in fact due to a convergence problern as a consequence 

of the matrix of coefficients not being consistently ordered. Even if the matrix of coeffi-
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cients were consistently ordered, ADI method should be much faster [12]so that it is 

not worthwhile to reactivate the SOR method. 

7.3.2 ADI Method 

For ADI method experience shows that it can be used with a cyclic Variation of the 

relaxation parameter r for coolant pressure and enthalpy solution. Coolant mass bal­

ance is fulfilled to 10- 10 kg/s instead of 10- 8 kg/s as it was obtained for the first imple­

mentation ofthe ADI method. Only by this way it is possible to use the ADI method 

for two-phase cases. For local blockage cases it can also be taken, but for the large case 

with 120 axial meshes in Table 1 on page 28 convergence was not very satisfactory. 

The ADI method can, however, weil be used for three-dimensional pin temperature cal­

culations. 

A good performance can be obtained when for the solution of coolant pressure equation 

four cycles with 25 steps each are used. For coolant enthalpy and pin temperature one 

cycle with 30 and 12 to 15 steps, respectively, are taken. Region demands and CPU 

times on vector processor VP 50 for the BACCHUS calculations are listed in Table 1 

on page 28 for the three cases which have already been mentioned. For the large case 

no value has been given for CPU time for the ADI method because of the poor conver­

gence. In general the ADI method is clearly superior for larger cases as well with respect 

to Storage as to computing times. For the results presented above the old modeHing to 

handle the azimuthal coupling in the ADI method is used, i. e. two sweeps are made 

with a renumbering of the meshes. As a further improvement this procedure has been 

replaced by the direct solution of the circular matrix as it is described in Appendix B. I t 

takes about 10 % of CPU time more than one sweep for the standard Thomas algo­

rithm but the second sweep need not be done, and so the solution procedure is faster. 

Accuracy, measured by mass imbalance, is increased, and it can even be better than 

with Gaussian elimination when more cycles are performed. Time step can be increased 

because of better convergence behaviour. These results are only valid if the AD I method 

is used for the solution of the pressure and the enthalpy equation. lf the Runge-Kutta 

method is used for the solution of the enthalpy equation accuracy may be decreased. 

As an example Table 2 on page 32 shows a comparison of CPU times on the vector 

processor VP400 for a case with 40 axial, 6 azimuthal, and 4 radial meshes for a quasi 

steady state and the begin of a transient calculation. The time step is 40 ms as used for 

the calculations presented earlier. The begin of this transient is rather steep; otherwise 

less outer iterations would be necessary for both methods. 
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Gauss ADI ADI 

old new 

steady state CPU timejs 10.0 19.0 12.5 

transient CPU time/ A t 63.0 210.0 135.0 

Table 2. CPU times for a small case on VP400. Gauss means Gaussian elimi­

nation. "old" and "new" refer to old and new modelling of azimuthal 

coupling in a ring according to this section. 
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Figure 7. Number of time steps per minute as a function of relaxation parameter 
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7 .3.3 Block Iterative Method 

To test the blockiterative method runs have been made with the artificial test case ex­

plained above. Blocks included one, two, five, and eleven planes, respectively. The last 

block is generally shorter than the other ones. For the case when every block consists of 

a single plane it was tested for one time step that for allplanes all eigenvalues of BJ are 

real and occur in pairs ± A. with !A.I < 0.9992. It was seen that convergence could be 

reached for all cases. lt was further seen that convergence is faster when the block 

length is increased. Detailed results about convergence behaviour are difficult to obtain 

because convergence behaviour differs much. When the blocks consist of more than one 

plane, the calculation converges faster, when for every second iteration the first block 

has only half of the normallength ( see right part of Figure 5 on page 24). In this case 

the coupling between adjacent blocks is shifted between two iterations. 

As an indication for convergence behaviour the number n of time steps per minute of 

CPU time, which could be calculated on a scalar computer is taken, assuming that the 

greater n for a given block length, the less iterations per time steps are necessary to 

reach convergence in the given time step. In Figure 7 on page 32 n as a function of 

overrelaxation parameter w is given for various block lengths ~j. For all cases under 

consideration n has a maximum for w = 0. lt is largest when a block consists of a 

single plane because in this case the bandwidth of the matrix of coefficients is smaller as 

stated above. A smaller local maximum exists for w ~ 1.7 depending on the block size. 

Underrelaxation with w = 0.9 slows down convergence. The results suggest that overre­

laxation should not be applied. More experience is necessary to give general guide lines 

for overrelaxation. Methods to calculate an optimum relaxation factor which are known 

for point SOR [2] failed for the test case. 

7.4 Runge-Kutta Method 

For transient calculations enthalpy equation must of course be solved with the same 

time step M used elsewhere in BACCHUS. To increase accuracy the internal step width 

for Runge-Kutta method may, however, be smaller than ~t. Since there is no well-de­

fined measure of accuracy for Runge-Kutta methods, heuristic procedure~ as ir~J25] are 

necessary to assess the internal step width. In BACCHUS the difference k3 - k2 (see 

eq. (57) is used for this purpose. If one of the components of this vector exceeds 105 in 

value the internal step width for Runge-Kutta method is halved. 

In principle the Runge-Kutta method is much faster than Gaussian elimination for all 

problern sizes of practical interest. However, it has some disadvantages: Though it can 

be used in principle for the solution of pressure equation many iterations have to be 

done within a given outer iteration time step: in cantrast to enthalpy equation there is 
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no explicit time derivative of pressure, and the choice which coordinate direction to be 

retained for explicit derivative similarly to eq. (52) seems arbitrary for general problems. 

So this method is too slow for pressure solution in practice. In any case accuracy is 

lower than for Gaussian elimination. So time step is restricted even if a smaller step 

width is used for Runge-Kutta method within a given outer iterationtime step. 

As a consequence Runge-Kutta method can only be used for single-phase enthalpy cal­

culations if the transients are not too steep. In such cases CPU time is quite negligible. 

To extend the range where a method of lines is applicable another solution method than 

Runge-Kutta would perhaps be better but it would be laborious to try various methods. 

No method is ideal for all problems [17], [27]. Because of the role of density in eq. (53) 

the situation might perhaps be improved in the actual programme version if at least 

density would be updated for the various terms in eq. (57), but for time reasons this has 

not been tried. 

7.5 General remarks 

Experience shows that overall convergence behaviour of the code in the outer iteration 

loop depends on the choice of time step and convergence criteria, hence on parameters 

which must be chosennot only according to the physical problern but also depending 

on the solution method. Therefore the results given above indicate trends and should 

not be mistaken as fundamental constants. 

Experience shows further that in principle all solution methods may be combined for the 

solution of the various systems of linear equations in BACCHUS. However, conver­

gence behaviour is not always the same. Choosing the same solution methods for for 

pressure and enthalpy equations gives a good convergence behaviour. The same is true 

when Gaussian elimination or ADI method are combined with Runge-Kutta method for 

enthalpy equation. lf, however, Gaussian elimination is used for pressure equation and 

ADI method for enthalpy equation, convergence behaviour is less satisfactory. 
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8.0 Conclusions 

The solution of large systems of linear equations plays a large role in computational 

fluid dynamics. In literatme direct as well as iterative solution procedures are docu­

mented. There merits depend, however, on the special problems to be solved. In this 

report some characteristics of the matrices of coefficients used in the computer pro­

gramme BACCHUS to describe thermal-hydraulic behaviour in a fuel element are point­

ed out. I t turns out that the matrices have some special features which guarantee a 

unique solution of the system of equations. 

The direct solution methods presented in this paper have the great advantage that they 

can always be used. The disadvantages of LU decomposition and of Gaussian elimi­

nation are the large storage and CPU time demands for large problems. They increase 

with the nurober of unknowns and the bandwidth of the matrix of coefficients. The ad­

vantages of iterative methods presented here are just the disadvantages of direct meth­

ods. However, there are open parameters the determination ofwhich is not always sim­

ple. As an alternative a method of lines for the solution of the partial differential 

equation, a Runge-Kutta method, is not generally applicable for reasons of accuracy or 

overall convergence behaviour of the code. 

U p to now no general purpose method exists for the solution of the systems of linear 

equations which need nearly no storage and CPU time and give a nearly unlimited accu­

racy. Therefore several solution methods are available in BACCHUS: Gaussian elimi­

nation is useful for coolant pressure and enthalpy solution, and a Runge-Kutta method 

for single-phase enthalpy solution. As an iterative method ADI is recommended for 

coolant pressure and enthalpy and for pin temperature solution. The advantage of this 

method is that its accuracy can be varied by the nurober of cycles. ADI is preferable for 

many problems, but Gaussian elimination is always a backup for difficult problems. 

An iterative block method is implemented in the code but not much experience has been 

gained up to now. Convergence could not be proved from the theorems listed in this 

paper, but is suggested in literature. 

Solution methods should harmonize: So in a given problern Gaussian elimination can be 

used for coolant pressure and Runge-Kutta for enthalpy, but Gaussian elimination for 

coolant pressure and ADI for enthalpy give less satisfactory overall convergence behav­

iour. In any case convergence behaviour is also influenced by parameters as time step 

and convergence criteria for the outer iteration loop. As a basis experience from former 

calculations should be used but it is worthwhile to verify such data from time to time, 

even for a given problem, because the situation may change in a given transient. This 

experience and the fact that programme development, e. g. progress in physical modell-
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ing, may change convergence behaviour, imply that recommendations cannot be given 

once and for all. 

The status reached up to now is surely not the final situation in a computer code like 

BACCHUS. Requests sometimes change quickly. So a three-dimensional solution for 

pin temperature increases the portion of solution of systems of linear equations with 

respect to total CPU time drastically, especially when more than one pin has to be con­

sidered in this way. Besides applications change; their size generally increases and often 

increases faster than available computer facilities. Therefore there is always a need for 

good solution methods, and, if possible, for better ones. 
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Appendix A. Matrix Definitionsand Theorems 

The items of this section have been collected for various reasons. They can be used as a 

theoretical background for previous sections of this report. Some additional information 

is also listed but it was not intended to elaborate a complete compendium about matri­

ces. In the following A = ( aij), B = (bij), and C = ( Cij) are matrices of order n with real 

coefficients, if not stated otherwise. 

A.l Special Matrices 

A.l.l Permutation Matrices 

Definition: A permutation matrix P = (Pii) of ordern is a matrix with exactly one non­

zero element, namely unity, in each row and each ·column. P corresponds to a permuta­

tion function, 

a(i) = j i = 1, ... , n where Pii = 1 (A.l) 

Theorem 1: If a permutation matrix P corresponds to a permutation a, then P-1 PT 

corresponds to a-1, Proof: [13], p. 10. 

Premultiplication of a matrix A by a permutation matrix permutes rows, postmultiplica­

tion permutes columns of A. For an interchange of rows and corresponding columns of 

a matrix A according to eq. (Al) the matrix multiplication is done as P-1 A P. 

A.1.2 Diagonal, Band, and Triangular Matrices 

The product C = A B of two matrices A and B is given by 

n 

cii = I aik bki 
k=l 

If A is a diagonal matrix, eq. (A.2) reduces to 

(A.2) 

(A.3) 

So every column i of B is multiplied by aii. Similarly, if B is a diagonal matrix eq. (A.2) 

gives 
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Every row of A is multiplied by bii' 

If in eq. (A.3) C is the unity matrix I with elements 15ii we get B = AI with 

hence 

i =F j 

I= J 

(A.4) 

(A.5) 

(A.6) 

Definition: A matrix A is a band matrix, if aii = 0 for Ii - jl :2: m where m is the band 

width. A special case is a tridiagonal matrix where m = 1. 

Theorem 2: Theinverse of a band matrix is not necessarily a band matrix (Murphy). A 

general proof for space matrices is given in [8]. 

Definition: L = (lij) is a lower diagonal matrix, if lij = 0 for j > i. lt is a strictly lower 

diagonal matrix, if lij = 0 for j 2 i. 

Theorem 3: Let L = {lij) be a lower diagonal matrix. L is nonsingular if and only if 

Iii =F 0 for i = 1, ... , n. 
n 

Proof: det L = TI Iii, as can be seen by mathematical induction when the deterrninant is 
i-1 

developed by rows or columns. 

Theorem 4: The inverse of a Iower diagonal matrix is a lower diagonal matrix. 

Proof: L L-I = I is equivalent to n systems of equations 

...... 

(A.7) 

where Xj is the jth column of L-I and bj the jth column of I. For j = 1, ... , n the compo-

nents Xij ofxi can be obtained from forward substitution. We get 

n 

i = l: L)1kxki = 111 x1i = bli 
k=l 
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n 2 

i = 2: I 12kxki = I 12kxki = l21X1i + l22X2i = b2i (A.9) 
k=l k=l 

yields x2j, since x1i has already been determined. In general, when the first i-1 compo­

nents of Xj have already been determined from the first i-1 equations, we get 

n i 

I likxki = I likxki = bii (A.1 0) 
k= 1 k= 1 

and hence 

i-1 

luxii = bii - I likxki (A.ll) 
k=l 

Since bii = c5ii = 0 for i < j it can be seen from eqs. (A.8- A.ll) that Xij = 0 for i < J· 

For i = j we get Xii = -1~ .. For i > j we normally get Xij i= 0. 
11 

Theorem 5: Similarly an upper diagonal matrix U is nonsingular if and only if uu i= 0 for 

i = 1, ... , n. lts inverse is an upper diagonal matrix. Pro.of: UT, the transposed matrix, is 

a lower diagonal matrix. Using (A-l)T = (AT)-I (see [28], chapter 3.1, p. 35) completes 

the proof. 

A.l.3 Convergent Matrices 

Definition: A matrix A of order n is convergent ( to zero ), if lim An = 0 where 0 is the 
n-+oo 

zero matrix. 

Theorem 6: A complex matrix A of order n is converge:rit if and only if S(A) < 1 where 

S(A) is the spectral radius of A. Proof: [14], theorem 1.4, p. 13. 

A.1.4 Irreducihle and Diagonally Dominant Matrices 

Definition: A complex matrix A of ordern > 2 is reducible if there exists a permutation 

matrix P of ordern suchthat 

(A.12) 
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where A1, 1 is a submatrix ( or block matrix) of order r and A2, 2 is a submatrix of order 

n-r, where 1 s r < n. lf no such permutation matrix exists, then A is irreducible. 

Definition: A complex matrix A of order n is diagonally dominant, if 

n 

laui~IIaiil 
i= I 
j~i 

(A.13) 

Definition: A complex matrix A of order n is strictly diagonally dominant, if strict ine­

quality in eq. (A.13) holds for all 1 s i s n. Similarly A is irreducibly diagonally domi­

nant if A is irreducible and diagonally dominant with strict inequality in eq. (A.13) for 

at least one i. 

Theorem 7: Let A be a complex strictly or irreducibly diagonally dominant matrix. Then 

A is nonsingular. Proof: [14], theorem 1.8, p. 23. 

Theorem 8: Let A be a complex strictly or irreducibly diagonally dominant matrix. Then 

none of the diagonal elements of A vanishes. Proof: [13], theorem 2-5.3, p. 40. 

A.l.5 Eigenvalues 

Theorem 9: If Ais a square matrix of ordern with eigenvalues A1, ... , An, then 

n n n 

detA= n,.{i traceA = Iau = I,.{i (A.14) 
i=l i=l i=l 

Proof: [13], theorem 2-1.7, p. 14. 

Theorem 10: If A is a strictly or irreducibly diagonally dominant complex matrix where 

all diagonal entries are real and positive, then the eigenvalues Ai of A satisfy 

(A.15) 

Proof: [14], theorem 1.8, p. 23. 
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A.1.6 Herrnitian and Positive Definite Matrices 

Definition: Fora matrix A = (aij) we define AH = (aji), where '*' stands for 'complex 

conjugate'. 

Definition: A matrix Ais Hermitian if A = AH. 

Definition: lf furthermore A is a real matrix, A is symmetric. 

Theorem 11: A matrix A of ordern is an Hermitian matrix if and only ifvAv is real for 

all vectors v of the corresponding vector space of order n. Prqof: [13], theorem 2-2.1, p. 

18. 

Theorem 12: For any matrix L the matrix L LH is Hermitian and nonnegative definite. lf 

L is nonsingular, then L LH is positive definite. Proof: [13], theorem 2-2.6, p. 22. 

Theorem 13: A matrix A is positive definite ( nonnegative definite) if and only if it is 

Hermitian and all of its eigenvalues are positive ( nonnegative ). Proof: [ 13], p. 21. 

Theorem 14: Let A be strictly or irreducibly diagonally dominant and Hermitian with 

positive real diagonal entries. Then A is positive definite. Proof: [14], corollary to theo­

rem 1.8, p. 23. 

A.1.7 L-Matrices and Related Matrices 

Definition: A matrix A of order n is an L-matrix if 

aii>O i=1, ... ,n (A.16) 

aii:::;; 0 i =F j, i, j = 1, ... , n (A.17) 

Definition: Ais an M-matrix if A is nonsingular, A- 1 ;;::: 0, and if eq. (A.17) holds. 

Theorem 15: Any M-matrix is an L-matrix. Proof: [13], p. 43. 

Theorem 16: If Ais an irreducibly diagonally dominant L-matrix, it is an M-matrix. 

Proof: [14], corollary 1, p. 85. 

Definition: A is a Stieltjes matrix if A is positive definite and if eq. (A.17) holds. 

Theorem 17: lf A is a Stieltjes matrix, then it is also an M-matrix. Proof: [14], corollary 

3, p. 85. 
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Theorem 18: If A is a symmetric and nonsingular irreducible matrix, where aii s 0 for all 

i =1= j then A-I > 0 if and only if A is positive definite. Proof: [14], corollary 2, p. 85. 

A.l.8 Property A and Consistent Ordering 

Definition: A matrix A of order n has Property A if there exist two disjoint subsets SI 

and S2 of W, the set of the first n positive integers, such that SI + S2 = W and such 

that if i =1= j and if either aii =1= 0 or aii =1= 0, then i e S1 and j e S2 or eise i e S2 and j e S1• 

Definition: Fora given matrix A the integers i and j are associated with respect to A if 

aii =I= 0 or aii =I= 0. 

Definition: The matrix A of ordern is consistently ordered (A is a CO-matrix) if for 

some t there exist disjoint subsets S1, ... , St of W, the first n integers, such that 
t 

2: Sk = W and such that if i and j are associated, then j e Sk + 1 if j > i and j e Sk..,. 1 if j 

k<= l, where sk is the subset containing i. 

Definition: The vector y = (YI, ... , Yn)T where YI, ... , Yn are integers, is an ordering vector 

for the matrix A of order n if for any pair of associated integers i and j with i =1= j we 

have IYi- Yil = 1. 

Definition: An ordering vector y = (y 1, ... , Yn)T for the matrix A of order n is a compat­

ible ordering vector for A if 

a) Yi- Yi = 1 if i and j are associated and i > 

b) Yi- Yi =- 1 ifi and j are associated and i < j. 

In sum Yi - Yi = sgn(i - j) if aii =I= 0. 

Theorem 19: If A has Property A, then the eigenvalues of BJ are either zero or occur in 

pairs ±Ai. see [26], p. 121. 

Theorem 20: If A has Property A, then for any permutation matrix P the matrix A' = 
P-1 A P has Property A. Proof: [13], theorem 5-4.3, p. 149. 

Theorem 21: There exists an ordering vector for a matrix A if and only if A has Proper­

ty A. Moreover, if A is consistently ordered, then A has Property A. Proof: [13], theo­

rem5-4.1, p. 148. 

Theorem 22: If A has Property A, then there exists an ordering vector whose compo­

nents have at most two different values. Proof: [13], corollary 5-4.2, p. 148. 

Theorem 23: A matrix A has Property A if and only if there exists a permutation matrix 

P suchthat the matrix A' = P-1 A Pis consistently ordered. Proof [13], theorem 5-4.5, 

p. 150. 
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Theorem 24: A matrix A of order n is consistently ordered if and only if there exists a 

compatible ordering vector for A. Proof: [13], theorem 5-3.2, p. 146. 

Definition: A is a T-matrix if A has a block-tridiagonal form with square diagonal matri­

ces on its diagonal. So A can be decomposed into submatrices Aij where all An are 

square matrices and Aij = 0 for IHI > 1. 

Theorem 25: If Ais a T-matrix, then Ais consistently ordered. Proof: [13], theorem 

5-3.1, p. 145. Especially a tridiagonal matrix of ordern is consistently ordered. An or­

dering vector y has the form y = (1, 2, ... , n)T. 

A.2 Iterative Solution of Linear Equations 

To solve a system of linear algebraic equations 

(A.l8) 

we can use an iterative method 

X(O) = <Do(A, b) 
~(n + 1) _ ,..,.... (~(o) :;-(n) A b) 
X - '~'n + 1 X , ... , X , , n=0,1,2,3, ... 

(A.19) 

Superscripts indicate an iteration index. lf for some integer s > 0 <Dn is independent of 

n for all n 2 s, then the method is said to be stationary. The degree of a stationary 

method is t fort~ S if, for n 2 S- 1, x(n + 1) depends on x(n), x(n -1), ... , x(n- t +I) but not 

on x(k) for k < n-t + 1. If, for each n, <Dn is a linear function ofx<0>, ... 'x(n- I) the method 

is said to be linear. In the case of a linear stationary iterative method of first degree, the 

iteration has the form 

X(n +I) = Bi<n) + C (A.20) 

for some matrixBand for some vector c. 

Definition: The iterative method (A.20) is weakly convergent if for all starting vectors 

u(O) the sequence u<0>, u(l) ... of iterative solutions of eq. (A.20) converges. The method is 

convergent if for all u(O) the sequence converges to a limit independent of u(O), 

U sing conventions as in [14], we decompose A as follows 

A=D+L+U (A.21) 
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where D is a diagonal matrix, Land U are strictly lower and upper triangular matrices. 

For the Jacobi method 

(A.22) 

are used. Evidently BJ has zero diagonal entries. 

For the Gauss-Seidel method we set 

(A.23) 

For overrelaxation 

(A.24) 

holds. To facilitate comparison with literature, the definition of matrices used in [13] is 

given in the following section. 

A.2.1 Definition of Iteration Matrices 

[13] and [14] are standard textbooks for iterative methods as SOR. Since [14] is used 

in this report for the definition of matrices for the Jacobi, the Gauss-Seidel, and SOR 

method, the definitions of [13] are given hereafter to facilitate comparison of formulas 

in the various publications. 

In [13] the matrix of coefficients A for a system of linear equations 

is decomposed to be 

A=D-C y 

(A.25) 

(A.26) 

(A.27) 

where the indices L and U mean strictly upper and lower matrices. Here and in the 

following the index y stands for Y oung. 
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B = n- 1 c y y (A.28) 

(A.29) 

(A.30) 

The iteration matrix for the SOR method in [13] is 

BsoR =(I wLy)- 1 [wUy + (1- w)I] (A.31) 

From a comparison of eqs. (A.26) and (A.27) with eq. (A.21) we find 

L =-CL U =-Cu (A.32) 

From eq. (A.31), using eqs. (A.28) to (A.30) we get 

(A.33) 

Multiplication of eq. (A.33) with D gives 

(D + wL) u<n+ 1
) = [(1- w)D- wU] u<n> + wb (A.34) 

Dividing by w yields eq. (A.24). So the formulas in [14] and [13] are equivalent as it 

should be. 

A.2.2 General Theorems 

Theorem 26: The iterative method eq. (A.20) converges if and only if 

S(B) < 1 (A.35) 

where S(B) is the spectral radius of B. Proof: [13], theorem 3-5.1, p. 77. 

Theorem 27: 

(A.36) 
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with equality only if all eigenvalues of BsoR are of modulus Iw - 11 (Kahan). Proof: [14], 

theorem 3.5, p. 75. 

Theorem 28: Moreover, ifthe SOR method converges, then 

0<w<2 

Proof: [13], theorem 4-1.2, p. 107. 

A.2.3 Convergence for Special Matrices 

Theorem 29: Let A be an irreducible matrix with weak diagonal dominance. Then 

a) The Jacobi method converges. 

b) The Gauss-Seidel method converges. 

c) The SOR method converges for 0 < w s 1. 

Proof: [13], theorem 4-2.1, p. 107. 

(A.37) 

Theorem 30: Let A be a Hermitian matrix of order n, where aii > 0 and D + w L is 

nonsingular for 0 s w s 2. Then S(BsoR) < 1 if and only if A is positive definite and 0 

< w < 2. Proof: [14], theorem 3.6, p. 77. 

Theorem 31: Let A be a symmetric matrix with positive diagonal elements. Then the 

SOR method converges if and only if A is positive definite and 0 < w < 2. Proof: [13], 

theorem 4-3.6, p. 113. 

Theorem 32: If Ais an L-matrix, then Ais an M-matrix if and only if S(B1) < 1. Proof: 

[13], theorem 2-7.2, p. 43. 

Theorem 33: Ais an M-matrix, if and only if B1 is non-negative, irreducible, and conver­

gent. Proof: [14], theorem 3.11, p. 84. 

Theorem 34: lf Ais an M-matrix and if 

(A.38) 

then S(BsoR) < 1. Proof: [13], theorem 4-5.9, p. 126. 
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A.2.4 Convergence for Consistently Ordered Matrices 

Theorem 35: If A is a consistently ordered matrix, then 

det(cxL + cx- 1u- kD) (A.39) 

is independent of cx for all cx =/::. 0 and for all k. Proof: [13], theorem 5-3.3, p. 147. 

Theorem 36: If A is consistently ordered and if A has nonvanishing diagonal elements, 

then 

a) if p., is any eigenvalue of B1 of multiplicity p, then - p., is also an eigenvalue of BJ of 

multiplicity p. 

b) A satisfies 

(A.40) 

for some eigenvalue p., of B1 if and only if A satisfies 

(A.41) 

for some eigenvalue p., of B1. 

c) if A satisfies either, and hence both of the relations eqs. (A.40) and (A.41), then A is 

an eigenvalue of BsoR· 

d) lf A is an eigenvalue of BsoR, then there exists an eigenvalue p., of BJ such that (A.40) 

and (A.41) hold. Proof: [13], theorem 5-3.4, p. 147. 

Theorem 37: Let the Jacobi matrix BJ be a non-negative matrix of ordern. Then, one 

and only one of the following mutually exclusive relations is valid: 

S(B1) = S(Bas) = 0 

S(Bas) < S(B1) < 1 

S(B1) = S(Bas) = 1 

1 < S(B 1) < S(Bas) 

(A.42) 

Thus, the Jacobi matrix and the Gauss-Seidel matrix are either both convergent, or both 

divergent (Stein and Rosenberg). Proof: [14], theorem 3.3, p. 70. 

Theorem 38: If A is a consistently ordered matrix with nonvanishing diagonal elements 

such that B1 ha~ real eigenvalues, then S(BsoR) < 1 if and only if 0 < w < 2 and S(BJ) 

< 1. Proof: [13], theorem 6-2.2, p. 172. 
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Theorem 39: Let A be a consistently ordered matrix with non-vanishing diagonal ele­

ments suchthat the matrix B1 has real eigenvalues and suchthat 7i = S(B1) < 1. lf 

(A.43) 

then 

(A.44) 

and if w =1= Wb then 

(A.45) 

Moreover, for any w in the range 0 < w < 2 we have 

[ wTi+Jw
2
Ti:-4(w-!) 

2 

J if 0 < W:::;; Wb 

S(BsoR) = (A.46) 

w -I if Wb:::;; W < 2 

Finally, ifO < w <Wb then S(BsoR) is a strictly decreasing function of w. Proof: [13], 

theorem 6-2.3, p. 172. 

Theorem 40: If Ais a positive definite consistently ordered matrix, then the matrix BJ 

has real eigenvalues. Moreover, S(B1) < 1. Proof: [13], lemma 6-2.5, p. 175. 

Theorem 41: Let A be a matrix which has Property A and whose diagonal elements are 

positive. lf, for some diagonal matrix E the matrix A' = E A E-1 is positive definite, 

then B1 has real eigenvalues and S(B1) < 1. Proof: [13], theorem 6-2.6, p. 175. 

A.3 Block Methods 

A.3.1 Concept 

The following section is summarized on the basis of [13], chapter 14. Arrows, indicating 

vectors, have been dropped in this section. 

An ordered grouping n of W, the first n integers, is a subdivision of W into disjoint 

subsets R1, ... Rq, suchthat R1 + ... + Rq = W. Two ordered groupings n and n', 
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defined by R 1, ... Rq and R' 1, ... , R' q, respectively, are identical if q = q' and if 

R1=R'1, ... ,Rq=R'q· 

Fora given matrix A and an ordered grouping n, consisting of q groups, we define the 

submatrices Ar,s for r, s = 1, 2, q as follows: Ar,s is formed from A by deleting all rows 

except those corresponding to Rr and all colurnns except those corresponding to R8 • 

Given a colurnn vector u we define colurnn vectors U 1 , ... , Uq where Ur is formed from 

u by deleting all elements of u except those corresponding to Rr· Similarly we define 

colurnn vectors B1 , ... , Bq given the colurnn vector b. For example, , if n = 3 and n is 

defined by R1 = {1, 3}, R2 = {2}, we have 

A _ (al,l al,3) A _ (al,2) U _ (u1) 
1,1 - a3,1 a3,3 ' 1,2- a3,2 ' 1 - u3 ' (A.47) 

~ 

so that the system of equations Au = b becomes 

(A.48) 

which is equivalent to the original system. In general the system of equations can be 

written in the form 

q 

I Ar, sus = Br r = 1, 2, ... 'q 
s=l 

If Ar,r is nonsingular for all r, the group Jacobi method can be written in the form 

q 

A u<n + I) + ~ A u<n) = B 
r, r r i_; r, s s r 

S=T 

or, equivalently 
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q 

u<n + 1 > = "\' B u<n> + C r f...J r, s s r 
s=r 
s;fr 

where 

B = r, r r, s 
{
-A- 1A 

r, s O 
ifri=s 

if r = s 

Evidently, we may write eq. (A.51) in the matrixform 

where 

c<n> = o<n> - A 

(A.51) 

(A.52) 

(A.53) 

(A.54) 

(A.55) 

(A.56) 

(A.57) 

where diagn A is the matrix formed from A by replacing by zeros all ai,j unless i and j 
belang to the same group. Examples are given in [13], chapter 14.1. 

The group Gauss-Seidel method can be written in the matrix form 

(A.58) 

where 

(A.59) 

(A.60) 
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(A.61) 

er> and Cty> are farmed fram A by replacing all elements af A by zera except thase ai,j 

such that i and j belang ta different graups and such that the graup cantairring i cames 

after and befare, respectively, the graup cantairring j. 

The matrix form of the group SOR method is 

(A.62) 

where 

(A.63) 

A.3.2 Theorems 

Given a matrix A and an ordered grauping n with q graups, we define the matrix Z af 

arder q by 

if Ars= 0 
' 

if Ar s =I= 0 
' 

(A.64) 

The matrix A has Property A<rr) if Z has Praperty A. 

The matrix A is a n-consistently ardered matrix (a n- CO-matrix) if Z is consistently 

ordered. 

The matrix A<rr) is obtained from A by reordering the rows and columns of A according 

to the ordered grouping n using the submatrices: 

(A.65) 

where P = p(n) is the correspanding permutation matrix. 

Theorem 42: lf A has Praperty A<rr) then C(rr) has Praperty A, and if D<rr) is nansingular, 
(\ 

Birr) has Property A. If A is a n - CO - matrix, then C(n) is a CO-matrix, and if D<rr) is 
(\ 

nonsingular, ß(n) is a CO-matrix. Praaf: [13], theorem 14-3.1, p. 446. 
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II 

Theorem 43: Let A be a matrix and n an ordered grouping suchthat C(?r) is consistently 

ordered. Then 

(A.66) 

is independent of cx for all cx =I= 0 and for all k. Proof: [13], theorem 14-3.2, p. 448. 

A matrix A is a generalized n-consistently ordered matrix (a n- GCO- matrix) if A, 
given by eq. (A.66), is independent of cx for all cx =1= 0 and for all k. 

Theorem 44: lf Ais an- CO-matrix, then Ais an- GCO- matrix. More generally, 
II II 

if C(n) is a CO-matrix or if D<n) is nonsingular and ß(n) is a CO-matrix, then A is a 

n- GCO- matrix. Proof: [13], theorem 14-3.3, p. 449. 

Theorem 45: lf A is a n - GCO - matrix such that D<n) is nonsingular, then the conclu­

sions of theorem 36 are valid, if we replace BJ by BJ (n) and BsoR by BsoR (n) ( see [ 13], 

theorem 14-3.4, p. 451. 

II 

Theorem 46: lf Ais an- GCO- matrix which is an irreducible M-matrix, then ß(n) and 
II 

C(n) and are CO-matrices. Proof: [13], theorem 14-3.5, p. 451. 
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Appendix B. Special Systems of Equations 

B.J Tridiagonal Systems of Equations 

Gaussian elimination is very simple for tridiagonal matrices. The procedure is well­

known in literatme and attributed to Thomas. It is recalled in this section and used as a 

basis for the solution of cyclic tridiagonal systems (see next section), i. e. for systems of 

linear equations which differ from tridiagonal systems by a1n, an1 =I= 0. 

Given a tridiagonal system of equations 

a1 1 Y1 + a1 2 Y2 
aii-1 Yi-1 + aii Yi + aii+ 1 Yi+ 1 i=2, ... ,n-1 

an n - 1 Y n - I + an n Y n 

of n equations with n unknowns. The matrix of coefficients has the form 

X X 
X X X 

X X X 

X X X 
X X X 

X X 

(B.l) 

We suppose that at least for one equation bi =I= 0 and that the matrix of coefficients is 

nonsingular so that there is a unique solution of eq. (B.l ). Gaussian elimination is 

equivalent to transforming equation i (i = 1, 2, ... , n- 1) into an equation i' 

b' I Yi = i - a ii+ 1 Yi+ 1 (B.2) 

and substituting into equation i + 1. We obtain 

a'1 2 
a12 
a1 1 

b'1 
b1 

a11 

(B.3) 
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, 
a ii+l 

b'· I 

aii+l 
a'ii 

for i = 2 , ... , n - 1. Proof of eqs. (B.3) is by mathematical induction. The same coeffi­

cients a' and b' would of course result from a LU decomposition of the original matrix 

of coefficients [17]. Substitution fails for au = 0 or a'ii = 0. This situation is discussed 

in [24], but is not interesting for BACCHUS. Substituting equation (n-1)' into equation 

n yields Yn to be 

Yn = (B.4) 

and for i = n- 1 , ... , 1 one obtains Yi from eq. (B.2) by backsubstitution. 

The advantage of the solution algorithm of tridiagonal system is that y1 exists only in 

the first and the second equation. Once it has been substituted in the second equation, 

y2 exists only in the second and the third equation and so on. This can be programmed 

without a DO-loop and so gives a quick solution routine. In practice a' and b' are 

stored thus needing only little additional storage. 

B.2 Cyclic Systems of Equations 

Cyclic systems of equations are an extension of tridiagonal systems, i. e. in addition to 

tridiagonal systems a1n, an1 =1= 0. In BACCHCS such systems of linear equations arise 

because of the coupling of the first and the last control volume in a ring. 

A solution procedure can be used similarly to the Thomas algorithm for tridiagonal sys­

tems of equations. In cantrast to the Thomas algorithm an equation is not only com­

bined with the following one but also with the last one. In the following this procedure 

is described in detail. 

Given a system of equations 

al 1 Y! + al 2 Y2 + aln Yn = bl 
aii-1 Yi-1 + a .. Yi + aii+ 1 Yi+ 1 = b- i = 2, ... , n- 1 (B.5) II . I 

an! Y! + ann-1 Yn-1 + ann Yn = bn 
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similarly to eq. (B.l), but a1n and anl are allowed tobe nonzero. So the matrix of coeffi­

cients has the form 

X X X 
X X X 

X X X 

X X X 
X X X 

X X X 

The first equation is divided by a1 to yield 

(B.6) 

with 

a a' = _1_2 
1 2 al I 

aln 
a1n 

a1 1 
(B.7) 

b' 
b1 

I a11 

and introduced into the second and the last equation of system (B.5). 

In the i-th substitution step (i = 2, ... , n - 1) equation i of system (B.5) is transformed 

into an equation i' 

b' I -
Yi = i- aii+l Yi+l- ainYn 

with 

a'ii+l = 

b'i = 

aii-1 ai-1 n 

a'ii 

and introduced into equation i + 1. 

(B.8) 

(B.9) 
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Furthermore at the beginning of the ith substitution step the last equation (number n) 

of the original system (B.5) has been transformed to form equation n(i) 

(i) - (i) 
a

1

ni Yi + ann-1 Yn-1 + ann Yn - bn (B.10) 

with 

a
1 

n i = - a
1 
n i- 1 a

1 
i- 1 i 

(i) (i- 1) 1 -

an n = an n - a n i - 1 ai - 1 n (B.ll) 

b(i) _ b(j - 1) _ 1 bl 
n- n ani-1 i-1 

For eq. (B.ll) we set 

a
1 

n 1 = an 1 

(B.12) 

b(1) = b 
n n 

Proof of eqs. (B.9) and (B.11) for the new coefficients can be done by mathematical 

induction. For a1n = anl = 0 eqs. (B.7), (B.8) and (B.9) give eqs. (B.2) and (B.3), and 

eqs. (B.lO) and (B.ll) are dropped. During the i-th substitution step eq. (B.8) is intro­

duced into eq. (B.10) for i = 2, ... , n- 2. 

For i = n - 1 we get by this forward elimination from eqs. (B.8) and (B.10) 

y n - I = b
1 

n - 1 - ( a
1 

n - I n + an - I n) Y n (B.l3) 

( 
1 ) (n- 1) 

a n n - 1 + an n - I Y n - I + an n Y n 
b(n- 1) 

n 

which gives 

Yn = 
b(n- 1) ( 1 ) bl 

n - a n n - I + an n - I n - I 
(B.14) 

(n - I) ( 1 ) ( 1 - ) an n - a n n - 1 + an n - 1 a n - I n + an - 1 n 

The solution scheme is completed by backsubstitution. Yn-l is calculated of one the two 

equations of(B.l3). For i=n-2(1)1 several strategies are possible. 
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1. Yi is calculated from eq. (B.8). 

2. Yi is calculated from eq. (B.IO). 

3. Yi is calculated from the original system (B.5). 

In the first case the coefficients of eq. (B.9) must be stored, in the second case those of 

eq. (B.ll). In the third case no additional arrays are available. However, for the second 

and the third case one additional division must be made for every equation. In practice 

the first strategy is used in BACCHUS, because the Thomas algorithm is already avail­

able. The solution procedure described above has been derived independently of [17]. 
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