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Solution Methods for Large Systems of Linear Equations in BACCHUS

The computer programme BACCHUS is used to describe steady state and transient
thermal-hydraulic behaviour of a coolant in a fuel element with intact geometry in a fast
breeder reactor. In such computer programmes generally large systems of linear
equations with sparse matrices of coeficients, resulting from discretization of coolant
conservation equations, must be solved thousands of times giving rise to large demands
of main storage and CPU time. Direct and iterative solution methods of the systems of
linear equations, available in BACCHUS, are described, giving theoretical details and
experience with their use in the programme. Besides use of a method of lines, a Runge-
Kutta-method, for the solution of the partial differential equation is outlined.

Losungsmethoden fiir grofle lineare Gleichungssysteme in BACCHUS

Das Computerprogramm BACCHUS wird zur Beschreibung stationdrer und transienter
thermohydraulischer Kiihlmittelzustinde in Brennelementen mit intakter Geometrie fir
Schnelle Briiter benutzt. In solchen Computerprogrammen werden normalerweise viele
tausendmal grof3e lineare Gleichungssysteme mit schwach besetzten Koeffizientenma-
trizen gelost, die sich aus der Diskretisierung der Brhaltungsgleichungen fur das
Kiihlmittel ergeben. Deshalb werden viel Speicherplatz und lange Rechenzeiten benétigt.
Direkte und iterative Losungsmethoden fiir diese linearen Gleichungssysteme, die in
BACCHUS verfiigbar sind, werden beschrieben. Dabei werden theoretische Einzelheiten
und Erfahrungen aus ihrer Benutzung im Programm genannt. Auflerdem wird die Benut-
zung einer Linienmethode, eines Runge-Kutta-Verfahrens, zur Losung der partiellen

Differentialgleichungen dargelegt.
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1.0 Introduction

BACCHUS is a computer programme to describe three-dimensional thermal-hydraulic
behaviour of a coolant in a fuel element with intact geometry in a fast breeder reactor
for nominal and accident conditions, Its first three-dimensional single-phase version has
been documented in [1], details being given in [2]. A detailed description of the latest
version is given in [3]. It contains all current modelling features of the various pro-
gramme versions available earlier. Among them are those for two-phase flow and local

blockages.

In computer programmes like BACCHUS discretization of the conservation equations
for mass, momentum, and energy, to be solved for the coolant, generally leads to sets of
linear algebraic equations. In BACCHUS such systems of linear equations are derived
for coolant pressure, coolant enthalpy, and, furthermore, for temperature in the fuel

pins.

For programme applications, irrespective of whether large fuel elements in a commercial
reactor are to be considered or laboratory experiments are dealt with, total CPU times
may be several hours even on the fastest computers. A substantial portion of the total
CPU time, say 50 to 80 percent, is spent for the solution of the systems of linear
equations. Storage demands may be large likewise. For calculations concerning the local
blockage experiment Mol 7C/7, documented in [4], nearly the whole available main
storage region of 48 MByte of the vector computer VP50 was needed for the pro-
gramme; more than one half of this region was necessary for the solution of the systems
of linear equations. Moreover the precision demands for the solution are large. Details

will be given later.

Because of these large demands it is worthwhile to spend some ideas on these numerical
aspects of the code. In current textbooks solution methods can easily be found, but it
turns out that the large demands of minimum storage, minimum CPU time, and maxi-
mum precision are not easily fulfilled. Therefore it is the aim of this report to present
solution methods for the systems of linear equations available in BACCHUS, to com-
pare them, to summarize some experience, and so give some suggestions for application
of the code which may also be helpful for other codes, As direct methods LU decom-
position and Gauss elimination are presented in this report, as iterative methods a block
method and the ADI method. As an alternative method for the solution of the partial
differential equations a method of lines, a Runge-Kutta method, is outlined. It works
without setting up systems of linear equations. Besides some theoretical background
about matrices is summarized and some characteristics of the matrix of coeflicients as
used in BACCHUS are given.




2.0 Derivation of Systems of Linear Equations in BACCHUS

To describe three-dimensional transient thermal-hydraulic behaviour of the coolant in a
fast breeder reactor bundle with the computer code BACCHUS the solution domain is
divided into a number of control volumes containing fluid and solid material. For the
location of the variables for the coolant staggered meshes are used [2], [3]. The radial
and azimuthal discretization of the fuel bundle is shown in Figure 1 on page 3. The
radial discretization shown in this figure corresponds to the coarse one used usually. For
special applications the spacing between subsequent pin rows (except for IC= 1) can be
discretized by two control volumes (fine discretization) as it is used in [4]. For a 169-pin
bundle as it was to be used for SNR 300 eight control volumes in the radial direction
are necessary for coarse radial discretization. In the azimuthal direction the bundle is
divided into 6, 12 or 24 sectors according to the problem to be investigated. Due to the
coupling of adjacent cells there is also a coupling between the first and the last sector in
a ring. Sometimes this gives some difficulties for the solution of the system of linear
equations. The number of axial sections in the bundle (planes) is arbitrary, and the axial
length of the control volumes need not be equidistant. The first and the last control
volume in the axial direction are dummy meshes used to impose boundary conditions.
As a minimum about 40 cells in the axial direction are used as in [5]; 120 cells are used
in [4].

For the fluid portions in the control volumes the conservation equations for coolant
mass, momentum, and energy are solved for every control volume and for every time
step. In BACCHUS the coolant continuity and momentum equation are combined to
form a Poisson like equation for pressure. In every time step first this pressure equation
is solved, then coolant velocity components are derived from the momentum equation
and coolant temperature from enthalpy equation. Finally heat conduction equation for
the pins is solved giving actual heat fluxes between pins and coolant. In every time step
the solution scheme must be repeated several times to satisfy all conservation equations
simultaneously. In these iterations always the latest values for physical quantities are
used. In literature this iteration process is usually called outer iteration.

As an example for the treatment of the basic equations in BACCHUS we consider the
single-phase coolant enthalpy equation in a simple form

—qgti+V°(pVh)=V°(poth)+Q (1)

where h, v, a, p are coolant enthalpy, velocity, thermal diffusivity, and density, respec-
tively, t is time, and Q heat source. The thermal diffusivity is given by
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where 4 and c;, are coolant thermal conductivity and specific heat, respectively. The con-
servation equations are integrated over the respective fluid control volume using the
Gauss theorem and divided by the total cell volume. Explicit time derivative is discre-
tized by forward time difference scheme, in convection and diffusion terms enthalpy is
discretized with new time values. This yields

6
i n+1_ n _ ii n+1 5hn+1 _ n+1
AL (h h )+Z( 1) Ax, <pvih + po e =¢Q (3)

i

for averaged values in a given control volume. n is the index of the old time step. ¢ and
vi are volume porosity and surface permeabilities of the given control volume, Ax; is the
distance between adjacent enthalpy locations in the respective coordinate direction. The
sum extends over the six surfaces of the control volume in question and contains values
which are averaged over the respective surface. Even values of index i refer to positive
coordinate direction. For spatial discretization first order upwind differences for convec-
tive terms and central differences for diffusive terms are used. For time discretization
forward differences are used; convective and diffusive fluxes are treated implicitly in
time. Rearranging gives an equation for averaged enthalpy at the new time level n+ 1
which has the same form as a discretized Poisson equation

6
aphht! 4 ) ah ! =b, (@)
i=1

Enthalpy in the given control volume, here labeled “0”, is coupled with enthalpy in the
six surrounding control volumes. The coefficients in eq. (4) are given by

N 4 Uy § I

=~ A <klpvl+ Axi> i=1(1)6 (5)
< po  &p

ao=§ (l—ki)pvi‘f'_ATi"’_AT (6)

i=1




. AR+ eph”
bo=e Q"+ 5 (7)

k; is O or 1 according to the prescription of upwind differencing. Evidently the coeffi-
cients are not constant for the whole solution domain so that fast Fourier transforms

are not applicable.

An equation of similar form as eq. (4) is obtained for pin temperature when heat con-
duction is treated three-dimensionally as it is possible in BACCHUS since some time
[6]. Formally this equation corresponds to coolant enthalpy equation for stagnant sodi-

um.

A similar equation is also obtained for coolant pressure when the coolant continuity
and momentum equation are combined. The definition of the coefficients a; is lengthier
than for enthalpy in eq. (5) [3], but a; < O for all coefficients. Furthermore

6
ap=— ) atcy =0 (®)

i=1

instead of eq. (6). For the single-phase pressure equation and for the separated phases
model ¢y = 0, for the two-phase slip model pressure equation this term refers to fluid

compressibility.

As an equation of the form of eq. (4) exists for every control volume of the solution
domain, a system of linear equations results which can be written in matrix form

—

AX =b ©)

with dim A = n if the given discretization comprises n cells. X stands for coolant pres-

sure, coolant enthalpy, or pin temperature.

As a measure for precision of the solution of pressure equation local mass imbalance is
used. If it exceeds 108 kg/s for a total mass flow of the order of magnitude of 1 kg/s,
two-phase flow calculations are not possible. As a nearly trivial request to meet this
precision 8-byte words must be used for all real variables in the whole programme.




3.0 Some Properties of the Matrix of Coefficients

Definitions and theorems for matrices considered in this and the following sections and
some theoretical background for matrices are given in Appendix A.

To set up the matrix of coeflicients in eq. (9), we number the control volumes subse-
quently as follows. For the coolant control volumes we begin at the bundle inlet and
number the rings subsequently in clockwise direction beginning with the innermost ring.
Having numbered the first plane we continue with the next plane until we reach the
bundle outlet. The control volumes in the pins are numbered similarly.

The resulting structure of the matrix of coefficients is shown in Figure 2 on page 7 for
the case of three physically relevant axial, four radial, and six azimuthal control vol-
umes. The nonzero entries are marked by crosses. The matrix has a regular block struc-
ture. For any number r of physically meaningful axial meshes, i. e. without the dummy
meshes, it can be written as a block tridiagonal matrix

A; B,

C, A, B,
A= C, Az B (10)

CI‘ Al‘

where the submatrices correspond to the large boxes in Figure 2 on page 7. The block
matrices A, are again block tridiagonal matrices

A’y By
', A, B,

A= c, A'; By (11)

C'p Al

for p rings in a plane. The submatrices correspond to the small boxes in Figure 2 on
page 7. In block matrices A’; the off-diagonal elements are due to the azimuthal coupl-
ing. The singular off-diagonal nonzero entries in the corners of submatrix A’; are a con-
sequence of the azimuthal coupling of the first and the last sector in a ring. Block matri-
ces B'; and C’; in eq. (11) give the radial coupling and block matrices B; and C; in eq.
(10) are due to the axial coupling of control volumes. B’, C’;, B; and C; are therefore
diagonal matrices.
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Figure 2. Structure of matrix of coefficients



Evidently the matrix is sparse. No more than seven entries in a row are nonzero for a
total of n entries. The matrix is a band matrix. The bandwidth is just the number of
control volumes in a plane. Even within the bandwidth the matrix is sparse.

For all systems of linear equations we obtain in BACCHUS

The unequality holds only for the six entries corresponding to the terms of the sum in
eq. (4). For higher order difference schemes as they are described in [7] for a two-di-
mensional test problem more than six entries of the matrix of coefficients would be non-
" zero. We get furthermore

aii>0 (13)

Therefore the matrix of coefficients is an L-matrix.

The matrix of coefficients is asymmetric for pressure and enthalpy equations, and hence
it is not positive definite (theorem 14 in Appendix A). Multiplication of the matrix of
coefficients with its transposed would give a symmetric matrix but the condition number
of the matrix and hence the accuracy of the solution would be deteriorated [8].

The matrix of coefficients for pressure with ¢p = 0 in eq. (8) is irreducibly diagonally
dominant because it is derived from a boundary value problem. Boundary conditions
give unequality in eq. (8) for one plane. For other systems of linear equations it is strict-
ly diagonal dominant. Hence the matrix is nonsingular (theorem 7 in Appendix A).
From theorem 16 in Appendix A it follows moreover that the matrix is an M-matrix.
Consequently A1 > 0, By is non-negative, irreducible, and convergent (theorem 33 in
Appendix A). The second line of eq. (A.42) holds (theorem 37 in Appendix A).

For all systems of linear equations the matrix of coefficients has Property A because
only central and upwind differencing are used for the discretization of the conservation
equations. Proofi We denote the cells by the three indices i, j, and k corresponding to
the coordinate directions. A cell (i,j,k) is coupled only with its six nearest neighbours. So
the ordering vector can be given the components y; = mod((i + j + k), 2). If higher order
discretization schemes are used, where cell (i,},k) is also coupled with, say, cell (i-1,j-1,k)
or with cell (i-2,j,k), the matrix of coefficients does not have Property A.




4.0 Direct Solution Methods in BACCHUS

In literature generally LU decomposition and Gaussian elimination are described as di-
rect methods. Sometimes the links between these two methods are also outlined. Since
both methods are available in BACCHUS, they are described here. It is assumed in this
section that the matrix of coefficients is nonsingular because the case of singular matri-
ces is not relevant for BACCHUS.

4.1 LU Decomposition

Instead of solving

-

AX=b (14)

we try a decomposition of A into the product of an upper matrix U and a lower matrix
L

A=LU (15)
From theorem 3 in Appendix A and the fact that

det A=det L det U (16)
it can be shown that

Li, uy 0, 1=1(I)n (17
Instead of solving eq. (14) we have to solve

LUX =b (18)
To solve eq. (18) we set

Ux =y (19)

and first solve

Ly =b , (20)




for y and then use eq. (19) to solve for X.

Once the decomposition of A is done, the solution of eqs. (20) and (19) is simply ob-
tained by forward substitution similarly to eqs. (A.8) and (A.11)

i—1
b, 1 : .
Ni=1- V= 1—“ (bi - 1;— 11ikYk> 1=2(1)n (21)

and backsubstitution, respectively.

n
y 1 ‘
Xn = u:n Xi = "U:' <y1 - Z uikxk> 1=n— 1( _ !)1 (22)
k

=i+1

In literature this method is recommended when several systems of linear equations with
the same matrix of coefficients but with different right-hand sides are to be solved. In
this case the LU decomposition must only be done once, and the various right-hand
sides of eq. (14) can be treated simultaneously in eq. (21) because the right-hand sides in
eqs. (20) and (19) mainly depend on the matrix coefficients and not on the right-hand
sides of eq. (14).

A decomposition according to eq. (15) is not always possible for a nonsingular matrix
A, but it can be shown [9] that for any nonsingular matrix A such a decomposition

exists after certain permutations of rows.

From eq. (15) we get n? equations for the elements of L and U according to the rules of
matrix multiplication, but since the main diagonals of both matrices, L and U, are non-
zero, there are n? + n unknowns. In practice all diagonals of one of these two matrices
are set to one. In literature two methods are known, the Crout method [10] where

u;; = 1 and the Doolittle method [11] where lj = 1. For the latter the LU decomposition

is done as follows.

u=a; J=1(I)n

i—1
. _ (23)
ul'j = aij — Z likukj 1= 2(1)n 1= l(l)n
k=1

16




L=—l  j=2(I)n

Upy
1 -1 | o (24)
=5 Z L | i=3(n j=2(1)i—1

The i-th row of L and the i-th column of U are calculated alternatingly and stored sub-
sequently, but without the main diagonal of L.

4.2 Gaussian Elimination

Another well-known method is Gaussian elimination, described in many textbooks as
[9], [12]. For the time being it is assumed that all main diagonal entries are nonzero.
(This assumption is always fulfilled in BACCHUS.) In a first step the first equation is
multiplied by

a; .
I = —817“1— i=2()n (25)

and subtracted from equation i for i=2(1)n. In a second step the second equation is

multiplied by

_ B (26)

1.
i2 Ay

and subtracted from equation i for i=3(1)n. This process is continued to transform eq.
(14) into

Ux=c (27)
with an upper diagonal matrix U. The unknowns in eq. (27) are obtained by backsubsti-
tution similar to eq. (22).

The forward elimination can also be described by matrix multiplication: For the first
step according to eq. (25) the original matrix is premultiplied by a lower triangular ma-
trix G with

1 i=j
g = =y j=1, i#] (28)
0 else

11




as it is pointed out in [9]. A matrix like G which differs from a unity matrix only as it
can contain nonzero elements in one column is called Frobenius matrix. Its inverse H is

given by
1 i=]j

hy=<li j=1,i#] (29)
0 else

One of the simplest cases for Gaussian elimination is for tridiagonal matrices. These are
band matrices with a bandwidth of 1. For n=6 a tridiagonal matrix has the form

X X
X X X
X X X
X X X
X X X
X X

It can be seen that x; has only to be eliminated from the second equation, then x; has
only to be eliminated from the third equation and so on. Backsubstitution is also very
simple. So tridiagonal systems are very easy to program, need negligibly small storage
(only the three diagonals and some auxiliary arrays) and small computing time. The sol-
ution algorithm according to Thomas is often cited in literature as [13] and [14]. De-
tails are given in Appendix B. For moredimensional problems, however, it cannot be

used directly.

For any matrix of coefficients the solution procedure described above fails evidently if a
main diagonal element is zero (see eqs. (25) and (26)). It can be shown, however, that
for a nonsingular matrix A this case can be circumvented by interchanging rows or col-
umns (pivoting). This corresponds to a multiplication of the original system of linear
equations with permutation matrices. E. g. interchanging rows 1 and r is done by pre-
multiplication of A with permutation matrix P [9] with

i=j,buti#l, r
1 i=landj=r
Pij = i=randj=1 (30)
0 else

It can be shown [15], [16] that there are close connections between LU decomposition
and Gaussian elimination. Therefore there are some common features of these two
methods: For a nonsingular matrix they can always be used. For diagonal dominant
matrices pivoting is not necessary though some people recommend it nevertheless. The
matrix of coefficients and the right-hand side of the equation can be overwritten during

12




the solution procedure. In this way much storage can be saved. The band structure of
the matrix of coefficients is preserved during the solution procedure. This feature is used
to save storage and computer time: only the matrix band is stored, and matrix multipli-
cations are only done within the band. However, there is a fill-in within the band of the
matrix. Therefore the whole band must be stored and handled. As a consequence stor-
age and CPU time requirement are proportional to the total number of meshes and to
the bandwidth of the matrix of coefficients. For large problems this means large efforts.
Since the bandwidth is given by the numbering conventions of the unknowns, a bad
sequence may have drastic effects on computational requirements.

When roundoff errors influence the numerical solution of a system of linear equations,
the numerical solution can be improved iteratively [8], [12] in the following manner.
Let the numerical solution of eq. (14) be X, Defining

b — AXO (31)
and solving

A AN =10 (32)
for AX(), it can be shown that

XD =xM 4 Ax® (33)

is a better approximation of the correct solution This procedure can be used iteratively
[8]. Up to now it was not thought necessary to use such an improvement in
BACCHUS, but it might be necessary for future applications. In such a case LU decom-
position would in principle be more favourite, because L und U need only be calculated
once. A good vectorization of the respective subroutines is, however, necessary.

4.3 Considerations for BACCHUS

Since for all applications in BACCHUS the number of planes is larger than that of sec-
tors or rings, the numbering conventions for the control volumes are intended to keep
storage and CPU time requirements as low as possible. If the numbering would not fol-
low the coordinate directions somewhat smaller bandwidths may be possible, but the
additional computational efforts to renumber the meshes would probably outweigh the

gain in bandwidth.

13




As a consequence of the numbering conventions in BACCHUS, storage and CPU time
requirements are proportional to the number of meshes in the axial direction and pro-

portional to the square of the number of meshes in the radial and the azimuthal direc-

tion. So when the axial discretization is refined computational efforts increase less than
when azimuthal discretization is refined or when a bundle with more pin rows is to be

considered. ‘

To solve systems of linear equations directly it is also possible to use methods based on
the division of the matrix of coefficients into block matrices. A solution procedure is
given in [14] for a block tridiagonal matrix and in [17] for general block matrices. In
the case of a block tridiagonal matrix decomposition, eq. (10), the inverse of every main
diagonal block matrix A; must be calculated explicitly, and it was thought that this costs
rather much computing time. The off-diagonal block matrices are diagonal matrices re-
ducing computational effort for matrix multiplication according to eqs. (A.3) and (A.4).

Sometimes direct solution routines are published which are said to be very fast or to use
a very small amount of additional storage. Some of them, collected by [18], have been
tried in BACCHUS. However, the advantages of these solution routines are only true
for cases with only little fill-in. In contrast the whole band is filled with non-zero ele-
ments for problems under consideration in BACCHUS and therefore no method of this
kind was suitable up to now.

14




5.0 Iterative Solution Methods in BACCHUS

In contrast to direct methods explained in the previous section storage and CPU time
requirements for iterative methods are generally proportional to the number of meshes.

Therefore storage increases much slower with increasing problem size than for direct
methods. CPU time requirement should therefore also increase with the number of

meshes. Since, however, convergence for larger problems may be slower than for small

ones, it is more difficult to assess CPU times than storage.

5.1 SOR

Though successive overrelaxation is rather old and somewhat obsolete, it is still men-
tioned in more recent textbooks [19]. It has been studied extensively in [13] for certain

classes of matrices. Further classes of matrices for which overrelaxation can improve
convergence are given in [15]. It was the first solution method implemented in

BACCHUS (which did not contain azimuthal discretization at that time [20]). In prac-
tice this method is executed as follows. For every iteration (index k) first a Gauss-Seidel
iteration step is made, i. e. equation i of system eq. (9) (i = 1, ... n) is solved for x; using

the latest values for all other unknowns. This yields a provisional solution

n

rk_ 1
X = El"‘ bi - Zaijxj

=1
j#i

for iteration number k, and the final solution is then given by

= ofi )

These two equations are equivalent to

i—1 n

k k-1 W k k~—1
X = (1 — (D)Xi + a_n bi - Zainj - Z al'jX‘
j=1 j=i4+1

So the difference between subsequent Gauss-Seidel iterations for x; is multiplied by a

(34)

(35)

(36)

given factor w. For @ > 1 the provisionally computed difference, eq. (34), is increased
(overrelaxation), otherwise it is increased (underrelaxation). The essential task for SOR
is to determine w. In practice this is done approximately. Such methods are described in

literature, some of them have been tested in BACCHUS and are documented in [2].
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Intuitively it is clear that overrelaxation improves convergence if the difference between
subsequent iterations is a monotonous function of iteration number and that underre-
laxation gives an improvement if this difference oscillates. Another way of understand-
ing overrelaxation is to consider the residuum

i—1 n
k k-1
I'=a;X + Zainj + Z ainj — bi (37)
j=1 j=1+1

and to apply a Newton-Raphson iteration

ox< !
k=x§(_1~w-’a—rr . (38)

The partial derivative in eq. (38) is obtained from eq. (37):

8x§( -t
or

_1
gy (39)

5.2 ADI Methods

5.,2.1 Procedure

When the first two-dimensional version of BACCHUS was extended to a three-dimen-
sional code, SOR was not accurate enough. The reason has not been investigated in
detail; it was thought, however, that the alternating direction implicit (ADI) method
would improve the situation.

The idea of this method is a matrix splitting. Instead of solving one large problem, a
number of smaller ones, more easily to solve, are created. In case of ADI the splitting is
related to the coupling of cells in the three coordinate directions. In a first step only
axial coupling is kept on the left-hand side of the system of linear equations, the rest
being put on the right-hand side. In the second step only radial coupling is kept on the
left-hand side, in the third step only azimuthal coupling. Several variants are known in
literature [13], [14]. The oldest one has been proposed by Peaceman and Rachford

[217:
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(A, + 1) XD =1 — (A] — 1) X®
30 _ T _ (AT 3D
(A, +rD)x“=b— (A —r)x (40)

A+ D)X =b— (A7 - ) X?
@+ 30

Az, A;, As are matrices the nonzero entries of which consist only of coefficients related
to the coupling in axial, radial, and azimuthal direction, respectively, formally written as

Az= {az—’ m(az—+az+)’ az+} )
Ar = {ar - (ar— +a, +)’ a; +} (41)
Ag={a;_,—(a,_+ a3+)s as+}

Besides
AT=A—-A;, i=zT1,s (42)

and r is a non-negative real number influencing convergence behaviour. For the right-
hand side of the eq. (40) always the latest results for the unknowns are used, beginning
with the results from iteration n. The third step gives the results for iteration number
n+1.

For every step of eq. (40) the equations are rearranged in such a way that the matrix on
the left-hand side is tridiagonal so that the Thomas algorithm can be used. The use of
this fast solution algorithm is the main reason for the development of ADI methods.

To get an idea of the meaning of the relaxation parameter r we consider the Poisson

equation

Au=p (43)
as

. ou A

lim 5= du=s @

and instead of solving eq. (43) we solve eq. (44). As a simple case we consider a two-di-
mensional case with equal spacing Ax for both coordinate directions, using forward dif-
ferences for the left-hand side and central differences for the right-hand side of eq. (44).
For the Peaceman-Rachford variant of the ADI method, eq. (40), r turns out to be
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_ 2A%°
r="3r (45)

and the choice of r in eq. (40) is equivalent to the choice of a time step At in eq. (44)
[12].

The Peaceman-Rachford variant of ADI method described above has the disadvantage
that the matrices on the right-hand side are evidently not tridiagonal. Therefore evalu-
ation of the right-hand sides of eqs. (40) is computer time consuming, and efforts have
been made to remove this drawback (see e. g. [14]). The best variant known to the
authors is that of Messina and Londrillo [22]. It is the one which is actually available in
BACCHUS.

(A, +D) R0 =b - AX®
=@ _ =)
(A, +r)x rXx (46)

(A + 1) XY =rx?
ZO+D _ ) 4 930

In this variant only in the first step a matrix vector multiplication has to be performed.
Inspection shows, however, that the right-hand side of the first step gives the residuum
of the last iteration, and this value may be used as a convergence criteria. In this and in
other variants of the ADI method the meaning of r is not so simple as for the Peace-

man-Rachford variant, but it can be shown that r must be nonnegative for convergence

reasons.

5.2.2 Determination of Relaxation Parameter r

For further considerations we write Messina-Londrillo variant of the ADI method, eq.
(46), similarly to SOR and other stationary iterative methods according to eq. (A.20) in
Appendix A.

x0+D — gx® 4 ¢ (A.20)
According to theorem 26 in Appendix A the ADI method converges if the spectral radi-
us S of the iteration matrix B is less than unity. Now, the iteration matrix for eq. (46)

can be written as

B=1-2rA,+ 1) (A + D) (A, +1I)" T A (47)
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[23] and it can be seen that S(B) = f{r, ...). So the spectral radius of the iteration matrix
can be minimized by choosing an appropriate value of r. Theory shows, however, that
even in this case convergence is not better than for point SOR [12]. This is disappoint-
ing because computational effort is much larger for ADI than for point SOR method.
However, convergence is accelerated substantially, if r is varied cyclically. Several cycles
may be done before the iterations are ended.

To get an impression of the spectrum of eigenvalues Ax of B, it has been computed for
a case with 40 axial, 6 azimuthal, and 4 radial meshes in Figure 3 on page 20. In this
figure p is the portion of eigenvalues in the interval Ax — 0.05 < Ax < Ag + 0.05. For
r=1 most eigenvalues are greater than 0.5. For larger values of r there is a clustering
around Ak = 0 which fades for r=1000. In this case most eigenvalues are positive.

In general it is not possible to calculate the eigenspectrum of the iteration matrix, and
since “the determination of an optimal sequence of r’s for an arbitrary elliptic problem is
an unsolved problem, a heuristic solution should be found” [12], Under strong assump-
tions, 1. e. for a common set of eigenvectors for the respective matrices, the eigenvalues
of B are given by the eigenvalues of A, AsA; and by r to be

27 (A, + A + A

(Ay+1) (A, +1) (A +1) (48)

A=1-

Though these assumptions are surely not fulfilled in general, eq. (48) is used in
BACCHUS for a heuristic procedure. It is described in detail in [23] and runs as fol-
lows. Minimum, maximum, and average values for A, A, A, are assessed from the coef-
ficients of the respective matrices. Out of these values 27 tripels are formed and inserted
into eq. (48). It is assumed that this procedure gives representative values Ay for the

eigenspectrum of B.

To illustrate this procedure values of Ay, are plotted for various r for three triples in
Figure 4 on page 21. For small values of r the curves begin near Ay = 1, have a mini-
mum somewhere, and either take the value Ay =0 or come close to it. Experience for all
computational cases examined up to now shows a similar behaviour for all 27 triples.
Experience shows further that the ADI method converges optimally if r is varied cy-
clically between the minimum and the maximum values of r for which the 27 curves
cross the line Ap = 0 or come close to it. As an example we suppose that the three
curves given in Figure 4 on page 21 are envelopes for all 27 curves, Then r should be
varied cyclically between about 5 and 2000. Since r spans a large range, generally over
several orders of magnitude, r is not changed linearly for the cyclic variations but ac-

cording to
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for step number j in a cycle of m variations of r.

5.2.3 Handling of Azimuthal Coupling

In the third step of the ADI method when the azimuthal coupling is on the left-hand
side of the equations (see eq. (46)) the system of linear equations is not tridiagonal, but
cyclic as it is shown schematically below for one ring with six sectors
X X X
X X X
X X X

X X X
X X X

To use the Thomas algorithm nevertheless, the coupling between the first and the last
sector in a ring, i. e. the singular non-zero elements at the top right and the bottom left
are put on the right-hand side of the equation. In this manner there are some conver-
gence difficulties just at the link between the first and the last sector. They can be over-
come if in this part of the solution procedure two sweeps are done instead of one. In the
first sweep the sectors are numbered as shown below for the case of six sectors in a
bundle.

In this way the coupling between the first and the last sector is positioned at different
locations in the bundle cross section, and convergence is improved. As a further im-
provement this procedure has been replaced by the direct solution of the circular matrix
as it is described in Appendix B.
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5.3 Iterative Block Method

5.3.1 Procedure

Since Gaussian elimination and LU decomposition need much storage it has been tried
to overcome this difficulty by using the group Gauss-Seidel or group overrelaxation
method. Physically this means the following. The bundle is divided axially into q blocks
as shown in the left part of Figure 5 on page 24 for q=3. All blocks (generally except
the last one) have the same length and so contain the same number Aj of planes. So the
matrix of coefficients is partitioned into a block tridiagonal system

Ay Ay
Ay Ags Ags
A= Azy Ags Agy (50)
Aq,q~1 Aq,q

If a block contains all meshes of a single plane, the submatrices in eq. (50) correspond
those of eq. (10).

Irrespective of the block size, i. e. of the value of Aj, the system of linear equations
within a block is solved with a direct method, the coupling between adjacent blocks
being put on the right-hand side of the system of linear equations. Therefore in a given
time step iterations over the blocks are necessary. Convergence is reached in a given
time step, when the modulus of the residuum, defined by

T=AX-b (1)
becomes smaller than a given limit. Convergence may be accelerated by overrelaxation.

In this way a number of smaller systems of linear equations is solved instead of a large
one. If a block consists of all nodes in a single plane the bandwidth of the matrix of
coeflicients is given by the number of sectors, otherwise by the number of cells in a
plane as for the matrix of coeflicients of the whole system of linear equations. In this
way storage demands are decreased but computing time is increased because of the iter-

ations over the blocks.

23




5.3.2 Theoretical Considerations

It has been tested that By (™ is a CO-matrix when a block consists of one plane. The
ordering vector contains ‘1 for the first plane, 2" for the second, and ‘3’ for the third
plane in analogy to theorem 25 in Appendix A.

Generally, when a block consists of one or several planes, the matrix of coefficients, A,
is block tridiagonal. The submatrices on the diagonal of A contain the coupling within a
plane and, if several planes form a group, the coupling of the various planes within the
group. The off-diagonal submatrices contain the coupling between subsequent groups.
If one plane forms a group, these submatrices are diagonal matrices and hence nonsin-
gular. The matrix of coefficients has Property A(® because it is block tridiagonal, and it
is a # — CO — matrix according to the definition of # — CO — matrix. So B® and C®
are CO-matrices. Since for our grouping the sequence of the cell numbering is not
changed, B® = B® and C® = C® (theorem 42 in Appendix A). D® is nonsingular be-
cause its submatrices are irreducibly diagonally dominant. Since A is a # — CO — matrix,

remaining portion

remaining portion

normal length

normal length

normal length

normal length
half length

Figure 5. Axial cut through a bundle for iterative block method. The left part shows the partition-
ing of the bundle into blocks, the right part shows the block arrangement for every sec-
ond sweep.




A is also a n — GCO — matrix (theorem 44 in Appendix A). The other implications of
theorem 44 in Appendix A are also valid. As a consequence the relations between the
eigenvalues of the group Jacobi and the group SOR method indicated in theorem 45 in
Appendix A are valid.

For the group SOR method it is not clear from the above theorem that the spectral
radius of the iteration matrix is less than unity. If it is the case the group SOR method
converges. For a given matrix of coefficients the eigenvalues can be calculated. The iter-
ation matrix related to the group Jacobi method can be obtained when the inverse of
D® is calculated. Mathematically this is rather easy as this inverse is composed of the
inverses of the respective block matrices D; of D® but it gives a result only for a special
case. Therefore it is left to inspect the results of a given case to see whether the group
SOR method converges.
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6.0 Runge-Kutta Methods

To solve systems of linear equations is not the only possibility to solve partial differen-
tial equations numerically. So methods of lines [24] consist of discretizing a partial dif-
ferential equation for all variables but one. In this manner formally an ordinary differen-
tial equation is obtained. As an example we consider enthalpy equation (eq. (1)) and
write it in a very short form as

2 (ph) =R(h, ¥, Q..) | (52)

where the right-hand side contains all other terms, i.e. convective and diffusive fluxes
and heat source, all of them discretized in the usual manner (eq. (3)). We differentiate
the left-hand side of the equation to get

oh

a op
(ph) P +h—at— (83)

We substitute eq. (53) into eq. (52), and put the last term of eq. (53) on the right-hand
side of eq. (52) using forward differencing. So we get formally an ordinary differential
equation in time for enthalpy. Since it can be written for every enthalpy node, we get a
set of ordinary differential equations of the following form

¥ =1x,) (54)

To solve eq. (54) we use a method of the theory of ordinary differential equations,
namely an explicit Runge-Kutta method of order four. Its idea is as follows. We sup-
pose that a solution of eq, (54) at step i, y; is known and that the solution of eq. (54) at
stepi+1, §i+ 1, 1s to be calculated, the step width being h;. We try

m
Vig1=yi+ hiZAjkj (55)
=
where Ej are values of the right-hand side of eq. (54) at given positions:
- (56)

= F(c+ahy, 5+ 0 ) k) j=2(m

s=1
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Coefficients Aj, aj, and bjs are determined from expansions of eqs. (54) and (55) into
Taylor series. For the widely used case m= 4 this has been done in [25]. It turns out
that some open parameters remain, giving rise to various sets of formula. Parameter sets
for a large number of explicit Runge-Kutta methods are given in [17].

In BACCHUS the classical Runge method is implemented:

- R T
yi+1=yi+7(k1+2k2+2k3+k4)

k1=f(xi’§i)

-~ o h, . k

ky =%+, Fi+ ) (57)
- bt hi — Ez

k32f(xi+““2"’,yi+“2=')

ks = f(x;+ h, V; + k)

Other variants are also listed in [25]. Some of them may give a higher accuracy than the
Runge formula, but up to now they are not implemented in BACCHUS because there is
an approximation used in the code which might influence accuracy more: Neither veloc-
ities in convective and diffusive fluxes nor material property data are updated for the
calculations of l—{} E4 in eq. (57). In the original version updating would have required
much computing time. Besides when the Runge-Kutta method was implemented it was
not clear whether stability would be decreased by this measure.

Runge-Kutta methods have the great advantage that no results of previous integration
steps are needed. Their disadvantage is that no well-defined measure of accuracy exists.

So a heuristic method must be used [25].
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7.0 Experience gained with BACCHUS

Implementation of the various solution methods extended over many years and was
generally done when problems arose for a given application of the programme. So expe-
rience is only gained for a given status of programme development, and the advantages
or disadvantages of a solution method may change, when further programme develop-
ment is done. For time reasons it is not possible to repeat a whole comparison of meth-
ods when the status of the programme had changed. This makes a direct comparison of
the various methods somewhat difficult.

7.1 Test Cases

For comparison between Gaussian elimination and ADI method three test cases have
been chosen (Table 1). There are a small problem case with about 1000 meshes, a medi-
um problem case with about 3400 meshes and a large problem case with about 14000
meshes. The small case corresponds to calculations for 37-pin KNS experiments, the
intermediate one to a 127-pin KNK fuel element, the large one to calculations for the
19-pin local blockage Mol 7C/7 experiment. Details about these three cases are given in

[23].

Problem size Region/MByte CPU time/s
N, * Ng * N; nodes code Gauss ADI Gauss ADI
40 * 6 * 4 960 2.7 0.3 ~ 0 30 57
41 * 12 * 7 3444 8 44 ~ 0.1 513 306

120 ¥ 24 * 5 14400 19 27 2.6

Table 1. Main storage region and CPU times for three representative cases on VP50. Gauss me-
ans Gaussian elimination. CPU times refer to quasi steady state cases.

The implementation of the block iterative method has been made at the same time as
essential improvements for ADI method have been made. When the ADI method was
available testing of the block iterative method has not been made so extensively for se-
veral problem sizes as for ADI method for time reasons. Instead tests have only been
made with a small test case. It is rather an artificial case with 23 axial, six azimuthal,
and 5 radial meshes. Eight grid spacers and a local blockage were simulated as shown in
Figure 6 on page 29. This configuration was chosen because on the one hand it is a
small problem quickly to solve and on the other hand it is a hard problem for geomet-

rical reasons.
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Figure 6. Test case for iterative block method, axial cut. At inlet velocity and temperature are
prescribed, at outlet pressure.

7.2 Direct Methods

In BACCHUS both, LU decomposition following the Doolittle method and Gaussian
elimination, are implemented. The routines for LU decomposition have been delivered
by Centre d’Etudes Nucléaires at Grenoble and are optimized for scalar computers. The
programme structure has, however, been found difficult to vectorize [18].

For this reason Gaussian elimination is also implemented. The routine has been taken
from SSL2 library available at KfK and has been further optimized for VP50 [18]. For
a small problem with 23 axial, 6 azimuthal, and 5 radial meshes it has been seen that
even on a scalar computer (IBM 3090-60J) this Gaussian elimination routine is about
20 % faster than LU decomposition.

Storage demands for the code without the solution routines for the systems of linear
equations and for the solution routines are listed in Table 1 on page 28 for the three
test cases mentioned in the previous section. Storage for LU decomposition is the same
as for Gaussian elimination. For the small case storage requirement for Gaussian elimi-
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nation is negligible, for the medium case it is about one half of the rest of the code, for
the large case it is more than the rest of the code. Further comparison will be given
later.

7.3 Iterative Methods

7.3.1 SOR

SOR methods are no longer used because of their bad convergence. When the iterative
block method has been developed, however, some investigations have been done on the
basis of the test case for the iterative block method (Figure 6 on page 29). In particular
it has been tested that the eigenvalues of B, calculated from eqs. (A.22) and (A.6) are
real and occur in pairs + 4 with [1] < 0.999995507. This result corresponds to [26].
Since the spectral radius is below unity, the Gauss-Seidel method and underrelaxation
converge. The optimum overrelaxation parameter, calculated from eq. (A.43) is

wb = 1.9940. Generally convergence for our problems is only assured for w=1 according
to theorems 29 and 34 in Appendix A.

Using a computer program to test Property A and the consistent ordering of a given
matrix of coefficients, it has been seen that it is not consistently ordered. By the same
way it has been seen that this is a consequence of the azimuthal coupling for IT=1 and
IT=NTH,; if this coupling is suppressed, the matrix is consistently ordered. In this case
a compatible ordering vector can be constructed in the following manner. The compo-
nent which corresponds to cell (i,j,k) has the value i+j-1+k-1.

Furthermore it has been tested that because of this azimuthal coupling an indexing of
the cells first in the radial and than in the azimuthal direction does not lead to a consist-
ent order, neither. Eqs. (A.43) to (A.46) are not applicable because the matrix of coeffi-
cients is not consistently ordered. Only eq. (A.38) is valid.

It can be seen that a ring and hence the whole matrix can be consistently ordered if e. g.
for six azimuthal sectors the cells in a ring are not labeled

6 ya but 2 3
This indexing has, however, not been tested. It is possible that the insufficient accuracy
which was obtained, when the first two-dimensional version of BACCHUS was extended

to a three-dimensional code, was in fact due to a convergence problem as a consequence
of the matrix of coefficients not being consistently ordered. Even if the matrix of coeffi-

30




cients were consistently ordered, ADI method should be much faster [12]so that it is
not worthwhile to reactivate the SOR method.

7.3.2 ADI Method

For ADI method experience shows that it can be used with a cyclic variation of the
relaxation parameter r for coolant pressure and enthalpy solution. Coolant mass bal-
ance is fulfilled to 10~ 19 kg/s instead of 10~ 8 kg/s as it was obtained for the first imple-
mentation of the ADI method. Only by this way it is possible to use the ADI method
for two-phase cases. For local blockage cases it can also be taken, but for the large case
with 120 axial meshes in Table 1 on page 28 convergence was not very satisfactory.
The ADI method can, however, well be used for three-dimensional pin temperature cal-

culations.

A good performance can be obtained when for the solution of coolant pressure equation
four cycles with 25 steps each are used. For coolant enthalpy and pin temperature one
cycle with 30 and 12 to 15 steps, respectively, are taken. Region demands and CPU
times on vector processor VP 50 for the BACCHUS calculations are listed in Table 1

on page 28 for the three cases which have already been mentioned. For the large case
no value has been given for CPU time for the ADI method because of the poor conver-
gence. In general the ADI method is clearly superior for larger cases as well with respect
to storage as to computing times. For the results presented above the old modelling to
handle the azimuthal coupling in the ADI method is used, i. e. two sweeps are made
with a renumbering of the meshes. As a further improvement this procedure has been
replaced by the direct solution of the circular matrix as it is described in Appendix B. It
takes about 10 % of CPU time more than one sweep for the standard Thomas algo-
rithm but the second sweep need not be done, and so the solution procedure is faster.
Accuracy, measured by mass imbalance, is increased, and it can even be better than
with Gaussian elimination when more cycles are performed. Time step can be increased
because of better convergence behaviour. These results are only valid if the ADI method
is used for the solution of the pressure and the enthalpy equation. If the Runge-Kutta
method is used for the solution of the enthalpy equation accuracy may be decreased.

As an example Table 2 on page 32 shows a comparison of CPU times on the vector
processor VP400 for a case with 40 axial, 6 azimuthal, and 4 radial meshes for a quasi
steady state and the begin of a transient calculation. The time step is 40 ms as used for
the calculations presented earlier. The begin of this transient is rather steep; otherwise

less outer iterations would be necessary for both methods.
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Gauss ADI ADI

old new

steady state CPU time/s 10.0 19.0 12.5
transient CPU time/A t 63.0 210.0 135.0

Table 2. CPU times for a small case on VP400. Gauss means Gaussian elimi-
nation. “old” and “new” refer to old and new modelling of azimuthal

coupling in a ring according to this section,
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Figure 7. Number of time steps per minute as a function of relaxation parameter
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7.3.3 Block Iterative Method

To test the block iterative method runs have been made with the artificial test case ex-
plained above. Blocks included one, two, five, and eleven planes, respectively. The last
block is generally shorter than the other ones. For the case when every block consists of
a single plane it was tested for one time step that for all planes all eigenvalues of Bj are
real and occur in pairs + 4 with |4] < 0.9992. It was seen that convergence could be
reached for all cases. It was further seen that convergence is faster when the block
length is increased. Detailed results about convergence behaviour are difficult to obtain
because convergence behaviour differs much. When the blocks consist of more than one
plane, the calculation converges faster, when for every second iteration the first block
has only half of the normal length (see right part of Figure 5 on page 24). In this case
the coupling between adjacent blocks is shifted between two iterations.

As an indication for convergence behaviour the number n of time steps per minute of
CPU time, which could be caiculated on a scalar computer is taken, assuming that the
greater n for a given block length, the less iterations per time steps are necessary to
reach convergence in the given time step. In Figure 7 on page 32 n as a function of
overrelaxation parameter  is given for various block lengths Aj. For all cases under
consideration n has a maximum for @ = 0. It is largest when a block consists of a
single plane because in this case the bandwidth of the matrix of coefficients is smaller as
stated above. A smaller local maximum exists for w ~ 1.7 depending on the block size.
Underrelaxation with w = 0.9 slows down convergence. The results suggest that overre-
laxation should not be applied. More experience is necessary to give general guide lines
for overrelaxation. Methods to calculate an optimum relaxation factor which are known
for point SOR [2] failed for the test case.

7.4 Runge-Kutta Method

For transient calculations enthalpy equation must of course be solved with the same
time step At used elsewhere in BACCHUS. To increase accuracy the internal step width
for Runge-Kutta method may, however, be smaller than At. Since there is no well-de-
fined measure of accuracy for Runge-Kutta methods, heuristic procedures as in [25] are
necessary to assess the internal step width. In BACCHUS the difference k3 — iZg (see
eq. (57) is used for this purpose. If one of the components of this vector exceeds 105 in
value the internal step width for Runge-Kutta method is halved.

In principle the Runge-Kutta method is much faster than Gaussian elimination for all
problem sizes of practical interest. However, it has some disadvantages: Though it can
be used in principle for the solution of pressure equation many iterations have to be

done within a given outer iteration time step: in contrast to enthalpy equation there is
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no explicit time derivative of pressure, and the choice which coordinate direction to be
retained for explicit derivative similarly to eq. (52) seems arbitrary for general problems.
So this method is too slow for pressure solution in practice. In any case accuracy is
lower than for Gaussian elimination. So time step is restricted even if a smaller step
width is used for Runge-Kutta method within a given outer iteration time step.

As a consequence Runge-Kutta method can only be used for single-phase enthalpy cal-
culations if the transients are not too steep. In such cases CPU time is quite negligible.
To extend the range where a method of lines is applicable another solution method than
Runge-Kutta would perhaps be better but it would be laborious to try various methods.
No method is ideal for all problems [17], [27]. Because of the role of density in eq. (53)
the situation might perhaps be improved in the actual programme version if at least
density would be updated for the various terms in eq. (57), but for time reasons this has
not been tried.

7.5 General remarks

Experience shows that overall convergence behaviour of the code in the outer iteration
loop depends on the choice of time step and convergence criteria, hence on parameters
which must be chosen not only according to the physical problem but also depending
on the solution method. Therefore the results given above indicate trends and should
not be mistaken as fundamental constants.

Experience shows further that in principle all solution methods may be combined for the
solution of the various systems of linear equations in BACCHUS. However, conver-
gence behaviour is not always the same. Choosing the same solution methods for for
pressure and enthalpy equations gives a good convergence behaviour. The same is true
when Gaussian elimination or ADI method are combined with Runge-Kutta method for
enthalpy equation. If, however, Gaussian elimination is used for pressure equation and
ADI method for enthalpy equation, convergence behaviour is less satisfactory.
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8.0 Conclusions

The solution of large systems of linear equations plays a large role in computational
fluid dynamics. In literature direct as well as iterative solution procedures are docu-
mented. There merits depend, however, on the special problems to be solved. In this
report some characteristics of the matrices of coefficients used in the computer pro-
gramme BACCHUS to describe thermal-hydraulic behaviour in a fuel element are point-
ed out. It turns out that the matrices have some special features which guarantee a

unique solution of the system of equations.

The direct solution methods presented in this paper have the great advantage that they
can always be used. The disadvantages of LU decomposition and of Gaussian elimi-
nation are the large storage and CPU time demands for large problems. They increase
with the number of unknowns and the bandwidth of the matrix of coefficients. The ad-
vantages of iterative methods presented here are just the disadvantages of direct meth-
ods. However, there are open parameters the determination of which is not always sim-
ple. As an alternative a method of lines for the solution of the partial differential
equation, a Runge-Kutta method, is not generally applicable for reasons of accuracy or

overall convergence behaviour of the code.

Up to now no general purpose method exists for the solution of the systems of linear
equations which need nearly no storage and CPU time and give a nearly unlimited accu-
racy. Therefore several solution methods are available in BACCHUS: Gaussian elimi-
nation is useful for coolant pressure and enthalpy solution, and a Runge-Kutta method
for single-phase enthalpy solution. As an iterative method ADI is recommended for
coolant pressure and enthalpy and for pin temperature solution. The advantage of this
method is that its accuracy can be varied by the number of cycles. ADI is preferable for
many problems, but Gaussian elimination is always a backup for difficult problems.

An iterative block method is implemented in the code but not much experience has been
gained up to now. Convergence could not be proved from the theorems listed in this

paper, but is suggested in literature.

Solution methods should harmonize: So in a given problem Gaussian elimination can be
used for coolant pressure and Runge-Kutta for enthalpy, but Gaussian elimination for
coolant pressure and ADI for enthalpy give less satisfactory overall convergence behav-
iour. In any case convergence behaviour is also influenced by parameters as time step
and convergence criteria for the outer iteration loop. As a basis experience from former
calculations should be used but it is worthwhile to verify such data from time to time,
even for a given problem, because the situation may change in a given transient. This
experience and the fact that programme development, e. g. progress in physical modell-
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ing, may change convergence behaviour, imply that recommendations cannot be given
once and for all.

The status reached up to now is surely not the final situation in a computer code like
BACCHUS. Requests sometimes change quickly. So a three-dimensional solution for
pin temperature increases the portion of solution of systems of linear equations with
respect to total CPU time drastically, especially when more than one pin has to be con-
sidered in this way. Besides applications change; their size generally increases and often
increases faster than available computer facilities. Therefore there is always a need for
good solution methods, and, if possible, for better ones.
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Appendix A. Matrix Definitions and Theorems

The items of this section have been collected for various reasons. They can be used as a
theoretical background for previous sections of this report. Some additional information
is also listed but it was not intended to elaborate a complete compendium about matri-

ces. In the following A = (a;;), B=(bj;;), and C=(c;;) are matrices of order n with real

coefficients, if not stated otherwise,

A.l1 Special Matrices

A.1.1 Permutation Matrices

Definition: A permutation matrix P = (pj;) of order n is a matrix with exactly one non-
zero element, namely unity, in each row and each -column. P corresponds to a permuta-

tion function,

o(i) =] i=1,..,n Wher‘e p;=1 (A.1)

Theorem 1: If a permutation matrix P corresponds to a permutation o, then P! = PT
corresponds to ¢!, Proof: [13], p. 10.

Premultiplication of a matrix A by a permutation matrix permutes rows, postmultiplica-
tion permutes columns of A. For an interchange of rows and corresponding columns of
a matrix A according to eq. (A.1) the matrix multiplication is done as P-1 A P,

A.1.2 Diagonal, Band, and Triangular Matrices

The product C = A B of two matrices A and B is given by

n

Cj= Z 2 by (A.2)

k=1
If A is a diagonal matrix, eq. (A.2) reduces to

Cij = a-ﬂbij (A'3)

So every column i of B is multiplied by a;;. Similarly, if B is a diagonal matrix eq. (A.2)
gives
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Cij = a;by; (A.4)

Every row of A is multiplied by b;;.

If in eq. (A.3) C is the unity matrix I with elements 6; we get B = Al with

cij = a;bj; = Jj (A.5)
hence

0 1]

gy )

Definition: A matrix A is a band matrix, if a;j = 0 for [i - j| = m where m is the band

width. A special case is a tridiagonal matrix where m = 1.

Theorem 2: The inverse of a band matrix is not necessarily a band matrix (Murphy). A
general proof for space matrices is given in [8].

Definition: L = (l;;) is a lower diagonal matrix, if I = 0 for j > i It is a strictly lower
diagonal matrix, if I = 0 for j > 1.

Theorem 3: Let L = (l;;) be a lower diagonal matrix. L is nonsingular if and only if
L#O0fori=1, s I

Proof: det L = TTl;, as can be seen by mathematical induction when the determinant is
developed by rows or columns.

Theorem 4: The inverse of a lower diagonal matrix is a lower diagonal matrix.

Proof: L L' = 1 is equivalent to n systems of equations

where X; is the jth column of L1 and b; the jth column of I. For j= 1, ..., n the compo-
nents x;; of X; can be obtained from forward substitution. We get

n
=1 ) Lyxyg=liyx=by, (A.8)
k=1
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n 2
=2 ZIkakj = ZIZkaj = 11 Xqj 4 1oXg) = by (A.9)
k=1 k=1

yields Xyj, since X;; has already been determined. In general, when the first i-1 compo-
nents of i} have already been determined from the first i-1 equations, we get

n i
Z lyXyj = Z Lyexyj = by (A.10)
k=1

K=1
and hence

i—1

lixy; = by — Z Lpexyg (A.11)
k=1

Since bjj = d;j=0 for i < j it can be seen from eqs. (A.8 - A.11) that x;; = 0 fori < j.
For i=] we get xj = T For i > j we normally get x;; # 0.

1
Theorem 5: Similarly an upper diagonal matrix U is nonsingular if and only if uj # 0 for
i=1,..,n. Its inverse is an upper diagonal matrix. Proof: UT, the transposed matrix, is
a lower diagonal matrix. Using (A-)T = (AT)! (see [28], chapter 3.1, p. 35) completes

the proof.

A.1.3 Convergent Matrices

Definition: A matrix A of order n is convergent (to zero), ifnlim AP =0 where O is the
—+00

7ero matrix.

Theorem 6: A complex matrix A of order n is convergent if and only if S(A) < 1 where
S(A) is the spectral radius of A. Proof: [14], theorem 1.4, p. 13.

A.1.4 Irreducible and Diagonally Dominant Matrices

Definition: A complex matrix A of order n > 2 is reducible if there exists a permutation

matriX P of order n such that

A, A
—1_ [ D11 B2
PAP™! = [o Ay 2} (A.12)

39




where A,,1 is a submatrix (or block matrix) of order r and Aj,, is a submatrix of order
n-r, where 1 <r < n. If no such permutation matrix exists, then A is irreducible.

Definition: A complex matrix A of order n is diagonally dominant, if

n

lag| = Zfaiﬂ (A.13)
i=1
IS

Definition: A complex matrix A of order n is strictly diagonally dominant, if strict ine-
quality in eq. (A.13) holds for all 1 <i< n. Similarly A is irreducibly diagonally domi-
nant if A is irreducible and diagonally dominant with strict inequality in eq. (A.13) for
at least one 1.

Theorem 7: Let A be a complex strictly or irreducibly diagonally dominant matrix. Then
A is nonsingular. Proof: [14], theorem 1.8, p. 23.

Theorem 8: Let A be a complex strictly or irreducibly diagonally dominant matrix. Then
none of the diagonal elements of A vanishes. Proof: [13], theorem 2-5.3, p. 40.

A.1.S Eigenvalues

Theorem 9: If A is a square matrix of order n with eigenvalues 44, ..., Ay, then

det A = ﬁli trace A = Zn:aii = Zn:/li (A.14)

Proof: [13], theorem 2-1.7, p. 14.

Theorem 10: If A is a strictly or irreducibly diagonally dominant complex matrix where
all diagonal entries are real and positive, then the eigenvalues 4; of A satisfy

ReA>0 1<i<n (A.15)

Proof: [14], theorem 1.8, p. 23.
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A.1.6 Hermitian and Positive Definite Matrices

Definition: For a matrix A = (a;j) we define AH = (aj}), where "*’ stands for ‘complex

conjugate’,
Definition: A matrix A is Hermitian if A = AH,
Definition: If furthermore A is a real matrix, A is symmetric.

Theorem 11: A matrix A of order n is an Hermitian matrix if and only if VAV is real for
all vectors v of the corresponding vector space of order n. Proof: [13], theorem 2-2.1, p.
18.

Theorem 12: For any matrix L the matrix L LH is Hermitian and nonnegative definite. If
L is nonsingular, then L LH is positive definite. Proof: [13], theorem 2-2.6, p. 22.

Theorem 13: A matrix A is positive definite (nonnegative definite) if and only if it is
Hermitian and all of its eigenvalues are positive (nonnegative). Proof: [13], p. 21.

Theorem 14: Let A be strictly or irreducibly diagonally dominant and Hermitian with
positive real diagonal entries. Then A is positive definite. Proof: [14], corollary to theo-
rem 1.8, p. 23.

A.1.7 L-Matrices and Related Matrices

Definition: A matrix A of order n 1s an L-matrix if

aii>0 i=1,...,n (A.16)

a; <0 1#j, 1,j=1,..,n (A.17)

1 —

Definition: A is an M-matrix if A is nonsingular, A~ !> 0, and if eq. (A.17) holds.
Theorem 15: Any M-matrix is an L-matrix. Proof: [13], p. 43.

Theorem 16: If A is an irreducibly diagonally dominant L-matrix, it is an M-matrix.
Proof: [14], corollary 1, p. 85.

Definition: A is a Stieltjes matrix if A is positive definite and if eq. (A.17) holds.

Theorem 17: If A is a Stieltjes matrix, then it is also an M-matrix. Proof: [14], corollary
3, p. 85.
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Theorem 18: If A is a symmetric and nonsingular irreducible matrix, where a;j < 0 for all
i#j then A-l > 0 if and only if A is positive definite. Proof: [14], corollary 2, p. 85.

A.1.8 Property A and Consistent Ordering

Definition: A matrix A of order n has Property A if there exist two disjoint subsets S;
and S, of W, the set of the first n positive integers, such that S; + S, = W and such
that if 1 # j and if either a;;# 0 or a;j# 0, thenie S; and je S, orelseie S; and j e S,

Definition: For a given matrix A the integers i and j are associated with respect to A if
a; # 0 or a;; # 0.

Definition: The matrix A of order n is consistently ordered (A is a CO-matrix) if for
some t there exist disjoint subsets Sy, ..., S; of W, the first n integers, such that

> Sk =W and such that if i and j are associated, then je Sy, ifj > iand je Sx_ if]
k= {, where Sy is the subset containing i.
Definition: The vector y = (yy, ..., yn)T Where y1, ..., yn are integers, is an ordering vector
for the matrix A of order n if for any pair of associated integers i and j with i # j we

have |y — v = L.

Definition: An ordering vector y = (y1, ..., yn)T for the matrix A of order n is a compat-
ible ordering vector for A if

a) yi—yj=11f1and j are associated and 1 > ]

b) yi—y;=—1if1and j are associated and 1 < j.

In sum y; — y; = sgn(t — J) if a;; # 0.

Theorem 19: If A has Property A, then the eigenvalues of By are either zero or occur in
pairs + A;. see [26], p. 121.

Theorem 20: If A has Property A, then for any permutation matrix P the matrix A" =
P-1 A P has Property A. Proof: [13], theorem 5-4.3, p. 149.

Theorem 21: There exists an ordering vector for a matrix A if and only if A has Proper-
ty A. Moreover, if A is consistently ordered, then A has Property A. Proof: [13], theo-
rem 5-4.1, p. 148.

Theorem 22: If A has Property A, then there exists an ordering vector whose compo-
nents have at most two different values. Proof: [13], corollary 5-4.2, p. 148.

Theorem 23: A matrix A has Property A if and only if there exists a permutation matrix
P such that the matrix A" = P-1 A P is consistently ordered. Proof [13], theorem 5-4.5,
p. 150.
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Theorem 24: A matrix A of order n is consistently ordered if and only if there exists a
compatible ordering vector for A. Proof: [13], theorem 5-3.2, p. 146.

Definition: A is a T-matrix if A has a block-tridiagonal form with square diagonal matri-
ces on its diagonal. So A can be decomposed into submatrices Ay where all A;; are

square matrices and Ay = 0 for [i-]|> 1.

Theorem 25: If A is a T-matrix, then A is consistently ordered. Proof: [13], theorem
5-3.1, p. 145. Especially a tridiagonal matrix of order n is consistently ordered. An or-
dering vector y has the form y = (1, 2, ..., n)T.

A.2 Iterative Solution of Linear Equations

To solve a system of linear algebraic equations

AX =D (A.18)
we can use an iterative method

X9 = @y(A, b)
X0, &9, XA ) n1=0,1,2,3,.. (A.19)
Superscripts indicate an iteration index. If for some integer s > 0 ®, is independent of
n for all n > s, then the method is said to be stationary. The degree of a stationary
method is t for t < s if, for n > s — 1, xX®+1) depends on X®™, X0 =1, .., X0 —t+1) byt not
on Xx® for k <n-t+ 1. If, for each n, ®, is a linear function of XO), ..., X0~ the method
is said to be linear. In the case of a linear stationary iterative method of first degree, the

iteration has the form
X0+ _ gx® 4 ¢ (A.20)

for some matrix B and for some vector c.

Definition: The iterative method (A.20) is weakly convergent if for all starting vectors
u© the sequence u®, Ul .. of iterative solutions of eq. (A.20) converges. The method is
convergent if for all u© the sequence converges to a limit independent of u®©,

Using conventions as in [14], we decompose A as follows

A=D+L+U (A.21)
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where D is a diagonal matrix, L and U are strictly lower and upper triangular matrices.

For the Jacobi method

—

B,=—D '(L+U) ¢c=D""b (A.22)

are used. Evidently Bj has zero diagonal entries.

For the Gauss-Seidel method we set

—

Bss=—(L+D)"'U c=(L+D)'b (A.23)

For overrelaxation
Bgor = — (L+%D>—l [U+ (1-4) D] ¢ <L+—a],—D)_IE (A.24)

holds. To facilitate comparison with literature, the definition of matrices used in [13] is
given in the following section.

A.2.1 Definition of Iteration Matrices

[13] and [14] are standard textbooks for iterative methods as SOR. Since [14] is used
in this report for the definition of matrices for the Jacobi, the Gauss-Seidel, and SOR
method, the definitions of [13] are given hereafter to facilitate comparison of formulas

in the various publications.

In [13] the matrix of coefficients A for a system of linear equations

AX =b (A.25)

is decomposed to be

(A.26)

y=CL+CU (A.27)

where the indices L and U mean strictly upper and lower matrices. Here and in the
following the index y stands for Young.
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B,=D"'C (A.28)
L,=D"'C, (A.29)

U,=D""'Cy (A.30)
The iteration matrix for the SOR method in [13] is

Bsor = (I — oL,)™ ' [0U, + (1 — w)I] ‘ (A.31)
From a comparison of eqs. (A.26) and (A.27) with eq. (A.21) we find

L=-C, U=-Cy (A.32)
From eq. (A.31), using eqs. (A.28) to (A.30) we get

(I+ oD 'L)T* D = [(1 — )] — D™ 'UTT® + oD~ 'b (A.33)
Multiplication of eq. (A.33) with D gives

D+ L) 3™V = [(1 — ©)D — wUT 3™ + wb (A.34)

Dividing by w vields eq. (A.24). So the formulas in [14] and [13] are equivalent as it
should be.

A.2.2 General Theorems
Theorem 26: The iterative method eq. (A.20) converges if and only if
S(B) < 1 (A.35)

where S(B) is the spectral radius of B. Proof: [13], theorem 3-5.1, p. 77.

Theorem 27:

S(Bsor) 2 |o — 1 (A.36)
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with equality only if all eigenvalues of Bgor are of modulus |w - 1] (Kahan). Proof: [14],
theorem 3.5, p. 75.

Theorem 28: Moreover, if the SOR method converges, then
O<w<?2 (A.37)

Proof: [13], theorem 4-1.2, p. 107.

A.2.3 Convergencé for Special Matrices

Theorem 29: Let A be an irreducible matrix with weak diagonal dominance. Then
a) The Jacobi method converges.

b) The Gauss-Seidel method converges.

¢) The SOR method converges for 0 < w < 1.

Proof: [13], theorem 4-2.1, p. 107.

Theorem 30: Let A be a Hermitian matrix of order n, where a; > O and D + @ L is
nonsingular for 0 < w < 2. Then S(Bsor) < 1 if and only if A is positive definite and 0
< w < 2. Proof: [14], theorem 3.6, p. 77.

Theorem 31: Let A be a symmetric matrix with positive diagonal elements. Then the
SOR method converges if and only if A is positive definite and 0 < w < 2. Proof: [13],
theorem 4-3.6, p. 113.

Theorem 32: If' A is an L-matrix, then A is an M-matrix if and only if §(B;) < 1. Proof:
[13], theorem 2-7.2, p. 43. |

Theorem 33: A is an M-matrix, if and only if By is non-negative, irreducible, and conver-
gent. Proof: [14], theorem 3.11, p. 84.

Theorem 34: If A is an M-matrix and if

0<@<—2—r (A.38)

1+ S(B))

then S(Bsor) < 1. Proof: [13], theorem 4-5.9, p. 126.
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A.2.4 Convergence for Consistently Ordered Matrices
Theorem 35: If A is a consistently ordered matrix, then
det(aL + o~ 'U — kD) (A.39)

is independent of « for all o # 0 and for all k. Proof: [13], theorem 5-3.3, p. 147.

Theorem 36: If A is consistently ordered and if A has nonvanishing diagonal elements,
then

a) if u is any eigenvalue of By of multiplicity p, then - u is also an cigenvalue of By of
multiplicity p.

b) A satisfies

A+ o — 17 =0’ (A.40)

for some eigenvalue px of By if and only if A satisfies

At o—1=owpfl (A.41)

for some eigenvalue p of Bj.

c) if A satisfies either, and hence both of the relations eqs. (A.40) and (A.41), then 4 is
an eigenvalue of Bgor.

d) If 4 is an eigenvalue of Bsor, then there exists an eigenvalue u of By such that (A.40)
and (A.41) hold. Proof: [13], theorem 5-3.4, p. 147.

Theorem 37: Let the Jacobi matrix By be a non-negative matrix of order n. Then, one
and only one of the following mutually exclusive relations is valid:

S(Bj) = S(Bgs) =0
S(Bgg) < S(By) < 1
S(By) = S(Bgs) = 1
1 < §(By) < S(Bgs)

(A.42)

Thus, the Jacobi matrix and the Gauss-Seidel matrix are either both convergent, or both
divergent (Stein and Rosenberg). Proof: [14], theorem 3.3, p. 70.

Theorem 38: If A is a consistently ordered matrix with nonvanishing diagonal elements
such that By has real eigenvalues, then S(Bsor) < 1 if and only if 0 < w < 2 and S(By)
< 1. Proof: [13], theorem 6-2.2, p. 172.
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Theorem 39: Let A be a consistently ordered matrix with non-vanishing diagonal ele-
ments such that the matrix By has real eigenvalues and such that 7= S(By) < 1. If

P S— (A.43)

then
S(Bsor) =@, — 1 (A.44)
and if o # oy then

S(Bsor) > S(Bsor(®y)) (A.45)

Moreover, for any w in the range 0 < w < 2 we have

2.2 2
wﬁ+\/wﬁ —4(w — 1)

S(Bsor) = |: (A.46)

o —1 if wp<w<2

Finally, if 0 < w < wy then S(Bsor) is a strictly decreasing function of w. Proof: [13],
theorem 6-2.3, p. 172.

Theorem 40: If A is a positive definite consistently ordered matrix, then the matrix B;
has real eigenvalues. Moreover, S(B;) < 1. Proof: [13], lemma 6-2.5, p. 175.

Theorem 41: Let A be a matrix which has Property A and whose diagonal elements are
positive. If, for some diagonal matrix E the matrix A" = E A E-! is positive definite,
then Bj has real eigenvalues and S(Bj) < 1. Proofi [13], theorem 6-2.6, p. 175.

A.3 Block Methods

A.3.1 Concept

The following section is summarized on the basis of [13], chapter 14. Arrows, indicating
vectors, have been dropped in this section.

An ordered grouping = of W, the first n integers, is a subdivision of W into disjoint
subsets Ry, ... Ry such that Ry + .. + Ry = W. Two ordered groupings = and =’,
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defined by Ry, ... Rq and R'y, ..., R'g, respectively, are identical if ¢ = q" and if
R;=R'y, ..., Rq = R'q~

For a given matrix A and an ordered grouping =, consisting of q groups, we define the
submatrices A, forr, s = 1, 2, q as follows: A, ¢ is formed from A by deleting all rows
except those corresponding to R, and all columns except those corresponding to Rg.
Given a column vector u we define column vectors Uy , ..., Uq where U, is formed from
u by deleting all elements of u except those corresponding to R,. Similarly we define
column vectors By , ..., Bg given the column vector b. For example, , if n = 3 and = is
defined by Ry = {1, 3}, Ry = {2}, we have

11413 a2 uy b,
Al,] = <a3’1 a3,3> ’ A1’2 = (a3,2> 3 Ul = <u3> , Bl = <b3> (A.47)

A2,1 = (a2,1 32,3) ) A2,2 = (32,2) , Uy=(u), By,=(by)

so that the system of equations AU = b becomes
ai,1 81,3\ /Uy a1 _ (b
<a3)1 a3,3)<u3) + <a3’2> (uy) = <b3 (A.48)

(az,1 2,,3) (3;) + (ay,) (uy) = (by)

which is equivalent to the original system. In general the system of equations can be

written in the form

q
DA U=B, r=1,2..,q (A.49)

s=1

If A, ; is nonsingular for all r, the group Jacobi method can be written in the form

q
A, US4 Y A, UP =B, (A.50)

s=r ‘
S#T

or, equivalently
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q
U= Y, U0 4,

S=r
S#r

B ={_Ar_,rlAr,s if rs
r,s

0 if r=s

Evidently, we may write eq. (A.51) in the matrix form

WO+ g @@ | (@

where

B,® = (D®)~! ¢
¢® = (D®)~ b

C(”) — D(’ﬂ') —A

D™ = diag A

(A.51)

(A.52)

(A.53)

(A.54)

(A.55)

(A.56)

(A.57)

where diag, A is the matrix formed from A by replacing by zeros all a; ; unless i and ]

belong to the same group. Examples are given in [13], chapter 14.1.

The group Gauss-Seidel method can be written in the matrix form

WD _ g @y (@)1

where

BGS(ﬂ) =( - L(”))— Iy™

L(ﬂ) — (D(”))" ICY)
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U™ = (D™~ 1 (A.61)

Cf and C{p are formed from A by replacing all elements of A by zero except those a; ;
such that i and j belong to different groups and such that the group containing 1 comes
after and before, respectively, the group containing j.

The matrix form of the group SOR method is

a®F ) 2 B U@ 4 (1= oL@ ™ (A.62)
where
Bsor'™ = (I — oL~ [0 U™ + (1 — )1] (A.63)

A.3.2 Theorems

Given a matrix A and an ordered grouping = with q groups, we define the matrix Z of
order q by

0 if A, ;=0
= : A.64
%, {l if Ar’sqéo ( )

The matrix A has Property A®@ if Z has Property A.

The matrix A is a n-consistently ordered matrix (a = — CO — matrix) if Z is consistently

ordered.

The matrix A® is obtained from A by reordering the rows and columns of A according
to the ordered grouping = using the submatrices:

Ay Ay o Alg
AT=P AP = [ A21 A2 v Agy (A.65)
Agqi A v Agg

where P = P is the corresponding permutation matrix.

Theorem 42: If A has Property A® then C® has Property A, and if D™ is nonsingular,
AN
B;™ has Property A. If A is a # — CO — matrix, then C® is a CO-matrix, and if D™ is
JAY
nonsingular, B® is a CO-matrix. Proofi [13], theorem 14-3.1, p. 446,
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Theorem 43: Let A be a matrix and = an ordered grouping such that O is consistently
ordered. Then

A = det(aC™ + o~ 'C{? — kD™) (A.66)

is independent of o for all & # 0 and for all k. Proof: [13], theorem 14-3.2, p. 448.

A matrix A is a generalized n-consistently ordered matrix (a # — GCO — matrix) if A,
given by eq. (A.66), is independent of o for all & # 0 and for all k.

Theorem 44: If A is a # — CO — matrix, then A is a # — GCO — matrix. More generally,
AN N

if C™ is a CO-matrix or if D™ is nonsingular and B is a CO-matrix, then A is a

n — GCO — matrix. Proof: [13], theorem 14-3.3, p. 449.

Theorem 45: If A is a # — GCO — matrix such that D(® is nonsingular, then the conclu-
sions of theorem 36 are valid, if we replace By by By ™ and Bgor by Bsor ™ (see [13],
theorem 14-3.4, p. 451.

Theorem 46: If A is a n — GCO — matrix which is an irreducible M-matrix, then ﬁ(”) and
A
C) and are CO-matrices. Proof: [13], theorem 14-3.5, p. 451.
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Appendix B. Special Systems of Equations

B.1 Tridiagonal Systems of Equations

Gaussian elimination is very simple for tridiagonal matrices. The procedure is well-
known in literature and attributed to Thomas. It is recalled in this section and used as a
basis for the solution of cyclic tridiagonal systems (see next section), i. e. for systems of
linear equations which differ from tridiagonal systems by ajn, an; # O.

Given a tridiagonal system of equations

a;; V1 ta, v = by ‘
Aj—1Yi—1 + &y Y + 841 Yi41 = b i=2,.,n—1 (B.1)
ann__lyn——l 4 ann Yn = bn

of n equations with n unknowns. The matrix of coefficients has the form

X X
X X X
X XX

X X X
X X X
X X

We suppose that at least for one equation b; # 0 and that the matrix of coefficients is
nonsingular so that there is a unique solution of eq. (B.1). Gaussian elimination is
equivalent to transforming equationi (i = 1, 2, ..., n - 1) into an equation i’

Vi = by — a1 Vis (B.2)

and substituting into equation i+ 1. We obtain

, a9
a 12 al 1

) b] (B'3)
b = ay
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o’ 4549
ii+1 al“
b = by —a;_ b,
i a' .
11
fori = 2,..,n-1. Proof of egs. (B.3) is by mathematical induction. The same coeffi-

cients a’ and b’ would of course result from a LU decomposition of the original matrix
of coefficients [17]. Substitution fails for a;; = 0 or a’;; = 0. This situation is discussed
in [24], but is not interesting for BACCHUS. Substituting equation (n-1)’ into equation
n yields y,, to be

bn — 4nn— bln—]
= B.4
Yo 4nq dhn—-18n-1n ( )
and fori = n-1,.., 1 one obtains y; from eq. (B.2) by backsubstitution.

The advantage of the solution algorithm of tridiagonal system is that y; exists only in
the first and the second equation. Once it has been substituted in the second equation,
y, exists only in the second and the third equation and so on. This can be programmed
without a DO-loop and so gives a quick solution routine. In practice a” and b” are
stored thus needing only little additional storage.

B.2 Cyclic Systems of Equations

Cyclic systems of equations are an extension of tridiagonal systems, 1. e. in addition to
tridiagonal systems ajn, an; % 0. In BACCHUS such systems of linear equations arise
because of the coupling of the first and the last control volume in a ring.

A solution procedure can be used similarly to the Thomas algorithm for tridiagonal sys-
tems of equations. In contrast to the Thomas algorithm an equation is not only com-
bined with the following one but also with the last one. In the following this procedure
is described in detail. |

Given a system of equations

a;y Vi tas y, ta, y, =b
qi—1Yi-r + & Vit aiViqr = b i=2,.,n-1 (B.5)
hnt Y1+ A, Yn-1 4+ a,;, Yn =b,
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similarly to eq. (B.1), but a,,, and a,;; are allowed to be nonzero. So the matrix of coeffi-

cients has the form

X X X
X X X
X X X
X X X
X X X
X X X

The first equation is divided by a; to yield

Vi =Y —a'y¥; — AV, (B.6)
with
a9

ay, = —=

12 ap
= 41n

In aj (B7)
b, = _El__

! 4y
and introduced into the second and the last equation of system (B.5).
In the i-th substitution step (i = 2, ..., n - 1) equation i of system (B.5) is transformed
into an equation i’
Vi = b = @41 Vig1 — &nVa (B.8)
with
ali = a; — a8y

, 41
a’..

1 ]

i+ a’y;
= _ 3jj_18_1p (B.9)
= T,

11

b — b — ;b

[ a’ .

11

and introduced into equation i+ 1.
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Furthermore at the beginning of the ith substitution step the last equation (number n)
of the original system (B.5) has been transformed to form equation n®

alniYi t a8 h_1Yn-1 t+ ag)nYn = bg) (BIO)
with
a'ny = —ay;_a_y;
. - ' 3
ag)n = agn ) — Api—1%_1n (B-ll)

i i—1 , ,
b = bl — a'ni—1 by

For eq. (B.11) we set

dn1 an 1
ag; = Qyq (B.12)
by = b,

Proof of egs. (B.9) and (B.11) for the new coefficients can be done by mathematical
induction. For aj, = a,; = 0 eqs. (B.7), (B.8) and (B.9) give eqs. (B.2) and (B.3), and
eqs. (B.10) and (B.11) are dropped. During the i-th substitution step eq. (B.8) is intro-
duced into eq. (B.10) fori = 2,..,n- 2.

n - 1 we get by this forward elimination from eqs. (B.8) and (B.10)

I

For i

Yoo1 T bln—l - (aln—ln + an—}n)Yn (B.13)

' -1 -1
(ann—l+ann——1)Yn—l + afunn )Yn = bg] )

which gives

-1 ! !
bgln )_—'(ann—-—l +ann—1)bn—l

Yn = 1 R , —
aglnn )_(ann—l + ann—l)(an—ln + an—ln)

(B.14)

The solution scheme is completed by backsubstitution. y,,.; is calculated of one the two
equations of (B.13). For i=n-2(1)1 several strategies are possible.
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1. y;is calculated from eq. (B.8).
2.y is calculated from eq. (B.10).
3. y; is calculated from the original system (B.5).

In the first case the coefficients of eq. (B.9) must be stored, in the second case those of
eq. (B.11). In the third case no additional arrays are available. However, for the second
and the third case one additional division must be made for every equation. In practice
the first strategy is used in BACCHUS, because the Thomas algorithm is already avail-
able. The solution procedure described above has been derived independently of [17].
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