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Abstract 

In this report, a longitudinal model of a thermal two-component plasma is considered. A 

compact description to solve numerically the resulting coupled inhomogeneaus model 

system is developed. The numerical techniques applied are ·based on high resolution 

shock-capturing schemes for the hydrodynamic part which have been developed for 

the numerical solution of nonlinear hyperbolic conservation laws, recently. A new 

explicit numerical method is proposed to calculate the electric field which couples the 

different plasma components. Here, the comprehensive information available from the 

fl.ux calculation of the high resolution upwind schemes is used. Furthermore, a new 

tracking method will be briefl.y reviewed which plays an important role in handling the 

problern of a plasma expanding into a vacuum. N umerical results for three examples 

are presented which may be considered as proofs of principle for the applicability and 

efficiency of the explicit numerical methods in plasma simulation. 

Aspekte zur Modellierung eines thermischen Zwei-Komponenten Plasmas 

und seiner Behandlung mit expliziten numerischen Methoden 

" Uberblick 

In diesem Bericht wird ein longitudinales Modell eines thermischen Zwei-Flüssig­

keitsplasmas betrachtet und unter Verwendung numerischer Methoden untersucht. 

Eine gestraffte Zusammenfassung der zugrunde gelegten numerischen Methoden soll 

eine Vorstellung davon geben, wie das resultierende inhomogene Modellsystem gelöst 

wurde. Die verwendeten Approximationstechniken sind als "high resolution shock­

capturing" Schemata bekannt und wurden zur numerischen Lösung von nichtlinearen 

Erhaltungsgleichungen entwickelt. Desweiteren wird eine Methode dargelegt, wie das 

elektrische Feld, welches die verschiedenen Plasmakomponenten koppelt, auf explizi­

tem Wege aus der vorhandenen Information der Flußberechnung gewonnen werden 

kann. Um das Problem der Plasmaexpansion ins Vakuum sauber behandeln zu können, 

wird weiterhin eine neue, vor kurzem vorgeschlagene Tracking-Methode beschrieben 

und angewandt. Numerische Resultate, die wir anhand dreier Testbeispiele erhielten, 

überzeugen uns von der Verwendbarkeit und Effizienz der expliziten Methoden im 

Bereich der Plasmasimulation. 
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I. Introduction 

Providing high power densities in matter necessary for iner~ial confinement fusion, is 

achallenging problern for pure science as well as for technology. With respect to this 

basic research problem, great progress in generatinghigh-power ion beams have been 

made during the last two decades (1). Forthis purpose the pulsed power line KALIF 

(2) is available at the Nuclear Research Center in Karlsruhe (KfK). Optional, the 

high power KALIF puls can be feeded into different ion diodes, developed at the KfK 

(3, 4, 5), where it is converted into an intense ion beam. Modern plasma generation 

techniques provide an excellent tool to produce a uniform plasma layer in front of 

the ion diode electrodes, yielding an ion beam power of approximately 1 TW (5). In 

order to increase this ion beam power with further facilities like the KALIF-HELIA 

extension, it is necessary to reduce the observed microscopic divergence. The origin 

of this divergence is traced back to diode effects (5) like instabilities, occuring in the 

electrode plasmas or/ andin the dilute plasma region inside the diode gap. Therefore, 

offirst priority should be the understanding ofthe mechanisms leading to the observed 

microscopic divergence. 

To get a deeper insight into the fundamental physical phenomena occuring inside the 

ion diodes, and hence, a better interpretation of the experimental results, extensive 

numerical simulations have been performed. For that purpose the two-dimensional 

time-independent particle-in-cell code BFCPIC is used, which is an extension of 

the usual PIC-codes to boundary-fitted coordinates [6, 7). Although, this code is an 

excellent tool for the optimization of the design of technical relevant diodes [8) and the 

resulting focussing properties, there remains an inconsistency between the measured 

and predicted ion current densities [5). This discrepancy may be attributed to the 

fact that in BFCPIC several physical phenomena are disregarded. 

One challenging problern in this context is the adequate temporal modeHing of the 

neutral plasmas in the vicinity of the cathode and anode. Theseplasma layers, covering 

the emitting electrodes, appear in an approximately spontaneaus manner after the 

ion source is switched on. Little is known about the behavior of these plasma layers, 

which are in principle the input boundary values for BFCPIC-calculations. In this 

paper we propose a model for the mathematical description of the temporal evolution 

of plasma layers and develop a numerical method for these equations. 

This paper is organized as follows. In chapter II we list the equations of the conside­

red longitudinal model of a thermal two-component plasma. This model should be 

appropriate to give insight into the complex behavior of the plasma layers in front of 

the emitting electrodes of the ion diodes. Subsequently, in chapter 111 we describe the 
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numerical techniques applied, necessary for the investigation of the plasma model in 

mind. Our approach is based on the so-called Godunov-type methods, which are are 

explicit schemes in conservation form. Within these schemes the approximation of 

the fluxes between adjacent grid zones are determined by solving Riemann problems 

approximately. Using the information obtained by the flux calculation we receive an 

explicit numerical scheme to calculate the electric field, which is originally determined 

by the Poisson equation. This is a new approach in this context. The Iimit when one 

of the initial states of the general Riemann problern tends to vacuum is called the 

"vacuum Riemann problem". Its solution is used for the construction of a tracking 

method for a plasma vacuum boundary, proposed by Munz, recently (9]. This tracking 

method plays an important role, ifwe consider the problern of a plasma expanding into 

a vacuum, underlying an Eulerian frame of reference as the computational domain. In 

chapter IV we present some results for three test problems which show the quality and 

the properties of the methods applied. Finally, in chapter V we give a brief summary 

of the results and a short outlook of the activities planned in future. 
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II. Basic Macroscopic Equations of a Thermal Two-Component Plasma 

The most general description of a plasma is based on the well known principles of 

statistical mechanics, Broadly spoken, this means that one is interested in the temporal 

evolution of the distribution function fa(x, v, t) in the phase space for each plasma 

component a ( a = electrons,ions ). It is a well known fact that the reimHing equation 

posses a non-closed character which reflects the hierachy problern being an inherent 

difficulty in statistical mechanics ( see e.g. [10] ). Applying approximation methods, 

for example the weak coupling approximation, and omitting binary collisions of the 

particles, leads finally to the non-linear Vlasov equation. This collisionless kinetic 

equation, coupled to the full set of Maxwell equations form a basic system of equations 

which is a comprehensive mathematical model for many problems in plasma physics. 

Because in this paper we are interested in the the macroscopic description rather 

than in the microscopic description of a plasma, we have to calculate the moments 

of the local distribution function f a· This means, that the local densities of interest 

Qa(x, t) are expressedas averages in velocity space evaluated with the distribution 

fundion fa: 

Qa(x,t) =< Q(v) >= / ) jdvQ(v)fa(x,v,t) 
na x,t 

(2.1a) 

where the nurober density na(x, t) of the species a ( =electrons,ions) is given by 

na(x, t) = j dv fa(x, v, t). (2.1b) 

For a detailed discussion in defining the local densities as well as evaluating the 

moments of the local distribution function fa we refer to the Iiterature [10- 13]. 
Starting from the Vlasov equation and using the definitions (2.1), we finally obtain 

the macroscopic equations of a thermal plasma ([10- 14]) 

(2.2a) 

(2.2c) 

expressing the conservation of density, momentum, and energy, respectively. Here, qa 

and ma denotes the charge and mass of the species a. The symmetric total pressure 

tensor P~· is decomposed into the scalar pressure Pa times the unit tensor öii and 
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the traceless tensor rr~. Furtermore, V a is the velocity and ha stands for the heat 

flux vector of the particles of species a. The total energy density ea is given by 

(2.2d) 

where Ea denotes the internal energy. The electric and magnetic field, denoted here 

as f and 13, are obtained by the full set of M~xwell equations. In the usual SI-unit 

system it is given by 

Eijkßjfk = -ßtßi, 

p 
8jfj = -, 

Eo 

(2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 

For the equations of a thermal plasma (2.2) as well as for the Maxwell equations 

we make use of the usual sum convention, which means, that we sum over alllatin 

indices appearing doubly. The symbol Eijk stands for the total antisymmetric tensor. 

Furthermore, we use the obyious abbreviations 8t = %t and 8j = 8~ . . 
J 

The charge density p and the electric current density J, known as the source terms 

of the Maxwell equations, are obtained from 

(2.3e) 

(2.3!) 

Because we have to sumover all a in equation (2.3e) and (2.3f), the Maxwell equations 

couple the different components of the thermal plasma, described by (2.2). 

For sake of simplicity, we suppose that the local distribution function fa(x, v, t) of 

the different species a is close to a Maxwellian. Therefore, the heat flux ha and 

the traceless pressure tensor IIa will be neglected in the following considerations. 

Obviously, the equations ofthe thermal plasma (2.2) and the Maxwell equations (2.3) 

do not form a closed system. To overcome this incompletess, we have to specify an 

equation of state 

(2.4) 

which relates the pressure to the density and the internal energy. 

The equations (2.2) to (2.4) set up the general macroscopic model of a thermal 

two-componet plasma which should be the starting point in getting a simpler model, 

called in the following the longitudinal model of a thermal two-component 
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plasrna. 

The physical situation m mind can be summarized in the following manner. We 

consider a plasma for which the plasma parameter NP ( = 4
; .A1n0 , AD is the Debye 

length, n 0 is the characteristic density) is very large compared to one ( weak coupling). 

This means, that the importance of the Coulomb interaction is negligible compared 

to the thermal energy. Obviously, the condition Np ~ 1 can be reached in two 

ways. Fora given density, the condition is satisfied for sufficient high temperatures, or 

alternatively, for a given temperature, it holds for sufficiently low density. Because the 

ratio of collision frequency between electrons and ions ( Vei ) to the plasma frequency 

( Wpo ) is approximately the inverse of the plasma parameter, each component of 

the plasma lives for a long time in a quasi equilibrium at differe.nt temperatures, in 

general (see e.g. [10] ). Consequently, the plasma regarded here will be treated as a 

mixture of two independent perfect gases. 

For the further considerations, we restriet ourselves to one dimension in space (x 

coordinate ). Additional, the magnetic field 13 should be zero, and frorn the remaining 

vector quantities occuring in (2.2) we consider only the x component. With regard 

to the numerical methods, discussed in the next chapter, we rewrite the equations 

(2.2) for our purpose into the compact conservation form [15]: 

(2.5a) 

Here, Ua denotes the vector of the conserved variables of each plasma component a, 

and is given by 

(2.5b) 

where the calligraphic M stands for the momentum Ma = Na Va:v. The vector 

functions f(ua) and q(ua), usually called the Euler fl.ux in in x direction and the 

vector of the source terms, respectively, are defined as 

(2.5c) 

(2.5d) 

In the longitudinal case considered, the equation which couple the two plasma com­

ponents is given by the Poisson equation 

(2.6) 
a 

only where Sa is the abbreviation for the expression OP .Z.:. 
Because of the generalnature of the problems, considered here, dimensionless quantities 
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are introduced in the model equations (2.5) and (2.6). The characteristic length of 

the problern is Ao. The dimensionless velocity in x direction Varo, particle mass Ma, 

and particle charge Qa are obtained from the corresponding quantities in (2.2) by 

normalizing them to v0 , m 0 and eo, respectively. The time is measured in units of 

io = .Ao/vo . Furthermore, with the characteristic density n0 and temperature T0 and 

combinations of these two quantities (Po = n 0T0 ; E0 = ~' co electric permittivity 

of vacuum), the dimensionless density Na, the pressure IIa, and electric field in x 

direction Ero are easily defined. The dimensionless plasma frequency np = Wpoio = ;~ 

( w;0 = :::n ) is a measure of space charge effects. 

For a perfect gas the equation of state has the simple form 

(2.7a) 

where Ea is the dimensionless internal energy. The degree of freedom f of a perfect 

gas is related to the ratio of specific heat capacities via 'Y = J "t. Then we find for 

the dimensionless total energy ea and the enthalpy Ha the following expressions 

(2.7b) 

1 ( IIa) 1 2 f 2 
Ha= Na ea + Ma = 2Varo + 2Csal (2.7c) 

respectively, where C,a denotes the dimensionless velocity of sound, defined as 

(2.7d) 

The equations (2.5), (2.6) and (2.7) set up the one dimensional mathematical model 

of a thermal two-component plasma where collisions are excluded. This simple model 

cannot be solved analytically in general. Therefore, we need appropriate methods 

for calculating the numerical solution of the model equations (2.5)-(2.7) to get a 

comprehensive insight into the complex behavior of a thermal neutral plasma. 
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111. Numerical :Framework 

In this chapter we shall be concerned with the methods for solving the longitudinal 

model of a thermal two-component plasma (2.5), (2.6) numerically. Therefore, we 

consider in the first section briefly the numerical techniques applied for treating 

the nonlinear inhomogeneaus system of conservation laws (2.5a). Afterwards, we 

introduce an explicit numerical approach for solving a modified Poisson equation 

which corresponds to (2.6). Samegeneral remarks of treating numerically the problern 

of a plasma expanding into a real vacuum will be presented in the next section. 

A. N umerical solution of the inhomogeneaus conservation system 

Among the various methods proposed in the literatme to solve numerically the system 

of nonlinear conservation laws (2.5a), the so-called high resolution shock-capturing 

schemes are chosen, which have been developed recently (see e.g. [16) ). Especially, these 

methods are developed for the numerical solution of nonlinear hyperbolic conservation 

laws and, furthermore, play an important role in compressible hydrodynamics. 

Constructing those numerical schemes, the information of the local wave propagation 

structure of the problern is obtained by solving the Riemann problern (RP). The RP 

is the initial value problern for the homogeneaus conservation laws (2.5a) (neglecting 

here the rhs of ( 2.5a)) with piecewise constant initial data having a single discontinuity 

at re = 0 

u(x, 0) = { ul, 
u,., 

x<O 
X> 0 • (3.1) 

The key problern in developing efficient numerical methods based on the RP, is to 

find a good approximate solution of the RP. 

The idea of an approximation scheme for the nonlinear conservation laws using the 

RP solution is due to Godunov [17). He supposed that the approximate solution at 

a timet = tn is constant within a grid cell (see figure 3.1). To elude an interaction 

between the solutions of the local RP, occuring at each grid zone interface, he further 

suppose that 
D.t 1 
D.x ia=a:v I ~ 2 

holds, where a=a:v denotes the maximum velocity of the propagating waves. Afterwards, 

Godunov determined the exact solution of the RP at each grid zone interface, having 

the form 
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and averaged these solutions over the interval Ii = [xi, Xi+I] in oder to get a piecewise 

constant approximate solution at time t = tn+l· Often, it is troublesome or even 

impossible to get an exact solution of the RP. And obviously, because of the final 

averaging process in the Godunov scheme, only small amount of the entire information 

provided by the exact solution is used for the further iterations. 

u" i+1 

n 

u~ 
ui .. 2 

I I 
n I I 

U· 1 I J~ I 
I I 

! I I -I I I I 
I I I I I 
! I I I 

I I -I I x X· X· X· 1-112 1+1/2 1+312 

Figure 3.1: Piecewise constant approximate solution 

Therefore, we make use of an approximate solution of the RP which has been proposed 

by Harten, Lax and van Leer (HLL) [18]. The basic idea of the HLL-method is to 

replace the intermediate states of the general RP by an averaged one (see figure 3.2). 

The approximate Riemann solution of the HLL-method has the form 

f < az 
az < y < ar, 
f > a.,. 

(3.2) 

where az, ar derrotes the minimum and maximum propagation velocity, respectively. 

Algorithms where the exact solution of the RP is replaced by an approximate one, 

are the so-called Godunov-type schemes. It can be shown [16, 19] that Godunov-type 
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schemes are explicit schemes in conservation form, represented by 

(3.3) 

Here, ga = ga( Uz, Ur) denotes the numerical flux, which is determined by the appro­

ximate RP solution and is an appropriate approximation of the Euler flux f given by 

equation (2.5c). 

t 

0 X 

Figure 3.2: Approximate Riemann solver for the HLL-method 

Especially, for the HLL-method the numerical flux is obtained form 

(3.4a) 

where az and a; is the abbreviation for 

az = MIN(O, az) (3.4b) 

respectively. 

The approximation techniques, briefly described above are only accurate to the first 
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order in time. The extension to second order accuracy can be clone in a straightforward 

mannner, applying the MUSCL (Monotonie Upwind Schemes for Conservation Laws) 

approach proposed by van Leer ( see e.g. [20) ). A detailed description and discussion 

of the properties of the second order extension can also be found in [19). 

The general advantage of the numerical methods under consideration is twofold. 

Calculating the numerical fl.ux ga between adjacent grid cells during one time step, 

the direction of nonlinear wave propagation is directly incorporated into the solu­

tion scheme. Hence, they sharply resolve discontinuities without generating spurious 

oscillations. In smooth parts of the fl.ow the approximation is second order accurate 

in space and time. 

Juterested finally in the numerical solution of the inhomogeneaus system of conser­

vation equations (2.5a), we apply a splitting method described by Marchuk [21]. 

That means for our purpose, that we have to solve in a first step the homogeneaus 

conservation laws with the methods described above. After this transport step, we 

consider the infl.uence of the source terms q(ua) (2.5d). Therefore, we have to solve 

the system of ordinary differential equations 

(3.5) 

With the initial condition Uao, provided by the solution of the homogeneaus system, 

the differential equation (3.5) can be solved numerically with standard methods (see 

e.g. [22]). But before we can evaluate the solution of the last equation, we need the 

electric field which is determined by equation (2.6). How to solve this equation is the 

subject of the next section. 

B. Modified Poisson equation and its numerical solution with explicit methods 

In the longitudinal model of a thermal two-component plasma considered, the Poisson 

equation (2.6) couples the different components of the plasma. Instead of solving this 

elliptic equation with the usual methods proposed in Iiterature [23], we want to make 

use of the comprehensive information available from the explicit numerical schemes 

described above. Additionally, we should have the possibility to include in further 

considerations a time-dependent external potential, extending the present model to 

a more realistic model for the electrodes of the ion diodes. 

Forthat purpose, we first rewrite the explicit conservation scheme ( 3.3) in the following 

manner 

(3.6) 
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which is the starting point for the further discussion. In the scalar equation (3.6) N;: i 
I 

and a:,i+l/2 denotes the density and the corresponding numerical flux, respectively. 

Obviously, (3.6) represent the first column of the vector equation (3.3). Using central 

finite differences, the Poisson equation (2.6) at the time Ievel t = tn+l is given by 

En+l En+l _ A """"S M 1 (Nn+l + Nn+l) i+1 - i - i-1;1; ~ a a2 a,i+l a,i ' (3.7) 
a 

where Aa; is the distance of the spatial grid points, which is located equidistantely for 

sake of simplicity. Inserting (3.6) into (3.7) and assuming that the Poisson equation 

holds at each time step, we obtain after some manipulations 

(3.8a) 

where :F is given by the expression 

:F/J..t = E;+l- Ei+ Aa; L SaMa ~ ( a:,i+l/2 + a:,i-1/2). (3.8b) 
a 

Because equation (3.8a) represents a perfect finite difference in space, the electric 

field is given by (3.8b) except for a constant cn which may be time-dependent, but 

independent of position. Adding this constant, the electric field at the time Ievel 

t = tn+l has the form 

(3.9a) 

where the current density Af, obt.ained from the relation 

A'f = L SaMa ~ ( a:,i+l/2 + a:,i-1/2)' (3.9b) 
a 

is expressedas an average of the numerical fluxes a:,i+l/Z and a:,i_ 112 . Using these 

fluxes which actually advance t.he density Na,i in time (see equat.ion (3.6)), guarantee 

that the charge will be conserved. This means, t.hat an integral form of the Poisson 

equation is satisfied, and equation (3.9a), having the appearance of Ampere's law, is 

an appropriate numerical approximation for calculating the electric field, originally 

determined by equation (2.6). 

In the following, we want to outline a way how to det.ermine the, in general, time­

dependent constant cn. 0 bviously, t.he necessary condition ( Eij k 83 Ek = 0 ) for 

expressing the electric field as a gradient. of a potential </J is fulfilled in our model, 

resulting in the equation 
_ d</J(a;,t) _ E( ) 

da; - ;v, t . (3.10a) 
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Integrating the last equation over the intervall [0, L], we obtain 

L 

- V(t) =- [4>(L, t)- 4>(0, t)] = J dreE(re, t), (3.10b) 

0 

where V(t) denotes the time-dependent external voltage. Approximating the integra­

tion in (3.10b) numerically by the extended trapezoidal rule (see e.g. [24]) 

the corresponding discretized version of (3.10b) reads as 

(3.10c) 

where we used the symbolic abbreviated notation Ll.re L:l for the integration. To 

obtain now an equation for the unknown constant cn we multiply equation (3.9a) 

by -Ll.re and sum over k from 1 to N. Making furthermore explict use of equation 

(3.10c) we find finally for cn the expression 

(3.11) 

After the excursion in computing the position independent but time-dependent con­

stant cn, we are able to calculate the electric field E;+l at the new time Ievel t = tn+l· 
For that purpose we only refer to quantities available at the time Ievel t = tn with 

exception of the externa1 potential, which should cause no difficulties because the 

temporal step size Ll.t is always known. 

A remaining problern in solving equation (3.9) is to specify the boundary values. 

However, this problern could be resolved in a simple manner, if we consider for example 

periodic boundary conditions for the density N; i which reads as 
I 

and are true for all timest. The applicability of equation (3.9) will be demonstrated 

in the next chapter where we will consider weil known problems without an external 

circuit ( cn = 0) as examples. 

With regard to further applications of the proposed explicit electric field solver (3.9), 

especially in the field of ion diode physics, we close this section with a remark which 
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may be helpfull for investigations in the near future. lnserting (3.11) into equation 

(3.9a) and carry out some rearrangements, we obtain the so-called Ampere-type 

equation in the discrete form 

(3.12) 

which plays an important role in the context of the current-voltage relation in a 

time-dependent diode (25] . Equation (3.12) states that the total current density (lhs 

of (3.12)) in a diode is not only given by the temporal changing of the external voltage 

but, additionally, by the line-integrated current. 

C. Review of the tracking method for the plasma flow into vacuum 

Preliminary, to motivate the subject of the following discussion, we will introduce 

a physical example which should be kept in mind for the further considerations. 

Therefore, we suppose that a plasma layer is generated in front of the electrode A 

of a diode. The electrode is situated at the left side of the computational domain 

and the initial plasma profile has an extension up to ::v = ::v 0 • For positions larger 

than ::v 0 there should be vacuum. Thisidealized situation may be characterized in 

the conserved variables as 

( N N V: ) { ( 1' 0' f) 
cn a a•nea = (O,O,O) 

for 
for 

(3.13) 

which is obvious very similar to (3.1 ). The special additional assumptions made in 

(3.13) consists in the fad that the initial velocity for ::v < ::v 0 is zero and the pressure 

is equal to one. Interested now in the temporal evolution of the initial data (3.13), 

we have to solve in general the model system (2.5), (2.6) with the numerical methods 

descriebed in section liLA and III.B. To simplify the problern for the moment, we 

restriet ourselve to a simpler model, namely, we assume that the electric field vanishes 

and thus we are left with the homogeneous conservation laws described by (2.5a) 

neglecting the rhs of (2.5a). Obviously, the situation under consideration corresponds 

to a single-fluid plasma, expanding into vaccum. 

The arising numerical problems for this example are the same as for the expansion of a 

gas flow into vaccum. In the context of gas dynamics it is usual to apply the numerical 

methods mentioned in section A (see e.g. (16, 19] )to solve the Euler equations, which 

are equivalent to the homogeneous equation (2.5a). 
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The main problern in solving numerically the Euler equations with the initial data 

(3.13) can be summarized in the following manner. lf the homogeneaus conservation 

laws (2.5a) are formulated in an Eulerian frame of reference, which is fixed in space, the 

computational domain contains the plasma region, a plasma vacuum boundary and a 

vacuurit region. Because the Euler equations are based on the continuum assumption 

( which means that f er. is a smooth function in :n, see chapter I), they are no Ionger valid 

in the vacuum and a numerical approximation of these equations will fail. That means 

the problern (2.5a) with initial data (3.13) is not a real initial value problem. It is a 

free boundary value problern and its numerical solution becomes very complicated. 

A common procedure is to replace the vacuum region by a plasma of low density 

and pressure, assuming that the flow into this quasi vacuum is quite similar to the 

flow into real vacuum and to solve the problem as initial value problem. Since the 

densities of the quasi vacuum are very low, the numerical method still produces 

severe difficulties. This is due to the fact that near the plasma vacuum interface the 

dominant energy mode becomes kinetic. Usually, as it is pointed out in section liLA, 

the numerical approximation of the homogeneaus conservation laws is performed 

in the conserved variable·s density, momentum and total energy (see (2.5b)). To 

obtain the internal energy, which is the key quantity for computing pressure and 

temperature, we subtract the kinetic energy from the total energy. In low density 

regions any small rounding or truncation error may result in negative internal energy 

and, consequently, the numerical approximation breaks down. Replacing simply a 

negativ internal energy value by a small positive one, violates the conservation laws 

and may generate nonlinear instabilities. Recently, a sophisticated method which 

avoids the difficulties mentioned above, was proposed by Munz [9]. The essential 

feature of this tracking method is that the plasma vacuum interface in the Eulerian 

frame of reference is monitared in time. Several aspects of this method, necessary to 

assess the results presented in chapter IV, should be outlined in the following. 

An important initial-value problern for the Euler equations ( eq.(2.5a) without the rhs) 

is the Riemann problern with piecewise constant initial data as defined in (3.1). The 

general solution is given by a fixed point problem, and consists of four constant states 

Uz, u1, u 2 and Ur (see figure 3.3), separated by elementary waves (see e.g. [26]). For our 

purpose, we suppose that the right state is a shock wave ( all variables jum p according 

the Rankine-H ugonoit condition) and the left state represents a rarefaction wave { a 

continuous transition from the left to the right values ). The intermediate states Ut, 

u 2 are separated by a contact discontinuity, where the density is discontinuous, while 

the pressure and velocity is constant. From now, we want to consider the situation 

where the right state Ur coincide with the vacuum. 
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The homogeneaus conservation equations (2.5a) tagether with the initial data specified 

by (3.13) form the so-called "vacuurn Riernann problern" (VRP) (9]. As outlined above 

the VRP is no initial-value problern. It is a free boundary problern, because vacuurn 

is no solution of the Euler equations. But the solution of the VRP rnay be obtained 

as a lirnit of the solution of the usual Riernann problern. The general strudure of the 

solution of the VRP can be understood if we cornpare figure 3.3 with 3.4. 

t 

rarefadion wave 
contad discontinuity 

I 

I 
u 1 I 

I 
I 

I 
I 

I 

I 

Figure 3.3: Solution of a Riernann problern in (x,t)-diagrarn 

t 

rarefaction wave 

vacuum 

Figure 3.4: Solution of a vacuurn Riernann problern in (x,t)-diagrarn 
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The contact discontinuity, travelling with the local fluid velocity, set up the interface 

between plasma and vacuum. Hence, the right state in figure 3.3 disappears. Because the 

pressure has tobe constant across the contact {namely zero ), the contact discontinuity 

also disappears in the sense that it coincides with the right boundary of the left wave. 

Consequently, the left state is connected to the vacuum by only one elementary wave. 

Since the Rankine-Hugonoit condition cannot be satisfied in this case, the elementary 

wave has to be a rarefaction wave. This solution of the VRP can be calculated 

analytically and is given in appendix A. 

In the following considerations we briefly sketchout the numerical framework necessary 

to overcome the serious problems connected with the plasma vacuum boundary inside 

the computational domain. Therefore, we assume that the appropriate numerical 

method to solve the Euler equations is given by (3.3). Using the ideas of Munz [9], we 

track numerically the plasma vacuum boundary in a first step to getan estimation of 

the real movement of this interface. Using this information we determine in a second 

step the numerical flux in the related plasma vacuum grid zone in such a way that 

the plasma vacuum interface remains sharp. 

We assume that the location of plasma vacuum boundary (X;:) at the time Ievel tn 
is situated in the i-th grid zone (see figure 3.5). The location of the plasma vacuum 

interface at the time Ievel tn+l is obtained by solving the VRP. According appendix 

A ( omiting here the particle index a) the location of the interface is given by 

with 

~n = Vi + - 2
-Cz. ,-1 

The left state Uz required may be obtained by the formular 

Uz = a < ui > +(1 - a)ui_ 1 

(3.14a) 

(3.14b) 

(3.15a) 

(3.15b) 

where the knowledge of the location of the plasma vacuum boundary at the time Ievel 

tn is used, explicitly. The calculation of the left state Uz as proposed by (3.15), can be 

understood in the following way. Since we only use ui as the left state, waves generated 

at xi- 1; 2 will interact with the VRP and can change its solution. To guarantee, that 

these waves do not reach the plasma vacuum interface a constant left state (3.15), 

must be introduced which is constant within an intervalllength of ßx . Because the 

i-th grid intervall [xi-l/2, xi+l/ 2] contains plasma as well as vacuum, we ought to 
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use the over the intervall (a:i-l/ 2, x:] redistributed integral value < uf > instead 

of uf: 

( )

T 
n _ 1 n _ - n - n -n < U· >- -U· - N. M· e. I I I l I l I a 

{3.16a) 

We use here the known location of the plasma vacuum boundary. It seems to be 

favorable to calculate the right hand side of (3.15a) not in the conserved but in 

the primitive variables N, V and li. The vector < wf > in the primitive variables, 

corresponding to {3.16a) reads as 

(3.16b) 

where we have to emphasize that the velocity is not obtained by its redistributed 

integral value. Performing the calculation in the primitive variables ensures that IIz 
is a convex average of llf and IIf_ 1 and remains positive. Otherwise, the pressure IIz 
has to recalculated from the average of the conservative variables, which may Iead in 

low density regions to the numerical difficulties mentioned already above. 

t t 

xn+1 n+1 

t n+ 1 
V 

tn+ 1 
Xv 

V 
/ vacuum vacuum 

tn tn 
xn xn 

V V 

I 

X i -112 X i+ 1/2 
X 

X i -112 X i+ 1/2 

Figure 3.5: Tracking of plasma vacuum boundary within the Eulerian grid 

Using the information of the tracking step (3.14) - (3.16) an approximation of the 

plasma vacuum boundary at the time Ievel tn+l is obtained. The second step make 

full use of this information to calculate the numerical fl.ux near the plasma vacuum 

interface. Two different cases are to distinguish which are shown in figure 3.5. 
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According the left picture in figure 3.5, the grid zone interface at x = Xi+l/ 2 belongs 

to vacuum during the whole time step b.t. Hence, the numerical flux must be zero. 

What we call case 1 can be summarized as: 

If 

X n+l < 
v - Xi+l/2 

then 

(3.17) 

The second case becomes evident from the right picture of figure 3.5. Here, the 

plasma vacuum boundary moves across the grid zone interface during the time step 

b.t. Clearly, the flux vector at Xi+l/ 2 for this cases becomes non zero. A good numerical 

:llux calculation should be obtained by using the fluxes of the exact VRP (see appendix 

B). Incorporating the information of the tracking step, these fluxes should be taken 

at oy = xi+l/ 2 - x::;-, and averaged over the time step, afterwards. Suppose that the 

plasma vacuum boundary intersect the verticalline x = Xi+l/ 2 at 

ot* = oy 
n v.n' 

V 

(3.18a) 

Then the intersection of the left rarefaction fan boundary curve with x = xi+l/ 2 is 

given by 

{' * . ( oy ) utn+l = Mm b.t, Vi _ Cz , (3.18b) 

where we assume that Vi - Cz is always positive. If Vi - Cz is negative, ot~+l should 

be equal to b.t. Now we are able to resume case 2 in the compact form: 

If 

then 
6t~+l 

gi+l/2 = ~t J dtf [u(oy, t)] + ~t ( b.t- ot~+l )r(uz ), 
6ti, 

(3.19) 

where u(oy, t) is the exact solution of the VRP (see appendix A). The integrals (3.19) 

can be determined analytically. This is shown in appendix B. 

As it will be demonstrated in the next chapter, the numerical scheme (3.14)- (3.19) 

seems to be suitable to handle the serious problern of a plasma vacuum interface 

within an Eulerian frame of reference. 

Closing this section, we want to make two further remarks. First, instead of calculating 

the integrals occuring in (3.19), Munz proposed in [9] an extension of the HLL-method 

to calculate the flux gi+l/ 2 which substantial reduce the computational effort. Secondly, 
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he could further show that the numerical scheme {3.14) - (3.19) do not decrease the 

entropy. This is an important result, which ensures us that the proposed numerical 

method do not produce unphysical solutions at the vacuum transition. 
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IV. Test problems and numerical results 

A. The finite electron temperature model 

In this section we will demonstrate that the calculation of the electric field according 

the method proposed in III.B is a quite good approximation. Therefore, we consider 

the finite electron temperature (FET) model which is well-known in the field of plasma 

physics (see e.g. [27] and references therein). Starting from the longitudinal model of 

a thermal plasma (2.5), (2.6) the basic equations of the FET model are obtained in 

a simple manner. 

Because the ion mass is much larger compared to the electron mass, the ions should 

form a fixed, uniform background for the electron fluid. Without loss of generality, 

we assume that 

Vix(x, t) = 0 ( 4.1a) 

for all tim es. Assuming that the perfect electron gas posses only one degree of freedom 

( f = 1,1 = 3), the motion of the electron fluid is finally given by the dimensionless 

model equations ( Me = 1 ) 
DNe 
-- = -Ne8x Vex 

Dt 

DVex 1 
-- = --8xlle + OpEx 

Dt Ne 

DEx 
Dt = OpVero 

( 4.1b) 

where Jjt derrotes the convective derivative. As it is shown in appendix C, the FET 

model ( 4.1) can be solved analytically in the small-amplitude Iimit. The result obtained 

in this approximation scheme (see (C.8)) should be the reference solution for the 

following where the parameter E is hold constant with value 2 · 10-3 • 

To study the model system ( 4.1) numerically we apply the approximation methods 

briefly reviewed in liLA and III.B. A second order extension of the explicit scheme 

in conservation form (3.3) according van Leer [20] is used. Thereby, the time step 

size I::J..t is controlled in an adaptiv manner via the CFL-condition. The numerical flux 

g~,i+l/ 2 is calculated within the HLL-method and is obtained from (3.4). Because it 
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is important to have a good estimation of the signal velocities a1 and a.,, we make 

use of ideas proposed by Roe (28], leading finally to the so-called HLLE-method [19]. 

Within the extended HLL-method the velocities of the propagating waves are given 

by 

a1 = MIN (Vi- Cz, iit) 

a., = MAX(v;. + C.,, ä3), (4.2a) 

where we suppressed the particle index a. The quatities ä 1 and ä3 are obtained by 

diagonalizing the so-called the Roe matrix (see e.g. [16]) 

df 
du (ü) = A(ü) = Azr 

with 

u = ü(uz, Ur). 

U sing the flux vedor (2.5c) we find for the real eigenvalues of the Roe matrix the 

result 

a1 =V- c, ( 4.2b) 

Here, the crosslines indicate the so-called Roe mean values, which can be obtained 

from the following relations: 

( 4.2c) 

For more details about the interplay of Roe's ideas and the HLL-method we refer to 

[19] and the references given therein. 

The time-dependent electric field, necessary to calculate the source term vector (2.5d) 

and consequently to solve the equation (3.5), is determined from relation (3.9). Since 

we assume that the plasma is not driven by an external voltage, the time-dependent 

constant cn is set equal to zero. 

The initial profiles for the numerical calculation at t = 0 are generated according the 

exact solution ofmodel (4.1) in the small-amplitude Iimit ( see eqs. (C.8) in appendix 

C) and are indicated as dotted lines in figure 4.1. Furthermore, the results of the 

numerical calculation (open squares and circles) tagether with the exact solu tion 

(solid lines) are shown in figure 4.1 for different times ( t = i' ~' 3
;, 1r ). We can 

ascertain that the numerical solution cover the exact one in an excellent manner. 
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Figure 4.1: Comparison between the exact (solid lines) electron density, electron 

velocity and electric field and the numerical solution ( open squares 

and circles) for different tim es. 
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Especially, we want to ernphasize that the electric field Ex ( rc, t ), calculated nurnerically 

according (3.9), agree with the exact result in a nearly perfect way. Consequently, we 

can conclude frorn figure 4.1 that the rnethod proposed in section III.B to calculate 

the electric field is a very good and effective approxirnation. Thereby, we only use 

the inforrnation available frorn the fluxes g~,i+l/ 2 which actually advance the vector 

u~ i of the conserved variables in time. 
' 

With regard to further applications, especially, to cornbine a plasrna code (like this 

one used here) with a particle-in-cell code (like BFCPIC) it is necessary to specify 

the interface between these two codes. 

A straightforward rnethod to handle this problern is to solve the ordinary equations 

of rnotion 

( 4.4) 

for a so-called rnacro particle, accelarated in the :flux field of the plasrna. The phase 

space coordinates (xi:, v,:) of the k-th rnacro particle at the time t = tn should be 

the appropriate initial values for a subsequent PIC run. 

The integration of the Newton equations ( 4.4) for the k-th rnacro particle can be 

carried out nurnerically in a simple rnanner. Therefore, we deterrnine in a first step 

the grid zone where the k-th particle is located at time in 

( 4.5a) 

Here rco denotes the left corner of the equidistant cornputational dornain. Afterwards, 

we cornpute the weights associated with the k-th rnacro particle according 

w~ = ;x ( Xi: - Xi~e). ( 4.5b) 

The accelaration AF F of the k-th particle due to the flux field can be calculated, 

since we know the nurnerical solution of the FET rnodel (4.1) for the tirnes tn_ 1 and 

tn. If it is given, AF F can be calculated frorn 

AFF = __!_ (vn - yn-1)· 
b.t . 

( 4.5c) 

with 
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Obviously, the velocity of the macro particle at the new time Ievel tn+l is given by 

( 4.6a) 

while the new position can be obtained from 

( 4.6b) 

The dynamical behavior of an ensemble of 900 macro particles is shown in figure 4.2 

and 4.3, where each of them obey the equations ( 4.6). The flux field in which the 

particles are accelarated is obtained from the numerical solution of the model system 

( 4.1) for different initial velocity profiles. The initial profiles for the density and the 

electric field are the same in both calculations and are given as dotted lines in figure 

4.1. 

Figure 4.2 corresponds to the small-amplitude approximation where € is equal to 

2 · 10-3 (see appendix C). Besides, the initial distribution of the macro particles in 

phase space at t = O, two further snapshots of the temporal evolution in phase space 

are seen. Due to the fact that the small-amplitude solution vary only a small amount in 

absolute scale (see figure 4.1), the phase space contour of the macro particle ensemble 

change its shape regular and smooth. 

However, the situation changes dramatically since we consider the large-amplitude 

solution of (4.1), where Eis fixed to 0.2. This case can not treated analytically (see 

appendix C). The numerical results of our method are depicted in figure 4.3. The initial 

phase space coordinates of the macro particles are the same as already illustrated in 

the first picture of figure 4.2. As it is expected, the phase space contours which are 

shown in figure 4.3 for three different times reflect the distinct nonlinear behavior, 

inherent in the large-amplitude solution for systems like ( 4.1). 

To complete the description of the figures 4.2 and 4.3, we have to explain the meaning 

of the drawn solid lines. In both figures these lines corresponds to the boundary curves 

and 

1 
V_(a:,t) =- [2Ve:v(a:,t)- Ne(a:,t)] 

2 

1 
V+(a:, t) = 2 [2Vex(a:, t) + Ne(a:, t)], 

which are responsible for the temporal evolution of the distribution function 

fe( a:, Vero, t), necessaryfor the kinetic description ofan incompressible thermal electron 

fluid as it is discussed in appendix C. 
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Figure 4.2: Phase space snapshots for different times of 900 macro particles, 

calculated in the small-amplitude approximation. 
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B. Plasmaexpansion into vacuum 

In this sedion we shall be concerned with the adiabatic expanswn of a plasma 

into vacuum. Therefore, we have to solve the longitudinal model of a thermal two­

component plasma (2.5), (2.6) with the numerical methods described in section III. 
The initial profiles of the conserved variables are initialized according (3.13), where 

f = 3 and a:: 0 is fixed equal to 50. The numerical calculations are performed on a grid 

with 200 equidistant grid zones covering a computational region from 0 to 200. The 

time step size ll.t is controlled in an adaptive manner according the condition 

where (j is hold fix to 0.4 and amax is the maximum velocity of the propagating waves. 

Using the scheme in conservation form (3.3), the approximation of the flow within 

the plasma region is obtained from the HLL-method. A good estimation of the signal 

velocities az, ar, necessary to determine the HLL-flux (3.4), should be given by the 

relations ( 4.2). To be consistent with the tracking algorithm (see III.C), which is in 

the form (3.14)-(3.16) accurate to the first order in space and time only, here we 

restriet ourselves to the original first order upwind scheme. 

As a first test problem, we consider the homogeneaus conservation laws ( 2.5) established 

by setting OP equal to zero. Figure 4.4a shows the numerical result of the HLL-method 

combined with the tracking algorithm (3.14), (3.15) and the numerical flux calculation 

(3.17)-(3.19) near the plasma vacuum boundary. The results ofthe density, momentum, 

total energy and velocity are depicted for two different times. The numerical values 

are indicated by open squares (t = 5) and circles (t = 10), while the exact solution is 

plotted by a dashed (t = 5) and a solid (t = 10) line. Additionally, the dotted lines 

indicate the initial profiles of density aud euergy; for the momentum and velocity 

these lines coincide with the x-axis because they are zero. As it is represented by figure 

4.4a, the agreement of the approximation with the exact solution is quite good. Since 

the numerical method applied is accurate to first order only, numerical dissipation is 

introduced resulting in a strong damping, which is clearly visible at the left bouudary 

of the rarefaction fan. 

This numerical damping is strongly reduced, if we use a second order extension of 

the HLL-scheme, as it is displayed in figure 4.4b. Here, we perform an additional 

slope calculation in the primitive variables (see e.g. [16]), which is switched off ten 

grid zones before the plasma vacuum boundary is reached. 
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Figure 4.4a: Exact and numerical solution of the homogeneaus conservation la.ws 
for different tim es, applying first order numerica.l methods. 
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Munz remarked in [9] that the approximation of the location of the plasma vacuurn 

boundary is much moresensitive than the approximation of the conservative variables. 

The reason for this is that the sound velocity of the left state is used for the evaluation 

ofthe propagation velocity ~n of the plasma vacuum boundary (see (3.14b )). Usually 

the sound velocity is calculated according the relation Csa = V ;J.~Ji". , resulting in 

a much larger value of the sound velocity than the exact solution. This is due to the 

fact that in the vacuum Iimit the density and pressure as weil as the quotient ~ 
tends to zero which is no Ionger valid in the numerical approximation. The quotient 

~ near the vacuum is strongly influenced by the approximation errors, when IIa 
and Na tends to zero. A closer inspection of figure 4.4 shows that the numerical 

approximation of the total energy ( and pressure, not shown here) slightly exceeds 

the line of the exact values near the vacuum transition, while those of the density 

are found to be on that line. Hence, the sound velocity does not tend to zero but to 

a finite value (in our problern to 0. 7) and, consequently the propagation velocity Vvn 

of the plasma vacuum boundary is larger than the exact one. 

Considering the additional information that the waves expanding into vacuum are 

isentropic, we can approximate the full set of homogeneaus conservation laws (2.5) by 

the corresponding isentropic equations. This means that the full set (2.5) reduces to 

two equations near the plasma vacuum boundary and the relation for the isentropic 

sound velocity becomes 

E 
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Figure 4.5: Location of plasma vacuum boundary as a function of time. 
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U sing this relation for the determination of the so und velocity Cz and the calculation 

of the velocity v: of the plasma vacuum boundary, the evaluation of the Iimit ~ 
can be circumvented, which results in a better approximation of the exact solution. 

The numerical result of the temporal evolution of the plasma vacuum boundary is 

displayed in figure 4.5 { open circles) in comparison with the exact solution {solid line). 

As it is seen, the use of the isentropic sound velocity Ieads to a: slightly underestimation 

of the plasma vacuum location for a wide range in time. After approximately 9 time 

units the approximated plasma vacuum boundary come up with the exact one. 
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Figure 4.6: Influence of the. calculation of the left state Uz of the VRP. 

30 



As weil for the location (3.14) as for the flux calculation (3.19) at the plasma vacuum 

boundary it is necessary to have an appropriate approximation of the left state uz. To 

avoid that waves generated at xi_ 1; 2 do not reach the plasma vacuum interface, we 

introducein III.C a constant left state according (3.15), where the right boundary of 

the intervallength Ll.x coincide with the vacuum location x:;. As we already mention 

in III.C, it is favorable to evaluate the left state in the primitive variables according 

(Nt-1) 
Uz = a < wi > +(1- a) Vi~ 1 , 

rrn . 
i-1 

where < wi > is given by (3.16b ). That this choice of the left state is a reasonable 

approximation is demonstrated once again in the second picture of figure 4.6, where 

the numerical result for the velocity (open squares and circles) is compared with 

the exact one ( dashed and solid lines) for two different tim es. The same quantity is 

depicted in the first picture of figure 4.6 but for a different choice of the left state, 

namely 

uz = a < wi >. 

It is obvious from figure 4.6 that this estimation of the left state Ieads to an insufficient 

approximation of the exact solutions, especially, in the vicinity of the plasma vacuum 

boundary. 

The most interesting and challenging problern in this context is to consider the 

adiabatic expansion of two-component plasma ( consisting of electrons and ions) into 

vacuum. Therefore, we have to solve numerically the inhomogeneaus conservation 

laws (2.5a) for the electron and ion component of the plasma, respectively, which are 

coupled via the electric field, calculated from the Poisson equation (2.6). This should 

be the item of the second test problem, where all numerical techniques discussed in 

chapter III are required. Especially, the applicability of the explicit calculation of the 

electric field according (3.9) will be tested once again. Since the plasma expansion 

into vacuum should not be influenced by an external voltage, the time-dependent 

constant cn is neglected. 

Performing the numerical simulation the two components of the thermal plasma 

are initialized in the following manner. The initial profile of the negative charged 

(Qe = -1) electron fluid with mass Me = 1 is given by 

(N ( ) M ( ) ( )) { (1.0, 0.0, 1.5) 
e x,O' e x,O ,ee x,O = (0.0,0.0,0.0) 

for 
for 

X< 50 
X> 50 

where we assume that f = 3 and the electron pressure IIe(x, 0) is equal to one. The 

profiles of the positive charged ( Qi = 1) ion fluid with the mass Mi = 100 are 
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Figure 4·.7: Temporalevolution of the electron (open squares) and ion {open circles) 

density solving the inhomogeneous conservation laws. The electric filed 

within the plasma is depicted as open triangles. Additionally, the exact 

singlefluid solution {solid lines) is shown as a reference solution. 
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initialized according to 

(N ( ) M ( ) ( )) - { (1.0, 0.0, 0.15) 
i x,O, i x,O ,ei x,O - (O.O,O.O,O.OO) 

for 
for 

X< 50 
X> 50. 

Here, we consider that the ion pressure is Tii(x, 0) = 10. Furthermore, for the first 

test calculations the dimensionless plasma frequency np, which plays the role of a 

coupling parameter for the plasma components, is choosen equal to 10. 

Since the mass ratio between electrons and ions is small (0.01), we expect that the 

thermal two-component plasma considered behaves very similar as a singlefluid plasma 

(obeying quasineutrality) expanding into vacuum. Hence, an appropriate reference 

solution should be obtained, if we solve the singlefluid equations of a plasma according 

to appendix A. Forthat purpose, we have to fix the sound velocity {see A.2a) equal 

to 

tp accommodate the initial values specified above. 

In figure 4. 7 the electron ( open squares) and ion ( open circles) density is depicted for 

three different times ( corresponding to 63, 135, 285 circles in time), obtained from the 

numerical solution ofthermal two-component plasma model (2.5), (2.6). Additionally, 

the dashed lines indicate the initial profiles of densitiy, while the solid lines represent 

the exact solution of the single fluid plasma model. We can ascertain from figure 

4.7 that the calculated electron as weil as the ion density are in good agreement 

with the exact single fluid density. A quantitative measure for the quasineutrality, 

observed in the most plasmas, may be the electric field within the plasma, which 

is plotted in figure 4.7 as open triangles connected by a dotted line. Besides, small 

wiggles occuring at early times, the electric field increases at tbe vicinity of the plasma 

vacuum interface. This reflects the fact that at the delicate numerical region (namely, 

the plasma vacuum boundary), the less mobility of the ions compared to the electrons 

plays an important role. We expect that, if we increase the coupling parameter OP, 

the electric field tends to zero, resulting also in a more perfect quasineutral plasma 

at the plasma vacuum boundary. This will be tbe item of investigations, planned in 

the near future. 
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V. Summary and Outlook 

As we have seen for three test problems, the high resolution upwind schemes combined 

with the tracking method and the proposed numerical fl.ux calculation near the 

plasma vacuum boundary is an accurate and efficient tool to solve numerically the 

longitudinal model of a thermal two-component plasma. The numerical strategy 

applied is completed by using an explicit scheme to calculate the electric field which 

is a new approach in this context. The applicability of this approach is demonstrated 

with the aid of two examples. The results obtained are very encouraging and further 

investigations will be carried out to include an external voltage to get a more realistic 

model of the time-rlependent behavior of ion diodes. 

In near future, the one-dimensional time-rlependent model will be extended to two 

space dimension. Solving this model numerically, we can refer to extensive experience 

made with the two-dimensional time-rlependent hydrodynamic code HYDSOL [29] 

which use similar numerical methods as described in chapter 111. In particular, it has 

been shown that the explicit second order Godunov-typ schemes could be vectorized 

in a very effectiye manner. 
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Appendix A: 

Exact solution of the homogeneaus conservation equations at a vacuum boundary 

After some straightforward algebra, the homogeneaus conservation equations - ne­

glecting here the source term vector q(ua) on the rhs of equation (2.5a) - can be 

written as 

(A.la) 

(A.lb) 

D (ITa) 
Dt NJ, = 

0 (A.lc) 

where the convective derivative is given by 

(A.ld) 

In the following we omit the index a, and put the velocity in x direction equal to 

U = Va:v. Furthermore, we have to specify the initial data for which the equation 

(A.l) should be solved. Therefore, we suppose that there exist undisturbed values Nz, 
Uz and llz left from a point a: = a: 0 • At the right side of this point, we imagine that 

there is vacuum. It is convenient at this stage to introduce the so-called self similar 

transformation 
a: - a:o 

e = Czt (A.2a) 

where Cz denotes the velocity of sound at the regime left from the point a: = a: 0 • It 

is easy to show that the derivatives occuring in (A.l) can be expressedas 

(A.2b) 

(A.2c) 

(A.2d) 

where we make explicit use of the transformation (A.2a). From equation (A.lc) it is 

obvious that the scalar pressure is a function of the density only 

(A.3a) 
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According to equation (2.7d) the velocity of sound has the form 

where C, is related to the initial values of pressure and density via 

c - r:;rr; ,_V MN;· 

(A.3b) 

(A.3c) 

Together with equations (A.2b ), (A.2c) and (A.3a), we are left with a system of 

differential equations in~ for the density N(~) and the velocity U(e). After a simple 

integration we obtain the following expression for the velocity 

')'- 1 ( 2Cz ) U(~) = ')' + 1 Vvac + ')' _ 1 ~ 

and for the density 

. ( 1' - 1) -r:.1 N1 ( ) -r:.1 
N(e) = 1' + 1 c-r:_

1 
Vvac- Cd 

I 

where the so-called vacuum velocity Vvac is given by 

2Cz 
Vvac = Uz + --. 

')'-1 

(A.4a) 

(A.4b) 

(A.4c) 

According the initial conditions for N" U1 and llz, it is obvious that the inequality 

2Cz u, - c, :::; c,~ :::; u, + --
1 ')'-

define the range where the variable ~ holds. 
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Appendix B: 

Analytical solution of the integrals occuring in {3.19) 

We shall be concerned in this appendix with the analytical deterrnination of the 

integrals occuring in (3.19). Changing the integration variable according the self-

sirnilar transforrnation 
6y 

e = c,t, 
the integrals in (3.19) can be rewritten to the form 

The boundaries of the integration are ~efined as 

The vector of the fluxes 

6y 
el = c öt* ' 

l n+l 

6y 
6 = C6t*. l n 

(B.1a) 

(B.1b) 

(B.1c) 

is obtained frorn the exact solution of the VRP. According appendix A the cornponents 

of the flux vector are given by 

ft(e) = N(0U(0 

= cl'+l NzCz ( emam - e) V ( emam + ve) 

!2(0 = N(0U 2 (e) + ~II{0 

= av+ 2 NzCl ( emam - e) V ( emam + ve) 
2 

+ av+2 ~ ( emam - e) v+
2 

h(e) = !N(0U3 {0 + f + 2 rr(e) U(e). 
2 2 M 

= ~av+J NzC( ( emam - e) V ( emam + ve) 
3 

+ f ; 2 
av+J ~ c, ( emam - e) v+

2 
( emam + ve) 
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where we use the abbreviation 
e - Vvac 
max- Cl . 

2 
v= --

')'-1 
(B.2d) 

')'-1 
a=--. 

')'+1 

Obviously, the formal structure of the flux vector components h can be summarized 

in the following manner 

Therefore, we only have to evaluate the integral· 

e2 
J(e11 6) ~ J de ~12 ( emax- e rr ( emax + l/e )JL I (B.3a) 

{I 

which can be done in an elementary way if the exponents er, p E No. This is surely 

true, if we consider a perfect gas, where v can take the values v = {1, 2, 3, 5, 6}. 

Expanding the factors in (B.3a) into binominal power series and performing several 

rearrangements, we are left with the expression 

(B.3b) 

where (::z-) denotes the usual binominal coefficient. Splitting up the summation occuring 

in (B.3b) and performing the integration, we finally obtain the longish, but very simple 

result for the exact integration of (B.3a) 

J(e1, 6) = e~~~ ( ;
1 

- ;
2
) 

+ <~~~- 1 (vp- er) In(~:) 
- cu-1vJLer (cJL- tJL) 

'>max /1- '>2 '>1 

+ i;, c:!~-m ~m~: (m~ ~) [~ (~t- m + 1)- uj ( G'-1- G'-1) 

+ t ~ ~~!~-2 (-~·~:-• (~) (m~ k) (~;n- 1 - ~;n- 1 )· 
k=2m=k 

(B.3c) 
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Appendix C: 

The finite electron pressure model 

Rewriting the inhomogeneaus conservation laws (2.5a) in a form convenient for the 

following considerations we are left with 

(C.1a) 

(C.1b) 

D (ITa) 
Dt N~ = 0 (C.1c) 

( C.1d) 
a 

where the convective derivative is given by equation (A.1d). Furthermore, we assume 

that the 1 = 3 adiabatic pressure law (C.1c) holds which means that the degree of 

freedom of the perfect gas is f = 1. 

A specialdass of models in plasma physics assume, that the ionsform a fixed, uniform 

background (see e.g. [27]). In other words this means that, if the ion mass Mi goes 

to infinity, the ion pressure ( ~ --+ 0 ) as weil as the electric field ( ft --+ 0) in the 

ion equation can be neglected. With the additional assumption that the density and 

velocity is equal to one and zero, respectively, the system (C.1) for the ions has a 

simple form 

Viro(a:, t) = O, (C.2) 

which holds for all times. The resulting motion of the electron fluid is finally obtained 

from the model equations 
DNe · 
-- = -Neßro Yero 
Dt 

DYero 1 
Dt = -Ne 8roiTe + OpEro 

DEro ----m- = Üp Yero 
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(C.3d) 



where np = Wpoto denotes the dimensionsless plasma frequency. Furthermore, we 
. . . 

. take into account that the dimensionless electron charge Q e = -1 and the mass of 

the electrons Me = 1. Introducing the transformation into Lagrangean coordinates 
as 

r=t 
T 

( = a:- J dTVex((, T), 
p 

(CA) 

the model equations ofthe thermal electron fluid (C.3) can be written in the following 

form (see e.g. [27]) 
1 

Ne((,r) = --
7
-----

1 + f dT8c Vex((, T) 
0 

lle((, r) = .N;((, r) 

8cEx((, r) = Op Vex((, r) 

82 ( ) 2 ( ) { 8cYex((,r) } cVex (,r +OpVex (,r =38( 
7 4 

. [ 1 + { dT8c Yex((, r)] 

(C.5a) 

(C.5b) 

(C.5c) 

(C.Sd) 

where we assumed that the initial density profi.le of the electrons satisfy the condition 

Ne{(, 0) = 1. (C.Se) 

Obviously, equation (C.Sd) is not tractable analytically without some additional 

approximations. In the small-amplitude analysis, the linearized version of (C.Sd) is 
given by 

(C.6a) 

where we put Yex((, r) equal to 

O<E~l. (C.6b) 

Assuming that the initial acceleration of the electron fluid is equal zero 

(C.1a) 

and interested within this context in nonlinear periodic solutions of ( C.5) with the 

initial condition 

~<;)( (, r) = sin (, (C.7b) 
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we 'finally obtain the solution of the approximated model system: 

'Vex ( (, T) = € sin ( cos ßT 

Ex((,T) = E~p sin(sinßT 

1 
Ne((, T) = . 

1 + ~cos(smßT 

Ile((, T) = N;((, T), 

where the modified frequency ß is given by the expression 

( C.8a) 

(C.8b) 

( C.8c) 

(C.8d) 

(C.8e) 

The physical importance ofthe thermal electron model (C.3) arise from the fact, that 

the macroscopic equations (C.3) are equivalent to the single-water-bag model in the 

kinetic description of the electron fluid ( see [27) and references therein). To recognize 

the close relation between the microscopic and macroscopic describtion, we suppose 

that the initial distribution function of the electrons fe(m, V, t) ( V= Vex ) is given 

by (see figure C.1) 

f ( V: O) _ { A = const. > O, 
e x, ' - h . 0 ot erw~se 

The temporal evolution of fe is given by the Vlasov-Maxwell equation, which reads 

as 

(C.9a) 

(C.9b) 

describing the incompressible motion of the electron fluid in phase space. Furthermore, 

we suppose that the boundary curves V_ and V+ evolves temporally in such a manner 

that at time t the distribution function is given by 

fe(x, V, t) = { A = const. >. O, 
0 otherw~se 

(C.10) 

As a consequence of taking the appropriate moments of the Vlasov equation (C.9a), 

the boundary curves V_(x,t) and V+(x,t) are related to the density, velocity and 

pressure. Assuming that V_(x, t) and V+(x, t) are single-valued functions of x, we 

find that the local densities of interest can be expressed as 

41 



V 

f_e = 0 V+(x,O) 

f_e = 0 

Figure C.l: Phase space of the electrons at t=O. 

00 

Ne(x, t) = J dVfe(re, V, t) = A ( V+(re, t)- V_(re, t)) (C.lla) 
-oo 

00 

Ye:ll(x, t) = Ne(~, t) J dVV fe(re, V, t) = ~ ( V+(re, t) + V_(re, t)) (C.llb) 
-oo 

00 

IIe(x, t) = Me J dV [V- Ye:ll(re, t)] 2 fe(x, V, t) = -%e A ( V+(re, t)- V_ (re, t)) 
3

• 

-oo 

( C.llc) 
However, the heat flux of the electrons, defined as 

00 

he:ll(re, t) = ~e J dV [V- Ye:ll(re, t)f fe(re, V, t), 
-oo 

is identically zero. 
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