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Thermodynamische Konsistenz viskoplastischer Materialmodelle,
die Anderungsgeschwindigkeiten der externen Variablen
in den Evolutionsgleichungen der internen Variablen enthalten

Zusammenfassung

Ziel der Studie ist es, thermodynamische Restriktionen fur eine besondere Klasse
Interner Variablen Modelle abzuleiten und zu untersuchen. Deren Evolutionsglei-
chungen bestehen aus zwei Anteilen: dem tiblichen irreversiblen Anteil, der nur
vom gegenwaértigen Zustand bestimmt wird, und einem reversiblen aber wegab-
hdngigen Anteil, der linear von den Raten der externen Variablen abhangt (Evo-
lutionsgleichungen vom "gemischten Typ"). Die thermodynamische Analyse be-
ruht zunachst auf der klassischen Clausius-Duhem Entropieungleichung und der
Coleman-Noll SchluBweise. Diese Analyse ist auf kleine Verzerrungen und Rota-
tionen beschrankt. _

Die Resultate werden spezialisiert und auf eine generelle Klasse von
elastisch-viskoplastischen Materialmodellen Ubertragen. AnschlieBend werden
sie angewandt auf mehrere viskoplastische Modelle vom “gemischten Typ”, wie
sie in der Literatur vorgeschlagen oder diskutiert wurden (Robinson et al., Krempl
et al.,, Freed et al.) und es wird gezeigt, daB einige dieser Modelle thermodyna-
misch inkonsistent sind.

Es wird demonstriert, daB eine nachtragliche Analyse der thermodynami-
schen Konsistenz von Materialmodellen, die nicht in einem thermodynamischen
Rahmen eingebettet sind, eine schwierige Aufgabe darstellen und miBliche Uber-
raschungen zu Tage férdern kann. Deshalb sollten thermodynamische Konzepte
bei der Entwicklung von Modellen von vornherein bericksichtigt werden. Dies
gilt insbesondere dann, wenn die Modellentwicklung auBerhalb Ublicher Wege
erfolgt, wie es bei Modellen mit Evolutionsgleichungen vom “gemischten Typ”
der Fall ist.

Die Studie wird mit der Auswertung der erweiterten Clausius-Duhem Entro-
pieungleichung (Millers Konzept), bei der dem EntropiefluB eine eigene konsti-
tutive Gleichung zugeordnet wird, abgeschlossen; auch werden die einschran-
kenden Bilanzgleichungen mit Hilfe der Methode der Lagrangeschen Multiplika-
toren (Liu’s Vorgehensweise) explizit bericksichtigt. Diese Analyse wird far ein
viskoplastisches Materialmodell vom "gemischten Typ” durchgeflhrt. Es wird ge-
zeigt, daB diese Auswertung sehr viel komplizierter ist als die der klassischen
Clausius-Duhem Entropieungleichung mit der Coleman-Noll Argumentation. lhre
Vorteile, nachgewiesen fur andere, hier nicht diskutierte konstitutive Klassen,




rechtfertigen diese Schwierigkeit. Im vorliegenden Falle bestétigt sie die thermo-
dynamischen Restriktionen, wie sie mit dem klassischen Vorgehen abgeleitet
wurden.




Thermodynamic Consistency of Viscoplastic Material Models
Involving External Variable Rates in the
Evolution Equations for the Internal Variables

Summary

The objective of this study is to derive and investigate thermodynamic restrictions
for a particular class of internal variable models. Their evolution equations consist
of two contributions: the usual irreversible part, depending only on the present
state, and a reversible but path dependent part, linear in the rates of the external
variables (evolution equations of "mixed type"”). In the first instance the thermo-
dynamic analysis is based on the classical Clausius-Duhem entropy inequality and
the Coleman-Noll argument. The analysis is restricted to infinitesimal strains and
rotations.

The results are specialized and transferred to a general class of elastic-
viscoplastic material models. Subsequently, they are applied to several visco-
plastic models of "mixed type”, proposed or discussed in the literature (Robinson
et al.,, Krempl et al., Freed et al.), and it is shown that some of these models are
thermodynamically inconsistent.

It is demonstrated that a subsequent analysis of the thermodynamic consis-
tency of material models not embedded in a thermodynamic frame may be a
cumbersome exercise and may produce awkward surprises. Therefore, the models
should be developed observing thermodynamical concepts from the beginning.
This is especially so if the development of the model is outside the usual route
which is the case for evolution equations of the "mixed type”.

The study is closed with the evaluation of the extended Clausius-Duhem en-
tropy inequality (concept of Muller) where the entropy flux is governed by an as-
sumed constitutive equation in its own right; also the constraining balance equa-
tions are explicitly accounted for by the method of Lagrange multipliers (Liu’s ap-
proach). This analysis is done for a viscoplastic material model with evolution
equations of the “mixed type”. It is shown that this approach is much more in-
volved than the evaluation of the classical Clausius-Duhem entropy inequality
with the Coleman-Noll argument. Its merits, proven for other constitutive classes
than discussed here, justifies this inconvenience. In the present case it confirms
the thermodynamic restrictions derived with the classical procedure.
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1. Introduction

it is well known that the response of many materials depends on their past his-
tory. One possibility to account for the material memory is to simply state that the
response, for example the stress, internal energy and heat flux at time t, are
functionals of the entire past history, up to and including the present time t of
the relevant deformation measures, temperature and temperature gradient. This
representation puts aside the classical state space representation; instead it con-
siders function spaces.

Another approach to account for the material memory is to use the concept
of internal state variables. Internal variables cannot be easily determined and di-
rect control is not possible since these internal (hidden or conceiled) variables are
not directly connected to any external force variable. Thus, the form of the bal-
ance equations for linear momentum, moment of momentum and energy are the
same whether or not internal variables are accounted for. Examples for interpre-
tations of internal variables are various [1], e.g.,

—  quantities related to density, motion, and arrangement of dislocations
which give rise to inelastic behavior of metals

— orinternal stresses or displacements in rheological models.

The internal variables supplement the external (or observable) variables, e.g. a
deformation measure, the temperature and temperature gradient. Internal and
external variables are supposed to completely define the present non-equilibrium
state at a material point of a body. Thus, the responses like stress, internal energy
or heat flux are functions of the external and internal variables. The history de-
pendence of the response functions comes into play by requiring that the time
evolution of the internal variables is governed by ordinary differential equations
such that the instant rate of an internal variable is uniquely determined by in-
stant values of external and internal variables. These relations are the constitutive
equations for the internal variables.

For example, letay, v = 1, ..., N be scalar, vectorial or tensorial internal vari-
ables, then the evolution equations are given by

74
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where T is the temperatursand Fmn and gk are the deformation and temperature
gradient and the symbol (. ) characterizes an objective time derivative.




The relative merits of the representation of memory effects by functionals
and by hidden variables have been described by Nemat-Nasser [2]; here internal
variables offer certain definite advantages. In fact, the actual development in sol-
id mechanics - plasticity, viscoplasticity and continuum damage mechanics* - has
given clear preference to this approach.

On account of these applications the intimate relationship of the notion of
internal variables with the description of dissipative phenomena should be noted.
Therefore, it is necessary to embed this phenomenological approach into a ther-
modynamic frame, since continuum thermodynamics imposes restrictions on the
constitutive equations characterizing the material behavior; otherwise the model
may be quite empty.

These thermodynamic restrictions derive from an evaluation of an entropy
principle. However, the suitable formulation of the entropy principle or the en-
tropy production inequality has raised many controversies which persist at the
present time [5 - 12].** Very often it is taken to be the Clausius-Duhem entropy
inequality. In its time and space integral form it reads

(z G .
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where 1 is the specific entropy, gk are components of the heat flux, r is the exter-
nal heat supply, T the (absolute) temperature, p the density and V, A, nk are the
volume, the surface area of the body and the external unit vector on the surface.
The usual summation convention applies to repeated subscripts.

For sufficiently smooth fields the divergence theorem and localization in
space and time yield the local instant Clausius-Duhem entropy inequality

_ . 4 _ 57 (1.3)
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the comma ( . ) k denotes partial differentiation with respect to the cartesian co-
ordinate xx and the dot marks material time differentiation.

* Maugin and Drouot [4] point out various other phenomena and applications - relaxation in

dielectrics and magnets, phase transition, heat conduction, superfluids etc. - were the
usefulnes of the internal variable formalism has been established.

** This list of references contain only publications which have the character of review articles.




Coleman and Noll [13] introduced an argument which allowed to draw con-
clusions from this inequality. The Coleman-Noll argument considers a large vari-
ety of admissible thermodynamic processes, i.e., all smooth solutions of the bal-
ance equations with proper account for the assumed constitutive relations. Then
a "dissipation postulate” is required to hold: "For all admissible thermodynamic
processes and for every time interval and every part of the body the entropy pro-
duction must be non-negative”. The decisive words are the quantifiers "all” and
"every”. The quantifier "every” requires that the Jocal instant form (1.2) should
be satisfied, and the quantifier "all” requires an identical satisfaction of (1.2)
which makes the postulate a restrictive condition on the constitutive assump-
tions. From a physical standpoint an admissible process is controlled by prescrib-
ing the body force and heat supply as well as the initial and boundary conditions.
In the approach of Coleman and Noll the body force and heat supply are required
to be assigneable in any way and this allows to satisfy the balance equation iden-
tically; butinitial and boundary conditions are not to be considered explicitly.

The concept of Coleman and Noll, advanced by Truesdell [14] and others and ap-
plied numerous times, has been criticized for different reasons:

(a) Entropy and absolute temperature are well defined, derived quantities only
in thermostatics (equilibrium states). Their transfer to non-equilibrium pro-
cesses involves hypothetical generalizations [5 - 12, 15 - 17]. However, it
should be noted that recent work on the foundations of thermodynamics
has focussed on justifying the use of entropy and absolute temperature (and
even internal energy) for non-classical materials. This task requires the for-
mulations of versions of the Second (and First) Laws that do not mention en-
tropy (and energy) and that are sufficiently general to be applicable to non-
classical materials (entropy free thermodynamics, e.g. [6, 16, 18 - 20]).

(b) Even if the existence of entropy and absolute temperature is accepted, the
form of the entropy transfer, i.e., the entropy flux qx/T, has been ques-
tioned. This is so since the Coleman-Noll approach with the classical C-D in-
equality imposes severe restrictions on the dependence of constitutive func-
tions on spatial or temporal derivatives of the primary state variables, e.g.,
strain and temperature [22 - 24]. Such derivatives are quantities which typi-
cally do not vanish in non-equilibrium situations. However, it is expected
that the response functions “stress”, "internal energy” etc. could also de-
pend on such non-equilibrium variables beyond the equilibrium state vari-

ables and internal variables.




(©)

In the Coleman-Noll approach the body force and heat supply are required
to be manipulatable arbitrarily but initial and boundary conditions need not
to be considered explicitly. This has been critized by Woods [25 - 27]: A ficti-
tious body force and heat supply are required unconnected with any genu-
ine physical sources. These distributions could be supplied only by some im-
ponderable medium permeating the body (“phlogiston axiom”) and are be-
yond control at interior points of the body. Green [28] did respond to this
criticism but without much success [26, 27].

Some of the criticism, especially the aspect (b) and (c), has been overcome by a
new concept developed by Muller (e.g. [29 - 31]):

Entropy is still a primitive quantity assumed to exist in non-equilibrium pro-
cesses. The temperature is understood as a measure how hot a particle is
(empirical temperature [31, p. 1]). The instant entropy inequality has the fol-
lowing form:
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where the entropy flux ¢ is assumed to be governed by a constitutive equa-
tion in its own right. Thus, the classical relation px = qk/T is not assumed ab
initio. Note that

SZ% Ry < o Flow of entropy into the volume V

¢£ Ny > O ¢ Flow of entropy out of the volume V ,

Further, s is the entropy supply due to prescribed heat sources r (notably
r = 0[31]) such thats = r/T.

The introduction of the entropy flux ¢k as an independent quantity can be
motivated by different arguments: Hutter [6] shows that theories of mix-
ture and electro-mechanical interactions as well as arguments coming from
the kinetic theory of gases require an entropy flux which is not collinear
with the heat flux. It is also obvious that an entropy flux as an independent
quantity introduces more flexibility. However, at the same time this may
generate the problem of insufficient information for a unique determina-
tion of all constitutive functions. To get around this problem Miiller consid-




ers the "ideal contact” of the material model at hand and another material
whose (equilibrium) properties are known.

—  The evaluation of the entropy inequality requires a multitude of admissible
thermodynamic processes. In Miiller’'s approach the body force and heat
supply are fixed quantities; notably, they are assumed to vanish. Conse-
quently, the multitude of processes is produced by an arbitrary choice of ini-
tial conditions. It has been shown by the author [32] that, depending on the
structure of the assumed constitutive equations, this may not be sufficient
but appropriate boundary conditions are required too, which are arbitrarily
assigneable. Now, the balance equations are not satisfied identically any-
more. They are constraining conditions for a thermodynamic process and
are explicitly accounted for in the evaluation of the entropy inequality. This
can be done in a direkt way or in a formal way by the method of Lagrange
multipliers (Liu’s approach [33]).

It has been amply shown that this approach is less restrictive than a Rational Ther-
modynamics based on the classical Clausius-Duhem entropy inequality.

It should be noted that Muller's modification of the entropy flux is related to an
alternative approach by Dunn and Serrin [34] as well as Dunn [35]. They preserve
the structure of the classical Clausius-Duhem entropy inequality and of the bal-
ance equation of linear momentum along with the notion that the local contact
force between the subparts of the body is delivered in the usual way by the
Cauchy stress tensor. Thus, they modified only the energy balance equation by
postulating an "interstitial work flux wy"” such that the integral energy balance is
given by

'i?//f/é +2Ld4/£4 dV*"ﬁ/é‘//:c ”7‘//”‘“
v
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where & is the specific internal energy, Uk and by are the components of the ve-
locity and the body force, respectively, and oy are the components of the Cauchy
stress tensor.




The flux wy is thought of as mechanical in nature and is attributed to long range
spatial interactions; it represents a rate of supply of energy across every material
surface beyond the usual mechanical supply due to the power of the surface trac-
tions. In conventional thermodynamics the surface energy flux hy, beyond that
due to the power of the surface tractions, is just the heat flux gx and is thus
inseperably linked to the surface entropy flux px = qi/T. The introduction of the
interstitial work flux wi changes the surface energy flux hi to hx = dk - wik while
ok is still given by qi/T. Therefore, mathematically this theory is similar or equiv-
alent to a theory in which hy is kept equal to and interpreted as the heat flux qi
but the entropy flux ¢ is taken to be given by ¢k = qk/T + kk where ki is due to
long range spatial interactions.

Coming back to internal variable models, we note that Coleman and Gurtin [36]
have used the classical C-D inequality and the Coleman-Noll argument to derive
thermodynamic restrictions for the constitutive equations of nonlinear materials
with internal variables whose temporal evolution is governed by ordinary differ-
ential equations of the form (1.1); there the a,'s were scalar variables, such that
the objective time derivative reduces to the ordinary material time derivative. An
alternative derivation was given in [32] using an extended form of Mdller’s ap-
proach but with the classical C-D inequality (i.e. pk = qk/T). Nevertheless, the re-
sults were the same as those derived by Coleman and Gurtin.

The thermodynamics with internal state variables formulated by Coleman and
Gurtin has been used by Perzyna et al. [37 - 40] and Kratochvil and Dillon [41 - 42]
to analyse the thermodynamic restrictions imposed on some elastic-viscoplastic or
elastic-plastic material models. Recently, the author [1, 43 - 44] studied the ther-
modynamic consistence of a thermodynamic extension of an early version of an
elastic-viscoplastic material by Robinson et al. [45 - 47] on the basis of the classical
C-D inequality and the Coleman-Noll argument. A peculiar aspect of this model is
the discontinuity of the evolution equations which required due consideration in
the analysis. Necessary and sufficient conditions on the material parameters were
derived to assure compatibility with the classical C-D inequality for all processes
and all states. The study closed by pointing out future theoretical work to en-
hance understanding of the phenomenological Robinson model. We recall here
the first two items [1]:




— 5o far only a simplified version of the Robinson model has been analysed.
The thermodynamical consistency analysis must be extended to include iso-
tropic hardening as well as the thermomechanical path dependence of the
drag stress. This last aspect is modeled such that the evolution equation for
the drag stress involves the rate of the observable variable “temperature” in
a non-integrable form. This requires special attention when the Clausius-
Duhem entropy inequality is evaluated.

= In this analysis the Clausius-Duhem inequality has been used in its traditio-
nal form in connection with the Coleman-Noll argument. Both concepts are
subject to criticism. A more advanced and less restrictive entropy principle
and a physically more realistic method for exploiting the entropy principle
should be used.

In fact in recent years the evolution equations for the internal variables of
viscoplastic models have been extended to include the rates of the external (ob-
servable) variables temperature [47, 48, 49, 51, 54, 58, 59, 61] and total strain [50,
52, 53, 56] or stress [55 - 59] in a linear form to account for the thermal history de-
pendence [47, 54] or to improve the predictions under ratchetting conditions [52,
53]. Also a nonlinear dependence on external variable rates has been proposed
[60, 61]. Such a dependence requires appropriate considerations when deriving
constitutive restrictions from the C-D inequality. This aspect has been studied by
Lubliner [62, 63] to some extend for a general internal variable model with evolu-
tion equations of the form

xy = Jo (A) + Lo (1) Co +tHM)T | 24,4 (16

where A stands for the ordered set A = { Cmn, T, ay }; Cmn are the components of
the right Cauchy-Green tensor.

Lubliner [63] made the following observations:

- If external variable rates are not included in the evolution equations, then,
for a wide class of functions fo, the solutions a,(t) are functionals of only the
past histories and not the present values of the external variables.

- Without external variable rates the evolution equations are not form invari-
ant under a transformation to a new set of internal variables af = a'p(A),
which may be of physical significance. The simplest form of the evolution




equations, which is invariant under such a transformation is one which con-
tains first-order rates linearly.

—  The linear dependence of the evolution equations on the first-order exter-
nal variable rates represents a “reversible behavior”.

The latter aspect is made evident as follows. Assume that f, = 0. Then (1.6) may
be written in the incremental form

ol ;= :@zfﬂlalfa # M) dr (1.7)

which shows that the time scale is unimportant for the change in ap. Starting off
from an initial state A, and prescribing the history of the external variables Cy|(t),
T(t) in some time-interval tg < t < t4, equ. (1.7) may be integrated which yields
the internal variables ay as a function of tin the interval tp = t < 1. The final val-
ue ap1 = ap (tq) depends on the topology of the "path” [ Ci(t), T(t) ] in the { Cy,
T }-space, where tis the curve or path parameter, and not on the velocity this path
is run through. Starting off from the state Ay = { Cj1, T1, ap1 } and following the
same path of the external variables in the { Cx), T }-space in the reverse direction,
which is always possible, one reaches the original initial state A,. In this sense the
response is reversible but path dependent. This behavior may be visualized also in
the A-space, the complete state space: Starting off from an initial state A, and
assuming that the "path” of the external variables is given in the { Cy, T }-
subspace and passes through the "projection” { Cko, To } of Ay and ends at { Cyj1,
T1 }, then (1.7) and the path determine a trajectory A in the A-space passing
through A, and Aq; s is the curve parameter. The path of the external variables is
the projection Il) of the trajectory A). Reversibility means that starting at A4
and passing through the same projection Il in the reverse direction, then the
state A follows the same trajectory A in the reverse direction.

Path-independence is only assured if the functions;k;(A) and ‘H(A) satisfy
certain conditions which are derived as follows. If path independence exists, then
the a,'s can be represented as functions of the external variables, i.e.

Ky = 0y (Lo, 7). (1.8)

Thus

fo) = fato ) v fien7)

and (1.7) takes the form
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and the right side is required to represent a total differential. The necessary and

sufficient conditions are
lsd
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in terms of the implicit functions fkl. y we have

9/_,:;@ Qfa s 9,{5@ 9‘7("
Dlwn Ol ., Olsns
Déw _ b« . fa J4 (1.12)
2 _ 2 . 2 K
a[ﬁuu Qé‘mu % oC, &["“‘
From (1.8) and (1.10) we obtain
doty = 2, Al 2% AT
s Dl " 7
A ~ 7—.
= fowdln + HA
so that o »
% _ S 7% = # (1.13)
y[’hm s e ! 97— £ )

Finally, with (1.12), (1.13) and (1.9) the integrability conditions (1.11) read in
terms of the functions fk| and };l
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This is the desired set of conditions.

Consequently, at every instant the internal variables are determined by the
instantaneous external variables. In this case the ap's lose their character as inter-
nal variables.

The first term fy in (1.6) represents irreversible behavior. Thus dropping the
rate termsin (1.6) we get

= /,. (). (1.15)

At any state A this relation uniquely defines the rates a,. The segment of a trajec-
tory is given by

AC, = C ot | AT =Tyt | A% = f(4)dE.

Thus, reversing the history of the external variables, i.e., reversing the sign of the
rate ék| and T, changes the sign of the increments dCy and dT but the day's are
not affected. Therefore, a different segment corresponding to a different trajec-
tory results; this represents an irreversible response.

These observations justify to call the evolution equations (1.6) to be of
"mixed type” (Lehmann [64]).

The purpose of the present study is to derive and discuss thermodynamic restric-
tions for a class of general internal variable models with evolution equations
which contain the rates of external variables total strain or stress, temperature
and possibly temperature gradient linearly. It should be noted that the analysis is
restricted to infinitesimal strains and rotations. The study is presented in three
major sections 2, 3, 4.




- 11 -

In section 2 the thermodynamic approach is based on the classical Clausius-
Duhem entropy inequality and the Coleman-Noll argument. For a general inter-
nal variable model of "mixed type”, where the strain is one of the independent
external variables, thermodynamic restrictions are derived. It is shown* that the
classical potential relations for the stress and energy, involving the Helmholtz
function or free energy, do not hold any more. Following Lubliner [63], explicit
conditions are developed which assure the reduceability of the evolution equa-
tions of mixed type to the purely irreversible type; this implies the transformation
of the internal variables. As a consequence the classical potential relations hold
again.

Alternatively, evolution equations are studied which involve the stress as an
independent external variable instead of the strain. This reflects the common for-
mulation in plasticity and viscoplasticity. Then the satisfaction of the Clausius-
Duhem entropy inequality for arbitrary thermomechanical processes may pose a
problem since the arbitrary choice of a stress field may not be associated with a
compatible strain field. Appropriate conditions are derived which assure that this
variable choice is acceptable. Also the conditions for the reduceability of the evo-
lution equations are given. For some special evolution equations of mixed type
explicit transformation functions for the internal variables are determined.

Also, the conditions for the thermodynamic consistency of assumed strain-
stress relations, as proposed in purely mechanical theories, are studied.

Finally, the internal variable model is extended to represent a class of elastic-
viscoplastic materials. The total strain is additively composed of the thermoelastic
and viscoplastic strain. The evolution equation for the viscoplastic strain is solely
determined by an irreversible contribution, whereas the evolution equations for
the internal variables, which control, e.g., the hardening, are of the "mixed
type”. The irreversible part in the evolution equations may change according to
switch conditions, which define, e.g., an elastic range. However, these conditions
should depend only on the independent state variables; an influence of rates of
external variables is excluded. The thermodynamic results obtained above are
translated to this case.

In section 3 the results obtained are applied to different constitutive
models, the model of Robinson et al. [47] and Krempl et al. [52] and models dis-
cussed by Freed, Chaboche and Walker [57, 82]. The first two models were pro-
posed without a thermodynamic embedding. Their evolution equations of the in-

*  This result has been derived preveously, e.g. [62, 63]
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ternal variables are of the mixed type: In the Robinson model the rate of tem-
perature is involved and the model of Krempl et al. involves the rate of total
strain or, equivalently, the stress rate. The two models discussed by Freed et al. in
a thermodynamic frame involve the stress rate in the evolution equations. These
assumptions require an analysis of the thermodynamic consistency of these
models. With respect to the Robinson model this analysis supplements the pre-
vious work [1].

Finally, in section 4 the extended Clausius-Duhem entropy inequality, using
the concept of Muller and the method of Lagrange multipliers (Liu's approach) to
take into account explicitly the constraining balance equations, is used to derive
the thermodynamic restrictions of an elastic-viscoplastic material model with evo-
lution equations of mixed type. This analysis is done to obtain further support for
the general results derived in section 2.3.
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2. Thermodynamics on the Basis of the Classical Clausius-Duhem
Entropy Inequality and the Coleman-Noll Argument

2.1 Strain as an Independent External Variable

2.1.1 Derivation of Thermodynamic Restrictions for a General Internal Variable
Model

In the following a general internal variable model is considered which involves
the rates of the external variables, i.e., &, T, gk such that

Gy, = é‘ﬂ /g,w/ 7 %, gy ) 7‘/ i , ) stress
ﬁé - ;Q:‘ 4 . ) heat flux
) }(2.1)
& = & ( V] ) internal energy
7 - 4; ( ,/ / entropy
/

and the evolution equations for the internal variables are given by

O(cf = '/ZZ{' /5‘"'/ T/ﬁﬂ/ E.Az/ 7:/%/ 0‘{}’)/ J,’;/"’” (2.2)

If the internal variables ay are not present in the model such that (2.2) is skipped
and (2.1) does not involve the a,'s, the model belongs to the “materials of dif-
ferential type” [66 ].

In the later course of the development a special case is primarily considered
where (2.1) does not depend on the rates and (2.2) involves the rates only lin-
early. Thus

p 3
6;64 = 6}1 /5““ , 7—/ ;ﬂ ’ Xd’ )
= 3 iz
? % % ¢ ' J , (2.3)
€ = € ( 7
= % [ y ) )
and

[—

o‘d’ = %J’ (‘0‘““/ // j‘/ 0(”)

~E, p ) Enn  F
J"‘
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° v

(b, Ty %, )7

4 4 /f.z.

7

(2.4)

H
¢
A
+§l

Several of the proposed viscoplastic material models are special cases of this re-
stricted class, and their thermodynamic consistency will be a primary subject of
this report. However, the thermodynamic consistency analysis will initially be
done assuming (2.1) combined with the eveolution equations (2.4); this somewhat
more general set of relations allows to point out some important conditions.

For sufficiently smooth processes the local dissipation inequality reads (e.g.

[11)
R e o _ ?A
Ji= G &y — 8 ¥ 597 %20. (2.5)

Here the free energy is given by
Y= & -7 7 (2.6)

and

- /s

(2.7)

denotes the dissipation where o is the entropy production rate. With (2.1) the
free energy is a function of the variables

77’ = /a“"/ 7:?‘/ A/"/ é‘:"“'ﬁﬁ.// (2.8)

A
4/ 58
VYV =¥(7/, (2.9)
Its material time derivative is given by

- Zi o 2r . 2,

o 57 7%
Vo w D DY - J¥ . (0
YR T A R v
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With (2.10) and (2.4) mequahty (2 5) may be put into the following form

Y
~ [ - 3’/9M jaf,, E‘“Z -

974¢93‘,z; fﬂz‘]T

-f’ 27 Qa/./ v

=S ?7?; oo T4/ d¢ (2.11)

) Y
iy //25}.../7,..8““' foF T G

/fﬂ
-5 ;;»oz?/ - ?%‘j‘ Z 0,

In this expression all hatched quantities represent constitutive functions depend-
ing on some or all of the variables (2.8). Therefore, the dissipation y is a function
of the quantities

= T %A, b, T K, ,,‘,,7‘;;] (2.12)

e ’J’A(T? (2.13)

if the constitutive functions could be arbitrarily chosen. It should be noted that y
depends linearly on the accelerations &), T, gk but generally nonlinearly on the
varibles IT , equ. (2.8).

Within the frame of Rational Thermodynamics it is required that the dissipa-
tion inequality (2.11) is identically satisfied for all smooth admissible thermody-
namic processes; any smooth solution of the balance equations (momentum, en-
ergy*) together with the assumed constitutive relations (2.1) and (2.4) represents
such a process. The Coleman-Noll argument [13, 32] implies that the externally
prescribed body forces and heat supply may be arbitrarily adjusted such that the
balance equations can always be satisfied. As a consequence the quantities IT*

*  The mass balance equation need notto be considered since the analysis is restricted to in-

finitesimal strains and rotations.
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are allowed to take arbitrary values locally, that is at a material point.

Consider processes where at some instant the values of the variables IT are
the same but which differ in the acceleration &, T, gk instantly. Thus, in the
expression for y all quantities are fixed except the accelerations. Since these may
take arbitrary values and are only linearly involved, their appropriate coefficients
are required to vanish identically; otherwise the dissipation inequality could be
violated in some processes. Thus,

/27_..46. = 0 p '7,3!/ = O -f;-)jf- = Q0 (2.14)
e
%».

Zlal "%

thatis the free energy is independent of the rates

/?.:/g’ﬂ/“f/ ﬁ/ (2.15)

Y - 7;/;&/7-/97’-/”4/' (2.16)

Obviously, the free energy is still allowed to depend on the temperature gradient
gk- The dissipation inequality reduces to

¥ DY .
;= (Cm —S(p7. 7 ;;:é’,..,/sj‘_]am

[ e 5]

97-— 9“’;/ &

;7; )% . (2.17)
/5@t G G/ F

Y a
S I T T hA = o

/247/7[/ (2.18)

is generally a nonlinear function of the arguments I1. Of course, the dissipation
inequality (2.17) is required to be satisfied for all sets IT but the derivations of
further constitutive restrictions is rather difficult, if not impossible, if further as-
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sumptions on the mathematical structure of the constitutive functions are not
made.

However, it is still possible to derive some consequences for the constitutive
functions at an equilibrium state presumably some (fairly) general conditions are
met. Following [1, 36], an equilibrium state is defined by

4 WF
£, = O, 7=0 . 4 =o

and y (2.19)
F =0
J
as well as
A
fa' (8, T, 0, %) = © (2.20)
such that ay vanishes. Conditions (2.20) are satisfied by equilibrium values
£ £
5‘4«4- / 7—£ / 0(V e
With (2.13, 2.20) the dissipation
~ £
$= (7T
where
£ £ |
T* - {26 7, 0,45, 00,0} @21

vanishes at an equilibrium state.

We assume that the material model under consideration is such that the dis-
sipation is positive except at an equilibrium state. Assuming further continuity
and differentiability of the constitutive functions such that their properties apply
also to ¥ (IT), the conditions

d?[77'£/ =0 $(T+T¢) >0 (2.22)

imply that the first variation of § vanishes at an equilibrium state and the second
variation is positive definite, i.e.,

(ff)f =0 (fzj)e - Q. (2.23)
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The left hand side of (2.23) is given by

(5] - [ v 2 e 2l Zoy

2
/s
E{I""’ Jf/f)//ﬁ/

2L o7 Aot
- ) P
TS ,/__/ ﬁ;g o, v % J] /ﬂ

Thus, the condition

(L] - Vo, ST, i
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yields
“ “ A
v It - 0
AN, Obu. ],s
.f/m
I dd . o
0/,0(41 ;7 £ B
M AL 7 4
ANy’ ? f’Fﬂé = @
e o
2. Do /5 - o L (2.24)

) A /]
/04"" - f yfam 7 ﬂd/y v ‘.:“'E =0

¥ > &Af’ ,za;Z

’7 e,
JE 0y / S
[53 © - Se /e =0

Comparing these conditions with the corresponding conditions of the simpler
constitutive class discussed in [1] we observe that conditions (2.24)1 to (2.24)4 are
formally the same as (2.21) in ref. [1]. But conditions (2.24)s5 to (2.24)7 are new.
Some more specific conclusions can be obtained from (2.24) if further conditions
on the constitutive response are imposed. We will not start a discussion analo-
gous to that in ref. [1] but simply assume that the considered class of material
models is locally asymptotically stable under constant strain and temperature.

i
C

Thus, whenever
= Coeeo? . , 7—:&)1”/' ﬁ = O

4

e

the solution ay(t) of
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tends to the equilibrium value a,E with increasing time
'3
o, ey —= g , ¢ —> oo

whatever the choice of the initial values a,0 in the neighborhood of the equilib-
rium values. For such an isothermal relaxation process the dissipation (2.17) re-
duces to

Ly Y AV
o5 e o @ e (W g e s (2.25)
= =5 P =75 g K Ar T 9

therefore, the free energy is a decreasing function of time. This result was already
obtained for the less general constitutive class analysed in [1]. It is now not neces-
sary to duplicate the results of [1]. We simply state that the above observation
and the assumed continuity and differentiability of the free energy implies that
the free energy has a relative minimum with respect to all variations of the inter-
nal variables, i.e.,

/”/o: %/c =0, //: 32/5 > © (2.26)

and thus

/ ¥ / [P, 790 %) =0. ()
90(/ A 2 f £ £

£ £
5,‘,“/7“/%-—0/0(!

Enforcing this requirement, condition (2.24)1, 2 4is satisfied and (2.24)3 yields

(4) =<

From (2.24)s5, 6 7 one obtains

) )Y ‘
(S = 3 Fa )Jf = ©°
% ~ 7?/5 - o ) (2.28)
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It appears that these relations are the same as those obtained in the classical
purely thermoelastic case without internal variables. However, it should be noted
that equs. (2.28) are valid only at an equilibrium state; further the hatched func-
tions still depend on the equilibrium values of the internal variables. But it is nec-
essary to recall that the equilibrium values egE, TE, and oyE are related by the
equilibrium condition (2.20)

%j/&f/ 7—‘/ 0’0(‘:/ B

If this admits a unique solution for ayE * such that

o L (&5 T4, (2.29)

then we have

A

(¥), = P 7o) = ¥Eon, T
()= = 7(5%, T 0 5 090) = 102527
(6). = G fol,75 0,45 040) = Culel) )]

Consequently

' (2.30)

of ¥, 2_% A
e &2 Jng Dzin 23D

;’oci /29;%‘—’/

212/___ v )Y

Qfmu E @ g, B y&i

6y &

I

With (2.27) one has

and thus

* A sufficient condition is
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and (2.28)1, > reduces to

£ € )
ol it 8_%. ¥~ 9% = o
[CY S 7 07515 JEE.
2;:- - ((2.32)
e - /7 = O
)

where ywE is independent of the temperature gradient. Thus, at an equilibrium
state the constitutive restrictions are equivalent to those of the thermoelastic
case.

The conditions on the second variation of the dissipation and of the free en-
ergy remains to be analysed but this will not be done at this level of generality.

We now turn the attention to a constitutive class characterized by (2.3) and (2.4)
that is, 64/, Gk, & and §) do not depend on the rates R of the external variables by
assumption. Then the free energy ¢ does not depend on these variables, too.
Note that this was proved to be the case for the more general case (2.3) and (2.4).
The dissipation inequality (2.17) still applies, however, with the important dif-
ference that none of the hatched constitutive functions depend on the rates R.
Therefore, the dissipation y depends only linearly on the rates R and this allows
to derive further important conditions. Since y is required to be non-negative for
all rates R the following necessary and sufficient conditions are obtained:

) Py Op - :
p— 7L tores -
6:‘“ g é)fam ﬂﬂ’u é_ Sy o
A " W7
vt o7 T o A
v 4 (2.33)
J

and the residual dissipation inequality
A

A

2 i = 0.
~ % ou %, - 5 7 A (2.34)

If the evolution equations for the internal variables do not involve the rate g,
i.e.,
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A

)
0%

Further, if the evolution function f, does not depend on the temperature
gradient gy,

then (2.33)3 yields (2.35)

/r = %«/‘g““/ ’7_/"’*/’)/ (2.36)

then, observing (2.34), the residual inequality splits up into two separate
inequalities, as discussed in[1], i.e.,

mechanical dissipation /{q = - g 30( /:/ = 0
(2.37)
thermal dissipation /T PE :7‘: g,q ,?i = O,

The relations (2.37)1 and (2.37); remain the same as (2.8) in ref. [1], and, stating
explicitly the dependence on the parameters, equations (2.33)1+ 2 read

. 7, «
J,;,,,, (Pa, 7:?‘/ d’) - ;;i - 0’)';) ) y
RAXCRAL &2 =0
&o(u f (/I/ (7“'
Q%/ 7 Q’% ) (2.38)
Y%, 7, o, 4e) “ M’) “ on, Hte, T3 %) =

Note that here still the temperature gradient is involved; (2.38) has to be satisfied
for all state variables ey, T, gk, ap. If the hatched functions could be choosen arbi-
trarily then (2.38) would represent 6+ 1 relations between the 10+ n variables g,
T, gk, ay and this is in contradiction to their assumed independence. Therefore,
the hatched functions cannot be chosen at will.

In the following the constitutive functions Emm and I;I are assumed to be
independent of the temperature gradient. Thus, the evolution equations (2.4) are

neither affected by the gradient g nor by its rate gi:
A \

/}“/;/&z,za/,/, yfm.:f,,,h/&e oy

> (2.39)

W

O .

b=t (e, 0) + G
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Then condition (2.38) shows that stress and entropy are not allowed to depend on
the temperature gradient and (2.38) reduces to

A DY (4 7,
6;“'/&(, Zﬁ/f} - 5 ymzmh r? s )'/7"

\

A {_-'A = O
* gﬁf&c%/y Ase @/ 7:%)2?‘“
7(2.40)

Yo 7 2 ’
9 (i, 7,;) # 5?@ “ %@Z‘{’CA//&”%/ =2

Finally, it should be noted that the "equilibrium part” (Lehmann [64]) which
characterizes the reversible behavior (section 1) of the evolution equations (2.4)
plays its part only in the restriction (2.37), (2.38) or (2.40) but not in the residual
dissipation inequality (2.34). Therefore, it does not contribute to the dissipation
but changes the structure of the classical potential relations for the stress and
entropy.

This change of the structure has an important consequence: The Legendré
transformation, so important for the classical relations, is not valid any more. We
illustrate this in the following.

The classical potential relations read 1

! 72&,7/“// =
(i) —5 (5 ’/% ‘

L (2.41)
« _ PV CGe, 7, 45) = O
’7[&,///;\’;/ - a

)

We assume that (2.41) is invertible such that both relations can be solved uniquely
foregandT,i.e.,

.

f(l = &e /6"‘“’/ 7/ a/.f}
(2.42)

7_ == 71/6&:-, 7, A/S)

This allows to introduce the function ¢

v Ao
g ﬁ[‘fﬂ/%“?) = Sy Cann "f’77- ~ € ?/&,,7,_;/!/ (2.43)
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The first variation of $ with respect to the independent vanables* Omn, 1, Op IS

s, /?5 = 92¢ tg ;¢/7 b S 2¢ /o/ (2.44)

and the r.h.s. of (2.43) gives

) V)t T
¢ ID = [Cu + (6% =S ) - ;f;f /‘&M*
v - IV I7
+/-f7“ “(5 f;&,/% "/*Wy&/”/’? (245)
. )P IT
i[5 Bt s B o0 ) I

Observing (2.41), this yields

e J’¢ = S JGu. —s7 /% -5 G0 Jx /d (2.45)’
Equating (2.44) and (2.45)' and requiring validity for all variations 8omn, 81, 8ap
one gets
\
= O
/pg;hn
- 9
/ ) ¢ = O o (2.46)
?% 9¢ = O
57“; & =5 0’)0(:
r=7 /

The structure of the equations (2.46)1 and (2.46); are analogous to (2.41) and this
is an essential property of a Legendre transformation.

On the other hand, if the evolution equations involve rates of external vari-
ables, then the thermodynamic restrictions apply. Using (2.43) as a definition for
® again, we obtain (2.44) and (2.45). Accounting for (2.40), equ. (2.44) gives

. DY A Db ¥ ]
I -/ e +”§Z§um..."5%; /a:.. ”/}”'“”.

* It should be observed that the set of independent “state”-variables should be truely

minimal, i.e., should not involve superfluous independent variables.
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*[grfgﬁw, 74 9y "5 Da é/27 ”9*

{_[ a’d‘/ 077//5 QZ‘}; "77& // 37"/0(;(

%(2.47)

ng 5 % 9”0( 0,70/3 s

Equating (2.44) and (2.47) finally yields

5 ¢ 2¢ A Q;; A 2 ") _ 0‘y
S ~ 3/570/:....{7," &P v % “ 4 2.

, ’ IV S 2 Dew | 427 ) _

Fasfl) s (R ) <o e
A v a A 975“,‘, N Q g

) )P IV r H 5 ) =0

Du, | . g g 4 T s N”) )

Here it is understood that the arguments g and T in the functions , Emm and y
are expressed in terms of omp, 1, ay via the inverse relation (2.42). Comparing
(2.48) and (2.40), it is seen that an analogous structure does not exist.

At this point it seems to be rather obvious to inquire into those conditions

which enforce a vanishing of the extra terms
L

o IV
j;/: C e =C e 4 =o. (2.49)

These conditions mean that the function gEmm and Iilv are orthogonal to alil/aav/.SO
an "intimate” relation between those functions and a{y/day is imposed. The con-
ditions wouid aliow the classicai Legendre transformation

S Bloin, 7o) = G Ewe = 97 * SV, 70)

yielding ,
oP
&M = g &CY;N,

20
5f9_7_

&«.

i
!

e
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This property is mathematically rather valuable, however, the physical
implications of (2.49) are not clear. On the other hand, if only one internal

variable v = 1 is present, then (2.49) implies that A
A 4 2 A . 9% # o
Emuzﬁf““;@) Il/'—'-lf/:O; ﬁo{ ;

thus the influence of the rates of external variables in the evolution equations
drops out. Thus, the conditions (2.49), imposing restrictions on Epy and H, is too
far going.

The origin of the additional terms a@/day Emn etc. is solely due to the
assumed influence of rates of external variables in the evolution equations (2.4).
Assume that it is possible to find a new set of internal variables ay' by an
invertible transformation |

o<<,/ = /@/fw, 7, % «.) (2.50)

which allows to reduce the evolution equétion (2.4) to the standard form

0&:}, = f;’//g‘“*/ 7;?‘/ 0("/)’ (2.51)

Then all constitutive functions will depend on the external variables and on the
transformed internal variables and, most important, the constitutive restrictions
(2.38) reduce to the classical potential form.

Specifically, provided (2.395 holds, the evaluation of the dissipatioh inequality
yields

IV (we,7,4,) = o
QZ&M

Cpn (e, T, ,) — S

9?5’/—»——)

P = O
7/—"“ / T o7
V!
= o

7

and the two seperate residual inequalities (2.37)
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: ¢
u = =S

A

.
A

> 0

A A

& 7% % =0

Therefore, in the following section the reduceability of the evolution equations is
analysed.

2.1.2 Reduceability of the Evolution Equations

For the following we still consider the more general evolution equations (2.4)

fi /&5,77?4/“9/

# L v (G, T %) e
4 . (2.52)

t A, T, ) T

t & (e, 7,5, 45) R

We will now derive the conditions which assure that the evolution equations
(2.52) can be reduced to the standard form

Ay
5/{/41 /&l/ 7-/?4/ 4/3,}

where the a,' are suitably transformed internal variables

,4{ (b, 7, fo) s ). (2.53)
Here we assume that (2.53) is invertible
%, = /A /z“ 7, de'); (2.54)

this is assured if

”7’{;’) # O (2.55)
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Observing (2.52), the time derivative of (2.53) yields

" ALy My My ;P

05_/ = 2[‘;“ f/aa 7+~ ﬂf" 7— f)ik- VZ« j%f K1
— 074{ Q’Kd’ /Z o
A f; (95,“ iy ﬁof‘“* e (2.56)

z /A,// W{w //j 177‘{" ”)'(o” "/
7 /ﬂt’y G 9“"3 s jkt
Thus, if a transformation hy exists which statisfies

P Ly
éf_{f' » Zj’,;{ﬁ = ¢ _”:)ﬁ. 2 .ﬁi;{ = O
PE thase . P e éf:““' / 7 V7! ;’4

AL Ay _
9‘7: ” 2 36 ’

then the reduced form (2.52) exists where

A, AP
%,/Z.., 7, %, e ) /f%’/&., s @) %/&«, //;.,%Q{ZZ: .(2.58)

Here it is understood that ay on the r.h.s. is expressed in terms of emm, T, gm,ap'
via (2.54). The set of equations (2.57) represents an overdetermined system of
partial differential equations for each of the transformation functionshy, y = 1,
..., N. Consequently, the functions ,Emmi r‘j and ‘(:'Sm have to satisfy certain
integrability conditions if a transformation should exist. Of course, the satisfac-
tion of the integrability conditions will not assure a unique set of functions hy,.

}(2.57)

/

To make the analysis more concise a compact notation is used. We introduce the

arrays vj and Fp; \

. , ) (2.59)

and s ?

(2.60)
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Then the system (2.‘5:7) takes the form .

P Ay - D ep L =0 ;8= W
v, Y7 a0,
For a fixed y we put 5
/"= A,
which should satisfy
2z 25: F. =0 &=ty O
D, e S g

/7: /ﬁ/‘z}e'/a’,!)

(2.61)

(2.62)

(2.63)

(2.64)

is a common differentiable solution of the system (2.63), then the second order

partial derivatives are interchangeable. Observing (2.63),they are given by

4

2°/ o [ I I o
R T VAR P oy 4

- ! v (2.65)
0909 T ool e 57 DAy D, QK,JZ-WJ
and . . , _
D ;)/"F}“J/’ o L
Jz.on, D #3 mon, S DA Dot - (366

Changing the indices v— p, p —» v and i - j and observing the interchangeability

of partial derivatives

2/ s
;2’4’ 0/)‘(‘/ 07“1/ :”L' !
equ. (2.66) yields . .
DL/ Al F 27 sz
;A/g;”d - ”75\/1/;41 vi &Q/v QA’; ¢

(2.67)

The interchangeability of the left hand sides of (2.65) and the substraction of

(2.65)1 and (2.65) gives
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or 07 &7 2T, X7 o
A . My 5 D S (2.68)

AN

The mixed derivatives . .Y
DY s
9&’, 0’%’ ’ ya} ; U‘-

are given by (2.67); inserting them into (2.68) several terms chancel and (2.68)

K [[P6 & r/ _F
s 27[ — il " % i (?a’.,/ (2.69)

where (2.62) has been observed. For fixed i and j the equations (2.69) represents a
homogeneous system of linear equations for the terms in { ... }-brackets with the
coefficient matrix [aiy/aap]. With the condition of non-singularity (2.55) we ob-
tain for any set of subscripts (i, j) the trivial solution

[%—é - ] [w* 0%(, '—VJ 9&\’/ O, 443 .70)

This condition involves only the functions Fi or alternatively Emm, l; and §m,
respectively, and represents necessary restrictions on these functions to allow a
reduction of the evolution equations to the standard form. That these conditions
are also sufficient conditions for the existence of a solution I' could possibly be
shown similar to the approach described in [67].

The integrability conditions (2.70) are now explicitly formulated in terms of the
functions Em” etc. using the definitions (2.59). Then we have

2 ... Y E4 Esen = Cunn ’
2, g 7
'”J' Yo < f“‘
& Lo < ,ém = ;3'&‘““‘ SR WP
Ry
J’Ff ;C/o m{‘ 36”’
)
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and (2.70) yields the following essential integrability conditions
A A

QEM:» 4{5 / — . QE‘“' ‘
Ze m,, - (6.% m Ga 7, )= 7

2 Eop __,/ _ .&'_"7 _
97"& B Z?z;.., - W { 2a/ =°

. p 4 (2.72)
D DG M//; o _ _%_ém/’

9% D Enn
o4 P 1 2% 2 &i/ — o

9?4 T 27 M ié/ e v €

I
o

)

Inspection shows that the conditions (2.72)1 4+ resemble the conditions of path-
independence , equ. (1.14), of the "reversible” contribution to the internal vari-
able rate, discussed in section 1. Indeed, the two different aspects, i.e., path-
independence and reduceability of the evolution equations, are closely related
and it is worth to discuss this in the following supplement.

The time derivative of the inverse of the transformation function (2.54)

—t
hy (b, 7,90, 4) = J/a, 7 %, 4" (s2.1)

is given by

o 975,:/ ° Jﬁi' d j‘é* , 27(:’ e/
A = Dz N i T e 7 7? i 4" (522

In the right side of the evolution equations (2.52) the internal variables may be
expressed in terms of the set {ex), T, gk, a'y} with the inverse (52.1).
Thus (2.52) takes the form

/,[&, 7, %, ') 4

45/ % ) Sl *

(52.3)

%f’/ e A

r o [ —) 4
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where

JCa, T, d) = Fyla, 7 u, Al )
J,E,g,,, / “ w¢7) = éﬁ«a / “ }

7 Ny ) (52.4)
f(—v—) =7/ )

Gy (——) T G/ ‘ ) |

AS

Combining (52.2) and (S2.3) one gets
: 4 4 - o,

o, = Q’o(,’ # -——J’z:.-»‘”%’f /%"
¢ Duc,’ B 42

"Z(;?/ //2¢{7Z; cons/,

(52.5)
= ’ 7~ /7 7 o
/f 4 f?/«« & taen J,// 4 ,,ék F

If reduceability is possible, then functions T(Y exist such that terms involving rates
of external variables drop outin equ. (52.5) for arbitrary rates émn, T, Ok, i.€.

L ot -:/gfm, b " 5’7 4 fi;ﬁ(

- /ﬂ’f/ b, - 9/4/ . P,

_ - d p AT 26 4
_'?"'“E‘“‘ & d’"‘%
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or

(A4, ] = L. da # H s + G g 520

7/
o, = CSees ¥,

Thus the r.h.s.'s are required to be total differentials in the space of the external
variables emn, T, gk with a'y = const. The associated potentials are T(Y (emn, T, 9m.
a'p) with constant parameter a',. This, of course, implies then that the integrals of
the right hand sides are path-independent

’é/g"“/ 7:/%/%!7 —‘e;/i:“/z;gl /a./r//=

Sas

’

":/ /thd&.*/ﬂffgﬂ;ﬂf/ .
4:@3'{

f“"”/-’/ Z«

(52.7)

The existence of the “potentials” k, means that the internal variables ay = ky
(emn. T, 9m, d'y), with the parameters a', assumed to be constant, are just func-
tions of the present values of the external variables. Consequently

oy _ F Iy g P4 _ = (52.8)
;5”" f Heasw

== Cm—

/ 27 F /;ﬁt £ .

Necessary and sufficient conditions for the existence of the potentials T(Y are giv-
en by the integrability conditions:

a2 @ ~ W
__Qf_:wﬁ - _2_5-& y 0/7 ;hq = 2 ﬂ
Pae D 27 72

_{é“ D&y 2F 4 ) (52.9)

Jojk e
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here the transformed internal variables a'p are helt constant. These conditions
can be written in terms of the original (implicit) functions sEmn etc,, i.e., the r.h.s.
of (52.4). Thus, we obtain for example

9 éﬂd“” = QE“” # 9%&« ){V
ﬂ”&‘ e 4, Pbue

and with (52.8) and (52.4) this takes the form

v A A

Dlma _ I Fua P fy«:—:ﬁ'fﬂ ($2.10)
PE ke O bae ot 7

Similarly all other expressions in (52.9) may be transformed. It is then shown that
(52.9) is equivalent to (2.72). Thus, reduceability and path-independence as de-
scribed above are equivalent.

At this place it should also be noted that the transformation (2.53) does not
affect the mechanical and the thermal dissipation. We show this as follows. After
transformation the mechanical and the thermal dissipations are given by

/ 9'%,‘/ y/ ’ / a’
dn = —3 Patg ?C o fro= —'7-_'%?* (52.11)

where generally with (2.58)

/%g /}27&“/ 7—/;‘/&("// = /%/&u./ 7;;'4/%.4)

4/ ) =g Bl(—r —)

4

(52.12)

N R

With (2.53) and (52.1), i.e.,

/

o(v/ = /4./ /&h, 7/-;'4/0("/ ] A/" = /éy /&'“’ 7:}/ 6(’
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and
M | M M D s p
24, g ey by’ PN (52.13)
we obtain “
29 DY gy ¥ My
jae My Jo . A
such that 4;“

y j;l/, Ay v My M [

v = =€ ;;,;;;‘;‘fg = =5 A, e i /i
JE A

=S Jw 4 = dn

(52.14)

which proves the equality of the mechanical dissipations. This is clearly obvious
for the thermal dissipation.

We now return to the discussion of the integrability conditions (2.72). In-
spection of (2.72) shows that these conditions are identically satisfied whenever
the quantitiesEmn, I;I and §k are strictly constant. In the following three cases are
treated with decreasing complexity.

Casel: Gy =0, H#+0, Emp 0
s ¢ 5

In this case an influence of the rate of the temperature gradient on the rates of
the internal variables is excluded. Congition (2.72)3 and (2.72)4 reduces to

O L ey
K el = ﬁ py = O (2.73)
s 2

that is, the functions Emm and !;I are required to be independent of the tempera-
ture gradient. The conditions (2.72); and (2.72); remain. Equ.'s (2.72)4 are re-
quirements solely for the functions Emm but (2.72)> involves bothfmm and Iil

Casell: G =0, H=0, Emn # 0
[ € €

Here only the strain rate affects the evolution of the internal variables. Of course,
again the conditions (2.73) have to be satisfied as well as
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L _
ke (2.74)

which follows from (2.72);. Equ. (2.74) requires temperature independence of
Emm ’ thus

4 ’
Lo = Gru (e, Ay). (2.75)
Further, the complex relation (2.72)1 remains.

A Gl A
Caselll: Gk=0, H=0, Emm =0
¢ s s

The conditions (2.72)1 and (2.72)3 are identically satisfied and (2.72); and (2.72)4

reduce to < A
25’“ ? ﬁf‘ (2.76)
which implies P
!/'/ = ﬁ/T/ Ay ). (2.77)

From this it is immediately obvious that any evolution law which involves only the
temperature allows a reduction to the standard form if the constitutive function
H depends only on the temperature and the internal variables.

2.1.3 Thermodynamic Consistency of Stress-Strain Relations

We assume that an ad hoc-model has been proposed by prescribing the functions

Culta,7, %), E(—r—) %m0

f (=), £ ), f )

where the functionsgl"imn and Is-l are such that the evolutions equations (2.52) are
not reduceable. Clearly, the choice is not necessarily compatible with the two
restrictions (2.40): Thermodynamics requires that there exists a Helmholtz func-
tion § (free energy) which should satisfy the two conditions (2.40). With the
above functions given, the conditions (2.40) may be regarded as an
overdetermined system of partial differential equations for the single function .
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Therefore, certain integrability conditions have to be satisfied by 6 and Ey as
well as ; and H. To prevent a duplication of work we leave this question here and
come back to it again in section (2.2.4), where the stress is used as an independent
variable.

2.2 Stress as an Independent External Variable

2.2.1 The Probiem of the Derivation of General Restrictions

Frequently the stress-strain relation (2.3)1 is invertible:
b = G (Gi, 7, 5, X ). (2.78)

This allows to use in all the other constitutive equations, including the evolution
equations, the set {ok, T, g,, ay} as independent variables. Such an approach
would automatically take proper account of the constitutive restrictions if the ex-
change of variables is done after the evaluation of the entropy inequality.

On the other hand, one may consider a constitutive model which uses the
stress as an independent external variable and the strain as a dependent one
from the beginning. Then, the evolution equations which involves rates of exter-
nal variables will depend, among others, also on the stress rate. For such a model
the evaluation of the Clausius-Duhem inequality has to be repeated. It will be
shown that under such conditions certain peculiar conceptual probiems may oc-
cur which usually have been overlooked in the literature [41].

We will restrict the discussion to a homogeneous body with the following
type of constitutive relations:

&
Emn = Eon (ke 7] %, #.)

E = éu 4 ” ) (2.79)

y =5 ( v )
/94,:;»;( yo—)
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and the evolution equations

Z,V/gﬂ, 7, %, A, )

“ ) Cpru

Lo (
+}4// “ ) 7!
(

c—) &

(2.80)

Q\(

7

%

The lokal, instant entropy inequality is given by

. P sr
ci= 5% + (F)a — F =o
and the lokal, instant energy balance reads
§é ;S&éﬁs - %, * S7
and this allows to eliminate the heat supply from the entropy inequality

@ > e / ® %3&
G'= 8% T FSE P ey fe — L7 =

e @ e %—%
/= ls = s72 —SE + G e — 7 Z ©C.81

o

Thus, the dissipation y is given by

We now introduce the Gibbs function (or free enthalpy [68]) using the notation
of Gibbs [69]
/

(o o T 4) = & - T - e Ffadin

The material time derivative is given by

] ] o @ / o __( :
il_fzfzé—-ro; 77 — 56 %" e % (2.83)
ot
and this allows to write the dissipation inequality (2.81) in the following form

%’ # > 0. (2.84)

y- s(f+77) - Geme = HE =
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In terms of the Gibbs function Cwe have

g'= Qf g Df oF 2 .

” ,«.77___7'7L gfﬁx / (2.85)

Inserting thls into (2.84) and collecting terms wnth the appropriate rates, yields

/5’9@ +g‘ﬁ),~. "3/27“7/7

9;,., —539%%" -7 T

(2.86)

The rates of internal variables are determined by (2.80), i.e., they are completely
defined by the instant values of all the independent variables and the rates of the
external independent variables. Accounting for this fact, the dissipation in-
equality reads

of )f
$ = [ %oag T o, £u 7‘5«;‘«

£DF
__,f/yg?f /4//-7]7

~f[9%;f" *Jo( vé/f"
_gﬁg.f_/: % % =0

(2.87)

Here we have to recall that the dissipation inequality has to be satisfied iden-
tically for all (smooth) admissible thermomechanic processes, i.e., solutions of the
balance equations together with the assumed constitutive relations as well as
appropriate initial and boundary conditions. These solutions actually represent
fields in space and time. Physically an arbitrary process is controlled and deter-
mined by a choice of body forces and heat supplies and initial and boundary con-
ditions. On the other hand, any smooth displacement and temperature field uy
(xm, t) and T (xi, t) and initial values ay (xk) of the internal variables completely
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defines an admissible process [32, 36]. Especially the strain and strain rate fields
are given by

I

/
é';t Z’/“ixt i /(44/

a

e = ’2{/1&;4,1 / /“/,é/

and satisfy the compatibility conditions automatically. Since ug (xm, t) is an
arbitrary function, the strain and strain rates are locally and instantly arbitrary
and independent.

On the other side, not every smooth stress and temperature field oy (xm, t) and

T (xm, t) and set of initital values dy (xm) corresponds to an admissible process. Of
course, the evolution law (2.80) can be integrated in principle to yield the field of
internal variables ay (xm, 1); however, the strain field ek (xm, t) obtained from
(2.79)1 generally does not satisfy the compatibility conditions: The strain field is
not deriveable from a displacement field. Therefore, a smooth and unique
velocity and acceleration field generally does not exist if the above choice is
made. '

Consequently Cauchy’s first law of motion (balance of linear momentum)
cannot be satisfied. In short, the above choice is non-realizable.

However, there exists a class of peculiar processes which legitimates the use
of the stress as one of the quantities characterizing a thermomechanical process.
Assume that the stress and temperature field as well as initial values ay are homo-
geneous, that is independent of the spatial coordinates. Thus, the temperature
gradient gy vanishes everywhere

Je =0

and the strain field calculated from (2.79)1 is uniform. However, for a uniform
strain field a compatible displacement field can always be constructed. Thus, to
some choice of homogeneous fields oy, T and dy there alway exists a process
defined by uy, T, and Oy- For an arbitrary stress rate and temperature rate it then
follows from (2.87)
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 (2.88)

and

0f
/’5’90(, /”/ﬂ_p = o (2.89)

but a statement about the term

/.57{: 2 %{:é4/m (2.90)

cannot be made. This would require an arbitrary choice of gk and especially gk
and this would involve generally an incompatible strain field even if the stress
field is homogeneous. Obviously, equ. (2.88) to (2.90) are limited results.

However, there is an important exception. If (2.79)1 to (2.79)3 and (2.80) are
assumed independent of the temperature gradient and its rate ab initio, then the
choice of homogeneous fields oy, T and ay Yields essential constitutive restric-
tions of the form (2.88) and (2.89) valid for any value of gk since then these
expression are independent of g.

In general the above results show that the characterization of an admissible
thermomechanic process by the displacement and temperature field as well as
the initial values ay is much more preferable. This possibly explains why Coleman
and Gurtin [36] did not use the stress as an independent variable.

Taking this conclusion as a starting point we will now show under what
conditions a direct evaluation* of (2.87) is still justified. The material derivative of
(2.79)1 yields

e 07&: o Qér,é _ Qfa ’ QE« p
= 6+ 2L 4 =
Sh T o Gt o7 T g R g

* The direct evaluation is based on the independence and arbitrariness of gy, Tand §y
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+/ EE” %,' f/y/ 7 (2.91)
J

where the evolution equation (2.80) is observed.
We put v

Db b S
C:féam, = Db " Poce :ﬁl‘w (2.92)

which is a fourth order tensor symmetric in (kl) and (mn). Its “inverse” C'pqki is
defined such that its multiplication with (2.91) and contraction yields

- oF o 07?’{5
Cpope & = Cpg * /(/

which implies

-/ P o
CMQ Co{ea‘m R (l’?

or
-7

C/"?‘t /47nm' Sooss &/6 "‘6- = o

and thus
7 —", Eo Gglnsa = 0.
[Cﬂﬁ’ée Py 'Z//“' /7" # //')”Jf //
Therefore

é;u Cvm. = z,(/ﬂ,/;m 7% 4-/)‘0(:’7’“" (2.93)

isa "unit tensor” which reflects the symmetry properties of the subscripts.
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The necessary and sufficient conditions for the existence of an "inverse” can
be obtained as follows. The relation (2.91) represents a system of linear equations

for the stress rates 6mn = dnm. Collecting the stress and strain rates in column

matrixes
& 7- s L4 o @
& = { A4 ) 633 ’ Saz ’ Gas ) 6—'}4}
07 _ ® °
& = {8,, , o , €0, ’ 23'.;

and introducing

where

//( {/'(ll, 2e l(.jj ) KN/ /(?3, kdif

the relation (2.91) reads

(e +» K

/

here the matrix C contains the elements of Ckj mn

(

N
"

C'//// (;/ZL (/33 Z(///l 4 (//23
Con [ZZZL [21_.73 a /ZLIZ 4 ("2223

[/z// Clree 6233 ZC/uz 2C s

4
4/// Carn (&JJ ZQ”Z 26 es

20y;,

4 szl

26

24/

2,

(2.94)

(2.95)
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Consequently, a unique solution for & is assured if the 6x6 matrix is non-singular
Adet (L) F# O. (2.96)

Provided this non-singularity is satisfied, equ. (2.91) or (2.94) can be solved for the
stress rates. This allows to eliminate the stress rate from the dissipation inequality
(2.87); we obtain

-

Q& 9;’ - A & /)C 5.
/ﬁ 9&_:; ,ngdg?é c«.«% tots e | CHe

[/thngij 3’7)

JE 9; ,’7& 9&.//
(3 G 5 g e C’W 748

74

. 9 DEue
_/99?;‘5, #fg&f— e #é‘m)&»a 9;:, 92. G)_/ﬂ

'*[/o’?a',/f i;_‘%/'

(R s O R)]
= 0.

However, this inequality still contains the stress as an independent variable since
14 v ¥ w v v 9 P
the functions {, £, 1, oo Emm, H’, gm etc. aswell as C:nmm depend explicitly on the
3
stress. We recall the requirement that the thermomechanical process must be
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compatible which is assured if ug, T and ap are taken as the primary fields. There-
fore, the strain-stress relation (2.79)1 must be invertible to define a unique stress
field in terms of ey, T, gk and a,

G = Spp (Guny 7, Gy Xs ). (2.98)
Thus, the Jacobian of (2.79)1 is required to be non-singular®
olet 55 5"') = 0. (2.99)

In inequality (2.97) it is understood that the stress is represented by the function
(2.98). Then for arbitrary and locally independent rates

Sae, [, 7

the dissipation inequality yields the following restrictions

v =/ N
Qf 2L s.. ) C =0
S’CQW /— g 2o é e g | 4‘” o
2F Xf . ) _
S5 * S pa; q +e7
¢ wt 5; )&‘ v
(oS L)k (7 S 4) =0
” f(2.100)
1) A S
(s 220 5 oy & )

Multiplication of (2.100)1 with Cyjpq and observing (2.93) gives

Itis understood that d ex/ 3 amp, is represented by a two-dimensional array.
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/s 2 S f:)_f_ E o * Eonn)Cunpg =
PG CL on (2.101)

)f 2 F :
"”-*/5’—“ ”’M?ﬁ*"”/h =

v v v
Here the symmetry of 9 / domn, gmn, emn IS accounted for. Consequently, the
conditions (2.100)3/3 reduce to

& &

- | (2.102)

and the dissipation inequality (2.97) simplifies to the residual dissipation
inequality 9 f‘/ ?; ?‘
— 8 / — = O, 2.103
Dy 7F 7 (2.103)
Obviously, the conditions (2.101) to (2.103) would have been obtained if
inequality (2.87) were evaluated directly for arbitrary oy, T, and gx.

The above results can be summarized in the following conclusion:
The use of the stress as an independent variable in the constitutive equa-
tions and a direct evaluation of the dissipation inequality with an arbitrary
variation of the stress rate is formally justified provided this approach can
be interpreted in terms of a variation of a kinematically compatible thermo-
mechanical process. For homogeneous bodies this is assured if the strain-
stress relation is invertible, i.e., \Lvhich is assured if

ad//jff:’/ % 0 (2.104)

and if the incremental strain rate - stress rate relation, with due account of
the evolution equations for the internal variables, is invertible, and that is
the case if




- 48 -

D&y
et (C) = ”[”’L/Q&.... Doe 2] O

(2.105)

For the more special case that the evolution equations for the internal vari-
ables do not depend on the stress rate, i.e.,

(74

Eme = O

then the condition (2.105) reduces to (2.104).

2.2.2 Reduceability of the Evolution Equations

We will now indicate the conditions which assure that the evolution equations
(2.80) can be reduced to the standard form

/J/”/(“/ 7, %, x") (2.106)

where the ay” are transformed internal variables

oy = Ay, (Su, Tk, o). (2.107)

It is immediately obvious that the derivation of these conditions is entirely analo-
gous to the approach described in section (2.12). Thus, with the appropriate nota-

tion we get, analogous to (2.72), the following integrability conditions
N

) Lone DEy JE PLe £ DEan )0
cer i ks

L p”ﬂ / 7 Dbun )= 0

ﬁr y s ﬁA/,/ v 2“"

g_é*” - 5'2 / 96; 52 D £ = 0 §2.108)
P s ‘“"ﬂo(y Ay

DY £ 95’/,




- 49 -

Again the three special cases are considered with decreasing complexity and
which are presented in an abridged form.

4 v 4
Case |” Gk = 0, H =0, Emm = 0
[ 2 s

(2.108)1 and (2.108)2 remain

4

D Lo

(2.108)3 reduces to

23
(2.108)4 reducesto —Qi = 0O

= O ) (2.109)

(%4 [ 74 v
Case Il"” Gk =0, H =0, Emm=0
[ 4 € b4
(2.108)1 remains
5) L‘;Em«- =
(2.108)> reducesto 5 = 0
v > (2.110)
& Cue
(2.108)3 reduces to S = O
2% ,
(2.108)4 identically satisfied. }

Here it should be stated explicitly that, provided only the stress rate is involved in
the evolutions equation, than the function Em“ should not only be independent
of the temperature gradient but also independent of the temperature; further,
the complicated integrability condition (2.108)1 remains to be satisfied.

It appears that the required temperature independence of the function fmn
is not acceptable on physical grounds: It is very unlikely, that phenomenological
functions like Emn should not depend on the absolute temperature; this is a prop-
erty which characterizes very basic material constants usually beyond the pheno-
menological level.

It is worthwhile to indicate explicitly some simple functions ’Emn which satisfy all
the conditions (2.110):
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v
Assume gmn independent of all variables, i.e.,
(%4

Ly = st

then its derivatives vanish and (2.108), is identically satisfied.

Assume Emp independent of a, T, gk and linear in opg, i.€.,
Yl = mnpg 6;7 ) ,Cm/o? £ s .

‘,Kh‘iw

Then (2.108)1 yields the condition

gma = géum; = Oy
for example
g@ a9 oo = ? 02; C/}""

such that (2.80) reads
9{/ E%J’ 7";?5{4 (6;*»)

Assume Emp independent of oy, T, gk and linear in ay, i.e.,

Ee = 9 o S o & st

g"@w«a f29 62 2o A ;

From (2.108) it follows

(Sumup fuv = Sen ,5""“’) = ©

which is still a complex requirement. If

e A 7 A
‘Eﬁm,a —' /hvn ',?/o ’ yﬁ/“' 4 %/'1

then the above requirement takes the form

/Z’dﬁnﬁﬂaﬂu —74-(5-7/"7’:* S”/‘-'O

which is identically satisfied. Then

P ad

¢ = +’QA'/ /h 6’:0.
K, = J po e
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(6) Assume?Emn independent of T, gk and linear in ay and ok|, such that

Ly = C‘““P? €9 ?’“05“/

o e

this implies that the influence of the stress is the same for all functionngmn
p =1..N.Provided Cyp pq is symmetric

[7;«“/47 = 4’7 Fov 20

(2.108)7 is satisfied, since each of the two terms of (2.108)4 vanishes identi-

cally.

[74 (4 [
Case IIl” Gk =0, H =0, Emm=0

s 4 s

“"
(2.108)1 identically satisfied "
24 _
(2.108)7 reduces to 26, = 0
o (2.111)

(2.108)3 identically satisfied

24
o

(2.108)4 reducesto = O .

Consequently, a reduction to the standard form of the evolution equation is only
possible if the function l;:l is independent of the stress and temperature gradient
and is atmost a function of the temperature and internal variables

= (2.112)
A ;{7’ (7, ). |

$

2.2.3 Determination of Transformation Functions

In this section we will give some general information how suitable transforma-
tion function can be determined if the integrability conditions are satisfied. How-
ever, the discussion will be restricted to the cases lII” and II” only, i.e.,
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o [

/4-740 or Eamséo'

& £

v

['4
2.2.3.1 Caselll”: Gy =0, Hx0,  Emm=0

The assumed evolution equation is given by
p?f = ﬁ/fwu/ 7‘;;&/0(.,/ a jﬁ/[7/0¢/ /, (2.113)

Integrability is assured since the condition (2.112) is satisfied. The transformation
relation is taken to be

0{)' = //? <y 7-/(,7«, A, ) (2.114)

and its time derivative is

[ 74

: oAy Xy 24, My -
v _ R ¢ + —d
Xy = o, %t 77 ﬁ e
9/4, 2,( 7
B W{" 7. (2.115)
Mf . My
# ;;;é:% + % *
Reduceability to ‘E/he standard form impliss
y%’fi =0 , ;74’ = 0 (2.116)
#e
and _ ‘:7‘
e Y Ay
= (2.117)
Tl ,34/ 7. 0.

[
The conditions (2.116) require that hy is of the form
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A =4, (T a). (2.118)
For a fixed index y we put
[M =4 (T,n,)=1(T4) (2.119)

and (2.117) reads o v
9/‘/ v 2/_’

—_— = QO

7 él L (2.120)

4
which is a homogeneous linear partial differential equation for I'. Any trans-

formation function tvw must reflect the mathematical structure of the representa-
tive solution 1"

From the theory of partial differential equations [70] it is known that the theory
of any linear partial differential equation is equivalent to the theory of systems of
ordinary differential equations and this also allows the construction of a solution.
This system is given by

6/7-/5) -~ /d!{‘/_, /

pr il A, s f[ﬁﬁ’,,/%)

(2.121)

and

;{/7/72;/, A, lc)) = O
/5 ‘ (2.122)

The functions T(s),a, (s) represent the characteristic base curves in the (T, ay, ..,
aN)-space and s is the curve parameter. Equ. (2.122) states that [ is constant along
a characteristic base curve. The initial conditions for the system (2.121) are

S=o0, 7=7 X "?f: ; (2.123)
and these values define a single point in the (N + 1)-dimensional (T, aj, .., aN)-

space. Because of the uniqueness of the solution of (2.121) only a single charac-
teristic base curve passes through the point (2.123). We consider an infinite set of
initial points on an [(N + 1)-1 = N]-dimensional surface (N-dimensional manifold)
inthe (T, ay, . an)-space. Thissurface is given by the parameter representation

T=Tl0,n) | & = 6l %), S X
where rq, ... ry are the surface parameters. Further, if to every point of this surface
avalue

-
/= /‘:'/717)”_/(;‘,) (2.124)
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is attached, then each characteristic base curve emanating from the surface,
“transports” its value I'y to other points in the (N + 1)-dimensional space. Of
course, here it is assumed that the surface of initial values does not contain any of
the characteristic base curves (is “non-characteristic”).

The solution T = f‘(T, ai, .., an) is obtained follows. The general solution of
the ordinary system of differential equations (2.121) under due account of the
initial values is given by

- —_— 3
/ =57 /a{?;/ /?:')
~ (2.125)
sz%/S, ‘ifi/% , "/, if,(/v[’;; '/';’/)) f
g=/1, ;v )
Thus
S= T =705, .. ,%)

Inserting this into (2.125)7 and solving for ry, ... ry we get*

v = 7§ (7—/ A’,/ 0(4// / _g:-/,”.’A/

S

vy

and from (2.124) we finally obtain
v
[ =010, 00,)= L, (G (o 00), o) (T %, ey ) 2026

With (2.125) the differential equations (2.121); read

das _ 4/
o = s Tlm), #yys) s, ¥ @27

a2 v . »
For a restricted class of Hy-functions a general closed form solution can be ob-
tained. Assume that H, is separable in the variables T and ap; then

/S‘/_ = A L: (x,, --.,A’,«/ (2.128)
and a variable transformation
S s 4
//-//r)ds = /4(5+ 7.)As = fﬁ‘/r} A7 (2.129)
o o 7,

yields

* This solution is possible in principle since the surface of initial values is non-characteristic.
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=/, (x, .., ), (2.130)

ﬁ/ s’f
In addition it is assumed that L, is linear in ay
Zg = ésy Ay (2.131)
where Ly is a constant matrix. The general solution of (2.130) with (2.131) is
,-', s¥* t";v s*
e
C, et G, (2.132)

where the A ; are the eigenvalues of the matrix Ly,
_ (2.133)
[‘ZS’/A— - La/;/“](/’“«" =0.

Here it is assumed that (N) distinct eigenvalues are obtained. The column matrices
Cp1, Cpo, ... are the eigenvectors corresponding to the eigenvalues ay, ag, etc. We
introduce normalized eigenvectors C;'

Z(C) =1 (2134

such that

C - e C

o ¢ Tl (no summation) . (2.135)
Then the general solution (2.142) reads -
Ay = ?: (.. st - 2; . C::- &pﬁ,-/?ﬁ}df) (2.136)
and with the initial condition we/gbtain 4

o / 4
Ay (s=0) = &, (%) = 2 & (oo = Ayl 7). @

[~

The eigenvectors are linearly independent and thus the inverse of C,i' exists;

therefore
Yo
e, = 2. Cw A, (2.138)
F=/

Consequently,

A’j_/ -7 s
0y = e (5, Ty 1) = 2 S o (7,5) G, G oipl fl0s)
’ )

(2.139
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and this gives the solution (2.125); explicitly in terms of the parameters s and ry,
.. IN.

To obtain the representative solution I (T, ap) further assumptions, concerning
the initial values I (ry) and dp (ry) as well as E (ry), have to be made. Since we in-
tend to find a simple transformation function which allows a reduction to the
standard form, the following assumptions are made

Gl ) = ] = cons?
Ao (%, %) = 5.

(2.140)

Thus

R

X = 2 2 7% (” ec/a[,I ///m A7)

|4 i=7 y=

=
\

O

(2.141)

Z % Do (7,7 )
Y=/

with P
A —ad p
2,170 =5 Clo Gl ap o Jl27). o
e i=/ d

Assuming Dy, to be non-singular, one gets from (2.141)

(2.143)

N
= 2 D $(7,7) Xy
9=/

Further, assuming still an arbitrary distribution ' = s (rq, ..., ry) on the initial
value surface, one obtains the following solution

Ve v A, )

-/
= "~ 7 [/77 K LI e¥e (2.144)
_./o/?&D (7,7 )Ks, 7k )

2 0
55/ 7a, ) .
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Consequently, any set of continuous differentiable functions I'oy (r1, ... n)-
=y -/ —— =/ —
4;’(/7';) = /aJ» /gZ D,g (7:%) % , f— es /7;7"/0(!/ "'/% D”g/r,r,/a{,)
represents a suitable set of transformation relations for the internal variables
v -/
V4
W = Ay (T, Cpoey oy ) = Loy (£ Dy Oy ) . 2.195)
The simplest case is given by putting
- -
ly (), i) T0) = b7, = &b g& Dy (7;%,) Ks (2.146)
where (b) is a constant. Thus,
-
7 - 2 (7,7,) K |
Ay b Z D, (7.7 Ks (2.147)

which is a linear relation between the primary internal variables and the trans-
formed ones. However, the matrix Dy is generally a rather complicated function
of the temperature.

In the following a rather simple case is considered, i.e.,

le, = & => ;4’/0(,, 7) = Hde . (2.148)

Thus, the evolution equation is of the form

xy = f:" [6:"”/ 7—/%3) ”(V/ + Hr)ay T (2.149)
The solution of the characteristic equation
dwg = /0(5' — 0(; , §= 4)__’/ A/

Hfr) A s As*

reads
< '3

s
Ay = Co &€ = Cg E4p //H/S”—*’)"’/S) (2.150)
o
Observing the initial conditions (2.140);, we get
s

e = 7 &vp(///fsf‘fp)ﬂ@)

and with (2.125)1 we find >

Py = Ky Lxp (—r/é{[r) 47/. (2.151)
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With the assumption (2.146) we get finally the following transformation relation
7

p(/ = 4} (7,4,) = b0 & ["7,_/’9‘”//7) (2.152)

where b # 0 is arbitrary. This is an outstanding simple relation.
For this simple case the reduced evolution equation takes the following
form

. ok , )
f/ = 94: /3 Zf ”"’"/ 7:;’4/ d",/

7
= 6 &k‘,ﬂ/ /f//f/df/%/m., /ié/ f&’&ﬁf//%#jd%-
o

In section 3.1 we wull discuss an example from the literature which falls in this sim-
ple category.
Finally, we analyse the simple case where the functions Hy do not depend

on the internal variables and have a common temperature dependence; thus
&

b = H#He &, ( £ conet. (2.154)

With the substitution

(2.153)

= /6‘(7/ A7 ax = #A7 | (2.155)

&

the condition (2.117) takes the form

DAy s Ay - o (2.156)
o P, 1 '
With I denoting any of the functions hy we have
/7 /’
A e —*

The associated characteristic equations are

AdX A e 5
s 45 G et a5 C (2.157)




- 59 .

their solutions are

Z = g + oX[ /) )'fﬂ)
O(g = [;S + %(g (",‘, ey r/\/) b (2.158)
F = /:(7;) )rA/)'

J

In the (1 + N)-dimensional (X, ay, ..., an)-space the solutions X(s), ap(s) represent a
characteristic base curve with curve parameter s “starting off” (s = 0) from a point
(Xo, ag, ..., agn) which is located on a N-dimensional surface with surface coordi-
natesry, ..., ry.

Elimination of s between (2.158)1 ;yields

pggQ«/;(—aC) + Kg (2.159)

We make the especially simple assumptions

X(%,..., %)= = Cousl. = O
A /u ’ ,.,) )CO y (2.160)
Oa(lg [r/) ) f"’/ = 7; /
With (2.158) this yields
Ay = oL, = C,-/X-?f-e) = o(s’ - C-;x~ (2.161)

Since T' stands for any of the transformations hy
A
£ ’ér )
we have

[ = S ) — éf”uéd’/’;"“/f"// (2.162)

avery simple choice is

é(f /7';, ey /;y} = ';; ) C:CJJWS/. . (2.163)
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Combining (2.162), (2.163) and (2.161), the transformation (2.114) with (2.118)
reads

/Y
o = A TH) = by (7, ) = C Y=

= & [o(d,—-(_,Xj.

Thus, the transformation of the internal variables ay consists simply in a tempera-
ture dependent shift C,X of the variables a, and a change of scale with scale fac-
tor Cif C # 1. Note that this transformation relation is not the only one which sat-
isfies (2.156) but it is very simple.

(2.164)

2.23.2 Casell”: gmgo,/s{/

0, Emn # 0
2

The assumed evolution equation is given by

@

O:if’ = /;’/‘5“""/ 7 Fas 0("/% f£/’7 (Sne, %)@7

/

provided épq satisfies equ. (2.110)1, integrability is assured. The transformation is
given by !
Vs

and its time derivative reads

e 2__4_;— e 974; ° %J’ : 24&’ S =
VT dew % T or T 7 g P
My 7 I, - DAy )z
<. Ve G )%
M, - DL,
—_ ——l e,
# o7 77 F 7
Reduceability/requires -
Ay _ o o =0 (2.165)
A7 ’ #
% - Ly jj’; o . (2.166)
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Thus .
V4
o’y = '4J /dﬂ/ 2 ). (2.167)

To find a solution F\y(Okl, ay) satisfying (2.166) is generally a formidable problem.
We present here only a transformation function th when Epqn, is a set of constant
values

v

f?m ~ coust (2.168)
independent of the temperature. Assume that hy is a linear function in ay and ok
such that

Ay = A6y + Bad
& e e (2.169)

where Apq and By, are sets of constant values. Inserting (2.169) in (2.166) gives

d/'q"" o 5” ;,, = O, (2.170)
We choose >
ﬁém = = yElmv 45"
and (2.166) is satisfied. Consequently _ »
/% = ?/“ (. = Epg pz ) (2.171)

is an admissible transformation function where the B, are arbitrary constant fac-
tors. However, it should be noted that any set of functions G, of hy

AL = G rh)

yields another set of admissible transformation functions h*.

2.2.4 Thermodynamic Consistency of Assumed Strain-Stress Relations

In section 2.2.1 the assumed constitutive relations are (2.79) and (2.80) with the
strain-stress relation given by (2.79)1. In the following a less general class will be
assumed, i.e.,

fmu = Crernn fd'it/ 7-; “V/
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7 =m ( p ) r (2.172)
To = o (— ) )

and the evolution equations

ﬁj (e, 7,000 +

4 éﬂm / ” )6:&» + (2.173)

tf(—r—) 7.

With these assumptions a direct evaluation of the Clausius-Duhem entropy in-
equality is possible using homogeneous fields for oy, T, and ay; this yields the fol-
lowing necessary and sufficient conditions

Qf’ Qf -

7 + &£ = O

5 Y (2.174)
)€ . Qf’ 4 o =0
o7 Dod, V 7 )
and
S %
—_— —_— = O
5 o’)a(., / / Ya (2.175)

Note that the functions 7, 13, #k1, I;i depend only on the variables ok, T, and ay.

In the following we assume that an ad hoc-model has been proposed by pre-
scribing the functions

& (G Ty ) ) Fy (=), Ep(——> , H =)
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and the functions Emn and H are such that the evolution equations (2.173) are not
reduceable. Such a choice of functions is done when purely mechanical theories
are developed without a thermodynamic embedding; then, of course, the inter-
nal energy ¢ and entropy 1j are not a matter of concern. Nevertheless, one should
require that the mechanical theory is thermodynamically consistent in the sense
that it can be considered as a special case of a more embracing thermodynamic
theory. Thus, one should require that there exists a Gibbs function satisfying the
restriction (2.174)1. We will extend this question by assuming that also 1j is given
by an ad hoc choice. Thus, the ad hoc model consists of a choice of

[ %4

Sar | % , faw, d’f" )Y (2.176)

all of them functions of (omp, T, ay). It is evident that such a choice is not necessar-
ily compatible with the two restrictions (2.174): Thermodynamics requires that
there exists a Gibbs function U satisfying both equations (2.174). Since the func-
tions (2.176) are given, the equations (2.174) represent an overdetermined set of
6 + 1 partial differential equations for single function . Therefore, not every
choice of the functions (2.176) allows the existence of a common solution L.

With respect to the (6 + 1 + N) derivatives

2_,;5:: 95 i/)_«f Df)fu v:/,...//\/

6% ~ ey L or T ox,

the equations (2.174) are an underdetermined system of (6 + 1) linear equations.
Thus, equ. (2.174) allows to solve for aZ'/ao,d and aZ/aT in terms of all other quanti-
ties including aZ/aaV; but ai/aav cannot be obtained from (2.74). Therefore, the
theory of overdetermined systems of linear partial differential equations of first
order [67], which yields necessary and sufficient conditions for the existence of a
common solution, is not simply applicable.

We consider ay as a set of parameters and al/day as functions, which we do
not explicitely prescribe*, except that they should not necessarily vanish. Then
(2.174) is a system of (6 + 1) differential equations for the single function Zwith
(6 + 1) independent variables oy and T.

* Inirreversible thermodynamics the derivatives -p 8(/da, are identified as the affinities A, or
thermodynamic forces. if had hoc assumptions A, = A, (amn, T, ay) are made, then an
additional set of equations is available.
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We restrict the further discussion to the equ. (2.174)1 which will, in fact,
show the essentials. The inclusion of (2.174); is done by a proper naming of the
independent variables and the given functions since both equations (2.174) have
the same structure.

Equ.'s (2.174)1 represent six partial differential equations for the Gibbs func-
tion. If a solution fj’ is required to exist, the functions Ek| and &) are not arbitrary
but have to satisfy certain conditions. Provided ’

&
= 2.
é& = O (2.177)

the existence of a differentiable common solution If of (2.174)1 implies that the
second order partial differentials are interchangeable, i.e.,

Y 2 2
A S
06, Ibun  Pbau P02
and this yields the necessary integrability condition

Qé,q, E tn (2.178)
ngn Qd-a

i

which is also a sufficient condition (see [67]). For this simple situation this relation
represents the thermodynamic consistency condition for the stram stress func-
tion. I Ek; is nonzero,we obtain with (2.174)

s % I /&

D6 I63s  Fows L Ay Cp T8 %/

_DE L e 05
ou, Jo,, v /1 W Pors S Pors (2.479)
D2Ex JE PEm s e

T ¢ I, S " a Jdog S Py -

With the change of indices from (p,q) to (r,s), (y) to (v), and (v) to (p) we get from
(2.179),
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A S SCIN) ) T
I, oL,  Pa,dd, 5T Do oo, S I, (2.180)
Exchanging (p,q) and (r,s) in (2.179)1 and substracting this from (2.179)1 we ob-
tain

D'E D f Ty )éfrs)'

D655 Py D, Jony Pt ( Ik I

T A, Jo, v 4 2, 26 é”
2 G 96}9 - )

Inserting (2.180) in (2.181) with a proper choice of the indices, several terms drop
out and we derive the following relation

QE Qf,‘—::f; . ;éfsf jﬁﬁé‘
ﬂd};« - 96;49 s $79 oty &7

075::7 _ Qé‘:ﬂ— ;f/_sé"/ 9/)5,«; 5/

20 " 35 (9w .
(2.182)1

: O.

The conditions for the complete set of equations (2.174) are obtained by supple
menting (2.182)1 with the conditions

v

0E, 24 /Y F _al_é_z/;/ﬂf

- ol s /7
27 56 Py

Y 9”/ 2,
/ 92/‘5‘ _ 9/7 — /7[
t3) 57 T Tag (T Co T

= O
—_ .

(2.182),
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This was obtained from (2.182)1 by a proper renaming of the functionsin (2.182),
according to the similarity of (2.179)7 and (2.179),. We write (2.182) in a more
compact form using matrix notation. The derivatives dl/day, v = 1, ... N are col-
lected in the N-dimensional column matrix

.”2_{ V= .., A//. (2.183)

Z:= ) ow,

A

The associated coefficients, i.e. the { ... }-brackets in (2.182) are collected in a (M,
N)-matrix K. Since o is symmetric and ,qu is assumed to be symmetric, the { ... }-
brackets in (2.182)1 represent (6:6 - 6)/2 = 15 terms for each greek subscript v. In
(2.182)7 the { ... }-brackets represent six terms for each v. Therefore, the number
of rows of the matrix Kis M = 15+6 = 21 and the number of columns is N. In
general N, the number of internal variables, is much less than 21

N < M=2l. (2.184)

The [ ... ]-brackets in (2.182) are collected in a column vector € with dimension 21,

075}99 _ o’)é:m o’fr.s < 9&7 é)‘
96}5 ??; s 'EP? ol 5

I

< _ . 9 (2.185)
s 07 /Ay //
A -
”?/zr 5960 * e 519 ”‘ <
such that (2.182) takes the form

/KZ = . (2.186)

With (2.184) this represents a system of overdetermined linear equations for the
unknown vectorz.

—

!

The conditions (2.182) or (2.186) are based on the assumed existence of a
common solution { of the system (2.174) and on the interchangeability of the par-
tial derivatives of L. They are not integrability conditions in the usual sense since
they still involve the derivatives al/day. It is evident that not every choice of func-
tions qu, I;I €pq. 11 or matrix K and ¢ admits a solution z; but, of course, the exis-
tence of a solution is required, otherwise a function C satisfying (2.174) does not
exist. In fact the existence of a solutionz represents a necessary condition.
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From the theory of linear equations, where the elements of K and ¢ are usu-
ally fixed numbers, we know that a solutionz exists under the following condi-
tions [71]:

- In general the system (2.186) with M>N allows a solution only for special
vectors ¢; a solution need not exist. If there is a solution, it is not necessarily
unique; it contains D = N - R arbitrary constants where D is the defect und R
is the rank of the matrix K.

A solution exists for the inhomogeneous system then and only then when
the equations representing the system are compatible with each other. This
is the case when the rank of the extended matrix ( K, &) is not larger than
that of K.

According to [71], the practical numerical determination of this last property is
rather simple when the matrices are given by specific numerical values. However,
if the elements of the matrices are themselves functions of various variables (here
omn, T, ay), @ prove of the existence of a solution z must be obtained for all ad-
missible choices of the variables (omn, T, ay). This can be done numerically only for
a few selected states and an analytical prove appears to be feasible only for sim-
ple cases.

We will now consider several special cases.

Casel: [K=0

We observe that the first { ... }-brackets in (2.182) or alternatively the matrix K in-
volve only the qu— and aq‘unctions and they control the reduceability of the evo-
lution equations (see equ. (2.108)1 + 2); in fact the identical vanishing of the ele-
ments of |K

K=0 (2.187)

are here the only reduceability conditions since ék = 0 and Epq as well as El are in-
dependent of the temperature gradient.

If reduceability of the evolution equations for the internal variables is possi-
ble, then K = 0 and (2.186) yields

¢ =0 (2.188)

or explicitely
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96;5 96}9

9 . 2 (2.188)’
¢Qé;y 5’qr __?L e el =
gdemm 2% _ /g O
57 % s els TIT oS |

Thus, if reduceability is possible, the condition (2.186) yields the integrability
conditions (2.188) which assure the existence of a Gibbs function { depending on
internal variables ( z = 0). In this case the equs. (2.188) represent the
thermodynamic consistency condition for the strain and entropy functions gpq
and 1.

Reduceability implies that there exists appropriately transformed internal
variables ay’

/ e
o = A (G, T, )yl

such that the evolution equations are of the form

("4

e, 7 Qxﬁ u/ /
Ly = P2 %’ =/{/<5,2,,7}@//,

Then all constitutive functions can be represented as functions of Opq. T, ay' and
the classical potential relations for the strains & 'mn (0pq, T, ay') and entropy 1’
(opq. T, ay') apply. The corresponding integrability conditions are

v/ v/ iy v/
DE DEag 5 Ees dY

Note that the conditions (2.189) are just alternative formulations of (2.188)" in
terms of the new internal variables.

Casell: ¢=0

The general inhomogeneous problem (2.186) will not be treated in the following;
here the remarks on page 67 may suffice. Instead, we consider the special case
that the given strain and entropy functions (2.176)1 and (2.176)s are independent
of the internal variables and are deriveable from a potential function {e(omnp, T)
such that
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v 25t ) . 2 £l 1)
5{1 :-f;dz , ’7=" _5-/_————' (2.190)

Although this appears to be a peculiar case some mechanical models proposed in
the literature are special cases of (2.190)4, for example Hooke's law. Naturally,
their thermodynamic consistence needs to be analyzed; an example is studied in
section 3.3. This motivates the following general analysis. If £¢) and 1j are chosen
such that (2.190) applies, then

< = @ (2.191)
and (2.186) simplifies to the homogeneous system
Kz = o© (2.192)
with the (M, N)-matrix IK (M > N).

The theory of overdetermined homogeneous linear systems of equations yields
the following theorem [71]:

A homogeneous system with N unknowns admits always the trivial solution
z = 0. Non-trivial solutions z # 0 exist then and only then when the column
matrices b, of the matrix IK.

k=(0¢b,-.,6,) C(2.193)

are linear dependent, i.e., the rank is less than N or the defectD = N-R is
positive. The general non-trivial solution z is not unique; it consists of D > 0
linearly independent solutions z, such that

2z = Q,z, + Ay Z; #* - d,p Zg
//(2’4 = o, £=/ .. D (2.194)
with free parameters ag.

If the column matrices by are linearly independent, i.e., R = N < M, then
only a trivial solution Z = 0 exists.

From this statement the following conclusions can be drawn with respect to the
satisfaction of the condition (2.192).
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Casell.1: Thetrivial case z = 0

Obviously, if

2 = /07%“,/ =0, (2.195)

the condition (2.192) is trivially satisfied formally whatever the structure of the
matrix JK. But this implies that the Gibbs function does not depend on any of the
internal variables ay. The existence of a Gibbs function  satisfying (2.174) is a
basic thermodynamic requirement. However, whether or not the Gibbs function
should depend on the internal variables ay is a matter of a physical assumption. If
the independence of Zon ay, v = 1 ... N is acceptable on physical grounds, then
the condition (2.192) yields no restrictions on the elements of the matrix IK, that is
on the constitutive functions gpq and y and the Gibbs function is simply given by

f" _ fc(€m~ ) ‘7") . (2.196)

Of course, the internal energy & is given by (see (2.82))

(14

E = £ + 7% » %6 fa (2.197)

and is not allowed to depend on the internal variables, too. Then the assumed
constitutive equations (2.172) and (2.173) are thermodynamically consistent
provided the residual dissipation inequalities are satisfied.

Case ll.2: The non-trivial casez = {ol/day } Z 0

If the Gibbs function is required to depend on the internal variables because of
physical reasons, and this is usually the case, then the trivial case z = 0 is not
acceptable. That is, we require that (2.192) admits a non-trivial solution z % 0.
However, this imposes restrictions on the properties of the (M, N)-matrix iK.

Case ll.2.1: K =0 = Reduceability of evolution equations

The conditions (2.192) are trivially satisfied if all elements of K vanish identically.
But these are exactly the conditions of reduceability. From the above theorem on
homogeneous systems of linear equations it is clear that K = 0 is only a sufficient
condition. Thus, reduceability is not a necessary consequence of (2.192) if z ,#_, 0is
required. Reduceability imposes restrictions on the functions Iqu and ’H But the
assumption z Z 0 implies that the internal energy €, equ. (2.197), depends on
internal variables. Thus, we have a somewhat exceptional situation that fand €
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depends on internal variables but g and 1} are independent by assumption.
Formal thermodynamic consistence is achieved if qu and H satisfy the
reduceability conditions and if also the dissipation inequalities are satisfied.

Case ll.2.2: K0

We assume that the functions qu and I;-II do not satisfy the reduceability
conditions and therefore K z 0. Since z £ 0 is required, then, according to the
above theorem, the elements of K must be related to each other in a special way:
The column matricesfoy, v = 1, ..., N of [K are required to be linearly dependent,
i.e., there should be N quantities yg, k = 1, ..., N such that

o 2
ﬁgi byl ot b, =0 ﬁfﬁ/#@u

Since thelby depend on épq and Ei which are functions of the independent state
variables (oyn, T, ap), the linear dependence is required for all state variables.
Therefore, the quantities y, may be state functions themselves.

In general, the linear dependence appears to be a rather unlikely situation.
Nevertheless, it cannot be excluded. However, an analytical approach to test the
linear dependence for all sets of state variables (omn, T, ay) is not feasible, except
for simple cases. But a numerical analysis [71] for one or a few sets of state
variables may suffice.

If it is found that the rank of the (M, N)-matrix [K is equal to N,

R:= mank (k) = N,

then the [by are linearly independent. Thus, condition (2.192) cannot be satisfied
under the assumption z = 0. This means that the functions ’I::'pq, I;I which
determine the elements of [K are thermodynamically inconsistent or the assump-
tions (2.190) are inadmissible or both.

If, on the other hand, it is found that the rank is less than N for some finite
domainD in the (omn, T, ap)-state space,

=< N V (G, 7, 0) € D

then the b, are linearly dependent. Therefore, there exists a non-trivial solution
Z.

The solution z depends on the elements of K and D = N - R free parameters
ak. Both D and ag, k = 1, ..., D may depend on the state variables. Thus, if z, is a
component of z, then
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D

z, = ’527 aq Zy, (2.198)

where Z, are the components of the D linearly independent column matrices 2y,
equ. (2.194). This satisfies the condition (2.192) with IK =,4s ® and z F 0 in a formal
way.

However, this is not sufficient to assure the existence of a Gibbs function T
depending on the internal variables since (2.192) is only necessary. For example, it
is also required that the z,'s are derivatives of , i.e.,

Jf - ~
‘ZV = —9—5(—; J 4 //"’ (2-199)

which is only the case if
6,’) Zvy 9 ‘Z/‘w

ot = P (2.200)
n v

These additional requirements are made more explicit in the following.

We will take a different starting point for the study of Case I1.2. Since we require
z # 0, the Gibbs function f can always be represented in the following form

f(c‘;u, 7o) = £¢6.,7) + L5, 7, a,},_ (2.201)

Introducing this into (2.174), we get with (2.190)

) E 25 |
E s
D6y, 7 o, v “ “
GEC Qe - ) }(2.202)
ya 4 2 y é/ =o. |

Formally, these equations are analogous to the determining differential equa-
tions (2.57) for asingle transformation function T’ = hy. Thus the conditions (2.69)
derived previously are applicable here and take the following explicit form
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) \
DI [ Il DEw [IEnf @ff//’-o

ool S D6 ~( Pug s77 g 5
. . . ) 1(2.203)
I Iem I _SOH g /ém//)/_
R A O R L T
)
or equivalently
//( z% =@ (2.204)

with )
z“< = f”f)‘f a(,], (2.205)

Of course, equ. (2.204) follows also immediately from (2.192) since with (2.201)
2 3 o < (2.206)
ol = + = .
zZ°~ = / %:/V,/ = @ Z Z .

The case studies Case 11.2.1 and 2.2 are now supplemented by the following state-
ments.

Supplement Case l1.2.1: K= 0

The identical vanishing of the matrix K implies reduceability of the evolution
equations of the internal variables and the existence of a set of transformation
functions By,

ocd,// = A, (Sn, T,,) (2.207)

is assumed. Each single transformation function FY satisfies, analogous to
(2.57)1 4 7, the system
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Js, T od TH

. . > (2.208)
Iy M
27 7 e é/ . )

Because of the similarity of (2.202) and (2.208), the partial potential {a (omn, T, ay)
does not only exist but is required to be some function of any or all of the admis-
sible transformation functions hy, i.e.,

S f”(/é(’K"IT,m/}» (2.209)

Therefore, introducing the new internal variables ay”, equ.(2.207), not only the
evolution equations for the internal variables are reduced to a form free of rates
of the external variables, but also the additional potential Za is simplified to a
function of only the new internal variables ay”. Thus the Gibbs function takes the
form

O( B
£ = fe(ﬁm, 7) t f (/0{/) (2.210)
where the form of the function Za is arbitrary.

Supplement Case I1.2.2: K+ 0

We assume that the rank of K is less than N in some finite domain D of the state
space,

Ri= Rank(K) < N | Vfé;ﬁ,/fm)é@. (2.211)
Then equ. (2.204) admits a non-trivial solution of the form
of o
2% =qa,z t+ -t &y
or componentwise (see (2.198))
Zv = f— Ay ~hv - (2.212)
=7
If an additional function Za (omn, T, ay) depending on ay should exist with the

property
I 2,
= = > a (2.213)
D, Z, 57 ¢ Chv,
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then z,a has to satisfy
o
Jz% Iz,
5ot Do,

With (2.202) we also get

of - o«
ém{m = = “-——Qlfz é-& = -Z“’
96‘1@ Py *

oA -z

i

presyy

o7 e, v

(2.214)

f (2.215)

Compatibility of the non-trivial solution z with the requirement (2.213) can be

checked further by taking the partial derivatives of (2.215), ie.,

QZfd = J Z.“ /f/‘/ = "2‘“"“

| mmm—"

ydg 97‘. aa,’ v 4 9 7

¢ (2.216)

Thus, any non-triviél solution za, , equ. (2.212), must satisfy also (2.214) and
(2.216) if it should represent the a,-derivative of the additional Gibbs function Za
in the domain D. The conditions (2.214) and (2.216) are certainly necessary
conditions. A formal prove that (2.214) and (2.216), provided (2.212) holds, are

also sufficient, has not be obtained.

if these conditions are violated, the non-trivial solution 2y is irrelevant since
an additional potential function Za, to which z'{, can be related, does not exist.
Then, either one accepts that the Gibbs function { is independent of ay, i.e.

f‘ fefgjm',?j / f(a 0/

so that
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ol of
Z =0 y; Zy =0
or, with fa & 0, the assumed constitutive relations are thermodynamically
inconsistent.

Note that (2.212) involves the undetermined functions ak. This complicates
the evaluation of (2.214) and (2.216) and may pose a problem. Therefore, the
evaluation of (2.214) and (2.216) will provide only then definite conclusions if

they are independent of specific choices for the undetermined functions ay.

2.3 Extension to a Class of Elastic-Viscoplastic Material Models with Internal
Variables

The assumed constitutive relations (2.172) and (2.173) are still fairly general. It
should be noted that the internal variables a, have not yet been identified. In
fact, they may represent scalar or tensorial variables, e.g., second order tensors.

In viscoplasticity, assuming infinitesimal deformations, usually the total

strain tensor gy is partitioned into its thermoelastic and viscoplastic part
e s »
Egp = Tt T e (2.217)

where gey| includes the thermal strain ethy) , e.qg.

2;; = R*(7-7) I  (2.218)
with the thermal expansion coefficient Ath. Then
e ed H
S = Cue T Eg4 ; (2.219)

eel) denotes the purely elastic strain controlled by the stresses. For the
thermoelastic strain g€y a constitutive equation of the general form

e - - D
gél = éz@ /6;""/ /lﬂw/ g’)foh) (2.220)

is assumed where the Py are scalar or tensorial internal variables. Here an explicit
dependence on the viscoplastic strains ePmp is still included; usually this is ex-
cluded on other grounds. The viscoplastic strain ePg) is controlled by an evolution
law

(™
o P P
g/ég = 4@ (6;’0" 7 T/ ij ?l«h). (2221)
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The internal variables §y are governed by a set of evolution equations simi-
lar to (2.173)

By =y (Gun, T, e, ELD
- —— W

7 s

Y [ ’ )7 (2.222)

&
they may also involve the viscoplastic strains explicitly. Here the irreversible part,

i.e. the functions hy and ‘Zv may change in form according to certain switch con-
ditions, which are required to depend only on the independent state variables
and not on the rates of the external variables. The definition of an elastic range
by a yield function F(ok|, T, By, emnP) such that hy = 0if F < 0is an example. To be
definite we also assume that the functions hy and f, are continuous at these tran-
sitions.

It has been shown in ref. [1] and [41] that such a mathematical structure fits
into the general frame of (2.172) and (2.173) if the viscoplastic strains are inter-
preted as internal variables such that the ay in (2.172) and (2.173) represent the

following set
P
X, = [ﬂs ) Z&f?- (2.223)

Mathematically this is perfectly admissible if only the form of the constitutive
functions in (2.172) and (2.173) is properly constructed. However, in material sci-
ence circles the viscoplastic strain is given an extra status since it is not considered
to be an independent state variable on empirical grounds, i.e., it does not affect
the internal energy and entropy if the stress is used as an independent state vari-
able. In other words only the difference between total and viscoplastic strain is an
independent state variable.
To be explicit the assumed constitutive relations take the following form:

£, = £% (S T,/5.)
= &€ (—1 —)

70 g ()

9 = % (5T 9, 0)

A

f (2.224)




- 78 -

with the evolution for the viscoplastic strain
gt = 4, (S ; 7, /5 ) (2.225)

and for the internal variables B

fy = fj/f“‘/rfﬂ’) ’

] 7 4 ) *
g 5‘“" (i, 7, 50 ) S (2.226)

v

+ ﬁ/ /524/7//""/7 J )/E/'z”"//‘/'

The dissipation inequality (2.81) is now with (2.217)
o e 4 7 % %
/i= ¢7y -SE€E # She Ehe + O The — - 20 (2.227)

We introduce the Gibbs function as follows (compare (2.82))

f= Eloh, T,8) =€ -7% — 6k éc (2.228)
such that
dé ] ® _e ° _ / @ P _ / X4
;—f—f:f.-_— E =Ty =T ~ 56,8 "% St
and
® ) ® 3 e 0’) ] ;
f = .__é: 6, * _é)f_, 77 ——'—é‘ﬂu
i3 27 o7 L
so that (2.227) reads
. . . . °p G F _
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v

D Jf = e ) S
= —(s 5 * 5 G £a + iz )
9f

ny /4/ . /7- “ (2.229)

-s( o7 7 s

[

| e 0 va 2 gﬁ%
& [ o) > D
AR T s A

At this place we recall the discussion in section 2.2.1. Thus, an arbitrary variation
of the total strain rate field £y (xm, t) associated to a compatible displacement or
velocity field is in general preferable compared to a variation in the stress rate
field o6k). However, with (2.217), (2.224)4, (2.225) and (2.226)

' & 2 &z Jee
2 fo_éf,s:,,m A W“‘r 7 9/1,4 # &, =

I

e
v, ve o .
= a7€ "& 7 Q Za Eﬁm 60&-. ’
07 0;»5« % v “

(2.230)

oz 25 5 )7
f/é’r ’ é{

v 3;? 7+ A@ /6;":./ 7;/1//.

Assume that locally at some instant the values omn, T, By and ¢Pmn and the tem-
perature rate T are somehow prescribed. Then (2.230) represents a system of lin-
ear equations for the stress rate if the total strain rate gy is given. Thus, a locally
arbitrary modulation of ¢i| induces a stress rate 6y in a unique way if

L4
2 Jei E».) £ invertible | (2.231)
96;,;1 yﬂ" e N

This can be put also in a suitable matrix formulation analogous to section 2.2.1
but this is not done here. Thus, provided (2.231) is possible, an arbitrary local
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modulation of &g or 6k| is mathematically equivalent. Therefore, with the usual
argumentation we obtain from (2.229) as necessary and sufficient conditions

DF 2E S e
gl + g £, * €4 =0
) 20, T “

7; 9F v . (2.232)
-

: JE )
Gy, & - 5 P = O
“ o 3/59 % (2.233)
7o %
— 7 = O

where the possiblility of separating the residual dissipation inequality is
observed.

With respect to the evolution equations (2.226) for the internal variables B
all results of the sections 2.2.2 and 2.2.3 apply if we rename the variables, i.e.,
ay — By , and if we drop the dependence on the temperature gradient in these
sections. .

Similarly, for the question of thermodynamic consistency of an assumed
elastic strain-stress relation (2.224)¢ and an assumed entropy relation (2.224)3 all
results of section 2.2.4 can be used if the following renaming is done

0= A, Go=> i, f=sF em

We note especially the results described in the last part of section 2.2.4, here
translated to the presentsituation.

Assume that the proposed elastic strain-stress relation and the entropy
temperature relation are independent of the internal variables B, and are
derivable from a partial potential £e(omn, 1), i.e.,

ve Jﬁc s Qﬁc

Epe = —F 9@ y 7 = = o7 (2.235)
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Since we require the existence of a Gibbs function £ depending on the internal
variables, £ can always be putin the form

Floan, T, 8.) = £, 7) # £°(Gun, 7,8) . (2236)

Introducing this into (2.232), one obtains

£ J £ £ = 0 \
D6 %e 2B, TR
> (2.237)

DE: 2£°
Ty 4

If a common solution &8 of (2.237) exists, then the interchangeability of the par-
tial derivatives yields (see (2.203)) the necessary condition \

D p s)_ /7 Ers / éi” /)/=
(95;*5 h / %5 éﬁ 7Y3e “!é;’s °

gyt 26) (g, o)
96’.,//97 B 372";/— Py 57 s ’/ ©

[ (2.238)

or

Kz*® =o / "= {;f/:%//u

Since the discussion in section 2.2.4 applies, if the “translation” (2.234) is ob-
served, the following statements can be made.

Casell2.1: 2B+ 0, K=0

Provided the evolution equations (2.226) are reduceable, then the { ... }-brackets
in (2.238) vanish identically ([K = 0) and (2.238) is satisfied. Then (2.237) has a
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common solution &B and the partial potential &8 (omn, T, Bp) is required to be some
function of any or all of the transformation functions F\Y (omn. T, Bp)o Y = 1, ... N,
i.e.,

,fﬁ _ /gxx//{;[@"’r/&)) I. 2.239)

the existence of the transformation

4/ = /Ay (G T2 /) (2.240)

assures the reduceability of the evolution equations. Consequently, the addi-
tional potential &B is solely a function of the new transformed internal variable

B'p. i€,

fﬂ = fﬂ[ﬂ;) ‘ (2.241)

We summarize this result in the following theorem:

If the thermoelastic strain e and the entropy 1j are assumed to be indepen-
dent of internal variables B, and deriveable from a potential £€&(omn, T), equ.
(2.235)

‘e oF S S
o = "Sps, 0 77T 7

and if the evolution equations for the internal variables are reduceable to
the standard form

e , / )
Ay = Fe (6mn, 7, )
where

B = Ly (Sn, 7,5, )

are suitable transformed internal variables, then a Gibbs function §(omn, Bp,
T) - depending on internal variables f, - exists and is required to have the
form

F= Flon,7) *+ FU8).
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Casell22: zB+ 0, K# 0

Provided the rank of the MN-matrix K is equal toN,R = N < M, then (2.238) can-
not be satisfied for 2B = { 3&B/day } # 0. Thus, (2.237) has not a common solution
£B. Consequently, the functions :épq and Ij are thermodynamically inconsistent or
the assumptions (2.235) are inadmissible.

Provided the rank R of the matrix K is less than N, R < N < M, then (2.238) can be
satisfied under the assumption zB # 0. The non-trivial selution zB takes the form

A
z*% = a Z/“ r By F o F Ay 2y DN-R (2242)

where the zbj are D linearly independent solutions of
kz% =o , F=lts? (2.243)

and ay are free parameters. Thus, the By-derivatives of the partial potential £ re-
quire the representation

»
DE’ a .
9——2 = /2’3/” = 3'%4 a, Z/'» (2.244)

where Z}V are the v = 1, ..., N components of each of the ) = 1, ..., D linearly in-
dependent solutions zf;; they depend on the { ... }-brackets in (2.238) in a com-
plicated nonlinear way.

A positive defect D = N - R > 0is necessary but not sufficient to assure the
existence of a common solution &8 of the system (2.237). However, the compati-
bility of (2.224) and the system (2.237) can be checked by requiring the inter-
changeability of the partial derivatives, e.g.,

QZE/;’ ) 92;/3 é)?f” ~ szﬂ sz/,’— _)_‘!E
W, P8P I, Ds, 06, MWe ! DT G IT

(2.245)

(see equ. (2.214) + (2.216) and the following remarks) which is necessary for a
common solution.

If (2.244) is violated, then a common solution &a of (2.237) does not exist.
Then, either one accepts
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=0 = €= fefd‘;..,., 7),  (2.246)

i.e., the Gibbs function is independent of By, or the assumed constitutive relations
are thermodynamically inconsistent.
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3. Applications to Several Constitutive Models
3.1 The Robinson Model

3.1.1 Formal Description

The Robinson model presupposes infinitesimal deformations and initially iso-
tropic response. Here the version given in [47] is summarized.
The total strain tensor gy is assumed to be separable into its elastic,

viscoplastic, and thermal parts, i.e.,

sk

E, = 5. + 4 * Zie. (3.1)

The thermal partis given by
e = A*(7-7) de, (3.2)

implying isotropic thermal expansion. The elastic strain eelyy is related to the stress
by Hooke's law

e o e
6, = A Em /a 7+ A /?-"4¢ f‘-"a). (3.3)

Lame's constants A and p are given in terms of Young's modulus E and Poisson's
number v by

_E
A = //H/)//-—zu/ ’ AT 20m)

(3.4)

The essential part of the model characterizes the viscoplastic strain epyj, the back
stress ak) and the drag stress x:

\

( " zie -
A F 7:,- . F>0 aud Sg S o4 >0
;2 V4
°p
E S, 3, =0
. <o or =
2 / s ke ke 43.5)




1
.

P 5i {
H é"’ —_ 26 ’QFQ“ . GG tnol S5y oy 7O
) 6’3 é& ‘Z-J ’
b
L oGk g2G or 5%
G /Z. J
! )
@ A v K P o
K= SYWETIHE ¢ OWTT)T (3.6)
with
Y
F = s
(3.7)
such that - .
e [/ 2 o 4T /
where
Sge = 64, T é’@mn J\u deviatoric stress
Ay = 0gp — 3 Olan, /Le deviatoric back stress
Z‘Aﬁc = Sge — e effective stress
;z = g Ete 24 2nd invariant of effective stress
. L
“Zi = 2 Qg Qeg 2nd invariant of back stress
s drag stress
¢ drag stress at reference temperature
To and undeformed state
dimensionless 2nd invariant of back
G = .._Zz,/ég& stress
7 absolute temperature

and Fis the "yield” function

£ o=

7

xl

=/ (3.9)
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The quantity Wp is the plastic work
P SP
N - /fa ég 27 (3.10)

where
(3.11)

is the plastic stress power.

The quantities A, H, g R, K, m, B with (m - ) > 0 are positive temperature
dependent parameters.

The equations (3.5); describe the kinematic hardening whereas (3.6) or (3.8)
model isotropic hardening. It is noteworthy that only the evolution law for the .
drag stress involves the rate of an external observable variables, that is the tem-
perature rate T. Clearly, this is a non-isothermal theory which requires non-
isothermal experiments. Robinson proposed this scalar evolution law to account
qualitatively for the thermomechanical path dependence observed in, for exam-
ple, the cyclic hardening behavior of some alloys of interest [47].

Classically, the drag stress x or K affecting the yield function (3.9) has been
assumed to be an explicit functionof Wpand T, i.e.,*

F = FKIWT)

This is equivalent to adopting the evolutionary equation for K as

: " A
A= 2 2L

27 .
This is a perfect differential and integrable independently of the thermo-
mechanical history {Wp(t), T(t)}. The evolution law (3.6), however, is not required
to satisfy the integrability comdi;tian** .
76

A
27 N

Alternatively the accumulated effective plastic strain has been used instead of We.

** Here it should be noted that a differential form with two independent variables such as
LK =Yl + Gwer)AT
always admits a multitude of integ rating factors Nwp, 1) such that
AA = N1 AP + A Od7

represents a total differential.
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] A
Without further comments we state the smooth functions I' and 6 proposed by

Robinson:

:r ‘/%;(77"1](;[7/
I (WoT) = W) ”/”/ W (r)

]
!

é////;r) 6?/"”71 P /@//// "'“F/ <o

Z -f{;//— ev/o/:’a,/?f'“ )7)

i

sl (1) (3.12)
Hofr) = R ¢tB8(7-7) +C(7-7)
}{;{7’"} = A +8 [7“7,;/& |

Here, Ko, K; and Qq are temperature independent material constants, whereas
K;, K5 and Wy are temperature dependent. Note that K; (T) is the temperature
dependent hardening parameter in the virgin state (i.e. Wp = 0) of the mate-
rial. Kg (T) is the saturated value of K in a deformation process at constant tem-
perature T and where the plastic work has reached a very large value.

According to Robinson the function Q(Wp) is not known presently but appears
not to be a strong function of Wp; for the exploratory calculations in [47] it was

taken to be a constant

QIWNY = (o) = QA = cost. (3.13)

174
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3.1.2 Extension of the Robinson Model within a Thermodynamic Frame

3.1.2.1 General Structure of Free Energy and Thermodynamic Restrictions

For the Robinson model without isotropic hardening a choice for the free energy
had been made (see ref. [1]). This formulation contains an error since a distinction
between the purely elastic strain
2 P “
é& o= ZQ - é‘a - Za
and the thermoelastic strain

4

p
e ‘= Eg T e (3.14)

/

which contains the thermal strain ethy), had not been made. This error affects only
part of the formulation in section 4.1 in ref. [1] but not the rest of the study. Also
this previous work did account only for the kinematic hardening but not for the
isotropic hardening.

In the following we present a corrected version which included the effects
of both hardening mechanisms. With equ. (4.1), ref. [1], the free energy is as-
sumed to be given by

where : ? (3.15)
-_-af [:3
T = [0 ,7, aa  xf
)

Note that we choose the drag stress x as an internal variable but not its square
K = 3x2.

Equ.’s (3.15) imply that the free energy does not depend explicitly on the
total and the plastic strain but only on its difference, the thermoelastic strain eey;
also as usual the temperature gradient is excluded from the list of independent
variables. The same assumption is made for the stress and entropy

6u= (') , y=5(T%. (3.16)

The material rate of the free energy is then given by

Y e, DF o ¥ L )Y
= L. Z . 2. AR
Vo= i te ® 777 pag % g <
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Then the dissipation inequality (2.5) takes the following form

= (62 — ¢ ow)fze */yge/ Ep "é +57)7—

7 (3.17)
_o ¥ kR
y24

/gﬁdﬂ% I '

The evolution equations for the plastic strain and the back stress do not contain
rates of the external variables; only the rate of the drag stress depends on the
temperature rate (see equ. (3.8)). Accounting for this, equ. (3.17) reads

/;2/ 8 9% Q% é 7_
J = /a" ée%é:(gm 77 TS50k dn 5’7) ’
a v 2 0p
0 DY) - I g (38
*"/"/ze - ”'_“/ “ Sy ek T T
= O

Here it should be noted that the evolution equation for the plastic strain and
back stress, equ. (3.5), are discontinuous at certain states such that the rates ¢py|,
ak) and thus also the plastic stress power Wp in (3.8) suffer a jump. At these states
inequality (3.18) is not applicable since the rates £py etc. are not defined. A more
general derivation of thermodynamic restrictions is required starting off from a
time-integral dissipation inequality. This has been done in ref. [1] in general
terms except that there the evolution equations were of the purely “irreversible
type”, i.e., did not contain rates of the external variables. However, it can be
shown that this does not affect the general conclusion obtained in [1]. Thus, a
time-integral form does not impose additional constitutive restrictions at states
where a discontinuity in the rates of internal variables occur. The restrictions ob-
tained for smooth processes from the classical instant form of the dissipation in-
equality are applicable to all states, and no other constitutive restrictions are to
be observed.

Except for the states where the evolution functions are discontinuous, a
smooth kinematically compatible thermomechanical process is defined by a
smooth displacement and temperature history ux(xm, t) and T(xm, t) as well as ap-
propriate initial conditions for all evolution equations. Thus, an arbitrary choice
of the functions u, and T implies a locally arbitrary strain rate ¢ and temperature
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rate T. Then the necessary and sufficient conditions for the identical satisfaction
of the dissipation inequality are*

AY

Gue = 28( 7z%, 2£%4
L S (3.19)
. 2 -
7 = " 77 ] £ J
and with (3.19), \
4 ¥ /W”
~ — =
dn <= /?,947@) %e =5 gy G =°
L (3.20)
. %en
J’r T %m | =0 )

The separation into two inequalities is due to the fact that the mechanical dissi-
pation y\j does not depend on the temperature gradient.

Obviously, conditions (3.19)1 represents the classical potential relation for
the stress. However, (3.19), does not correspond to the traditional relation be-
tween entropy and free energy.

3.1.2.2 Choice of Free Enerqy

In terms of the thermoelastic strain eex) and the thermal strain ethyy the purely
elastic strain eely is

g = &, - Sa . (3.21)

Hooke's law (3.3) then takes the following form

. "
o = Ao tie #0558 te2) = (37124 5, (3

With the restriction (3. 19)1 we get

07'3// e #
55 'z /z,,‘/ =t oo+ L By~ (TA1L4)R 7 )

* . o A A
Note that the functions {, 0 and T" are smooth
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Thus, except for integration constants, the free energy ¢ may be obtained by par-
tial integration in the domain of the thermoelastic strain. One finds

~ AL _ 73T _
VA(T*) = Ve 7) T ¥ (@, 0¢,7)
7€ e e e ge (3.23)
/}p/’&if)'.: é-/é/z/l{ Eagﬁ 7":’; 54:;5. Zé&/ r
ﬁ o= 2 e Q8- o
”E,/’Jeff‘z/@)g [7_/,/2:« J
According to our basic assumption (3.3), the "integration constant” ¢!T depends

only on the internal stresses amp, x and the temperature T. It is required to be in-
variant under coordinate transformation. Therefore, implying isotropic material

behavior only the invariants of the back stress, i.e.,
C,= 2 = Quw = O

lpo) - frae = -Lawas - I

Ay =
/’;J,: et QA

are involved. But in the following the simplest assumption is made, that is, the
back stress and the drag stress are only quadratically involved with separate con-

tributions. Thus,

~ 2
/521[7 - /}47/7_} £ —;/M{,/ \—Z/'Qm,,anfj 1"51(/{/27) é_[éc (3.20)
Te '
Therefore, the contribution due to the internal stresses involves only two new
temperature dependent material parameters Mty and N¢t). For the following the
temperature dependent contribution ¢T need not to be specified in detail.
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3.1.2.3 Reduceability of the Evolution Equations

The evolution equations (3.5) and (3.8) together with (3.11) represent a rather
simple special case of the general scheme (2.80): The temperature rate is
involved in only one evolution equation and, as usual, the temperature gradient
does not play any role. This corresponds to the case III" in section 2.2.2. Thus, the
reduction of the evolution equation for the drag stress to the standard form is
assured since the temperature rate term does not explicity depend on the stress
and temperature gradient. In this context we may consider the plastic work as
general internal variable determined by the evolution equation (3.11).

Consequently, a proper transformation of the internal variable "drag
stress”

/ - /Zx/x/ /!/,O/ 7—/

exists which allows the reduction of (3.8) to the standard form.
Instead of using the drag stress x we use the variables K and its evolution
equation (3.6). The transformation equation reads

K = LR, N, T). (3.25)

Differentiation of (3.25) with respect to time yields

. _ 2L , .2_4_.
J(“w«?‘j’f* on’A/

s 2 JL
ﬂ//” 4 /7/}‘/ “( o7 27{ &/7

Reduceability of (3.26) implies that the condition

ngé 7 j}i Ower) = © 327

—_—

(3.26)

admits a solution. This is a linear first order partial differential equation for the
transformation function h. The variable Wp plays here only the role of a
parameter. Since the function 0 does not depend on the drag stress by
assumption, a new temperature variable can be introduced
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7 7
A o [
/= o/&mcr)df = —/—féf 7, ep [-(&-7)AT
7 7
(3.28)

.
= Z, &p [-52/7-:———75///
/

where T is some arbitrary initial value. Putting T= To we get

A= %, Z:ee/o["é?/ff M ~1]. (3.29)

With .
A= O (weT) AT

equ. (3.27) reads

e IH '
The characteristic equations are rather simple:
A / 4% | (3.31)
As As

where s is the curve parameter along the characteristic base curve. Along a char-
acteristic base curve the function h is constant

di _ P AP, DB AR _ o, (3.32)
With the initial values .
Sy - X

S=0 , A= ’ A (3.33)

the solutions of (3.31) are
S = s | A=t (3.34)

which gives
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= - T (3.35)

for fixed '!cf’and arbitrary K =1 equ. (3.35) represents a bunch of parallel straight
lines in the {*, K)-plane. If h is prescribed along the initial value curve's = 0, T ar-
bitrary, such that

A(se0,T) = £(T) (3.36)

then the general solution of (3.32) is

(P HK) = Ler) = L(7- (P-7)) .

With (3.29) and the choice

A/ =0 (3.37)

we obtain

A = AR WET) = AR AF (1 - opl -GN, //)338)

where h (. ) is an arbitrary differentiable function. The most simple transforma-
tion function is given by choosing

AE) = T (3.39)
which yields finally the following transformation law
‘e 7 07) = X+ /1 Lp/-ANE-3)])
R = Al NG =A* zj//— 7, N "7 (3.40)
and thus

A = R—H (1= epl~IE ).

It is noteworthy that the transformation (3.40) consists simply in a temperature
and work dependent shift of the origin (zero point).

With |
A L o 42 ) pen /- (E-1
2 AV a7 / r}/(3_42)

and reduced evolution equation (3.26) reads
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F = fEET ”%//7” -
(3.43)

=//:'//’///’7} + X, j//f/c’//r r)“/o[&“ﬂy/éz'?/—///ﬁ}f

Again the rate of the transformed quantity K' depends only on WP and T but not
on K’ itself.

If Q is taken as a constant Qq, as used by Robinson in ref. [47], then the re-
duced evolution equation (3.43) is simply

& P
= YWl T) N (3.44)
with

VN &,oﬁ@(?i';é/] |

or 5 (3.45)

=R -K // — ap /-4, /‘7‘2’%{/])
)

It is remarkable that the reduced evolution equation (3.44) corresponds to the

classical work hardening model for the isotropic hardening. To complete the
transformation, the quantity K or 3k2 appearing in the yield function (3.9) and in
the free energy (3.24), has to be expressed by the transformed variable K' accord-
ing to (3.41) or (3.45)>. Thus

3; = ”}Z“ %g’/"/cr) { Quen Qs 7
+ 5 Ner) LR =R (1— 4rl-Q % _#—/)]’L (3.46)
3 ’527(7*) .

If Q is taken to depend on the plastic work WP, the free energy with this set of
variables will depend on WP. This result will be disturbing for the material scien-
tist since it appears not to have a "physically sound” bases.
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This objection cannot be made if Q is constant: Q = Qg. Then also the following
equivalence statement can be made:

The extension of the classical work hardening law for isotropic hardening by
a temperature rate term, i.e.,

A = Tt )Wt + BT (3.47)
work hardening temperature rate term

is equivalent to the following alternative approach:
- isotropic work hardening law as usual, i.e.,
o A o
— o r
T = WT) N

- but an additive supplement of the quantity K by a temperature term in
the yield function and free energy, i.e.,

ol

/
K H=of =K - [Eu)ar
7o

This additive temperature term depends only on the instant temperature T
and a reference temperature Tg.

3.1.2.4 Evaluation of the Intrinsic Dissipation Inequality

The mechanical dissipation inequality is given by (3.20)

a . ~ Avp
i L G

° p
fa”ﬂ,a Ye "5 Py o

lrw = Sg
With
¥ 2%

g __ (3.49)
S pag = Mo, 550 = Ny

and with the evolution equations (3.5) and (3.6) we get

fiu = Fo + du t et b 350

where
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fo = Gz EL = Sg, £ (3.51)
is the plastic stress power,

& = — M Gu En (3.52)
with

(ot = 2 =0,y 626

G/-i

(3.53)

- Ao, . =G
._Q:Gppa’cfébo

[

Or Sge Age = O

is the hardening contribution of the back stress, and
"7
fo =+ RM —— 2/, (3.54)
. /7,

is a contribution due to static recovery; further

A A, 40'0
v K — N, K | (3.55)

———

d)-?"’"g?dc s é

is due to the work hardening part of the drag stress. Several observations can be
made rather easily. The evolution equation for the plastic strain rate is such that
the plastic stress power is non-negative for all processes [1], i.e.,

fo = W' = o, (3.56)
Further, in the elastic regime ¢py) = 0, and thus
dn = da = © /"/ g"‘;zoj
consequently
My, R, = 0 4 7,

/7

to allow for recovery processes one must have R > 0 and therefore we derive
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M, = o, (3.57)
The hardening term yp takes the form [1]
P
2MA F
J/A‘ = - 2 /(1. (3.58)
where /Z‘!
K, : = £ Gun S (3.59)

is one of the simultaneous invariants of the two tensors amn and Zmn.
The product term QMAFYVJ, is non-negative in the plastic region and
therefore the invariant Ky controls the sign of yy

/
< O , K, 7o

& = (3.60)
= O ’ /(LSO )

3

The drag stress contribution yj is negative since I and Wp are non-negative and
since the parameter N is assumed positive analoguous to M; this appears phys-
ically sound (g increases with the increase of x) although we do not have a phys-
ical model for the constitutive relations. Thus,

J7 = 0. (3.61)

The mechanical dissipation then reads

dn = dr Y D 7 S AR ¢ SN € X-7)

With (3.51) to (3.55) we obtain
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[ e — Moaw — G- %]

mop

= 2L (1 £0)- a5, rom & TE

With [1; p. 96]
%2; = Z/Zg + 4 ) (3.64)

equ. (3.63) yields

Ar” g
In = /—57—-/1/;3 e KJ)(1-57) —z//_fz/é]

mA

—_ y (3.65)
2 /f‘—‘ /-'/ #
L L k]
>0

v zM/e/g—}//E:

In equ. (3.65) the signs of the various terms are as indicated; from (3.60) and
(3.62) it is clear that the intrinsic dissipation is to be analyzed only for positive val-

ues of K».
If the dependence of the various functions in (3.65) is observed, one finds

that the intrinsic dissipation is a function of a set of variables
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(f’hz dth/—ze,/z;kz ,'Z// //9/7)

where N
Z, zo
3L/ = A
K, >o0
wW? zo
7 >0
)

According to [1], the simultaneous invariant K; is related to |, and J; via the
Schwarz inequality which, for positive K, reads

0 = K, =§/§:%

> (3.67)
0 < f =/ .

Thus, the dissipation inequality requires yy to be non-negative,

dm = d’:; /.7},072, f, &, N, 7T) =o (3.68)

for this set of arguments which may take independently arbitrary values within
the assigned ranges.

Putting I = 0, then (3.67) yields K2 = 0. Then inequality (3.65) yields a nec-
essary condition for the material parameters

/ — —Aé—/’—’-’ /4///37 =0 V wer (e

For a given temperature T the function I" has the upper bound at Wp = 0, i.e.,

4 A S (r)- ST 7)
[(wer) =/ (n = > 0. 3.70
(Wor) =1 i (3.70)
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Therefore, a necessary upper bound for N(t) is obtained from (3.69)

6 YA,
/V(r) = = . (3.71)

/’Z[r) B S, () -JL.(r)

Further, equ. (3.65) yields a sufficient condition for the material parameters if the
factor of K3 is required to be non-negative:

// - ’;/Ziﬁ:)[ﬂ'///i:T) "—"M[?j-[z[jur))z 0,

(3.72)
o -
V/ N Y 7m/ ‘“éz ®
According to (3.53), the discontinuous function Q has the upper bound
RnLT) = L,,.07 = "_Aiﬁ‘“ :
¢/ shax G (3.73)

Therefore, taking the smallest value of the left hand side of (3.72), we deduce a
sufficient condition which involves only the temperature as a state variable
A

lﬂ .
o (7, 2
[ — Ny /':; ' = Moy L, 20, VT

(3.74)

This is a linear relation for the two parameters M) and N(1) which defines a trian-
gular region in the (N, M)-plane (Fig. 1), the “region of sufficiency”: Every pair of
free energy parameters (N, M) within this region and on its boundary assures that
the intrinsic dissipation vy is non-negative for all types of processes.

This results proves that the Robinson model, including the isotropic hardening,
and its non-isothermal component is formally thermodynamically consistent in
the following sence:

The model can be supplemented by thermodynamic functions such that the
extended model is compatible with the requirement of non-negative en-
tropy production. But obviously the model may still fail when confronted
with caloric measurements.
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SONINNN N

« (N,M)
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Sufficiency
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(1)
max

Fig. 1: Graphical Representation of the Sufficient Condition (3.74) for Non-
Negative Mechanical Dissipation

The derivation of more stringent conditions for the material parameters to
yield a non-negative dissipation deserves some comments. The previous discus-
sion shows that there exists a lower bound for the intrinsic dissipation if we put
& = 1 and observe the necessary condition (3.69): ‘

Jts = 2 A FZ]:,W)//%—’//-— _’Yé—ﬁ'-)/"///ﬁ)/ .

-f/f// = —A—gir—)‘/:/ﬁ’}f) — My -/Zf-zz,7/j]*

w7

-
t 2 Moy R /;f/—/ z.)

> O (3.75)




- 104 -

Thus, the lower bound intrinsic dissipation y g may become negative solely due
the term MQ in relation to the other terms.

We will now introduce dimensionless quantities

Ty = It =6, Ji=dsit, K=K

%

and » (3.76)

5;2 = ac%gf ) .7"?‘:\/(/&6:‘

such that
7 o= g e
and .
x:/}? ) 7 =//<,7: , /\’;=/L.Z?:“/Z:. (3.77)

Then equ. (3.75) reads

Soo = 27 F?;,/:?/a;c/gz // - 1;?—2’/’/4/',’7}/

g //__ ;’g’_” /;///17) — M —(Z&V}/f

(3.78)
w-p+%
. . 2
+ < /",7/7/ 'Z)U) ‘}Co k)
where

~ 2
Fe e L, = g - (3.79)

st ~
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# i & for
(—,\,iﬂ- = ;,«.—t—/f , L/)(}X‘; and Ko #L: >o
r4
J
__Q = J > (3.79)
;n = /::ﬂ y / xek; or K120
02 &
! )

Here the relation

S, &, = 2Kt L)
is used in the switch conditions. Taking (K, Wp, T) as parameters, y|B is a function
of xand y. The lower bound dissipation represents a surface in the (x, y, y )-space
and a discussion in geometrical terms is possible analogous to [1].
If the [ ... ]-bracket in (3.78) is allowed to be negative, a critical region exists
in the first quadrant of the (x, y)-plane (Fig. 2); in this region y g may become
negative. Its boundary is defined by

andax}:
" oo )
?/ = /Zf/.? ) AG'8
- H M / _ /)\” 37—6
7 P ’ } (3.80)
_ HH / _ —
? - /C_z/i /e {/; ///(" , CA J

Assuming
A
=Y (3.81)
implies that the shape of the critical region approximates a triangle (Fig. 2).

Equations (3.80)2 and (3.80)3 define the geometrical locus in the (x, y)-plane
where the [ ... ]-bracket in equ. (3.78) vanishes, i.e., changes its sign. Outside the
critical region the lower bound dissipation is definitely positive.
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X Critical Region

Fig. 2: Critical Region in the (x, y)-Plane

It is obvious that a critical region does exist if and only if the point C is above
point B' (Fig. 2), provided (3.81) is valid. Thus, the following criteria apply

.
ek r yc = 2/1 - A//-' -//X‘ >~ /k/}
A kv fical rgion ? 7# (3.82)

d(Jb'J hﬂf
el J

7e = «‘%v/a

L

Consequently, the condition (3.82), is a sufficient condition for a non-negative in-
trinsic dissipation everywhere in the (x, y)-state space. Equ. (3.82); is formulated
as an upper bound condition for M

M = “J;—”iﬂ/’ 3 24//:/// . /\f/v- (3.83)

~—
e O

Unfortunately, this condition still depends on the variable Wp, the plastic work,
and on the drag stress variable K; therefore, it does not represent a proper re-
striction on temperature dependent material parameters.
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»
The work hardening function I" {(Wp, T) takes values in the interval

o : s or — Ko lr)
O < A = rmg{ = JZ/ ) (3.84)
6(7)

”ﬂ—)w ”’o:o

However, generally such bounds do not exist for the drag stress variable K except
that K cannot become negative. Therefore, and with the maximum value of fa
sufficient upper bound for M is given by

2/8 . a
M = -—?} (¢ =% T "52/;;/'_54‘*)' (3.85)

This result has already been noted above (Fig. 1). For strictly isothermal processes
(T = 0) this bound can be improved. The initial value of the drag stress variable K
for avirgin (undeformed) material is

AR R R e /e

(3.86)

-3 - Z /- aﬂf'g/é'f///
,

where Tp is the actual temperature. The value K; may be below the reference
value

5 o
Ao = e T

which corresponds to the reference temperature T,. The evolution equation (3.6)
simplifies to

T = LY s) K

(3.87)

with the initial value

WP =0 T (o,79) = He

/

The ingration of (3.87) yields simply

T A v (e -T) (1 — 2pl~ ]
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e

or (3.88)

7 = S, - (A, "’Zﬂ'/ﬂt‘/o/:%]

The Robinson model has the inherent property that the plastic work is a monoto-
nously increasing non-negative quantity and for a virgin material we have Wp =0.
Therefore, the drag stress variable K is also a monotonously increasing non-
negative quantity for strictly isothermal processes. Its value lies in the interval

Je = 7 = /[

e,

/},/10::0) WP — co

For isothermal processes the right hand side of (3.88) is only a function of Wp. In-
spection shows that it is in fact monotonously increasing with Wp; its absolute
minimum is at Wp = 0. Thus,

/'ZM
/\%3/3// ,1/ Y o ./‘(// 57 / (3.89)
— S / e .——.
A J?C

This inequality assures only that a critical region does not exist and therefore it is
only a sufficient criterion for non-negative dissipation. But more important, it is
only valid for isothermal processes, only then the drag stress variable K is a mo-

: . , A
notonously increasing quantity even if 6 = 0.
With these remarks we close the evaluation of the intrinsic dissipation in-
equality.

3.1.2.5 Conclusions

The Robinson model, as described in [47], was developed to account qualitatively
for thermomechanical path depedence of the isotropic hardening. Therefore, the
evolution equation for the drag stress involves a temperature rate term linearly
and thus it belongs to the evolution equation of “mixed type” (see section1).
Clearly the theory is non-isothermal. However, the theory, as originally described,
was not embedded in a thermodynamic frame and therefore its thermodynamic
consistence was unresolved. For an early version of the purely "irreversible type”
[45] a thorough analysis ([1], see also [43, 44]) proved its compatibility with the
classical Clausius-Duhem entropy inequality. The analysis of the thermodynamic
consistence of the present version requires an extension of the model, i.e. an ap-
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propriate choice for the Helmholtz free energy. Here a very simple assumption is
made: The backstress and the drag stresss are only quadratically involved which
implies only two additional parameters, i.e., M1y for the backstress and N¢t) for
the drag stress.

The present analysis shows that this “mixed type” formulation gives the classical
potential for the stress but destroyes that for the entropy. However, it is demon-
strated that the evolution equation for the drag stress is reduceable to the purely
“irreversible type” by a simple transformation of the internal variable "drag
stress”. Thus the classical potential relation for the entropy is retained again. As a
consequence the free energy becomes a function also of the plastic work, a prop-
erty which may raise objections on empirical grounds in material science circles.
From the residual dissipation inequality a necessary condition on the parameter N
is derived, for the parameter M only sufficient conditions are deduced. No restric-
tions for the parameters of the original Robinson model [47] are obtained.

These results demonstrate that also the advanced version [47] is formally
consistent with thermodynamics.

3.2 A Model of Krempl et al.

3.2.1 Formal Description of the Model

Krempl et al. [52] developed a visco-plastic model based on overstress. It belongs
to the class of “unified” theories, i.e., “plasticity” and “creep” are modeled with
a single set of equations, rather than taking the traditional approach of seperate
sets of equations to predict “time-independent plastic” strains and “time-
dependent creep” strains. Predicting both “plasticity” and “creep” within a sin-
gle variable is the primary distinguishing feature of the unified constitutive equa-
tions approach [72]. The model of Krempl et al. does not use a yield surface and
special loading and unloading conditions. Both elastic and inelastic strain rates
are active at all times.

In ref. [52] the formulation is given for the uniaxial state of stress but in ref.
[53] a multiaxial state is assumed and this is the basis for the following descrip-
tion.

The total strain gy is additively composed of the thermoelastic strain ey,
which includes the thermal strain ethy, and the viscoplastic strain epy|

e
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where N

[tV Y ' %

e Ld s — g
€ = [ £
(3.91)
H ?
= RE(T-7) 4, .
/
The evolution equation for the viscoplastic strain is given by
2P 3 / (s ) (3.92)
E e
#e S EALL) e e

with the deviatoric stress sk| and the deviatoric equilibrium stress gy

/ (3.93)
5 = St 3G by G = e~ e A

It involves only one type of internal variable: the symmetric deviatoric equilib-
rium or back stress gi). Note that £py| and, with appropriate initial conditions, also
epPy| are deviatoric. The equilibrium stress is govemed by the evolution equation

G = LW[r)e, — ,5[/7 [ —$Ee,) (3.94)

where

%

[# (% o)t -pu)f
by = ASC¥[r) —£,) , (3.95)
¢ = {3 af”

and ey is the total deviatoric strain

.96
G&, = ZQ - J/[mm /Q . (3 )
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E and v are the elastic constants; E¢ is the tangent modulus at the maximum strain
of interest, and A is a positive constant [52] or an additional internal variable con-
trolled by a separate evolution law [53] if cyclic hardening is to be modeled. The
shape function y[I'] has the properties

AV

O< N[r], ¥lol=c <& , 55 <©. (3.97)

The viscosity function k[I'] is also positive, bounded, and decreasing, i.e.,

AL

O<£[T]  jmax K7 =K | 7 <O. (3.98)
/

It should be noted that the model of Krempl et al. is actually formulated for con-
stant temperature and the temperature dependence of the various terms is not
explicitly mentioned.

Comparing the evolution law (3.94) for the equilibrium stress with other
unified models (e.g. [72]), an important difference is seen in the first term:
Krempl et al. use the total deviatoric strain rate éij instead of the inelastic strain
rate epjj which is the standard approach: Usually it is argued that gjj is a state
variable which should grow only when inelastic deformations occur and there-
fore the initial term is disturbing to material scientists and appears not to be
"physical”. Krempl et al. realize this criticism [52]. The reason for their choice is a
better qualitative agreement of model predictions, i.e., almost linear elastic be-
havior under unloading and reloading conditions in strain controlled experi-
ments.

Here it should be noted that the presence of the total strain rate in the evo-
lution equations for the equilibrium or back stress implies that the solutions g;(t)
are not only functionals of the past history but also of the present values of total
strain. Thus, a jump in the external variable "Cauchy stress” or “total strain” in-
duces a jump in the back stress. Following microstructural considerations [73],
one may take the position that this is not physically meaningful. But with
Lubliner’s observation (section 1) of the non-invariance of the evolution equa-
tions under transformations of internal variables, this argument does actually not
hit the point: It would be more appropriate to require that only those internal
variables are physically meaningful which allow to write the evolution equations
in a rate-free form. This means that the evolution equations should be
reduceable to the standard form (purely irreversible type).
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3.2.2 Thermodynamic Consistence: Reduceability and Existence of a Gibbs
Function

In the following we will not discuss the question whether or not the model is ac-
ceptable under microstructural considerations. Instead the thermodynamic con-
sistence is of interest and here we will use the results of section 2.

To come as close as possible to the nomenclature of section 2 we write the
evolution equation (3.94) in a form which involves the rate of the deviatoric stress
instead of the total strain rate. With the strain partition (3.90) and Hooke's law
(3.91) we find

/
/,{Z /5&9”, eo, 54»:.) * s “"” %[/ -5;2
where (3.99)

Fro (G, fon, £2.) = 24L17 € --ﬁ NIV YY)
J

with the deviatoric elastic strain eey| to be obtained from (3.91)1 and epy) found
by integration of(3.92). Equ. (3.99)1 may be written as

= Foo (Soa) oo, Ei0) 7 5 ol e (3.100)

where

£ 1) = L2 Y il ) -3 k]

S ~

fiih» (3.101)

In a formal sense here the internal variables are g and ¢Py) . Clearly, only (3.100)
and not (3.92) involve the rate of the external variable stress, and the tempera-
ture rate does not occur in the evolution equations. However, in the following
the viscoplastic strain £Py) will not be assumed to be a state variable which affects
the Gibbs function or Helmholtz free energy explicitly; it is simply a “process
parameter” governed by the evolution law (3.92). Therefore, a transformation of
the internal variables gk to g'kj should not depend on ePy; explicitly.

Then equ. (3.100) is analogous to (2.226) if we consider the viscoplastic
strains Py in (3.100) as additional “parameters” and if we use the following in-
terpretation
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At e — P Esn = Lrmn 7 =0 (3.102)

The first term in the { ... } bracket of (3.101) is the 4. order unit tensor, which
reflects the symmetry properties of the subscripts and the second term assures
that the contracted product Eximn 6mn Yields the deviatoric stress rate. The tensor
Ekim has the following properties

514 26230 ) AP Ao

If the theory of Krempl et al. is thermodynamically consistent, then a Gibbs
function € should exist which allows to derive the thermoelastic strain-stress
relation (3.91) from it and an entropy temperature relation such that

, ) JE r
€ —
e T 7% ] s, ‘ 9 s L""“/
v }(3.103)
.
Y

and with a mechanical dissipation inequality

%4

Jf

oy €% — € T fou = 0 O (3.108)

to be satisfied by the constitutive equations for all states. These conditions simply
follow from (2.232) and (2.233) when properly translated to present case and
with Izlp-r Hil = 0.

The left hand side of (3.103)1 is given by (3.91)1, the classical isotropic
thermoelastic strain-stress relation, which does not depend on the internal
variables "equilibrium stress” g|.

Of course, the entropy function 1j is not identified in the mechanical model
of Krempl et al. We will assume that these were given by the classical
thermoelastic entropy-temperature relation independent of internal variables.
Then &) and 1j are derivable from the partial potential e

/+u
Foroiiffana - Frah)

(3.105)
~EA*(T7) G f(r/
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such that

’ JEe . )ﬁ‘.

4

it e P 7 ST 7

(3.106)

The Gibbs function é (omn. T, gk1), depending on the internal variables gkj, may be
written in the following form

ﬁ/@m, ij./ = fe/ﬂw/'/ # f’/4~zzcﬁ-/(3.1o7)

with the partial potential &9, tentatively assumed to be a function of all indepen-
dent state variables. Inserting this into the restrictions (3.103) yields the following

conditions
2 7 )
~ il # IF é'ma) = O
(3.108)
_ DF =0
27 )

Thus, the partial potential £9is required to be independent of the temperature T.

Equation (3.108)4 is an overdetermined system of partial differential equations
for the single function £9. Since we require that a Gibbs function depending on in-
ternal variables should exist, the system (3.108)1 must admit a common solution &9
(omn. 9paq)-

Using the results of section (2.3), conditions (2.238) must be satisfied. With
the present variables they read

Qﬁ, m-p? J*Eem #3 "7@“"55 Qfﬂﬁif 5)/

P 6y Py 0’}, J f.& .0/7

;)f: ’9£h~/"?
;}; A7 /

For non-vanishing a89/agy; this is assured when either one or the other of the fol-
lowing conditions is satisfied:

(3 109)
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- The evolution equations (3.100) for the internal variables gpq are
reduceable

- ThedefectD = N-R of the MN-matrix K is positive

Reduceability:

The evolution equations (3.100) are reduceable then and only then when { ... } -
brackets in (3.109) vanish identically

1
g/}E,.,,,pq _ 95*##7 j‘—{mmé‘ gfmﬁé‘(”/: b

ihidy e —
IS s IS pg 7 F e 77 ﬁ?jg

? (3.110)
éENh/'? = O

27

We note that the fourth order tensor Emp pg,equ. (3.101), is not a constant so the
conditions (3.110) are not trivially satisfied. If the elastic moduli E, v are indepen-
dent of the temperature, then (3.110)2 is obeyed. The analysis of condition
(3.110)4 requires some calculation. With |

2 A D _

Py

/
= > J T
D63s PS¢ 763s 27 it Js3s

£ 5 () (or fee =5 M )

i

= %7{? /57'_; "ﬁ's/

27
ﬂ"fr; =—§7’£/‘$’ ._%j/

one finds
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2675 = TE 3 A Psus L mpy
v /
= g //7 /7 /';)‘.r %//0510/7 3%".0%9‘/
Lrre A )

0’;%;” = — ZV 4//2//' /_’/ (/5&,:;“/[/—0&”” j//r*ﬁééj

with _ |
O, 23 /4. Jog * Orp 6/1,;)

such that
I o v dY 1 g
7;;:-? élf? £ arr £ ;- /H f/’?/ Monrs Mv /f;’s]

Consequently, condition (3.110); takes the tollowing form

/g‘u % ﬁ[/’"w o5 ) Gonps =5 lonlr ] -
oy =59) [ urs = Gt [

= 27&//&4 oy ) [ oy ~ 3o T
“/5": "fm)/ﬂfn,oy—'j /- /:,]/_]/.,

Sl PR S N Y
Loyt ) oeri 3 b ] [~

(3.111)

b~
e}
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With

trv d¥ s /H/z
= E ar 7 ?/#0 3.112)
we obtain from (3.111)

s ’7"—')//‘,"/9 "J o /7] /«%‘ ﬂ’;)/”fw ~F tow 's] 0 (3.113)

which should be satisfied for all choices of subscripts. Assume, for example,

) d’—’S}

then the l.h.s of (3.113) reduces to

éf/jn, - ﬁ.f) (no summation); (3.114)

clearly, this does not vanish identically. Therefore, the evolution equations
(3.100) are not reduceable.

Defect of the MIN-matrixIK

If the { ... } -brackets in (3.109) are not identically zero, which is the case, then
(3.109) can be regarded as an overdetermined system of linear equations for the
six unknowns a8%/agmn

JET _ Df
9;’“» yfﬁh

Since 0Emn pq /0T = 0, the system is given by (3.109)1. The { ...} -bracket is given by
the Lh.s. of (3.111) and so (3.109)1 takes the form

f” /5rs fr:) Yos - ¢ /f/j‘ gﬂ?//(r; (3.115)

where
£ s , _
Koy = ﬂffu /”Z"'/i ‘_"3”6)"‘/’;7)_
4
9____.?2! — fo”:qf../ Aoy = / (3.116)

is deviatoric. With




Va

I

(5, =, =,
[ZN] =2, 2, o¢
&Ze Zs Zs)

equ. (3.115) may also be written as

< — =/..6
ZKXL "ZLXK“O’ £eL=14..,

This has the following matrix form

2, ~Z,
2, s,
p2 o
Z . o
2, o
0 2,
1, 5.
O Z s
0 2.
% o
O 0
0 0
o 7
7, o
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Kz =o
0
_Z' O O
o -5, 0
1% o -z,
0 % 17,
-2, o 0
o -2, o
0 o -2,
o 2 1
2y -2 o
s O T
2 ¢ o 2
s T2y
o 5. O

>

Xe X, Xe| G117)
Xy X X

(3.118)
(3.119)
p £ Y
0
g :
O
o,
o f %
..,2, XI
O XL .
2 X =10
© X+ © (3.120)
-2, | | Xs
O X‘)
\.
o
_23
O
"Zz/. 0
) )
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To simplify the further discussion we choose an orthogonal coordinate system
where X takes its diagonal form. This is defined by the principal axes of Zrs. Then

*_
— R | Z, Oﬁ ©
[Z,S]Z?[Z.H] = o 5.0 | (3.121)
o o Z:J

Of course, the principal axes of Xpq are not necessarily identical to those of Zis.
Then the system (3.120) reduces to

¥
(5% -5 o 0 o 0
bale o == o o 0
- *
0 0 o -2, o .
¥ ( xX*
0 0 17, o -5, 9, *
y 3
0 0 0 0 o -5 X -
£
o ZJA‘ _22* ) 0 0 XJ . :[o’..,,o]
0 0 o =55 o o || )
o O , 12 -5, o /‘k (3.122)
o o o 9 o _5%5|| Xe |
o o O 55 0 )
— K
o o o o —Z.3 o
) 0 ¥ 0 o ’ZJ*J
or explicitly \
# ¥ VES —
¥ ¥ v = o
>, X . 2, ' ’ (3.123)
— X —
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and

#* £ _ _
Xe =0, N =0, /(6"0- (3.124)

Formally, the equ. (3.123) represent three equations for three unknowns X1*,
X2*, X3*. The determinant vanishes identically. The nontrivial solution is
. ¥
r 2, ¥ STV .
/\/. = =% /(j ’ /\/2 S g /\C,s
AT =

4
or P ‘(
*.
X, . .
—_— = ——p = 7 = -
=t =, 2;
and
'] \ X,
/\’.* Z,
4 - &
O R R K (3.125)
¥ P
J\ XJ } 3 J

The defectis D = 1. If we account for the fact that the Z¢* are deviatoric,

£ — ¥

¥
E' + EL t 2., = O
then we also have

} 4 ¥
/\/,K f'Xz, f/\/s =0 .

From this result we see that for a general coordinate system we have

..Xe] CIZ,, Za,,--uzéj (3.126)
Nw €2, kel

It should be pointed out that (3.126) determines only the deviatoric part of
a89/dgpq. Thus,

It

[£., X, .
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s
99}: =cw- Ksﬁ —/,,) + G Ops (3.127)
77 ; IR

G: =3 yam o

where G remains undetermined. Further, the evolution equations for the
viscoplastic strain and equilibrium stress involve only the deviatoric Cauchy stress
and the deviatoric equilibrium stress; the hydrostatic part of the Cauchy stress af-
fects only the elastic volume change. Therefore, the partial potential £9, if it ex-
ists, should only depend on the deviatoric quantities smn and gmn.

Then (3.127) yields for p ;f q

gﬁ ;c;ﬂ-/Jﬁ?-Z@?) ‘(3-128)
779

and from (3.108)7 we get with (3.101) and k 7L I

g’ F orrv s
byf‘—:—gﬁ—l-—'—--—’}”//’#’f?ﬁfe ;f,} i z3‘//(3129

Interchangeability of the partial derivatives requires
¢ J
J f _ QF — O [7/ subcript
;76* - . \
9;,«; Ae ke % combinations (3.130)

Forp = k ¢ q = | one gets

o+ DO i) ~lor K3y o [ E V)5 )-

(3.131)

e

= O (no summation)

If we choose si| - gk = 0 for a given pair of subscripts ki, (k £1),then
/Y nv ¥ 4 2y 2 / |
e (1~ L2 2= TF spey =o B132)

which certainly cannot be satisfied since y is hot a constant. Thus, a common non-
trivial solution & = 0 depending on gmn does not exist. This means that the
model of Krempl et al. does not admit a Gibbs function depending on the equilib-
rium stress. However, if this is required, then the model is thermodynamically in-
consistent. Consistency would require either a change in the evolution equation
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(3.94) or an extension of the thermoelastic strain-stress relation (3.91) which
would involve an extra term containing the equilibrium stress.

Of course, it is possible to drop the requirement that the Gibbs function § is
depending on the equilibrium stress gmn. Then  exists and is given by

F= E(on, 7).

Whether this assumption is consistent with the dissipation inequality is studied in
the next section.

3.2.3 Thermodynamic Consistence: Dissipation Inequality

At first sight it appears to be possible to refuse the internal variable “equilibrium
stress” gmn to be a true thermodynamic state variable, i.e., a variable affecting
the state functions. Then

ﬁsz
and a Gibbs function is found to exist. But then the mechanical dissipation in-
equality (3.104) simplifies to

P = Se Ee

that is, the plastic stress power should be non-negative for all states. .
In the following we prove that there exists states which do not satisfy the
condition (3.134). Consider a uniaxial state of stress such that

v

oy (3.134)

) o
r% 6y O © (‘gd’h ©
/
= / -
( 5@} o 3%« © | [?ﬁ]‘ o j © (3.135)
7
o 2 ‘j’GZJ o O 3%
\ N

and

%
A / 7 /fa—;a)/&rﬁz// = /6, -4/, (3.136)

Then
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/ A
& / (<-4
2 el A s B =
€3y "'5,(6;7{")
i J \ < (3.137)
(é,_p f
o= Y ___f P
Z<u P
-5 &
L \ J
’ ) , &
73| 24 |7
74
[ . ’
1+v 2 2 o
o - ,.
= %ﬁt -—-—-—-547[/[[’]3 267, .
> (3.138)
- 50,
and thus L /
P 6, -d, y 3 Ity 2 '
slhe 2% = 3 + s W) 6, 3.139
’ E%(r')’d(” > & g Y00 61

Itis clear that with (3.99) the term f11 is only a function of 11, y11, €P,,. The plas-
tic stress power is

. ‘P
Sy €4 = S, &4 (3.140)

and it is obviously negative, if for positive values of the stress, the viscoplastic
strain rate ¢p,, is negative; this is the case when o, - y,, < 0. Fig. 3 shows the first
quadrant of the stress-equilibrium stress diagram. It is clear that above the graph
0,, - Y, = 0 the plastic strain rate is positive and below negative with negative
plastic stress power.

We now show that states in this domain can indeed be reached by a suitable pro-
cess. Assume that the initial state is at the origin (o,, = 0, y,, = 0). We then per-
form a fast tensile test which raises the stress to the level ('111 att = tyandy,, ar-
rives at the value \?11- This value can be found from (3.139); by integration:
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AB : Fast Loading
BC : Creep
COE : Fast Unloading

—

Yy

Fig. 3: Direction Field, Trajectories of Fast Loading, Creep and Fast Unloading

Processes
fi 1‘[ 6/
y S - /#
o = /(;;,m =/g—',,a/r 7‘/ Y U6 AT
. o
(4 ”f 5, e (3.141)
/
///
- /5’ ) AT ;Y ds
P o

For a sufficiently fast test the first term can be made as small as possible com-
pared to the second since fq1 is bounded and the time interval may be taken rath-
er small. Thus y,, is essentially controlled by the stress rate term during this test,
i.e.
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‘ [tV 2 - & >o
due © F 3 %[FJG;’ ’ d (3.142)
or
/ v
sy >0 , Ci=—%—3% (3183

Aty = vy

since (3.142) is independent of the time scale. With (3.97) we have

- v 2 &
cyrrl < Cylrel = Lo = <
(3.144)
Yar T
and therefore
0/6:—1) S~ .f{_é;.' > / (3.145)
a/d'n Vel A b f=o
so that the trajectory of this process transports the state in the domain above the
boundary o,, -y,, = 0. We introduce the following substitution
[ = /6 4] = 6 -4 20 5126
which yields ‘
A ad
.___d__. = ) 220 o /rC”?[l’J >0 (3.147)
a6, a6,
and consequently
¢
r o
A7 !
= € = 5
0 < o] A6, v (3.148)
7 o

for a given function w[T'), subject to the conditions (3.97), and stress level (';11,
equ. (3.148) allows to determine I" and this yields with I" = “’11 - \}H the equilib-
rium streSS\;H.

Starting from the state (\'rﬂ, (’)”) a creep test at constantstesso,, = c'r” is per-
formed and is terminated at the instantt = t2 where the rate y,, is still positive.
This state is in the domain D +. At this state the equilibrium stress has increased to
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the value §“ > {[”. Then a fast inloading test is done lowering the stress to a posi-
tive value o,,. Here again the contribution of f,, to the change iny,, is negligible
such that (3.139); reads

@

Jy = ¢ Frie, (3.149)

where now G,, < Osuch thaty,, < 0.Then

dlé;l o / B e~ ( )
ﬁ/ﬂ, d V{/’J P (3.150)

where initially
s s -] = G- Fo. (3.151)

Equ. (3.150) represents an ordinary differential equation for the unknown func-
tion o,, (y,,) with initial value (\f”, é!” = 01'1). From the theory of O.D.E. we know
that (3.150) admits a unique solution.

Equ. (3.150) defines the direction field of the trajectories of fast unloading
(or fast loading!) processes in the (v, 0,,)-plane. Clearly, there is only one trajec-
tory through each state. Along the domain boundary (o,, -y,, = 0) we haveI' =
0. Thus, we see that all fast trajectories, which intersect the domain boundary,
have a constant positive slope, somewhat larger than one, at the intersection.

If one sketches the direction field in the (y,,, o,,)-plane (Fig. 3) one can
imagine the trajectory of a process consisting of a fast loading, creep and fast un-
loading process. We now show that the unloading trajectory indeed intersects

the domain boundary (0,,-V,, = 0) at some positive stress value o, *. For the first
part CD of the unloading trajectory we find with (3.146) and (3.147)
e K
o G,
4 A7 / e
= ﬂéw = 6;; - S// .
/= Y]
& & '8
r O =6,

Along the unique unloading trajectory in the domain D* we have with (3.146)
and (3.147)
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N
)

~—
h
N
‘%{ R
N
~
I
9\
1
W

or

_dar - &g (3.152)
O < / / ——ny'[/’] 1/ 7

/7

since (1 - Cy[l']) > 0and I'2-T' > 0. Equ. (3.152) represents a unique relation be-
tween I and o,,. The required prove is furnished if it is shown that the choice
I'=T* = ¢,*-y,,* = 0is associated with a positive value of the intersection
stress o, *.

We note that

& / / 2 / / _ /
=6 -6, = 6~ < 6 —tu =7 (3.153)

il

Since I'2 < I, the comparison of the positive integrals in (3.152) and (3.148) re-
veals that the intersection stress o, ,* is a positive quantity in the interval

A !
O < 6,; =< 6,’,. . (3.154)

Thus, the unique fast unloading trajectory from the state C (y,,2, 0,,2) leads into
the domain D — with negative plastic stress power.

3.2.4 Conclusions

The results of section 3.2.2 show that the thermoelastic strain-stress relation
(Hooke's law) and the evolution equation for the equilibrium stress are in conflict
with each other because of thermodynamic reasons: An appropriate Gibbs func-
tion does not exist. Either one or the other of the constitutive relations need to
be altered.

Also, if the equilibrium stress is not considered to be a true thermodynamic
state variable, the model is in conflict with thermodynamics (section 3.2.3).
According to the model, there exists states, which actually can be attained by a
suitable process, where the plastic stress power is negative. However, under the
above assumption the residual dissipation inequality requires the plastic stress
power to be non-negative.
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Before closing this section, we mention here an ad hoc modification of the
model which promises consistence with thermodynamics. It appears natural not
to change the thermoelastic strain-stress relation but to modify the evolution
equation for the equilibrium stress.

The problematic term in (3.94) is the one proportional to the total strain
rate, ex). Of course, if this is changed to the plastic strain rate ¢pyj, the existence of
a Gibbs function is not a problem anymore.; but the residual dissipation inequal-
ity needs further analysis. However, then the modified model shows the unwant-
ed responses [52]. A possible compromise is as follows. We introduce the strain
partitioning (3.90). Then (3.94) takes the form

G = 2y éy ~ T (£ )

+ 52 verl €

We note that
/v )

FYcrr e, =3 Y05

If the coefficient of the elastic strain rate or of the stress rate is not taken to be a
function of T but is a strict constant K, the evolution equation is reduceable. This
reduces the problem of thermodynamic consistence to that of satisfying the resid-
ual dissipation inequality. Then (3.94) changes to |

. , & .
Jae = VL]l - /77 /fﬁt’;fzf‘e) = KL ass)

where K is an additional material parameter, possibly the average value:

Lroe

K = /f /:;z /7] ’E"‘/ A" (3.156)

op
o

if “max can suitably be chosen. Of course, this modification needs further analysis.
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3.3 Two Models Considered by Freed et al.

3.3.1 General Frame

Recently Freed, Chaboche and Walker [57, 82] presented thermodynamic consid-
erations of kinematic hardening models of viscoplastic materials. We discuss here
only those two models whose evolution equations for the backstress include a
contribution that is linear in the stress rate. The purpose of the following discus-
sion is to point out several aspects which have been overlooked so far. We will use
the previous notation and indicate the corresponding notation used by the above
authors if necessary.

The evolution law for the deviatoric viscoplastic strain ePjj is assumed to be
given by

Sy =By .
v Eor 5 O (3.157)

SRRy ¥ 14
£ L/ ,//

with the norms

, /e
[sy; -8yl = [ 3 (55 -8y) (s -85) 7

Vs

(3.158)
4

: o . 7
160 = [e & & 77 - F{:,....,&.,Z...)

and where Sjj and Bij are the deviatoric stress and deviatoric back stress,

B.. = 2HL:  Hzp , fu=o0 (3.159)

v

which accounts for the “kinematic hardening”. The constant H has the dimension
of stress; thus pjj is dimensionless and is a deviatoric strainlike quantity. Bj; or al-
ternatively Bjj are the internal variables.

To complete the description of (3.157) the normﬂéPijﬂmust be defined in terms of
the stress, back stress, temperature, and possibly other quantities but for the fol-
lowing we do not need to specify the function F.

The internal variables fjj are governed by an evolution law of the form

e = /J Sy fmn, T) # £ Sy (3.160)

v

£ =0
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where E is strictly a constant.

From a mathematical point of view the constant H is superfluous since (3.160) can
also be written in terms of the back stress Bjj and H may be lumped with other

quantities, i.e., \

° v oo
- ., 24 £ Sy =
B, 24 For J
= %} /.S‘nm, 3..«., 7) 7 A/S‘.‘/' ¥ (3.161)
;o g =oHE
/«3' - Z#’ﬁ / A/ J
Further, it is assumed that the thermoelastic strain ge;;
e P -
Eqy = Ly — £y =85 (Gh, T)

S (3.162)
50' . Aol SHad-

and the entropy 1j are independent of the internal variables and are deriveable
from the classical thermoelastic potential &&(omn, T)

e ;)fc o Df

—_—
E o= ~-€ = -

“ 765 7 7 77 (3.163)

If F and &e as well as fjj, H and E or alternatively ﬁj and N = 0 are given, then the
constitutive response is completely defined. Nevertheless, the thermodynamic
consistence of these choices has to be proven.

This problem has been discussed in general terms in section 2.2 and 2.3. If
the model is thermodynamically consistent, then a Gibbs function { formn, Bmn. T)
or alternatively I{ (omn, Bmn. T) should exist which satisfies the following restric-
tions (see equ. (2.232) and (2.333)4)

Ve Q; Qf EV 1
£ = —€ —Z. - § —
e R 2 e’
f ;fd, /3¢ 5160
T
7T Y }

and

— L-_. /. (3.165)
% ét 5)/:,» %(/' = o,
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We note that the coefficient of the rate term in (3.160) is strictly constant. Thus,
according to the results of section 2.2, a transformation

ﬁ?f - Zﬂy' (Suon y (Boen ) (3.166)

exist which allows to reduce the evolution equation (3.160) to the standard form
¥ / /
ﬂ‘ff = Fes [ S, Bawa , 7)) (3.167)

(free of rates of external variables). With this conclusion and the assumption
(3.163) the theorem on page 82 applies: A Gibbs function & (omn, Bmn, T),
depending on internal variables By and satisfying the non-classical potential
relations (3.164), exists but is required to have the form

fv/s":"//"‘"‘/ 77 = ﬁe/’é:‘"‘/ ;7 7 ﬁﬂ/ﬁ*u,%bm) (3.168)

where &B is restricted to be some function of only the transformed internal
variables

J‘M/O”m,ﬂ‘m )= fZ/ﬁ,ﬁ.). (3.169)

Thus, the additional potential &8 must have a peculiar dependence on Sy and

an-
With the results of section 2.2.3.2 a suitable transformation hjj can now be

easily determined. The function hj; have to satisfy the overdetermined system of
P.D.E.

-————M‘ ' + -——M{‘ L £ = 7
I S o) S (3.170)

['4
The existence of a common solution is assured since E = const. With (2.169) a
solution is

%i/. £ ﬁq.yacu. \S’hn e ‘8‘J “'“ﬂlnu

where

v
ﬁ‘:.ﬁ“h = - 3{7}«« E

Thus,

fig = Bypoun (e = E0)
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with Bjjmn arbitrary. The choice Bjjmn = 8im 8jn yields

/ v
ﬂ“./ &= A\‘I‘ — fft;.

(3.171)

such that

e / / / —
A:I = %‘J’ /5""‘/ A‘“ / 7) = A /f"'“/ 4""'/ //- (3.172)
Therefore, the Gibbs function £ must have the following structure

['d — /J v
F (o, fun, 7) = F‘[ez..., 7)) * f (Bme=ESnn ). (3.173)

The simplest assumption for the additional potential is quadratic in the trans-

formed internal variables B'mn, i.e.,
f 8/800) = 3 M Binfun =
f f = f f /ﬂlﬁu} = 2 “/ s

S f”/fa‘g//fnq/ = 2,/7/'2‘.*/‘“, ”?é/&a Soosy f‘:\h‘i‘]:

2{,,/@ /hh/{wu e f‘:/i.fm‘. Searn “Z/wu_gmh)]

i

g
[

(3.174)
and in terms of the back stress
0 / 1 »’ ! =
s £0= § Mlep) By B =
2 (3.175)
o 1 pg [l , o e ’.,5,..]
= ZM/z/f/[‘?'ifgu‘ F (NS5 —2855)]
where
’ ’ .
By = 24 Ay = &y - sy (3.176)
N = E2#. /

It is now enlightening to compare this with the assumptions of Freed et al. [82].

The Gibbs function is assumed to be given by
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e ]
sf =Y =25 F(Cuu,7T) * 9f;/5~~,/f~~) (3.177)

where £e is the thermoelastic potential for an isotropic Hookean material and

N
g?ﬂf__ = HAifly + "//,77%'-5:;‘ ~ A+ S *A/Sav,ﬂw))

(3.178)
where A must satisfy*
ISy Py 2# ‘ (3.179)

Note that according to the nomenclature in ref. [82] we have

£ o= A//g ¥, (3.180)

Thus, equ. (3.178) can be written as

E S F S =2 fre O (3.181)
sFO = H iy E(E5sp —2k s +2A)f

As pointed out by Freed et al. the first three terms in (3.181) are introduced to re-
move unwanted cross products that would otherwise appear in the thermoelastic
stress-strain relation. For similar reasons the additional undetermined function A,
here called "the adjustment function”, is restricted by (3.179). Except for the
function A, the structures of (3.181) and (3.174) are equivalent. Thus (3.181) may
be written as

3;?; & A/AJ{A‘;' 7+ Zyé.A/Sum,ﬂ"'")

Y

or with (3.180) ) (3.182)

f?f _ H/%}//LJ/ + A/A/Sum,ﬂ”“).

We note that this expression contains the - actually superfluous - parameter H;
because of this a definite physical significance is now attached to H. We further
note that the first part in (3.182) satisfies the condition that &8 should be solely a
function of f'ij (or alternatively B';). It is also seen that (3.182) does not contain a
free parameter like M in relation (3.174). Instead, a yet undetermined function A
is introduced whose purpose is to satisfy the intrinsic dissipation inequality. Aside

*  Note that this condition corresponds to (2.237),
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from the fact that this is an artificial procedure one may question this for the fol-
lowing reason: From the previous discussion we know that A (Smn, Bmn) must be
solely a function of the transformed variables B'j;. We come to this point later on.
In the following we discuss two models which differ in the structure of the
function fij (Smn. Bmn. T), the irreversible part of the evolution equation (3.160).

3.3.2 Case ]l (correspondsto model Il in ref.[82])

According to [82], the irreversible partin (3.161) is given by

%‘;}'[f’““/ G =’2Hf:/./}"“‘//““'): "?Al/é::/ Q // 'p/) (3.183)

In terms of the internal variable fj; we have for the irreversible part fj;

f?/‘f*’“f/!m)‘”‘“ ég' - féﬁ‘/ﬂv .5') VeI 4

% _2{/ .= Esi ) tELY
=gy~ (7 f"/ ’

—
ﬂ{; (3.184)
/ ’
£ /‘;- /Jh.a /ﬂ"'“’)
and
EL: = ’//é'au/ S / // ‘J ~ 2K, A‘J "lfs"’) =
\5;, "'8&0 - Zﬁ’/ﬁap "fﬁ")//(?» 185)

o 2K
—{/ op (/—2#5} 75%}' - 2//2 ﬁ'é
) =2 HRE _
[1=2%6] (S - Zor )
In accordance with [82] we require*

//Eg,y‘é:)=//—'ﬂ/) >0 = /V</' (3.186)

*  For a complete analysis of this model one should also discuss the implications of the case

1-2HE = (1-N) < 0; this will not be done here.
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Thus pY; ,
R .S‘Q. g /—z#é ¢’u
o L d 4 3.187
gg = // . ( )

LH ’
/ =72 Y 4
If we introduce a new transformed back stress

” / e A gl

o = /g £
By = 7= P ey /—245 i) (3.188)

which corresponds to Xijin ref. [82]. Then (3.187) takes the form
Vi
g0 = i i - "8{/‘ (3.189)
d //Lcwé - 8ew // -

and with (3.167), (3.184) and (3.188) the evolution equation for B”jj is

.l e _ 2# /
8‘/ B /—Z#E %(7 Yy %’o’ /Sm,ﬂ,ﬁ,):

v (3.190)
o —2HE 4 :
J#v[é'f - —%ZLXJ //‘E:u/]

T opé Y

In the following we use the admissible Gibbs function (3.173) with the free pa-
rameter M and we will try to find conditions on the material parameters - with-
out introducing an auxiliary function A - such that the intrinsic dissipation in-
equality is satisfied for all states.

In terms of the transformed internal variables p'jj and with (3.173) and (3.174) the
intrinsic dissipation inequality (3.165) reads

. JEL s/
4= S ~ 8 S Vs = o,

(3.191)

Since

s,
s%ﬁ,—-&: = M B fol S i) =
VA - EA),
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the dissipation y is given by
y, Y ped /7 /g'"’/
&= — 8% + 57 M HEul (3.192)
With (3.187) the first termis

/ 2P ///
(50 = ") 4 =/ /// /-20E 44)“( '%“)
Jav™ /zwf

L)sh
E/fz.. i ﬁ’// e - //q /MEJ“"C“ g
% u m b 19

LY Y,
Yy /{7%“%"]

With the definition

! -2HE
o= M 2H - (3.193)
we find
-“‘//é”// N Y
_ 2 &
d/m//‘s;( // Q"’/M"//G_Z#é—'ﬂit‘f‘c
v -.,//hf ABav

s /N[/aﬁ]

4 2K 7l e
kA LY} W4
20 )-2HE (et /e
(3.194)1
or alternatively in terms of the variable B"j;
/
//&o/ r 4 4
[ = T Se See —(M7r1) Be See &' se [?
%y =

Ao
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2 HE "y ge
vor o ?Z_ ——,Z_A‘_— M .&15& /Zao . (3.194);

For the derivation of necessary and sufficient conditions on the material para-
meters it is now required to identify

V620 = F (Sunfun)

However, if one restricts the attention to sufficient conditions only, a solution can
be obtained without this identification of F. Since the last term in (3.194) is non-
negative, a sufficient conditions is derived by requiring that the [ ... ] - bracket is
non-negative. We introduce the following dimensionless quantities

at ek Sasko . 'k (w8 E) e

= H* (3.195)

which are related to the second and simultaneous invariants of Sk and vV .m B“j.
Further

4
e -'=;-ﬁ' ///}:6’,;[)5“ ‘Z— o (3.196)

which corresponds to a simultaneous invariant of the tensor pair. Then the [ ...] -
bracket in (3.194) reads '
Y

L] = H - /,:,i/ z 1y = hw (3.197)

Since m > 0, the expression w can become negative only for z > 0. For positive
values the simultaneous invariant zis related to x = + 1/H VS Sk|’and y = +1/H-"
\f(v m B"“k) Sk;via the Schwarz inequality

= X A =/
2 Oy ) o< (3.198)
Thus, we obtain
-/ 2
Lo = th — ,/;“»' /}XLV'{ . 3 ) (3.199)

For fixed values x and y the most critical situation is obtained when

A=1,

a state which actually can be reached. Then the lower bound of w is
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t4 A7 b4
CWyip = 0/“:?;4")’:*‘ — =47 " 7 . (3.200)

Itis immediately obvious that, provided
o= (3.201)
the lower bound (3.200) simplifies to ,
Chrg = (X-¢) = 0y

this is a quantity which is non-negative for all x, y. Thus, equ. (3.201) is just one
sufficient condition on the material parameter to satisfy w g = 0 which implies

Jd = o.
We now analyse whether this is the only solution of the problem
&yg = © Vx"/}‘ , (3.202)

The equ. (3.200) represents a surface in the (x, y, w g)-space. We question under
what conditions on the parameter

~ P62 ¢ /
S Vo (3.203)

this surface is nowhere in the negative half-space w g < 0. The surface intersects
the (x, y)-plane along a curve defined by

&), et~ ey +9‘ =0, Aro Yo,

A L—

?”X‘[f”z i//‘;’zl—/‘/. (3.204)

This yields

2z </, (3.205)

NG

0 <<

the solution is complex; thus, there is no intersection of the w g-surface with the
(x, y)-plane. Since wp is positive for x = 0 ory = 0, wg is positive for all x>0,
y>0.If

A

Fw >/ (3.206)
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then (3.204) defines two straight lines in the first quadrant of the (x, y)-plane
(Fig. 4)

Fig. 4: Critical Domain of the Function g

Further

e
k32 A

the slope vanishes along the graph

—Q—e-)-{‘-e::—v/}’:’:f’ 742?, = ¢ 2,

F= oz

along which w p takes negative values everywhere (except x = 0)
4;; é
(28) 004 = “/?/“/ :
7y ©©°

Thus, since the w g-surface is continuous and differentiable, the function wp is
negative within the wedge-shaped domain (Fig. 4) bounded by the straight lines
(3.204).

Therefore, this domain represents a critical region in the (x, y)-space. Non-
negative values of w p for all x and y are obtained only if (3.205) applies or if the
critical domain vanishes, i.e., when the boundaries (3.204) join to form a single
straight line which implies
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o) (3.207)
> /

Consequently, it is shown that the wLg-term is non-negative then and only then
when

V4 P
0 << F o = /). (3.208)

the value i = 0 is excluded from the discussion since M>0 is required. With
(3.203) we have alternatively

2H
O = an = / or o< M< oHE
or with (3.180) (3.209)
M — /
0 = eH — /=N

These conditions are necessary and sufficient for w g to be non-negative for all
values of the stress Sk and transformed back stress B”|. However, with regard to
the complete dissipation inequality (3.194) they are only sufficient.

We will now compare these conclusions with the results by Freed et al. [82]. The
viscoplastic contribution p&Br of the Gibbs function is given by (3.178) or as shown
above by (3.182). The function A (Smn, Bmn) has been determined such that it
cancels out those terms in the dissipation inequality that can become negative
valued. This led to the condition

oA N //v |
xy Sl 2H Sy ﬁﬂif} (3.210)

which, according to Freed et al., is the simplest of several possibilities. Observing
(3.179), the authors obtained

N N
= Ty /4,,, oS~y 5y A/ﬂ/o) (3.211)

We note that with (3.171) and (3.180) this takes the form

A= /v/ﬁ//J /V :;'fg-*f/if%-)/f

(3.212)

= /_ AJ %‘/ .
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This result indeed satisfies the condition that the “adjustment function” A should
be solely a function of the transformed internal variable fj;'. This representation
is possible since the condition (3.210) can be written as

QA N

=

DSy /- Ay (3.213)

i.e., the r.h.s. issolely a function of Bjj' and does not explicitly depend on the stress
Sij. It appears that this a special property of this model.
If we combine (3.212) and (3.182)> we obtain

sfr = Agipl *AA
._a///v‘ H/_/I/_‘/A/{J /hA/ﬂ/@/

This result is a special case of the more general model (3.174) when the sufficient
condition (3.209)3 is accounted for: Obviously, the choice

M=t =2 /f/A/ (3.215)

(3.214)

makes the two Gibbs functions identical. The model of Freed et al. corresponds to
the maximum admissible value of the parameter M.

3.3.3 Case Il (correspondsto model Il in ref. [82])

This second model regards the irreversible part fi; (Smn, Bmn) to be given by

L OZA(
Fig (Smn, ann) = Say = 22 A 150, (3.216)

This differs from (3.184) by the contribution of the stress tensor Sjj to the dynamic
recovery term. Therefore, (3.160) and alternatively (3.161) read

\
e _ o p — g y/ o/ 55'_
By = g ﬂ/ rend /

or 2 r(3.217)
. _ D £ NS .
3‘:; = ZH /e ry; // 'Se,
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With the transformations (3.171), (3.176) and (3.188) the transformed evolution
equations read

0y . 2 4 L o é’r,,
By = £l — 72/@' r Esy) Mol

7
or | , > (3.218)
4
0 4 Sew ()Tt NSy 5%/
Ec‘dp' - /- . /lal ‘ 2/ a@d )
/

with » B @?A/ v K?../ _ 2/5/ ./.

8. /-o4E TV /- T (3.219)

The evolution equations for the viscoplastic strain rate (3.185) + (3.189) apply as
before. We note that the transformed back stress Bij" in (3.189) has the evolution
equation (3.218), which differs from (3.190) in the recovery term. The parameter
0 <N =2HE <1 proportions the recovery term between the back stress Bj;” and
the applied stress S;; [82].

Freed et al. proceed as follows. For the Gibbs function the assumption
(3.178) is made as before but the "adjustment function” A is decomposed

/1/5»«/%&,,./ /I /5“'4//‘0:,/ 7 A [j“"' /‘(lm. (3.220)

where Aqis given by (3.211), i.e., Ay is the A of Case 1. The remaining function
A7 is used to cancel out those remaining terms in the dissipation inequality that
can become negative valued. They obtain*

wf
Q/L // / ‘S;d 'Zé(ﬂ‘d _’_y_ =. 6".
ey /-/r/ "“‘/élz [2) - L/‘J' Y
and the constraint condition (3.179), i.e
M Iy N
DSy " My M T ep T (3.222)

*  The expression in [82] needs a correction for the factor 1/2inthe [ ... ]-bracket
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This coupled system of P.D.E. has not been integrated and the existence of a com-
mon solution was taken for granted [57, 82]. However, the system (3.221) &
(3.222) is clearly overdetermined. It is integrable then and only then when the
r.h.s. satisfy the following conditions

96&'{‘ _ Qéam Qéf}' - Q//A-u ?_A_&' _ O,)A/&m

=

Vdan Py ' Bun Py | PSma sy

°

(3.223)

We will now show that a common solution does not exist. This then demonstrates
that the approach of the "adjustment function”, aside from beeing artificial and
unphysical, does not necessarily work. This prove will not be performed with the
use of the integrability conditions (3.223) but a less cumbersome approach is ap-
plied.

/

We choose the Gibbs function in the form Basses
- e 2 O G E5s) o+ AlStay )
sf = 5 F (o) # 5f (u-E5) 2 Al )
where p £B is given by (3.174) and A is an “adjustment function”. If also
M= //F:'fg/"’ , A =NA, ) (3.225)

then the choice (3.224) completely agrees with the choice of Freed et al. How-
ever, A or A are required to be solely functions of the transformed internal vari-
able p'jj, i.e.,

A = A'YfBe) or Mo N pi). (3.226)

Without recourse to the results of section 2 we show this here again. Analogous
to Case | the functions A or A have to satisfy the constraint

84 “_;9/?

= O, (3.227)
93/:/' ﬁﬁ'&'

We introduce the new variable p'j;. Then assume

B = A S ) = B (S, ). (5.228)
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Consequently,

b _ 24, 8 e _ A 7
Sy Ay HBaw IS5 = P
A 08" Hur 7%
P Mian Dy »7
Inserting this in (3.227) one gets

04" _

ﬁ‘g'é" = . (3.229)

Thus, the general solution of (3.227) is given by (3.226).
The intrinsic dissipation takes the following form

f = Syt - §93‘§' Ay =

- sy & (s - %)/gf’"g/@/*f:f?')"w’) }
/ S /VA‘/{/ a"'é‘,’. ? ,(/iﬁ‘ AJC% t// V50 © (3.230)
+MEE G S V5N -

IR J0 24 /7 Y 2L )
__,%/gv ~ 57 /B tES ) “/_

®

I

Using the previous results (3.192) + (3.194) we obtain

"//zw//
" /s sl S Sae = (7 /) /j“ “
& o /_?4;

/— 2#:/”“”"‘/
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A A /o’%@/zw//r‘

L
AR
qC [-2KE £y S 4500 (3.231)

DA [ ep e
- 2 - L[4 ¢ Esu ) )

We impose the constraint (3.209)
O = =/

which includes the choice m =1 of Freed et al. Then all terms in (3.231) are non-
negative except the last two rows. We now try to find a function A’ such that
these terms chancel, i.e.,

g ) £ s, 4 v _
—9%?—- /5,& - -ﬁ—/ﬂﬁ ’ 55&)/55//)—

(3.232)
R4 A4 v / /cg' /
= - £ e e A |
2L /-HE A“&‘
With (3.187) we get
9/—) /-.m s ~ 224 +E%) /=
// e AR
Sey = /—2//5
v / : 3.233
o 2 o e e 6.233
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or

2#
A B 4 , ! St - /':7&: )
PB4, L 4~V ﬂm P ‘(//Jl:u /.,,//Av /&e 24 S‘I)

(3.234)

or with (3.225);

~/
Q&/ H /7/ // Jke 4/@ )
L2 a o+ 50

o8, L0 ‘?‘*‘*“Z’”/é 1 Sur~ b / ez (3/{35)

The left hand side is, for reasons of consistency, solely a function of the trans-
formed internal variable B'yj. However, the right hand side is depending on B'|
and the applied stress Sij as well and this variable cannot be eliminated. There-
fore, (3.235) is inconsistent.To come more closely to the formulation of Freed et
al. we make the choice (3.226) and write the r.h.s. of (3.231), using the internal

variable By, as follows
[ - -
A
WYy 204 /-2 &
2h // / £ 4/ //{f
77 /-2#§~A/j“%{“ - K
9” o, g N0) =

#e

/“z/

= fw,/ /J}w /— 2#5 Kau/ +

(3.236)

24 2H#

Yo muf /&4@ E /L, %)/'—2./ -

e il

N, o °p
N =SS - = 1500 )
g, 7% /

i T T B ]
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Here the relation
A AL+ EL % = Mebe £ e See (3.237)

is used. We now chancel the terms which may become negative, i.e., the last row
and the mixed term in the second row. We get with (3.157) and (3.159)

ﬁ&/.f Sto = AHfse "z‘f@i/”"‘%—&&‘

ﬁﬂ‘: ot /J,“,—-jyﬁu// L{r-w)
or -
M, I, # ¢ [ S B f&/
% = ;Z}i = Ml//—ﬂj A“‘ b s &'7//35;‘;—2[4‘"/ A 0
(3.238)
Equ. (3.238) corresponds to (3.221). Further, with
b)) My N I DA
254, %, N DSk & Se S,
we get
ohe _ g w e
DSke bae 28 Nfe
(3.239)

which corresponds to (3.222). We note that the transformation of the r.h.s. of
(3.238) using the variable B’y instead of Bk will not yield (3.235):

. # / Vg
M'_—;‘; =——Z—/-—/-—A—/;/&.J“h ’L(”Sna-{)““/'

% .?/I&/ =/ (
/ Y Y N v /
) p 7 (G t 5, 5]/ .
o 77 LAY

3.240)

This is so since the choice of the terms, which are required to chancel, is not
unique. For example, if we add “zero” to the r.h.s. of (3.236) such that
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d = /éai/ /‘S‘" = JoonkE z,y,é’ 4“'//

P4 -20 E
— £ Sy She /e y L2
7&}& /z,%"/&/j“ /h e / Au/
Q/i ’ oy _ —Z_ﬁ.’- op /
A/;Zi /é;fé pya KK( /Zav// (3.241)

and if we require that the last two rows chancel, then we get, in terms of only the
variables pﬁ. and S, exactly the condition (3.235). In any case the r.h.s. of (3.235)
or (3.240) are not functions of only B'x) which is required for thermodynamic con-

sistency.

This example shows that the application of an “adjustment function, A" to obtain
consistency with the dissipation inequality, is not only formal and also non-
unique but may not yield a solution because of thermodynamic inconsistencies.
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4. Thermodynamics on the Basis of an Extended Clausius-Duhem
Entropy Inequality

4.1 Introduction

All thermodynamic restrictions derived so far are based on the evaluation of the
classical Clausius-Duhem entropy inequality

%/;7,{/-/§50/V -,:—/éa:‘d'ﬂ =z o
v o

J (4.1)

where ¢ is the entropy flux, a priori related to the heat flux qx by

/
ES e 4.2
ﬁé 7 gé . (4.2)
Note that
¢£ /14‘ < O Flow of entropy into the volume V
(4.3)
% Hg >O V¢ Flow of entropy out of the volume V

where ni is the external unit normal vector of the surface O. Further, s is the
entropy supply due to heat sources given by

- 7" :
S 7= (4.4)

The evaluation of the entropy inequality was based on the Coleman-Noll argu-
ment (section 2) which requires that body forces and heat supply are assigneable
in any way such that the balance equations for linear momentum and energy are
identically satisfied for arbitrary processes.

As described in section 1 this approach has been critizised for different rea-
sons. Some of the arguments have been overcome by the new approach of
Muller, e.g. [31], roughly scetched in section 1. Therefore, in the present context
it appears to be worthwhile to study the thermodynamic restrictions of an elastic-
viscoplastic material model, as described in section 2.3 by equ. (2.224) - (2.226), us-
ing the complete frame of Muller's approach; especially the entropy flux is put on
a wider footing. The question is
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(1)  whether and under what conditions the same results as (2.232) and (2.233)
are obtained and
(2)  which preculiar problems arise in this development.

It is felt that agreement of the results of the two approaches would give further
support to the earlier derivations in section 2.3.

4.2 Evaluation of the Extended Clausius-Duhem Entropy Inequality for
Viscoplastic Material Models with Evolution Equations which Contain Rates
of External Variables

The general characterization of the viscoplastic model is taken to be the same as
in section (2.3),i.e., equ. (2.224) - (2.226). Thus,

es ¢ @
thermoelasticstrain =~ &%, = &2 (Gimn, 7, Bv) = Spg

internal energy € = e (—ov— )

) P (4.5)

&

entropy '7 = "7V (

L%

heat flux ?ﬁ = ?A (“‘““‘"_“’;"‘)

with evolution equations for the viscoplastic* strain epy

-4

e = 4, [ Cun, T, 8. ) = Hea (4.6)
and for the internal variables By

ﬁ., = /; /‘57"“/ T/ A")*

+§£e / ¥ ) G.#c t (4.7)

+{// —) 7.

The functions hyj and f, may change according to certain “switch conditions”
which are controlled only by the state variables (omn, T, By) but not by the rates of

*  We recall here that the analysis is restricted to infinitesimal strains and rotations such that

properly objective time derivatives are simply material derivatives.
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the external variables. Note that only the heat flux depends on the temperature
gradient

A7

Y (4.8)
The governing local balance equations are that of linear momentum and energy
- 6re | \
174 -— = 0
S “4 HXe >
. . P zé (4.9)
E — 6, & = O
g Re <#e OX¢

where the body force and heat supply are assumed to be absent.

We will now show that, with appropriate initial conditions, the constitutive
equations (4.5)1,2,4, (4.6) and (4.7) together with the balance equations define an
initial value problem for the three displacements uk,the temperature T, the
viscoplastic strains and the internal variables.

We require that (4.5)1 allows the inversion

Gy = g (€, 7 ,4) =6 (4.10)
Then we have

. e »
oy g - _ /l/o /Z; . (4.11)
PS%n PSPy

If we understand that the derivatives, e.g., d6x1/de€mn, are arranged in matrix
form*, then the determinant of (4.11) is

. ,
”/”//,Qz.,.) /5;,:“) =/

and thus ? (4.12)

) -t/ G %) w0

;Zﬁon

*  Consider the gy and e&py, arranged in column matrizes.
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Here and in the following analysis we demand that the derivatives of (4.5) with
respect to opq are symmetric in the subscripts (pq), e.g.

Dia _ Iég ISe _ ou
Ly 27 D sy €3,

It is obvious that the variable "stress” can be eliminated from the constitutive
functions in (4.5) - (4.7) such that, e.g., the internal energy is represented as a
function of {eemn, T, Bv}

€=¢€(£5.,7, 4.) ot

Further, the thermoelastic strain may be expressed in terms of total and
viscoplastic strain

P A

where f (4.13)
97”1« 074"
2 0/)/(*« ﬂ&. -
/

Thus, the problem can be formulated in terms of

3 _
the discplacements ug their evolution governed by partial

L differential equations, i.e. the

balance equations

the temperature T )
the viscoplastic strains epy| the evolution governed by ordinary

differential equation

the internal variables B,
We will not do this here but will keep to the original formulation.

The rate of internal energy is

. De - o€ e .
é-’:?z:;::&:“?l" 7?77‘ %ﬂ(/,
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With (4.7) we get

. pe Je :
& = 9—‘-67.,“ #* 9/@ ému Ctus *
D€ o g)pf , 2 0 B
s 97- 7 aﬁy {/q iﬂ" V'

The stress rate can be expressed in terms of more fundamental rate quantities just
by time differentiation of (4.10)
a a 9 "l .
;6}4“4 e 075;:. : 6"“‘4
— 7L' 7-. + A7 Ve
DERy /7 27 .

Observing (4.7) and (4.13)1 we find

P 6;;.,,, " 0/)511..., ' _
Cous, 9 ,,ﬂ; //%‘"/" %9 *0/) Z‘:}/ “’7 /‘7~

v
0,)6,_:'«:. )5.& 970;-,, / 076;» (4.15)

= o /7 + ""—'

5)5‘,:? / /u7 /4/ v ’

We put
| - / Qo_‘lm
84":./09 =z /*/:/: ~7 »/a *7) /’f (4.16)

and require that the inverse B exnsts such that

8:0“ Bunps = Z///:f,o /;7 faégaéy) (4.17)

Therefore from (4.15) we derive

S = Bl ;%/ & = %03) * / = 26} 47+

QGM» /
Lo

Al
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and the rate of internal energy (4.14) takes the following form

. 96;.,
E = 5’5‘2 Qf E,Q/ o e ) /5’ /’L

26 JE ) pE . JE IO /
’L/yr 7 ‘f/"ao;, S £ 4Bl 57 %// T

% /s / “ % ﬁée/ Biun 22, = /

With this result all rate terms in (4.14) are expressed in terms of the rate of the
external variables "total strain” and “temperature” and the viscoplastic strain
rate which, however, is not an independent quantity since it is a function of the
variables {omn, T, Bv}. '

(4.19)

Observing (4.5)4, (4.10) and (4.13)1 the divergence of the heat flux s

I D% Dh. , VA, , Jh % _
oI D6 G0 I Fa 28, I

[

20 Joon s35s 5% ) -
Ponn DE5, L 2 Bk

0% I | IP

‘oo o7 7 27“7_/ H g
Qﬂé )62,“ J %/ .
Ioin I, :

.
=

(4.20)

With (4.19) and (4.20) the energy balance equation (4.9), reads
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[ + 25 £ Jo 2 -ufl3,- )
o s / R
J(EE L) T N (B S

JE ;I [
;7%7?," (o6~ - 'Vfé/ o 2/,//

9 060 [P Dés , (4.21)

. PeS, L 2% o/

0% Db J%
Tbmn  OT oy A

i

9% Do Jéi ) 24
e B, e [ Py

Representing the divergence of the stress tensor explicitly, one gets for the mo-
mentum balance equation

Iba. [sm _ D24, /6’&% , % Z@’_/ -

S ) Dee, (9% T one P e
(4.22)
The following initial conditions are prescribed in the body
initial displacements Uy /,L’;,, o) = Ug )
initial velocity 54’4 (4., 0) = ,,/4_ (Hu)
initial temperature 7 (Ha, ©) = ar/fa-./ (4.23)

P
initial distribution of viscoplasticstrain £ (%%, 4} = Sk (X
initial distribution of internal variables /3, /X,:,/ ”/ = (3 (*n)
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These data allow to calculate the initial strains, strain rates, strain and tempera-
ture gradients, and gradients of internal variables, i.e.,

)
L (s for, * Dtte /ors )

initial total strains

She =
initial strain rates e = 2’[0”5/,‘_/,2&( + Ve /%)
initial elastic strains e 1

St = Sk ~ fre
initial gradients of total strain Edta = O E4, SO K
initial temperature gradients %,“ = o7 /. ( (4.24)
initial gradients of o 2&E° /0
viscoplastic strain é@,m & He /ox
and internal variables By, e = Qﬂ;u Sk

¢

and higher order spatial derivatives if necessary. With the constitutive equations
and the stress-elastic strain relation (4.10) (inverse of (4.5)) the balance of energy
equation determines the initial temperature rate T and the balance of linear
momentum yields the initial acceleration Uk at every pointin the body.

It is clear that higher order time derivatives of the temperature and dis-
placement at the initial instant can be obtained by time differentiation of the
balance equations. For example, if the energy balance (4.21) is written as

/976";&8,07 E./@? fC':O,

then time differentiation yields
AT + H"7L1‘~3/75,47 # Bpgpg 1TC = O

and this determines T att = 0. This process of successive determination of the ini-
tial derivatives can be continued without limitations if the differential equations
and initial conditions are analytic [70]. Then, the solution uk(xm, t) and T(xy, t)
can be expanded in a convergent power series with respect to time att = 0 and
they are unique [70]. Thus,

" 2
Uy (Ko, t) = Ug (i) + U Fs) (E-t,) +5 &elbn)Eb) +--
I (s, t) = T () + Z:/r.,/é‘—éj + 5 ;7'-'/,“/ ﬁl,,g/z A e

Thus, this solution, representing a thermodynamic process, is uniquely deter-
mined by the initial conditions (4.23).
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We now turn to the evaluation of the extended Clausius-Duhem entropy in-
equality. Here it is necessary to make an assumption about the entropy flux ¢k
and the entropy source which are now constitutive assumptionsin their own right
and which go beyond the classical assumptions of the Coleman-Noll approach,
ie.,

¢ - L o= L
& 7 ’ 7 .

Above we assumed that the balance equations are source free. Therefore, we re-
quire that also

S= o,

For the entropy flux the following constitutive assumption is made

/ ~
b = LG+ Ph + (4.25)
where

g = ¢l6.,7 4,5/
4, = e (c, 7, 4.)

The first term corresponds to classical expression (4.2) which is collinear with the
heat flux. The second term is collinear with the temperature gradient. If the heat

 (4.26)

flux (4.5)4 is also collinear with the temperature gradient, i.e.,

G, = —ce(Sin, T, S0 5] e (4.27)

which will be assumed in the following, then the first two terms can be combined
such that

¢4 =pPh 7 44 (4.28)

where 7
_ A ¢
= (G, T) 500 ) = F o (4.29)

Then the entropy flux consists of a term collinear with the heat flux qx and a term
independent of the heat flux and the temperature gradient.

The first term is collinear with the heat flux qx with a factor of proportionality
which is not the inverse of the temperature. The second term in (4.28) is indepen-
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dent of any gradient since we do not consider the internal variables By to be
gradient type variables. Note that the By's are scalar or first or second order
tensors which need not to be specified at this level. The motivation for the choice
of (4.26)7 is not physical but mathematical: It is not related to any energy flux
quantity appearing in the balance equations; the question arises whether the
requirement of an identical satisfaction of the extended entropy inequality
permits such an extra entropy flux.

It appears that an extra entropy flux would have physical support if the
constitutive equations were assumed to depend on higher order spatial or tem-
poral derivatives. For example, if the evolution equations (4.7) for the internal
variables By involve a divergence term due to some flux quantity, then k; should
depend on this flux quantity and thus also on derivatives of state variables, e.g.
dBy/9xk. Then, of course, the evolution equations become partial differential
equations; thus boundary conditions are required for the By's too which implies
that the B,’s become controllable quantities: Thus they loose their character as
internal variables. Such proposals have been made by, e.g., Aifantis [74], Bampi et
al.[75], Bampi and Morro [76], Lehmann [64], Muller [31], Parry [78].

Nevertheless, we will not assume that the extra entropy flux k| depends on
the gradients dfy/dxk since they do not appear in the assumed constitutive
relation (4.5) - (4.7).

The evaluation of the entropy inequality (4.1) is based on the requirement
that it is identically satisfied not for arbitrary fields of motion, temperature etc.
but only for those which are solutions of the balance equations together with the
constitutive relations. Since the body force and heat supply are prescribed
quantities (they are supposed to vanish), the balance equations are not
identically satisfied for an arbitrary choice of the displacement and temperature
history {ux (xm, t), T(xm, 1)} with initial conditions for the viscoplastic strain and
internal variables. Therefore, the balance equations as well as the constitutive
relations represent constraints on the fields which satisfy the entropy inequality.
It is possible to account directly for these constraints by elimination of some of
the quantities, e.g., expressing the temperature rate in terms of other quantities
using the constraining energy balance equation. This may be a cumbersome
procedure. Liu [33, 31] has shown that these constraints can be accounted for by
the use of Lagrange multipliers. Then the local inequality takes the following
form:
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ISe
oNe

42%

—q

*/lVa/‘gdéﬂ /+

. . 9?4
° ES 482 )¢+ 1=
%_/le /36 6;&/@. ﬁa) e (4.30)
Eg

t A, | Ao ~Lanc ~47] =0

where the total strain rate &, has been expressed in terms of the elastic and
viscoplastic strain rate. Ay,, Ag and Ag_ are the Lagrange multipliers which may be
functions of {omn, T, Bv. m}- In (4.30) it is understood that the viscoplastic strain
rate is expressed in terms of (4.6).

77

Time differentiation of (4.5)1.3 yields*

[ 24 \
.9y D% . ) ;
_ = v + P
7= e Ot 7T 27,
) Ne e Je (4.31)
€= f5m ™ T 7 7 75 Al
’ 25‘:; p or)éz . Qf{g ‘
;ei' I G 7 27 77 %

/

CoIIecting all terms involving the rates of the state variables omp, T, By gives

[s 22
e
¢ [s 2

ere

,Qe
/

# /e [ Do Gk 952»..)—/1 5““/
D€
o7

{7’/7’,‘

a%/ Aﬂ«]ﬂ Ao

(4.32)

*

Note that all derivatives with respect to Omp are symmetricin (m, n).
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. 7‘"/];,& w, —
Vo , M g Th_
Ay ae T o e
.P v
~Aeqal - M = 0.

(4.32)

The stress rate can be represented in terms of the total strain rate and the
temperature rate, equ. (4. 18) Thus (4.32) takes the following form

[5’%; # /1 /f;(m ~—~€4¢,9&/ /i,f_/ &ﬁf:
//3 7655 - iz/ ~Ap, 4/
’L/;Z;&’% /e /5’ DG 95;..) A, ,‘...]
'g:“sz '27%?' 7 5-76}‘747/7'#
%/Sg#ﬂe/féi—ayﬂ)fA ]/g+
ﬁ?é' + /1 é Ok ‘fj& A,ém]‘ (4.33)

96}2 /,/
Baus 7 /f,; 49
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.__/L%é‘p M'Aﬂ’/’ = 0,

(4.33)

In the next to the last row all terms involving spatial derivatives are collected.
With (4.28) they are in explicit terms:

e 27
5175 ~ e Ly /la ;m

v : /s My J.
}}:?@*/?*Aé)ﬂz%;;; A, L

o Jit,

' ) ) Qw J £29 89
=[W G #(Pede) 2 s ;7,;‘ - e :;2%,

7‘% */Vf/le/ /’{ yr # (4.34)

% L. A,
"/5; G * (V1) G * 3] o

. 9,
’L/i;’“ A %/;mL/I) Q&/Qé,

From (4.10) one derives

o P ; ue e
96:&4- - g_é_’lf_l‘n 25/"7 2_:4;“ £ QO"MI
e T bes, Wy T AT AT P I

;&ny QZM - QZA/ 7L Q&:u% 7‘ jﬁKl;a —g—ﬁ-‘f
= pge ( Bag X, v X .
95’97 ‘ ‘ (4.35)
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Thus
0% Y7 DG
A 2 /19 Ay A‘ﬁ Oty

. D4
-2 4 ¢ (e ) e LR WYk

Ve
962. Deny Do) o,

o

] 95;9 J/Q A%,

/ W (G A / P g_;f_/,; (4.36)

4 e,
90';“%7‘/94%/1/901 ﬂﬂm "“”4‘[;&2}7 ﬁ ’

JA
/ % "/f”"ﬂ) j /’L 280
O;tt v
”W% %/{ﬂ*—/[e/g@q 7‘% A din | 7. A

?é +/V*/l€/25:~ ]r TR

For glven constitutive functions the entropy production (4.33) is a function of the
state variables omn, T, By and also €| due to the presence of the inverse function
Omn as well as the temporal and spatial derivatives

o 9501 005;: Jﬂ" ”Oﬂ" =
é/»t;, Ny sy 5’)’2 ) 2y (4.37)

The quantities Uy, T, f&v appear only linearly in (4.33). Since the initial conditions
(4.23) are arbitrary (smooth) functions of space, the first set may take locally (i.e.
at a material point) arbitrary values independent of each other. The same is true
for U, T, By, since the constraints on them were relaxed due to the Lagrange
multipliers.




The arbitrary modulation of U,

[ S e /9 botr ﬂgﬁff‘) Ay L
B 4 gf_;; C o
%
//? ’L/léﬁy’ Ge 97/ Ag, ]
’ g”/)"ﬂ # /3901 "fp”o’... A/fvé-n-]
B e gf: Aﬂ/—o
/55” é‘/fﬂﬂv “@z&%‘fy—f’/.—/lﬂ.,]:o)

Observing (4.11), i.e.,

0/)3707 076;'5

and (4.17), equ. (4.38)4 simplifies to

[fyg’;“ ./’4Aﬂé;m

and therefore (4.38); reduces to

[S jo;" "Ae/f;_ré;‘
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T, By yields:

v e
Jes | _ j
& ) 5;: “/ZA,, 'vf_ .

2% )4, 4-

Equ. (4.38)3 yields an expression for the Lagrange multipliers Ag,

? (4.38)

(4.39)

(4.41)
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&
e

J/C&
./l/,y = —-f;/—;— - /1 /? LY p%y/ (4.42)

Combining (4.40), (4.41) and (4.42) gives

A
L

7 - -
Sia * S b+ /96;... ""%E}

&S
"",/l é"‘ e Ok T EM/ 7

(4.43)
f

o 2 i f (o s )

ST
N (e y) -

which involve only a single yet undetermined multiplier. The arbitrary modula-

tion of Gy, depq/oxk, 9ePpq/dXk, dBy/aXk and dgm/dxk = dT/dXm OXk in the inequality
(4.33), observing (4.36), gives

/IV/L =0 . ]

LG (¥ fAe)ﬂi’f - 2 -/1M»,,»§‘53' =
/gﬂ/ﬂ Ty # ;ﬂ“%/léjp%;% / 5;%‘-/+
(PG slF o) < P ;é—éf"/ ol

AP Y.
/QJ“% (P ‘Z?;«« )

r(4.44)
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With (4.44)4 and (4.11) we derive from (4.44)

g )
[%T% +/W/’/%" . fj‘/ =o

o : 2@__ _47_{_{ — (4.45)
a7 r (P ) o ’C%/ °

0z 2 /] s ]
—g 7£ v 2 s =
Observing these results, the entropy inequality 5|mpI|f|es to N
e
SE g (P /%
. \  (4.46)
— /lé 625 SZ - /Iﬂr %’ = 0

/
where Ag_is given by (4.42). With (4.27) condition (4.45)3 reads

//”7 % +/)’0f4) )fé akv‘/f’fﬂjf?—//"

) (4.47)
%/{ﬂv%/ié)xJ;m = O

which must hold for all gk and also all omn, By, T. For gk = 0, k = 1, 2, 3, equ.
(4.47) yields

/(qp%'/l ) ] é-423 e

co,

and, provided

then

orde =2  f Ji=e V4 (4.48)
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Further, if k 4 m

/:9551« e o /y/'-f/i.é) /j& /”7 # 9’/"/76)};%7%:0-

If gm = 0,then
‘9; Jd 7 {” fﬂg VQ“‘ ﬁé ’ %

Thus

26 o S P _
[Z}’? ,A/gﬂ%ﬂe)ﬂﬁ;wa—a' (4.49)

The results (4.48) and (4.49) are of a rather limited value since the functions (; and
s are still of a general nature. If ga and x are assumed to be independent of the
temperature gradient, then obviously

wtNeg =0

and Ag is independent of the temperature gradient. Such an assumption appears
reasonable for %, since classical models have this property. But possibly it is too
restrictive for ?

We now apply the concept of material frame mdlfference Under the
change of the observer system (we consider only proper Euclidian
transformations, i.e. translations and rotations) the temperature gradient, heat
flux and entropy flux transform as objective vectors

wl Bt g, pl-Rtyg., Bi-d. w4,

(4.50)

where Qmn is a proper orthogonal matrix,

dib Qs ) = # 1

describing the time dependent rotational orientation between the stared and

unstared observer system. The internal variables are assumed to be objective

scalar vectors or tensors, but a definite specification is left open at this place.
Then in the starred observer system we have




- 167 -

't & £
g, = — @l T AR
744: = y /?,f VAR Rk

With (4.50)1,  we get
" P
- “7@5/ 7?/"!/%75&*% =fe = o ?“ -
= "'Ok;[é—km, 7;%-'/%)4‘"“}'

which yields
W T A R E(R, T A, G

. v v
Material frame indifference requires that the functionsx*(:, -, ...) ande (-, -, ...)
are the same. With

G = ow Q.. Sz (4.53)
7= T

we get

Ot Buus Be 63, 7, A'{, Z?..‘ﬁ) =  (454)
e 08 (6tuny T, Aoy G )

Thus, the function is an isotropic function under proper orthogonal transforma-
tions, and such a function is called hemitropic [79]. This means that ¥ cannot de-
pend in an arbitrary manner on its arguments but only on combinations of them,
invariant under proper orthogonal transformations. If the B, are objective scalars
like T, then a proper list of irreducable invariants of the symmetric tensor o and
the vector gy can be derived from the representation given in [80]:

Cse , Gge %24, At (54.) o F

and the simultaneous invariants ?(4.55)
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féé;tﬁ / % &7(6}»%«/ e‘?‘r (?/-ls. gl«mct" %‘ﬁj{(é" ézf 6/35 J

where em is the alternating tensor. Note that the last invariant drops from the
list if also improper orthogonal transformations, i.e., the full group of orthogonal
transformations, are considered.

From (4.51) we find with (4.50)

# e F ¥ ; # § & Py
G = Plen, T4 E) 16+ A (@, T A

P (s )hufe + Qute = Ceetr

i

= (5, 7,8,2) Gy pe + Bu 4

which yields "
. M -
;p/O;“‘*/ .ol / = f/é}‘“'/ ore /
. . 3 (4.56)
Ay 6.l T A = Bop b, T1.)
and material frame indifference yields finally g
v . %
/4/5‘9”'46 szz 6k ) - ) = /‘ﬂfél.,., )
. - 5 (4.57)
bltibis, ) - Cu Al )

which shows that¢ and ki must be hemitropic scalar and vector valued functions.
Now we will make the simplest assumption with respect to the dependence
of the functions& and ¢ on the temperature gradient: The influence is only via

the magnitude
S =l Ie ;

no coupling terms involving the stress tensor (according to the list of invariants
(4.55)) should be present. Then condition (4.47) takes the following form

*/zf?fﬂé g (?;M‘)é’?{/ﬁ-ﬂﬂ + (PrA)% o =0

(4.58)
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Fork # mand arbitrary gradients gmgk # 0 we obtain

¥, ) k.
79 X+ /gﬂf-/lé)';;*—’:f); (4.59)

then (4.58) gives

prde =o. (4.60)
This allows to conclude from (4.59)
i

9f o . (4.61)

From (4.45); and (4.45), we get with (4.60) for arbitrary qk, and observing that ki
is not depending on the heat flux qy,

¢ % _ o
771 = e = 4.62
f==0 , o (462
and 5 v
4.
ﬁi"’é‘ = 0 J ﬂﬂi = O, (4.63)

The results (4.61) and (4.62) imply that (; is only a function of the temperature T
§2= (7)) = - A 7). (4.64)
and (4.63) requires the vector km, to depend only on the temperature.
ho = £

However, since ki, is objective, material frame indifference requires

LAUr) = B dolr) = 4o () =4 (7)

(4.65)

for arbitrary proper orthogonal Qmn. Equ. (4.65) can only be satisfied if
&
4, (77 = O (4.66)

Thus, within the frame of our assumptions an extra entropy flux km, depending
on omp, T, and P, does not exist.

Whether these results are also obtained, if# and f are assumed to depend
also on the simultaneous invariants in (4.55), has not been analysed. However, in
the study of thermoelastic materials a somewhat analogous problem exists and
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Miiller's results* [30, 31] support the expectation that the above results will also
hold in this case.

With (4.64) the energetic Lagrange multiplier A¢ is given. It remains to char-
acterize the constitutive function ?(T) and here again we follow Muller's ap-
proach [31].

We consider a control volume around the interface of two different materi-
als (Fig. 3) which, however, belong to the same general class. Specifically this
means that the balance equations and the entropy inequality have the same
form. Here we have in mind the present viscoplastic model and the adjacent ma-
terial is the classical thermoelastic material whose constitutve equations are well
known.

Material II

Material I

I Interface

V: Control Volume
Ay ,AII,: surface of Control Volume

Fig. 5: Control Volume at an Interface

We apply the integral entropy inequality (4.1) withs = 0, i.e.,

jf—ﬁ/ﬁdV fﬁ/@ﬁ,ﬁp/ﬁ = 0 (4.67)
4

to the control volume at the interface. With respect to the sign of the entropy
flux we recall equ. (4.3).

For the interface we make the natural assumption that it does not possess
energetic or entropic properties, i.e., there are no constitutive properties at-
tached to it. Further, the density, specific entropy, and its rate as well as the en-

*  Unfortunately, a detailed derivation is not contained in [30, 31].
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tropy flux vector ¢k in the two materials are bounded quantities. Deviding in-
equality (4.67) by the interface surface Aj gives

—“/5’7 7 /¢4 7% %‘f = 0. (4.68)

We let the distance d of Ajand Ay shrink towards zero, then

Ar — A, , Hy — 7,

hy —>V , g ==Y b (4.69)
V — A
/
and (4.68) reduces in the limitd +0to
3
¢ + P = o
P (4.70)

¢I=¢z,é/“’4) : 97‘1’?94

or

/%ze - %4) Ve = o, (4.71)

This is a consequence of the fact that the volume integral in (4.68) is zero in the
limit. In the imbalance equation (4.71) the equality applies and that is shown as
follows. We introduce the specific entropy production rate o

5 2%
=57 * L

such that (4.68) reads
o A7
-;27/97521-/ +/¢4”4;“= e -,
V / ) / v ‘qj

and o can be expressed in terms of the assumed constitutive equations and func-
tions. Since o is assumed to be bounded, the integral entropy production rate
vanishes in the limit. Thus

/5”%/1 Ve "'/??‘/r‘/a ‘[P?‘ v =0 (4.72)
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i.e., the normal entropy flux suffers no jump accross the interface.
The integral energy balance equation*

%ﬁedﬂ=yﬁ>j&£},dl/-—ﬁ 2 % &

can be used in an analogous way to prove that the normal heat flux gini is
continuous across the interface, i.e.,

Gen ~ Fret [7'5 % (4.73)

Combining (4.72) and (4.73) one gets finally

%2(7%) "}Q/G):@a (4.74)

Assuming now the continuity** of the temperature T

oy,

Iy =7z (4.75)

the result (4.74) shows that the two constitutive functions ¢; and ¢, of the two
adjacent media are the same. In the terminology of Muller ¢(T) is a universal
function.

To identify the function ¢(T) we proceed as follows. In the classical
thermoelastic case the entropy flux is usually assumed to be

%~ 7%

Since (,o(T) is universal, this suggests to put

Pcr) = 7%

However, this is not a rigorous argument.

* Jtis possible to start off also from a non-reduced energy balance equation involving the

kinetic energy etc. [ 81].

** The continuity of the temperature may be motivated by considering the ideal interface as
the limiting case of a thin interlayer without the capability of heat storage but following
Fourier's law of heat conduction with a heat conductivity becomming very large. However,
Mdller [ 31, p. 457] has given an example where continuity of temperature does not apply.
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We introduce the Gibbs function in the usual way

foé Ty ~$6G 8 = @ TA)

(4.76)
Then
[ v "‘ W
a?f _ Pe _ 701 _ ge _ o s
§ 5 =G TS g T fee T e
IE Je _ Py - Qé'la
o7 =S 7 TS 55 777 e 57 \(4.77)
I e s DL,
S50 "o T %
/
Observing (4.64), the restrictions (4.43) take the form
e c £ a?a:f,
S g )-
/5261‘“ ” 92%;’ ‘VE”"' = O
de JE 5 DEh i Z4/7  Yags
I
4 s = O
4 / S gy 5 %., é/) |
and with (4.77) this reduces to
[ 4 . \

B G en 55 4%

s / -
7‘9/7—'¢ 0,7*;/:; —p‘-fﬂ/r—¢/———% ghh =O'
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This applies to the viscoplastic body

body but, of course, the constitutive functions are different, except ¢ (T) is univer-

sal.
For the thermoelastic body the conditions (4.79) read
0,)!75 ye _ﬁ ;4;’/5 ‘
990/:'” S e 7(_?/7 P/Q@M =0
v y  (4.80)
25 v ) D2 _
S 57 TS5k ts(T- &) 57 o |

where the subscript (e
the thermoelastic potential relations

/f"/f

S Joim s
Q,?/e
27 7S5

apply and, therefore, (4.80) yields

pen =

In fact, this argument implies that we know the constitutive functions {g, €€/,
and 1j/g. From an empirical point of view this is not a trivial matter; especially 1j/g

and g are not directly measureable.

+ 5(7‘ 9”/9/.,//"'0

)/ denotes the thermoelastic body. However, in this case
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7 5%

F (4.79)

as well as to the thermoelastic comparison

£, hon [
L (4.87) |

7/5

pm——1

5 (4.82)
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Therefore, we follow here another approach which requires only the knowl-
edge of #eg and the specific internal energy . The total differential of the en-

tropy 1j is

2%
1‘9’—72'//1‘&%“//

Here, of course, the integrability conditions

)y

96’&“ 2/—'

apply. From (4.78) we have

- p(eE
"El“f”@ 527”

= v
-;’946; 2)—5;”3
“'BAV f/

P
p—

o

g 7 . et
D7

Qe f,,,,,/

(4.83)

(4.84)

f (4.85)

)

The requirement (4.84) then yields, after some of the terms have chancelled

0/)5‘/ Qé E': _/ < p/)é',(,
I &7« S T
Jg

v/ 5 / £)-
2 (254 ) -

o7 p%

/ﬁ a1 é:"‘)// B

2d.

Qz.,,fm)/

r(4.86)
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= DGim / sz ,4/) (4.86)‘

For the classical thermoelastic body this simplifies to

a(gﬂ / 96/6 _ _/6‘w pof;i/f f . 09211:~/5
d/* L ﬂl)ﬁhﬂ s A2 &6‘;444 "/ 7
or ) ) »
¢ oY / D e 16 f;/}é/f _ "/6;5 /é;_f/.i/

The left hand side is solely a function of the temperature; this represents a severe
restriction on the functions ge,, and £/g. With the standard expressions

v L _
G~ TGty * F 7)o

e o 1Y
Eé/f”g

e ; ) )

where éis given by (4.76), the r.h.s. of (4.87) is (- 1/T); thus

A b T, N
27 B 7

et

which gives after integration

’
fﬂ e (4.88)

where C is a positive integration constant. That this can be chosen at will, e.g.
C=1, is shown as follows.
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In the thermoelastic case the equations (4.85) simplify to

ad ’ __/_ JE ke
e = 7 M... T 5 %% 77 /
) . (4.59)
9’7V Jév / & 4752
ey = [ - = P72 —
97 Pl 57 s >7 |

and (4.82) reads 07 97 v
’4? A, %
[=) ( e A dr 3
/ﬁ 0/) %a s 97 /
here, & and £ey| are assumed to be known.

With ¢ given by (4.88), which assures the integrability of (4.89), this system
of partial differential equations can be integrated to yield the entropy 1i, and
clearly 1 is proportional to the constant C.

The Gibbs function is now introduced as follows

'

Ste = € — o Ve T O Ca

— - ?;f — ‘e
=€, ~ 7T Cte Eae . - (4.90)

This expression involves the ratio 11¢/C and therefore the Gibbs function, the de-
termining potential for €ey), €, and e is independent of the choice of C.

We are now ready to collect the main results of the section.

1. The entropy flux ¢k, initially assumed to be given by the general expression
(4.25) with (4.26) but then specified to be

¢4 = }2/&.., 7, A, ?/ﬁs s "{4 (6, ’T/V) (4.91)
reduces to

’ _
¢4 = Y%, {ﬁ=~;~,/{‘=0 (4.92)

Ill

where So(T) is a "universa
conveniently chosentobe C = 1.

function with an arbitrary positive constant C,
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The constitutive restrictions (4.78) for the viscoplastic body in terms of the

2.
Gibbs function . _ , _
& e
o= / = > -6, b3
£ = Flan, L A)=€ 27 %l 4
are given by . o
.. L . 2f £, ‘
=7 e s = o
Ee S s R, -
y oof AF ,4 > (4.94)
= - 27 y/-/ v
/
If C =1, then the Gibbs function (4.93) takes the classical form (4.76).
3. The residual entropy inequality (4.46), observing (4.64) and (4.66), simplifies

to

7Y s ;~ /
— o
where the Lagrange multiplier Apy is given by (4.42) or

o, = }”/f% s

and in terms of the Gibbs function (4.93)
A, = I
b= V5 N, (4.96)
Thus, (4.95) takes the form

2 %4 7'-}”/@5}20—50%//>o

or with (4.92); and T > 0

: /f / g
P
ke e~ T T T e = o (4.97)

which may be split in two seperate inequalities.
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4.3 Conclusions

A comparison shows that the results of section 2.3, which are based on the classi-
cal Clausius-Duhem entropy inequality and the Coleman-Noll argument, agree
with the main conclusions of section 4.2, that is the constitutive restrictions
(2.232) and the residual entropy inequality (dissipation inequality) are confirmed.

Further, we note explicitely that the entropy flux ¢k, equ. (4.28) reduces to the
classicai expression ¢k = 1/T gqk. This is due to the fact that the extra entropy flux
ki, assumed to depend only on omn, T, Py, vanishes identically and the constitutive
function ¢ = ;l;(omn, T, Bv, g) is proven to be a universal function of only the tem-
perature with the following structure: fﬁ = C/T, C > 0 and arbitrary.

The analysis in section 4.2 demonstrated that Miiller's approach is much more in-
volved mathematically than the classical procedure. Its merits, amply proven for
other constitutive classes, justify this inconvenience, and in the present case it has
lent further support to the previous results of section 2.3. However, there are
delicate points: The choice of independent variables, the assumptions about the
entropy flux, and the assumed continuity of temperature at ideal interfaces of
different materials. It may well be that a more complex constitutive structure will
not allow to derive a complete set of conclusions from the entropy inequality if
not additional specific assumptions about the model are made. Examples are:
The anisotropic thermoelastic body which involves the temperature rate in the
state equations for internal energy, etc., and possibly internal variable models in-
volving gradients of the internal variables which are present in the evolution
equations and which affect the entropy fiux.

Last but not least we should mention that the present theoretical frame
does not resolve the paradox of infinite propagation rates (e.g. heat waves). This
requires a different choice of independent variables, constitutive equations and
balance laws and is persued in “Extended Thermodynamics” [31, 77, 83].
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5. Recapitulation and Final Remarks

The objective of this study is to derive and investigate thermodynamic restrictions
for a class of internal variable models with evolution equations which contain the
rates of external variables linearly. Thus, the evolution of the internal variables
are governed by the usual irreversible contribution, depending only on the
present state, and by a reversible but path dependent contribution.

In the first instance the thermodynamic analysis is based on the classical
Clausius-Duhem entropy inequality and the Coleman-Noll argument. Also this
analysis is restricted to infinitesimal strains and rotations.

It is proved that the classical potential relations for the stress and entropy
are destroyed due to the presence of the reversible but path dependent contribu-
tion in the "mixed type” evolution equations. One obtains “non-classical poten-
tial relations”. On the other hand the residual dissipation inequality is essentially
determined by the irreversible part of the evolution equations as usual.

Following the previous work of Lubliner [63], explicit conditions are derived
for the existence of a suitable transformation of the internal variables which per-
mits the reduction of the evolution equations of "mixed type” to the purely irre-
versible type. If such a transformation exists, then the classical potential relations
hold again. It is then shown that the reduceability of the evolution equations and
path independence of the reversible part in the evolution equations are equiv-
alent. This also explains the restoration of the classical potential relations if
reduceability is possible.

Also evolution equations are studied which involve the stress as an indepen-
dent external variable instead of the strain. Such a formulation is more closely re-
lated to viscoplastic material models. This implies the introduction of the Gibbs
function or free enthalpy as a thermodynamic potential. However, the arbitrary
choice of a stress field, which is one of the variables defining a thermomechanical
process, may be problematic since the stress field may not be related to a com-
patible strain field. Conditions are indicated which assure that this variable choice
is acceptable for the evaluation of the entropy inequality. Also the conditions for
the reduceability of the evolution equations are given. For some special reversible
contributions in the evolution equations explicit transformation functions are de-
termined.

Further, the thermodynamic consistency of assumed state functions for the
strain and entropy are studied to some extend. This question is also important for
the analysis of the thermodynamic consistency of purely mechanical models. If
the strain and entropy are prescribed as functions of the independent state vari-
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ables, i.e., stress, temperature, and internal variables, then a Gibbs function satis-
fying the non-classical potential relations does not necessarily exist. This implies
that such a prescribtion is thermodynamically inconsistent. Necessary conditions
are derived for the existence of a Gibbs function depending on internal variables.

Eventually, the internal variable model is modified to represent a class of
elastic-viscoplastic material models. Here the total strain is additively composed
of a thermoelastic strain and a viscoplastic strain. The evolution equations for the
viscoplastic strain are entirely controlled by an irreversible contribution. How-
ever, the evolution equations for the internal variables, which possibly control
the nonlinear hardening, are of the "mixed type”. Further, the irreversible part in
the evolution equations may change according to certain switch conditions (e.g. a
yield condition which defines an elastic range). These conditions, however, are as-
sumed to depend solely on the independent state variables; no rates of the exter-
nal variables are involved, i.e., they do not involve a distinction between loading
and unloading. To this class of models the previous results are transferred.

The general results obtained are applied to several viscoplastic models proposed
or discussed in the literature, where the evolution equations are all of the "mixed
type”.

The model of Robinson et al. [47] involves the temperature rate in the evo-
lution equation for the drag stress, a proposal to better cope with non-isothermal
processes. Originally, this model was not developed in a thermodynamic frame. It
is shown that the evolution equation is reduceable and that a thermodynamically
extended version can be set up which is formally consistent with the Clausius-
Duhem entropy inequality. No restrictions for the parameters of the original
model are obtained.

Secondly, a model of Krempl et al. [52] is analysed. This model uses an evolu-
tion equation for the internal variable - equilibrium stress - which involves the
rate of total strain to describe the evolution of the hardening. Alternatively this
may be written in a form which involves the stress rate. Up to now a thermody-
namic analysis has not been performed. The analysis shows that the assumed
thermoelastic strain-stress relation (Hooke's law) and the evolution equation for
the equilibrium stress are in conflict with each other: An appropriate Gibbs func-
tion, depending on the internal variables, does not exist.

If the equilibrium stress is not considered to be a true thermodynamic state
variable, then a Gibbs function independent of the equilibrium stress exists. How-
ever, then the model is conflict with the intrinsic dissipation inequality: There ex-
ists states, which actually can be reached by suitable processes, where the dissipa-
tion is negative.
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Consequently, whatever choice is made, this model is thermodynamically in-
consistent.

Finally, a supplementary analysis of a thermodynamic discussion by Freed et
al. [82] for two models is performed. Both models involve the stress rate in the
evolution equation for the internal variable whereas the thermoelastic strain-
stress relation is given by Hooke's law. The purpose of this supplementary study is
to analyse the somewhat artificial approach of introducing an "adjustment func-
tion” in the Gibbs function to satisfy the intrinsic dissipation inequality. For the
first model this approach yields in fact a sufficient solution. However, an alterna-
tive direct choice of the Gibbs function, observing its thermodynamic restrictions,
gives a more complete sufficient solution which contains the previous result. For
the second model the approach of the "adjustment function” is shown to be ther-
modynamically inadmissible. This is also reflected in the fact that the determining
equations for the "adjustment function” do not admit a solution. Therefore, this
approach, aside from beeing artificial, is generally thermodynamically inad-
missible.

These results generally demonstrate that the subsequent analysis of the
thermodynamic consistency of material models not embedded in a thermo-
dynamic frame may be a cumbersome excercise and may produce awkward sur-
prises. Therefore, the models should be developed observing thermodynamical
concepts from the beginning; this is especially so if the development of the
model is outside the usual routes.

The study is closed with the evaluation of the extended Clausius-Duhem entropy
inequality (concept of Muller) where the entropy flux is governed by an assumed
constitutive equation in its own right; also the constraining balance equations
are explicitly accounted for by the method of Lagrange multipliers (Liu's ap-
proach). This analysis is done for a viscoplastic material model with evolution
equations of the "mixed type”. It is shown that this approach is much more in-
volved than the evaluation of the classical Clausius-Duhem entropy inequality
with the Coleman-Noll argument. Its merits, proven for other constitutive classes
than discussed here, justifies this inconvenience. In the present case it confirms
and thus gives support for the thermodynamic restrictions derived with the clas-
sical procedure.
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