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Abstract 

Fully developed magnetohydrodynamic flows in reetangular ducts with insulating and semi

insulating walls ( electrically conducting walls covered by insulating coatings) are considered. 

The report consists of two parts. In the first part the effect of magnetic field inclination on the 

flow structure and the pressure drop is considered. The duct walls are insulating. An 

asymptotic solution to the problern at high Hartmann numbers is obtained. The results show 

that for a square duct the increase of the pressure gradient due to the field inclination is 

negligible ( less than 10 per cent for any angle). For blanket relevant values ofinclination of up 

to 10° the deviation of the velocity profile from the slug profile is insignificant. The second 

part studies the flow in a duct with insulating walls parallel to the magnetic field, while the 

Hartmannwalls are covered by an insulating coating. A new type of the boundary condition is 

derived, which takes into account finite coating resistance. The effect of the latter on the flow 

characteristics is studied. An exact solution to the problern is obtained and several approximate 

formulas for the pressure drop at high Hartmann numbers are presented. 



Voll ausgebildete magnetohydrodynamische Strömungen 

in Rechteckkanälen mit isolierten Wänden 

Zusammenfassung 

In diesem Bericht werden voll ausgebildete MHD-Strömungen in Rechteckkanälen mit 

isolierten und halb isolierten Wänden (elektrisch leitende Wände sind mit einer 

Isolationsschicht überzogen) betrachtet. Der Bericht besteht aus zwei Teilen. Im ersten Teil 

wird der Einfluß der Magnetfeldneigung auf die Strömungsform und den Druckverlust 

betrachtet. Die Kanalwände sind isoliert. Für große Hartmann- Zahlen wird eine asymptotische 

Lösung des Problems hergeleitet. Die Ergebnisse zeigen, daß fur einen quadratischen Kanal die 

Erhöhung des Druckverlusts aufgrundder Magnetfeldneigung vernachlässigbar ist (weniger als 

1 0% fiir beliebige Winkel). Für blanket- relevante Neigungen bis 10° ist die Abweichung des 

Geschwindigkeitsprofils vom kolbenförmigen Profil nur unbedeutend. Im zweiten Teil wird 

eine Strömung in einem Kanal untersucht, dessen Wände parallel zum Magnetfeld isoliert sind, 

während die Hartmann- Wände mit einer Isolationsschicht überzogen sind. Es wird eine neue 

Randbedingung hergeleitet, die einen endlichen Widerstand der Beschichtung berücksichtigt. 

Ihr Einfluß auf die Strömungsformen wird untersucht. Es wird eine exakte Lösung des 

Problems entwickelt. Für große Hartmann- Zahlen werden mehrere Näherungsformeln fur den 

Druckverlust angegeben. 
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1. lntroduction 

Flows in ducts with insulating or semi-insulating walls are currently on agenda due to 

new trends in blanket-relevant research for DEMO and ITER. In several designs of poloidal 

self-cooled liquid-meta! blankets the ducts are either fully insulated or have conducting walls, 

which are covered by insulating coatings. In poloidal concepts of blankets, such as those 

presented by Lavrentiev (1990), Sze et al. (1992) and Malang et al. (1993) the major part of 

flow is either fully developed or very close to it (quasi fully developed). The liquid metal flows 

in a strong transverse magnetic field, the main component of which is toroidal. If the field is 

perfectly aligned with one pair of the duct walls, the velocity profile is the slug one (Shercliff, 

1953, Temperley, 1976). However, the actual magnetic field is three-dimensional, since the 

other two components of the plasma confining magnetic field are non-zero. The effect of 

magnetic field inclination on the flow in a reetangular duct with insulating walls is studied in 

the first part ofthe report (§2). 

The second part (§ 3) studies the effect of finite resistance of an insulating coating and 

the aspect ratio of the reetangular channel on the flow structure and the pressure drop. The 

required insulating properties of the coating have recently been discussed by Bühler & 

Molokov (1993). 

The results presented in this report were obtained by the authors in the period 1987-

1989, but have never been published previously (the results ofthe first part were presented at 

the 13th Riga Conference on Magnetohydrodynamics, see Molokov, 1990). This work was 

done for the former Soviet, presently Russian, concept of the slotted channel self-cooled 

liquid-meta} blanket (see Lavrentiev, 1990). Promising results for insulating materials for this 

concept were obtained already at that time. Since the aspect ratio of the channels is arbitrary, 

the results presented here are valid for any poloidal blanket concept. 
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2. The effect of a magnetic field inclination 

2. 1 Problem formulation 

Consider the steady flow of a viseous, eondueting fluid along the x. -axis in an 

insulating reetangular ehannel of eonstant eross-seetion in the presenee of a strong, uniform, 

transverse magnetie field 

!le = B0 [ sin ()~y + eos ()~z J, (2.1) 

whieh is inelined with respeet to the z. -axis by the angle of 8 (figure 2.1 ). 

Fig. 2. 1 Flow in a reetangular channel in a skewed magnetic field 
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The equations governing the flow in the magnetic field (2.1) are (e.g. Shercliff, 1965) 

A B0 [ • ()Ob,. () ro,.] k.,. Ll.,.v.,. +-- sm -+cos - =--, 
PVfLo o/. &. pv 

(2.2) 

b.".b". + fLoCYB0 [sin () ßv. + cos () ßv.] = 0, 
cy.,. &. 

(2.3) 

where v.,. = vx. (y.", z.") is the fluid velocity, b." = bx. (y.", z.") is the induced magnetic field, v is 

the kinematic viscosity, p is the density, <J is the electrical conductivity of the fluid, Jlo is the 

magnetic permeability, k. is the absolute value of the constant pressure gradient, 

- o2
/ cf2 I 11" - I iY; + I&; . 

The dimensionless variables are introduced by scaling the length, the fluid velocity, the 

induced magnetic field and the pressure by the characteristic values of a, v0 ( average fluid 

velocity), fL0v0.JpvCY and vpv0 I a, respectively. Then the equations (2.2), (2.3) read 

b.v+ ~Jsin()tJJ +cos()Ob]= -k ml o/ Oz ' 
(2.4) 

(2.5) 

where M = B0a.Jajpv is the Hartmann number. The notation ofthe dimensionless variables is 

the same as that of dimensional ones omitting asterisks. 

The boundary conditions are 

V= 0, b = 0 

V= 0, b = 0 

at y = ±1, 

atz= ±1. 

(2.6) 

(2.7) 

In addition, the average fluid velocity in the channel cross-section is constant, so that 

1 1 

Vav = :l J dy J v(y, z)dz = 1. (2.8) 

-1 -1 
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For the problern considered an exact solution exists (see Vatazhin, Liubirnov & Regirer, 1970 

and references there). However, the analysis ofthis solution at highM is difficult. 

The equations (2.4) and (2.5) contain a srnall pararneter M-1 at the Laplacians, so that 

the problern (2.4) - (2.7) isthat of singular perturbations. In the present report an asyrnptotic 

solution to this problern as M-t oo is presented. 

The problern of flow in an insulating reetangular channel in the rnagnetic field parallel 

to a pair ofwalls (8 = 0 or 1) was treated by Temperley (1976). It is weil known that at the 

walls parallel to the field side layers appear with the thickness 0( M-112
). The fluid velocity in 

the layers is 0(1). When the field inclination issmall (8 = o(M-112
) or 8 = 1- o(M-112

)) 

the flow structure is almost the same as for e = 0 and the side layers remain attached to the 

side walls. If inclination is significant ( tan 8 = 0(1)) the side boundary layers separate frorn 

the walls and becorne free layers. They occur inside the fluid along rnagnetic field lines, which 

cross the channel corners. Thus the analysis will be carried out for the rnost interesting case 

tan 8 = 0( J) for three different Situations 

i) tan 8 < r 1
, 

ii) tan 8 = r1
' 

iii) tan 8 > r1
. 

12 



2. 2 Asymptotic solution for tane < r 1 

It is convenient to introduce new independent variables ~ and 11 as follows 

~ = y cos e - z sin e, 

11 = y sin e + z cos e. 

(2.9) 

(2.10) 

The axis 017 is aligned with the magnetic field, while the axis 0~ is in the transverse direction 

(see figure 2.2). 

?=-:rct~
-(~Ln9f1 

7=-~ c"t«a8 + 

+(~Ln9f1 

Fig. 2. 2 Channel cross-section and co-ordinate system ~017 
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In new variables the problern (2.4) - (2. 7) reads 

V= 0, b = 0 

V= 0, b = 0 

1 
at 17 = -;cotB±-.-, 

smB 

I 
at 17 = 4tanB±--, 

cosB 

(2.11) 

(2.12) 

(2.13) 

According to the method of matched asymptotic expansions the flow region is divided 

into the following subregions (see figure 2.3): 

• (CC) the centrat core between the walls z = ±1, 

• (LC) the teft core between the walls y=-1 and z=l, 

• (RC) the right core between the walls z=-1 andy=l, 

• (HCL), (HCU) the Hartmann layers adjacent to the centrat core. They are at the walls 

z=-1 and z=l and have thickness O(icos 8IM-1 
), 

• (HLL ), (HLU) the Hartmann tayers adjacent to the teft core. They are at the walls 

y=-1 and z=l and have thickness o(lsin 8IM-1
) and O(icos 8IM-1 

), 

respectivety, 

• (HRL ), (HRU) the Hartmann tayers adjacent to the right core. They are at the walls 

z=-1 and y= I and have thickness O(icos 8IM-1
) and O(lsin 8IM-1

), 

respectivety, 

• (SL) free layer of thickness 0( M-112
) separating the centrat and the teft 

cores, 

• (SR) free tayer of thickness o( M-1 12
) separating the centrat and the 

right cores, 

• (HS 1 )-(HS4) Hartmann boundary layers adjacent to the layer SL, 
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• (HS5)-(HS8) 

• (11)-(14) 

Hartmann boundary layers adjacent to the layer SR, 

corner layers. 

(HS2) 

(I1) 

I (LC) . I 
I I 
~(HLL) I 
I I 
1 I 

I 
I 

I 

(HC)6) 

{I3) 

Fig. 2. 3 Flow subregions at high Hartmann number for tan 8 < z-1 

2. 2. 1 Central core (region CC) 

Considering the limit of equations (2.11) as M ~ oo at fixed values of ~ and 11 one 

gets 

ßvcc = 0. 
017 

(2.14) 
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Throughout § 2 the subscripts of variables v and b denote the region where corresponding Iimit 

equations are valid. The solution to the equations (2.14) is 

k 
hcc = -17- +Ci~), 

M 
(2.15) 

where Ci~) and C2 ( ~) are arbitrary functions which aretobe determined from the conditions 

ofmatching with the Hartmann-layer solutions (regions HCL, HCU). 

2. 2. 2 Hartmann boundary layer HCU 

Introducing boundary layer variables 

171 = M[ry- ~ tan e- -
1
-], ~ 1 = ~, 

cos e (2.16) 

stretches the vicinity ofthe wall z=l. Substituting (2.16) into (2.11) in the Iimit M ~ oo gives 

(2.17) 

(2.18) 

The solutions to the equations (2.17), (2.18), which do not grow exponentially as M ~ oo and 

satisfy the boundary conditions 

VHCU = 0, bHCU = 0 at (2.19) 

16 



and conditions ofmatching with the functions Vcc' hcc are 

(2.20) 

The functions C1 ( ~) and C2 ( ~) are related by the expression 

(2.21) 

2. 2. 3 Hartmann bmuulary layer HCL 

Introducing boundary layer variables 

Tb= M[ry- ~tan 8 + -
1
-], ~2 = ~' 

cose 
(2.22) 

stretches the vicinity ofthe wall z=-1. Substituting (2.22) into (2.11) in the Iimit M---* oo one 

gets the equations ofthe type (2.17), (2.18). 

The solutions to these equations, which do not grow exponentially as M ---* oo and 

satisfy the boundary conditions 

VHCL = 0, bHCL = 0 at (2.23) 

and conditions ofmatching with the functions vcc' hcc are 

VHCL = bHCL = k/ [1- exp( -T}2 COS2 e)]. 
Mcose 

(2.24) 
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The function C1 ( ~) which is also determined from these conditions is 

Substituting (2.21), (2.25) into (2.15), (2.20) gives 

kl 
V ----
CC- M l'l' 

COSo 

k 
bcc = -[ -11 + ~ tan e], 

M 

VHCU = -bHCU = kf [ ]- exp( 111 COS
2 e)]. 

Mcose 

(2.25) 

(2.26) 

(2.27) 

Using the expressions (2.24), (2.26), (2.27) one can construct the composite expansions vc, 

bc, which are uniformly valid in regions CC, HCL, HCU (see Kevorkian & Cole, 1981) 

vc = kl [ 1- exp( 171 cos2 e)- exp( -172 cos2 e)], 
Mcose 

(2.28) 

2. 2. 4 Left core (region LC) 

The equations governing the flow in the left core are ofthe form (2.14). The solution to 

these equations is 

(2.30) 

The arbitrary functions C3 ( ~) and C4 ( ~) are obtained from the conditions of matehing with 

the solutions in the Hartmann layers HLU and HLL. 
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2. 2. 5 Hartmann boundary layer HLU 

The functions vHLV and bHLU satisf:Y the equations (2.17), (2.18). The solution to these 

equations is obtained in the same way as in the section 2.2.2 for the functions V Heu and bHcu, 

so that 

(2.31) 

(2.32) 

2. 2. 6 Hartmann boundary layer HLL 

The boundary-layer variables 

T1J = M[ 71 + ~ cot 8 + -. 
1
-], S 3 = S 

sm e (2.33) 

stretch the vicinity of the wall y=-1. Substituting (2.33) into (2.11) in the limit M--t oo gives 

(2.34) 

(2.35) 

The solutions to the equations (2.34) and (2.35), which do not grow exponentially as 

M --t oo and satisf)r the boundary conditions 

at 713 = 0 (2.36) 
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and the conditions ofmatching with the functions vLC> bLc are 

(2.37) 

From these conditions the function C3 ( ~) is also determined, so that 

C3 (~) =- ~(tan e + cot 8) + -.-+- . k [ 1 l J 
2M Sille cose 

(2.38) 

The composite expansions vL, bL which are uniformly valid in the regions LC, HLU, HLL are 

vL =- f'(tanB+ cotB) +-.-+-- x k [ 1 l J 
2M slllB cosB 

(2.39) 

bL =- f'(tanB+ cotB) +-.-+-- x k [ 1 l J 
2M Sill B cosB 

x{ -1 + exp( 771 cos2 B)- exp( -773 sin 2 B)}-

_ _!___[17- ~tanB--1-]. 
M cosB 

(2.40) 

From (2.26), (2.30), (2.32) and (2.38) follows that on the line ~ = - cos 8 + l sin B which 

separates the left and the right cores the following relations hold 

kl 
Vcc = VLC = ' McosB 

bcc = b LC = - _!___ [ 17 + sin B - l tan B sin e]' 
M 

20 

(2.41) 
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i. e. the core velocity and induced magnetic field are continuous along this line. This means that 

the flow in the layer SL and adjacent Hartmann layers (HS1)-(HS4) aretobe analysed only if 

high er -order approximations are of interest. 

The solutions for the right core and adjacent Hartmann layers are obtained in analogous 

way. 

2. 2. 7 Pressuregradient 

The main term in the asymptotic expansion of the average velocity is 

jlcosB-/sinB J~tanB+//cosB j J/sinB-cosB J.;tanB+//cosB 

Vav =- d~ VccdJ7 +- d~ VLcdJ7 = 
41 lsin B-cos () stan B-1/cos e 21 -lsin B-cos () -scot B-1/sin () 

= kl 2 [cos e- I sin eJ. 
Mcos e 3 

(2.43) 

Substituting (2.43) into (2.8) gives 

(2.44) 

Since in the channel with insulating walls the layers SL and SR do not contribute to the main 

term ofthe asymptotics ofthe pressure gradient, the formula (2.44) is valid for B ~ 0 as well. 

Substituting (2.44) into (2.26), (2.30), (2.38) one gets 

1 
"cc = l ' 

1- . tan e 
3 

21 
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VLC = [ CO~() J [~( tan () + COt 8) + -.-
1
- + -

1
-]. 

21 1-- tan e sm e cos e 
3 

(2.46) 

The results of calculations using formulas (2.45) and (2.46) are shown in figure 2.4. 

1 

0,5 

Fig. 2. 4 Core velocity for 1=5 and tan 8 = 0. 1. 

2. 3 Asymptotic Solution for tan e = r 1 

As tan B ~ r 1 the layers SL and SR merge into a single layer S, and the centrat core 

disappears (figure 2.5). In the limit tan e ~ r 1 the Solution to the left core and adjacent 
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Hartmann layers and the formula (2.44) are still correct. Therefore in the case tan e = r1 one 

can use the results of Sec. 2.2. Calculations with formula (2.46) are shown in figure 2.6. 

2. 4 Asymptotic solutionjor tan e > r 1 

In the case tan e > r1 the layer S splits into two, and the central core reappears (see 

figure 2.7). However, in centrast to the case tan 8 < r 1 this core is between the walls y = ±1. 

The solutions for the left core and adjacent Hartmann layers with undetermined k obtained in 

Sec. 2.2 are still valid. The solutions for the central core and adjacent Hartmann layers are 

obtained in the same way. Therefore we present only the final results 

l 
V -----

CC - f 1 t 8' - 3CO 

l sin e 
hcc=- 1 [17+~cot8], 

1-3 cot e 

l sin e [ 1 l J 
VLC = [ 1 ] ~( tan 8 + COt 8) + -.- + -- , 

2 l - 3 cot e sm e cos e 

l sin e [ 1 l J 
bLC = [ 1 ] ~(tan 8- COt 8)- 217--.- + -- , 

2 1 - 3 cot e sm e cos e 

k = Mlsin e 
l- l_ cot e. 

3 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

Variation of the pressure gradient with e for different values of l is shown in figure 2.8. 

Calculations are done using combination offormulas (2.44) and (2.51) which covers the range 

oo ~ e ~ 90°. 
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1 

o,s 

----4--.--.---..."..,.....,....,...,..,.--+-----a-........ - (I"!>) 

(HS4) 

( Lt) 

(Rt) 

(HS'2) 

CHRL)--

Fig. 2. 5 Flow subregions at high Hartmann number for tan 8 = r1 

~ 1,5 c 

1.Yc 
1,5 

i!. =-5 

t:- 1fc 1,'J 

'lfc 1,5 

Fig. 2. 6 Core velocity for !=5 and tan 8 = 0. 2. 
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(I-IS1) 
(ß) 

(HS4) 

H-ISS) 

Fig. 2. 7 Flow subregions at high Hartmann number for tan 8 > r 1 

K 

M 
.e = 1 

1,0 

0,8 

0,6 

0,4 

O,tt 

e 
Fig. 2. 8 Variation ofthe normalised pressure gradient with e for different values of I. 
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3. Fully developed MHD flows in slotted channels 

3. 1 Basic equations and boundary conditions 

Consider the steady flow of a vtscous, electrically conducting ( a=const), 

incompressible fluid in a reetangular channel lxl < oo, [yj < a I 2, lzl < h I 2 driven by the 

pressure gradient dp/dx=const in a uniform, constant magnetic field !}_0 = { 0, 0, B0 } 0 In this 

case the fluid velocity .!: = v(y, z )~x and the induced electric current 

o 1 ()Bix 
Jy(y,z) = -~, 

Jlo oz 

0 1 ()Bi X 

lz(y,z) = --~ 
Jlo uy 

depend on the transverse co-ordinates only and are determined from the equations, which in 

the dimensionless form reads (eo go Shercliff, 1965) 

2 8b V v+M-=P & , (301) 

where M = B0a ~ is the Hartmann number, and P = _i__ dp is the dimensionless pressure 
~ pv pvv0 dx 

gradiento The characteristic length a is the width of the channel, the characteristic velocity is 

v0 , and the characteristic value of the induced magnetic field ( B;,x = bB;*) is Bt = v0J10 .J apv 0 

The flow geometry in the dimensionless form is shown in figure 3 010 
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Fig. 3.1 Schematic diagram of flow in a slotted channel. 

The system of equations (3 .1) is to be solved und er the following boundary conditions. 

1. Non-slip conditions 

v(±~,z) = v(y,±-%) = 0, A, = h I a. (3.2) 

2. The boundary conditions for the induced magnetic field b(y,z) are determined by the 

electrical properties of the channel walls. If, for simplicity, one assumes that "linear 

conductivities", i.e. the values O'w;hw;, for opposite channel walls are equal, and the 

electrically conducting wall is thin, then these conditions can be written as follows 

(Shercliff, 1956) 

• at the side walls y = ± t, parallel to the external field 

b Ob 0 (]' w2hw2 
± c2 ;;~, = ' c2 = ' 

v.Y O'a 

• at the Hartmann walls z = ±1 I 2 

b ±Cl i1J = 0, Cl = O'w!hwl 

~ O'G 

27 
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3. Consider now the boundary conditions in the case when an infinitely thin layer with a finite 

Ohrnie resistance separates the electrically conducting wall from the liquid metal. Such a 

contact resistance may exist when the working fluid is Pb-Bi, for example, which creates a 

stable oxide film on channel walls. 

For simplicity, in the first approximation, the electric properties ofthisfilm are assumed 

to be constant, so that the jump of the electric potential across the layer is directly 

proportional to the electric current. While deriving the boundary conditions the following 

model has been used (see figure 3.2). Imagine that there is a stagnant layer of width hk 

between the liquid meta! and the wall having anisotrophic conductivity (Jk, so that in the 

direction perpendicular to the wall its conductivity is equal to uk> and in the direction 

parallel to the wall - to zero. It is clear, of course, that both the wall thickness hw and hk 

are much smaller than the radius of curvature ofthe wall surface. 

Fig. 3. 2 Schematic diagram of an electrically conducting wall 

covered by an insulating coating 
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Since the electric currents in the channel are two-dimensional, the electric potential t/Jw 

and the induced magnetic field Bt in the wall (hk s n < hk + hw) are related by the 

expressions 

1 8B':" ot/Jw 
--~-=-a --

~~ w :::! , 
f.lo UTI vr 

1 mw ot/Jw 
--~-=aw--· 
f.lo or & 

(3.5) 

Integrating the first equation in (3. 5) across the wall and using the fact that B;'v is equal to 

zero at the outer wall surface gives 

(3.6) 

The value </Jw ( -r, n) can be represented by the Taylor series expansion, which, taking into 
ot/Jw 

account the condition --( r, hk + hw) = 0, reads 
& 

Substituting (3.7) into (3.6) and integrating the resulting equation one gets 

1 Bw( h ) - h I} {d.w( h ) h; ;J-tjJw ( h ) } - i r, k -aw w- 'f' r, k ---2- r, k + ... ' 
f-lo or 3 eh 

Using further the thin-wall approximation which assumes that hw << 1 gives 

(3.8) 

At the same time for the intermediate contact layer ( 0 s n s hk) the following expressions 

hold 

_1_8Bik = 0 
Jlo & , 

(3.9) 
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From the first equation in (3. 9) it follows that the function Bik ( 't', n) is independent of the 

normal co-ordinate n, so that Bik ( 't', 0) = Bik ( 't', hd. Therefore, by integrating the second 

equation in (3.9) across the contact layer one gets 

Using continuity ofboth the electric potential and the magnetic field at the boundaries n=O 

and n = hk gives 

or/J ( ) or/J ( ) hk lfl Bi -- r,O +- r,hk - ----2-(r,O) = 0. 
OT OT JloCYk or 

~w 1 ~ 
From (3.8) follows that -( r,hk) = Bi( r, 0). The value -( r, 0) can also be 

OT JloCYwhw OT 

expressed in terms of the magnetic field Bi, taking into account the non-slip condition on 

the boundary. The result is 

orp ( T, 0) = --1- 8J3i ( T, 0), 
OT JloCY m 

so that 

1 8Bi ( ) 1 ( ) hk lfl Bi ( ) -- T,O +--Bi T,O ---2- T,O =0. 
(5 m awhw ak OT 

The last boundary condition may be rewritten in the dimensionless form, namely 

8b &b 
b+c--cr-=0 

Ch OT2 
' 

(3.10) 

ah 
wherec=~, 

aa 
r = ahk . The ratio hk I ak which appears in the parameter r can be 

aka 

interpreted as the specific contact electrical resistance Rk, so that 
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It is evident that for r=O the equation (3.10) becomes the usual thin-wall boundary 

condition, such as (3.3) and (3.4). For r ~ oo and finite value of c from (3.10) follows the 

condition on the insulating wall, namely ib I iJ.r = 0 . 

3. 2 Semi-injinite slotted clwnnel ( 1 ~ oo) 

In this section the results for the flow of an electrically conducting medium in a semi

infinite MHD-channel (lxl < oo, IYI < ~, z > 0) are presented. For convenience the coordinate 

system is shifted in the z-direction by -~ and then the limit A, ~ oo is considered. The 

geometry is shown in figure 3.3. 
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Fig. 3.3 Schematic diagram offlow in a semi-infinite channel. 
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It is convenient to choose the value 

a dp 
Vo = -----

8pvdx 

as the characteristic velocity, which is proportional to the applied pressure gradient. Then the 

system (3 .1) can be written as follows 

2 Cb V v+M-= -8 & ' (3.11) 

Such a choice of v0 Ieads to the following expression for the non-dimensional velocity 

v(y,oo) = 1- 4y2 as z ~ oo 

in the region where the MHD-interaction vanishes and the flow is ofPoisseuille type. 

Consider the simplest case when the walls at y = ± t parallel to the external magnetic 

field are insulating ( c1 = 0). The boundary condition for the electrical variables at the wall 

z=O is determined by the expression (3.10), which reads 

8b ifb 
b-c --c r-=0 

..L & ..L 0'2 . 

The solution to this boundary-value problern can be easily obtained in terms of trigonometric 

series with basic functions cos aky, where 

ak = n(2k- 1), k = 1, 2, 3, .... 
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As a result one gets 

(3.12) 

where 

From the solution obtained it follows that the length of the region in the z-direction, where the 

moving medium interacts with the magnetic field, is proportional to M and is almost 

independent of the electrical properties of the Hartmann wall. This is illustrated in figures 3 .4 

and 3.5, which show velocity distribution at the channel axis y=O. The velocity profiles v(O,z), 

calculated with formula (3 .12) for certain values of parameter M, are shown in figure 3.4 for 

the case when the electric currents do not shortcut in the wall (c.l = 0 or r = oo). Note that for 

M :2: 1 00 the velocity profiles become practically self-modeling with respect to the parameter 

z!Nf. 

The dependence of the velocity distribution on the value of the wall conductance ratio 

c.l for r=O andM=JOO is shown in figure 3.5. It is seen that with increasing c.l the values of 

the velocity at the outer boundary of the Hartmann layer decrease, and for c .l ~ oo this layer 

almost disappears. Figure 3.6 shows velocity distribution v(Y) against the channel width for the 
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case c j_ = oo at different distances from the Hartmann wall. This velocity distribution at any 

cross-section of the semi-infinite channel and for arbitrary values of parameters M, c j_ and r 

has non-monotenie nature, i.e. it has the maximum value at the channel axis and vanishes at the 

channel walls. 

In conclusion we should mention that the results obtained for the semi-infinite channel 

are of practical importance only if the parameter M does not exceed the aspect ratio A, = h I a 

ofthe actual channel. In reality, usually, opposite is true. 

1 

0,5 

0 

V(O,l.) 

0,'2. 0,4 0,6 :t/M 

Fig. 3.4 Fluid velocity in a semi-infinite channel at the channel axis y=O 

for different values ofthe Hartmann number. 
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Figo 3 0 5 Fluid velocity in a semi-infinite channel at the channel axis y=O 

for different values ofthe wall conductance ratioo 
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Figo 3 0 6 Fluid velocity in a semi-infinite channel for different values of zo 
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3. 3 MHD jlow in a slotted cllannel witll insulating coating 

As was mentioned above ( § 3. 1 ), the distributions of hydrodynamic and electrodynamic 

fields in a slotted channel are described by the system of equations 

V 2b +MiN = 0. 
& 

This systemwill be solved together with the following boundary conditions: 

" the non-slip conditions 

v(±l I 2,z) = v(y,±A, I 2) = 0, 

" ifwalls parallel to the external magnetic field are insulating ( c11 = 0) one gets 

b(±I I 2,z) = 0, 

(3.13) 

(3.13a) 

(3.13b) 

• the electrical boundary condition with contact resistance ( or insulating coating) 

atz= ±A-I 2. (3.13c) 

Choosing average velocity vav as the characteristic velocity v0 one gets the following 

expression 

1 I 2 I., I 2 

~ J dy J v(y,z)dz = 1. (3.13d) 

-112 -1.,12 
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The last condition allows to determine the pressure gradient dp I dx uniquely. Indeed, from 

the structure ofthe boundary value problern (3.13) it follows that its solution has the form 

v(y, z) = Pv1(M,y, z), b(y, z) = Pb1(M,y, z). 

a dp 
The functions v 1 and b 1 do not depend on the parameter P = ---. Hence from the 

PVVo dx 

condition (3 .13d) one gets 

{ 

112 )../2 }-I 
P(M,'A,c1 ,r) = ~ J dy J v1(M,y,z)dz , 

-112 -A/2 

dp pv - = -v0P(M,'A,c1,r). 
dx a 

The solution ofthe problern (3.13) is 

(3 .14) 

(3.15) 

«> l cosh( vk + M)z cosh( vk - M)z I 
v(y,z) ~ 4P 2:< -1)' co:~0' 1- A, ( ~y -B, ( ~) A , (3.16) 

k=! k cosh v + - - cosh v - - -
k 2 2 k 2 2 

l . h( M) . h( M) I oo sm vk + - z sm vk - - z 
b(y z) = 4P~(-1)k cosaky A 2 -B 2 

, L.,.; 3 k ( M) .11, k ( M) /I, ' 
k=I ak cosh vk + 2 2 cosh vk - 2 2 

where 
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ak = n(2k- 1), 

while the value of P, according to (3.14), is 

(3.17) 

If the magnetic field is absent (M=O), the velocity distribution in the channel and the 

value of P are, of course, independent of electrical properties of the walls but depend on the 

aspect ratio A.. In this case from the formulas (3 .16) follows 

v(y,z) = 4P(O,A-)i) -1l cos~kY {1- cosh;k~ }, 
k=l ak cosh _k_ 

2 

{ f l}

-1 
aA, 

oo 2 tanh-k-
P(O,A-)=- 82::-;- 1- 2 

k=l ak akA, 

In the table below certain values of function P(D, A.) are presented. 

1 5 10 15 20 25 30 50 

P(O,A) 28.4 13.73 12.8 12.5 12.38 12.32 12.25 12.16 
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The effect of the magnetic field and the electrical properties of the walls on the integral 

channel properties can be evaluated by the quantity 

A(M A, c r) = P(M,A-,cl,r) 
' ' 

1
' P(O,A-) ' 

(3.19) 

which shows the increase of the pressure gradient due to MHD phenomena. The formula for A 

lS 

(3.19a) 

The values of A(M, A, c1 , r), calculated from (3.19a) are shown in Appendix A. 

The dimensional pressure gradient can be calculated from the expression 

(3.20) 

where S=ah is the area of the channel cross-section. From this expression one gets the 

hydraulic power per unit length, namely 

(3.21) 

Note that the geometrical size ofthe channel does not enter the formula (3.21), but at the same 

time it determines the values ofthe parameters M, c1 and r. In addition the following relation 

holds 
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Consider the dependence of the integral flow quantities on the aspect ratio A, at fixed 

cross-sectional area. F or simplicity we consider the case when the channel walls are insulating 

(c1 = 0). Then, at high values of M (w >> 1, .JM/2A. >> 1), the expression for 

A(M, A, 0, 0) is approximated by the following formula with high order of accuracy, see 

Vatazhin, Liubimov & Regirer, 1970 (this can be checked by using the exact values from the 

table in Appendix A) 

A= 2M 

AP(O A-)( 1 - _}__ _ 0, 852 ) . 
' AM" .JM/2A. 

(3.22) 

Since S=ah=const, then a = .JS/A. and 

so that the value of the pressure gradient (and pressure losses) in the first approximation is 

inversely proportional to .JI, i. e. it decreases with increasing aspect ratio. It is clear that the 

presence ofthe electrically conducting walls may only strengthen this tendency. 

Consider now the local flow quantities. The distribution of velocity v(O,z) on the axis 

y=O of the slotted channel with insulating walls ( A, = 20, c 1 = 0) is shown in figure 3. 7. It is 

seen that with increasing Hartmann number the Hartmann layer is formed at the walls 

perpendicular to the magnetic field, and the velocity profile, starting from certain considerably 

high values ofMbecomes more and more uniform, and v(O,z) ~ 1 as M ~ oo. At high values 

of M (such that .JM/ 2A. >> 1) the velocity distribution in such a channel with insulating walls 

can be approximated by the following expression 

1 _ cosh( Rf-~ -0%2) {1- coshMz} 

cosh( [M_M _1_) cosh _MA vv: o.852 2 
v(y, z) = --"--------'------~-==----

1- - 2-- 0. 852 {n_lA. 
w VAi 
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Fig. 3. 7 Fluid velocity in a reetangular slotted ehannel at the ehannel axis y=O for different 

values ofthe Hartmann number. The Hartmannwall is insulating (c1 = 0). 
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Fig. 3. 8 The indueed magnetie field in a reetangular slotted channel at the ehannel axis y=O for 

different values of the Hartmann number. The Hartmann wall is insulating ( c1 = 0) . 
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The distribution of the induced magnetic field b(O,z) in this channel at different values 

of M is shown in figure 3.8. From this figure it is seen that with increasing Hartmann number 

the distribution of the electric current density on the channel axis (Jy(O, z)::::;-:) tends to 

become uniform. 

The velocity distribution v(O,z) in the channel with conducting Hartmann walls 

(.A = 20, c1 = 0. 01, r = 0) is shown in figure 3.9. At highMthe fluid velocity at the centre of 

the channel becomes lower than one, so that the profile becomes of M-shape type. The flow 

structure is shown in more detail in figure 3. 1 0. The comparison of the velocity proflies in 

channels with}., = 20 and}., = 50 shows that for equal values ofthe parameters M and c1 the 

M-shape of the profile appears for lower values of M and is more pronounced in the channel 

with smaller aspect ratio. It is also shown in the same figures how the flow structure is 

transformed with the increasing contact resistance r at the Hartmann walls. The appearance of 

the contact resistance Ieads at first to evening of the velocity profile along the channel height, 

and for higher values ofr to the suppression ofthe M-shapeness ofthe profile. 
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C.= 0,01 
r=-0 

't 

600 

1000 
'2.000 

10000 

6 6 -z. 10 

Fig. 3. 9 Fluid velocity in a reetangular slotted channel at the channel axis y=O for different 

values ofthe Hartmann number. The Hartmannwall is electrically conducting. 
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Fig. 3. 10 (a,b) Fluidvelocity for different values of A., M, r and c1• 
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Fig. 3.10 ( c,d) Fluid velocity for different values of .A, M, r and c1. 
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Fig. 3.10 ( e,f) Fluid velocity for different values of A, M, r and c1 . 
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Fig. 3.10 (g,h) Fluidvelocity for different values of A, M, r and c1. 
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Fig. 3.11 The induced magnetic field in a reetangular slotted channel at the channel axis y=O 

for different values ofthe Hartmann number. The Hartmannwall is electrically conducting. 

The distribution of the induced magnetic field b(O,z), calculated at certain value of M 

for the channel with A, = 20, c1 = 10-2 and r=O, is shown in figure 3.11. Similar to the 

channel with insulating walls the current density = 8b I & becomes uniform with increasing M, 

and its magnitude monotonically increases. The values of b(O, 1 0) are shown in this figure. With 

increasing M the electric currents flowing in the Hartmann layer and in the wall redistribute, 

and more current is conducted by the wall. 

Finally we present the relation which allows one to estimate the value of A(M, A, c 1 , 0) 

with high accuracy for the channel with conducting Hartmann walls, namely 

-1 

2 [ c/Jvf ] 1. 704 c1AM 2. 4 
x 

1
- AM-

1 
+ 4(..i + 2c

1
) ----;==2M=::;=(l=+=c

1
=M=;=-) + 4(..i + 2cJ ,J2M I A 

(3.23) 

A +2c1 
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4. Conclusions 

In poloidal concepts of self-cooled liquid-metal blankets for tokamak reactors the major 

part of flow is fully developed or almest fully developed. If coolant duct walls are insulating, 

the ducts have reetangular cross-section, and the magnetic field is parallel to one pair of the 

duct walls, the bulk ofthe fluid flows with constant velocity (slug velocity profile). This Ieads 

to desirable heat-transfer characteristics. Moreover, in insulating reetangular ducts two

dimensional turbulence may be present at moderate values of the interaction parameter, which 

may only improve these characteristics. 

In the present work the influence of possible deviations from such ideal conditions are 

estimated. The first part evaluates the effect of non-perfect alignment of the magnetic field with 

duct walls, while the secend part estimates the effect of non-perfect insulation of duct walls, if 

insulating coatings are used for this purpose. 

If the duct cross-section is square or close to it, inclination of the field does not affect 

seriously both the pressure drop and heat transfer characteristics. The conclusion about the 

latter is made on the analysis of the laminar velocity profiles presented here. For inclination 

relevant to fusion applications in the range of 10° the deviation of the velocity profile from the 

slug one is insignificant. In case of a square duct the increase of the pressure gradient due to 

field inclination is negligible ( less than 10 per cent for any angle). The pressure drop in a 

reetangular insulating channel is inversly proportional to channel aspect ratio l and by using 

slotted channels may be reduced considerably .. For very high values of l, however, the increase 

of the pressure drop due to field iri.clination and change of the velocity profile, especially close 

to the corners may Iead to undesirable conditions. To avoid this the aspect ratio of the channel 

should be chosen not very high. In any case the pressure drop in fully developed flow in a duct 

with insulating walls is proportional to B0 in cantrast to a duct with conducting walls, where it 

is proportional to B5. 
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If duct walls are non-perfectly isolated, the appearance of the contact resistance leads 

at first to the evening of the velocity profile along the channel height and then to the 

Suppression of the M-shapeness. More details about this question are given by Bühler & 

Molokov (1993). 
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Appendix A 

Values offunction A(M,'A,c1,r) 

M=500 

10 20 30 40 50 

Cl r 

0 9.41 5.32 3.86 3.11 2.65 

10-4 9.8 5.51 3.98 3.2 2.72 

5 ·10-4 11.33 6.27 4.47 3.55 2.99 

10-3 13.19 7.19 5.06 3.97 3.3 

5. 1 o-3 26.14 13.27 8.8 6.53 5.18 

10-2 0 38.75 18.7 11.93 8.57 6.6 
10 25.07 13.09 8.75 6.52 5.2 

100 12.76 7.02 4.96 3.9 3.25 
1000 9.79 5.51 3.98 3.2 2.72 

2 ·10-2 0 56.55 25.67 15.7 10.9 8.15 
10 29.03 15.02 9.92 7.3 5.74 

100 12.91 7.1 5 3.93 3.28 
1000 9.79 5.51 3.98 3.2 2.72 

4. 10-2 0 77.14 32.83 19.31 13 9.5 
10 31.87 16.4 10.75 7.85 6.11 

100 12.99 7.14 5.03 3.95 3.3 
1000 9.8 5.51 3.98 3.2 2.72 

6 ·10-2 0 88.7 36.49 21.05 13.98 10 
10 33.02 16.95 11.07 8.06 6.26 

100 13.02 7.15 5.04 3.96 3.3 
1000 9.8 5.51 3.98 3.2 2.72 
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M=1000 

10 20 30 40 50 

Cl r 

0 17.75 9.73 6.87 5.4 4.5 

10-4 1932 10.53 7.4 5.8 4.81 

5 ·10-4 25.44 13.63 9.45 7.3 6 

w-3 32.77 17.3 11.84 9.05 7.35 

5 ·10-;l 81.64 40 26 19 14.83 

w-2 0 125.7 58.54 36.68 26.1 19.9 
10 72.1 37.54 25.07 18.6 14.6 
100 30.32 16.36 11.32 8.71 7.1 

1000 19.24 10.5 7.4 5.8 4.81 

2 ·10-2 0 182.7 79.92 48.21 33.4 24.94 
10 83.54 43.35 28.8 21.23 16.6 

100 30.86 16.65 11.52 8.85 7.2 
1000 19.25 10.5 7.4 5.8 4.81 

4 ·10-2 0 242 99.62 58.14 39.4 28.92 
10 91.3 47.28 31.3 22.98 17.9 
100 31.15 16.8 11.62 8.93 7.3 

1000 19.25 10.5 7.4 5.8 4.81 

6 ·10-2 0 272.5 108.9 62.6 42 30.6 
10 94.3 48.8 32.26 23.65 18.4 

100 31.95 16.85 11.66 8.8 7.3 
1000 19.25 10.5 7.4 5.8 4.81 
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M=1500 

10 20 30 40 50 

Cl r 

0 26 14 9.83 7.66 6.33 

10-4 29.5 15.9 11.04 8.56 7.05 

5 ·10-4 43.2 22.8 15.65 12 9.75 

10-3 59.46 30.9 20.95 15.9 12.78 

5 ·10-3 164.5 79.34 50.86 36.84 28.6 

10-2 0 254.2 116 71.77 50.62 38.45 
10 135.9 70.6 47.1 35 27.6 

100 52.62 28.27 19.5 14.9 12.1 
1000 29.24 15.8 11 8.55 7.04 

2. 10-2 0 363.8 156 92.97 63.91 47.62 
10 156.2 80.96 53.8 39.8 31.2 
100 53.72 28.86 19.9 15.2 12.4 

1000 29.26 15.8 11 8.55 7.04 

4 ·10-2 0 470.1 190.6 110.2 74.21 54.5 
10 169.5 87.72 58.13 42.86 33.5 

100 54.3 29.17 29.17 20.12 15.4 
1000 29.27 15.8 11 8.55 7.04 

6 ·10-2 0 523 206.3 117.6 78.54 57.32 
10 174.5 90.3 59.8 44 34.4 

100 54.5 29.28 20.19 15.4 12.5 
1000 29.27 15.8 11 8.55 7.04 
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M=2000 

10 20 30 40 50 

Cl r 

0 34.14 18.35 12.76 9.88 8.13 

10-4 40.4 21.57 14.92 11.5 9.42 

5 ·10-4 64.6 33.87 23.08 17.57 14.2 

10-3 93.2 48.1 32.34 24.35 19.5 

5 ·10-3 273 130.1 82.7 59.5 45.9 

10-2 0 420.1 189.1 116 81.26 61.42 
10 213.7 110.9 73.9 54.8 43.2 
100 79.1 42.42 29.23 22.37 18.14 

1000 39.84 21.4 14.83 11.45 9.39 

2 ·10-2 0 592.2 250.6 148.2 101.3 75.17 
10 243.8 126.3 83.8 61.93 48.63 

100 80.8 43.38 29.9 22.87 18.54 
1000 39.87 21.4 14.84 11.46 9.4 

4 ·10-2 0 752.4 301.6 173.3 116.3 85.1 
10 263 136.1 90.1 66.41 52 

100 125 81.74 43.88 30.24 18.76 
1000 39.88 21.4 14.84 11.47 9.4 

6 ·10-2 0 828.6 324 183.9 122.4 89.1 
10 270.2 139.7 92.45 68.1 53.3 
100 82.06 44.06 30.36 23.23 18.8 

1000 39.89 21.41 14.85 11.47 9.4 

55 



M=2500 

10 20 30 40 50 

Cl r 

0 42.26 22.6 15.66 12.1 9.92 

10-4 52 27.64 19 14.63 11.94 

5 ·10-4 89.7 46.75 31.72 24.05 19.4 

10-3 133.4 68.65 45.97 34.5 27.55 

5 ·10-3 405.7 191.5 121 86.7 66.6 

10-2 0 620 276.3 168.3 117.4 88.41 
10 304 157.6 104.9 77.7 61.22 

100 109.2 58.56 40.34 30.9 25 
1000 51 27.3 18.86 14.52 11.88 

2 ·10-2 0 862.7 361.5 212.7 144.8 107.1 
10 344 178.3 118.3 87.3 68.5 

100 111.7 59.93 41.29 31.6 25.6 
1000 51 27.3 18.87 14.53 11.88 

4 ·10-2 0 1081 430 246.2 164.7 120.2 
10 370 191.3 126.6 93.3 73 

100 113 60.65 41.79 32 25.9 
1000 51 27.3 18.88 18.88 11.89 

6 ·10-2 0 1182 459.4 260 172.7 125.5 
10 379 196.1 129.7 95.45 74.68 

100 113.5 60.9 41.96 32.1 26 
1000 51.1 27.3 18.88 14.34 11.89 
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M=500 

10 20 30 40 50 

Cl r 

8 ·10-2 0 96.1 38.71 22.08 14.54 10.4 
10 33.63 17.24 11.25 8.17 6.34 

100 13.03 7.16 5.05 3.96 3.3 
1000 9.8 5.51 3.98 3.2 2.72 

0.1 0 101 40.2 27.76 14.91 10.7 
10 34 17.43 11.36 8.24 6.39 
100 13.04 7.16 5.05 3.96 3.3 

1000 9.8 5.51 3.98 3.2 2.72 

0.5 0 122.7 46.02 25.32 16.27 11.5 
10 35.33 18.06 11.73 8.48 6.56 

100 13.07 7.18 5.06 3.97 3.31 
1000 9.8 5.51 3.98 3.2 2.72 

1 0 126.2 46.89 25.69 16.46 11.6 
10 35.5 18.14 11.78 8.52 6.58 

100 13.07 7.18 5.06 3.97 3.31 
1000 9.8 5.51 3.98 3.2 2.72 

5 0 129.1 47.61 26 16.62 11.7 
10 35.65 18.21 11.82 8.54 6.6 

100 13.08 7.18 5.06 3.97 3.3 
1000 9.8 5.51 3.98 3.2 2.72 

10 0 129.4 47.7 26.03 16.64 11.7 
10 35.67 18.22 11.82 8.55 6.65 

100 13.08 7.18 5.06 3.97 3.31 
1000 9.8 5.51 3.98 3.2 2.72 
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M=1000 

10 20 30 40 50 

Cl r 

8 ·10-2 0 291 114.3 65.13 43.46 31.56 
10 95.9 49.6 32.77 24 18.6 
100 31.3 16.88 11.68 8.97 7.3 

1000 19.25 10.5 7.4 5.8 4.81 

0.1 0 303.6 117.8 66.77 44.4 32.15 
10 96.88 50.11 33.1 24.23 18.8 

100 31.33 16.9 11.69 8.98 7.31 
1000 19.25 10.5 7.4 5.8 4.81 

0.5 0 352.7 131 72.68 47.72 34.26 
10 100 51.8 34.15 24.97 19.3 

100 31.43 16.95 11.72 9 7.33 
1000 19.25 10.5 7.4 5.8 4.82 

1 0 360 133 73.5 48.17 34.54 
10 101 52 34.3 25.06 19.4 

100 31.44 16.95 11.73 9.01 7.33 
1000 19.25 10.5 7.4 5.8 4.82 

5 0 366.2 134.4 74.2 48.55 34.77 
10 101 52.2 34.4 25.14 19.5 

100 31.46 16.96 11.73 9.01 7.34 
1000 19.25 10.5 7.4 5.8 4.82 

10 0 367 134.4 74.26 48.6 34.8 
10 101 52.22 34.42 25.15 19.5 

100 31.46 16.96 11.73 9.01 7.34 
1000 19.25 10.5 7.4 5.8 4.82 
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M=1500 

10 20 30 40 50 

Cl r 

8 ·10-2 0 554 215.2 121.7 80.92 58.86 
10 177.2 91.64 60.64 44.6 34.9 

100 54.6 29.34 20.23 15.5 12.6 
1000 29.27 15.8 11 8.55 7.04 

0.1 0 574.6 220.9 124.4 82.43 59.83 
10 178.8 92.48 61.48 45 35.2 

100 54.66 29.37 20.25 15.5 12.6 
1000 29.27 15.8 11 8.55 7.04 

0.5 0 652.9 241.7 133.7 87.7 63.2 
10 184.3 95.27 62.27 46.3 36.1 

100 54.85 29.48 20.32 15.55 12.6 
1000 29.27 15.8 11 8.55 7.04 

1 0 664.3 244.6 135 88.4 63.64 
10 185 95.63 63.2 46.4 36.2 

100 54.88 29.49 20.33 15.6 12.6 
1000 29.27 15.8 11 8.55 7.04 

5 0 673.7 247 136 89 64 
10 185.6 95.93 63.4 46.6 36.3 

100 54.9 29.5 20.34 15.6 12.6 
1000 29;28 15.8 11 8.55 7.04 

10 0 674.9 247.3 136.2 89.1 64.06 
10 185.7 95.97 63.4 46.6 36.3 

100 54.9 29.5 20.34 15.6 12.6 
1000 29.28 15.8 11 8.55 7.04 
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M=2000 

10 20 30 40 50 

Cl r 

8 .lQ-2 0 872.6 336.5 189.7 125.7 91.25 
10 274 141.6 93.68 68.96 53.94 

100 82.22 44.14 30.42 23.28 18.86 
1000 39.89 21.41 14.85 11.47 9.4 

0.1 0 901.7 344.5 19.34 127.7 92.6 
10 276 142.8 94.44 69.5 54.35 
100 82.32 44.2 30.45 23.3 18.89 

1000 39.9 21.41 14.85 11.47 9.4 

0.5 0 1010 373.3 206.4 135.1 97.24 
10 284 146.8 97 71.3 55.7 

100 82.63 44.37 30.58 23.4 19 
1000 39.9 21.41 14.85 11.47 9.4 

1 0 1025 377.3 208.1 136.1 97.86 
10 285 147.3 97.3 71.5 55.86 

100 82.67 44.39 30.59 23.4 19 
1000 39.9 21.41 14.85 11.47 9.4 

5 0 1038 380.5 209.5 136.9 98.34 
10 286 147.7 97.5 71.7 56 

100 82.7 44.41 30.6 23.4 19 
1000 39.9 21.41 14.85 11.47 9.4 

10 0 1040 380.9 209.7 137 98.42 
10 286 147.7 97.6 71.7 56 
100 82.7 44.41 30.6 23.4 19 

1000 39.9 21.41 14.85 11.47 9.4 
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M=2500 

10 20 30 40 50 

Cl r 

8 ·10-2 0 1239 475.6 267.6 177 128.3 
10 384 198.6 131.3 96.6 75.53 

100 113.7 61.02 42.05 32.2 26.1 
1000 51.1 27.3 18.9 14.54 11.89 

0.1 0 1277 486 272.3 180 130 
10 387 200.1 132.3 97.3 76.1 
100 113.8 61.1 42.1 32.2 26.1 

1000 51.1 27.3 18.9 14.55 11.89 

0.5 0 1416 522.8 288.9 189.1 136 
10 397 205.2 135.5 99.6 77.8 
100 114.2 61.33 42.27 32.3 26.2 

1000 51.1 27.3 18.9 14.55 11.89 

1 0 1436 527.8 291.1 190 136.7 
10 398 205.9 136 100 78 

100 114.3 61.37 42.29 32.4 26.2 
1000 51.1 27.3 18.9 14.55 11.89 

5 0 1452 532 292.9 191 137.4 
10 399.5 206.4 136.3 100.1 78.2 

100 114.3 61.39 42.31 32.4 26.25 
1000 51.1 27.3 18.9 14.55 11.89 

10 0 1454 532.4 293.1 191.5 137.5 
10 399.6 206.5 136.3 100.2 78.23 

100 114.4 61.39 42.31 32.4 26.25 
1000 51.1 27.3 18.9 14.55 11.89 
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