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Abstract

Fully developed magnetohydrodyhamio flows in rectangular ducts with insulating and semi-
insulating walls (electrically conducting walls covered by insulating coatings) are considered.
The report consists of two parts. In the first part the effect of magnetic field inclination on the
flow structure and the pressure drop is considered. The duct walls are insulating. An
asymptotic solution to the problem at high Hartmann numbers is obtained. The results show
that for a square duct the increase of the pressure gradient due to the field inclination is
negligible ( less than 10 per cent for any angle). For blanket relevant values of inclination of up
to 10° the deviation of the velocity profile from the slug profile is insignificant. The second
part studies the flow in a duct with insulating walls parallel to the magnetic field, while the
Hartmann walls are covered by an insulating coating. A new type of the boundary condition is
derived, which takes into account finite coating resistance. The effect of the latter on the flow
characteristics is studied. An exact solution to the problem is obtained and several approximate

formulas for the pressure drop at high Hartmann numbers are presented.




Voll ausgebildete magnetohydrodynamische Stréomungen
in Rechteckkanilen mit isolierten Winden

Zusammenfassung

In diesem Bericht werden voll ausgebildete MHD-Stromungen in Rechteckkanilen mit
isolierten und halb isolierten Winden (elektrisch leitende Wénde sind mit einer
Isolationsschicht tiberzogen) betrachtet. Der Bericht besteht aus zwei Teilen. Im ersten Teil
wird der EinfluB der Magnetfeldneigung auf die Stromungsform und den Druckverlust
betrachtet. Die Kanalwinde sind isoliert, Fiir gro3e Hartmann- Zahlen wird eine asymptotische
Losung des Problems hergeleitet. Die Ergebnisse zeigen, daf3 fiir einen quadratischen Kanal die
Erhohung des Druckverlusts aufgrund der Magnetfeldneigung vernachldssigbar ist (weniger als
10% fiir beliebige Winkel). Fiir blanket- relevante Neigungen bis 10° ist die Abweichung des
Geschwindigkeitsprofils vom kolbenférmigen Profil nur unbedeutend. Im zweiten Teil wird
eine Stromung in einem Kanal untersucht, dessen Winde parallel zum Magnetfeld isoliert sind,
wihrend die Hartmann- Wénde mit einer Isolationsschicht iberzogen sind. Es wird eine neue
Randbedingung hergeleitet, die einen endlichen Widerstand der Beschichtung beriicksichtigt.
Ihr EinfluB} auf die Stromungsformen wird untersucht. Es wird eine exakte Losung des
Problems entwickelt. Fiir groBe Hartmann- Zahlen werden mehrere Naherungsformeln fur den

Druckverlust angegeben.
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1. Introduction

Flows in ducts with insulating or semi-insulating walls are currently on agenda due to
new trends in blanket-relevant research for DEMO and ITER. In several designs of poloidal
self-cooled liquid-metal blankets the ducts are either fully insulated or have conducting walls,
which are covered by insulating coatings. In poloidal concepts of blankets, such as those
presented by Lavrentiev (1990), Sze ef al. (1992) and Malang et al. (1993) the major part of
flow is either fully developed or very close to it (quasi fully developed). The liquid metal flows
in a strong transverse magnetic field, the main component of which is toroidal. If the field is
perfectly aligned with one pair of the duct walls, the velocity profile is the slug one (Shercliff,
1953, Temperley, 1976). However, the actual magnetic field is three-dimensional, since the
other two components of the plasma confining magnetic field are non-zero. The effect of
magnetic field inclination on the flow in a rectangular duct with insulating walls is studied in

the first part of the report (§2).

The second part (§ 3) studies the effect of finite resistance of an insulating coating and
the aspect ratio of the rectangular channel on the flow structure and the pressure drop. The
required insulating properties of the coating have recently been discussed by Biihler &

Molokov (1993).

The results presented in this report were obtained by the authors in the period 1987-
1989, but have never been published previously (the results of the first part were presented at
the 13" Riga Conference on Magnetohydrodynamics, see Molokov, 1990). This work was
done for the former Soviet, presently Russian, concept of the slotted channel self-cooled
liquid-metal blanket (see Lavrentiev, 1990). Promising results for insulating materials for this
concept were obtained already at that time. Since the aspect ratio of the channels is arbitrary,

the results presented here are valid for any poloidal blanket concept.




2. The effect of a magnetic field inclination
2. 1 Problem formulation
Consider the steady flow of a viscous, conducting fluid along the x,-axis in an

insulating rectangular channel of constant cross-section in the presence of a strong, uniform,

transverse magnetic field

B® = By[sin fe, + cos e, |, 2.1)

which is inclined with respect to the z,-axis by the angle of 6 (figure 2.1).
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Fig. 2. 1 Flow in a rectangular channel in a skewed magnetic field
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The equations governing the flow in the magnetic field (2.1) are (e.g. Shercliff, 1965)

Ay, + By {sin 6 P, +cosé éb*] =- ﬁ, (2.2)
PVHy 7 x, pv
Ab, + pyoB, [sin e oz +cosf a)*:l =0, (2.3)

where v, = v, (., z.) is the fluid velocity, b, = b, ()., z.) is the induced magnetic field, v is
the kinematic viscosity, p is the density, O is the electrical conductivity of the fluid, p, is the
magnetic permeability, %, is the absolute value of the constant pressure gradient,

A, —./@a+0”7&2

The dimensionless variables are introduced by scaling the length, the fluid velocity, the

induced magnetic field and the pressure by the characteristic values of a, v, (average fluid

velocity), ,vy+/pvo and vpv, / a, respectively. Then the equations (2.2), (2.3) read

Av + M{sin 9% + cosé’%ﬂ =k, (2.4)

Ab + sinQQJrcosé?Q =0, (2.5)
7% &

where M = B,a,/o/pv is the Hartmann number. The notation of the dimensionless variables is

the same as that of dimensional ones omitting asterisks.
The boundary conditions are
v=0, b=0 at y = £1, (2.6)

v=0, b=0 at z = £/, 2.7

>

In addition, the average fluid velocity in the channel cross-section is constant, so that

- ;Iijdyj vy, 2)d = 1. 28)

-1 -l
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For the problem considered an exact solution exists (see Vatazhin, Liubimov & Regirer, 1970

and references there). However, the analysis of this solution at high M is difficult.

The equations (2.4) and (2.5) contain a small parameter M~ at the Laplacians, so that
the problem (2.4) - (2.7) is that of singular perturbations. In the present report an asymptotic

solution to this problem as M — oo is presented.

The problem of flow in an insulating rectangular channel in the magnetic field parallel
to a pair of walls (6 = 0 or %) was treated by Temperley (1976). It is well known that at the
walls parallel to the field side layers appear with the thickness O(M"” 2 ) The fluid velocity in

the layers is O(1). When the field inclination is small (8 = O(M™"'?) or 8 = % — 0(M7'?))
the flow structure is almost the same as for 0 = 0 and the side layers remain attached to the
side walls. If inclination is significant (tan 8 = O(J)) the side boundary layers separate from
the walls and become free layers. They occur inside the fluid along magnetic field lines, which

cross the channel corners. Thus the analysis will be carried out for the most interesting case

tan 6 = O(J) for three different situations
i) tan@ < I,

i) tan8 =17,

iii) tan @ > [,

12




2. 2 Asymptotic solution for tanf < I

It is convenient to introduce new independent variables & and 7 as follows

(2.9)
(2.10)

€ =ycosB - zsin O,

N=ysinB+zcosb.

The axis O1 is aligned with the magnetic field, while the axis O is in the transverse direction

(see figure 2.2).

S
7 =§tg8+{(cnd) / |

.

+(ain B)"1

p=-§ctg8- 5

-(Jsi,ne)"1

/ 7=§tﬁ9 -£(con8)™"

Fig. 2. 2 Channel cross-section and co-ordinate system O
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In new variables the problem (2.4) - (2.7) reads

A1v+Méb—:—k, A1b+MQ:O, (2.11)
on on
v=0, b=0 atn:—é‘coté?:t;, (2.12)
sin @
)
v=0, b=0 at n=~¢tan0+ ——, (2.13)
cos@

where A| = %&2 + %’72‘

According to the method of matched asymptotic expansions the flow region is divided

into the following subregions (see figure 2.3):

. (CO)
. (LO)
. (RO)

« (HCL), (HCU)

e (HLL), (HLU)

¢ (HRL), (HRU)

e (SL)

¢ (SR)

o (HSI)-(HS4)

the central core between the walls z = /,

the left core between the walls y=-1 and z=],

the right core between the walls z=-/ and y=1,

the Hartmann layers adjacent to the central core. They are at the walls

z=-/ and z=/ and have thickness O([cos 9|M"1),

the Hartmann layers adjacent to the left core. They are at the walls
y=-1 and z=I and have thickness O([sin 6|M_1) and 0(|cos GIM_I),

respectively,

the Hartmann layers adjacent to the right core. They are at the walls
z=-] and y=1 and have thickness O(]cos oM "1) and O<|sin GIM_I),

respectively,

free layer of thickness O(M Y 2) separating the central and the left

cores,

free layer of thickness O(M 2 ) separating the central and the

right cores,

Hartmann boundary layers adjacent to the layer SL,

14




e (HSS5)-(HS8) Hartmann boundary layers adjacent to the layer SR,

o (I1)-(I4) corner layers.
z
0(M™Yco4?8)  (HSE)
__714 I GLATh B A — (13)
(14) - (+52)
y
0(M"Ysin’6) oM Ysine)
V. ‘HRU)
(HS2)—
(12)
(r1) L
A A T AR (1% Do I
\(Hs8)
0(M™"/cos8)

Fig. 2. 3 Flow subregions at high Hartmann number for tan 6 < I

2. 2. 1 Central core (region CC)

Considering the limit of equations (2.11) as M — o at fixed values of § and 7 one

gets

P __k PFec _ g (2.14)

15




Throughout § 2 the subscripts of variables v and b denote the region where corresponding limit

equations are valid. The solution to the equations (2.14) is

vee = C,(8), be = =112+ Cy(8), 2.15)

where C,;(&) and C,(&) are arbitrary functions which are to be determined from the conditions

of matching with the Hartmann-layer solutions (regions HCL, HCU).

2. 2. 2 Hartmann boundary layer HCU

Introducing boundary layer variables

m =M n-gano- o] £ =g, (2.16)

cos @

stretches the vicinity of the wall z=/, Substituting (2.16) into (2.11) in the limit A — co gives

ﬁﬁf_(f + cos? Q@E_C_CL =0, (2.17)
on o
on an

The solutions to the equations (2.17), (2.18), which do not grow exponentially as A/ — c and

satisfy the boundary conditions

Il
S

Ve =0, bpey =10 at n, (2.19)

16




and conditions of matching with the functions v, b are
Vicy = ~bucy = C/(&)[1- exp(n, cos? 8)] (2.20)

The functions C,(€) and C,(&) are related by the expression

C,(¢€) = -Ak;[étanm ]-c,(g). (2.21)

cos 0

2. 2. 3 Hartmann boundary layer HCL

Introducing boundary layer variables

n, = M[n— Etan 6 + ], €, =¢, (2.22)

cos B

stretches the vicinity of the wall z=-/. Substituting (2.22) into (2.11) in the limit M — © one

gets the equations of the type (2.17), (2.18).

The solutions to these equations, which do not grow exponentially as M — c and

satisfy the boundary conditions

and conditions of matching with the functions v, b are

Vacr = by = MfisO[I - exp(—n2 cos’ 6)] (2.24)

17




The function C,(&) which is also determined from these conditions is

C,(é) = Mfise' (2.25)
Substituting (2.21), (2.25) into (2.15), (2.20) gives

Voo = MZSG’ boc = -A%[—n + Etan 6], (2.26)

Ve = —byeu = ESI_ME[I - exp(n, cos’ 6)] (2.27)

Using the expressions (2.24), (2.26), (2.27) one can construct the composite expansions v,

b, which are uniformly valid in regions CC, HCL, HCU (see Kevorkian & Cole, 1981)

K
Mcos @

Vo [1 - exp(n, cos’ 9) - exp(—n2 cos’ 9)], (2.28)

be = %["7 +&tan ] + Mﬁise[exp(m cos? 6) ~ exp(~1, cos 6)]. (2.29)

2. 2. 4 Left core (region LC)

The equations governing the flow in the left core are of the form (2.14). The solution to

these equations is

Ve = C3(§), byc = ——Al}m C4(§)- (2.30)

The arbitrary functions C;(&) and C,(&) are obtained from the conditions of matching with

the solutions in the Hartmann layers HLU and HLL.

18




2. 2. 5 Hartmann boundary layer HLU
The functions v;;,; and by, satisfy the equations (2.17), (2.18). The solution to these
equations is obtained in the same way as in the section 2.2.2 for the functions vy, and by,

so that

Vary = ~bpy = C3(5)[1 - exp(m cos’ 9)], (2.31)

C,(&) =-C,(€)+ %l:étan(ﬂ COISG]. (2.32)

2. 2. 6 Hartmann boundary layer HLL

The boundary-layer variables

My =M[n+§cot6+si;6], E, =€ (2.33)

stretch the vicinity of the wall y=-1. Substituting (2.33) into (2.11) in the limit M — oo gives

v : b
HIL | in? g —HLL - 0,

9V, | (2.34)
on; 2

éﬂbb;LL ysin? oL g (2.35)
o oy

The solutions to the equations (2.34) and (2.35), which do not grow exponentially as

M — oo and satisfy the boundary conditions

Vo, =0, by =0 at n; =0 (2.36)

19




and the conditions of matching with the functions v, -, b, are
Vi = by, = Cy(&)] 1~ exp(-n, sin? )]. 237)

From these conditions the function C;(§) is also determined, so that

_k A
Cy(E) = ZM[g(tan 0+ cot6) + 1+ —- 9]. (2.38)

The composite expansions v,, b, which are uniformly valid in the regions LC, HLU, HLL are

k 1 /
= % | Ktano L
v, 2M[§( an +Cow)+sin0+cos0jlx

x{l — exp(7, cos® 6) — exp(—7; sin® 6)}, (2.39)

2 1 /
b, = —| &tan @+ cot8) + +
L 2M['§( an@+cotb) + = cose}(

x{—l + exp(n1 cos? 9) - exp(—ﬂs sin” 9)} -

—%[n—&tanﬂ— ] (2.40)

cos 6

From (2.26), (2.30), (2.32) and (2.38) follows that on the line & = —cos 6+ /sin 6 which

separates the left and the right cores the following relations hold

ki
Vee = Ve = Moo’ (2.41)
boe = b0 = ——Ak}[n + sin 6 — /tan @sin 6], (2.42)

20




1. e. the core velocity and induced magnetic field are continuous along this line. This means that
the flow in the layer SL and adjacent Hartmann layers (HS1)-(HS4) are to be analysed only if

higher-order approximations are of interest.

The solutions for the right core and adjacent Hartmann layers are obtained in analogous

way.

2. 2. 7 Pressure gradient

The main term in the asymptotic expansion of the average velocity is

] feos 6-Isin 0 Etan B+1/cos O )i Isin B—cos 8 Etan 6+1/cos 0
Vav = - v d + — d Vv d’n =
41 Jisino-cos 0 J.Etan 0-ticoss C 1 21 J 1sin 0-cos eé —Ecot 6-1/sin 0 te
ki .
= e {cos 6 - Lsin 9] (2.43)
Mcos® 0 3
Substituting (2.43) into (2.8) gives
P M cos 6 (2.44)

1[1 - itan OJ
3

Since in the channel with insulating walls the layers SL and SR do not contribute to the main

term of the asymptotics of the pressure gradient, the formula (2.44) is valid for & — 0 as well.

Substituting (2.44) into (2.26), (2.30), (2.38) one gets

_r (2.45)

VCC = [ )
1-—tan @
3

21




3 cos 6 [

Vo = 7 &(tan B + cot ) + ——1— + / } (2.46)
21[1 ~3 tan GJ

sinf cos#B

The results of calculations using formulas (2.45) and (2.46) are shown in figure 2.4.

Fig. 2. 4 Core velocity for /=5 and tan 6 = 0. /.

2. 3 Asymptotic solution for tan 0 = [ -

As tan@ — /"' the layers SL and SR merge into a single layer S, and the central core

disappears (figure 2.5). In the limit tan@ — /™' the solution to the left core and adjacent

22




Hartmann layers and the formula (2.44) are still correct. Therefore in the case tan 6 = /™ one

can use the results of Sec. 2.2, Calculations with formula (2.46) are shown in figure 2.6.

2. 4 Asymptotic solution for tan 6 > I

In the case tan 6 > /™ the layer S splits into two, and the central core reappears (see
figure 2.7). However, in contrast to the case tan @ < ™/ this core is between the walls y = +1.
The solutions for the left core and adjacent Hartmann layers with undetermined & obtained in
Sec. 2.2 are still valid. The solutions for the central core and adjacent Hartmann layers are

obtained in the same way. Therefore we present only the final results

[
= 2.47
Vee I~ lcotf’ (2.47)
Isin 0
boc =———F——[n+ to (2.48
cc l—%cote[n &co ], { )
Isinf [ 1 [
Vo = ———————| £(tan 0 + cot 6) + —— + , 2.49
5 21— Leot 9]_6( an 6+ cot 6) sin @  cos 9] (2:49)
Ising [ 1 /
bjop =—————=|&(tanB - cotB) — 21— + , 2.50
e 2[1 - % cot 6] _6( an 6= cot 6) - 27 sin @  cos 6] (2.30)
k= Ml sin 0 (2 51)
I-Lcotf '

Variation of the pressure gradient with 6 for different values of / is shown in figure 2.8.
Calculations are done using combination of formulas (2.44) and (2.51) which covers the range

0° <0 <90°,

23




z
0(M ™ /cos28) (Hiﬂ
‘Q__LHLU“—"—__ — (13)
I (14) 7 /19— (Hs4)
| /|
(W / / |
. I 0(M sin28)
O(MVsir2@ f/ " //(s / __t_ b
HLL
Tl // / |
’ l Y
| vas |
) |
Iy / !
{ Yayavi (RE) |- (HRU)
7/ |
(Hs2) L | . (12)
(HS3) /
A A—— — +
(11) O(M-Veo26)
Fig. 2. 5 Flow subregions at high Hartmann number for tan 6 = I*j\r
1,5} ¢
1,5 | Ve It
\
0,5

z=-5

Fig. 2. 6 Core velocity for /=5 and tan8 = 0. 2.
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0(MVcos28) (HST)

S (H34)

0(M Ysin®8)
e

| (Heu)

_ (HSB)
— (HS7)

— (HRU)

10

50

I l 1 i

i i 1 1 ]
0 10°  920°  30° 40°  50° 60° 70° 80° 9Q°

6

Fig. 2. 8 Variation of the normalised pressure gradient with 8 for different values of /.
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3. Fully developed MHD flows in slotted channels

3. 1 Basic equations and boundary conditions

Consider the steady flow of a viscous, electrically conducting (o=const),
incompressible fluid in a rectangular channel |x|<w,|y|<a/2,|z<h/2 driven by the

pressure gradient dp/dx=const in a uniform, constant magnetic field B, = {0,0, B, }. In this
case the fluid velocity ¥ = v(y, z)e, and the induced electric current

1 dB 1 0B,

j (yaz)z_——j‘ia _].z(y,Z):_*'—
Y Lo Oz Ho Oy

depend on the transverse co-ordinates only and are determined from the equations, which in

the dimensionless form reads (e. g. Shercliff, 1965)

V2v+M§Zl=P, V?b +M§"l=o, (3.1)
& 124
f o 2 dp
where M = Bya_[— is the Hartmann number, and P = —— is the dimensionless pressure
pv pw, dx

gradient. The characteristic length a is the width of the channel, the characteristic velocity is

vy, and the characteristic value of the induced magnetic field (Bf’ e = bB,.*) is B = vyliy/opV.

The flow geometry in the dimensionless form is shown in figure 3.1.

26




1
Ml},

Fig. 3.1 Schematic diagram of flow in a slotted channel.
The system of equations (3.1) is to be solved under the following boundary conditions.

1. Non-slip conditions

v(+Y,2)=v(y,£%)=0, A=hla. (3.2)

2. The boundary conditions for the induced magnetic field b(y,z) are determined by the

electrical properties of the channel walls, If, for simplicity, one assumes that "linear

conductivities", i.e. the values o A, for opposite channel walls are equal, and the

wi''wi>
electrically conducting wall is thin, then these conditions can be written as follows

(Shercliff, 1956)

e at the side walls y = £, parallel to the external field

b, L0, o =Tuln (3.3)

3

oa

e atthe Hartmannwalls z=41/2
broLog o =Tul (3.4)
o ou

27



3. Consider now the boundary conditions in the case when an infinitely thin layer with a finite
Ohmic resistance separates the electrically conducting wall from the liquid metal. Such a
contact resistance may exist when the working fluid is Pb-Bi, for example, which creates a

stable oxide film on channel walls.

For simplicity, in the first approximation, the electric properties of this film are assumed
to be constant, so that the jump of the electric potential across the layer is directly

proportional to the electric current. While deriving the boundary conditions the following

model has been used (see figure 3.2). Imagine that there is a stagnant layer of width 4,
between the liquid metal and the wall having anisotrophic conductivity &, so that in the
direction perpendicular to the wall its conductivity is equal to o, and in the direction

parallel to the wall - to zero. It is clear, of course, that both the wall thickness 4, and 4,

are much smaller than the radius of curvature of the wall surface.

Fig. 3. 2 Schematic diagram of an electrically conducting wall

covered by an insulating coating
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Since the electric currents in the channel are two-dimensional, the electric potential ¢"

and the induced magnetic field B" in the wall (h, <n <h, +h,) are related by the

expressions
W W w W
18 __, A 13 _, A (3.5)
Hy n or Uy Or oh

Integrating the first equation in (3.5) across the wall and using the fact that B” is equal to

zero at the outer wall surface gives

hk +hw

LB (5 h) =0, 2 [ ¢ (e mn (3.6)
o or ’
k

The value ¢" (7, n) can be represented by the Taylor series expansion, which, taking into

& (z,h, +h,) =0, reads

account the condition

2w

¢" (v,n) = ¢" (7, h,) +%—”;%—(r, hk)[(n —n)* —2h,(n- hk)]+... . (3.7)

Substituting (3.7) into (3.6) and integrating the resulting equation one gets

0»,2¢w

BW(T hk) O_whw {¢w( hk ( hk)'l' }

Ho

Using further the thin-wall approximation which assumes that 4,, << 1 gives

1 w
—B/"(t,h,) = o,h, —ﬁ—¢—(r, h). (3.8)
Ho 2

At the same time for the intermediate contact layer (0 < 7 < &, ) the following expressions
hold
k k k ,
R 1 B op (3.9)

My O Ho OF on

29




From the first equation in (3.9) it follows that the function BF(t,n) is independent of the

normal co-ordinate », so that B,.k (7,0) = B,k(*r, h,). Therefore, by integrating the second

equation in (3.9) across the contact layer one gets

¢k(T> hk) - ¢k(,[’ 0) = _&_@(T’ O)
HoOy Or

Using continuity of both the electric potential and the magnetic field at the boundaries n=0

and n = h, gives

o a h, B
——é%(z’,O)+~;;-(T,hk)—- k arz'(z',O):O.

HoOy

From (3.8) follows that @(r, h) = 1
0%- /Uoo'whw

Bi(7,0). The value g—¢(r, 0) can also be
r

expressed in terms of the magnetic field B, taking into account the non-slip condition on

the boundary. The result is

op 1 B
- ’O =—-——= )Oa
ﬁr(r ) ,uocro”n(r )

so that
1 &B, 1 h, &*B,
—Zi(7,0)+ B(r,0)- *="ZL(7,0)=0.
A COR e (CORPCS S JC0

The last boundary condition may be rewritten in the dimensionless form, namely

b+c@—cr§2—f:0, (3.10)
n r
o,h, oh, . . .
where ¢ = , 1 =—=.Theratio 4, / 0, which appears in the parameter r can be
oa o.a

interpreted as the specific contact electrical resistance Ry, so that

(0
7‘=Rk—.
a
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It is evident that for =0 the equation (3.10) becomes the usual thin-wall boundary
condition, such as (3.3) and (3.4). For r — o and finite value of ¢ from (3.10) follows the

condition on the insulating wall, namely &b / 8r = 0.

3. 2 Semi-infinite slotted channel (1 — »)

In this section the results for the flow of an electrically conducting medium in a semi-

infinite MHD-channel (|x| < oo, |y] < 44, z> 0) are presented. For convenience the coordinate
system is shifted in the z-direction by -4 and then the limit A — oo is considered. The

geometry is shown in figure 3.3.
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Fig. 3.3 Schematic diagram of flow in a semi-infinite channel.
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It is convenient to choose the value

a dp

pv dx

as the characteristic velocity, which is proportional to the applied pressure gradient. Then the

system (3.1) can be written as follows

&

vy M2 - g V3 + M= =0. (.11
& &

2

Such a choice of v, leads to the following expression for the non-dimensional velocity

v(y,0)=1-4y> asz—
in the region where the MHD-interaction vanishes and the flow is of Poisseuille type.

Consider the simplest case when the walls at y = £ parallel to the external magnetic

field are insulating (CH = 0). The boundary condition for the electrical variables at the wall

z=0 is determined by the expression (3.10), which reads

The solution to this boundary-value problem can be easily obtained in terms of trigonometric

series with basic functions cos oy, where

o, = n(2k - 1), k=123...

>
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As a result one gets

v(y,z)=1-4y* + Z{A" exp[—(vk + %)z] + B, exp[—(vk - %)z]} cos oy,

k=1

(3.12)

b(y,z) = i {Ak exp[—(vk ‘+ %)z] - B, exp[—(vk - %)z]} cosa,y,
k=1

where

1+c¢ /| v —% +cra?
_16(—1)k 1t Y 5 IR

a,? l+c v, +c ra}

4

2

l+c ‘v +—M— +c ra?
16(—-1)k Lt Yk 5 L7y

a; l+c,v, +c,ra?

’ 2
Vk: O£,3+MA.

Bk:

From the solution obtained it follows that the length of the region in the z-direction, where the
moving medium interacts with the magnetic field, is proportional to M and is almost
independent of the electrical properties of the Hartmann wall, This is illustrated in figures 3.4
and 3.5, which show velocity distribution at the channel axis y=0. The velocity profiles v(0,z),
calculated with formula (3.12) for certain values of parameter M, are shown in figure 3.4 for
the case when the electric currents do not shortcut in the wall (¢, = 0 or # = «). Note that for
M =100 the velocity profiles become practically self-modeling with respect to the parameter

z/M.

The dependence of the velocity distribution on the value of the wall conductance ratio

¢, for r=0 and M=100 is shown in figure 3.5. It is seen that with increasing ¢, the values of
the velocity at the outer boundary of the Hartmann layer decrease, and for ¢, — oo this layer

almost disappears. Figure 3.6 shows velocity distribution v()) against the channel width for the
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case ¢, =oo at different distances from the Hartmann wall. This velocity distribution at any
cross-section of the semi-infinite channel and for arbitrary values of parameters M, ¢, and r
has non-monotonic nature, i.e. it has the maximum value at the channel axis and vanishes at the

channel walls.
In conclusion we should mention that the results obtained for the semi-infinite channel

are of practical importance only if the parameter M does not exceed the aspect ratio A = h / a

of the actual channel. In reality, usually, opposite is true.

hV(o,Z)

M >100

| | I [ | |

‘ |
0 R 04 06 z/M

.

Fig. 3.4 Fluid velocity in a semi-infinite channel at the channel axis y=0

for different values of the Hartmann number.
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Fig. 3.5 Fluid velocity in a semi-infinite channel at the channel axis y=0

for different values of the wall conductance ratio.
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Fig. 3. 6 Fluid velocity in a semi-infinite channel for different values of z.
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3. 3 MHD flow in a slotted channel with insulating coating

As was mentioned above (§ 3.1), the distributions of hydrodynamic and electrodynamic

fields in a slotted channel are described by the system of equations

v2v+M@:P, v+ oo (3.13)
o &

This system will be solved together with the following boundary conditions:

e the non-slip conditions

v(+1/2,z) =v(y,+1/2)=0, (3.13a)

e if walls parallel to the external magnetic field are insulating (c" = O) one gets
b(x1/2,z)=0, (3.13b)
o the electrical boundary condition with contact resistance (or insulating coating)

biclgi—clré—z—gzo atz=%4/2. (3.13c)

&

Choosing average velocity v,, as the characteristic velocity v, one gets the following

expression
; 12 A2
N J'dy Jv(y,z)dz =1 (3.13d)
-1/2 -Al2
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The last condition allows to determine the pressure gradient dp / dx uniquely. Indeed, from

the structure of the boundary value problem (3.13) it follows that its solution has the form

v(y,z) = Pv,(M,y,z), b(y,z)=Pb(M,y,z).

@. Hence from the

The functions v, and b, do not depend on the parameter P =

pwv, dx
condition (3.13d) one gets
PRI -
P(Maa')clar)z _i' J- dy JVJ(M,y,Z)dZ > (314)
-12 -A2

b _pv, P(M, A, c,,r) (3.15)

dx: a 0 s Fvs MY . ‘

The solution of the problem (3.13) is

cosa [ cosh( ——)z cosh(vk ——)z

v(y,z) = 4PZ L ky 2/ __p, 2 (3.16)

M)/I ( M)/l ’
cosh —|= cosh| v, —— | =
2/2 22
. sa J smh M)z sinh(vk—A—/j—)z

M A MNA[
cosh - cosh| v, - — | =
2 2 2/2

b(y,z) = 4P2

where

c,(vk - %) + (1 + cjra,‘f) tanh(vk - AZ/[_)%

2c,v, + (1 + c,rai)[tanh(vk + —A;)% + tanh( \ %) %]

4, =
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c,(vk + %) + (1+ c,roc,f)tanh(vk + %[)%

Bk = 15
2c,v, + (1 + c,roeﬁ)[tanh(vk + %)—)21 + tanh(vk - %) ;L]

2

v, = ,fozﬁ +M%, o, = n(2k - 1),

while the value of P, according to (3.14), is

-1

(v+3)5_, win-5)

o tanh| v, + — [— tanh| v, — — | —

P(M, 4,c,r) =8 | 1- 4 2/)2 _p 2)2 (3.17)
) 2 )2 k2 )2

If the magnetic field is absent (M=0), the velocity distribution in the channel and the
value of P are, of course, independent of electrical properties of the walls but depend on the

aspect ratio A. In this case from the formulas (3.16) follows

v(y,2) = 4P(0,4) Y (-1 <25 1—395}‘—2% , (3.18)
= Q, COShi—-
-1
© 2tanh
P(0,1) = - 82—17 - 2 . (3.182)
PRy’

In the table below certain values of function P(0,A) are presented.

P0,%) 284 13.73 12.8 12.5 1238 1232 1225 1216 12
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The effect of the magnetic field and the electrical properties of the walls on the integral

channel properties can be evaluated by the quantity

P(M, A, c,,r)

P(0,%) (3.19)

A(M’A‘:cbr) =

which shows the increase of the pressure gradient due to MHD phenomena. The formula for A

is

°° 2 tanh —*=
54h-
P ay akl
A= . 3.19
MY A A (3.192)
o tanh| v, + — | — tanhf v, — — | —
S Lli-4 _2)2 _p 2/2
o g M\ 4 k MY
k=1 Vk+7 E Vk——z— —2—

The values of A(M, A, ¢;, 1), calculated from (3.19a) are shown in Appendix A.

The dimensional pressure gradient can be calculated from the expression

d, v |
;5 = %vavxp(o, MAM, A,c,,r), | | (3.20)

where S=ah is the area of the channel cross-section. From this expression one gets the

hydraulic power per unit length, namely
Puyp = ApQ = pvivg,P(0, A)A(M, A c,,1). (3.21)
Note that the geometrical size of the channel does not enter the formula (3.21), but at the same

time it determines the values of the parameters M, ¢, and r. In addition the following relation

holds
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Consider the dependence of the integral flow quantities on the aspect ratio A at fixed

cross-sectional area. For simplicity we consider the case when the channel walls are insulating
(c, = 0). Then, at high values of M (ZM >> 1, \|M[22 >> 1), the expression for

A(M, 2,0,0) is approximated by the following formula with high order of accuracy, see

Vatazhin, Liubimov & Regirer, 1970 (this can be checked by using the exact values from the

table in Appendix A)
A= M ‘ (3.22)
o) 1- 2 0,852
M [MJ2A

Since S=ah=const, then a = \/S/A and

o So 1
M = aB, /—:B ’_.__5__
0 PV 0 llpV \/I)

so that the value of the pressure gradient (and pressure losses) in the first approximation is
inversely proportional to VA, i. e. it decreases with increasing aspect ratio. It is clear that the
presence of the electrically conducting walls may only strengthen this tendency.

Consider now the local flow quantities. The distribution of velocity v(0,z) on the axis

y=0 of the slotted channel with insulating walls (7L =20,¢c, = 0) is shown in figure 3.7. It is

seen that with increasing Hartmann number the Hartmann layer is formed at the walls
perpendicular to the magnetic field, and the velocity profile, starting from certain considerably
high values of M becomes more and more uniform, and v(0,z) — 1 as M — . At high values

of M (such that \/M/22 >> 1) the velocity distribution in such a channel with insulating walls

can be approximated by the following expressidn

,M 2y
cosh| J— =22
2A 0.852 /- cosh Mz
cosh M 1 cosh%;L
\/2,1 0.852 2

v(y,z) =
-2 o 8521/ﬁ
M M
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v(0,2)
\ M =0

”

500

600
1000
2000

10000 AN

Fig. 3.7 Fluid velocity in a rectangular slotted channel at the channel axis y=0 for different

values of the Hartmann number. The Hartmann wall is insulating (c1 =0).

6 (0,2)

0)5 [~

Fig. 3.8 The induced magnetic field in a rectangular slotted channel at the channel axis y=0 for

different values of the Hartmann number. The Hartmann wall is insulating (cl =0).
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The distribution of the induced magnetic field 5(0,z) in this channel at different values

of M is shown in figure 3.8. From this figure it is seen that with increasing Hartmann number

the distribution of the electric current density on the channel axis ( J,(0,2) = —gz?—) tends to

become uniform.

The velocity distribution v(0,z) in the channel with conducting Hartmann walls
(A=20,c , = 0.01, r = 0) is shown in figure 3.9. At high M the fluid velocity at the centre of
the channel becomes lower than one, so that the profile becomes of M-shape type. The flow
structure is shown in more detail in figure 3.10. The comparison of the velocity profiles in
channels with A = 20 and A = 50 shows that for equal values of the parameters M and ¢, the
M-shape of the profile appears for lower values of M and is more pronounced in the channel
with smaller aspect ratio. It is also shown in the same figures how the flow structure is
transformed with the increasing contact resistance » at the Hartmann walls. The appearance of
the contact resistance leads at first to evening of the velocity profile along the channel height,

and for higher values of r to the suppression of the M-shapeness of the profile.

V02)

T~ e
15F
1 -
05f

10000
1 1 | |
0 2 4 8 B Z 10

Fig. 3.9 Fluid velocity in a rectangular slotted channel at the channel axis y=0 for different

values of the Hartmann number. The Hartmann wall is electrically conducting .
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Fig. 3. 10 (a,b) Fluid velocity for different values of A, M, r and ¢,.
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Fig. 3.10 (¢,d) Fluid velocity for different values of A, M, r and ¢,.
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Fig. 3.10 (e,f') Fluid velocity for different values of A, M, r and ¢,.
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Fig. 3.10 (g,h) Fluid velocity for different values of A, M, r and ¢;.
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Fig. 3.11 The induced magnetic field in a rectangular slotted channel at the channel axis y=0

for different values of the Hartmann number. The Hartmann wall is electrically conducting.

The distribution of the induced magnetic field 5(0,z), calculated at certain value of M

for the channel with A = 20, ¢, = 107 and r=0, is shown in figure 3.11. Similar to the

channel with insulating walls the current density = &b / &z becomes uniform with increasing M,
and its magnitude monotonically increases. The values of b(0,10) are shown in this figure. With

increasing M the electric currents flowing in the Hartmann layer and in the wall redistribute,

and more current is conducted by the wall.

Finally we present the relation which allows one to estimate the value of A(M, A c I 0)
with high accuracy for the channel with conducting Hartmann walls, namely

2M(1 + e M)

AM, 4,¢,,0) =
(M 2,e, 0= B S Ay A+ 20)

2 ¢ AM 1.704 oM 2.4
X¢1———]1+ + . (3.23)
M 4(r+2e) | [2M+eM)  HA+2¢) V2M T A
A+2¢
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4, Conclusions

In poloidal concepts of self-cooled liquid-metal blankets for tokamak reactors the major
part of flow is fully developed or almost fully developed. If coolant duct walls are insulating,
the ducts have rectangular cross-section, and the magnetic field is parallel to one pair of the
duct walls, the bulk of the fluid flows with constant velocity (slug velocity profile). This leads
to desirable heat-transfer characteristics. Moreover, in insulating rectangular ducts two-
dimensional turbulence may be present at moderate values of the interaction parameter, which

may only improve these characteristics.

In the present work the influence of possible deviations from such ideal conditions are
estimated. The first part evaluates the effect of non-perfect alignment of the magnetic field with
duct walls, while the second part estimates the effect of non-perfect insulation of duct walls, if

insulating coatings are used for this purpose.

If the duct cross-section is square or close to it, inclination of the field does not affect
seriously both the pressure drop and heat transfer characteristics. The conclusion about the
latter is made on the analysis of the laminar velocity profiles presented here. For inclination
relevant to fusion applications in the range of 10° the deviation of the velocity profile from the
slug one is insignificant. In case of a square duct the increase of the pressure gradient due to
field inclination is negligible ( less than 10 per cent for any angle). The pressure drop in a
rectangular insulating channel is inversly proportional to channel aspect ratio / and by using
slotted channels may be reduced considerably. For very high values of /, however, the increase
of the pressure drop due to field inclination and change of the velocity profile, especially close
to the corners may lead to undesirable conditions. To avoid this the aspect ratio of the channel

should be chosen not very high. In any case the pressure drop in fully developed flow in a duct

with insulating walls is proportional to B, in contrast to a duct with conducting walls, where it

is proportional to BZ.
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If duct walls are non-perfectly isolated, the appearance of the contact resistance leads
at first to the evening of the velocity profile along the channel height and then to the
suppression of the M-shapeness. More details about this question are given by Biihler &

Molokov (1993).
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Appendix A

Values of function A(M, A,c;,7)

10

941
9.8
11.33
13.19
26.14
38.75
25.07
12.76
9.79
56.55
29.03
12.91
9.79

77.14
31.87

12.99 -

9.8

88.7
33.02
13.02

9.8

52

20

5.32

5.51

6.27

7.19

13.27

18.7
13.09
7.02
5.51

25.67
15.02
7.1
5.51

32.83
16.4
7.14
5.51

36.49
16.95
7.15
5.51

M=500

30

3.86

3.98

4.47

5.06

8.8

11.93
8.75
4.96
3.98

15.7
9.92
5
3.98

19.31
10.75
5.03
3.98

21.05
11.07
5.04
3.98

40

3.11

32

3.55

3.97

6.53

8.57
6.52
3.9
32

10.9
7.3
3.93
32

13
7.85
3.95

3.2

13.98

8.06

3.96
3.2

50

2.65
2.72
2.99
33
5.18

6.6
52
3.25
2.72

8.15
5.74
3.28
2.72

9.5
6.11

33
2.72

10
6.26
33
2.72




1074
5.107
1073
5.107°

1072

2.1072

4.1072

6-1072

10
100
1000

10
100
1000

10
100
1000

10
100
1000

10

17.75

19.32

25.44

32.77

81.64

125.7
72.1

30.32
19.24

182.7
83.54
30.86
19.25

242
91.3
31.15
19.25

272.5
943
31.95
19.25

53

20

9.73

10.53

13.63

17.3

40

58.54

37.54
16.36
10.5

79.92

43.35
16.65
10.5

99.62

47.28
16.8
10.5

108.9
48.8
16.85
10.5

M=1000

30

6.87

7.4

9.45

11.84

26

36.68

25.07

11.32
7.4

48.21

28.8

11.52
7.4

58.14

313

11.62
7.4

62.6

32.26

11.66
7.4

40

5.4

5.8

7.3

9.05

19

26.1
18.6
8.71
5.8

334

21.23
8.85
5.8

394

22.98
8.93
5.8

42
23.65
8.8
5.8

50

4.5

4.81

6

7.35

14.83

19.9
14.6
7.1

4.81

24.94
16.6
7.2
4.81

28.92
17.9
7.3
4.81

30.6
18.4
7.3

4.81




M=1500

A 10 20 30 40 50
¢ 4

0 26 14 9.83 7.66 6.33
1074 29.5 15.9 11.04 8.56 7.05
5.107 43.2 22.8 15.65 12 9.75
1073 59 .46 30.9 20.95 15.9 12.78
5.107 1645 7934 5086  36.84 28.6
1072 0 2542 116 7177 50.62  38.45
10 135.9 70.6 47.1 35 27.6

100 52,62 2827 19.5 14.9 12.1

1000 2924 15.8 11 8.55 7.04

2.1072 0 363.8 156 9297 6391 47.62
10 1562  80.96 53.8 39.8 31.2

100 5372  28.86 19.9 15.2 12.4

1000 29.26 15.8 11 8.55 7.04

4.1072 0 4701 1906 1102  74.21 54.5
10 1695 8772 5813  42.86 33.5

100 54.3 2917  29.17  20.12 15.4

1000 29.27 15.8 11 8.55 7.04
61072 0 523 2063 1176 7854  57.32
10 174.5 90.3 59.8 44 34 .4

100 545 2928  20.19 15.4 12.5

1000 29.27 15.8 11 8.55 7.04
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1074
5.107
1073
5.107

1072

2:1072

4.1072

6-1072

10
100
1000

10
100
1000

10
100
1000

10
100
1000

10

34.14

40.4

64.6

93.2

273

420.1
213.7
79.1
39.84

592.2
243.8

80.8
39.87

752.4
263
125

39.88

828.6
270.2
82.06
39.89

55

20

18.35

21.57

33.87

48.1

130.1

189.1
110.9
42.42
214

250.6
126.3
43.38
214

301.6
136.1
81.74
214

324
139.7
44.06
2141

M=2000

30

12.76

14.92

23.08

32.34

82.7

116
73.9
29.23
14.83

148.2
83.8
29.9
14.84

173.3
90.1

43.88
14.84

183.9
92.45
30.36
14.85

40

9.88

115

17.57

24.35

59.5

81.26
54.8
22.37
11.45

101.3
61.93
22.87
11.46

116.3
66.41
30.24
11.47

122.4
68.1

23.23
11.47

50

8.13

9.42

14.2

19.5

45.9

61.42
43.2

18.14
9.39

75.17

48.63

18.54
94

85.1
52
18.76
9.4

89.1
53.3
18.8
94




1074
5.107
1073
5.107

1072

2.1072

4.1072

6-1072

10
100
1000

10
100
1000

10
100
1000

10
100
1000

10

42.26

52

89.7

1334

405.7

620
304
109.2
51

862.7
344
111.7
51

1081
370
113

51

1182
379

113.5
51.1

20

226

27.64

46.75

68.65

191.5

276.3
157.6
58.56
27.3

361.5
178.3
59.93
273

430
191.3
60.65
27.3

4594

56

196.1
60.9
27.3

M=2500

30

15.66
19
31.72
45.97
121

168.3
104.9
40.34
18.86

212.7
118.3
41.29
18.87

246.2
126.6
41.79
18.88

260
129.7
41.96
18.88

40

12.1

14.63

24.05

34.5

86.7

117.4
77.7
30.9
14.52

144.8
87.3
31.6
14.53

164.7

93.3
32

18.88

172.7
95.45
32.1

14.34

50

9.92
11.94
19.4
27.55
66.6

88.41
61.22
25
11.88

107.1
68.5
25.6
11.88

120.2
73
259
11.89

125.5
74.68
26
11.89




8.1072

0.1

0.5

10

0
10
100
1000

10
100
1000

10
100
1000

10
100
1000

10
100
1000

10
100
1000

10

96.1
33.63
13.03

9.8

101
34
13.04
9.8

122.7

35.33

13.07
9.8

126.2
35.5

13.07
9.8

129.1

35.65

13.08
9.8

129.4

35.67
13.08
9.8

20

38.71
17.24
7.16
551

40.2
17.43
7.16
5.51

46.02
18.06
7.18

5.51

46.89
18.14
7.18
5.51

47.61
18.21
7.18

5.51

47.7
18.22
7.18
5.51

57

M=500

30

22.08
11.25
5.05
3.98

27.76
11.36
5.05

3.98

25.32
11.73
5.06
3.98

25.69
11.78
5.06
3.98

26
11.82
5.06
3.98

26.03
11.82
5.06

3.98

40

14.54
8.17

3.96
3.2

14.91

8.24

3.96
3.2

16.27

8.48

3.97
32

16.46
8.52

3.97
3.2

16.62

8.54

3.97
3.2

16.64

8.55

3.97
3.2

50

10.4
6.34
3.3

2.72

10.7

6.39
3.3

2.72

11.5
6.56
3.31
2.72

11.6
6.58
3.31
2.72

11.7
6.6

33

2.72

11.7
6.65
3.31
2.72




8.1072

0.1

0.5

10

0
10
100
1000

10
100
1000

10
100
1000

10
100
1000

10
100
1000

10
100
1000

10

291
95.9
313
19.25

303.6
96.88
31.33
19.25

352.7
100
31.43
19.25

360
101
31.44
19.25

366.2
101
31.46
19.25

367
101
31.46
19.25

58

20

114.3
49.6

16.88
10.5

117.8

50.11
16.9

10.5

131
51.8
16.95
10.5

133
52
16.95
10.5

134.4
52.2
16.96
10.5

134.4

52.22
16.96
10.5

M=1000

30

65.13

32.77

11.68
7.4

66.77
33.1

11.69
7.4

72.68

34.15

11.72
7.4

73.5

343

11.73
7.4

74.2

344

11.73
7.4

74.26

34.42

11.73
7.4

40

43.46
24
8.97
5.8

44 .4
2423
8.98
5.8

47.72
24.97
9
5.8

48.17

25.06
9.01
5.8

48.55
25.14
9.01
5.8

48.6

25.15

9.01
5.8

50

31.56
18.6
7.3
4.81

32.15
18.8
7.31
4.81

34.26
19.3
7.33
4.82

34.54
19.4
7.33
4.82

34.77
19.5
7.34
4.82

34.8
19.5
7.34
4.82




M=1500

A 10 20 30 40 50
¢ ¥

8-1072 0 554 215.2 121.7 80.92 58.86
10 177.2 91.64 60.64 44.6 349

100 54.6 29.34 20.23 15.5 12.6

1000 29.27 15.8 11 8.55 7.04
0.1 0 574.6 220.9 1244 82.43 59.83
10 178.8 92.48 61.48 45 35.2
100 ‘ 54.66 29.37 20.25 15.5 12.6
1000 29.27 15.8 11 8.55 7.04
0.5 0 652.9 241.7 133.7 87.7 63.2
10 184.3 95.27 62.27 46.3 36.1
100 54 .85 29.48 20.32 15.55 12.6
1000 29.27 15.8 11 8.55 7.04
1 0 664.3 244.6 135 88.4 63.64
10 185 95.63 63.2 46 .4 36.2
100 54.88 29.49 20.33 15.6 12.6
1000 29.27 15.8 11 8.55 7.04

5 0 673.7 247 136 89 64
10 185.6 95.93 63.4 46.6 36.3
100 54.9 29.5 20.34 15.6 12.6
1000 29.28 15.8 11 8.55 7.04
10 0 674.9 2473 136.2 89.1 64.06
10 185.7 95.97 63.4 46.6 36.3
100 549 29.5 20.34 15.6 12.6

1000 29.28 15.8 11 8.55 7.04

59




8-1072

0.1

0.5

10

0
10
100
1000

10
100
1000

10
100
1000

10
100
1000

10
100
1000

10
100
1000

10

872.6
274
82.22
39.89

901.7
276
82.32
39.9

1010
284

82.63
39.9

1025
285

82.67
39.9

1038
286
82.7
39.9

1040
286
82.7
39.9

60

20

336.5
141.6
44.14
21.41

344.5
142.8
44.2

2141

373.3
146.8
44 37
2141

377.3
147.3
4439
21.41

380.5
147.7
4441
2141

380.9
147.7
4441
2141

M=2000

30

189.7
93.68
30.42
14.85

19.34
94.44
30.45
14.85

206.4
97
30.58
14.85

208.1
97.3
30.59
14.85

209.5
97.5
30.6
14.85

209.7
97.6
30.6
14.85

40

125.7
68.96
23.28
11.47

127.7
69.5
233
11.47

135.1
71.3
234
11.47

136.1
71.5
234
11.47

136.9
71.7
234
11.47

137
71.7
234
11.47

50

91.25

53.94

18.86
94

92.6

54.35

18.89
94

97.24
55.7
19
94

97.86
55.86
19
9.4

98.34
56
19
9.4

98.42
56
19
9.4




8.1072

0.1

0.5

10

0
10
100
1000

10
100
1000

10
100
1000

10
100
1000

10
100
1000

10
100
1000

10

1239
384

113.7
51.1

1277
387

113.8
51.1

1416
397

114.2
51.1

1436
398

114.3
51.1

1452
399.5
114.3
51.1

1454

399.6
114.4
51.1

61

20

475.6
198.6
61.02
27.3

486
200.1
61.1
273

522.8
205.2
61.33
27.3

527.8
205.9
61.37
273

532
206.4
61.39

273

5324
206.5
61.39
273

M=2500

30

267.6
131.3

42.05
18.9

2723

132.3
42.1

18.9

2889
135.5
42.27

18.9

291.1
136
42.29
18.9

292.9
136.3

42.31
18.9

293.1
136.3
42.31

18.9

40

177
96.6
32.2
14.54

180
97.3
322
14.55

189.1
99.6
323
14.55

190

100
324
14.55

191
100.1
324
14.55

191.5
100.2
324
14.55

50

128.3
75.53
26.1

11.89

130
76.1
26.1
11.89

136
77.8
26.2
11.89

136.7
78
26.2
11.89

137.4
78.2
26.25
11.89

137.5
78.23
26.25
11.89
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