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Fracture mechanical treatment of bridging stresses in ceramies 

Abstract 

Fallure of ceramic materials orten starts from cracks which can originale at pores, inclusions or 

can be generated during surface treatment. Fracture occurs when the stress intensity factor of 

the most serious crack in a component reaches a critical value K,c, the fracture toughness of the 

material. ln case of ideal brittle materials the fracture toughness is Independent of the crack ex­

tension and, consequently, identical with the stress intensity factor K10 necessary for the onset of 

stable crack growth. 

lt is a well-known fact that failure of several ceramies is influenced by an increasing crack­

growth resistance curve. Several effects are responsible for this behaviour: Crack-border interac­

tions in the wake of the advancing crack, residual stress fields in the crack region of transforma­

tion-toughened ceramics, the generation of a micro-crack zone ahead the crack tip and crack 

branching. 

The effect of increasing crack resistance has consequences on many properlies of ceramic ma­

terials. ln this report the authors discuss the some aspects of R-curve behaviour as the repre­

sentation by stress intensity factors or energies and the influence on the compliance using the 

bridging stress model. 

Bruchmechanische Behandlung von Brückenspannungen in Keramiken 

Kurzfassung 

Das Versagen keramischer Werkstoffe geht häufig von Rissen aus, die an Poren und Einschlüs­

sen entstehen oder bei der Oberflächenbearbeitung verursacht werden. 

Versagen einer keramischen Komponente tritt dann auf, wenn für den gefährlichsten Riß der kri­

tische Spannungsintensitätsfaktor K1c erreicht wird. Im Falle ideal spröder Materialien ist die Riß­

zähigkeit K1c unabhängig von der Rißverlängerung und damit stets gleich dem zur Einleitung der 

Rißverlängerung notwendigen spezifischen Spannungsintensitätsfaktor K1o. Es gibt nun eine Rei­

he von Keramiken bei denen der Rißwiderstand mit zunehmender Rißverlängerung anwächst. 

Mehrere Effekte können für diese Erscheinung verantwortlich gemacht werden: Rißflankenverha­

kungen im Bereich hinter der Rißspitze, Spannungsfelder im Rißspitzenbereich aufgrund von 

Phasenumwandlungen in umwandlungsverstärkten Keramiken, die Entwicklung einer Mikrorißzo­

ne im Rißspitzenbereich sowie der Effekt der Rißverzweigung. Der Anstieg des Rißwiderstands 

hat Konsequenzen auf eine Reihe von Eigenschaften der Keramiken. ln dieser Arbeit soll über 

die Darstellung der R-Kurven in Form von Spannungsintensitätsfaktoren sowie der Energiefrei­

setzungsrate und über den Einfluß der R-Kurve auf die Probennachgiebigkeit berichtet werden. 
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1.0 lntroduction 

Several ceramic materials show R-curve effects, i.e. an increase in crack-growth resistance with 
increasing crack depth. Different effects are responsible for this behaviour. ln coarse-grained 
alumina the crack growth resistance increases with increasing crack extension due to friction­
like crack-border interactions in the wake of the advancing crack. The correlated "bridging 
stresses" are extremely non-linear and their range of extension is not negligible compared with 
the crack length. The consequences of the bridging interactions on fracture-mechanical consider­
ations may become very serious. Same special questions are: 

What is the meaning of the compliance in presence of non-linear bridging interactions? 

ls crack-length measurement by means of compliance correct? 

Does the lrwin formula between the energy release rate G1 or the J-integral and the stress 
intensity factor K1 

J = G = Kl/E' (1.1) 

with E' = E/(1 - v2), E = Young's modulus, and v = Poisson ratio, also hold in the presence of 
an R-curve effect? 

ls the crack growth resistance R related to the applied stress intensity factor K, appl by the 
simple relation 

(1.2) 

as usual in linear-elastic fracture mechanics? 

The consequences of specially chosen bridging-stress relations were studied in the literature. ln 
this investigation the questions mentioned before will be treated as much as possible analyt­
ically, and special bridging relations will be used only to illustrate the effects. 

lntroduction 





2.0 Basic relations 

Let us consider a specimen {fig.1) of width W, thickness B, and length 2L which contains a crack 
of depth a0 with completely separated crack surfaces (produced, e.g., by a very narrow saw-cut 
with negligible notch-root radius). Starting from this initial crack size, a crack may propagate 
under increasing external Ioads, and in case of coarse-grained materials bridging interactions 
occur which result in so-called bridging stresses depending on the actual crack opening dis­
placements b. 

Dappl 

1 
2L 

+ .................. ~ .................. 1 
................... + 

6appl 

Figure 1. . Geometrical data of an edge-cracked plate under tensile Ioad. 

The externally applied Ioad P is related to aappl by 

p = aappt WB (2.1) 

where B is the thickness of the plate. 
For the description of crack opening and crack propagation in terms of energy we consider a 
crack of total length a with crack surface interactions in the range ao < x < a in the unloaded 
state {b = 0). 
The specimen is exposed to increasing externally applied stresses aappl at the free ends of the 
specimen. For reasons of simplicity this stress is assumed to be constant, i.e. independent of the 
coordinate x. The crack-opening displacement field can be calculated by use of the fracture-me­
chanical weight-function method. This follows from two important relations {{2.2) and {2.3)). 
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Rice [1] has shown that the weight function can be derived from the crack opening displace­
ments of any reference Ioad case (subscript r) and the related reference stress intensity factor 

E' a 
h1(x, a) = -K -;- or(x, a) 

Ir ua 
(2.2) 

with E' = E/(1- v2) for plane strain, E=Young's modulus, and v= Poisson's ratio. A simple deri­
vation of this important relation is given in Appendix A.2. K1 is the mode-1 stress intensity factor, 
which can be computed for the stress distribution a, in the uncracked component perpendicular 
to the crack using Bückner's relation [2] 

a 

K1r= 1 ar(x)h(x,a)dx (2.3) 

The reference stress distribution can be any arbitrary stress distribution. Basedon eqs.(2.2) and 
(2.3) the crack opening displacements result by integration [3] 

1 fafa o(x) = E' h(a',x) h(a', x') a(x') da'dx' 
0 max(x,x') 

(2.4) 

where the index r in the stress is omitted. The detailed calculations are outlined in Appendix 
A.3. Equation (2.4) can also be derived from the equivalent procedure developed by Paris [ 4], 
[5] which is based on Castigliano's theorem. Equation (2.4) was also sucessfully applied by Cox 
and Marshall [6]. lf a special stress relation is given, the solution of the integral equation (2.4) 
can be determined by successive approximation or other strategies which are weil known in nu­
merical mathematics. 
ln eq.(2.4) x is the coordinate where the displacement is computed and x' is the location where 
the stress a acts. lf the applied stress aappl as weil as bridging stresses ab, act on the crack 
surfaces, the total stress is 

a total = a appl + a br (2.5) 

and the total crack opening displacements result as 

a a 

Ototal (x) = Oappl + obr = i' J J h(a',x) h(a', x') [aappl(x') + abr(x')] da'dx' (2.6) 
0 max(x,x') 

where Oappl is the displacement caused by the applied stress. aapp1(x') is the stress in the un­
cracked component at the location of the crack. For the plate under uniform tension aappl(x) is 
identical with the externally applied stress. Note that Ototal is the crack opening displacement of 
one crack border, whereas oLP is the total Ioad point displacement (see fig.2). As an example of 
application the integral equation (2.6) has been solved numerically for an exponential bridging 
relation as given by eqs.(A1) and (A3) in Appendix A.1. The displacements are plotted in fig.2. 
The displacements caused by the bridging stresses are negative, it should be noted that in fig.2 
the absolute values are shown. Figure 3 represents the distribution of the bridging stresses. 
Far away from the crack, the crack opening displacements Ototal Iead to displacements oLP which 
will be called the "loading-point displacements". lt holds for tensile loading 

a 
aappl 2 J 

oLP = -E- 2L + W Ototar(x) dx 
0 

(2.7) 
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Figure 2. Profile of the crack faces in the region of bridging interactions, computed with the bridging 
stress relation eq.(A 1 + A3) for an applied tensile stress crapp!/cro = 0.17 and a0/W = 0.5 (bridging dis­
placements in absolute values). 

A similar relation for bending is derived in Appendix A.4. The first term in (2.7) represents the 
displacements of the uncracked structure in pure tension and the second term is the contribution 
by the crack. lf a minimum length of L > W is ensured the stress intensity factor and btotat are 
independent of L. ln allfurther equations the first term in (2.7) is omitted. 
Under loading conditions different from pure tension kappt=/= constant) (2.7) has tobe replaced by 

.9oo .550 .600 

x/W 
.650 .700 

Figure 3. Bridging-stress distribution computed with the bridging-stress relation eq.(A 1 + A3) for an ap-
plied tensile stress crappt/cr0 =0.17, a0/W=0.5. 
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a 

P dbLP = + 28 J a appl dbtotal(x) dx 
0 

(2.8) 

The total stress intensity factor which is responsible for the stress state at the crack tip results 
by superposition of the applied stress intensity factor K1 appl and the bridging stress intensity fac­
tor K1br as 

with 

Ktotal = K, tip = K, appl + Klbr 

a 

K, appl = J a app1(x) h(x,a) dx 
0 

a 

K/br = J abr(x) h(x,a) dx 
0 

(2.9) 

(2.3a) 

(2.3b) 

The work Wappl due to the crack done by the stresses aappl during crack opening up to the dis­
placements btota1(x) is given by 

J
a Jototal 

Wappl = 28 dx a' appl db' total 
0 0 

(2.10) 

where the prime denotes the integration variable. 
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3.0 Energy considerations 

3.1 Definition of the crack driving force 

3.1.1 linear-elastic material behaviour 

ln case of linear-elastic fracture mechanics the energy release rate G - called the crack driving 
force - is defined as the virtual change of potential energy oUp available for a virtual crack-area 
increment Boa and is directly related to the stress intensity factor by 

K/ 
E' (3.1) 

ln order to separate loading quantities which are related to virtual crack extensions from energy 
consumptions during real crack extensions we will use in this section as a special notation for 
the virtual crack changes the symbol ö. 
The potential energy consists on the virtual work oA done by the external Ioad and the virtual 
change of the elastically stored energy in the component oU: 

(3.2) 

ln the sense of eq.(3.1) G is a loading quantity (not a material property) and up to now not re­
lated to real crack extensions da. ln case of a real crack extension the energy dWcrack is neces­
sary to create the new crack increment Bda. The energy per crack area increment defines the 
material property called "crack resistance" R 

1 dWcrack 
R = -B ---=d.:....:a ~ 

The condition for maintaining crack propagation is expressed by 

G=R 

(3.3) 

(3.4) 

The left-hand side describes the available energy and the right-hand side the necessary energy. 
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Figure 4. . Energy portians for specimens with crack lengths a and a + 5a: a) elastically stored energy for 
a crack of length a; b) elastically stored energy for a crack of length a + 5a; c) work increment 
done by the external Ioad; d) increment of potential energy. 

3.1.2 Nonlinear-elastic material behaviour 

lf nonlinear material behaviour plays a role - this is the case in the presence of strongly nonline­
ar bridging stresses - the relations of linear-elastic fracture mechanics have to be replaced by 
the J-integral concept. ln order to apply J-integral we have to consider that the energy stored in 
the bridges Wb, is elastically stored energy and therefore completely reversible. ln this state it is 
not of importance what the real material response during unloading would be as lang as no real 
displacement reversals occur. Here it should be emphasized once more that the J-integral is a 
loading quantity and not infiuenced by real material behaviour. Under these circumstances the 
virtual change of potential energy is 

ÖUp = öA- ÖWbr- öU , ÖA = P ö(5LP (3.5) 

The virtual energy contributions are illustrated in fig.4. For nonlinear elastic material behaviour 
the loading quantity is 

8 



a 

a+~a 

Figure 5. . Energy increments according to eqs.(3.9) and (3.10). 

ÖUp 
J= -­

Boa 

and by definition G = J = Kf/E1 for the linear elastic case. 
From eq.(3.1) and (3.5) it results for the J-integral [7] 

~P( OJI ) 
J = Jo Ö~P P' dPI 

and by using eq.(2.7) 

I
Ötotal 

a Ö I u appl 
J = - 2.t dx ( öa ) , d<5

1

totat 

O Ö total 

I
(fapp/ 

a Öb
1
total 1 

J ~ 2.[, dx ( öa ) •• _,d• •ppl 

0 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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Figure 5 shows the related potential energy dUp. 

3.1.3 Stress intensity factors, J-integral and energy release rate 

lf we introduce btotal = bappl + bbr in eq.(3.10) 

and applying eq.(2.2) in the form 

obappl Kapp! h(x,a) 

oa E' 

we obtain 

a Iaappl 
h(x a) a appl a ob' 

J ~ 2 I ---f,- dx I, K' appt da' appl + 2 J, dx ( 5:' ) ' da' app/ 

0 
0 

a appl 

Since 

K 
K' lappl ' - a I appl - a appl appl 

the first term in (3.13) can be evaluated 

a Iaappl 
h(x,a) a Ob' br ' 

J ~ I -E-'- aapp/Kiappldx + 2 Ia dx ( ~) ' da appl 
0 a~ 

0 

and after introduction of eq.(2.3) into the first term 

I

aappl 

1 2 a ob' br I 

J = f'Klappl+ 2J
0 

dx ( ~) ' da appl 
a appl 

0 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Since the second term in eq.(3.16) will vanish only in the case of cracks without bridging stress­
es we can conclude that the lrwin formula - written in terms of the applied stress intensity factor 
Krapp/- is not generallyvalid 
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J=/= 

2 
Klapp/ 

E' 
(3.17) 

This inequality holds for the general case without special assumptions made on the bridging 
stresses. 

3.1.4 Special assumption on bridging stresses 

Now a special assumption is made on the bridging stresses. lt is physically meaningful to as­
sume that the bridging stresses are only dependent on the actual crack opening diplacements 
( c5total) 

(3.18) 

and, for instance, not explicitly on the x-coordinate. Furthermore, it is assumed that this stress 
vs. displacement relation is a unique law for monotonically increasing displacements. The ques­
tion whether or not the bridging-stress relation may change in unloading situations, i.e. in situ­
ations where the displacements can decrease, is without importance to the present consider­
ations, since in controlled fracture tests the crack opening displacements increase monotonocal­
ly during crack extension. 
This fact can easily be concluded from the weight function relation (2.2). ln controlled fracture 
tests crack propagation occurs at Ktota1=K1tip=K10. From (2.2) we conclude that for any given val­
ue of x - since h(x,a) >0 - for all 0::;; x < a 

öc5 I K total = ~ h(x,a) > 0 
Öa Ktotal = KlO E 

i.e. a monotonic increase in COD with increasing crack length. 
lntroducing eq.(2.5) into (3.9) gives 

J = _ 2Jadxiötotal[( Öa'total ) _ ( ~) Jdc5' 
öa öa total 

O 0
1 total 01 total 

0 

(3.19) 

(3.20) 

lf a'br is a unique function of c5'total. one can write for the second term in brackets (since c5'total is 
kept constant) 

( ö~:r) I = 0 
0 total 

(3.21) 

and (3.20) reduces to 

I
ötotal 

a Öa' total 
J = - 2 { dx ( öa ) I do' total 

O Ö total 

(3.22) 
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Afterintegration by parts (see fig.5 and replace the vertical axis by atotal) this reads 

oo'total ) oa da' total 
a'total 

(3.23) 

and with eq.(2.2), written in the form 

OOtotal Ktotal h(x,a) 

oa E' 
(3.24) 

we obtain 

a I (jtotal K' 
total , 

J = 2 J dx -E-'- h(x,a) da total 
0 0 

(3.25) 

Changing the order of integration results in 

f
Ktotal K2 

2 , 1 total 
J = f1 K total dK total = E' 

0 

G (3.26) 

Since during crack propagation the crack-tip stress intensity factor equals K1o, we finally can 
write 

(3.27) 

The authors confess that this relation seems nearly self-evident. But it should be taken into ac­
count that in cantrast to the original derivation here nonlinear loaded surfaces are considered. 

3.2 The crack resistance 

3.2.1 Energy balance during crack propagation 

During stable crack propagation the externally applied force P performs the mechanical work A, 
which is identical with the area under the Ioad-dispiacement curve 

(3.29) 

This energy equals the sum of 

• the elastically stored energy in the specimen U, 

the energy necessary to create a new fracture surface Wcrack, and 
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Figure 6. Global energies for a cracked component under tesion; Load and loading-point displacement 

i.e. 

normalised on the values at the onset of stable crack extension (*); calculated with eqs.(A 1) and 
(A2) for a0/W=0.5 

the energy deposit in the bridges Wb,, 

energy/A• 

5 

A U + Wcrack + Wbr 

.... 
A ...... .... 

",."".· 

u 

;' 
... "" ..... 

-­_ .... ---~ _ .... 

W ....,...",.",..."..",. ............. ... 
I 
crack______ -----··<"w 1 
-- --- b ...... ~;...oo..... _ ... _ ........... --- r 

~0--- ---------~~0 
.70 

a/W 

(3.30) 

Figure 7. . Energy contributions during stable crack propagation; A"':::: P"'c5"'/2, loading case: tension. 
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Figure 8. . Energy rates according to fig.7. 

The energy necessary to create a new crack surface is 

and the energy consumed in the bridges is given by 

J
a J Ototal,c 

W br = - 28 dx a' br do' total 
0 0 

(3.31) 

(3.32) 

in the special case of the exponential relation (A 1 + A2) the inner integral can be evaluated and it 
results 

(3.33) 

The elastically stored energy U in the specimen is given by (see fig.6) 

(3.34) 

in a simple way from the applied Ioad and the loading point displacement. The different energy 
contributions are plotted in fig.7 versus the crack extension ~a =a- ao for tension as the loading 
case. For the first numerical calculations represented in figs.6-8 a bridging relation 
abr = ao exp(- ofoo) with a0 = K10/JW and o0 = 5/6 · (a0W/E') was used. Whilst the "bridging ener­
gy" Wbr and the crack surface energy Wcrack increase monotonically with crack extension, the 
elastic energy seems to reach a saturation. The incremental energies dA/da, dWbr/da, dWcrack/da, 
and dU/da are plotted in fig.8. dU/da may change its sign at afW>0.7. 
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ln the linear-elastic case with unloaded crack faces the crack resistance was defined by the en­
ergy that has to be provided to create new crack surface. ln the presence of bridging stresses an 
additional energy has to be provided to overcome the attracting bridging stresses. The energy 
balance now reads 

dA dU dWbr dW ------
da da da da 

or 

G= 
dUP dW = R* 
Bda B da 

The changing energy in the bridges then is part of the available energy for crack extension. 
Alternatively it can be written 

dA dU dWbr dW 
B da - B da = B da + B da = R 

(3.35) 

(3.36) 

(3.37) 

Then the changing energy in the bridges is part of the energy consumption and therefore in­
cluded in R. Consequently, the crack growth resistance now reads 

0 
'::L.-
......... 

c.. 
a. c 

'::L. 

2 
R = _1 ( dWcrack + dWbr ) = Kto 1 dWbr 

B da da E' + B~ 

2 

~0 .50 

II R 

- - - - - - - -- - R* 

.60 

a/W 
.70 .80 

(3.38) 

Figure 9. . Applied stress intensity factor K1 appt and crack resistance R (expressed in terms of stress inten­
sity factor) for the tensile loading case, computed with the bridging stress relation 
ITbr = ao exp(- b/bo); R*: eq.(3.36), R: eq.(3.38). 
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3.2.2 The crack resistance and the applied stress intensity factor 

lt can easily be shown that the applied stress intensity factor K 1appl and the crack resistance R 
cannot be converted by eq.(1.2) in the general case. For the further conclusions we consider the 
tensile loading case. We express the term Krappi/E' by definition of the weight function in the 
form 

E' a 
h(x,a) = "'a bapp1(x,a) 

Klapp/ u 
(3.39) 

as 

1 2 K, appl Ja I a fJ(jappl 
E'Kiappl = E' oh(x,a)aappldx = o aappl fJa dx (3.40) 

lntroducing eq.(2.7) yields 

(3.41) 

The loading point displacements bLP,appl can be written 

(jLP,app/ = (jLP,total - (jLP,br = c5LP,tota/ + jc5LP,bri (3.42) 

and consequently 

1 2 _1_ p fJc5LP,total 
E' K, appl =I= 28 fJa 

(3.43) 

ln cases where the bridging zone increases with increasing crack length (before a saturation in 
R is reched) we will find 

1 2 
E'Kiappl > R (3.44) 

As an example the applied stress intensity factor K 1 appl and the crack resistance R have been 
computed numerically for a component under tensile loading containing a crack of initial length 
afW=0.5. The results of Rare formally expressed in terms of stress intensity factors and plotted 
in fig.9. The disagreement of the two quantities is clearly obvious. 
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3.3 Application of a Dugdale model by Evans and McMeeking 

ln a simple model Evans and McMeeking [9] considered the conversion of energy release rates 
in stress intensity factors in a special model. They studied a small scale bridging zone in a brit­
tle material reinforced by fibers (see fig.10). ln the following the nomenclature of [9] will be 
used. The crack surface stresses transferred by the fibres are considered to be homogeneously 
distributed in the bridged crack area. The maximum size of the bridging zone is Dc where the 
subscript refers to the critical situation at the crack tip, i.e. K, 1;p =K,o. 
From the J-integral around the traction zone the critical value of the change in energy release 
rate t1G is derived as 

(3.46) 

with the tractions in the fibers (J, the area fraction f of reinforcements on the crack plane and Uc 

the critical crack opening at the end of the bridging zone, given by 

_ 4(1 - v) ( f(JDc K10JD: ) 
Uc- G n + ~ 

G-...;2n 
(3.47) 

where G is the shear modulus and K10 is the critical crack-tip stress intensity factor. 
The contribution of the bridging zone to the stress intensity factor results with the near-tip weight 
function as 

i
oc 

2 (J(x) 
AK1 = - jf f -- dx 

n JX 
0 

(3.48) 

where x is the distance from the crack tip. The "change in fracture toughness" LlKc results from 
eq.(3.48) as 

(3.49) 

The following definitions are introduced 

2GGc 2 
1- v = Kc (3.50) 

(3.51) 

(3.52) 

ln the opinion of the authors eqs.(3.51) and (3.52) are definitions of the quantities Kc and Ge. On 
the other hand there is no additional freedom to define a relation between the two quantities of 
type eq.(3.50). The validity of eq.(3.50) has to be proved. 
lf we assume eq.(3.50) would be correct, it results by combining eqs.(3.50) to (3.52) yielding 
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Figure 10. Bridging zone in reinforced materials. Bridging zone for slipping fibers according to Evans and 
McMeeking [9]. 

lntroducing of eq.(3.46) and eq.(3.47) at the left side of (3.53) and eq.(3.49) at the right hand side it 
results that the left-hand side is twice the right-hand side. 
The reason is a typing error in eq.(3.46) since 

(3.54) 

The analysis of Evans and McMeeking confirms the correctness of relation (3.50) for a special 
case, namely the small-scale bridging and the steady-state behaviour of a growing crack in an 
infinite body with a small bridging zone of constant length behind the crack tip. Butthis consider­
ation is not a general prove of eq.(3.53). 
ln this special case it holds (in notation of the previous sections) 

J Obr(x) dx = const. 
(crack) 

(3.55) 

--> d~ J Oapp1(x) dx = d~ J o101a1(x) dx 
( crack) ( crack) 

and from the considerations made before we can conclude 

( ~' K1
2
app) = Rsteady- state 

steady - state 
(3.56) 
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Figure 11. . Griffith crack with constant bridging stresses; loading situation and geometry. 

3.4 R-curve for a Griffith crack with constant bridging stresses 

A restriction of the model used by Evans and McMeeking is that an approximate weight function 
has to be used which becomes correct only in the Iimit case of an infinitely large crack com­
pared with the dimension of the bridging zone. ln order to investigate the relation between 
crack resistance and applied stress intensity factor it is useful to apply an analytically exact sol­
ution. 
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Figure 12. . Griffith crack with constant bridging stresses; displacemet field caused by the strip Ioad. 
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Figure 13. . Griffith crack with constant bridging stresses; total displacemet field. 

Let us consider a Griffith crack (a straight through-the-thickness crack) of size 2a in an infinite 
body which is symmetrically loaded in the range ac < lxl < a by a constant stress a. Figure 11 
illustrates geometry and loading conditions. The displacements under this strip Ioad are given by 
eq.(2.4) and the weight function reads 

0 3 
y:: 
'-... 

0.. 
0.. 
0 

y:: 2 

1 -------

P.oo 

h(x,a) = 
2 a 

j;i" J a2- x2 

1.50 2.00 

Figure 14. . R-curve for a Griffith crack with bridging stresses a = constant. 
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Figure 15. . Ratio of crack resistance and stress intensity factors according to eq.(3.67). 

We find for the crack opening displacement field according to [10] 

o(x,a) 
[ 

sin
2
(B- q;) sin e + sin q; l 

E~~ 4B sin q; - cos q; · ln - 2 cos B · ln -----,----
" sin2(e + q;) sin e - sin q; 

e = arccos(a0fa) q; = arccos(xfa) 

as plotted in fig.12. The related bridging stress intensity factor results as 

2aJf[ ; - arcsin(acfa) J 

The crack opening displacement field caused by the applied stresses aappl is 

O'appl J 2 2 
o(x,a) = 2 -----p- a -X 

and the applied stress intensity factor K1appl is given as 

K, appl = a app/j;a 

(3.58) 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

The total crack opening displacement field follows from the superposition of eqs.(3.58) and (3.61), 
and the total stress intensity factor from superposition of eqs.(3.60) and (3.62). Figure 13 shows 
the total crack opening displacement field for Jal/aappl= 1. 
For the calculation of the R-curve it is assumed that a critical crack opening displacement Oe 
exists at which the bridging interactions become abruptly dissolved, i.e. O'br = 0 for o > Oo. Now 
we can determine the R-curve numerically from the two conditions: 
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Figure 16. Ratio of crack resistance and stress intensity factors according to eqs.(3.67) and (3.69) for the 
first phase of crack extension a s; ac. 

1. The total stress intensity factor must coincide with Kto 

aappl;;a - labr12Jf[ ; - Brcsin(Bc/B) J = K10 (3.63) 

2. At the end of the bridging zone the critical crack opening displacement must be reached 

(3.64) 

The solution of these two relations results in aappt and Be for a given crack length B. From aappt the 
stress intensity factor Ktappt can be calculated. An R-curve resulting for a crack of initial crack 
length Bo is represented in fig.14. The calculation of the R-curve was performed in the following 
way. A crack of initially unbridged length B =Bois considered. The applied stress is increased up 
to a certain value that satisfies the condition for the onset of stable cracl< extension, namely 

(3.65) 

Then B is increased as lang as cS(x = Bo) < cSc. The applied stress intensity factor results from 
eq.(3.63) as 

(3.66) 

During further crack extension it results Be> Bo and the solution of eqs.(3.63) and (3.64) can be 
found with a zero routine. The R-curve, resulting for cScE'/(IabriBo)=1.5 is plotted in fig.14. The R 
curve starts very steep like Kbr = ~ and after cSc is reached (in the plotted example at 
B = 1.47Bc) the applied stress intensity factor decreases slightly against the asymptotic value of 
Kt appt/KIO = 2. The crack resistance obtained with eq.(3.46) has been plotted in fig.15 in a normal­
ised representation according to eq.(3.53) as the ratio 
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0= 
E'J (3.67) 

This ratio should be 0 = 1 if the lrwin equation would be valid in the presence of an R-curve 
behaviour. From fig.15 we find that at the onset of crack extension the ratio is 0 = 1. ln this situ­
ation the bridging zone is negligible in size compared with the initial crack length ao. Then we 
detect a significant deviation from the value 0 = 1 and after very lang crack propagation, when 
the bridging zone of finite length is again small compared with the crack length, the ratio 0 
tends asymptotically against 0 = 1. 
lf we consider the work done by the external Ioad against the constant bridging stresses we can 
write for a < Be 

(3.68) 

that allows to define the ratio 

(3.69) 

Figure fig.16 illustrates the two ratios 0, 0 1 for a s; ae. The second ratio 0 1 also deviates from the 
value 0 = 1 but will asymptotically tend against this Iimit value. 

3.5 Conclusions 

From the previous considerations one can conclude: 

1. lf the energy release rate is defined by eqs.(3.1) and (3.2) and the crack resistance by 
eq.(3.3) it results that G10 = K'lb/E' where G,0 is that characteristical value of G that governs 
onset of stable crack growth. 

2. lf the energy release rate and the crack resistance are defined by eqs.(3.35)-(3.38) one can 
show that the lrwin relation in general does not hold for the applied stress intensity factor, 
i.e. K2tappt/E' =I= R. 

3. On the other hand the analysis of Evans and McMeeking [9] ensures the validity of eq.(1.2) 
for the special case of small-scale bridging. From a simple example the deviations become 
obvious if crack and bridging zone are comparable in size. 
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4.0 Compliance and R-curve 

4.1 Compliance 

4.1.1 loading-point compliance 

The compliance of a cracked specimen is defined as the relative displacement of the loading 
points bLP divided by the Ioad applied 

(4.1) 

The compliance is applied in fracture mechanics 

• for the determination of the actual crack depth, and 
for the computation of energy release rates from Ioad vs. displacement curves resulting in 
controlled fracture tests. 

ln case of a crack in a component with crack faces completely free of stresses the compliance is 
directly related to the crack depth. Under pure tensile loading it holds 

a = afW (4.2) 

where Y is the geometric function for the stress intensity factor calculation, defined by 

K = aappl Y J8 (4.3) 

which can be taken from handbooks. 
ln the presence of bridging stresses at the crack faces deviations in the compliance have to be 
expected [11]. Due to the bridging stresses, the specimens' stiffness is greater than that ob­
tained for specimens with completely free crack surfaces, i.e. the crack length resulting from 
compliance measurements will be lower than the real physical crack length. 
Equations (2.6) and (2.7) provide the possibility of computing a differential compliance Cdiff which 
gives the increment of displacement for a given increment of Ioad (or stress applied) 
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Figure 17. Loading point displacements as a function of Ioad, calculated with eq.(A1 +A5) for aJW = 0.7; 
dash-dotted straight line: displacements for the elastic case with interaction-free crack surfaces, 
dotted straight line: Iimit case for aJW=0.5. 

whilst the global compliance C9 1ob is defined by eq.(4.1). 
For numerical calculations the bridging stress relations given in the Appendix are used in the 
following. ln order to allow dimensionless computations to be made, the numerical results for 
the stress intensity factors and displacements are normalised by the characteristic bridging 
stress ao and the specimen width W according to 
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Figure 18. Global loading-point compliance, calculated with eq.(A 1 + A5) for aJW = 0.7; dash-dotted 
straight line: Iimit case for interaction-free crack with a/ W = 0. 7; dotted straight line: compliance 
of an interaction-free crack with a /W = 0.5. 
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Figure 19 .. Differential compliance according to (4.4) derived from the data of fig.17. 

K'= K 
aoJW 

(4.5) 

ln fig.17 the loading-point displacements are plotted as a function of the stress applied. The 
displacements are normalised an that value that is reached at K'tip = 1. As can be seen from 
fig.17, most of the deviations between the loading-point displacements in the presence of bridg­
ing stresses and the displacements calculated ignoring these additional stresses (dash-dotted 
straight line) occur at lower Ioads. The higher the Ioad, the smaller is the remaining bridging 
zone, and the influence of bridging stresses decreases. A lower Iimit of the displacements can 
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Figure 20. . Global compliance as a function of crack length for K'10 = 1. 
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Figure 21. Deviations between the physical crack depth aphys and the apparent crack depth acompl result-
ing from the compliance. 

be calculated by considering only the initial crack size a = a0. This Iimit case is introduced in 
fig.17 as a dotted straight line. 
ln fig.18 the total compliance is shown for a crack of afW=O.? and aofW=0.5. As expected from 
the non-linear bridging stress, the comliance is not constant. Under low Ioads the compliance in 
the presence of bridging stresses tends towards the compliance of a crack of length aofW without 
bridging stresses. At high Ioads the compliance tends asymptotically to the compliance of a 
crack of depth afW without bridging stresses. 
The differential compliance resulting from the results given in fig.18 is shown in fig.19. Signif­
icant deviations between differential compliance and global compliance are evident. 
The total compliance of the whole crack-containing component is then given by 

Ctotal = Cglob + Co ' 
2L 

C0 = EWB for tension (4.6) 

where Co is the compliance of the uncracked component. ln fig.20 the compliance of the speci­
men in the presence of bridging stresses is represented tagether with the compliance in the ab­
sence of bridging interactions versus the actual crack size. lt is obvious that the specimens with 
bridging interactions react more rigidly than the ideal fracture-mechanics specimens with com­
pletely free crack faces. Two types of crack depth can be concluded from fig.21, namely the real 
physical crack depth aphys and the apparent crack depth acompl which can be concluded from the 
compliance by application of pure linear-elastic relations. ln the representation fig.20 one can 
also see that the real crack size is larger than that obtained from the compliance. 
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Figure 22. Crack profile for a crack (in a bent plate) with bridging stresses in the range 
aofW < xfW < afW; dashed curves: crack profiles in the absence of bridging stresses (loaded by 
the same applied stress intensity factor K' appJ). 
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Figure 23. Crack-mouth displacements as a function of Ioad calculated with eq.(A 1 + AS) for afW = 0.7; 
straight line: displacements for the elastic case with interaction free crack surfaces. 
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Figure 24. Crack-mouth openings for a crack with a0/W=0.5, afW=0.7, calculated with different bridging 
stress relations; solid line: (A 1 + A5), dashed line: (A 1 + A2), dotted line (A 11 ). 

4.1.2 Crack-mouth compliance 

A very popular possibility of indirect determination of the crack depth is the measurement of 
crack-mouth opening. The related crack-mouth compliance CcM can be derived from the dis­
placements t5cM at the location x = 0 and the actual Ioad P as 

where the crack-mouth displacements may be determined from eq.(6) as 

!JcM = E\ f
8

r
8

h(a',O)h(a', x') [aappl(x') + abr(x')] da'dx' 
.Ia · x' 

(4.7) 

(4.8) 

Figure 22 shows the crack profiles under different Ioads for cracks with and without bridging in­
teractions in the region a0 < x < a for a crack with a0/W=0.5, ajW=0.7. ln fig.23 the crack-mouth 
displacements resulting from (4.8) are plotted for a0/W=0.5, ajW=0.7 and the bridging stress re­
lations given by eqs.(A 1 + A2), (A 1 + A5) and (A 11) in the Appendix. A curve is obtained which is 
qualitatively identical tothat for the loading-point displacements. Figure 24 represents the crack­
mouth displacements for the three bridging relations used. ln all cases the crack-mouth displace­
ment underestimates the actual crack length, i.e. the curves run below the upper straight line. 
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4.2 R-curves 

4.2.1 Calculation of R-curves 

From the solution of eq.(2.6) the bridging stresses along the crack can be computed for a given 
applied stress aappl. and eqs.(2.3a) and (2.3b) provide the related stress intensity factors K,appl and 
K,br· Since in a controlled frature test the crack-tip stress intensity factor K11;p = Ktotal is constant, 
namely K11;p = K10, the R-curve K 1 appl = f(a- a0) results from eq.(2.9) as 

(4.9) 

This correctly derived applied stress intensity factor K 1appl will be denoted below as the real one. 
ln fig.25 the entire R-curve is plotted for the bridging relation (A 1 + A5) given in the Appendix. 
Since K10 is constant, K1br reflects all further information on the R-curve behaviour. 
ln order to allow a comparison to be made with the influence of the shape of the bridging-stress 
relation, we will choose the parameters a0 and bo in such a way that the maximum bridging 
stresses as weil as the separation energies are identical in all cases. Figure 26 shows the 
bridging stress intensity factor K1br as a function of the crack extension ~a in a normalised repre­
sentation for the bridging relation (A1 + A2) as solid curve, for relation (A1 + A5) as dashed curve, 
and for eq.(A11) as dotted line. 
lt is obvious that the dependency of (A 1 + A2) is square-root shaped at the beginning of crack 
extension. Also (A1 + A5) shows a strong increase at ~a =0. The initial slope for spring-like 
bridging stresses (A11) is much less steep. 

4.2.2 Experimental R-curves 

A number of procedures are possible which yield different K 1 appl values. Several applied stress 
intensity factors will be defined below: 

Measurements of the true actual crack length a - for instance by use of a travelling micro­
scope- and knowledge of the actual Ioad P or stress aappl = P/(BW) yield the stress intensity 
factor which is correct in terms of fracture mechanics 

( 4.10) 

Very often, the actual crack length is concluded from the global compliance of the specimen, 
eq.(4.1), which increases with increasing crack length. This apparent crack length, denoted 
by a*, is smaller than the real one (a* < a). The related stress intensity factor, calculated 
with a*, 

~ * Ci"" 
Klappt= a appl Y(a ) \I a 

is consequently lower than the stress intensity factor calculated with a: 

( 4.11) 

Combined with the lrwin formula, eq.(1.1), the energy releaserate allows to define further stress 
intensity factors. The basis of such evaluations are the Ioad-dispiacement curves. They can be 
measured as weil as computed with eqs.(2.6) and (2.7). Computed curves are shown as exam­
ples in fig.27 for different crack lengths. The P- bLP -curves (or aapp1 - bLP -curves) which would 
result in a controlled fracture test are found from the curves in fig.27 as the stress-displacement 
combinations for which the condition K 11;p = K 10 is fulfilled. From fig.27 the values for which K't;p is 
equal to K',o were determined. For the following calculations K'10 = 1 was chosen. By interpolat-
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Figure 25. . R-curve for a crack of initial crack depth a0/W=0.5 computed with eqs.(2.3a) and (2.6) for the 
bridging stress relation (A 1 + A2); Loading cases: bending (dashed curve), tension (solid curve). 

ing the computed points aappl = f(r5') for the considered discrete crack lengths, the curve of fig.28 
results. 
The real potential energy which Ieads to the energy release rate is illustrated in fig.28 as 
hatched area. The energy release rate resulting from fig.28 is plotted in fig.29. Within the error 
band of numerical computations we can conclude that - in agreement with eq.(3.26) - the energy 
release rate is constant and the related stress intensity factor equals K10• 
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Figure 26. . Comparison of the R-curves (K1br = f(t:..a) for different bridging stress relations; solid line: 
(A 1 + A2), dashed line: (A 1 + A5), dotted line: (A 11 ). 
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a/W=0.5 

o' 
Figure 27. . Load-displacement curves for a crack with bridging interactions according to eqs.(A 1 + A5), 

aofW = 0.5 (loading: pure tension), abscissa 6' normalised according to eq.(4.5). 

lf we ignore completely the non-linear Ioad-dispiacement behaviour, we may interpret the 
hatched area in fig.30 as the change of potential energy 11Up. 
The elastic energy and its increment are 

( 4.12) 

and the work of the external force is 

(4.13) 

The change of the potential energy is 

1 ( bLP ) dUP =dA - dW = 2 P dbLP- p2 dP ( 4.14) 

lndroducing the global compliance C = bLP/P it results 

1 bLP 
dC=-pdbLP-p2 dP ( 4.15) 

and eq.(4.14) can be rewritten as 

( 4.16) 

A 

With the apparent crack length a* the corresponding energy release rate G becomes 

( 4.17) 

From the compliance formula eq.(4.2) we find 
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Figure 28. . Load-displacement curve for a controlled fracture test under tension with K'10 = 1; ao/W = 0.5; 
hatched area: real potential energy dUp; o* = displacement where Kltip = K10 is reached for the 
first time. 

dC = _2_ y2( *) a* 
da* E'B a 

and the apparent stress intensity factor resulting from the lrwin formula 

1.10 

1.00 

A r:;T *U 
Klapp/= \j E'G = aappl Y(a ) .y a 
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(4.18) 

(4.19) 

Figure 29. . Averaged energy release rate resulting from the crack increments of fig.28, computed with 
eq.(3.1). 
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Figure 30. . lncrement of apparent potential energy (schematic). 

is identical with K1appl defined by eq.(4.11). 

A second possibility of defining an energy release rate is to use dUpfda, applying the phys­
ical crack depth a. The potential energy can be expressed by 

6 

Figure 31. lncrement of apparent potential energy, in case the displacements are shifted until the com-
pliance is in agreement with the compliance of a crack free of bridging interactions (schematic). 
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I
aapp/,c 

- dUP abiLP I 

G = B da = W ( ----aa-- ) da appl 

O a appl 

(4.20) 

For the straight lines in fig.30 it holds 

8!JI LP 8bLP 
----aa-- = aa 

I 
a appl 

a appl,c 
(4.21) 

Evaluation of the integral gives 

- dUP W ( 8c5LP,c ) 
G = Bda = 2 a appl,c aa 

a = const 

(4.22) 

and the related stress intensity factor 

Kappt=JiG (4.23) 

Since in the general case da*fda < 1 is fulfilled, one has to expect Kapp!< Kapp!· 

The slope of the straight lines in fig.31 defines the apparent crack length. lf we shift the dis-
~ 

placements at a fixed Ioad (or stress applied) to higher values c5 ( the arrow symbolises the 
shifted displacements) until the slope of the new straight line is in agreement with the com­
pliance of the unbridged crack, (fig.31), it holds 

D 

~ 
.......... 

0.. 
0.. 
0 
~ 

2 

.50 

.... 
c5 LP = P C(a) = a appl BW C(a) 

.60 

a/W 
.70 

(a*/W) 

(4.24) 

.80 

Figure 32. . Camparisan of the correct R-curve (K1 app,: solid line) with apparent stress intensity factors 

resulting from the Ioad-dispiacement curve: a) Kapp/ (dashed curve), b) Kapp! (dash-dotted curve), 

in addition, the symbols show the apparent stress intensity factor Kapp/ plotted versus the appar­
ent crack depth. 
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The change of the apparent potential energy is 

and the straight lines provide 

Ob' LP ( Ob LP ) aa= aa 
a appl,c 

I 
a appl 

aappl,c 

From (4.24) we conclude 

( 
ob LP ) oC aB = B W a appt,c oa 

a = const 

lntroducing (4.26) and (4.27) into (4.24) yields 

and with (4.2) 

-> 

dU P 1 2 oC 
~=2a appl oa 

-+ 

-+ dU P 2 2 
G = Bda = a appl y (a) a 

The related stress intensity factor is 

-+E--:: 
K = \) G E' = K, appt 

(4.25) 

( 4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

lt is found to be identical with the applied stress intensity factor K1 appl computed directly from 
the crack length and Ioad without consideration of the energy. 

Finally, the following relation between the differently defined stress intensity factors holds: 

- 1\ ......... 4 

K appl (<)Kapp/= Kapp/< K appl = K, appl (4.31) 

Figure 32 gives a comparison of these stress intensity factors. 
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Appendix A. 

A.1 Bridging relations for numerical calculations 

A.1.1 Bridging stresses based on friction effects 

ln order to provide realistic illustrations, special types of bridging relation are used. For friction­
like bridging stresses in the wake of the propagating crack we use 

(A.1) 

where g(!Sf!So) is a "switch-on" function for the bridging stresses which avoids that maximum 
stresses occur in the absence of any displacement. Normally, the authors use a step function 

{

0 for !5 = 0 
g(!Sfbo) = 1 

for !5 > 0 

The maximum bridging stress occurs at !5/!50 =0: 

and the specific work necessary for dissolving the bridges is given as 

ln this paper a continuous switch-on function is chosen 

g( !5/ !5 0) = 1 - exp( - 20!5/ !50) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

This relation is illustrated in fig.A1. The maximum bridging stresses are found for !5/6o=0.1522 

amax = 0.8179 a0 (A.6) 

and it results 

(A.7) 
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o.ooo 2 

Fig.A 1 Stress-displacement relations for friction-like crack surface interactions. 

A.1.2 Springs with limited extensions 

ln case of spring-like stresses the bridging stresses in a single bridge may be expressed by 

for 15/150 < 1 } 

for 15/150 > 1 

with maximum extension 150 and maximum stress O'o, as shown in fig.A2. 

(A.8) 

Similar to [8], it is assumed that the characteristic displacement 15o for which the bridging stress­
es vanish is r-distributed 

1 l5o 
f( 150) = -~- -~- exp( - 150 /1500) 

uoo uoo 
(A.9) 

with a characteristic displacement value 1500 characterising the "width" of the distribution. Figure 
A3 illustrates eq.(A9). The macroscopically averaged bridging stresses result from 

0' br = 1 00 

0' br,spring f( l5o) dbo 
0 

and we obtain by integration and by replacing b0o by bo 

ln this case, one obtains at 15/bo = 1: 

O'max = 0'0/e = 0.3679 O'o 
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(A.10) 

(A.11) 

(A.12) 



and 

Fig.A2 Stress-displacement relations for a single 
spring crbr/cro = f(r5/r5 0), eq.(A8). 

0.40 

D.OU!:----:!-----1.2:----3:!:----! 

6/cSo 

(A.13) 

0.40 

o.om----+---...,!:2----=3---+-

t\!cSo 

Fig.A3 Distribution of the characteristic COD-value 
o0 (abscissa normalised: r5o/r5oo), eq.(A9). 

Fig.A4 Stress-displacement relations for spring-like crack-surface interactions. 

ln [12] the authors used a Morse-like bridging relation 

(A.14) 

with a maximum bridging stress at ofbo = ln(2): 

1 
O'max=4 ao (A.15) 
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and 

(A.16) 

Equation (A.14) tagether with eq.(A.11) is plotted in fig.A4 in a normalised representation. The 
agreement is found to be quite good. From this point of view both relations are appropriate to 
describe spring-like bridging interactions. 

o.ooo 4 

Fig.A5 Comparison of stress-displacement relations; solid curve: eq.(A.11 ); dashed curve: eq.(A.13). 

lf we now assume a narrower distribution of the b0-values, we can use the next higher order 
r-distribution, namely 

1 ( bo )

2 

f(b0) = -
6

- -
6

- exp(- b0 jb00) 
00 00 

(A.17) 

We obtain for the bridging relation 

(A.18) 

A comparison between the bridging relations for the first and second order r-distributions is giv­
en in fig.A6. 
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Ö /ÖmcK 

Fig.A6 Camparisan of stress-displacement relations; solid curve: eq.(A.7); dashed curve: eq.(A.10). 

A.2 Derivation of eq.{2.2) 

The weight function formula given by Rice [1] can easily be derived as shown in [13]. The ener­
gy release rate for a crack of length a under Ioad a1 and crack opening 61 is 

(A.19) 

ln a second state of loading, indicated by subscript "2", an equivalent relation holds 

(A.20) 

Now we superimpose both loadings having in mind that the stress intensity factors have to be 
simply added. This yields 

(A.21) 

We introduce Betti's theorem 
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and obtain 

and after introducing (A.19) and (A.20) in (A.23) we obtain 

and, consequently, if we interpret the state "2" as the reference state "ref" 

A.3 Derivation of eq.(2.4) 

From eq.(2.2) it follows 

E1 ot5ref 
h(x,a) = -K --", 

ref ua 

atS = h( J5... ~) !5_ oa a ' t H 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

Here x is the coordinate where the displacement should be computed. lntroducing eq.(2.3) Ieads 
to 

at5 
aa 

x a 
h(a, T) Ja 1 

H h( ~ , ~ )a(X
1
)dx

1 

0 

X
1 is the location where the stress a acts. lntegrating over a yields 

1 Ja x a1 [Ja' X
1 a1 

1 ~J 1 t5 = H x h( 7 , -t ) 
0 

h( 7 , -t )a(x )dx da 

(A.27) 

(A.28) 

Since the inner integration is not carried out an x , the outer weight function can be taken into 
the inner integral which Ieads to 

1 Ja[Ja' x a1 
X

1 a1 
1 1 ] 1 t5 = H x 

0 
h( 7 , -t ) h( 7 , -t )a(x )dx da (A.29) 

For the weight functions it holds 

h(a1 ,X)=0 for x>a1 (A.30) 

h(a1
, X1

) = 0 for X
1 > a1 (A.31) 

Changing the order of integrations yields 
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b(x) = ~ Jafa h(a',x) h(a', x')er(x')da'dx' 
0 max(x,x') 

A.4 Relations for bending Ioad 

For 3-point bending (fig.A?) the bending stress is given by 

3 PL 
erbend= 2 BW2 

(A.32) 

(A.33) 

The quantities P,L are explained in fig.A?. The applied stresses in the absence of the crack are 

er applx) = erbend( 1 - 2 ~ ) (A.34) 

p 

thickness: B 

[ ~t----L/-2 _"~~ L-----t~j 

Fig.A7 Three-point bending test. 

The increment of work done by the external force P is 

a 

P dbLP = 28 Jo erbend( 1 - 2 ~ ) dbtotat(x) dx (A.35) 

from which results 

(A.36) 

and, consequently, 
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From (A.36) it results 

obLP _ 3L Ja obtotalX) 
& - 2 a~l & ~ 

W abend 0 

a 

bLP = 
3~ f (1- 2 ~ ) btota1(x) dx w 0 

48 FRACTURE MECHANICAL TREATMENT OF BRIDGING STRESSES 

(A.37) 

(A.38) 
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