KfK 5289 Januar 1994

Zur Prozeßchemie der Verglasung hochradioaktiver Abfälle in einem keramischen Schmelzer: Experimente mit einem Laborschmelzer

M. Kelm, B. Oser, H. Pentinghaus Institut für Nukleare Entsorgungstechnik

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Nukleare Entsorgungstechnik

KfK 5289

Zur Prozeßchemie der Verglasung hochradioaktiver Abfälle in einem keramischen Schmelzer: Experimente mit einem Laborschmelzer

> Manfred Kelm Bernhard Oser Horst Pentinghaus

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

ISSN 0303-4003

Zusammenfassung:

Zur Untersuchung der chemischen Vorgänge bei der Verglasung von hochradioaktiven Abfallkonzentraten (HAWC) in einem direktbeheizten keramischen Schmelzer wurden zwei Laborschmelzanlagen inaktiv betrieben. Insgesamt wurden 10 Verglasungskampagnen mit z.T. mehrmonatiger Dauer durchgeführt, die Betriebsdaten ausgewertet und die produzierten Gläser analysiert. Bei der Mehrzahl der Kampagnen war das Verhalten der Platinmetalle unter Prozeßbedingungen der Hauptuntersuchungsgegenstand. Daneben wurde die Verglasung von MAWC/HAWC Gemischen und von Ru- bzw. Te-freiem HAWC erprobt. Der Feststoffaustrag beim Verglasungsprozeß, die Bildung anderer Fremdphasen in der Silikatschmelze sowie die Auswirkung eines Zusatzes von Si bzw. C wurden bestimmt. Die Korrosion am Elektrodenmaterial und an der keramischen Auskleidung des Schmelzers wurde dokumentiert.

Es zeigte sich, daß die in Silikatschmelzen kaum löslichen Platinmetalle Ru, Rh und Pd im Schmelzer innerhalb weniger Stunden separate Phasen bilden, die sich in ihrer Zusammensetzung und Partikelgröße kaum noch ändern. In Schmelzern mit 45° Bodenneigung vergröberte sich diese fließfähige Platinmetallsuspension in Totzonen des Schmelzers im Verlauf von mehreren tausend Betriebsstunden unter Ausbildung eines stationären Sediments, in dem die elektrisch leitfähigen Platinmetallpartikel (Pd-Rh-Te Legierung und Ru(Rh)O₂) ein dreidimensionales Netzwerk bildeten. Im stationären Sediment herrschten Temperaturen bis weit über 1200°C. Der Badwiderstand ging im Verlauf einer Kampagne auf 30 - 35 % des Ausgangswertes zurück. Bei Schmelzern mit 60° Bodenneigung wurde kein stationäres Sediment beobachtet. Der Widerstandsrückgang betrug nur etwa 45%. Ein Zusatz von 0,7 bzw. 1,2 % Si verringerte den Widerstandsrückgang auf nur 10% bis 15%.

The Chemistry of Vitrification of High Level Liquid Waste By Means of a Ceramic Melter: Experiments on the Lab Scale.

Abstract:

High level liquid waste (HLLW) simulates were vitrified on the lab scale in a liquid fed ceramic melter to study the chemical processes during the vitrification. The process data of 10 vitrification campaigns, some of them with a duration of several months, and the HLLW glasses were analyzed. In most of the campaigns the interest was focused on the behaviour of the platinum metals which formed separate phases of a Pd-Rh-Te alloy and Ru(Rh)O₂ in the glass melt. Other campaigns were tests for the vitrification of MLLW/HLLW mixtures and HLLW solution which did not contain ruthenium and tellurium, respectively. The entrainment of the vitrification off-gas with solids, the formation of other separate phases and the effect of additives like Si- and C- powder were investigated as well as the corrosion of the electrodes and the melter ceramic.

Within a few hours of operation the platinum metals Ru, Rh and Pd formed insoluble particles in the glass melt which did not change further size and composition. Coarsening of this mobile suspension of platinum metal phases occured in melters with a sloped floor of 45° in the transition zone wall/floor after some 1000 hours of operation. The resulting sediments were immobile and consisted of a three dimensional networks of electrically conductive particles. The temperature in this sediments exceeded 1200°C; the over all resistance of the glass melt decreased to about 30% - 35% of the starting value. No immobile sediments were observed in melters with a sloped floor of 60° . The decrease of melter resistance was only about 45%. With an addition of 0,7 and 1,2 wt.%, respectively of silicon powder the resistance decreased only for 10 to 15%.

Inhaltsverzeichnis

1 2 3 3.1 3.2 3.3 3.4 3.5 3.6 3.6.1 3.6.2 3.6.3 3.7 3.8 3.9	Zusammenfassung / Abstract Inhaltsverzeichnis Einführung Konzept der Laborschmelzanlage Anlagenaufbau Außenheizung Schmelztiegel Aufbau der Schmelzanlage Elektroden Stromversorgung Dosiersystem für Speiselösung Pulsator Schlauchpumpe Kühler für Speiselösung Komponenten zur Glasperlendosierung Abgasbehandlung Komponenten zur Glasentnahme	7 7 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10
4 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.3 4.4 4.4.1 4.4.2 4.4.2.1 4.4.2.2 4.4.3	Meß-, Steuerungs- und Regelungstechnik Rechner-Hardware Meßtechnik Temperaturmessung Unterdruckmessung Füllstandsmessung Messung des Elektrodenstroms Messung der Elektrodenspannung Meßwertverarbeitung und -speicherung Steuerung der Ventile und der Pulsatoren Regelungstechnik Regelung der Pumpen Regelung der Außenheizung Hardware-Regler Software-Regler Regelung der Elektrodenheizung	11 11 11 11 11 12 12 12 12 12
5	Sicherheitseinrichtungen	13
5.1	Übertemperaturschutz	13
5.2	Sicherheitsvorkehrungen gegen Druckluftausfall	13
5.3	Sicherheitsvorkehrungen gegen Stromausfall	14
5.4	Sicherheitsüberprüfungen mittels Software	14
6	Anlagenbetrieb	14
6.1	Aufheizen und Befüllen der Schmelztiegel	14
6.2	Dosierphase	14
6.3	Entnahme von Glasschmelze mittels Vakuumabsaugung	15
7	Probenahme	15
8	Rezepturen	15
9 9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.1.4.1	Beschreibung der Kampagnen Kampagne T1 Hauptziele Änderungen an der Anlage Versuchsdurchführung Ergebnisse Betriebsdaten	17 17 17 17 17 17 18 18

`

9.1.4.2	Physikalische Eigenschaften	18
9.1.4.3	Gelbe Phase	18
9.1.4.4	Ausscheidungen von Cr ₂ O ₃ und andere Kristallarten	19
9.1.4.5	Korrosion der Ofenkeramik	19
9.1.4.6	Korrosion der Elektroden	19
9.2	Kampagne T2	20
9.2.1	Hauptziele	20
9.2.2	Änderungen an der Anlage	20
9.2.3	Versuchsdurchführung	20
9.2.3.1	8- Stunden-Betrieb	21
9.2.3.2	24-Stunden-Betrieb	21
9.2.3.3	8 h - Betrieb mit platinmetallhaltigem HAWC-Simulat	21
9.2.3.4	Abbruch der Versuchskampagne	21
9.2.4	Ergebnisse	22
9.2.4.1	Betriebsdaten	22
9.2.4.2	Beladung der Gläser mit HAWC - Oxiden	22
9.2.4.3	Homogenität der Glasphase in den Kokillen	23
9.2.4.4	Platinmetalle in den Kokillen	23
9.2.4.5	Gelbe Phase in den Kokillen	24
9.2.4.6	Physikalische Eigenschaften der Gläser in den Kokillen	25
9.2.4.7	Phänomenologische Beurteilung von Vertikalschnitten durch den	
	Schmelztiegel	26
9.2.4.8	Physikalische und chemische Untersuchungen der Gläser	
	aus dem Schmelztiegel	26
9.2.4.9	Akkumulation der Platinmetalle im Schmelztiegel	26
9.2.4.10	Verteilung der Platinmetalle im Schmelztiegel	27
9.2.4.11	Korrosion der Ofenkeramik	28
0.0		00
9.3	Kampagne 13	28
9.3.1	Hauptziele	28
9.3.2	Anderungen an der Anlage	28
9.3.3	Versuchsdurchführung	29
9.3.4	Ergebnisse	30
9.3.4.1	Betriebsdaten	30
9.3.4.2	Phänomenologische Beurteilung von Schnitten durch den Schmeiztiegel	30
9.3.4.3	Vertikale Temperaturprofile im Schmelzbad	31
9.3.4.4	Feststoffaustrag während der Dosierphase	31
9.3.4.5	Bestimmung der "Gelben Phase" im HAWC - Glas	33
9.3.4.6	HAWC - Oxidbeladung der Gläser in den Kokillen	33
9.3.4.7	Platinmetallbilanz	34
9.3.4.8	Dynamische Viskosität der HAWC - Glasschmelze	34
9.3.4.9	Spez. elektrischer Widerstand der HAWC - Glasschmeizen	33
9.3.4.10	Bei Kaumtemperatur leitfähige Glaser	36
9.3.4.11	REM-Untersuchungen an Proben aus den Kokilien und dem	27
0.0.4.10	Schmelztiegel: Platinmetallsedimente	37
9.3.4.12	Mikrosonden- und EDS-Analysen der Platinmetallsedimente	20
0 2 4 1 2	Im Schmeiztlegel bzw. in den Kokillen	38
9.3.4.13	Großenanalyse der Pd-Rh-Te-Partikel im Schmeiztiegel	40
9.3.4.14	REM- und EDS-Untersuchungen an Proben aus dem	41
02415	liegel, der "Kalten Kappe" und der Einschmeizzone	41
9.3.4.15	Bestimmung der Homogenität der Glasphäse in Kokillen	41
9.4	Kampagne T4	42
9.4.1	Hauptziele	42
9.4.2	Änderungen an der Anlage	42
9.4.3	Versuchsdurchführung	42
9.4.3.1	Verglasung von MAWC/HAWC	42
9.4.3.2	Verglasung von HAWC	43

9.4.4	Ergebnisse	43
7.4.4.1	Storungen beim verglasungsbetrieb	45
9.4.4.2	Beinebsdaten	44 15
9.4.4.3	Phänomenologische Beurteilung von Schnitten durch den Schmelztiegel	45
9.4.4.4	REM-Untersuchungen an Proben aus dem Tiegelinhalt	46
9.4.4.5	Überprüfung der Oxidbeladung des Glases	46
9.4.4.6	Spezifischer Widerstand der Glasschmelzen	46
9.4.4.7	Dynamische Viskosität der Glasschmelzen	46
9.4.4.8	Feldstärkeverteilung im Schmelzbad	47
9.4.4.8.1	Aufbau der Meßsonde	47
9.4.4.8.2	Meßtechnik	47
9.4.4.8.3	Feldstärkeverteilung im Schmelztiegel	47
9.4.4.9	Korrosionsuntersuchungen am Elektrodenmaterial Inconel-690	48
9.4.4.10	Feststoffaustrag während der Dosierphase	49
9.4.4.11	Bestimmung des organischen Kohlenstoffs (TOC) im	
	Kondensat bei der Verglasung von MAWC-HAWC	49
0.5		40
9.5	Kampagnen 16, 17, 18 und 19	49
9.5.1	Hauptziele	49
9.5.2	Versuchsdurchführung	49
.9.5.3	Ergebnisse	50
9.5.3.1	Betriebsdaten	50
9.5.3.2	Phänomenologische Beurteilung von Schnitten durch die Schmelztiegel	51
9.5.3.3	Größenanalyse der Pd-Rh-Te-Partikel	51
9.5.3.4	Mikrosondenuntersuchungen der Platinmetallphasen	52
9.5.3.5	Platinmetallbilanz von Kampagne 19	53
9.5.3.5.1	Platinmetallanalysen des HAWC-Glases	53
9.5.3.5.2	Platinmetallanalysen von Proben aus dem Schmelztiegel	53
9.5.3.5.3	Platinmetallanalysen von Stäuben aus dem "Oberofen"	
0 5 0 5 4	und aus dem Abgasrohr	53
9.5.3.5.4	Platinmetallbilanz	54
9.5.3.6	Spezifischer elektrischer Widerstand der HAWC-	_ '.
0	Glasschmelzen	54
9.5.3.7	Dynamische Viskosität der HAWC-Glasschmelzen	54
9.6	Vompore T12	55
9.0	Kampagne 115	55
9.0.1	Anderungen en der Anlege	55
9.0.2	Varauahadurah Sihrung	55
9.0.5	Frachnice	55
9.0.4	Detrichedaton	55
9.0.4.1	Deuleusualell Dhänomenologische Routeilung von Schnitten durch den Schmelstiggel	55
9.0.4.2	Tomporaturn of i in Schmolatiogol	56
9.0.4.5	Distinguisting	56
9.0.4.4	Verbleib des Disting	50
9.0.4.5	verbiero des riadins	37
97	Kampagne T14	58
971	Hauptziele	50
072	Versuchsdurchführung	50
972	v orsuonsauronrunnung Frachnisse	58
0731	Batriabedatan	50
2.1.3.1 0720	Deuteusualeu Distinmetall und Lanthankanganteutianan im Sahmalgan	50 50
7.1.3.2	r laumnetan- und Lanmankonzentrationen im Schmeizer	57
9733	Untersuchung der Platinmetallnartikel durch Rasterelektronen-	
2.1.2.2	mikroskopie und mit der Mikrosonde	50
0721	nini usi wiki usi wiki usu ili usi wiki usuliusi Dartikalaräßananalysa	5 9 60
0725	r artikulgroupenalaliaryse Korrogiongunterguchungen an den Flaktroden	60
2.1.3.3	Konosonsumersuonungen an den Elekuoden	00
98	Kampagne T15	61
2.0		01

9.8.1 9.8.2 9.8.3 9.8.3.1 9.8.3.2 9.8.3.2 9.8.3.3	Hauptziele Versuchsdurchführung Ergebnisse Betriebsdaten Partikelgrößenanalyse der Pd-Rh-Te - Phase im Schmelztiegel Ontische Mikroskonie und Pasterelektronenmikroskonie	61 61 61 61
2.0.2.5	an Proben aus den Kokillen	62
9.9 9.9.1 9.9.2 9.9.3 9.9.4 9.9.4.1 9.9.4.2 9.9.4.3	Kampagne T16 Hauptziele Vorversuche Versuchsdurchführung Ergebnisse Betriebsdaten Opt. Mikroskopie und Rasterelektronenmikroskopie Korrosionsuntersuchungen an den Elektroden	62 62 62 63 63 63 64 65
9.10 9.10.1 9.10.2 9.10.3 9.10.4 9.10.4.1 9.10.4.2 9.10.4.3 9.10.4.4	Kampagne T17 Hauptziele Änderungen an der Anlage Versuchsdurchführung Ergebnisse Betriebsdaten Teilkampagne mit Te-freiem HAWC: REM Untersuchungen REM/EDS - Untersuchungen an Proben aus dem Schmelztiegel Korrosionsuntersuchungen an den Elektroden	65 65 66 66 66 66 67 67
$\begin{array}{c} 10\\ 10.1\\ 10.1.1\\ 10.1.2\\ 10.1.3\\ 10.1.4\\ 10.1.5\\ 10.2\\ 10.2.1\\ 10.2.2\\ 10.2.3\\ 10.3.1\\ 10.3.2\\ 10.3.3\\ 10.3.4\\ 10.3.5\\ 10.4\\ 10.4.1\\ 10.4.2\\ 10.4.3\\ 10.5\\ 10.5.1\\ 10.5.2\\ \end{array}$	Zusammenfassung und Diskussion der Ergebnisse Schmelzerbetrieb Badtemperatur Badwiderstand Feldstärke Beladung der Gläser mit Abfalloxiden Feststoffaustrag Fremdphasen im Glas Platinmetalle Molybdat Chromhaltige Phasen Effekte durch Änderungen des Verglasungsprozesses Änderungen von Speiselösung und Grundglas Ru-freie Speiselösung Te-freie Speiselösung Zusatz von Reduktionsmitteln Verwendung von Sinterglasperlen als Grundglas Eigenschaften der HAWC-Glasschmelzen und -gläser Viskosität Elektrische Leitfähigkeit Homogenität Korrosion von Schmelzerkomponenten Elektroden Keramik	$\begin{array}{c} 68\\ 68\\ 68\\ 68\\ 68\\ 69\\ 69\\ 69\\ 69\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 71\\ 71\\ 71\\ 71\\ 71\\ 71\\ 71\\ 71\\ 71\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\end{array}$
11	Danksagung	73
12	Literatur	74
	Tabellen	76
	Abbildungen	117

<u>1</u> <u>Einführung</u>

Hochradioaktive Konzentrate aus der Wiederaufarbeitung von abgebranntem Kernbrennstoff (HAWC) können nach einem bei KfK/INE entwickelten Verfahren (PAMELA) in einem direktbeheizten keramischen Schmelzer in ein Borosilikatglas eingebunden werden [1]. Um die Möglichkeit zu schaffen, die chemischen Vorgänge bei der Verglasung von HAWC zu untersuchen, im Verglasungsprozeß auftretende Schwierigkeiten aufzuklären, technische Maßnahmen und chemische Zusätze zu erproben und die Auswirkungen von Betriebsstörungen und Vorbehandlungsschritten auf den Prozeß und die Produktqualität zu studieren, wurden parallel zum Betrieb von Schmelzern im technischen Maßstab zwei Laborschmelzanlagen zur Verglasung von inaktiven HAWC-Simulaten aufgebaut. In den Laboranlagen sollte der Verglasungsprozeß möglichst identisch mit dem technischen Prozeß geführt werden (Materialien, Stromfluß, Verweilzeiten u.ä.). Trotzdem sollte der Schmelzer selbst aber schnell auswechselbar sein, um leicht Zugang zum Glasprodukt im Schmelzer zu erhalten und um rückwirkungsfrei die Versuchsparameter verändern zu können. Da schon frühzeitig erkannt wurde [2], daß die in Silikatschmelzen kaum löslichen Platinmetalle den Schmelzerbetrieb beeinträchtigen würden, wurde die Chemie der Platinmetalle unter Prozeßbedingungen der Hauptuntersuchungsgegenstand.

2 Konzept der Laborschmelzanlage

Die Laborschmelzanlagen wurden nach folgendem Konzept geplant:

- Die Verglasung wird in einem dichten, temperaturwechselbeständigen keramischen Tiegel mit einer Ausmauerung aus Chromkorund/Zirkonoxid-Steinen (ER 2161; Fa. SEPR) durchgeführt.
- Das Schmelzbad wird über 2 Elektroden aus Inconel 690 direkt beheizt.
- Als Startheizung und zur Kompensation von Wärmeverlusten dient ein Muffelofen der den Schmelztiegel von außen beheizt.
- Die Speiselösung und das Grundglas werden direkt auf die Schmelzbadoberfläche aufgegeben.
- Das Glasprodukt wird mittels Vakuumabsaugtechnik nach oben abgezogen.
- Der Elektrodenstrom wird über Phasenanschnittsteuerung mittels Tyristorsteller stromkonstant geregelt.
- Die Steuerung der Ventile, die Regelung der Heizung und der Pumpen sowie die Meßwerterfassung erfolgt mittels Rechner.
- Der Schmelztiegel kann leicht ausgetauscht werden. Nach Zerschneiden des Tiegels ist eine Inspektion leicht möglich. Bei einem Wechsel der Parameter entfällt eine längere Spülphase.

<u>3</u> <u>Anlagenaufbau</u>

Abbildung 1 zeigt das Fließbild einer Anlage. Kernstück der Anlage ist der direktbeheizte Schmelztiegel, der in einem Muffelofen sitzt. Das Dosiersystem für Speiselösung und Grundglasperlen ist jeweils 2-strangig ausgelegt. B1 und B2 sind die Vorlagebehälter für Speiselösung; B3 und B4 sind Vorlagen für Glasperlen. Die Ventile werden pneumatisch durch einen Rechner gesteuert. Die Regelung der Heizung und der Pumpen und die Meßwerterfassung erfolgt ebenfalls über den Rechner. Die Software hierfür wurde in Zusammenarbeit mit der Fachhochschule Karlsruhe entwickelt. Abbildung 2 zeigt die fertiggestellte Anlage.

3.1 Außenheizung

Als Startheizung dient ein Muffelofen Modell V 27/S der Fa. Naber. Dieser Ofen dient außerdem dazu, bei Abschalten oder Drosseln der Innenheizung den Tiegel auf Temperatur zu halten. Der Ofen hat 3 übereinanderliegende Heizwicklungen mit einer Heizleistung von insgesamt 9 kW bei einer Anschlußspannung von 3 x 380 V. Die maximale Betriebstemperatur liegt bei 1260°C. Als Überhitzungsschutz ist eine Schmelzsicherung eingebaut, die bei 1300°C durchschmilzt.

3.2 Schmelztiegel

Der Schmelztiegel besteht aus Sillimantin 60 (Fa. Haldenwanger) und hat folgende Abmessungen: 180 x 180 x 265 mm (Innenmaße). Der Tiegel ist mit einer 20 mm starken Chromkorund-Zirkonoxid-Keramik (ER 2161), Fa.SEPR) ausgekleidet. Die Keramikplatten sind mit dem Mörtel ER 70 (Schmelzkorn aus Korund und Zirkonoxid; Fa. SEPR) verfugt. Der ausgekleidete Tiegel hat etwa folgende Innenmaße: 140 x 140 x 265 mm, d.h. eine Schmelzbadoberfläche von ca. 196 cm². Geringe Unterschiede in den Abmessungen sind durch Toleranzen der Plattendicke möglich. Die Füllhöhe des Tiegels mit Glasschmelze liegt zwischen 60 und 100 mm. Dies entspricht einem Glasvolumen von 1,2 bzw. 2 l und einem Füllgewicht von 2,94 bzw. 4,9 kg Glas.

3.3 Aufbau der Schmelzanlage

Abbildung 3 zeigt den Aufbau des Schmelzers. Wie aus der Abbildung ersichtlich, ist der Muffelofen mit einem Schutztiegel zur Aufnahme der Glasschmelze bei einem etwaigen Bruch des Schmelztiegels versehen. Der Schmelztiegel sitzt in einer Ofenauflage aus Stahl. Der Raum zwischen Ofenauflage und Muffelofen ist mit einem aus Foam-Keramik (Fa. Karger) gefertigten Distanzstück ausgefüllt. Die Abmessungen und die Lage der Heizelemente des Außenofens gehen aus Abb. 3 hervor. Der Schmelztiegel ist mit einer 30 mm starken Platte aus Edelstahl (1.4571) bzw. Inconel 600 verschlossen (siehe Abb. 4). Auf dieser Platte sitzen die Stutzen bzw. Schraubfittings zur Zugabe der Speiselösung, Perlenzugabe, zur Glasabsaugung, zur Aufnahme der Elektroden, zur Druckmessung im Tiegel, zur Aufnahme von 2 Sauerstoffmeßsonden sowie das Abgasrohr und ein Schauglas. Abbildung 5 zeigt einen Schnitt durch den Tiegel mit aufgesetzter Deckplatte und den wichtigsten Schraubfittings bzw. Flanschen. Als Flansche für die Abgasleitung, Perlenzuführung und Absaugstutzen werden KF-Flansche benutzt, die mit Metalldichtungen abgedichtet sind (Typ Helicoflex, Fa. Busak + Luyken; Werkstoff: innerer Mantel Inconel 600; äußerer Mantel Tantal). Die übrigen Durchführungen sind mit Rohrverschraubungen abgedichtet (Fa.Swagelock).

Zur Reduzierung der Wärmeabstrahlung sitzt unter dem Tiegeldeckel in ca. 20 mm Abstand eine Platte aus Inconel 600 sowie direkt auf dem Tiegeldeckel eine Platte aus Keramik (Typ 902, Fa. Kager).

<u>3.4</u> Elektroden

Abbildung 6 zeigt eine Elektrode. Die plattenförmige Elektrode ist mit einem Rundmaterial verschweißt. Als Werkstoff dient Inconel 690. Die Halterung und die Stromzuführung erfolgt über das Rundmaterial, das isoliert durch den Tiegeldeckel geführt ist und eine Bohrung bis zur Elektrodenmitte zur Aufnahme eines Thermoelementes enthält. Der Abstand der Elektroden vom Tiegelboden beträgt ca. 10 mm, der Abstand zwischen beiden Elektroden 114 mm; die Elektrodenfläche beträgt 65 cm² (einseitig).

<u>3.5</u> <u>Stromversorgung</u>

Die Innenheizung wird über einen Transformator mit Strom versorgt. Der Trafo besitzt sekundär 4 umschaltbare Wicklungen, die eine Spannungsanpassung zwischen 30 und 120 V erlauben. Die Leistung beträgt maximal 1,8 kVA. Der Heizstrom wird über einen primärseitigen Thyristorsteller (Typ C 92, Fa. Nagy) durch Phasenanschnittsteuerung mit einem PI-Regler stromkonstant geregelt.

<u>3.6</u> <u>Dosiersystem für Speiselösung</u>

Das Dosiersystem für die Speiselösung ist 2-strangig ausgelegt. Es besteht aus folgenden Komponenten:

- Vorlagebehälter aus Glas mit einem Volumen von 10 l.
- Pneumatischer Kugelhahn; einseitig federbelastet mit Endschaltern
- Behälterdeckel aus Edelstahl (1.4571) mit Pulsatorrohr
- Pulsator zur Durchmischung der Speiselösung
- Schlauchpumpe
- Füllstandsmessung über Einperlmethode
- luftgekühlter Kühler für Speiselösung.

Abbildung 7 zeigt den Deckel des Behälters für Speiselösung. In diesem Deckel sitzt das Pulsatorrohr (Abb. 8). An das Auslaufrohr des Glasbehälters ist der in Abb. 9 dargestellte Auslauf aus Teflon angeflanscht.

3.6.1 Pulsator

In Abb. 10 ist der Pulsator dargestellt. Der Kolben hat einen Hub von 135 mm. Dies ergibt bei einem Durchmesser des Plexiglas-Arbeitszylinders von 120 mm ein Volumen von ca. 1530 cm³ pro Hub. Der Arbeitszylinder wird durch einen Druckluftzylinder (Fa. Festo) betätigt.

3.6.2 Schlauchpumpe

Die Schlauchpumpe hat eine Leistung von 0 - 1,5 l/h bei einem Schlauchinnendurchmesser von 4 mm. Die Förderleistung der Pumpe wird über die Drehzahl geregelt. Die Pumpe wurde so umgerüstet, daß die Drehzahl sowohl von Hand über ein Potentiometer als auch vom Rechner durch einen externen Steuerstrom (0 - 20 mA) verändert werden kann.

3.6.3 Kühler für Speiselösung

Um zu verhindern, daß sich die Speiselösung noch vor erreichen des Schmelztiegels zu sehr erwärmt und unter Umständen eindampft, wurde auf der Ofenplatte ein Kühler für die Speiselösung installiert. Dieser besteht aus einem Rippenrohr, das von einem Stahlrohr umgeben ist und mit Druckluft gekühlt wird. Die Abtropfstelle ist schnabelförmig ausgebildet. Die Tropfen fallen in freiem Fall auf die Schmelzbadoberfläche. Die Abtropfstelle ist über ein Schauglas zu beobachten. Die Temperatur an der Abtropfstelle wird durch ein Thermoelement gemessen. Bei Dosierpausen steigt die Temperatur an der Abtropfstelle durch Wärmeabstrahlung von der Badoberfläche auf Werte > 150°C. Die Temperatur an der Eintropfstelle wird daher wie folgt kontrolliert:

- Vor Dosierbeginn wird durch kurzes Eindosieren von Wasser (ca. 20 30 ml) die Temperatur an der Eintropfstelle auf unter 100°C abgesenkt.
- Während der Dosierung wird der Kühler für Speiselösung mit Luft gekühlt (ca. 3m³/h). Die Temperatur an der Eintropfstelle wird dadurch auf ca. 50°C gehalten

3.7 Komponenten zur Glasperlendosierung

Das System zur Perlendosierung ist zweistrangig ausgelegt und besteht aus folgenden Komponenten:

- Vorratsbehälter aus Edelstahl (1.4571) für Glasperlen
- Pneumatischer Kugelhahn; einseitig federbelastet mit Endschaltern,NW14
- je 2 Quetschventile mit einer Schlauchmanschette aus EPDM, NW13

Die pro Dosierzyklus zugegebene Perlenmenge wird volumetrisch bestimmt, d.h. das Volumen zwischen den beiden Quetschventilen ist definiert und entspricht $48,3 \pm 0,2$ g Glassperlen (VG 98/12.2, Perlendurchmesser 1,5 mm). Die Glasperlen rollen über ein geneigtes Rohr (Neigung 40°) in den Schmelztiegel. Um Verstopfungen im Perlendosierrohr durch Kondenswasser zu vermeiden, besteht die Möglichkeit, Luft in den oberen Teil des Rohres einzublasen, um eine Zwangsströmung in Richtung Ofenraum zu erzeugen.

3.8 Abgasbehandlung

Das Abgasbehandlungssystem besteht aus folgenden Komponenten:

- luftgekühltes Rippenrohr mit Gebläse
- absteigender Kühler aus Glas
- Kondensatbehälter
- Schlangenkühler aus Glas
- Abscheider
- 2 saure Abgaswäscher
- 1 alkalischer Abgaswäscher
- Unterdruckerzeuger (Seitenkanalgebläse)

Die Kühler aus Glas werden durch einen Kältethermostat mit Wasser betrieben. Die Temperaturen vor dem Rippenrohr, hinter dem Rippenrohr, nach den beiden Glaskühlern und Kondensat gemessen. im werden Während des Betriebes wird dem in Rippenrohrwärmetauscher die Temperatur von ca. 260°C auf ca. 110°C abgesenkt. Da im Abgasrohr mit Ablagerungen zu rechnen ist, wurde zur Sicherheit eine Bypassleitung mit einer Untertauchung in Wasser von ca. 100 mm installiert. Es wird bei einem Unterdruck im Tiegel von ca. -500 bis -600 Pa gearbeitet.

3.9 Komponenten zur Glasentnahme

Die Glasschmelze wird durch Vakuum in eine Edelstahlkokille gesaugt. Abbildung 11 zeigt eine Saugkokille. Das Vakuum wird mit einer Membranpumpe erzeugt. Zwischen Pumpe und Kokille ist ein mit einem Manometer versehener Zwischenbehälter installiert. Die Kokille wird durch einen Metallschlauch mit dem Zwischenbehälter verbunden. Das Anschlußrohr an der Kokille ist so bemessen, daß die Glasschmelze dort erstarrt und nicht bis in den Zwischenbehälter gesaugt werden kann.

<u>4</u> <u>Meß-, Steuerungs- und Regelungstechnik</u>

4.1 Rechner-Hardware

Die Steuerung, Regelung und Meßwerterfassung erfolgt über einen Rechner. Die Software hierzu wurde in Zusammenarbeit mit der Fachhochschule Karlsruhe entwickelt. An Hardware sind folgende Geräte vorhanden:

- Rechner HP 216
- Meßdatenerfassung HP 3497 A mit Extender 3498 A
- Diskettenlaufwerk HP 9122
- Plattenlaufwerk HP 9133 (20 MB)
- Drucker HP 150 (Think Jet)
- Magnetbandgerät HP 9144 A

Die Meßdatenerfassung ist über eine HP IB-Schnittstelle mit dem Rechner verbunden. Sie verfügt über folgende Anschlußplatinen:

- Analog Input-Card (Spannungen), max. 20 Analogeingänge
- Analog Input-Card (Thermoelemente), max. 19 analoge Eingänge für Thermoelemente (softwarekompensiert)
- Digital Input Cards (2 Stück), 16 digitale Eingänge bzw. 8 Interrupts
- Digital Output Card, 16 digitale Ausgänge
- Analog Output Cards (2 Stück) mit je 2 analogen Outputsignalen (0-20 mA).
- <u>4.2</u> <u>Meßtechnik</u>

4.2.1 Temperaturmessung

Die Temperaturmessung erfolgt mit Thermoelementen und zwar mit PtRh10-Pt bzw. NiCr-Ni-Elementen. Die Ausgleichsleitungen der Thermoelemente sind ohne Meßumformer direkt an der Thermoelementplatine der Meßdatenerfassung angeklemmt. Die Thermoelementplatine verfügt über eine isotherme Vergleichsstelle. Die Temperaturkompensation erfolgt mittels Software.

4.2.2 Unterdruckmessung

Der Unterdruck im Tiegel wird mit einem Drucktransmitter (Typ G 1151 DP, Fa. Rosemount) gemessen. Der Meßbereich liegt zwischen +40 hPa und -40 hPa. Das Ausgangssignal (0 - 20 mA) ist an einen Punktdrucker und über einen 100 Ω Shunt an der Analog-Inputplatine angeschlossen. Zum Schutz der Membran des Drucktransmitters wird diese mit Sperrluft beaufschlagt.

4.2.3 Füllstandsmessung

Die Füllstände in den Behältern für Speiselösung B1 und B2 (Abb. 1) werden durch Einperlmessung ermittelt. Die Druckdifferenz, die zwischen Tauchrohrende und dem Gasraum oberhalb der Flüssigkeitsoberfläche herrscht, wird mit einem Drucktransmitter (Typ G 1151 DP, Fa. Rosemount) gemessen. Die Behälter wurden mit Wasser geeicht (Füllstandsmaximum ≤ 60 hPa). Die Dichte der Speiselösung wird vor dem Einfüllen durch Spindeln bestimmt und bei Programmstart in den Rechner eingegeben, so daß die Dichte der Lösung bei der Füllstandsberechnung berücksichtigt wird.

4.2.4 Messung des Elektrodenstroms

Der auf der Sekundärseite des Transformators fließende Strom wird mittels Stromwandler von 60 A auf 5 A reduziert und als Eingangssignal auf einen Meßumformer (Typ ETEF 135, Fa. Hartmann + Braun) gegeben. Der Meßumformer liefert ein Ausgangssignal von 0 bis 20 mA. Dieses Signal liegt an einem digitalen Anzeigestrument am Schaltschrank, am PI-Regler im Schaltschrank und über einen 100 Ω Shunt an der Analog-Input-Platine der Meßdatenerfassung an.

4.2.5 Messung der Elektrodenspannung

Die Elektrodenspannung wird über zwei separate Leitungen direkt an den Elektroden abgegriffen und durch einen Meßumformer (Typ ETEF 135) in einen Gleichstrom von 0 - 20 mA umgewandelt. Dieser eingeprägte Gleichstrom liegt sowohl an einem digitalen Meßgerät am Schaltschrank als auch über einen 100 Ω Shunt an der Meßdatenerfassung an.

4.2.6 Meßwertverarbeitung und -speicherung

Mit der Meßdatenerfassungsanlage werden alle 20 Sekunden die Ausgangssignale der Meßaufnehmer erfaßt, in die entsprechenden physikalischen Größen umgerechnet und auf Platte gespeichert. Die im Binärcode gespeicherten Daten werden ins ASCII-Format konvertiert und auf Magnetbandkassetten übertragen. Die Auswertung der Meßdaten erfolgt mit einem HP-Rechner der Serie 9000 mit Hilfe einer weiteren an der Fachhochschule Karlsruhe entwickelten Software.

4.3 <u>Steuerung der Ventile und der Pulsatoren</u>

Die Pulsatoren und die pneumatischen Ventile werden über die in der Meßdatenerfassungsanlage installierten Digital-Outputplatine angesteuert. Diese enthält 16 Relais. Mit Hilfe dieser Relais wird über ein weiteres 24 V Relais das entsprechende Magnetventil für Steuerdruckluft geöffnet bzw. geschlossen.

Die Quetschventile und die Pulsatoren werden mit Druckluft aus dem Gebäudenetz versorgt (Arbeitsdruck 0,25 MPa bzw. 0,35 MPa). Die federbelasteten Kugelventile werden über einen separaten Kleinkompressor versorgt (Arbeitsdruck 0,6 MPa).

Die Stellung der Kugelventile und Pulsatoren wird über Endschalter, die Stellung der Quetschventile wird über Druckschalter signalisiert. Die Schalterstellung wird über die Digital-Inputplatine abgefragt.

<u>4.4</u> <u>Regelungstechnik</u>

4.4.1 Regelung der Pumpen

Die Schlauchpumpen wurden so umgebaut, daß sich ihre Drehzahl mit einem Strom von 0 -

20 mA steuern läßt. Die Regelung der Pumpen erfolgt über die Analog-Outputplatine der Meßdatenerfassung durch den Rechner. Die Förderleistung der Pumpen in Abhängigkeit vom Steuerstrom wurde vorab ermittelt. Der dem Sollwert entsprechende Steuerstrom wird vorgegeben. Sollwertabweichungen werden über die Bestimmung der Füllstandsabnahme ermittelt und mittels Softwareprogramm ausgeregelt.

4.4.2 Regelung der Außenheizung

Die Temperatur des Außenofens kann entweder mit einem Software-Regler oder mit einem Hardware-Regler geregelt werden. Die Temperatur wird mit PtRh10-Pt-Thermoelementen in Nähe der Heizwicklungen gemessen.

4.4.2.1 Hardware-Regler

Als Hardware-Regler ist im Schaltschrank ein mikroprozessorgesteuerter Zweipunktregler installiert. Der Mikroprozessor ermöglicht u.a. ein langsames lineares Aufheizen des Ofens, wie es beim Hochtempern eines neuen Schmelztiegels notwendig ist.

4.4.2.2 Software-Regler

Eine PID-Regler-Software (HP 44 456 System Software) ermöglicht es, die Temperatur des Muffelofens mit Hilfe des Rechners zu regeln. Ausgangsgröße ist ein Strom von 0 - 20 mA, ausgegeben von der Analog-Outputplatine in Abhängigkeit von der Sollwertabweichung. Über das Ausgangssignal wird die Leistung des Ofens durch einen Thyristorsteller (Typ Thyrotakt DITW 380-27, Fa. AEG) gesteuert.

4.4.3 Regelung der Elektrodenheizung

Die Elektrodenheizung wird stromkonstant geregelt. Die Regelung kann entweder mit einem PI-Regler (Typ Contric, Fa. Hartmann und Braun) oder über den Rechner mit einem Software-PI-Regler erfolgen. Im Falle der Software-Regelung wird der Steuerstrom von der Analog-Outputplatine ausgegeben. Die Heizleistung wird durch Phasenanschnittsteuerung mit Hilfe eines Thyristorstellers (Typ C 92, Fa. Nagy) auf der Primärseite des Transformators geregelt.

5 Sicherheitseinrichtungen

<u>5.1</u> <u>Übertemperaturschutz</u>

Im Schaltschrank sind 2 Grenzsignalgeber eingebaut. Mit dem einen Grenzsignalgeber wird bei Übertemperatur die Elektrodenheizung abgeschaltet, mit dem anderen Grenzsignalgeber wird bei Übertemperatur der gesamte Schaltschrank vom Netz genommen. Außerdem ist an der Außenheizung eine Schmelzsicherung installiert, die bei 1300°C schmilzt.

5.2 Sicherheitsvorkehrungen gegen Druckluftausfall

Sämtliche Kugelventile sind einseitig federbelastet und schließen bei Druckluftausfall. Die Druckluftleitung für die Quetschventile wird während des Betriebs durch einen Druckschalter überwacht. Bei Druckluftausfall wird für den Rechner ein Interrupt ausgelöst, d.h. die Anlage geht in den reduzierten Betrieb (nur Heizung und Pulsatoren sind in Betrieb) und es erfolgt ein akustischer Alarm.

5.3 Sicherheitsvorkehrungen gegen Stromausfall

Um einen Störfall durch Stromausfall zu vermeiden, wurden folgende Vorkehrungen getroffen:

- Sämtliche Ventile sind stromlos geschlossen.
- Bei Stromausfall von nur einer Phase geht der gesamt Schaltschrank vom Netz und kann nur mit einem separaten Taster wieder eingeschaltet werden.
- Der Rechner ist batteriegepuffert. Bei Stromausfall wird ein Interrupt ausgelöst, nochmals ein Datensatz auf der Platte gespeichert und die Anlage abgeschaltet.

5.4 Sicherheitsüberprüfungen mittels Software

Durch die Software wird die Ausführung der Befehle durch Abfrage der Endschalter sowie die logische Verknüpfung der Ventil- bzw. Schalterstellung überprüft. Wird ein Fehler, wie z.B. Fehlstellung der Endschalter oder Ausfall eines Meßsystems festgestellt, geht die Anlage in den "reduzierten Betrieb" (d.h. nur die Heizung und die Pulsatoren sind in Betrieb; sämtliche Ventile sind geschlossen) und es wird ein akustischer Alarm ausgelöst.

<u>6</u> <u>Anlagenbetrieb</u>

6.1 Aufheizen und Befüllen der Schmelztiegel

Ein Hilfe Außenheizung einer Schmelztiegel wird mit der mit neuer Temperatursteigerungsrate von ca. 10 K pro Stunde aufgeheizt. Sobald die Temperatur der Elektroden bei ca. 850°C liegt, wird Grundglas in Form von Kugeln mit einem Durchmesser von ca. 1,5 mm oder auch zerkleinertes HAWC-Glas im kleinen Portionen zugegeben. Sobald die Glasschmelze die Elektroden erreicht, wird auch die Innenheizung zugeschaltet. Mit steigender Elektrodenbedeckung wird die Stromstärke so nachgestellt, daß eine Stromdichte von ca. 0,9 A/cm² nicht überschritten wird. Bei Normalbetrieb hat sich als günstigste Einstellung des Transformators der 30 V-Bereich erwiesen.

<u>6.2</u> <u>Dosierphase</u>

Zunächst wird die Rechner-Steuerung der Anlage vorbereitet. Dazu wird sie in den "Anfahrmodus" gebracht. Im Dialogverfahren werden alle Versuchsparameter eingestellt, insbesondere:

- Einschalten von Innen- und Außenheizung, Sollstromstärke bzw. Solltemperatur (sofern die Heizungen software-gesteuert betrieben werden sollen).
- Dosierrate f
 ür Speiselösung
- Dosierzyklus für Grundglasperlen (Vorgabe der Menge tatsächlich dosierter Speiselösung, nach der eine Charge Grundglasperlen (48,3g) dosiert wird)

Dann wird Wasser dosiert, um die Eintropfstelle der Speiselösung auf ca. 60°C abzukühlen. Mit der Umschaltung auf Vollbetrieb werden nun die Pulsatoren aktiviert, die Dosierung von Speiselösung und Grundglasperlen und die Heizungen werden initialisiert, der Anlagenbetrieb wird überwacht und die Meßwerte werden zyklisch gespeichert. Für eine Dosierunterbrechung kann in den "reduzierten Betrieb" umgeschaltet werden. Dabei laufen die Pulsatoren und die Heizungen weiter. Änderungen der im "Anfahrmodus" eingegebenen Versuchsparameter sind nach einer weiteren Umschaltung in den "Änderungsmodus" möglich.

6.3 Entnahme von Glasschmelze mittels Vakuumabsaugung

Nach Abschaltung der Dosierung wird die "kalte Kappe" auf dem Glasschmelzbad im Verlauf von 1 bis 2 Stunden abgeschmolzen und dann eine Kokillenfüllung Glas aus dem Schmelzer abgesaugt:

- Die Kokille wird zur Entfernung von möglichen Ölresten aus der Fertigung in einem Ofen auf ca. 550°C erhitzt.
- Vor der Absaugung wird die Kokille auf ca. 250°C vorgeheizt.
- Der Rechner wird in den "Änderungsmodus" gebracht, so daß die Pulsatoren nicht arbeiten.
- Die Innenheizung wird abgeschaltet (falls sie hardware-gesteuert lief)
- Das Dosierrohr wird gegebenenfalls abgebaut.
- Die Kokille wird mit dem evakuierten Vakuumbehälter verbunden und das Saugrohr in die Schmelze abgesenkt. Nach kurzem Warten wird das Ventil zwischen Vakuumbehälter und Kokille geöffnet. Der Verlauf des Unterdruckes kann an einem Manometer verfolgt werden.

Nach ca. 3 Minuten ist der Absaugvorgang beendet.

Abbildung 12 zeigt eine Kokille beim Absenken in den Schmelzer, Abb. 13 zeigt 3 Kokillen (2 davon mit Glas gefüllt und geöffnet). Zum Abkühlen wird die Kokille in einen wärmeisolierten Behälter gesetzt, um Spannungen und Rißbildung zu begrenzen.

Beim einer Dosierzeit von ca. 8 Stunden dauert ein kompletter Zyklus von Dosierbeginn zu Dosierbeginn ca. 10 h. Der größte Teil der Gläser wurde im "8 h - Betrieb" produziert. D.h. der Dosierbetrieb lief nur während der normalen Arbeitszeit; über Nacht und an Wochenenden wurde die Dosierung gegebenenfalls unterbrochen, die Glasschmelze aber weiter geheizt. Im "24 h-Betrieb" fielen diese Leerlaufzeiten weg. Der "10 h - Betrieb" war dem "8 h - Betrieb" ähnlich, jedoch wurden pro Arbeitstag eine Kokille Glas produziert. Die Nacht wurde zum Einschmelzen der "Kalten Kappe" genutzt.

Zum Ende einer Kampagne wurde i.a. bis zum oberen Füllstand dosiert, anschließend die "Kalte Kappe " eingeschmolzen und die Heizungen abgestellt. Während der Abkühlphase wurde die Temperatur nicht weiter kontrolliert.

7 Probenahme

Nach dem Erkalten der Kokillen bzw. des Schmelztiegels konnte beprobt werden. Für lokale Messungen wurden die entsprechenden Stücke aus dem Material (Glas, Keramik der Tiegelauskleidung bzw. Elektroden) herausgesägt. Die Schmelztiegel wurden i.a. in der Mitte parallel zu den Elektroden geschnitten. Aus den Schnittflächen wurden die Proben für die Rasterelektronenmikoskopie (REM), die optische Mikroskopie und die Mikrosonde herauspräpariert. Für die chemische Analyse der Gläser und die Bestimmung von physikalischen Eigenschaften wurden größere Stücke gemahlen (< 125 μ m) und im Probenteiler geteilt. Ähnlich wurde bei der Beprobung von Kokillen verfahren. Für Durchschnittsglasproben wurden gewöhnlich ganze oder zumindest in der Zylinderachse geschnittene halbe Kokillen pulverisiert.

<u>8</u> <u>Rezepturen</u>

Je nach Fragestellung und Kenntnisfortschritt sind für die verschiedenen

Verglasungskampagnen verschiedene Rezepturen für die Speiselösung und die Grundglaszusammensetzung verwendet worden. Bei den ersten Kampagnen wurde unterstellt, daß bei der Wiederaufarbeitung der Kernbrennstoff rückstandslos aufgelöst wird. Zudem wurden plausible Annahmen zum Uran-, Actinoiden- und Korrosionsproduktgehalt im HAWC gemacht. Bei späteren Kampagnen wurde ein bestimmter Anteil an Auflöserrückstand unterstellt, der nicht dem HAWC zugeschlagen wurde. Dies hat insbesondere einem geringeren Gehalt an Platinmetallen und an Molybdän im HAWC zur Folge.

In den ersten Kampagnen wurde zudem ein Li-freies Grundglas benutzt. Auf Grund der Forderungen aus dem technischen Verglasungsbetrieb nach Glasrezepturen mit geringerer Temperaturabhängigkeit von Viskosität und elektrischer Leitfähigkeit kamen später Rezepturen mit Li zur Anwendung.

Die tatsächlich verwendeten Sollzusammensetzungen für die Speiselösung sowie die Sollzusammensetzung des Grundglases und des HAWC-Glases werden bei den einzelnen Kampagnen aufgelistet.

Im Normalfall wurde ein HAWC-Oxidgehalt von 15 Gew.% angestrebt. Die im inaktiven Simulat nicht verfügbaren Elemente (U, Actinoide, Tc) wurden durch Grundglas, Pm durch Nd substituiert, so daß tatsächliche HAWC-Oxidgehalte um 13 Gew.% realisiert wurden.

<u>9</u> <u>Beschreibung der Kampagnen</u>

Nachfolgend werden die Ziele, die Versuchsbedingungen und die Ergebnisse der einzelnen Kampagnen beschrieben. Einen Überblick über die Betriebszeiten und die jeweils produzierten Glasmengen zeigt Tab.1.

- 9.1 Kampagne T1
- 9.1.1 Hauptziele

Ziel der Kampagne war die Erprobung des gesamten Laborschmelzer-Konzepts und der Test der Einzelkomponenten.

9.1.2 Änderungen an der Anlage

Die Dosierpumpe für die Speiselösung wurde anfangs wie folgt durch den Rechner geregelt:

- An Hand einer Eichkurve wurde der Steuerstrom für die Pumpe vorgegeben.
- Über die Füllstandsabnahme während einer Zeitspanne von 30 60 Sekunden wurde die Dosierrate kontrolliert und der Steuerstrom bei Sollwertabweichung entsprechend nachgeregelt.

Dies führte zunächst dazu, daß die Dosierrate zwischen dem Maximal- und Minimalwert hinund herpendelte, da bei einem kurzen Abfragezyklus die Messung der Füllstandsänderung mit einem hohen relativen Fehler behaftet ist. Hieraus resultierten dann große Schwankungen der Abgastemperatur und der Temperatur an der Eintropfstelle für die Speiselösung.

Die Dosierleistung der Speiselösungspumpe wurde durch folgende Maßnahme harmonisiert:

- Die Zeitspanne für das Nachregeln der Pumpen wurde auf 5 Minuten erhöht. Dadurch fallen Meßwertschwankungen nicht so sehr ins Gewicht.
- Die Änderung der Dosierrate von Messung zu Messung wurde auf maximal 10% des vorherigen Werts begrenzt.

9.1.3 Versuchsdurchführung

Zunächst wurde der Schmelztiegel nur mit der Außenheizung betrieben und mit Grundglasperlen befüllt. Die Glasentnahme durch Vakuumabsaugung wurde insgesamt 5 mal erprobt; entnommenes Glas wurde jeweils wieder ergänzt. Daran schloß sich eine Erprobungsphase für die Gesamtanlage an. Dabei wurden allerdings nur Wasser zur Erzeugung der kalten Kappe und Grundglasperlen dosiert. Ausgehend von einem Schmelztiegel der 80 % der maximalen Füllmenge an Grundglas enthielt wurde dann soviel HAWC - Simulat und Grundglas dosiert, daß der Tiegel bei maximalem Füllstand den Sollgehalt an HAWC-Oxiden enthielt (Überdosierung von HAWC). Die Zusammensetzung von Speiselösung, HAWC-Glas und Grundglas ist Tab. 2 zu entnehmen. Durch die höhere Viskosität des mit HAWC-Oxiden beladenen Glases traten Schwierigkeiten bei der Glasabsaugung auf. Die Kokillen wurden nur teilweise gefüllt. Die Kampagne wurde wegen des Ausfalls der Außenheizung vorzeitig beendet.

9.1.4 Ergebnisse

9.1.4.1 Betriebsdaten

In Tabelle 3 sind einige Betriebsdaten zusammengestellt. Die Temperatur des Schmelzers lag während der Dosierung bei 1130°C (gemessen in den Elektroden). Um die Temperatur im Tiegel auch während der Leerlaufzeiten (bei abgeschalteter Direktheizung) möglichst hoch zu halten, wurde der Außenofen bei 1200°C betrieben. Dies führte zu einem permanenten positiven Temperaturgradienten vom Tiegelinnern nach außen hin. Dies entspricht nicht dem Zustand bei einem technischen Schmelzer (Wärmestrom von innen nach außen) und wurde bei späteren Kampagnen vermieden.

9.1.4.2 Physikalische Eigenschaften

Die dynamische Viskosität des Glasprodukts aus dem Tiegel wurde zwischen 900°C und 1200°C gemessen. Abbildung 14 zeigt die Viskositätskurve im Vergleich zu Messungen an einem Laborprodukt GP 98/12.2 (siehe auch [3]). Das Glas aus dem Tiegel ist deutlich zäher; der Viskositätsunterschied entspricht etwa einer Temperaturdifferenz von 45 K. Die erhöhte Zähigkeit ist vermutlich auf den erhöhten Gehalt an Korrosionsprodukten (Al₂O₃, ZrO₂, Cr₂O₃) aus dem Ofenstein und aus Korundschutzrohren zurückzuführen. Dies ist aber untypisch für den Verglasungsprozeß, da bei der T1-Kampagne lange Betriebszeiten ohne Stoffdurchsatz realisiert wurden.

9.1.4.3 Gelbe Phase

Beim Zerschneiden wurde im Tiegel etwa in der Mitte zwischen beiden Elektroden ca. 3 mm über dem Boden ein tablettenförmiger weißlich bis gelber Einschluß mit hohem MoO₃-Gehalt (Durchmesser 15 mm, Dicke 5 mm) gefunden, der offenbar in Silikatschmelzen wenig löslich war ("Gelbe Phase"). Fremdphasen dieser Art wurden bei der HAWC-Verglasung regelmäßig beobachtet. Weitere Einschlüsse wurden nicht gefunden. Untersuchungen mit Rasterelektronenmikroskopie / energiedispersives System (REM/EDS), chemische Analyse und Röntgendiffraktometrie ergaben folgende Befunde:

- Die Hauptbestandteile in dem Einschluß sind: Na₂MoO₄. 2 H₂O CaMoO₄ BaMoO₄
- Die Proben enthielten so gut wie kein Chrom.
- Die chemische Analyse ergab:

Na₂O : 22,1 Gew.-% CaO : 3,57 " BaO : 1,76 " Cs₂O : 1,99 " MoO₃ : 62,11 " SrO : 0,39 " CrO₃ : 0,08 "

Es wurde außerdem mit dem Rasterelektronenmikroskop und durch REM/EDS-Analyse untersucht, ob es durch Wechselwirkung der "Gelben Phase" mit dem Glas in der Umgebung des Einschlusses zu einer Anreicherung bzw. Abreicherung bestimmter Elemente im Glas kommt. Es konnten keine gesicherten Konzentrationsunterschiede für die Elemente Ca, Na, Mo und Cs in Abständen $>5\mu$ m von dem Einschluß aus "Gelber Phase" gemessen werden. Lediglich für Ca ergaben sich bis in 30 µm Abstand vom Einschluß geringfügig erniedrigte Konzentrationen, die aber innerhalb der Schwankungsbreite für EDS-Analysen lagen.

9.1.4.4 Ausscheidungen von Cr₂O₃ und andere Kristallarten

Im gesamten Glasvolumen des Schmelztiegels waren dunkle Kristallflitter sichtbar. Eine REM/EDS Untersuchung zeigte, daß die Kristalle fast ausschließlich aus Chromoxid-Plättchen von ca. 40 μ m Größe und 3 μ m Dicke bestehen. Abb.15 zeigt die im wesentlichen sechseckigen Plättchen in 1310-facher Vergrößerung. In der Seitenansicht können diese Chromoxidkristalle oft Nadelform vortäuschen (Abb.16). Glasproben, die vor der Dosierung von HAWC aus dem Schmelzer entnommen wurden, zeigten dagegen keine Cr₂O₃ - Ausscheidungen.

Die Übersättigung der Glasschmelze mit Cr_2O_3 tritt offenbar bei normalem Schmelzerbetrieb nicht auf. Bei der T1-Kampagne ist sie vielleicht dadurch zu erklären, daß das Glas durch die lange Betriebszeit (ca. 100 Tage) ohne Stoffdurchsatz mit Korrosionsprodukten vom Ofenstein und den Elektroden (d.h. auch mit Cr_2O_3) angereichert war. Durch die Dosierung von Cr-haltiger Speiselösung in die Schmelze ist dann die Chrom-Löslichkeitsgrenze des Glases überschritten worden.

Neben den Cr_2O_3 -Plättchen wurde in der Nähe des Tiegelbodens eine weitere Kristallart gefunden, die neben Cr_2O_3 noch SE_2O_3 , TiO₂, SiO₂, CaO und ZrO₂ (SE = Seltenerdmetalle wie Nd, La) enthält. Sie ist zuvor auch schon in statischen Wechselwirkungsexperimenten Glas/Keramik in kleinen Zellen aus ER 2161 Keramik mit sehr großem O/V-Verhältnis beobachtet worden [4], ebenso wie im Bodenauslauf eines technischen Schmelzers nach einer längeren Stillstandszeit. Sie ist als Chevkinit-Vertreter anzusprechen. Die Bildung dieser Phase ist offensichtlich ebenfalls an eine hohe Chromkonzentration im Glas gebunden; sie enthält einen hohen Anteil an Elementen, die gewöhnlich gut in Glasschmelzen löslich sind.

9.1.4.5 Korrosion der Ofenkeramik

Die Keramikauskleidung des Schmelztiegels aus ER 2161 war bei Temperaturen zwischen 900°C und 1150°C für ca. 2470 Stunden mit der Grundglasschmelze und für ca. 740 Stunden mit der HAWC-Glasschmelze in Kontakt. Die REM/EDS - Untersuchung einer Probe vom Boden des Tiegels zeigte folgende durch den Kontakt mit der Schmelze bedingte sichtbare Veränderungen: Aus der aus innig verwachsenen Körnern von Chromkorund und Zirkondioxid bestehenden Keramik (Abb.17, Zone I: Zirkondioxidkristalle weiß, Chromkorund grau) wird Aluminiumoxid und Zirkondioxid herausgelöst; Chromoxid bleibt in Form kleiner Kriställchen ortstreu zurück; es dekoriert die Orte der ehemaligen Chromkorundkristalle. In einer ca. 0,5 mm dicken Zone des veränderten Ofensteins befinden sich fast nur Glas und Chromoxidkristalle. ZrO₂ ist komplett aufgelöst. In Abbildung 17, Zone II sind die zurückgebliebenen Chromoxidkristalle neben dem Glas (schwarz) zu erkennen. In dem dieser Grenzschicht benachbartem Glas (Abb.17, Zone III) zeigten sich große bis zu 0,5 mm lange Ausscheidungen von Chevkiniten.

9.1.4.6 Korrosion der Elektroden

Die Elektroden waren während der gesamtem Kampagne für ca. 4400 h Temperaturen zwischen 900°C und 1150°C ausgesetzt. Die Stromdichte während der Dosierung von HAWC betrug maximal 0,75 A cm⁻², wobei nur die der Schmelze zugewandte Seite der Elektrode berücksichtigt wurde. Untersuchungen mit dem Rasterelektronenmikroskop an einem Schnitt durch eine der Inconel-Elektroden zeigten deutliche Korrosionserscheinungen bis in eine Tiefe von ca. 1 mm. Die Veränderung der Legierung ist quantitativ aus Tabelle 4 zu entnehmen. Abb.18 zeigt die 10 Meßpunkte für die REM/EDS-Analyse längs einer Geraden auf einer Schnittfläche der Elektrode, vom Elektrodenrand ausgehend bis in eine Tiefe von 0,8 mm. Als Vergleich wurden Messungen an einem unveränderten Teil der Elektrode durchgeführt. Die Analysenwerte sind der Tabelle 4 angefügt. Der durch die Glasschmelze bedingte Korrosionsvorgang zeigt sich deutlich an einer Chromverarmung zum Rand der Elektrode hin (Meßpunkte10 bis 2, Tabelle 4), wobei am Meßpunkt 10 praktisch unverändertes Material gefunden wurde. Das aus der Inconellegierung austretende Chrom wird in der Glasschmelze oxidiert und bildet an der Grenzschicht Inconel/Glasschmelze feine Kristalle von Chromoxid (Abb.19), sofern diese nicht von der Glasschmelze sofort aufgelöst werden.

Als Folge der "Wärmebehandlung" bei den Arbeitstemperaturen tritt eine starke Kornvergröberung (ca. 0,2 mm) ein (Abb.20). Im Volumen und besonders an den Korngrenzen findet man lokal starke Akkumulationen von Cr und Ti. Eine REM/EDS-Analyse einer solchen Ausscheidung aus Abb.20 ergab z.B. Konzentrationen von 39,2% Ti und 58,9% Cr.

9.2 Kampagne T2

9.2.1 Hauptziele

Hauptziele der Kampagne T2 waren zum einen die Erprobung des Schmelzersystems über längere Zeit und insbesondere im "24 h - Betrieb"; zum anderen sollte die Frage geklärt werden, ob in dem Laborschmelzer ein homogenes Glasprodukt erzeugt werden kann, wie sich die unlöslichen Platinmetallphasen im Schmelztiegel verhalten und ob sich durch die Platinmetalle der elektrische Haushalt des Schmelzers verändert. Darüber hinaus sollte die Bildung von Molybdatphasen ("Gelbe Phase") quantitativ untersucht werden.

9.2.2 Änderungen an der Anlage

Die Betriebserfahrungen in der ersten Versuchskampagne machten Änderungen an 2 Stellen der Anlage erforderlich. Es traten erhebliche Probleme beim Absaugen des Glasproduktes auf; das Glas erstarrte bereits im Saugrohr. Außerdem sollte die Möglichkeit geschaffen werden, die Innenheizung auch unabhängig vom Versuchsbetrieb zu betreiben.

Zur Beseitigung der genannten Probleme wurden folgende Änderungen vorgenommen:

- Als Absaugstutzen diente eine Swagelok- Schneidringverschraubung NW 14. Beim Ziehen der Kokille nach dem Absaugen blieb an dem Fitting Glas haften, was zu Problemen führte. Außerdem war eine Querschnittserweiterung des Saugrohres der Kokille nicht möglich. Der Swagelok-Fitting wurde gegen einen KF- Kleinflansch NW 25 ausgetauscht.
- Der Querschnitt des Kokillensaugrohrs wurde vergrößert (von 14 x 1 auf 16 x 1).
- Die Innenheizung konnte nur während der Betriebsphasen benutzt werden. Ansonsten wurde der Tiegel durch die Außenheizung auf Temperatur gehalten. Um den Temperaturabfall im Tiegel bei Ausschalten der Innenheizung zu begrenzen, wurde die Außenheizung bei recht hoher Temperatur (1200°C -1230°C) betrieben. Dies führte zu einer ungünstigen Temperaturverteilung. Durch Änderungen im Schaltschrank wurde die Möglichkeit geschaffen, die Innenheizung unabhängig vom Rechner auch in Betriebspausen zu versorgen.

9.2.3 Versuchsdurchführung

Vor dem Start wurde der Schmelztiegel mit platinmetallfreiem HAWC-Glas gefüllt. Die Zusammensetzung von Speiselösung, HAWC-Glas und Grundglas ist Tabelle 2 zu entnehmen. Der Oxidgehalt des Simulats lag bei 50,63 g/l, die effektive Sollbeladung des Glases mit HAWC Oxiden sollte bei 11,65 Gew.% liegen. Um diese Beladung zu erreichen, mußten pro Liter Simulat 389,72 g Grundglas dosiert werden.

9.2.3.1 8-Stunden-Betrieb

Die Dosierung der Speiselösung erfolgte kontinuierlich mit einer Dosierrate von ca. 500 ml/h. Die Dosierung der Grundglasperlen erfolgte diskontinuierlich etwa 4 mal in der Stunde in Chargen von 48,3 g. Diese Zeitfolge der Perlendosierung entspricht etwa der bei technischen Schmelzern üblichen Abfolge. Die Einschmelzrate lag somit bei 194,8 g/h. Nach der Dosierung von jeweils 1840 g Grundglas und 4721 ml Speiselösung wurde ein Batch beendet. Im Normalfall wurde dann ca. 30 Minuten nach Dosierende eine Kokille mit Glasprodukt abgesaugt und zwar etwa 2000 g Glasprodukt pro Kokille. Der Tiegelfüllstand wurde mit Hilfe eines Peilstabs jeweils nach dem Absaugen überprüft und lag dann etwa bei 80 mm; vor dem Absaugen betrug er etwa 120 mm. Dies entspricht einem Volumen an Schmelze im Tiegel von ca. 1620 ml bzw. 2430 ml.

Die ersten 4 Kokillen wurden 35 mm über dem Tiegelboden, die übrigen Kokillen 15 mm über dem Tiegelboden abgesaugt. Zur Probenahme in der Nähe der Schmelzbadoberfläche wurden einmalig Kokillen mit einem Volumen von 220 ml entsprechend 550 g Glasprodukt verwendet. Es wurden 4 Proben 15 mm unter der Badoberfläche und 1 Probe etwa 10 mm unter der Badoberfläche gezogen.

Insgesamt wurden während der Versuchskampagne im 8-Stunden- Betrieb 21 Kokillen (davon 4 Kokillen a 220 ml) mit insgesamt 35,7 kg Glasprodukt abgesaugt . Hierzu wurden 85 l Speiselösung und 33 kg Grundglas dosiert.

9.2.3.2 24-Stunden-Betrieb

An die Versuchsphase im 8-Stunden-Betrieb schloß sich ein einwöchiger 24-Stunden-Betrieb an. Die Dosierrate für die Speiselösung betrug hier ca. 600 ml/h. Dies entspricht einer Einschmelzrate von 233,8 g Glas/h.

Während dieser Woche wurden 60,32 l Speiselösung und 23,49 kg Grundglas dosiert und 13 Kokillen mit 26,8 kg Glasprodukt abgesaugt. Der 24 h - Betrieb dauerte insgesamt 109 Stunden. Es wurde während 101 Stunden Speiselösung dosiert.

9.2.3.3 8 h - Betrieb mit platinmetallhaltigem HAWC-Simulat

Im Anschluß an den einwöchigen 24 h - Betrieb wurde platinmetallhaltiges HAWC-Simulat dosiert. Die Zusammensetzung von Speiselösung, HAWC - Glas und Grundglas ist aus Tabelle 5 ersichtlich. Der Oxidgehalt des Simulats lag bei 58,79 g/l, die effektive Sollbeladung des Glases mit HAWC - Oxiden sollte bei 13,1 Gew.% liegen. Pro Liter Speiselösung wurden 389,31 g Grundglas dosiert. Nach jeweils 4726 ml Speiselösung und 1840 g Grundglas wurde eine Kokille mit ca. 2000 g Glasprodukt gezogen. Ausgehend von einem platinmetallfreiem Tiegelinhalt reichern sich die Platinmetalle im Glasprodukt langsam an und erreichen rechnerisch nach 10 Kokillen 99,4% der Sollbeladung (Tab.6). Insgesamt wurden 49,3 l platinmetallhaltiges HAWC- Simulat und 19,1 kg Grundglas dosiert und 20,7 kg Glasprodukt in 10 normalen und einer kleinen Kokille (ca. 550 g) entnommen.

9.2.3.4 Abbruch der Versuchskampagne

Die Versuchskampagne mußte nach 2900 Betriebsstunden abgebrochen werden, da der Tiegel durchkorrodiert war. Dies wurde durch das Absinken des Schmelzerfüllstandes festgestellt (über Nacht ca. 40 mm). Ingesamt waren etwa 1,8 kg Glas in den Schutztiegel ausgelaufen.

Das Abfahren der Anlage und Abkühlen des Tiegels wurde folgendermaßen durchgeführt:

- Dosierung von insgesamt 5,22 l Speiselösung und 2029 g Grundglas zum Füllen des Tiegels.
- Ausschalten der Außenheizung und ca. 2 Stunden später Ausschalten der

Innenheizung. Während dieser Zeit wurde weiter dosiert; die Elektrodentemperatur fiel dabei auf ca. 860°C.

Über die Absaugöffnung wurde dann zur weiteren Kühlung Luft in den Tiegel gezogen, bis die Elektrodentemperatur auf ca. 760°C abgefallen war.

Ziel der Abkühlprozedur war, den Zustand des Tiegels während der Dosierphase einzufrieren.

9.2.4 Ergebnisse

.

9.2.4.1 Betriebsdaten

Die Temperatur an der Meßstelle im Zentrum einer der beiden Elektroden betrug während der Dosierung im Mittel etwa 1130°C, in Betriebspausen ca. 1000°C. Die Abb.21 zeigt den typischen mittleren Temperaturverlauf an dieser Meßstelle über eine Dosierperiode (batch).

Für die Direktheizung der Glasschmelze wurde der Konstantstrom so eingestellt, daß im Bad ca. 1300 W freigesetzt wurden, wobei allerdings die Strombelastung der Elektroden nicht über 1 A cm⁻² steigen sollte. Während der Dosierpause (über Nacht und am Wochenende) wurde die Direktheizung abgeschaltet. Die Abbildungen 22 und 23 zeigen einen typischen Stromund Spannungsverlauf jeweils während eines Dosierzyklus mit platinmetallfreier bzw. platinmetallhaltiger Speiselösung. Ein Vergleich der beiden Kurvenpaare in Abb.22 und 23 zeigt eine deutlich geringere Badspannung bei höherem Strom in Abb.23, was auf eine erhöhte Leitfähigkeit durch die eingetragenen Platinmetalle zurückgeführt wird.

Die Badspannung schwankte entsprechend dem Badwiderstand, der wiederum bei gleichbleibender Zusammensetzung des Schmelzbades im wesentlichen durch die Badtemperatur und den Glasfüllstand gegeben ist. Abb.24 zeigt die Abhängigkeiten für eine nahezu konstante Badtemperatur. Die Stromdichte betrug während der Dosierung von platinmetallfreier Speiselösung etwa 0,8 Acm⁻²; gegen Ende der Kampagne wurde der Grenzwert von 1,0 Acm⁻², der aus Korrosionsgründen nicht überschritten werden sollte, erreicht.

9.2.4.2 Beladung der Gläser mit HAWC - Oxiden

Während der Kampagne sind insgesamt 45 Kokillen mit Glas abgefüllt worden, wobei die letzten 11 Kokillen mit Platinmetallen beladen waren (Tab. 1). Da der Feststoffaustrag ins Abgassystem insgesamt gering ist, sollten sich die Konzentrationen im Schmelzer im Idealfall entsprechend einem kontinuierlich befüllten und diskontinuierlich teilentleerten idealen Rührkessel einstellen. Die sich daraus ergebende Sollbeladung einzelner Kokillen zeigt Tab. 6. Sie gilt für die Beladung mit Platinmetallen ab K 35/87.

Die tatsächlich in einzelnen Kokillen gemessenen mittleren Elementkonzentrationen sind in Tab. 7 aufgelistet. Die Werte für La₂O₃ und Ce₂O₃ zeigen relativ starke Beladungsschwankungen, die wohl auf unzureichende Homogenisierung im Schmelzer vor dem Absaugen des Glases zurückzuführen sind. Die Beladung mit Platinmetallen liegt in den Kokillen K 38/87 und K 42/87 nur zwischen ca. 45% und 60% des Sollwertes, während z.B. die Beladung mit Ce₂O₃ ca. 90% beträgt. Dies ist durch die Akkumulation von Ru(Rh)O₂ bzw. Pd-Rh-Te-Legierung im Schmelzer zu erklären. Für alle drei Platinmetalle ist festzustellen, daß die Beladung von K 38/87 zu K 42/87 hin zunimmt, d.h. daß der anfangs hohe Anteil von Platinmetallen aus der Speiselösung, der im Schmelzer verbleibt, im laufenden Betrieb kleiner wird.

9.2.4.3 Homogenität der Glasphase in den Kokillen

Die chemische Homogenität der Glasphase in den HAWC - Gläsern wird wesentlich durch die Verweilzeit der Schmelze im Schmelzer bestimmt, sofern Phasentransformationen wie flüssig-flüssig-Entmischung oder Kristallisation beim Abkühlen der Schmelze ausreichend langsam sind und daher unter Betriebsbedingungen nicht beobachtet werden. Die Homogenität in diesem Sinn ist die Gleichförmigkeit der Glasphase in mikroskopischen Dimensionen, nicht aber die Variation der mittleren Glaszusammensetzung durch betriebsbedingte Schwankungen in der Abfallbeladung und nicht die Verteilung von Fremdphasen im Glasprodukt. Zur Messung der Homogenität der Glasphase im abgefüllten Glasprodukt wurde je eine Kokille mit platinmetallfreiem und platinmetallhaltigem HAWC -Glas in der Zylinderachse zerschnitten. Aus jeweils einer Schnittfläche wurden an 9 Stellen Proben von ca. 0,2 mm Größe entnommen (Abb. 25) und der Brechungsindex der Glasphase durch Vergleich mit einer optischen Flüssigkeit auf dem Spindeltisch bestimmt. Die in Abb. 25 eingetragenen Meßwerte sind jeweils Mittelwerte aus 5 Einzelmessungen mit einer Standardabweichung von \pm 0,0006. Die Brechungsindices vom Grundglas und Glasprodukt mit voller Beladung sind 1,5482 bzw. 1,5736. Nimmt man eine lineare Beziehung zwischen Brechungsindex und HAWC- Oxidbeladung an [5], so entspricht eine Variation im Brechungsindex von 0,0002 einer Variation in der Beladung von 0,1 Gew.-%, sofern Inhomogenitäten allein durch Beladungsschwankungen bedingt sind (siehe auch [6]). Die Meßwerte in Abb. 25 zeigen, daß die Glasphase in K 35/87 praktisch homogen ist und die Beladung dem Sollwert entspricht. Die beobachtete maximale Variation des Brechungsindex von 0,0004 ist kleiner als der Meßfehler der Methode, der bei \pm 0,0006 liegt.

Dagegen erwies sich die Glasphase in der Probe K 41/87 als stark inhomogen (Abb. 25). Wegen der in diesem Glas vorhandenen Platinmetallpartikel ist die Bestimmung des Brechungsindex zwar schwieriger und weniger genau, die gefundene Variation im Brechungsindex ist aber mit Sicherheit auf unterschiedliche Beladung mit HAWC - Oxiden zurückzuführen. Das Glas zeigt in der unteren Hälfte der Kokille eine Überbeladung mit HAWC-Oxiden, während der zum Schluß abgefüllte Teil des Glases in der oberen Kokillenhälfte eine zu geringe Beladung aufweist. Diese Befunde zeigen, daß Grundglasperlen und HAWC-Oxide nicht gleichzeitig von der Schmelze aufgenommen werden, sondern zunächst bevorzugt die HAWC-Oxide.

9.2.4.4 Platinmetalle in den Kokillen

Die Platinmetalle Ru, Rh und Pd treten im HAWC - Glas in Form ungelöster Partikel verschiedener Größe auf. Sie agglomerieren und neigen wegen ihrer Dichte zur Sedimentation im Schmelzer und sind deshalb auch in den Kokillen nicht gleichmäßig verteilt. Sie markieren vielmehr die beim Absaugen des Glases auftretenden Strömungsfäden (siehe auch Abb. 25). Daher wurde auf eine detaillierte Analyse der Platinmetallpartikelverteilung in den Kokillen verzichtet.

Die Morphologie, Größe und Zusammensetzung der Platinmetallpartikel sind aber dennoch bei zwei Kokillen (K 37/87 und K 42/87) grob untersucht worden. In allen Proben wurde Pd-Rh-Te- Legierungen in Tropfenform vorgefunden. Die Partikelgrößen entsprachen den in Gläsern aus technischen Schmelzern [7] beobachteten Größenspektren mit einem Häufigkeitsmaximum um ca. 5 µm. Die Verteilung und Zusammensetzung der Platinmetallpartikel wurde mit REM/EDS gemessen, SO daß ihre quantitative Zusammensetzung größenordnungsmäßig angegeben werden kann. Zudem waren die Pd- Rh-Te-Tröpfchen auf Grund der schon beim Zweistoffsystem Pd-Te komplexen Phasenbeziehungen mehrphasig. Ein Beispiel für die Zusammensetzung eines ca. 10 µm großen Legierungstropfens zeigt Abb. 26.

Das Ruthenium trat in Form von RuO₂-Nadeln mit einer Länge zwischen 1 und 30 µm auf. In vielen Fällen traten die RuO₂- Kristalle schwarmartig gehäuft in der Umgebung von Pd-Rh-Te-Tröpfchen auf.

9.2.4.5 Gelbe Phase in den Kokillen

In einem flüssiggespeisten Keramikschmelzer bilden sich schon ab etwa 330°C Salzschmelzen, was zur Entmischung von Bestandteilen der Speiselösung und des Grundglases führen kann. Damit wird die Homogenisierung erschwert. Es ist deshalb nicht auszuschließen, daß auch das HAWC - Glas in den Kokillen Fremdphasen aus der "Kalten Kappe" enthält.

Da sich Molybdän nur sehr begrenzt im Borosilikatglas löst und die nominale Beladung nur wenig unterhalb der Sättigung liegt [1], führen Entmischungen schnell zum Auftreten von Molybdatschmelzen und lokaler Übersättigung. Daher enthalten praktisch alle mit flüssiggespeisten keramischen Schmelzern hergestellten HAWC-Gläser geringe Mengen an Molybdatphase ("Gelbe Phase"). Ihr Auftreten im HAWC - Glas ist deshalb von Bedeutung, weil sie leicht wasserlösliche Bestandteile enthält und immer geringe Mengen Cäsium aus dem HAWC aufnimmt. Ihre absolute Menge und ihr Gehalt an Cäsium ist daher mit maßgebend für die potentielle Mobilisierung von Spaltcäsium aus einem HAWC - Glas über den Wasserpfad.

Zur Bestimmung der Menge an "Gelber Phase" im Produkt und zur Analyse der "Gelben Phase" selbst war es notwendig, die Molybdatphase vom Glas quantitativ abzutrennen. Dazu wurden die folgenden Methoden getestet, wobei die meisten aber letztlich für das angestrebte Ziel unbrauchbar waren. Ausgangsmaterial war immer die gepulverte Probe des HAWC - Glases mit feinen Einschlüssen von "Gelber Phase":

- Selektive Auflösung der "Gelben Phase" in Wasser, 0,5 m Ammonium-EDTA-Lösung, 0,5 m Ammonium-NTA-Lösung, Formamid, Diethylformamid oder Triäthanolamin: In den genannten Lösungsmitteln war die "Gelbe Phase" nur teilweise löslich, so daß letztlich keine quantitative Abtrennung möglich war.
- Selektive Auflösung in 2 n HNO₃ bei ca. 60°C: Salpetersäure löste die "Gelbe Phase" quantitativ auf. Allerdings ist das HAWC-Glas unter den angegebenen Bedingungen ebenfalls erheblich löslich. Mehrere Versuche ergaben, daß 35% - 45% des Na und des Ca unter den angegebenen Bedingungen innerhalb von 30 Minuten aus zerstoßenem Grundglas herausgelöst werden, so daß eine selektive Auflösung von "Gelber Phase" in HNO₃ nicht gegeben war. In 0,2 n HNO₃ wurden unter gleichen Bedingungen immerhin noch ca. 15% des Na und des Ca herausgelöst.
- Magnetische Trennung: Die Trennung von Natriummolybdatpulver und Grundglaspulver im Magnetscheider bei einer magnetischen Flußdichte von ca. 2 T gelang nicht. Offensichtlich sind die magnetischen Suszeptibilitäten der beiden Komponenten zu ähnlich. Auf Tests mit "Gelber Phase" und HAWC - Glas wurde daher verzichtet.
- Röntgenographische Bestimmung des Natriummolybdats im Gemisch: Mit entsprechendem Aufwand ist zwar die genaue quantitative Bestimmung der kristallisierten Phasen im Gemisch möglich, jedoch sind die Gehalte an "Gelber Phase" von weit unter 1% im Glasprodukt für diese Methode zu gering.
- Trennung durch "Schwere Flüssigkeit": Auf Grund der unterschiedlichen Dichte von Glasprodukt (< 2,8 g ml⁻¹) und "Gelber Phase" (> 3,3 g ml⁻¹) sollten sich beide Phasen beim Aufschlämmen einer gepulverte Probe in Tetrabromäthan (Dichte 2,95 g ml⁻¹) trennen. Tatsächlich ist aber ein Absetzen der "Gelben Phase" nur schwierig zu erreichen. Die Ursachen für dieses Verhalten wurden nicht näher untersucht. Äußerlich waren die "Gelbe Phase"-Partikel von Gasblasen bedeckt; da die "Gelbe Phase" beim Erkalten stark schrumpft, muß auch damit gerechnet werden, daß Tröpfchen dieser Phase Hohlräume enthalten, die die mittlere Dichte erheblich verringern können.

• Mechanische Trennung unter der Lupe: Bei grob gestoßenen Proben ist das Aussortieren von "Gelber Phase" unter der Lupe verhältnismäßig einfach. Bei feineren Fraktionen ist die Anwendung der Bildanalyse möglich.

die mechanische Abtrennung der "Gelben Phase" Insgesamt erschien als die erfolgversprechendste, so daß sie im vorliegenden Fall angewandt wurde. Die einzelnen Arbeitsschritte waren wie folgt: Das gebrochene Probengut aus einer kompletten Kokille wurde durch Sieben in 4 Kornfraktionen geteilt $\emptyset > 2$ mm; $0.5 < \emptyset < 2$ mm; $0.25 < \emptyset < 0.5$ mm; $\emptyset < 0.25$ mm. Die Masse der gröbsten Fraktion betrug einige 10 g. Aus dieser Fraktion wurde die "Gelbe Phase" unter der Lupe direkt ausgelesen. Die beiden feineren Fraktionen wurden in einem Probenteiler jeweils in 8 etwa gleich große Teile geteilt. Drei Teilproben der Fraktion 0,5 - 2 mm (je ca. 150 g) wurden getrennt verlesen und die Gehalte an "Gelber Phase" gemittelt. Eine Teilprobe der Kornfraktion 0,25 - 0,5 mm wurde nochmals in 8 Teile geteilt und jeweils 3 dieser Proben (ca. 4 g) verlesen und der mittlere Gehalt an "Gelber Phase" bestimmt. Die Ergebnisse der Teilproben wurden auf den gesamten Kokilleninhalt hochgerechnet. Die vierte Fraktion, der Feinkornanteil mit Korngrößen < 0,25 mm konnte nicht unter der Lupe verlesen werden. Jeweils 9 Teilproben dieser Fraktion wurden auf Klebefolie zu einer Monoschicht ausgebreitet; die Schicht wurde fotographiert und das Bild auf das Tableau eines Bildanalysegerätes projiziert. Auf diese Weise wurde der Volumenanteil "Gelber Phase" im Feinkornanteil der Probe bestimmt, mit Hilfe der Dichte auf Gewichtsanteil umgerechnet und auf die gesamte Kokille hochgerechnet. Tab. 8 zeigt die Ergebnisse von 10 Analysen.

Auffällig ist, daß die Menge an "Gelber Phase" im Feinkornanteil in allen Proben ziemlich gleich groß ist, während beim Grobanteil Schwankungen bis zum Faktor 5 auftreten. Der Feinkornanteil an der Gesamtmenge schwankt zwischen 10 und 40%. Der Gesamtfehler der Bestimmungsmethode läßt sich schwer beziffern. Die getrennte Verarbeitung von Teilmengen einer Kokille und die Analyse von Teilproben zeigt aber, daß mit Fehlern von \pm 50% durchaus zu rechnen ist. Bezogen auf das Glasprodukt ergeben sich daraus Gehalte an Gelber Phase von im Mittel 0,13%. Dieser Anteil schwankt zwischen einzelnen Proben stark und läßt sich nicht mit bestimmten Betriebsbedingungen korrelieren; er erscheint vielmehr durch das Schmelzersystem bedingt.

Die röntgenographische Analyse von "Gelber Phase" aus den Kokillen ergab einen Bestand an folgenden Phasen:

Na₂MoO₄, Na₂MoO₄.2 H₂O, CaMoO₄, BaMoO₄.

Mindestens eine weitere Phase konnte nicht identifiziert werden (Abb. 27).

Die Elementanalysen sind in Tab. 9 zusammengestellt. Die nicht aufgeführten Bestandteile liegen nur in Konzentrationen < 1 Gew.-% vor. Der Hauptbestandteil der "Gelben Phase" ist unter allen Bedingungen Natriummolybdat. Die Zusammensetzung der "Gelben Phase" im Produkt ändert sich in Abhängigkeit von der Wartezeit zwischen Dosierende und Glasabfüllung kaum. Aus Tab. 9 sind keine eindeutigen Trends abzulesen.

In HAWC - Gläsern trat die "Gelbe Phase" gewöhnlich in Form mehr oder weniger großer Tropfen auf. Daneben war das Glasprodukt aus dem Laborschmelzer gelegentlich von trüben Streifen durchzogen. Bei näherer Analyse konnten die Schlieren als Anhäufung von ca. 1 µm großen Perlen von Gelber Phase identifiziert werden (Abb. 28). Worauf diese feine Verteilung der "Gelben Phase" zurückzuführen ist, blieb unklar; in Gläsern aus technischen Schmelzern wurde so fein verteilte "Gelbe Phase" nicht beobachtet.

9.2.4.6 Physikalische Eigenschaften der Gläser in den Kokillen

Die langsame Zunahme der Viskosität und der elektrischen Leitfähigkeit der HAWC - Gläser, die während der Verglasung von platinmetallhaltigem HAWC beobachtet wurde, widerspiegelt die steigende Konzentration von Platinmetallen im Glas. Entsprechende Daten sind zusammen mit den Meßwerten von Proben mit nominalem Platinmetallgehalt in Abb. 29 und 30 zusammengestellt. Tab. 10 gibt einen Überblick über die Meßwerte bei 950°C und 1150°C.

9.2.4.7 Phänomenologische Beurteilung von Vertikalschnitten durch den Schmelztiegel

Die Vertikalschnitte durch den Schmelzertiegel parallel zu den Seitenwänden und diagonal dazu zeigen im Zentrum des Tiegels einen tiefen Krater mit nicht umgesetztem Gemenge, der davon herrührt, daß noch mehrere Stunden nach Abschalten der Heizung Speiselösung und Grundglas dosiert wurden (Abb. 31).

Es ist eine deutliche Vertikalschichtung des Tiegelinhalts in vier Zonen zu erkennen. Auf der ankorrodierten Bodenfläche aus ER 2161-Keramik steht eine ca. 2,5 cm hohe Glasschicht (Zone 1), die stark von unlöslichen Platinmetallphasen durchsetzt ist. In Abb. 31 sind schon kleine (im Bild helle) Pd-Rh-Te- Tröpfchen zu erkennen. Oberhalb dieser Schicht befindet sich eine nur wenige Platinmetallpartikel enthaltende Glasschicht von ca. 1,5 cm Dicke (Zone 2). Nach oben schließt sich daran die Einschmelzzone an, die in Wandnähe ca. 3 cm dick ist, zur Tiegelmitte hin aber fast völlig durch nachsinkendes Gemenge verdrängt ist (Zone 3). Die Einschmelzzone ist durch dichte (im Bild helle) Schlieren aus noch unumgesetztem Material gekennzeichnet. Darüber befindet sich eine dicke Schicht Gemenge, in der noch die einzelnen Glasperlen, von Kalzinat umhüllt, zu erkennen sind (Zone 4).

Die Korrosion am Ofenstein und an den Elektroden war nicht auffällig. Allerdings war der Feuerfestkitt deutlich stärker angegriffen als das Material ER 2161. Direkt oberhalb der Elektroden war die ca. 2 mm starke Korrosionsschicht auf dem Ofenstein weitgehend abgelöst, so daß an dieser Stelle mit einer insgesamt höheren Abtragsrate zu rechnen ist (Abb. 32). Vermutlich ist dieser Abtrag durch stärkere Konvektionsströme in Elektrodennähe bedingt.

9.2.4.8 Physikalische und chemische Untersuchungen der Gläser aus dem Schmelztiegel

Vom Glasprodukt in Zone 1 und Zone 2 (Abb. 31) sind sowohl die Viskosität und elektrische Leitfähigkeit als auch die mittlere Dichte gemessen worden. Abb. 33 zeigt den Viskositätsverlauf der beiden Proben im Vergleich zu einem Laborprodukt GP 98/12.2 mit nominalem Platinmetallgehalt, Abb. 34, den entsprechenden Verlauf der elektrischen Leitfähigkeit.

Die zugehörigen Analysen für die mittleren Gehalte in RuO₂, Rh und Pd in beiden Zonen zeigt Tab. 11. Dort sind auch nochmals die Viskositäts- und Leitfähigkeitsdaten für 950°C und 1150°C aufgeführt und durch die Dichtedaten bei Raumtemperatur ergänzt.

9.2.4.9 Akkumulation der Platinmetalle im Schmelztiegel

Aus den gemessenen Platinmetallkonzentrationen in den drei unteren Zonen des Schmelzertiegels (Abb. 31) entsprechend der Tab. 11 und aus den Abmessungen der verschiedenen Zonen (Kap. 9.2.4.7.) läßt sich die Platinmetallakkumulation im Schmelzer abschätzen. Dabei wird angenommen, daß das aufgegebene Gemenge in Zone 4 unverändert vorliegt. Für die Berechnung des Volumens einzelner Zonen wird der volle Schmelzerquerschnitt 140x140 mm und die Schichthöhe herangezogen. Für die Zone 3 wird ein pyramidenförmiges Volumen, das im erkalteten Zustand noch mit Gemenge gefüllt war, abgezogen.

Tab. 12 zeigt, daß in der bodennahen Zone 1 (Abb. 31) sowohl RuO₂ als auch Rh und Pd um ca. den Faktor 4 angereichert sind, während in der darüber liegenden Zone nur ca. 18 %- 23% des Sollgehalts an Platinmetallen erreicht wird. In der Einschmelzzone 3 beträgt der Platinmetallgehalt etwa 50% des Sollgehalts. Die Platinmetallphasen verteilen sich also unter den Konvektionsbedingungen des Schmelzers nicht im Gesamtvolumen, sondern reichern sich

in einer verhältnismäßig kleinen Schicht am Schmelzerboden an, während die darüberliegenden Zonen an Platinmetallen verarmen. Bezogen auf die mit ingesamt 49,3 1 Speiselösung (Tab. 5) eingetragene Platinmetallmenge akkumulieren knapp 30% davon im Schmelzer in der Zone 1.

9.2.4.10 Verteilung der Platinmetalle im Schmelztiegel

Zur Beurteilung der Verteilung der Platinmetalle im Schmelztiegel wurden aus einer Schnittfläche entsprechend Abb. 31 insgesamt 6 Dünnschliffe herauspräpariert. Jeweils 3 aneinandergrenzende Schliffe von je ca. 27 mm Höhe deckten dabei die gesamte Höhe des Tiegelinhalts über alle vier Zonen in der Abb. 31 einschließlich der Bodenkeramik ab. Mit dem bloßen Auge erscheint das Glas selbst in den Dünnschliffen durchsichtig aber von dunklen RuO₂-Wolken durchzogen (Abb. 35). Bei detaillierter Betrachtung unter dem Rasterelektronenmikroskop ergibt sich folgendes Bild: In der Zone 4 (Kalte Kappe) liegen Grundglaskugeln noch neben der eingedampften und kalzinierten Speiselösung vor (Abb. 36a). Im Kalzinat nahe dem Übergang zur Zone 3 haben sich schon RuO₂-Nadeln gebildet (Abb. 36 b-d, verschiedene Vergrößerungen). Die Nadeln erscheinen häufig nicht isoliert, sondern sind zu Schwärmen zusammengetreten (Abb. 36c, oben). Die Länge der Nadeln beträgt in Ausnahmefällen bis zu 30 μ m. Neben RuO₂ und Kalzinat sind auch schon Pd-Te-Kügelchen von < 1 μ m zu erkennen. Dieses Erscheinungsbild setzt sich in der Zone 3 von Abb. 31 fort.

In der Zone 2 ist das Glas weitgehend durchgeschmolzen; Platinmetallagglomerate sind nur vereinzelt anzutreffen. Das Glas enthält allerdings noch immer geringe Kalzinatreste, die als Seltenerdsilikate identifiziert wurden. Die großen von Fremdphasen freien Bereiche in Zone 2 enthalten praktisch keine sichtbaren Platinmetallpartikel. Die in Richtung Tiegelboden anschließende Zone 1 (Abb. 31 und 35) ist durch wolkige Ansammlungen von Platinmetallphasen charakterisiert. Relikte des Kalzinats sind nur ganz vereinzelt zu beobachten. Bei den Platinmetallagglomeraten handelt es sich um Schwärme von RuO2-Kristallen durchsetzt mit Tröpfchen von Pd-Rh-Te-Legierung (Abb. 37). Die RuO2-Kristalle haben hier schon eine beträchtliche Größe erreicht (etwa 5 µm Breite und 30 µm Länge). Die Durchmesser Pd-Rh-Te-Tröpfchen erreichen von > Éine 10 μm. genauere Tropfengrößenanalyse über die Zonen 1 und 2 hinweg wurde an Hand von 43 Rasterelektronenmikroskopaufnahmen vorgenommen. Die Aufnahmen wurden in 8 Gruppen (I - VIII) unterteilt und mit Hilfe eines Bildanalysensystems ausgewertet, die geometrische Lage der Gruppen im Schmelzertiegel ist in Abb. 31 eingetragen. Aus der Bildanalyse ergaben sich die in Tab. 13 aufgeführten Meßdaten; die verwendete Klassenbreite betrug 0,1 logarithmische Einheiten. Die sich daraus ergebenden linearisierten arithmetischen Mittelwerte für die Korngröße und die Standardabweichung sind in Abb.38, die Summenkurven für die einzelnen Gruppen in Abb. 39 dargestellt. In jeder Gruppe ergab sich ein im logarithmischen Maßstab etwa normalverteiltes Größenspektrum, wenn man von den zwei außergewöhnlich großen Tropfen in den Gruppen II und IV absieht. Auffallend große Tropfen wie diese sind vereinzelt sowohl in Kokillen aus technischen Schmelzern als auch im Tiegel des Laborschmelzers beobachtet worden.

Die Größenspektren der Gruppe I - V sind praktisch identisch (Abb. 38). Es sind dies die Partikel in der Zone 1 des Schmelzertiegels, wo massige Platinmetallsedimente zu finden sind. Dies kann bedeuten, daß in Zone 1 die Teilchenvergröberung zum Stillstand gekommen ist, während in der darüberliegenden Zone 2 bei den Teilchengruppen VI - VIII eine deutliche Abnahme des mittleren Teilchendurchmessers von unten nach oben zu beobachten ist. D.h. die Kornvergröberung der Pt-Rh-Te-Teilchen findet in den dort vorhandenen kleineren Agglomeraten von RuO₂ und Pd-Rh-Te statt und ist, wenn die Partikel die bodennahe Suspension aus RuO₂ und Pd-Rh-Te Legierung erreichen, praktisch beendet. Eine Partikelvergröberung von oben nach unten ist auch beim RuO₂ zu beobachten. Allerdings sind die RuO₂-Teilchen wegen ihrer Geometrie einer einfachen Größenanalyse nicht zugänglich.

9.2.4.11 Korrosion der Ofenkeramik

Bei den Untersuchungen des zerschnittenen Schmelztiegels zeigte sich auf der schmelzenberührten Seite der Tiegelauskleidung eine korrodierte Zone von 2 - 3 mm Dicke. Die Veränderung der Ofenkeramik macht sich dabei zu allererst durch Transport über den Glasanteil in der Ofenkeramik bemerkbar (Abb. 40, Si- Verteilung). SiO2 ist in dieser Phase bis in ca. 2,5 mm Tiefe scheinbar abgereichert, d.h. durch eingedrungene Glasschmelze verdünnt. Änderungen in der Na-Konzentration (Eindringen von Na₂O aus der Glasschmelze in den Ofenstein) reichen ebenfalls bis in diese Tiefe. Al2O3 wird in der äußeren Korrosionsschicht zunehmend aus dem Chromkorund herausgelöst. Cr2O3 bleibt praktisch ortsfest (Abb. 40, Verteilung Al und Cr). In einer ca. 1 mm starken Schicht zur Glasschmelze hin sind die ZrO2-Kristalle praktisch völlig aufgelöst, während Cr2O3 scheinbar unverändert vorhanden ist (Abb. 40, Zr- Verteilung). Die geschilderten Veränderungen sind auch im Rückstreubild (Abb. 41) gut zu erkennen: Unten der unveränderte Ofenstein mit ZrO₂ (weiß) neben Chromkorundkristallen (grau), dazwischen Glasphase (schwarz). Weiter oben zeigt sich die Auflösung der Chromkorundkristalle. Die Kristalle werden durch Auflösung und anschließende Abscheidung des Cr₂O₃ in Form feinster Kristalle scheinbar porös; das Al₂O₃ bleibt in Lösung. Noch weiter oben verschwinden die ZrO₂-Kristalle aus der Korrosionsschicht. In der auf der Cr₂O₃-reichen Schicht aufliegenden Glasphase zeigen sich feine Kristalle von RuO₂ und Kügelchen von Pd-Te- Legierung (beide aus dem HAWC). Die hier beobachtete Korrosionsschicht zeigt nicht das gesamte während der Kampagne veränderte Keramikvolumen, da letzlich auch die Cr2O3-reiche äußere Korrosionsschicht langsam abgetragen wird. Die Chromoxidschicht stellt aber sicher eine Schutzschicht für die Ofenkeramik dar. In Abb. 31 ist zu erkennen, daß der eigentliche Abtrag von der Bodenfläche weniger als 1 mm beträgt.

9.3 Kampagne T3

9.3.1 Hauptziele

Bei dieser Kampagne wurde eine allseitige Bodenneigung von 45° im Schmelztiegel realisiert. Primär sollte daher das Akkumulationsverhalten der Platinmetalle unter diesen Bedingungen, verbunden mit einer Platinmetall - Bilanzierung in einem Langzeitversuch untersucht werden. Weiterhin sollte die Zusammensetzung und Partikelgröße der Platinmetallphasen analysiert werden. Weitere Ziele waren:

- Interpretation der Leitfähigkeitsänderung von HAWC Gläsern durch Platinmetalle
- Messung der Homogenität der Gläser unter den veränderten Bedingungen
- Analyse der "Gelben Phase" unter den veränderten Bedingungen
- Messung des Temperaturprofils im Schmelztiegel

9.3.2 Änderungen an der Anlage

Für die 3. Versuchskampagne wurde ein Schmelztiegel eingesetzt, dessen Boden durch eingesetzte Keramik - Formsteine eine allseitige Neigung von 45° aufwies. Abbildung 42 zeigt einen Querschnitt des Schmelztiegels. Der minimale Füllstand im Schmelzer betrug nun 120 mm, der maximale 160 mm (Abb. 43). Das Schmelzbadvolumen lag bei maximal 2,4 1 (entsprechend 5,9 kg HAWC - Glas) und minimal bei 1,6 1 (entsprechend 3,9 kg HAWC - Glas). Die Verwendung dieses Tiegels machte weitere Änderungen an der Anlage erforderlich, die im folgenden zusammengestellt sind:

• Die Bodenneigung im Tiegel führte zu einem größeren Badquerschnitt (Vergleich Abb. 42 und Abb. 3). Dadurch verringerte sich der Badwiderstand. Um dennoch eine ausreichende Leistung eintragen zu können, war ein größerer Transformator (sekundärseitig 10/30/50 V, 100 A) und ein für höhere Ströme geeigneter Thyristorsteller (C 92 / 45 A, Fa. Nagy) erforderlich.

- Bei sinkendem Badwiderstand neigte der Regler zum Schwingen. Er mußte deshalb gedämpft werden.
- Um das HAWC Glas von der tiefsten Stelle im Schmelzer entnehmen zu können, mußte nun in der Tiegelmitte ca. 5 mm über dem Boden abgesaugt werden. Da die Zugabe der Speiselösung auch in der Tiegelmitte erfolgte, mußte der Kühler für Speiselösung jeweils vor dem Absaugen demontiert werden. Die Anordnung der Flansche auf dem Tiegeldeckel wurde entsprechend geändert. Abb. 44 zeigt eine Konstruktionszeichnung des neuen Tiegeldeckels. In Abb. 45 ist der Tiegeldeckel mit den wichtigsten Flanschen dargestellt.

9.3.3 Versuchsdurchführung

Vor dem Start wurde der Schmelztiegel mit platinmetallfreiem HAWC-Glas gefüllt. Die Zusammensetzung ist Tab.2 zu entnehmen. Für die HAWC - Verglasung wurde Speiselösung und Grundglas entsprechend Tabelle 5 benutzt. Der Oxidgehalt des Simulats lag bei 58,8 g/l, die effektive Sollbeladung des Glases mit HAWC - Oxiden sollte bei 13,35 Gew.% liegen. Um diese Beladung zu erreichen, mußten pro Liter Simulat 381,56 g Grundglas dosiert werden. Die Zusammensetzung von Speiselösung, HAWC-Glas und Grundglas ist Tab. 5 zu entnehmen.

Entsprechend Tab. 1 wurde nach der Produktion von 35 Kokillen im "8 h - Betrieb" auf ein anderes Grundglas umgestellt. Seine Zusammensetzung und die des HAWC - Glases und der Speiselösung kann Tab. 14 entnommen werden. Zum Kampagnenende wurde über 4 Tage ein "24 h - Betrieb" eingerichtet (Tab. 1).

Die Dosierung des Grundglases erfolgte diskontinuierlich etwa 5 mal pro Stunde in Chargen von 48,3 g, d.h. jeweils nach der Dosierung von 126 ml Speiselösung. Daraus ergab sich eine Schmelzrate von 230 g Glas pro Stunde. Nach der Dosierung von jeweils 1835 g Grundglas und 4810 ml Speiselösung war ein Batch beendet. Etwa 40 Minuten nach Dosierende wurde die HAWC - Glasschmelze abgesaugt.

Während des Versuchsbetriebs wurden irrtümlich ca. 20 l Speiselösung mit etwa dem 5fachen Gehalt an Molybdän dosiert (Tabelle 15). Das hierdurch bedingte Ansteigen der Menge an "Gelber Phase" im HAWC - Glas sowie die Normalisierung der Zusammensetzung wurde verfolgt.

Zur Untersuchung der Sedimentationgeschwindigkeit der Platinmetallphasen im Schmelzer wurden nach der Dosierung von 148 I Speiselösung vier aufeinanderfolgende Kokillen etwa in Höhe der Mitte der Elektroden (ca. 95 mm anstatt 5 mm über dem Tiegelboden) gezogen. Der Badwiderstand und die Konzentration der Platinmetalle im abgesaugten Glas wurde bestimmt. Bei der letzten Absaugung wurden an Stelle einer normalen Kokille nacheinander 6 kleine Kokillen mit je ca. 430 g Glasschmelze gefüllt. Der Platinmetallgehalt der Gläser wurde bestimmt.

Durch ein rasches Abkühlen des Schmelztiegels bei Beendigung der Versuchskampagne sollte die während der Dosierung entstandene "Kalte Kappe" erhalten werden. Dies wurde durch folgende Vorgehensweise erreicht:

- Abschalten der Außenheizung.
- Nach 30 Minuten Abschalten der Dosierung der Speiselösung
- Nach weiteren 30 Minuten die Temperatur in den Elektroden betrug zu diesem Zeitpunkt 931°C- wurde der Schmelztiegel zur rascheren Abkühlung angehoben, bis die Temperatur in den Elektroden auf ca. 500°C abgesunken war.

9.3.4 Ergebnisse

9.3.4.1 Betriebsdaten

Das auffälligste Phänomen bei dieser Verglasungskampagne war der starke Rückgang des mittleren Badwiderstandes. Dies zeigt Abbildung 46, in der auf gleichen Füllstand und gleiche Temperatur bei allen Messungen korrigiert wurde. Der Badwiderstand sank durch die Dosierung von platinmetallhaltiger Speiselösung auf etwa 40% des Ausgangswertes ab. Nach der Dosierung von ca. 50 l Simulat (dies entspricht rechnerisch etwa dem 5-maligen Austausch des Schmelzerinhalts) kam die zunächst starke Abnahme des Badwiderstandes fast zum Stillstand (Abb. 46).

Beim Absaugen des Glases in Höhe der Elektrodenmitte sank der Badwiderstand nur noch unwesentlich weiter (siehe Abb. 46, Markierungspfeil). Diese Verfahrensweise erhöhte den Grad der Platinmetallakkumulation offenbar nur geringfügig.

Während des kontinuierlichen Betriebs des Schmelzers am Ende der Kampagne war der Badwiderstand dann weiter rückläufig. Er sank während dieser Zeitspanne von 0,21 V/A auf 0,14 V/A, d.h. auf etwa 30 % des Ausgangswiderstands. Der kontinuierliche Betrieb schien eine weitere Akkumulation von Platinmetallen im Schmelzer zu begünstigen.

Die Abb. 47 bis 49 zeigen den Verlauf der elektrischen Betriebsdaten während des "24 h-Betriebs". Die mittlere Temperatur (gemessen in einer der Elektroden) betrug gleichbleibend etwa 1120°C, der vorgegebene Elektrodenstrom ca. 72 A, am Ende ca. 76 A. Die Stromdichte lag bei 1,1 bis 1,2 Acm⁻² und damit an der oberen Grenze, deren Überschreiten zu starker Korrosion der Elektroden führt. Die Elektrodenspannung fiel während des Dauerbetriebs weiter von ca. 16 auf 11 V. Der wechselnde Füllstand im Tiegel beeinflußte den Badwiderstand am Kampagnenende nur noch unwesentlich. Da die Direktheizung stromkonstant geregelt wird, folgte die Leistung im wesentlichen der Spannung. Die Leistung sank von ca. 1100 V*A auf 800 V*A.

9.3.4.2 Phänomenologische Beurteilung von Schnitten durch den Schmelztiegel

Abb. 50 zeigt die Hälfte eines zentralen Schnitts durch den erkalteten Schmelztiegel. Im oberen Teil sind nicht umgesetztes Kalzinat neben Grundglasperlen zu erkennen. Die Gasblase im Zentrum ist auf das Schrumpfen des Glases beim Abkühlen von außen her zurückzuführen. Beim Glas im Schmelztiegel sind drei unterschiedliche Zonen zu unterscheiden, die im schematisierten Schnittbild der anderen Tiegelhälfte in Abb. 50 deutlicher herausgearbeitet sind:

Bei (1) befindet sich eine offenbar fließfähige Platinmetallsuspension. Sie verhält sich jedenfalls wie eine schwere Flüssigkeit; sie erfüllt nur den unteren Teil des Schmelzers und bildet eine fast glatte "Oberfläche". Ihr Volumen beträgt ca. 50 ml. Von der Mitte der Bodenschräge bis zur Wand hin erstreckt sich bei (3) in Abb. 50 eine unter Betriebsbedingungen offenbar nicht mehr fließfähige Platinmetallsuspension. Sie bildete im Schmelztiegel nahezu senkrechte Hänge zur Schmelzermitte hin aus. Ihre Höhenausdehnung reicht vom Boden bis etwa zur Mitte der Elektroden. Von dieser Suspension wird angenommen, daß sie Resultat eines Alterungsprozesses ist. Ihr Volumen beträgt ca. 500 ml. Das übrige Glas im Schmelztiegel ((2) in Abb. 50) enthält nur ganz vereinzelt Schwärme von Platinmetallausscheidungen.

Am Tiegelboden hat sich "Gelbe Phase" angesammelt und den Ofenstein stärker als an den übrigen Grenzflächen Stein/Schmelze korrodiert ((4) in Abb. 50). Die Auswaschung am Boden ist nach ca. 5 Monaten Betriebszeit etwa 6 mm tief und vermutlich durch einen dem Metalltropfenbohren analogen Vorgang durch flüssige Molybdatschmelzen verursacht. Möglicherweise spielt es dabei eine Rolle, daß im Laufe der Kampagne über 2 Wochen Simulat mit 5-fach überhöhtem Mo - Gehalt verglast wurde.

9.3.4.3 Vertikale Temperaturprofile im Schmelzbad

Vor dem Beginn des "24 h - Betriebs" wurde das vertikale Temperaturprofil im Schmelzer in drei unterschiedlichen Betriebszuständen gemessen: Im Dosierbetrieb und nach dem Einschmelzen der "Kalten Kappe" vor und nach dem Absaugen von Glas. Als Meßfühler diente ein Inconel-600-gemanteltes PtRh10/Pt-Thermoelement, dessen Signal zusammen mit der Eintauchtiefe aufgezeichnet wurde.

Abbildung 51 zeigt den Schmelztiegel in der Draufsicht. In die Zeichnung sind die Projektionen der Meßpunkte, an denen die vertikalen Temperaturprofile aufgenommen wurden, eingezeichnet. Am Punkt 1 in der Tiegelmitte wurde das Temperaturprofil in der Schmelze ohne Dosierung vor und nach dem Absaugen von Glasprodukt aufgenommen. Das Temperaturprofil während der Dosierphase ist am Punkt 2 gemessen worden.

Abbildung 52 zeigt die Temperaturprofile bei Punkt 1 im Schmelzbad vor und nach dem Absaugen von Glasprodukt und im Schnittbild die zugehörigen Meßpunkte. Abbildung 53 zeigt das entsprechende Temperaturprofil im Schmelzbad während der Dosierphase. Wie aus Abbildung 53 zu entnehmen ist, sank die Temperatur nahe der Schmelzbadoberfläche bei Beginn der Dosierung von Speiselösung um ca. 100 K ab. Temperatureinbrüche durch die diskontinuierliche Perlenzugabe waren bis 30 mm unter der Schmelzbadoberfläche deutlich zu erfassen. Aus Abbildung 52 ist zu ersehen, daß das Temperaturmaximum bei Punkt 1 in der Schmelze unterhalb der Elektrode im Bereich der Bodenschräge liegt.

Beim Punkt 2 (Abb. 51 und Abb. 53) steigt die Temperatur mit der Tiefe bis auf Werte von 1250°C an. Das Profil bei Punkt 1 (Abb. 52) entspricht den Erwartungen, da es in dieser Form auch schon in einem technischen Schmelzer [8] beobachtet wurde.

Der Vergleich von Abb. 52 und Abb. 50 zeigt, daß alle Meßstellen bei Punkt 1 in einer Zone liegen, die im oberen Teil relativ platinmetallarmes Glas enthält und im unteren Teil die fließfähige Platinmetallsuspension. Da sich die Temperaturprofile vor und nach Absaugen von Glas nur wenig unterscheiden (Abb. 52), die Suspension im unteren Teil des Tiegels aber wohl zum größten Teil bei der Glasentnahme mit abgesaugt wird, scheint sich die fließfähige Suspension bezüglich der Temperaturverteilung wie ein normales Glas zu verhalten.

Demgegenüber zeigen die Temperaturmessungen bei Punkt 2 (Abb. 51) ein anderes Verhalten. Die Temperatur auf der Bodenschräge nimmt monoton zu. Die Meßpunkte im unteren Bereich liegen alle im Gebiet der nicht fließfähigen Platinmetallsuspension (Abb. 50, (3)), die ihrerseits direkten Kontakt mit den Elektroden hat und immerhin ca. 21 % des Schmelzbadvolumens bei hohem Füllstand bzw. ca. 31% des Schmelzbadvolumens bei niedrigem Füllstand einnimmt. Wegen der hohen elektrischen Leitfähigkeit der Suspension (Tab. 11: Zone 1 des Schmelztiegels T2) ist es leicht vorstellbar, daß die Stromlinien in dieser Suspension konzentriert werden und die höhere Stromdichte den niedrigeren Widerstand in dieser Zone hinsichtlich der Leistungsfreisetzung zumindest teilweise kompensiert. Ohne den in anderen Zonen des Schmelzers wirksamen konvektiven Temperaturausgleich kommt es so zu einer Überhitzung dieser Region.

9.3.4.4 Feststoffaustrag während der Dosierphase

In 22 Versuchen ist der Austrag von Feststoffen aus dem Schmelzer während der Dosierung bestimmt worden. Dazu wurde in die Abgasleitung hinter dem Rippenrohrkühler (Abb. 2) ein Filtrationsgerät eingesetzt (Schleicher und Schüll, Glasfaserfilter Nr. 8 ; 200 mm Durchmesser; Abscheidegrad >99 % für Teilchen mit einem Häufigkeitsmaximumin der Größenverteilungskurve zwischen $0,3\mu m$ und $0,5\mu m$. Zur Vermeidung von Kondensatbildung im Filtrationsgerät bzw. auf dem Filter wurde das Rippenrohr thermisch isoliert und das Abgasrohr sowie das Filtrationsgerät auf ca. 230°C erhitzt. Die Filter wurden nach Versuchsende sieben Stunden auf 525°C erhitzt und anschließend ausgewogen. Die gewählte Trocknungstemperatur entspricht dem Plateau in der DTG - Kurve von HAWC - Kalzinat.

In Tabelle 16 ist der Feststoffaustrag (in %) während der Dosierphase aufgeführt. Der Austrag ist auf die in den Schmelzer mit der Speiselösung eingetragene Feststoffmenge bezogen (berechnet als Oxide: 58,79 g/l Speiselösung). Im Mittel wurden $0,7 \pm 0,13\%$ der eingebrachten Oxide ins Abgassystem ausgetragen. Bei Filter 2 und 4 lag der Austrag bei 2,0 bzw. 1,35%. Hier wurde eine Speiselösung mit einem 5 mal höheren Molybdängehalt dosiert (Oxidgehalt: 93,66 g/l Speiselösung).

Bei vier Filtern (Nr. 22, 17, 11 und 3) wurde der abgeschiedene Feststoff von den Filtern abgehoben und mittels ICP/OE analysiert. Die Analysen sind in Tabelle 17 zusammengestellt. Um festzustellen, welche Oxide in höherer Konzentration als durch den normalen Staubaustrag hervorgerufen auf den Filtern zu finden sind, wurden die Analysenergebnisse auf den Austrag einiger sich nicht durch besondere Flüchtigkeit auszeichnender Oxide normiert. Für die Normierung wurden die Seltenerdoxide Y₂O₃, La₂O₃, CeO₂, Pr₆O₁₁, Nd₂O₃ und Sm₂O₃ ausgewählt. Basierend auf dieser Überlegung wurde der Quotient aus der Summe der Konzentrationen an Seltenerdoxiden auf dem Aerosolfilter und in der Speiselösung gebildet und damit die Oxidgehalte der einzelnen Elemente in der Speiselösung multipliziert. Die dabei erhaltenen Werte sind in der Spalte "normierte Werte" in Tabelle 17 aufgeführt. Ist nun der Analysenwert wesentlich höher als der normierte Wert, so deutet dies auf einen anderen Austragsmechanismus als Staubaustrag hin, d.h. für das betreffende Element existiert ein besonderer Verflüchtigungsmechanismus. In Tab. 18 sind die Quotienten aus den Analysenwerten und den normierten Werten für alle untersuchten Elemente aufgeführt. Der Quotient besagt um ein Wievielfaches der Gehalt des jeweiligen Oxids auf dem Filter gegenüber dem durch Staubaustrag zu erwartenden Wert erhöht ist. Da Na und Ca auch Bestandteile des Grundglases sind, wurden für diese Elemente zur Berechnung der normierten Werte und Quotienten in Tab. 17 und 18 die Gesamtkonzentrationen von Na₂O bzw. CaO im Glasprodukt und nicht nur die in der Speiselösung berücksichtigt. Aufgrund dieser Vorgehensweise ist aber eine Interpretation der Austragsfaktoren für diese Elemente nicht möglich.

Die Tab. 18 zeigt, daß die Austragsfaktoren für die Seltenerdmetalle, die Erdalkalien, Fe, Ni und Zr nahe bei 1 liegen und daß Werte << 1 nicht auftreten. Insbesondere rechtfertigt dies die Normierung auf den Austrag der Seltenerdelemente. Der hohe Austragsfaktor für Fe auf Filter 22 ist schwer zu interpretieren und wird hier nicht weiter berücksichtigt. Er könnte auf Edelstahlpartikel aus dem Abgastrakt zurückzuführen sein. Auf den Filtern 11, 17 und 22 sind die Konzentrationen der Alkalimetalle, des Te und Ru gegenüber den Seltenerdmetallen leicht erhöht; der Austragsfaktor für Mo beträgt ca. 4, der für Cr ca. 6 und der für Se ca. 100. Diese drei Elemente, allen voran Se, sind also im ausgetragenen Feststoff weit überproportional vertreten. Dies bedeutet, daß sich Se praktisch nicht verglasen läßt. Die höheren Mo- und Cr-Konzentrationen im ausgetragenen Feststoff können ebenso wie der erhöhte Alkalimetallanteil so erklärt werden, daß sich offenbar schon bei der Kalzinierung der HAWC - Oxide Molybdat/Chromat-Schmelzen (Gelbe Phase) bilden, die einen relativ hohen Dampfdruck haben. Im Verdampfungsprodukt solcher Schmelzen ist MoO₃ stark angereichert [9].

Röntgenographisch wurden als Hauptbestandteil des ausgetragenen Feststoffes folgende Phasen nachgewiesen: NaNO₃, RuO₂, CsNO₃ sowie eine Molybdatphase mit Alkalien und Seltenerdelementen.

Filter 3 stammt aus den Verglasungsversuchen mit einem HAWC-Simulat mit erhöhtem Molybdängehalt (Tab. 15). Es ist auffällig, daß in dieser Probe die Austragsfaktoren für alle Elemente praktisch bei 1 liegen. Eine Ausnahme bildet allein Se mit einem Austragsfaktor von ca. 14. Es scheint, daß unter diesen Betriebsbedingungen (höhere HAWC - Oxidbeladung des Glasprodukts: 19,6% statt 13,3%) prozentual mehr HAWC - Bestandteile ins Abgassystem gelangen und zwar auf Kosten der Grundglasbestandteile (siehe Tab. 18). Ein bevorzugter Austrag von Mo und Cr ist aber nicht mehr zu beobachten (Austragsfaktor nahe 1). Der Mo-Gehalt des Filterrückstands (Filter 3) ist zwar deutlich höher als bei den Filtern 11, 17 und 22, die aus den Versuchen mit normalem Mo-Gehalt stammen, bezogen auf den Mo-Gehalt im HAWC-Simulat ist er aber nicht überhöht. Zudem ist die Gesamtmenge an Feststoff, die unter diesen Bedingungen ins Abgassystem gelangt, deutlich höher (Tab. 16) als bei der Dosierung von Speiselösung mit normaler Zusammensetzung. Erklärlich wird dieses überraschende Verhalten, wenn man bedenkt, daß mit dem normalen Mo-Gehalt in der Speiselösung schon fast die Mo-Sättigung des Glases erreicht wird, der Mo-Überschuß (ca. 6% MoO₃ bezogen auf das Glasprodukt) also praktisch vollständig als separate Phasen anfallen wird. Da im untersuchten Staub aus dem Schmelzer - bis auf Se - kein HAWC-Element bevorzugt auftritt, im Vergleich zu den Experimenten mit normalem Mo-Gehalt die Grundglasbestandteile Na und Ca aber unterrepräsentiert sind, scheint sich auf dem Schmelzbad eine zusammenhängende Molybdatphase auszubilden, die alle HAWC-Oxide aufnehmen kann und deren Staubentwicklung beim Kalzinieren allein für Menge und Zusammensetzung des Staubs maßgebend ist. Der höhere Mo-Gehalt des Staubs auf Filter 3 bedingt wegen des geringeren Anionenbedarfs einen niedrigeren Nitratgehalt (Tab. 17). Dies wird auch durch einen geringeren Massenverlust bei DTG-Analysen (Abb. 54 und 55) deutlich. Bei Filter 3 beträgt der Massenverlust zwischen 200°C und 1000°C ca. 5,8%, bei Filter 11 ca. 15,9%. In diesem Temperaturbereich findet die Nitratzersetzung statt.

Röntgenographische Untersuchungen der ausgetragenen Partikel zeigten bei Filter 3 als Hauptbestandteil eine Molybdatphase, deren Gitterkonstanten größer waren als bei den drei anderen Proben. Dies läßt auf eine Verbindung schließen, die statt Na schwerere Elemente enthält. Dies steht im Einklang mit dem übrigen Befunden.

9.3.4.5 Bestimmung der "Gelben Phase" im HAWC - Glas

Die Bildung von "Gelber Phase" war trotz Molybdän-Untersättigung der Glasschmelze zu beobachten. Die Bestimmung des Anteils "Gelber Phase" im HAWC - Glas wurde im Abschnitt 9.2.4.5. ausführlich beschrieben. Die Ergebnisse zeigt Tabelle 19. Der Gewichtsanteil an "Gelber Phase" im Glasprodukt liegt etwa bei 0,05%. Dies entspricht etwa einem Drittel der in der Kampagne T2 gefundenen Menge.

In der Zeitspanne zwischen der Abfüllung der Kokille 61 und der Kokille 66 wurde Speiselösung mit dem 5-fachen Gehalt an Molybdän dosiert. Daher wurden in dieser Zeit bis zu 110 g "Gelbe Phase" pro Kokille (ca. 2200 g Glas) gefunden. Tab. 19 zeigt, daß sich der "normale" Gehalt an "Gelber Phase" beim Wechsel auf normale Speiselösung nach wenigen Kokillen einstellt hatte. Dies bedeutet, daß "Gelbe Phase" kaum im Schmelzer akkumuliert wird, sondern regelmäßig den Schmelzer zusammen mit dem Glasprodukt verläßt.

Eine Abhängigkeit der Menge an "Gelber Phase" von der Verweilzeit im Schmelzer war nicht zu beobachten. Die Zusammensetzung der "Gelben Phase" wurde mittels ICP/OE analysiert. Die Ergebnisse zeigt Tab. 20. Ein klarer Gang der Konzentrationen einzelner Elemente in der "Gelben Phase" mit der Zeitdauer zwischen Dosierende und Absaugen ist nicht auszumachen. Lediglich der Cr-Gehalt steigt deutlich mit der Zeitdauer.

9.3.4.6 HAWC - Oxidbeladung der Gläser in den Kokillen

Für die Bestimmung des Beladungsgrades der Gläser mit Abfalloxiden wurden Proben wie in Abschnitt 7 beschrieben vorbereitet.

Die Tabellen 21 und 22 zeigen beispielhaft einen Vergleich von Soll- und Ist-Konzentrationen einiger Hauptelemente in zwei verschiedenen Kokillen (K71/87 und K87/87). Wie aus Tab. 1 hervorgeht, ist das Grundglas bei Kokille K71/87 das VG98/12.2 bei der Kokille K87/87 jedoch VG98/12.2Li. In beiden Fällen liegt die Ist-Beladung mit HAWC-Oxiden meist wenig unterhalb der Sollbeladung. Nur die Platinmetalle und Mo sowie Ce in der Kokille K87/87 zeigen größere Abweichungen. Wegen der Bildung von "Gelber Phase" sind Schwankungen beim Mo-Gehalt erklärlich, der Grund für den niedrigen Ce-Gehalt ist unklar. Wegen der Sedimentation und Akkumulation der Platinmetalle im Schmelzer liegen die Platinmetallgehalte in den Kokillen erwartungsgemäß im Mittel deutlich unter den Sollwerten. Wie Tab. 23 zeigt, ist dies aber nicht generell in allen Kokillen der Fall; vielmehr schwankt der Platinmetallgehalt von Kokille zu Kokille ganz erheblich. Abb. 56 macht dies deutlich. Aus dieser Abbildung wird auch ersichtlich, daß die Konzentrationen aller drei Platinmetalle gleichsinnig variferen. Demgegenüber sind die Konzentrationsschwankungen
von Lanthan als Vertreter der in Silikatschmelzen gut löslichen Oxide von Kokille zu Kokille gering (Abb. 57).

Wie in Abschnitt 9.3.3. beschrieben, wurde die letzte Glasentnahme der Kampagne mit 6 Kleinkokillen zu je 140 ml durchgeführt. Tab. 24 zeigt die Ergebnisse der entsprechenden Platinmetallanalysen. Es ist kein systematischer Gang der Platinmetallkonzentrationen zu erkennen; allerdings sind auch hier die Schwankungen von Kokille zu Kokille für alle drei Metalle gleichsinnig. Die Erwartung, daß sich während des Dosierens von HAWC-Lösung größere Mengen Platinmetalle am Schmelzerboden sammeln und dann zuerst ausgetragen werden, bestätigte sich nicht. Die Analysendaten des zuerst entnommenen Produkts (Kokille K89/1/87) zeichnen sich nicht durch besonders hohe Konzentrationen aus. Dieser Befund, sowie die Schwankungen in der Beladung des Glasprodukts mit Platinmetallen über die gesamte Kampagne (Abb. 56) und die Anhäufung von Platinmetallen in den Sedimentationszonen 1 und 3 im Schmelzer (Abb. 50) lassen den Schluß zu, daß alle drei Platinmetalle im Schmelzer sedimentieren, die dafür benötigte Zeit aber größer ist, als die Zeit zwischen zwei Glasabfüllungen. Bei der Glasentnahme wird regelmäßig das feine Sediment aus Zone 1 mit erfaßt, während Teile des groben Sediments aus Zone 3 nur gelegentlich ins Glasprodukt gelangen.

9.3.4.7 Platinmetallbilanz

Zur Erstellung der Platinmetallbilanz wurden die Gehalte in den Kokillen, im Abgasrohr bis vor den Kondensator und in den drei Zonen des Schmelztiegels (Abb. 50) summiert und der dosierten Menge gegenübergestellt. Das Volumen der einzelnen Zonen im Tiegel wurde an Hand von Schnitten durch den Tiegel berechnet (siehe Abschnitt 9.3.4.2.). Für das Produkt aus Zone 3 (Abb. 50) ergab sich für alle drei Platinmetalle der etwa 7-fache Nominalgehalt und für das Produkt aus Zone 1 der etwa 3,5-fache Nominalgehalt. In der Zone 2 des Schmelztiegels wurden nur 20 - 30 % des Sollgehalts gefunden (Tab. 25). Die Hauptmenge der Platinmetalle und damit der für die Bilanz bedeutsame Anteil wurde in der Zone 3 akkumuliert (Tab. 26). Zusammen mit den Analysenwerten aus den untersuchten Kokillen und dem Abgasrohr ergibt sich die Bilanz, wie sie in Tab. 27 und der Abb. 58 dargestellt ist. Danach wird praktisch die Gesamtmenge des dosierten Rh und Pd im Glasprodukt wiedergefunden, und zwar etwa 85% in den Kokillen und der Rest im Tiegel. Bei der Ru-Bilanz ergibt sich ein Fehlbetrag von 11 %. Die in den Kokillen gefundene Menge beläuft sich auf nur 74%, die im Abgasrohr auf 2%. Möglicherweise ist ein Ru-Austrag über das Abgasrohr hinaus bis in den Kondensator und ins weitere Abgassystem für den Fehlbetrag verantwortlich. In technischen Schmelzern sind Ru-Verluste in der Größenordnung des hier ermittelten Fehlbetrags beobachtet worden [10].

9.3.4.8 Dynamische Viskosität der HAWC - Glasschmelze

Von den Gläsern der Kokillen K 46/87, K 60/87, K 81/87 und K 89/87 wurde die dynamische Viskosität zwischen 900°C und 1200°C bestimmt. In Tabelle 28 sind die bei 1150°C gemessenen Viskositätswerte zusammen mit der durchgesetzten Menge Speiselösung aufgeführt. Kokille K 46/87 ist die erste, Kokille, K 89/87 die letzte in dieser Kampagne abgesaugte Kokille. Bei K 89/87 wurden anstelle einer Kokille 6 kleine Kokillen mit je 350 g Glas abgesaugt. Bei der Beurteilung der Viskositätswerte ist zu beachten, daß zwei verschiedene Grundgläser mit verschiedenen Viskositäten verwendet wurden. Während die Kokillen K 46/87 und K 60/87 das Grundglas VG 98/12.2 enthielten, wurde bei Kokille K 81/87 mit der Dosierung des lithiumhaltigen Grundglases VG 98/12.2-Li begonnen. Bei Kokille K 89/87 war bereits der gesamte Tiegelinhalt gegen das lithiumhaltige Glas ausgetauscht. Als Vergleich sind in Tabelle 28 die Viskositäten der beiden platinmetallfreien HAWC - Gläser GP 98/12.2 und GP 98/12.2-Li aus einer Kampagne im technischen Maßstab aufgeführt. Auffallend ist, daß die Gläser aus dem Laborschmelzer niedrigere Viskositäten aufweisen, als die im technischen Maßstab erschmolzenen platinmetallfreien Gläser. Die Ursache hierfür ist nicht geklärt.

Abbildung 59 zeigt die Viskositätskurven der Gläser aus den Kokillen K 60/87 und K 89/1/87

9.3.4.9 Spez. elektrischer Widerstand der HAWC - Glasschmelzen

Der spezifische Widerstand der HAWC - Glasschmelzen aus den Kokillen K 46/87, K 60/87, K 81/87 und K 89/87 wurde zwischen 950°C und 1200°C bestimmt. Abbildung 60 zeigt die entsprechenden Widerstandskurven. In Tabelle 28 sind die Widerstandswerte bei 1150°C zusammen mit der durchgesetzten Menge Speiselösung aufgeführt.

Wie erwartet sinkt der spezifische Widerstand der Glasschmelze bei Beginn der Kampagne durch den Platinmetalleintrag ab und erreicht bei ca. 5,5 Ωcm einen Gleichgewichtswert. Der niedrigere Widerstand, der bei Kokille K 81/87 gemessen wurde, ist auf die erhöhte Akkumulation von Platinmetallen während der vorangegangenen Versuchsphase zurückzuführen, bei der 4 Kokillen etwa in Höhe der Elektrodenmitte (ca. 90 mm über dem Tiegelboden anstatt 5 mm) abgesaugt wurden. Während dieser Versuchsphase wurden 24,3 1 Speiselösung mit insgesamt 134,4 g Platinmetallen dosiert. Kokille K 81/87 war danach die erste Kokille, die wieder 5 mm über dem Tiegelboden gezogen wurde.

Bei der Entnahme der 6 kleinen Kokillen (K 89/1/87 bis K 89/6/87) am Ende der Kampagne zeigte sich parallel zu den Platinmetallkonzentrationen (Abschnitt 9.3.4.6.) für die erste Kokille kein gravierend höherer Leitfähigkeitswert.

pulverisierten Die oben beschriebenen Leitfähigkeitsmessungen wurden mit Durchschnittsproben der Gläser aus Kokillen durchgeführt. Parallel dazu wurden auch Proben aus den stark platinmetallhaltigen Zonen ((1) und (3) in Abb. 50) des Schmelztiegels herauspräpariert und gemessen. Dabei wurden sowohl pulverisierte Durchschnittsproben aus größeren Bereichen als auch kompakte Proben mit den Abmessungen 10x10x10 mm, die genau in die Leitfähigkeitsmeßzelle paßten, verwendet. Tab. 29 zeigt entsprechende Meßwerte bei 950°C und 1150°C für verschiedene Platinmetallgehalte. Alle Meßwerte für den spezifischen Widerstand der Glasschmelzen liegen innerhalb einer Größenordnung unter dem Wert für platinmetallfreies Glas, obwohl der Unterschied zwischen dem spez. Widerstand der platinmetallfreien Glasphase und dem der Hauptkomponenten der Platinmetallphasen (RuO2 und Pd) 4 bis 5 Größenordnungen beträgt. Da zudem der Temperaturkoeffizient des spezifischen Widerstands der Glasschmelzen negativ ist, wurde in Analogie $\mathbf{Z}\mathbf{H}$ Cermetmaterialien für die Verteilung der Platinmetalle im Glas eine Einbettungsstruktur angenommen. Für die in den Glasschmelzen vorliegende Materialkombination läßt sich der spezifische Widerstand nach folgender Formel berechnen [11]:

$$\frac{1}{\rho_{c}} = \lambda_{m} (1 - c_{D}) \frac{\frac{\cos^{2} \alpha}{2F - 1}}{F} - \frac{1 - \cos^{2} \alpha}{F}$$
(Gl.1)

mit $\rho_c = \text{spez. elektrischer Widerstand des Glasprodukts}$

 λ_{m} = spez. elektrische Leitfähigkeit der reinen Glasphase

c_D = Konzentration der Platinmetalle (Vol. %)

- F = Formfaktor (F=0 für Lamellen; F=0,33 für Kugeln; F=0,5 für Nadeln)
- $\cos^2\alpha$ = Orientierungsfaktor ($\cos^2\alpha$ =0 für Orientierung senkrecht zum Feld; $\cos^2\alpha$ =0,33 für regellose Orientierung; $\cos^2\alpha$ =1 für Orientierung in Feldrichtung)

Bei dieser Gleichung werden die dispergierten Teilchen durch Rotationsellipsoide angenähert. Die Gleichung enthält zwei stereometrische Parameter, den Formfaktor und die Orientierung. Sie ist aber unabhängig vom genauen spezifischen Widerstand der dispergierten Phase und von der Größe der Partikel.

Die Überprüfung vieler rasterelektronischer Bilder der Platinmetallausscheidungen zeigte keine bevorzugte Orientierung der Phasen, so daß in allen Fällen für $\cos^2\alpha$ ein Wert von 0,33 angenommen werden kann. Mit Hilfe von Gl.1 wurde nun für jeden Meßwert in Tab. 29 ein Formfaktor für die Platinmetallteilchen berechnet. Die F-Werte liegen alle zwischen 0,49 und 0,50. Entsprechend der in [11] gegebenen Tabelle wurden die Formfaktoren in Achsenverhältnisse der Rotationsellipsoide umgerechnet. Sie sind in Abb. 61 dargestellt. Bei den Pulverproben liegen die Achsenverhältnisse bei beiden Meßtemperaturen bei ca. 20. Dies bedeutet, daß die Widerstandserniedrigung durch nadelförmige Partikel verursacht wird. Diese Partikelform wird bei den RuO₂ Kristallen angetroffen, nicht aber bei den Pd-Rh-Te-Tröpfchen. Offenbar ist im wesentlichen RuO2 für den Effekt der Platinmetalle auf den spezifischen Widerstand der Glasprodukte verantwortlich. Alle an Glasblöcken gemessenen spezifischen Widerstände sind im Vergleich zu den an Pulverproben gemessenen Werten kleiner. Dies ist gleichbedeutend mit einem größeren Achsenverhältnis der verantwortlichen Partikel in den Blockproben. Dies zeigt, daß bei der Probenpräparation durch Mahlen Partikel oder Kontakte zwischen Partikel zerstört werden. Da die Blockproben beim Aufschmelzen in der Leitfähigkeitsmeßzelle ihre Geometrie kaum verändern und daher auch kaum Scherkräfte auftreten, die die Struktur der Platinmetallsedimente verändern können, kann man erwarten, daß diese Proben die Leitfähigkeitsverhältnisse im Schmelzer besser repräsentieren als Pulverproben derselben Zusammensetzung.

9.3.4.10 Bei Raumtemperatur leitfähige Gläser

Die Behandlung der Glasschmelzen mit den suspendierten Platinmetallpartikeln analog einem Einlagerungsgefüge hat Grenzen. Einzelne hoch platinmetallhaltige Blockproben aus der Sedimentationszone 3 (Abb. 50) des Schmelzers weisen z.T. eine gute elektrische Leitfähigkeit bei Raumtemperatur auf. Dies bedeutet, daß die bei Raumtemperatur allein leitenden Phasen, nämlich die der Platinmetalle, ein elektrisch zusammenhängendes Netzwerk bilden . Für diesen Fall muß ein anderes Modell für die Struktur der Teilchen, nämlich ein Durchdringungsgefüge angenommen werden. Um Durchdringungsstrukturen innerhalb der Glasproben nachzuweisen, wurden die elektrisch leitenden Pfade markiert. Dazu wurde eine Blockprobe von ca. 1 cm³ Volumen bis auf eine Fläche in Kunststoff eingebettet. Die Fläche wurde geschliffen und poliert und von einer Kante ausgehend zu etwa einem Viertel vergoldet. Der vergoldete Teil wurde elektrisch kontaktiert. Der nicht vergoldete Teil wurde in ein Kupfer-Elektrolysebad getaucht und über die vergoldete Fläche als Kathode geschaltet. Nach der Elektrolyse mit ca. 0,5 As waren die Durchstoßpunkte von Strompfaden, die vom vergoldeten Teil ausgehend durch den Probekörper hindurch bis zum nicht vergoldeten Teil der polierten Fläche reichten, dünn mit Cu beschichtet, ohne daß einzelne Punkte zusammengewachsen waren. Abb. 62 zeigt Ausschnitte aus der Fläche, auf der Cu abgeschieden wurde. Die REM-Bilder sind durch Cu-Verteilungsbilder ergänzt. Die Bilder zeigen, daß bei weitem nicht alle Platinmetallpartikel in das leitende Netzwerk einbezogen sind. Offensichtlich liegt bei der vorliegenden Probe ein Übergang vom Einlagerungsgefüge zum Durchdringungsgefüge vor.

Ein weiterer Versuch mit einer hoch platinmetallhaltigen würfelförmigen Probe mit ca. 10 mm Kantenlänge aus der Zone 3 des Schmelzers belegt, wie stark die Struktur der Platinmetallverteilung beeinträchtigt wird: durch Temperaturänderungen Zwei gegenüberliegende Flächen der Probe wurden mit Leitsilber bestrichen und diese Flächen mit federnden Kontakten versehen. Der Widerstand des Würfels wurde dann bei Temperaturen bis 450°C gemessen. Abb. 63 zeigt den Widerstandsverlauf. Wie für einen metallischen Leiter erwartet, ist der Temperaturkoeffizient des spezifischen Widerstands positiv. Bezogen auf den Wert bei 273K beträgt er etwa 0,00095 K⁻¹. Im Vergleich dazu betragen die Temperaturkoeffizienten des spezifischen Widerstands von RuO₂ und Pd 0,0077 K⁻¹ [12, 13] bzw. 0,0038 K⁻¹ [14]. Nach Abkühlung auf Raumtemperatur zerbrach der Probekörper in Stücke. mehrere Das Leitsilber wurde entfernt und der Probekörper in der Leitfähigkeitsmeßzelle, wie sie für Messungen von Schmelzen benutzt wird, in seiner ursprünglichen Form wieder zusammengesetzt. Den von 1150°C abwärts gemessenen Widerstandsverlauf zeigt Abb. 64. Der spezifische Widerstand bei 1150°C und 950°C ist niedriger als der der Blockprobe mit dem höchsten Platinmetallgehalt aus Tab. 29, der

Temperaturkoeffizient ist aber bis hinunter auf 380°C negativ. Um 500°C, d.h. bei Tg zeigt sich ein sehr steiler Anstieg des Widerstands. Der nach Abkühlung auf Raumtemperatur gemessene Widerstandswert liegt allerdings unter dem bei 380°C gemessenen, was auf einen positiven Temperaturkoeffizienten bei niedrigeren Temperaturen hinweist. Insgesamt liegt aber der spezifische Widerstand bei ca. 400°C fast 2 Größenordnungen über dem spezifischen Widerstand, der für dieselbe Probe vor dem Aufschmelzen gemessen wurde.

Die beschriebenen Beobachtungen lassen sich wie folgt interpretieren: Für hoch platinmetallhaltige Gläser, die bei Raumtemperatur leitfähig sind, muß mindestens eine partielle Durchdringungsstruktur für die dispergierten Teilchen angenommen werden. Der Temperaturkoeffizient des spezifischen elektrischen Widerstands, der im festen Zustand unterhalb Tg gemessen wurde, ist wie erwartet positiv, da die Matrixphase praktisch nicht leitet. Der steile Anstieg des Widerstands zwischen 400°C und 450°C (Abb. 63) ist vermutlich auf Rißbildung und damit Trennung von leitenden Strompfaden zurückzuführen. Unterhalb 400°C war der Widerstandsverlauf sehr gleichmäßig, so daß Rißbildung nur eine untergeordnete Rolle spielte oder sich nicht auswirken konnte, da die Probe durch Federkraft zusammengehalten wurde. Beim Abkühlen der Probe und beim anschließenden Aufheizen der Bruchstücke in der Leitfähigkeitsmeßzelle traten vermutlich noch mehr Risse auf, die in der lockeren Anordnung jeweils zur Unterbrechung von Strompfaden führten. Die Unterbrechungen der metallischen Kontakte blieben offenbar auch beim Aufschmelzen der Probe erhalten. Sie wirkten sich aber bei 1150°C, wo die Glasmatrix schon gut leitfähig ist, nur wenig auf den Widerstand der Schmelze aus. Da bei dieser Temperatur der gesamte Probekörper leitet, ist der spezifische Widerstand bei 1150°C sogar niedriger als der bei Raumtemperatur gemessene. Allerdings prägt bei einer Vielzahl von unterbrochenen Strompfaden der negative Temperaturkoeffizient des spezifischen Widerstands des Glases die Temperaturabhängigkeit des Widerstands der Probe. Beim Unterschreiten von Tg treten wahrscheinlich erneut Risse und damit Trennungen von leitfähigen Pfaden auf, so daß der Temperaturkoeffizient des Widerstands zunächst scheinbar negativ bleibt. Erst bei noch tieferen Temperaturen, wenn keine weiteren Risse auftreten, wird das Vorzeichen des Temperaturkoeffizienten positiv, wie es von einem metallischen Leiter erwartet wird.

Die wenigen Experimente zeigen, daß gemessene spezifische Widerstände bei platinmetallhaltigen Glasprodukten stark durch die Probenvorbehandlung (Rißbildung durch Erwärmen und Abkühlen, Mahlen) beeinflußt werden. Selbst aus der erstarrten Schmelze gewonnene Blockproben können durch Risse vorgeschädigt sein, so daß sie bei der Widerstandsmessung insbesondere bei tiefen Temperaturen zu hohe Werte liefern.

9.3.4.11 REM-Untersuchungen an Proben aus den Kokillen und dem Schmelztiegel: Platinmetallsedimente

Wie schon im Abschnitt 7 erwähnt, wurden der erkaltete Schmelztiegel und einige Kokillen mehrfach zerschnitten. Entlang der Schnittflächen wurden systematisch Probekörper entnommen und präpariert, um unter dem Rasterelektronenmikroskop die Verteilung der Platinmetallphasen im Glas zu studieren. Als Beispiel zeigt Abb. 65 das Probenahmeschema für Kokille K75/87. Die Abb. 66 bis 71 zeigen die Platinmetallverteilung, die Morphologie der Teilchen und die Partikelkonzentration in der Suspension durch REM-Aufnahmen in drei verschiedenen Vergrößerungen. Die Übersichtsaufnahmen in 37,4-facher Vergrößerung zeigen bis REM-Bild 865 (Abb. 67) eine ziemlich gleichmäßige Verteilung kleiner Agglomerate von Platinmetallen im Glas. Weiter oben in der Kokille finden sich zwischen dichteren Anhäufungen von Agglomeraten jeweils praktisch platinmetallfreie Zonen. Dies ist ein Hinweis auf eine relativ rasche Sedimentation der Platinmetalle in der Kokille nach dem Abfüllen des Glases. Bei den höheren Vergrößerungen wird die Zusammenballung der Platinmetallagglomerate insbesondere bei den REM-Aufnahmen 868 und 872 deutlich. Die Partikelgröße liegt bei den immer kugelförmig auftretenden Pd-Rh-Te-Teilchen und beim RuO₂ meist deutlich unter 10 µm. Nadlige RuO₂-Kristalle erreichen Längen von über 20 µm (z.B. Abb. 69 und 70).

Die Verteilung der Platinmetallphasen in Proben aus der Zone 2 des geschnittenen

Schmelztiegels (Abb. 50) ist ähnlich der in Proben aus der Kokille K75/87. Das Beprobungsschema für den Tiegel zeigt Abb. 72, die REM-Bilder 851 und 852 aus der Zone 2 mit einzelnen Agglomeraten zeigt die Abb. 73.

In der Sedimentationszone 3 des Schmelztiegels (Abb. 50) ergibt sich ein völlig anderes Bild: Die Zusammenballung von Platinmetallsedimenten ist weit fortgeschritten und erfüllt den Übergangsbereich Wand/Bodenschräge. Die Wolken aus Platinmetallpartikel erstrecken sich über mehrere Zentimeter (10,2-fache Vergrößerung in den Abb. 74 und 75; der Probenort ist Abb. 72 zu entnehmen). Die Partikelkonzentration in den Sedimenten ist hoch (Abb. 74 und 75; 81,5- bzw. 163-fache Vergrößerung). Die Gebiete mit dichten Platinmetallsedimenten sind von praktisch platinmetallfreien Zonen abgegrenzt (siehe z.B. Abb. 75, REM-Bild 848 mit 10,2-facher Vergrößerung).

In der Zone 1 des Schmelztiegels (Abb. 50) findet man ebenfalls dichte Wolken aus Platinmetallsedimenten, aber weniger klare Abgrenzungen zu praktisch platinmetallfreien Zonen (20,4-fache Vergrößerung in Abb. 76 und 77 ; Probenort siehe Abb. 72 , REM Aufnahmen 825 - 828). Die Partikelkonzentration ist geringer als in Zone 3.

Zur Beurteilung der Sedimente in der Nähe der Schnittkanten der Bodenflächen, also den Stellen im Tiegel mit der geringsten Bodenneigung wurde ein horizontaler Schnitt etwa auf halber Höhe der geneigten Bodenflächen entsprechend Abb. 78 beprobt. Nach Partikelverteilung und -konzentration zu urteilen, sind in diesem Schnitt alle drei in Abb. 50 genannten Zonen vertreten und in Abb. 78 entsprechend bezeichnet. Die Bilder REM 903, 907, 912, 913, 914, 915 und 916 (Abb. 79 bis 82) zeigen große Ähnlichkeit mit entsprechenden Bildern aus der Zone 3 in Abb. 50. Es sind dies die Proben, die dem Schmelzerboden am nächsten liegen. In einigen Proben wurde neben den Platinmetallphasen jedoch noch eine weitere Kristallart gefunden, die als Cr₂O₃ identifiziert wurde (z.B. in Abb. 80). Gehäuft tritt diese Kristallart nahe der Kehle im Schmelzerboden auf (REM-Bilder 912 913). Sie ist offenbar ein Korrosionsprodukt der Ofensteinkeramik ER2161. Die und Aufnahmen REM-906, -908, -909, -910 und -911 gehören der nur von einzelnen Agglomeraten durchsetzten Zone 2 in Abb. 50 an (Abb. 83 bis 85). Neben feinen Platinmetallpartikeln findet man vereinzelt Ca-Ce-Zr-haltige Silikatkristalle. In der Probe REM 906 (Abb. 83) wurden neben den kugelförmigen Teilchen auch idiomorphe Kristalle der Pd-Rh-Te-Phase gefunden wurden. Auffällig ist ferner, daß RuO₂-Kristalle gelegentlich in flächenartiger Anhäufung zu finden sind, die in Schnitten als Bänder erscheinen. Ähnliche Ansammlungen von kleinen RuO₂-Kristallen findet man in den der Zone 1 von Abb. 50 zugeordneten Proben REM 904 und 905 in Abb. 86.

9.3.4.12 Mikrosonden- und EDS-Analysen der Platinmetallsedimente im Schmelztiegel bzw. in den Kokillen

Die Zusammensetzung der Platinmetallphasen, die im Schmelztiegel akkumulierten, wurde mit Hilfe der Elektronenstrahlmikrosonde als Funktion des Probenorts quantitativ bestimmt. Dazu wurden die Schliffe REM 825 - 837 (Abb. 72) getrennt ausgewertet. Pro Schliff wurden 5 bis 20 einzelne Partikel vermessen, wobei größere Partikel an mehreren Stellen analysiert wurden. Die Partikelmindestgröße für die Analyse war ca. 2 μ m, da bei kleineren Teilchen das umgebende Material partiell miterfaßt wird. Bei den Schliffen REM 862 - 873 aus der Kokille 75/87 (Abb. 65) wurde die Zusammensetzung der metallischen Ausscheidungen halbquantitativ durch REM/EDS bestimmt. Pro Schliff wurden 3 bis 5 Teilchen vermessen.

Bei der Analyse der Platinmetallegierungspartikel im Tiegel wurden als Bestandteile ausschließlich Pd, Rh und Te identifiziert. Vereinzelt gemessene Ru-Gehalte von maximal 2,4 Gew.% sind unsicher und könnten durch benachbartes RuO₂ hervorgerufen sein. Bei lokaler Erhitzung der Partikel auf 1300°C und mehr kann jedoch auch metallisches Ru oder eine Legierung mit Rh, dispergiert in der Pd-Rh-Te-Legierung auftreten. Bei der Zersetzung des RuO₂ wird der Sauerstoffpartialdruck der Luft von 200 hPa bei 1431°C erreicht [15].

Eine Beziehung zwischen Partikelgröße (Schnittbilddurchmesser) und Zusammensetzung der

Pd-Rh-Te-Teilchen war nicht zu erkennen. Innerhalb einer Zone des Schmelztiegels (entsprechend Abb. 50) ergab sich auch kein Zusammenhang zwischen Lokalität und Partikelzusammensetzung. Faßt man jedoch die Analysenergebnisse von allen Schliffen aus zusammen, ergibt sich ein systematischer Gang der einer Zone so in Partikelzusammensetzung. Dies ist in den Dreiecksdiagrammen in Abb. 87 dargestellt. In der Zone 2 mit einzelnen Agglomeraten (Schliff REM 835 - 837 in Abb. 72) wurde bei den allermeisten Analysen ein Te-Gehalt um 3 % gefunden, während der Rh-Gehalt zwischen 0 und 4 % schwankte. Im unteren Teil des Schmelztiegels in Zone 1 (Schliff REM 825 - 828, Abb. 72) ist das Spektrum der Partikelzusammensetzungen deutlich breiter. Die Te-Gehalte liegen zwischen 5 und 21 %, die Rh-Gehalte zwischen 1 und 13 % und sind damit deutlich höher als in Zone 2. Im relativ groben Sediment der Zone 3 von Abb. 50 (Schliff REM 829 -834, Abb. 72) ist die Spanne der Konzentrationen noch größer. Die Te-Gehalte variieren zwischen 0 und 29 %, die Rh-Gehalte zwischen 0 und 78 %. Dies gilt allerdings nicht für den Schliff REM 834. Die dort gefundenen Konzentrationen entsprechen eher der Spanne, wie sie in Zone 1 gefunden wurde. Die Analysenwerte für Rh und Te können den Abb. 88, 89 und 90 entnommen werden; der Rest ist jeweils Pd. Bei der Beurteilung dieser Daten ist zu beachten, daß insbesondere die Partikel aus Zone 3 mehrphasig sind und so schon die Meßwerte an einzelnen Teilchen ein breites Spektrum aufweisen (Abb. 91). Hohe Rh-Gehalte sind dabei immer mit niedrigen Te-Gehalten verknüpft und umgekehrt. Dies muß aus den Phasenbeziehungen des Dreistoffsystems Pd-Rh-Te resultieren. Das Phasendiagramm im relevanten Temperaturbereich und der Einfluß der Temperaturgeschichte der Partikel auf die Zusammensetzung der einzelnen Phasen in den metallischen Ausscheidungen sind jedoch noch nicht bekannt. Abschätzungen über die Lage der Phasengrenzen im Dreistoffsystem bei 1150°C aufgrund der bekannten Phasenbeziehungen der Teilsysteme Pd-Te [16] bzw. Rh-Te [17] zeigen, daß die in einzelnen Tropfen der Zone 3 gefundenen extremen nahe Zusammensetzungen (Tab. 30) der zu erwartenden Solidusund Liquiduszusammensetzung liegen (Abb. 92). Andererseits wird klar, daß die meisten Messungen aus der Zone 3 mittlere Konzentrationen an Rh und Te ausweisen, damit zwischen Solidus und Liquidus liegen und somit eine Trennung in zwei Phasen entsprechend dem thermodynamischen Gleichgewicht nicht nachweisbar ist. Dies ist höchstwahrscheinlich auf die unzureichende räumliche Auflösung der Elektronenstrahlmikrosonde zurückzuführen, könnte aber seine Ursache auch in der permanenten Gleichgewichtsstörung durch den kontinuierlichen Stoffstrom durch den Schmelzer, in der Temperaturgeschichte der Teilchen oder im Zeitbedarf für die Gleichgewichtseinstellung haben. Die Analysenergebnisse aus Zone 1 sowie die von Schliff REM 834 (Zone 3) deuten mit ihren Extremwerten ebenfalls auf Entmischungen entlang der entsprechenden Konoden (Abb. 92). Die Extremwerte für die Zusammensetzung der Partikel aus Zone 2 liegen dicht beieinander und vollständig im Sub-Solidusbereich bei 1150°C (Abb. 92).

Die Mikrosondenanalysen der oxidischen Ausscheidungen im Schmelztiegel ergaben neben der Hauptkomponente RuO₂ immer auch kleinere Gehalte an Cr und Rh sowie oftmals einige zehntel Prozent Pd. Die Oxydationsstufen dieser drei Elemente im RuO₂ sind nicht bekannt. Im folgenden wird von den normalen Oxiden ausgegangen. Da bei den formenreichen, z.T. nadelförmigen RuO2-Kristallen die Schnittflächen nicht unmittelbar mit der Teilchengröße zusammenhängen, wurde nicht versucht, eine Korrelation von Teilchengröße und -zusammensetzung herzustellen. Für den PdO-Gehalt der RuO2 Teilchen ergab sich weder ein Zusammenhang mit dem Probenort, noch mit der Konzentration von Cr oder Rh (Abb. 93 und 94). Die RuO2-Kristalle in den Schliffproben REM 835 - 837 (Abb. 72) waren für die Mikrosondenanalyse zu klein; selbst bei kleinstem Strahldurchmesser wurde immer ein Teil der Glasmatrix mitgemessen. Die Partikelanalysen in der Zone 1 des Schmelztiegels (Abb. 50) ergaben eine Spanne im Cr₂O₃-Gehalt von 0 bis 2,7 % und im RhO₂-Gehalt von 0 bis 6%. Die Streuung der Meßwerte innerhalb eines Schliffs und von Schliff zu Schliff ist relativ groß (Abb. 95). Allerdings wurden im obersten Schliff (Schliff REM 828) deutlich kleinere Konzentrationen an Cr₂O₃ und RhO₂ gemessen (0,5 bis 1,2 % Cr₂O₃ und 1 bis 2 % RhO₂) als z.B. im weiter unten liegenden Schliff REM 826 (1,9 bis 2,6 % Cr₂O₃ und 3,7 bis 5,7 % RhO₂). Die Ausgleichsgerade durch alle Analysenpunkte in Abb. 95 weist aus, daß Cr erst dann in die RuO₂ Kristalle eingebaut wird, wenn diese schon etwa 1,5 % RhO₂ aufgenommen haben. Die Rh-Aufnahme erfolgt wahrscheinlich schon in der "Kalten Kappe". Die Analysenergebnisse aus der Zone 3 des Schmelzers (Abb. 50) geben ein klareres Bild. In den RuO₂-Partikel wurden ähnlich wie in der Zone 1 Cr₂O₃-Gehalte von 0 bis 2,7 % und RhO₂-Gehalte von 0 bis 6,3 % gefunden (Abb. 96). Differenziert man nach dem Probenort, so ergibt sich ein Anstieg der Konzentrationen beider Elemente von oben nach unten. Dies drückt sich dadurch aus, daß Analysen vom oberen Schliff REM 834 nur Cr₂O₃-Konzentrationen zwischen 0 und 0,5 % sowie RhO₂ Konzentrationen zwischen 0 und 1,8% ausweisen. Am unteren Ende der Zone 3 (Schliff REM 829) waren die entsprechenden Analysendaten 1,8 bis 2,7 % Cr₂O₃ und 4,8 bis 6,3 % RhO₂ (Abb. 96). Das mittlere Atomverhältnis Cr:Rh im RuO₂ beträgt bei allen Analysen etwa 0,8 (durch den Nullpunkt gehende Ausgleichsgerade in Abb. 96 und Umrechnung in Atomprozent). Nach diesen Befunden haben die RuO₂ Partikel aus dem feinen und dem groben Sediment (Abb. 95 bzw. Abb. 96) eine unterschiedliche Wachstumsgeschichte. Die Korrelation der Gehalte an Cr und Rh im RuO₂ des groben Sediments ist ein Hinweis darauf, daß die Kristalle im Laufe der Zeit umgebildet wurden.

Die EDS-Analysen der metallischen Partikel in der Kokille K75/87 (Abb. 65) ergaben als Bestandteile wie erwartet nur Pd, Rh und Te. Die Einzelwerte der Rh- und Te-Konzentrationen zeigt Abb. 97; der Rest ist jeweils Pd. Die Spanne der Te-Konzentrationen erstreckt sich bei den allermeisten Proben von ca. 5 bis 20 %, die der Rh- Konzentrationen von 7 bis 20 %. Eine Abhängigkeit vom Probenort war nicht feststellbar. Vergleicht man diese Analysenergebnisse mit den Daten aus dem Schmelztiegel (Abb. 88, 89 und 90), so ergibt sich zunächst kein Zusammenhang. Berücksichtigt man aber die erhebliche Unsicherheit der energiedispersiven Röntgenanalyse für Rh in Gegenwart von Pd (starke Peaküberlappung), vergleicht man also nur die Te-Gehalte miteinander, so ergibt sich eine gute Übereinstimmung des Kokillenmaterials mit dem aus der Zone 1 des Schmelztiegels (Abb. 50).

9.3.4.13 Größenanalyse der Pd-Rh-Te-Partikel im Schmelztiegel

Die rasterelektronenmikroskopischen Aufnahmen der Schliffe REM 825 - 828 und REM 846 - 852 (Abb. 72) wurden, ähnlich wie schon im Abschnitt 9.2.4.10 beschrieben, zur Partikelgrößenanalyse der Pd-Rh-Te-Teilchen verwendet. Pro Schliff wurden zwischen 8 und 20 Bildausschnitte vermessen. Die Gesamtmeßfläche je Schliff variierte von 0,05 bis 5 mm². Die in diesen Schnittflächen identifizierten Pd-Rh-Te-Partikel wurden entsprechend ihren Schnittbilddurchmessern klassifiziert. Die Klassenbreite betrug 0,1 logarithmische Einheiten. Die Formfaktoren praktisch aller vermessenen Teilchen lagen nahe bei 1, d.h. die Schnittbilder der Partikel waren nahezu kreisförmig. Dies ermöglichte die Umrechnung auf Partikeldurchmesser nach dem Algorithmus von Saltykov [18] und die Berechnung der Volumenkonzentration der Pd-Rh-Te-Phase im Glas (Tab. 31).

Abb. 98 und 99 zeigen, wie die Pd-Rh-Te-Phase in Zone 1 bzw. 3 des Schmelztiegels auf die verschiedenen Partikelgrößen verteilt ist. Allerdings enthalten alle Schliffe aus der Zone 1 des Tiegels noch einige wenige -in der Graphik nicht berücksichtigte- große Partikel. Die Partikelverteilungen in den Schliffen REM 825 - 827 sind einander sehr ähnlich. Das Häufigkeitsmaximum liegt zwischen 3 und 6 μ m. Die Verteilung im obersten Schliff 828 aus dieser Reihe weist demgegenüber einen höheren Anteil an kleinen Partikel auf. Der Anteil der Pd-Rh-Te-Phase im Glas liegt zwischen 1 und 2 Vol.%. Die Partikel in den Schliffen aus Zone 3 des Tiegels (Abb. 99) weisen -insbesondere im unteren Bereich bei den Schliffen REM 846 bis 848- eine zum Häufigkeitsmaximum symmetrische Verteilung auf. Das Maximum verschiebt sich aber von ca. 20 μ m bei Schliff REM 846 bis hin zu etwa 4 μ m bei Schliff REM 850. Der Volumenanteil der metallischen Phase im Glas liegt im unteren Schliff REM 846 bei 3,4 Vol.% und wird nach oben hin geringer. Die in der Zone 2 des Tiegels beobachteten Partikelzahlen pro Schliff sind für eine Darstellung als Verteilungsfunktion zu gering.

Deutlicher als die Verteilungsfunktionen zeigen die mittleren Partikeldurchmesser in den Schliffen die oben geschilderten Tendenzen: In Zone 1 des Tiegels liegt die mittlere Partikelgröße bei ca. 4 μ m. In derselben Größenordnung liegt sie in Zone 2. In der Zone 3 steigt sie von oben nach unten von 4 μ m auf 20 μ m an (Abb. 100). Zur Berechnung des mittleren Partikeldurchmessers der Teilchen in einem Schliff wurden die logarithmierten Durchmesser der einzelnen Klassen mit deren Volumenanteilen an der Gesamtmenge der Pd-

Rh-Te-Phase gewichtet und dann gemittelt.

Alle Beobachtungen aus der Partikelgrößenanalyse, der Rasterelektronenmikroskopie und der Mikrosondenanalyse stehen im Einklang mit der schon in Abschnitt 9.3.4.2 gemachten Einschätzung, daß nämlich die feine Suspension noch fließfähig und relativ jung ist, während das grobe Sediment stationär und schon gealtert ist. Es ist von feinem Sediment bedeckt. Das abgefüllte Glas in den Kokillen enthält daher im wesentlichen einzelne Platinmetallagglomerate (vom groben Sediment im Schmelzer abgelöst) und dispergiertes feines Sediment.

9.3.4.14 REM- und EDS-Untersuchungen an Proben aus dem Tiegel, der "Kalten Kappe" und der Einschmelzzone

Die T3-Verglasungskampagne wurde beendet, indem die Ofenheizung abgestellt, die Dosierung von Speiselösung aber noch einige Zeit fortgesetzt wurde (siehe Abschnitt 9.3.3.). Dieses Vorgehen führte dazu, daß die im laufenden Schmelzer vorhandene "Kalte Kappe" beim Abkühlen erhalten blieb. Die Schicht mit der "Kalten Kappe" sowie die darunter befindliche Einschmelzzone wurden entsprechend Abb. 72 beprobt (Schliff REM 1345 - 1353) und rasterelektronenmikroskopisch untersucht.

In der oberen Zone (Schliff REM 1345 und 1346) liegen Grundglasperlen und HAWC-Kalzinat nebeneinander vor (Abb. 101). Die Phasenbildung im Kalzinat ist noch nicht weit fortgeschritten bzw. kann mit der verwendeten Untersuchungsmethode nicht aufgelöst Stellen man jedoch Elementhäufungen: werden. An einzelnen findet K+Mo. K+Ba+Nd+Zr+Mo+Cr sowie Pd, möglicherweise mit geringen Mengen an Rh aber ohne merkliche Anteile an Te (Abb. 102a-c). Höhere Ru-Konzentrationen werden zusammen mit Seltenen Erden+Zr beobachtet; an anderer Stelle wird auch ausschließlich K+Ru gefunden (Abb. 102d-e). Falls die hier beobachteten Elementhäufungen durch kristallisierte Verbindungen bedingt sind, liegt die Kristallgröße unter 5 µm und es handelt sich vorwiegend um Molybdate, bei den platinmetallhaltigen Phasen um Ruthenate bzw. eine Palladiumlegierung.

In der darunter befindlichen Zone (Schliff REM 1347 und 1348, Abb. 72) sind die Grundglasperlen weitgehend aufgeschmolzen; das Glas ist stark von Schlieren durchsetzt und inhomogen. Bei stärkerer Vergrößerung sind kristallisierte Phasen zu erkennen (Abb. 103). Neben den z.T. chromathaltigen Molybdaten von Alkalien, Erdalkalien und Seltenen Erden treten hier auch die entsprechenden Silicate auf (Abb. 104). Die Platinmetallphasen bestehen in dieser Zone aus RuO₂ und Pd-Te-Legierung (eventuell mit geringen Anteilen Rh, die aber mit EDS wegen der Peaküberlappung in Gegenwart von Pd nicht genau zu bestimmen sind).

Das Glas direkt unterhalb der Schlierenzone (Schliffe REM 1349 und 1350) enthält ebenfalls noch eine größere Menge an kristallisierten Fremdphasen (Abb. 105). Vorwiegend sind es die Silicate von Ca, Zr und den Seltenen Erden. Vereinzelt wurde auch Ceroxid beobachtet möglicherweise ein Relikt aus der Zersetzung von Seltenerdsilicaten. Darüber hinaus wurde eine sehr titanreiche Phase identifiziert, möglicherweise Titanit (Abb. 106). Die Molybdatphasen sind bis auf wenige Ausnahmen im Glas bereits aufgelöst. Bei den unlöslichen Platinmetallphasen werden Häufungen von RuO₂ Nadeln und Pd-Te-Partikeln beobachtet.

Noch weiter unten im Schmelzer (Schliffe REM 1351 bis 1353) treten nur noch die Platinmetalle als ungelöste Phasen auf. Dieser Bereich ist identisch mit der weiter oben beschriebenen Zone 2 aus Abb. 50. Die Abb. 107 zeigt die Anhäufungen von RuO₂ Nadeln und Pd-Te-Partikeln.

9.3.4.15 Bestimmung der Homogenität der Glasphase in Kokillen

Die in Abschnitt 9.3.4.14 dargestellten Ergebnisse zeigen, daß das HAWC-Glas im oberen Teil des Schmelzers neben den Platinmetallphasen auch Phasen von Elementen enthält, die

eigentlich in Silicatschmelzen gut löslich sind. Daraus ergab sich die Frage, ob im kurz über dem Boden abgesaugten Glasprodukt solche Fremdphasen und insbesondere auch Relikte davon in Form von Konzentrationsschwankungen nachzuweisen sind. In Abschnitt 9.2.4.3. wurde beschrieben, daß bei einem Schmelzer mit flachem Boden (T2 - Kampagne) unter bestimmten Umständen mit Inhomogenitäten im Glas zu rechnen ist. Als Beispiel wurde die Kokille K85/87 zentral geschnitten und entsprechend Abb. 108 beprobt. An neun Lokalitäten wurden mit einem Kernbohrer von 3,5 mm Durchmesser ca. 20 mm³ Material entnommen. Die Bohrkerne wurden im Mörser zerkleinert. Von 5 Glassplittern pro Meßstelle wurde der Brechungsindex nach der Lamda-T-Variationsmethode bei einer konstanten Meßwellenlänge von 589 nm bestimmt (siehe auch Abschnitt 9.2.4.3.). Die Mittelwerte der Messungen sind in Abb. 109 dargestellt. Tab. 32 zeigt die Einzelwerte. Daraus ergibt sich, daß die Standardabweichung des Brechungsindex pro Meßort ±0,0003 beträgt. Dies entspricht der experimentellen Unsicherheit der Bestimmungsmethode. Der Unterschied im Brechungsindex zwischen allen neun Meßpunkten beträgt maximal 0,0012. Dies entspricht einer Beladungsschwankung von 0,6 Gew.%. Die höchsten Beladungen findet man im unteren Bereich der Kokille, die niedrigsten im oberen Bereich. Dies könnte eine entsprechende Beladungsverteilung im Schmelzer wiederspiegeln. Die absolute Schwankung der Beladung ist aber gering, so daß also auch in einem Schmelzer mit geneigten Bodenflächen praktisch homogene Gläser erzeugt werden.

- 9.4 Kampagne T4
- 9.4.1 Hauptziele

Im 1. Teil der Kampagne wurde ein Gemisch von MAWC/HAWC mit vollem Platinmetallgehalt und mit organischen Verunreinigungen, wie sie aus dem Purex-Prozeß zu erwarten sind, eingesetzt. Untersucht werden sollte der Einfluß von MAWC-haltiger Speiselösung auf den Prozeß und auf die Produktqualität, auch bei variierender Beladung des Glases mit Abfalloxiden, wie sie bei einer Störung des Schmelzerbetriebs auftreten kann.

Daran anschließend wurde im 2. Teil der Kampagne der Übergang von der MAWC/HAWC-Verglasung auf die Verglasung von WAW-HAWC einschließlich des Wechsels des Grundglases erprobt. Darüber hinaus wurden die Platinmetallakkumulation, der daraus resultierende Rückgang des Badwiderstandes, die Korrosion der Elektroden sowie der Feststoffaustrag unter diesen Betriebsbedingungen untersucht und die Feldstärkeverteilung beispielhaft an einer Position im Schmelzbad gemessen.

Von der Kampagne T4 an wurde bei der Simulation des HAWC berücksichtigt, daß im Zuge des Purex Prozesses der HAW filtriert bzw. zentrifugiert wird. Dabei werden vornehmlich ungelöste Platinmetall- und Molybdänverbindungen abgeschieden, so daß der Gehalt an diesen Elementen im HAWC nicht mehr den Spaltausbeuten entspricht.

9.4.2 Änderungen an der Anlage

In der vorausgegangenen Verglasungskampagne T3 kam es während der Dosierphase rasch zu einer vollständigen Badbedeckung und gegen Dosierende zum Aufbau von Kalzinatbrücken. Um das Einschmelzen des Kalzinats zu verbessern, wurde der Schmelztiegel 31 mm tiefer in den Außenofen abgesenkt. Dadurch kam die Schmelzbadoberfläche in den Strahlungsbereich der oberen Heizwendel des Außenofens (Abb. 110).

- 9.4.3 Versuchsdurchführung
- 9.4.3.1 Verglasung von MAWC/HAWC

Zum Start der Kampagne wurde der Schmelztiegel mit platinmetallfreiem MAWC/HAWC - Glas gefüllt. Die Zusammensetzung der Speiselösung, des MAWC/HAWC - Glases und des

Grundglases ist Tab. 33a u. b zu entnehmen. Der Zusammensetzung der Speiselösung liegt ein Mischungsverhältnis von 800 1 HAWC und nur 210 1 MAWC zugrunde. Pro Tonne wiederaufgearbeiteten Schwermetalls wird aber mit einem Anfall von 800 1 HAWC und 300 1 MAWC gerechnet. Entsprechend dem Na-Gehalt des MAWC muß jedoch das verwendete Grundglas an Na abgereichert sein. Ein gemäß dem Mischungsverhältnis 800 1 HAWC / 300 1 MAWC an Na verarmtes Grundglas war in der benötigten Perlenform aber nicht herstellbar. Aus diesen Gründen mußte der MAWC-Anteil auf 210 1 MAWC pro 800 1 HAWC reduziert werden. Der Oxidgehalt des Simulats lag bei 60,21 g/l (einschließlich des Na₂O aus dem MAWC), die effektive Sollbeladung des Glases mit den HAWC - Oxiden bei 13,6 Gew.%. Durch die organischen Verunreinigungen aus dem MAWC (siehe Tab. 33a) ergab sich ein Gesamtkohlenstoffgehalt von 0,5 g/l. Da ein beträchtlicher Anteil des Na₂O im Glas durch die Speiselösung über den MAWC in den Schmelzer eingebracht wird, führen Fehldosierungen zu einer Änderung des Alkaligehaltes der Schmelze und damit insbesondere zur Änderung der Viskosität des Glasprodukts.

Neben der üblichen Nominalbeladung des MAWC/HAWC-Glases mit 15 Gew.-% HAWC -Oxiden wurde zur Simulation von Fehldosierungen daher auch ein Beladungsgrad von nominal 7% bzw. 20% eingestellt. Die Effektivbeladung lag in diesen Fällen bei 6,3 bzw. 18,2%. Je nach Sollbeladung wurden pro Liter Speiselösung zwischen 245 und 664 g Grundglas dosiert. Pro Charge wurden je nach Oxidbeladung 2,8 bis 6,6 l Speiselösung und 1,6 bis 1,9 kg Grundglas dosiert (siehe Tabelle 34). Zur Einstellung eines neuen Beladungsgrades wurde lediglich das Verhältnis Grundglas / Speiselösung entsprechend verändert. Pro Beladungsgrad wurden jeweils 12 Kokillen produziert. Rechnerisch ist dann bei der jeweils letzten Kokille die neue Beladung zu etwa 98 % eingestellt. Die rechnerische Abweichung von der eingestellten Beladung ist dann <0,15 Gew.%.

Vor der Umstellung von MAWC/HAWC auf WAW-HAWC wurde der Beladungsgrad des MAWC/HAWC-Glases durch alleinige Zugabe von Grundglas in den Schmelztiegel von nominal 20% auf 15% gesenkt.

9.4.3.2 Verglasung von HAWC

Nach der Verglasung von 185 l MAWC/HAWC - Gemisch, wurde auf eine HAWC -Speiselösung und ein entsprechendes Grundglas umgestellt. Tab. 35a zeigt die entsprechenden Zusammensetzungen. Auf Grund eines Fehlers beim Lieferanten wich die Grundglasrezeptur insbesondere im Na-, Al- und B-Gehalt von der Sollzusammensetzung ab. Dies resultierte in einer höheren Viskosität der Schmelze. Der Oxidgehalt der Speiselösung betrug 55,59 g/l, die effektive Beladung 13,3 Gew.%.

Pro Liter Speiselösung wurden 361,2 g Grundglas dosiert. Die Dosierung des Grundglases erfolgte ca. 5 mal pro Stunde in Portionen von 46,6 g nach jeweils 128 ml Speiselösung. Nach der Dosierung von jeweils 1751 g Grundglas und 4850 ml Speiselösung war eine Charge durchgesetzt (Tab. 34).

Die gesamte Versuchskampagne wurde im "8 h - Betrieb" durchgeführt und folgendermaßen beendet:

- Nach dem Dosieren der letzten Charge wurde der Tiegel zum Durchschmelzen des Glases ca. 3,5 Stunden auf ca. 1150°C gehalten.
- Es wurden ca. 280 g Glasprodukt in eine kleine Kokille abgesaugt.
- Anschließend wurde die Innen- und Außenheizung abgeschaltet.
- 9.4.4 Ergebnisse
- 9.4.4.1 Störungen beim Verglasungsbetrieb

Während des Versuchsbetriebes traten folgende Probleme auf:

Verglasung von MAWC/HAWC

 Oxidbeladung 15%
 Als Grundproblem bei der MAWC/HAWC-Verglasung wurde die mangelnde Ausbildung einer Badbedeckung erkannt. Es kam zu Verstopfungen der Dosierleitung für Grundglasperlen und der Abgasleitung. Beide Probleme werden durch die hohe Wärmeabstrahlung der Schmelze bei geringer Badbedeckung begünstigt. Die Situation konnte durch Absenken der Außenofentemperatur von 1130°C auf 1060°C verbessert werden. Dadurch wurde auch die Oberofentemperatur reduziert (Abb. 110).

> Oxidbeladung 7% Zunächst wurde versucht, auch hier die gewohnte Dosierrate von 600 ml Abfallösung pro Stunde beizubehalten. Die aufgrund der niedrigen Oxidbeladung große Menge Grundglas pro Liter Speiselösung konnte jedoch nicht so rasch eingeschmolzen werden (Tab. 34). Deshalb mußte die Dosierrate von ca. 600 ml/h auf 400 ml/h abgesenkt werden.

Dabei verschärfte sich das Problem der mangelnden Badbedeckung noch. In der Folge kam es häufig zu Verstopfungen der Glasperlenleitung. Durch das Absenken der Badtemperatur von ca. 1100°C auf ca. 1000°C und durch das zusätzliche Dosieren von Wasser zum Wärmeaustrag konnte die Ausbildung einer "Kalten Kappe" letztlich doch noch erreicht werden.

• Oxidbeladung 20% Bei der reduzierten Badtemperatur (ca. 1000°C) traten hier die oben beschriebenen Probleme nur noch sporadisch auf.

Umstellung von MAWC/HAWC- auf HAWC- Verglasung

• Die Umstellung von MAWC/HAWC auf WAW-HAWC, verbunden mit der Verwendung eines anderen Grundglases konnte ohne Probleme durchgeführt werden. Nach der Umstellung verlief die Kampagne ohne Betriebsstörungen.

Bei der Entnahme von Glasprodukt traten während der gesamten Kampagne keine Störungen auf.

Die oben beschriebenen Störungen bestätigen frühere Beobachtungen bei Versuchen im technischen Maßstab [19], daß sich nämlich alkalimetallhaltige Lösungen schneller einschmelzen lassen als alkalimetallfreie. Dies wird auf die Bildung von Salzschmelzen mit niedriger Viskosität und hoher Wärmeleitfähigkeit zurückgeführt. Dadurch ist wiederum die Ausbildung einer "Kalten Kappe" erschwert. Die bei der Verglasung von MAWC/HAWC beobachtete Neigung zur Verstopfung der Rohrleitung für die Grundglasperlen wird auf die erhöhte Temperatur und damit erhöhte Staubbildung und auf einen erhöhten Alkalimetallgehalt des Staubes im Raum über der Schmelze - bedingt durch den MAWC-Anteil - zurückgeführt. Das in der Rohrleitung abgelagerte Material war unter Betriebsbedingungen von klebriger Konsistenz, während es im erkalteten Zustand eher einer lockeren Schlacke glich.

9.4.4.2 Betriebsdaten

Die Temperatur des Außenofens lag zu Beginn der Kampagne bei 1130°C und wurde zur Verbesserung der Badbedeckung - wie im Abschnitt 9.4.4.1. erwähnt - auf 1060°C abgesenkt. Die Temperatur zwischen Schutz- und Schmelztiegel (Abb. 110) lag zu Beginn der Kampagne bei 1100°C und fiel mit dem Absenken der Außenofentemperatur auf 1050 bis 1025°C ab. Die Abb. 111.1 bis 111.4 zeigen den Verlauf der Elektrodentemperatur während der Dosierphase (Kurve durch Regression geglättet). Die Temperatur in der Elektrode lag zu Beginn der Kampagne bei ca. 1125°C und fiel durch die Absenkung der Außenofentemperatur bis auf ca. 1030°C (Abb. 111.2). Die niedrige Badtemperatur wurde für den Rest der

Kampagne beibehalten (Abb. 111.3 und 111.4).

Abb. 112 zeigt den Verlauf des mittleren Badwiderstandes während der Versuchskampagne. Durch die Dosierung von platinmetallhaltigem Abfallsimulat sank der Badwiderstand auf etwa 30% des Ausgangswertes. Ein Abfall des Badwiderstandes in gleicher Größe wurde bereits bei Kampagne T3 (Abschnitt 9.3.4.1.) beobachtet. Der Widerstandsanstieg nach einem Durchsatz von ca. 78 l Speiselösung ist auf eine Absenkung des Füllstandes im Tiegel um ca. 10 mm zurückzuführen. Nach der Dosierung von ca. 120 l Simulat (mit ca. 440 g Platinmetallen) kam die Abnahme des Badwiderstandes zum Stillstand. Durch die Umstellung auf ein für die HAWC - Verglasung geeignetes Grundglas stieg der Badwiderstand wieder an und erreichte bei Kampagnenende etwa 40% des Ausgangswertes. Der größere Badwiderstand des HAWC-Glases ist auf einen Fehler in der Zusammensetzung des Grundglases zurückzuführen (siehe Abschnitt 9.4.3.2.). Der Badwiderstand wurde jeweils vor dem 1120°C Naturgemäß beeinflussen Füllstands-Absaugen bei bestimmt. und Temperaturschwankungen im Schmelztiegel die gemessenen Werte.

Die Abb. 113.1 bis 113.4 zeigen den Verlauf des Badwiderstandes in Abhängigkeit von der dosierten Menge Speiselösung sowie die Elektrodentemperatur während der Dosierphase. Die Kurven basieren auf Meßwerten, die während der Dosierphase in regelmäßigen Zeitabständen von der Meßdatenerfassungsanlage registriert und anschließend mittels spezieller Auswertesoftware zu Graphiken verarbeitet wurden. Die Kurven wurden durch Regression geglättet. Besonders im ersten Teil der Kampagne (Abb. 113.1) ist ein deutlicher Abfall des Badwiderstandes zu beobachten. Der Widerstandsanstieg in Abb. 113.2 (Oxidbeladung 7%) ist auf das Absenken der Badtemperatur zurückzuführen. In Abb. 113.4 ist deutlich der Anstieg des Badwiderstands beim Wechsel des Grundglases zu sehen. Da die Widerstandswerte der Abbildungen 113.1 bis 113.4 jeweils bei der momentanen Betriebstemperatur aufgenommen wurden, sind sie nicht direkt mit den Widerständen aus Abb. 112 vergleichbar, die bei konstanter Temperatur (1120°C) als Einzelwerte gemessen wurden.

Die Abbildungen 114.1 bis 114.4 zeigen den Verlauf des Elektrodenstroms und der Elektrodenspannung während der Dosierphase. Besonders zu Beginn der Kampagne ist ein deutlicher der Elektrodenspannung beobachten. Abfall zu Schwankungen der Elektrodenspannung sind auf versuchsbedingte Temperaturund damit Widerstandsänderungen zurückzuführen.

Die Abbildungen 115.1 bis 115.4 zeigen den Leistungseintrag über die Elektroden während der einzelnen Phasen des Versuchsbetriebs. Er lag normalerweise zwischen 1000W und 1500W. Naturgemäß ist der Leistungseintrag vom Badwiderstand abhängig.

In den Abb. 116.1 bis 116.4 ist die Stromdichte während der Versuchskampagne dargestellt. Es wurde mit Stromdichten zwischen 0,9 und 1,15 Acm⁻² gearbeitet.

9.4.4.3 Phänomenologische Beurteilung von Schnitten durch den Schmelztiegel

Abb. 117 zeigt einen zentralen Schnitt durch den erkalteten Schmelztiegel parallel zu den Elektroden. Im oberen Teil des Tiegels rechts in Nähe der Schmelzbadoberfläche sind die bereits in früheren Kampagnen festgestellten Schlieren zu erkennen, die als Relikte der "Kalten Kappe" zu betrachten sind. Besonders im unteren Teil des Tiegels sind Platinmetallagglomerate zu erkennen. Im Vergleich mit der Kampagne T3 (Abschnitt 9.3.4.2.) zeigt sich jedoch eine weniger deutliche räumliche Unterscheidungen zwischen feinem und grobem Sediment. Das feine Sediment ist aufgewirbelt, was vermutlich darauf zurückzuführen ist, daß unmittelbar vor dem Einfrieren der Schmelze noch eine Kokille mit Glasprodukt abgezogen wurde. Das grobe Sediment (helle Partien in Abb. 117) bildet senkrechte Hänge und liegt auf den schrägen Bodenflächen auf. Im Vergleich zur T3-Kampagne liegt es insgesamt an etwas tieferer Stelle im Schmelzer.

Der Korrosionsabtrag der Ofenkeramik betrug am Boden in der Tiegelmitte ca. 4 - 5 mm.

9.4.4.4 REM-Untersuchungen an Proben aus dem Tiegelinhalt

Aus dem durch die Mitte parallel zu den Elektroden geschnittenen Schmelztiegel wurden Proben mit den Abmessungen 1 x 1 cm präpariert. Abb. 118 zeigt den Schnittplan. Die stark umrandeten Proben wurden mittels Rasterelektronenmikroskopie (REM) untersucht. Abb. 119 und 120 zeigen die zusammengesetzten REM-Aufnahmen der untersuchten Proben. Wie bereits in Kampagne T3 (Abschnitt 9.3.4.12.) zeigen sich auch hier von der Tiegelwandung bis etwa zur Mitte der Bodenschräge (Proben F8 bis C12) grobe zusammenhängende Platinmetallagglomerate. und Mitte hin Nach unten werden zur die Platinmetallausscheidungen feiner und deren Dichte geringer. In Tiegelmitte in Bodennähe (Probe A 14) sind nur noch wenige feine Partikel zu erkennen. Hier wurden bei Abbruch der Kampagne ca. 110 cm³ Glas abgesaugt. Die Proben A 1 bis A 14 zeigen den Zustand im Zentrum des Schmelztiegels. Im Bereich der Einschmelzzone (Proben A 1 bis A 4; Abb. 120) sind dichte (im Bild helle) Schlieren aus noch nicht umgesetztem Material zu erkennen. Daran schließt sich eine nahezu homogene Zone mit nur wenigen Partikeln an (Proben A 6 bis A 9; Abbildung 119 und 120). Nach unten zu zeigen sich feine Platinmetallagglomerate (Proben A 10 bis A 14).

Im Bereich der Schräge (Proben F 9 bis B 14) ist besonders im oberen Teil die Korrosionsschicht auf der Ofenkeramik zu erkennen.

9.4.4.5 Überprüfung der Oxidbeladung des Glases

Die Oxidbeladung des HAWC-Glases wurde durch Bestimmung des La-Gehalts überprüft. Da La eine Glaskomponente ist, für die kein besonderer Verflüchtigungsmechanismus bekannt ist, wurde es als Leitelement ausgewählt. In Tabelle 36 sind der Lanthangehalt sowie die Sollund Istbeladung des Glases zusammengestellt. Bei der Verglasung von MAWC/HAWC wurde die gewünschte Oxidbeladung gut erreicht (Abweichung von der Sollbeladung maximal 1,2%). Eine größere Abweichung von der Sollbeladung trat bei der Verglasung von WAW-HAWC auf (+3,5%).

9.4.4.6 Spezifischer Widerstand der Glasschmelzen

Der spezifische Widerstand der Gläser aus den Kokillen K 12/88 (MAWC/HAWC, Oxidbeladung 15%), K 24/88 (MAWC/HAWC, Oxidbeladung 7%), K 36/88 (MAWC/HAWC, Oxidbeladung 20%) und K 50/88 (WAW-HAWC, Oxidbeladung 15%) wurde zwischen 950°C und 1200°C bestimmt. Die Messungen wurden mit pulverisierten Durchschnittsproben durchgeführt.

Abbildung 121 zeigt die Temperaturabhängigkeit des Widerstands der MAWC/HAWC-Gläser. Wie zu erwarten, sinkt der spezifische Widerstand mit steigender Oxidbeladung und damit steigendem Alkaligehalt bzw. mit steigendem Platinmetallgehalt. In Abb. 122 ist die Temperaturabhängigkeit des spezifischen Widerstandes des HAWC-Glases aufgetragen. Zum Vergleich enthält diese Abbildung auch die Widerstandskurve des verwendeten Grundglases (Zusammensetzung des Grundglases entspricht nicht den Sollwerten; siehe Tab. 35a und Abschnitt 9.4.3.2.). In Tabelle 37 sind die bei 950°C und 1150°C gemessenen spezifischen Widerstände aufgeführt.

9.4.4.7 Dynamische Viskosität der Glasschmelzen

Abb. 123 zeigt den Verlauf der Viskosität von MAWC/HAWC-Glas zwischen 900°C und 1200°C. Gemessen wurde die Viskosität von pulverisierten Durchschnittsproben aus den Kokillen K 12/88 (Oxidbeladung 15%), K 24/88 (Oxidbeladung 7%) und K 36/88 (Oxidbeladung 20%).

Abb. 124 zeigt die Temperaturabhängigkeit der Viskosität des HAWC-Glases (Kokille K

50/88) sowie die des entsprechenden Grundglases zwischen 900°C und 1200°C.

In Tabelle 37 ist die Viskosität dieser Gläser bei 950°C und 1150°C zusammen mit der Nominalbeladung aufgeführt.

9.4.4.8 Feldstärkeverteilung im Schmelzbad

9.4.4.8.1 Aufbau der Meßsonde

Zur Bestimmung der örtlichen elektrischen Feldstärke in der Schmelze bzw. der Spannungsgradienten und der Temperatur am Meßort wurde die in Abb. 125 gezeigte Meßsonde gefertigt ([20], [21]. Die Sonde bestand aus einem einseitig geschlossenen Rohr aus Korund. In dem halbkugelförmigen Abschluß des Rohres waren eine zentrale und 3 symmetrisch zur Rohrachse angeordnete Bohrungen angebracht, durch die dünne offene Schutzrohre aus dem gleichen Material hindurchgeführt wurden. In den 3 symmetrisch zum Mittelpunkt angeordneten Isolierröhrchen waren Platindrähte durchgeführt, die am unteren Ende ca. 1 mm herausragten und 3 Spannungsmeßpunkte darstellten. Das mittlere Isolierröhrchen enthielt ein PtRh10-Pt-Mantelthermoelement. Der PtRh-Mantel war der Bezugspunkt der Meßsonde. Die geometrische Anordnung der vier Meßpunkte war so gewählt, daß sie ein rechtwinkliges Koordinatensystem im Raum bildeten, mit dem die Komponenten der elektrischen Feldstärke in situ erfaßt werden konnten.

9.4.4.8.2 Meßtechnik

Die zu messenden Spannungen waren stark phasenangeschnittene Wechselspannungen im Bereich bis ca. 200 mV und mit der Betriebsfrequenz des Stromnetzes (50 Hz). Sie wurden mit drei Spannungsmeßgeräten für wahre Effektivwertmessung mit nachfolgendem Trennverstärker erfaßt und zusammen mit dem Temperatursignal auf die Meßdatenerfassungsanlage aufgeschaltet.

9.4.4.8.3 Feldstärkeverteilung im Schmelztiegel

Mit der Potentialmeßsonde wurde ein vertikales Feldstärkeprofil an einer Position im Schmelztiegel aufgenommen. Dazu wurden die Potentiale über den 3 rechtwinklig zueinander stehende Meßstrecken bestimmt. Als Potentiale sollen hier die wahren Effektivwerte der gemessenen Wechselspannung verstanden werden. Die so im Koordinatensystem der Sonde gemessenen Spannungskomponenten wurden in das Koordinatensystem des Schmelztiegels transformiert [20]. Abb. 126 zeigt die Lage der Koordinatensysteme und die Anordnung der Potentialmeßsonde, Abb. 127 und 128 zeigen die Position der Meßstelle im Schmelztiegel. Aus den Messungen geht hervor, daß bis etwa zur Elektrodenunterkante die Hauptspannungskomponente in x- Richtung zur gegenüberliegenden Elektrode zeigt. Die Komponente in z-Richtung ist vergleichsweise klein und zeigt zum Tiegelboden; eine kleine y-Komponente zeigt zur benachbarten Tiegelwand. Unterhalb der Elektrode sind die Spannungsvektoren fast eine Größenordnung kleiner. Bei der y- Komponente der Spannung kehrte sich die Richtung etwa auf halber Höhe zwischen Elektrodenunterkante und Tiegelboden um. Der resultierende Spannungsvektor und damit die Stromlinie verläuft dort praktisch parallel zur Bodenkehle. Die Meßergebnisse sind so zu interpretieren, daß die Meßsonde in Höhe der Elektrodenunterkante in die gut leitfähige Platinmetallsuspension eintaucht und daher die örtliche Feldstärke (E) stark zurückgeht. Dies muß nicht zwangsläufig zu einer verminderten örtlichen Wärmefreisetzung (E²•σ) im Glas führen, sondern kann durch die höhere elektrische Leitfähigkeit (σ) der Platinmetallsuspension im Vergleich zur reinen Glasphase kompensiert werden. Dafür spricht zwar die starke Temperaturerhöhung im Bereich der Platinmetallsedimente unterhalb ca. 58 mm Höhe über dem Tiegelboden (Tab. 38). Legt man aber einen nur um eine Größenordnung niedrigeren spez. elektrischen Widerstand der Platinmetallsuspension im Vergleich zur Glasschmelze zu Grunde (entsprechend den Befunden aus der Kampagne T3; siehe Abschnitt 9.3.4.9.), so muß die

Wärmefreisetzung pro Volumen in der Suspension geringer als im platinmetallfreien Glas sein. Die gemessene höhere Temperatur in der Suspension wäre dann nur dadurch zu erklären, daß hier die Konvektion unterbunden ist. Damit vereinbar ist die erhöhte Viskosität der Suspensionen (siehe z. B. Werte aus Tabelle 11).

Für die Transformation der Spannungen U aus dem Koordinatensystem der Sonde (Index x; y; z) in das Koordinatensystem des Schmelztiegels (Index x'; y'; z') gelten folgende Beziehungen [20]:

$$U_{x'} = \frac{1}{\sqrt{6}} (-U_x - U_y + 2U_z)$$
(Gl.2)

$$U_{y'} = \frac{1}{\sqrt{2}} (+ U_x - U_y)$$
(Gl.3)

$$U_{z'} = \frac{1}{\sqrt{3}} (+ U_{x} + U_{y} + U_{z})$$
(Gl.4)

Der Effektivwert der Feldstärke E kann aus den Effektivwerten der Sondenspannungen bestimmt werden:

$$E = \frac{1}{a}\sqrt{U_x^2 + U_y^2 + U_z^2}$$
 (Gl.5)

In Tabelle 38 sind die Spannungskomponenten U_x , U_y und U_z und ihre Winkel im Koordinatensystem des Schmelztiegels zusammengestellt. Die Werte wurden auf eine Elektrodenspannung im Schmelzer von 1 V normiert. Die Abb. 127 und 128 zeigen die Spannungskomponenten in xz-Ebene bzw. in yz-Ebene nach Größe und Richtung aufgetragen. In Abb. 129 ist die lokale Feldstärkeverteilung im Schmelzbad in relativen Einheiten (normiert auf eine Elektrodenspannung von 1 V) am Ort der Messung dargestellt.

9.4.4.9 Korrosionsuntersuchungen am Elektrodenmaterial Inconel-690

Der Korrosionsangriff der Schmelze auf das Elektrodenmaterial Inconel-690 wurde auch bei dieser Kampagne unter Berücksichtigung der Expositionsdauer und der zugehörigen Temperaturen untersucht. Die Expositionsdauer bei bestimmten Temperaturen (Breite eines Temperaturintervalls 33°C) wurde mittels Betriebsstundenzähler für den jeweiligen Temperaturbereich zwischen 833 und 1200°C registriert. Abb. 130 zeigt die differentielle Zeit/Temperatur-Verteilung. Insgesamt waren die Elektroden 4869 Stunden der Schmelze bei einer Temperatur zwischen 833 und 1166°C ausgesetzt. Wie Abbildung 130 zeigt, lag das Expositionszeitmaximum während der Dosierphase im Bereich zwischen 1033 und 1066°C, während in den Leerlaufzeiten (d.h. außerhalb der Dosierphase) das Expositionszeitmaximum im Temperaturbereich von 833 bis 866°C lag. Abb. 131 zeigt die Elektrode nach Abschluß der Kampagne. Besonders an der unteren Elektrodenkante wurde ein deutlicher Materialabtrag festgestellt. Zum Vergleich liegt rechts neben der Elektrode ein Inconelblock in der Stärke des eingesetzten Elektrodenmaterials.

Die Elektroden wurden vor Beginn und nach Abschluß der Kampagne vermessen. Die Abmessungen vor und nach der Exposition sind in Abb. 132 dokumentiert (die Maße nach Abschluß der Kampagne sind unterstrichen). Der größte Materialabtrag (ca. 1 bis 1,3 mm) ist am unteren Teil der Elektrode (gemessen 1 cm oberhalb der Unterkante) zu finden. Dort herrscht offenbar die größte Stromdichte. Am oberen Teil der Elektrode (1 cm unterhalb der Oberkante) liegt der Flächenabtrag bei ca. 0,4 mm. In der Höhe hat die Elektrode etwa 0,8 mm verloren.

Nach Abschluß der Kampagne wurde von einer unteren Ecke der Elektrode eine Probe präpariert. In diesem Bereich lag der Flächenabtrag bei ca. 1 mm. REM-Untersuchungen zeigen, wie schon in Kampagne T1 (Abschnitt 9.1.4.6.) Materialveränderungen bis in ca. 1 mm Tiefe (Abb. 133). Die EDS-Punktanalysen von der im Material veränderten Schicht zeigen nach außen hin einen abnehmenden Chromgehalt bei gleichzeitiger Zunahme der Nickel- und Eisenkonzentration. In der Grenzzone zur Glasschmelze finden sich dichte Ansammlungen von Chromoxidkristallen (Abb. 134). In Materialrisse ist Glas eingedrungen. Für Langzeitbeobachtungen wurde dieselbe Elektrode noch mehrfach eingesetzt und untersucht.

9.4.4.10 Feststoffaustrag während der Dosierphase

Im Abschnitt 9.3.4.4. wurde die Technik zur Bestimmung des Feststoffaustrags beschrieben. Die Tabellen 39 und 40 zeigen die entsprechenden Meßwerte für die Verglasung von MAWC/HAWC bzw. HAWC. Der Austrag ist auf die in den Schmelzer mit der Speiselösung eingetragenen gelösten Metallsalze (berechnet als Oxide) bezogen. Mit dem MAWC/HAWC-Simulat wurden 60,21 g Oxide pro Liter Lösung eingetragen, mit dem WAW-HAWC-Simulat 55,59 g/l. Im Mittel wurden bei der Dosierung von MAWC/HAWC 4,8 Gew.% der eingebrachten Oxide ins Abgassystem ausgetragen. Bei der Dosierung von HAWC lag der Austrag im Mittel bei 0,7 Gew.%. Dies entspricht genau dem in der Kampagne T3 bestimmten Wert (siehe Abb. 135 und Abschnitt 9.3.4.4.).

9.4.4.11 Bestimmung des organischen Kohlenstoffs (TOC) im Kondensat bei der Verglasung von MAWC-HAWC

Der organische Kohlenstoff (TOC) im Kondensat wurde mit einem TOC-Analyzer (Fa. Beckmann) durch Verbrennen mit O₂ über einen Katalysator bei 960°C bestimmt. Die Proben wurden aus dem Kondensatsammelbehälter entnommen. Der Behälter hat ein Volumen von ca. 15 l, d.h. bei den entnommenen Proben handelt es sich um Mischproben über mehrere Arbeitstage. Es wurden insgesamt 11 Proben entnommen. In jeder Probe wurde organischer Kohlenstoff nachgewiesen und zwar zwischen ca. 6 bis 21 mg/l Kondensat. Dabei ist zu beachten, daß das Kondensat durch Wasser, das beim Anfahren der Anlage zur Abkühlung der Dosierleitung und der Schmelzbadoberfläche dosiert wird, verdünnt wurde.

Diese Messungen zeigen, daß bei der Verglasung von MAWC/HAWC die organischen Bestandteile im Schmelzer nicht restlos oxidiert wurden. Die Speziation der organischen Komponenten im Kondensat wurde nicht bestimmt.

9.5 Kampagnen T6, T7, T8 und T9

9.5.1 Hauptziele

Die Kampagnen T6, T7, T8 und T9 waren jeweils Kurzkampagnen von 10, 30, 90 bzw. 200 h Dauer. Alle Kampagnen wurden im "24 h - Betrieb" durchgeführt. Dadurch wurden Gläser mit Platinmetallausscheidungen produziert, die erheblich jünger waren als bei den vorangegangenen Kampagnen. Damit sollte die Möglichkeit eröffnet werden, die Platinmetallausscheidungen in der Frühphase ihrer Entstehung zu untersuchen, um Aussagen über den zeitlichen Ablauf ihrer Bildung und ihrer Veränderung hinsichtlich Zusammensetzung und Größe machen zu können. Hierzu wurden nach der Beendigung der jeweiligen Kampagne an Schnitten durch den erkalteten Tiegel die Verteilung, die Größe und die Zusammensetzung der Platinmetallpartikel bestimmt.

9.5.2 Versuchsdurchführung

Gegenüber der Kampagne T4 wurden keine Veränderungen an der Anlage vorgenommen. Die

Schmelztiegel wurden zu Beginn der Kampagnen jeweils mit platinmetallfreiem HAWC -Glas gefüllt. Die Zusammensetzung von Speiselösung, HAWC - Glas und Grundglas ist Tab. 35a zu entnehmen. Die weiteren Daten entsprechen der Kampagne T4 (Abschnitt 9.4.3.2.). In Tabelle 41 sind die Stoffströme und die Dauer der einzelnen Kampagnen zusammengefaßt. Die Tabelle 42 zeigt die während der einzelnen Kampagnen mit der Speiselösung eingebrachten Platinmetallmengen.

Die Versuchskampagnen wurden wie folgt beendet:

- Nach Dosieren der letzten Charge wurde kein Glasprodukt mehr abgesaugt. Bei der nur 10 h dauernden Kampagne T6 wurde nur eine Charge dosiert und deshalb kein Glas aus dem Schmelzer entnommen.
- Nach Dosierende wurden die Tiegel zum Durchschmelzen des Glasprodukts noch für 130 bis 200 Minuten auf 1150°C gehalten und anschließend Innen- und Außenheizung abgeschaltet. (Ausnahme Kampagne T6: Hier wurde bereits 30 Minuten nach Dosierende die Heizung abgeschaltet.)
- 9.5.3 Ergebnisse

9.5.3.1 Betriebsdaten

In Abbildung 136 ist der Verlauf der Elektrodentemperatur während der Dosierphase für die Kampagnen T6, T7, T8 und T9 dargestellt. Sie lagen im Mittel zwischen 1100°C und 1150°C. Bei den Kampagnen T6 und T7 wurde der Transformator zur Versorgung der Direktheizung im 30 Volt-Bereich betrieben, wobei unter den bei Dosierbeginn herrschenden Bedingungen (platinmetallfreie Schmelze, niedrige Leitfähigkeit) im Schmelzbad maximal 1100 W freigesetzt wurden. Da diese Leistung nicht ausreichte, kam es in den beiden ersten Stunden der Dosierphase zu einem Abfall der Badtemperatur (siehe Abbildung 136). Erst nach dem Absinken des Badwiderstandes durch die mit dem HAWC eingetragenen Platinmetalle konnte der Stromfluß und damit die freigesetzte Leistung erhöht und die Solltemperatur erreicht werden.

Ansonsten waren die beobachteten Temperatureinbrüche versuchsbedingt und traten jeweils bei der Entnahme von Glasprodukt auf, wenn kühlere Schichten aus dem Bereich der "Kalten Kappe" in Elektrodennähe gelangten.

Die Abbildung 137a,b zeigt den Verlauf des Elektrodenstroms und der Elektrodenspannung während der Dosierphase für alle 4 Kampagnen. Der Elektrodenstrom wurde so vorgewählt, daß im Bad ca. 1300 W freigesetzt wurden (Abb.138a,b). In den Kampagnen T6 und T7 konnte aus den oben beschriebenen Gründen diese elektrische Leistung zu Beginn der Kampagne nicht erreicht werden (Abb. 138a).

Die Badspannung schwankte entsprechend dem Badwiderstand, der von der Badtemperatur, dem Badfüllstand und durch den Platinmetallgehalt der Schmelze beeinflußt wird. Besonders in den Kampagnen T8 und T9 war ein deutlicher Abfall der Elektrodenspannung zu erkennen, der auf die eingetragenen Platinmetalle zurückgeführt wird (bei T9 z.B. von 30 V auf ca. 19 V; Abb. 137b).

Die Stromdichte lag zu Beginn der Kampagnen T6 und T7 zwischen 0,4 Acm⁻² und 0,5 Acm⁻² (Abb. 139a). Im Normalbetrieb wurden Stromdichten von 0,8 Acm⁻² - 0,9 Acm⁻² erreicht (Abb. 139a,b).

In der Abb.140 ist der Verlauf des Badwiderstandes dargestellt. Die Kurven resultieren aus Werten, die während des Betriebes durch die Meßdatenerfassungsanlage registriert wurden. Sie enthalten somit sämtliche durch Temperatur und Füllstandsänderungen verursachten Schwankungen. Abbildung 141 zeigt den Badwiderstand für die Kampagnen T6 bis T9 in Abhängigkeit von der dosierten Menge Speiselösung. Hierbei wurden jeweils vor der Glasentnahme bei 1150°C gemessene Einzelwerte aufgetragen. Durch den Eintrag der im Simulat enthaltenen Platinmetalle (ca. 4,6 g/l) kam es zunächst zu einem steilen Abfall des Badwiderstandes, der sich nach der Dosierung von ca. 20 l Speiselösung abflachte und am Ende von Kampagne T9 mit 0,3 V/A bei etwa 60% des Ausgangswertes lag.

9.5.3.2 Phänomenologische Beurteilung von Schnitten durch die Schmelztiegel

Die Abbildungen 142 bis 145 zeigen die Flächen von Schnitten durch die Tiegel T 6 bis T9 parallel zu den Elektroden. Im oberen Teil der Tiegel in Nähe der Badoberfläche sind Schlieren erkennbar, die auf Inhomogenitäten in der Einschmelzzone zurückzuführen sind. Im unteren Teil der Tiegel, besonders im Bereich der Bodenschräge, sind Platinmetallsedimente erkennbar. Von T6 nach T9 nimmt das Volumen, das die Platinmetallausscheidungen einnehmen, zu. Die Sedimente scheinen einheitlich zu sein. In den Abbildungen 142 und 144 (T6 und T8) sind außerdem noch größere Überreste von Kalzinat (helle Partien) erkennbar.

9.5.3.3 Größenanalyse der Pd-Rh-Te-Partikel

Die zentralen Schnitte durch die Tiegel wurden entsprechend Abb. 146 beprobt und die Probekörper für die Rasterelektronenmikroskopie (REM) und für Mikrosondenaufnahmen geschliffen, poliert und bedampft.

Bei der Kampagne T3 über 3700 h Betriebsdauer (siehe Abschnitt 9.3.4.2.) und bei der Kampagne T4 über 4900 h Betriebsdauer (siehe Abschnitt 9.4.4.3.) waren im erkalteten Schmelzer zwei unterschiedliche Platinmetallsedimente gefunden worden, ein feines fließfähiges und ein grobes stationäres. Bei den viel kürzeren Versuchen T6 - T9 wurde in den Schnitten Abb. 142 bis Abb.145 nur eine Art Sediment beobachtet. Daher wurde für die Partikelgrößenanalyse der Pd-Rh-Te-Teilchen nur ein Teil der präparierten Schliffe benutzt. Pro Schliff wurden 5 REM-Bilder angefertigt, die je nach Vergrößerungsmaßstab eine Fläche zwischen 0,02 und 0,17 mm² umfaßten. Diese Bilder wurden einer automatischen Bildanalyse unterzogen, wobei sichergestellt wurde, daß nur Pd-Rh-Te-Teilchen erfaßt wurden. Die Teilchen wurden entsprechend ihrem äquivalenten Schnittbilddurchmesser in Klassen von 0,1 logarithmischer Einheit Breite sortiert. Die Besetzungszahlen der Klassen wurden dann nach dem von Saltykov [18] angegebenen Algorithmus von Schnittbilddurchmesser auf Partikeldurchmesser umgerechnet (siehe auch Abschnitt 9.3.4.13.). Die Partikelspektren verschiedener Schliffe eines Tiegels (Abb.147a,b) zeigten nur geringe Unterschiede. Daher wurden alle Schliffe aus einem Experiment zusammengefaßt. Aus den Partikelgrößenspektren wurden die mittleren Partikeldurchmesser berechnet, indem die logarithmierten Durchmesser der einzelnen Klassen mit dem Volumenanteil der Pd-Rh-Te-Phase in der jeweiligen Klasse bezogen auf die Gesamtmenge gewichtet und dann gemittelt wurden (Tab. 43). Die Partikelspektren für alle vier Kampagnen zeigt Abb. 148. Danach verschiebt sich die Lage des Spektrums mit steigender Dauer des Experiments zunächst (von T6 nach T8) zu größeren Durchmessern. Das Partikelspektrum aus dem 200 h-Versuch (T9) ist aber wieder mit dem des 30 h-Versuchs (T7) vergleichbar. Der Gang der Partikelgrößen wird bei der Betrachtung der mittleren Partikeldurchmesser deutlicher (Tab. 43). Der mittlere Durchmesser der Partikel aus dem 10 h-Versuch (T6) beträgt 1,8 µm; nach 30 h Versuchsdauer (T7) ist er mehr als doppelt so groß (3,7 µm). Nach 90 h Versuchsdauer ist er weiter auf 5,7 µm angestiegen. Der mittlere Durchmesser der Pd-Rh-Te-Teilchen aus dem 200 h Versuch (T9) ist dem gegenüber nur noch 3,1 µm. Zieht man in Betracht, daß sich in den feinen Platinmetallsedimenten aus der T3-Kampagne ein mittlerer Partikeldurchmesser von etwa 4 µm eingestellt hatte (siehe Abschnitt 9.3.4.13.), während er im groben Sediment bis auf etwa 20 µm angestiegen war, so lassen sich die Befunde wie folgt interpretieren: Die Pd-Rh-Te-Teilchen wachsen mit der Zeit. Durch die Betriebsweise des Schmelzers stellt sich im fließfähigen feinen Sediment entsprechend der mittleren Verweilzeit ein mittlerer Partikeldurchmesser von etwa 4 µm ein. Da aber der Platinmetallgehalt im abgesaugten Glasprodukt trotz gleichmäßiger Dosierung stark schwankt (Abb. 149 für Kampagne T9), variiert auch die mittlere Verweilzeit der Partikel und damit ihr mittlerer Durchmesser. Die Ergebnisse der Versuche T7 bis T9 geben demnach den Gleichgewichtszustand bezüglich der Partikelgröße wider. Dieser Zustand wird

also schon nach weniger als 30 h erreicht. Die 10 h Versuchsdauer bei der T6 Kampagne reichen dafür noch nicht aus. In allen untersuchten Proben fanden sich keine Ansätze für die Bildung eines stationären, groben Sediments, wie es bei der T3-Kampagne beobachtet wurde. Die dazu notwendigen Versuchszeiten liegen danach deutlich über 200 h.

9.5.3.4 Mikrosondeuntersuchungen der Platinmetallphasen

Die Zusammensetzung der beiden platinmetallhaltigen Phasen im HAWC-Glas im erkalteten Schmelztiegel wurde mit Hilfe der Mikrosonde entsprechend dem Probenahmeplan (Abb. 146) quantitativ analysiert. Einige Schliffe wurden bei der Auswertung nicht berücksichtigt, da sie nur sehr wenige Partikel enthielten oder aber die Partikelgröße so gering war, daß jeweils Matrixmaterial mitgemessen wurde. Einen Überblick über die Zusammensetzung der Pd-Rh-Te-Teilchen in den Proben aus den vier Kampagnen zeigen Abb. 150a,b. Wie erwartet, ergibt sich bei allen Versuchen ein breites Spektrum der Zusammensetzungen. Eine Beziehung zwischen den Analysendaten und dem Probenahmeort innerhalb des Schmelztiegels ist nicht erkennbar. Verglichen mit den anderen Experimenten ist die Spanne der Rh- und Te-Konzentrationen in den Partikeln nach 10 h Versuchsdauer (T6) noch klein. Einzelne Teilchen enthalten bis zu 12 Gew.% Te und bis zu 15 Gew.% Rh, wobei keine praktisch Te-freien Teilchen gefunden wurden. Die Mittelwerte für die Konzentrationen aller drei Bestandteile sind in Tab. 44 aufgelistet. Analysenbefunde von wenigen 0,1 Gew.% Ru, Cr und Mo blieben in der Tabelle und in den nachfolgenden Auswertungen unberücksichtigt. Nach 30 h Versuchsdauer (T7) war die Variation in der Zusammensetzung der Pd-Rh-Te-Teilchen erheblich größer (Abb. 150a). Die Te-Konzentration reichte bis fast 30 Gew.%, die Rh-Konzentration bis ca. 55 Gew.%. Alle untersuchten metallischen Partikel waren mindestens zweiphasig, wie die Abb. 151 zeigt. Die Variation der Analysenwerte für die Pd-Rh-Te-Partikel aus dem 90 h- und dem 200 h-Versuch (Abb. 150b) ist einander ähnlich und weniger breit gestreut als die aus dem T7-Experiment (Abb. 150a).

Über die Gründe für die breite Variation der Zusammensetzung der Pd-Rh-Te-Teilchen ist schon im Zuge der T3-Kampagne (Abschnitt 9.3.4.12.) berichtet worden. Die Ergebnisse der Kurzzeitkampagnen zeigen, daß die Teilchen mit der Zeit sowohl Te als auch Rh aufnehmen und die bei längeren Kampagnen im feinen Sediment gemessenen mittleren Konzentrationen für Rh und Te in den Experimenten T7, T8 und T9 erreicht wurden, nicht jedoch im 10 h-Experiment (T6). Daraus ist zu schließen, daß im feinen Sediment der Endzustand der Zusammensetzung und der Größe der Pd-Rh-Te-Partikel nach weniger als 30 h erreicht wird und daß 200 h Versuchsdauer für die Bildung von grobem Sediment (mit größeren Partikel und höheren Konzentrationen von Te und Rh) nicht ausreichen. Der Befund, daß selbst beim 10 h-Versuch keine praktisch Te-freien Partikel beobachtet wurden, kann mit den Bedingungen beim Start jeder Kampagne erklärt werden. Der Schmelztiegel wird jeweils mit platinmetallfreiem aber tellurhaltigem Glas befüllt, so daß bei Dosieranfang ein Überangebot von Te vorhanden ist.

Die oxidischen Platinmetallpartikel in den Schliffen aus den vier Kurzzeitkampagnen bestanden im wesentlichen aus RuO₂ mit kleinen Anteilen RhO₂ und Cr₂O₃ und oftmals wenigen 0,1 Gew.% PdO. Ob die für Rh, Cr und Pd angegebenen "normalen" Oxidationszustände in den Partikeln tatsächlich realisiert sind, wurde nicht untersucht. Ein Zusammenhang zwischen Probenahmeort und Gehalt an Cr₂O₃ bzw. RhO₂ konnte nicht festgestellt werde. Vielmehr ergab sich für die Cr-Konzentration in den Partikel bei allen Experimenten eine breite Variation der Werte, die beim 10- und 30 h-Versuch (T6 und T7) von 0 bis ca. 3 Gew.% reichte. In den Proben aus den längeren Versuchen über 90 bzw. 200 h (T8 und T9) wurden keine chromarmen Partikel (unter ca. 0,5 Gew.%) mehr gefunden (Abb. 152a,b). Die RhO₂ Konzentrationen in den Partikeln aus der T6- und T7-Kampagne liegen überwiegend zwischen 0 und 2,5 Gew.%, während sie in den Proben aus den Experimenten T8 und T9 überwiegend zwischen 3 und 6 Gew.% liegen. Allerdings waren die Partikel aus der Kampagne T9 oftmals für eine Mikrosondenanalyse zu klein, so daß von diesen Proben nur wenige Analysen vorliegen.

Aus den Befunden wird geschlossen, daß RuO₂ mit der Zeit sowohl Cr als auch Rh aufnimmt. Die Endkonzentrationen an beiden Elementen werden nach weniger als 90 h Betriebsdauer erreicht. Die Ergebnisse aus dem 3700 h Versuch (Kampagne T3, Abschnitt9.3.4.12.) zeigen, daß die Konzentrationen von Cr₂O₃ und RhO₂ auch im groben Sediment, d.h. auch bei erheblich längerer Verweilzeit der Teilchen im Schmelztiegel die Werte von ca. 3 Gew.% bzw. 7 Gew.% nicht überschreiten. Wegen der ständigen Rückvermischung mit jüngeren Partikel wird im feinen Sediment aber stets ein ganzes Spektrum von Zusammensetzungen beobachtet, während im groben, stationären Sediment die Partikelzusammensetzung an einen Probenahmeort viel gleichmäßiger ist.

9.5.3.5 Platinmetallbilanz von Kampagne T9

9.5.3.5.1 Platinmetallanalysen des HAWC-Glases

Die mittleren Gehalte an Ru, Rh und Pd wurden in zerkleinerten und mit einem Probenteiler geteilten Durchschnittsproben von HAWC-Glas aus jeder der 19 Kokillen bestimmt. Die Ergebnisse sind aus Tabelle 45 ersichtlich und in Abbildung 149 graphisch dargestellt. In der Abbildung ist der Anstieg der Platinmetallgehalte im Glasprodukt bei Beginn der Kampagne deutlich zu sehen. Im weiteren Verlauf der Kampagne schwankte der Platinmetallgehalt erheblich. Vermutlich gelangen beim Absaugen von HAWC-Glas unregelmäßig größere Anteile von akkumulierten Platinmetallsedimenten in die Kokille, wobei dann die Platinmetall-Sollgehalte im Glasprodukt erreicht und gelegentlich überschritten werden. Die gemessenen Platinmetallkonzentrationen lagen bei den meisten Kokillen aber unter den Sollgehalten (Tab. 45). In Abbildung 153 ist das Verhältnis der Platinmetalle Ru, Pd und Rh zueinander (auf 1 normiert) aufgetragen. Es zeigte sich wie schon in Abbildung 149 erkennbar, daß der Ru-Anteil geringfügig unter dem Sollverhältnis lag (0,45 statt 0,48). Bis auf einige geringfügige Schwankungen änderte sich das Verhältnis der Platinmetallgehalte (Ru:Pd:Rh) nicht, d.h. es war weder eine An- noch eine Abreicherung eines der Platinmetalle im HAWC-Glas zu beobachten.

9.5.3.5.2 Platinmetallanalysen von Proben aus dem Schmelztiegel

Zur Bilanzierung der Platinmetalle im Schmelztiegel wurde 1/4 des Schmelztiegelinhalts in 3 Zonen aufgeteilt (Aufteilung siehe Abb. 146). In zerkleinerten Durchschnittsproben aus jeder Zone wurden die Platinmetallgehalte bestimmt. Die Ergebnisse sind in Tabelle 46 und Abbildung 154 dargestellt. Der Platinmetallgehalt und damit auch die Dichte des HAWC-Glases steigen von der Einschmelzzone (Zone 1) zum Tiegelboden (Zone 3) stark an. Im unteren Teil des Schmelztiegels (Zone 3) sind die Platinmetalle Ru, Pd und Rh um ca. den Faktor 3 gegenüber dem Sollgehalt angereichert, während in der darüber liegenden Zone 2 nur ca. 38 - 48% des Sollgehalts der Platinmetalle erreicht werden. In der Einschmelzzone (Zone 1) beträgt der Platinmetallgehalt ca. 30% des Sollwerts. Abbildung 155 zeigt das Verhältnis der Platinmetallgehalte im Schmelztiegel (auf 1 normiert). In allen drei Zonen liegt der Ru-Anteil etwas niedriger, als der Sollanteil von 48 Gew.% vom Gesamtplatinmetallgehalt. Dies wird auf den erhöhten Austrag des Ru in das Abgassystem zurückgeführt.

9.5.3.5.3 Platinmetallanalysen von Stäuben aus dem "Oberofen" und aus dem Abgasrohr

Aus dem Bereich des "Oberofens" und aus dem Abgasrohr wurden nach Versuchsende insgesamt 87,1 g Staub gesammelt. In diesem Staub sind die HAWC-Elemente gegenüber dem Gehalt im HAWC-Glas stark angereichert; er enthält im wesentlichen Kalzinat. Der Gewichtsverlust der Stäube beim Erwärmen bis 560°C betrug thermogravimetrisch gemessen 1%. In Tabelle 47 sind die mittleren Platinmetallgehalte einer homogenisierten Staubprobe zusammengestellt. Auffällig ist hierbei der hohe Gehalt an Ru, das etwa um den Faktor 2,7 gegenüber dem Ru-Gehalt im HAWC-Kalzinat angereichert ist. Die Pd- und Rh-Konzentrationen liegen bei ca. 50% des Sollgehalts im Kalzinat. Unter der Annahme, daß Pd und Rh den "normalen" Staubaustrag repräsentieren, ist Ru um den Faktor 5,4 im Staub angereichert. Für die Ru-Anreicherung auf Filtern im Abgassystem wurde dagegen nur ein Wert von etwa 2 gemessen (Abschnitt 9.3.4.4.). Die Diskrepanz wird dadurch erklärt, daß ein Teil des flüchtigen Ru, das schon im Oberofen niedergeschlagen wird, bei den hier vorgestellten Untersuchungen mit erfaßt wird.

9.5.3.5.4 Platinmetallbilanz

Mit dem HAWC-Simulat wurden während der Kampagne T9 insgesamt 221,3 g Ru, 191,1 g Pd und 50,3 g Rh dosiert. Wie sich diese Mengen auf die einzelnen Kokillen, auf die verschiedenen Zonen im Schmelztiegel und auf den gesammelten Staub verteilen, ist in den Tabellen 48, 49 und 50 und der Abb. 156 zusammengestellt. Stellt man nun die mit der Speiselösung eingetragenen und die analytisch wiedergefundenen Platinmetallmengen gegenüber, treten erhebliche Differenzen auf (siehe Tabelle 50 und Abbildung 156).

Der Verbleib von 18,6% des eingetragenen Ru (ca. 41 g) von 10% des eingetragenen Pd (ca. 19 g) und von 11,9% des eingetragenen Rh (ca. 17 g) konnte nicht aufgeklärt werden. Als mögliche Fehlerquellen kommen in Frage:

- Bei Ru: Weitere Verfrachtung von Ru über das Abgasrohr hinaus.
- Schnittverluste bei der Präparation von Proben aus dem Tiegel im Bereich der stark platinmetallhaltigen Randzone Glas/Keramik. Dadurch zu niedrige Analysenwerte für Zone 3 des Schmelztiegels.
- Analysenfehler

9.5.3.6 Spezifischer elektrischer Widerstand der HAWC-Glasschmelzen

Der spezifische elektrische Widerstand der Glasschmelzen aus jeweils der letzten Kokille der Kampagnen T7, T8 und T9 (K 11/89, K 19/89 und K 43/89) wurde zwischen 900°C und 1200°C bestimmt. Während der T6-Kampagne wurde kein Glasprodukt entnommen. Abbildung 157 zeigt die entsprechenden Widerstandskurven. Zum Vergleich enthält sie auch die Widerstandskurve der Grundglasschmelze. Wie entsprechend der steigenden Beladung der Kokillen mit Platinmetallen bei fortschreitender Versuchsdauer zu erwarten war (Abb. 149), wurden bei den HAWC-Glasschmelzen der beiden längsten Kampagnen (T8 und T9) die niedrigsten spezifischen Widerstände gemessen. Die Glasschmelze aus der Kampagne T7 verhielt sich demgegenüber ähnlich einer platinmetallfreien Schmelze. In Tab. 51 sind die bei 950°C und 1150°C gemessenen spezifischen Widerstände nochmals aufgeführt.

Auch bei der Messung des lokalen spezifischen Widerstands unter Verwendung von Pulverproben aus den drei Zonen des Tiegels T9 (Abb. 146) wurden qualitativ gleiche Ergebnisse erzielt (Abb. 158). Die Proben aus Zone 1 und 2 mit geringem Platinmetallgehalt (Tab. 46) wiesen etwa den gleichen Widerstand auf, wie die Grundglasschmelze, während der Widerstand bei der Probe aus der Zone 3 etwa eine halbe Größenordnung niedriger lag.

9.5.3.7 Dynamische Viskosität der HAWC-Glasschmelzen

Die dynamische Viskosität der Glasschmelzen aus jeweils der letzten Kokille der Kampagnen T7, T8 und T9 (K 11/89, K 19/89 und K 43/89) wurden zwischen 900°C und 1200°C bestimmt. Die Messungen wurden mit pulverisierten Durchschnittsproben durchgeführt. Abbildung 159 und Tabelle 51 zeigen die entsprechenden Ergebnisse zusammen mit denen für die Grundglasschmelze. Alle Kurven liegen dicht beieinander. Die Beladung mit HAWC beeinflußte in geringem Maße die Steilheit des Viskositätsverlaufs. Ein Einfluß der Platinmetalle war nicht erkennbar.

<u>9.6</u> Kampagne T13

9.6.1 Hauptziele

In der Kampagne T13 sollte zunächst das Verhalten des Schmelzers hinsichtlich der Platinmetallakkumulation bei 60° Bodenneigung erprobt werden. Neben den Betriebsdaten wurde dazu auch ein vertikales Temperaturprofil im Schmelzer während der Kampagne zeitlichen aufgenommen. Zudem wurde zur Markierung des Ablaufs der Platinmetallsedimentation nach 90 Betriebsstunden während der Dosierung für eine Charge zusätzlich zur Speiselösung (mit normalem Platinmetallgehalt) eine Platinlösung dosiert. Platin ist in der Silikatschmelze praktisch unlöslich und begleitet das Palladium. Durch Bestimmung der Pt - Konzentrationen im abgefüllten Glas ließen sich so das Austragsverhalten für die Platinmetalle und durch REM - Untersuchungen des im Tiegel verbliebenen Materials die Orte der Platinmetallakkumulation im Schmelztiegel bestimmen.

9.6.2 Änderungen an der Anlage

Die Bodenneigung von 60° wurde wiederum durch auf die Bodenfläche gekittete Formsteine realisiert. Dazu war es erforderlich, die Höhe der Tiegel zu vergrößern und sie tiefer in den Schutztiegel abzusenken (Abb. 160).

9.6.3 Versuchsdurchführung

Zum Start wurde der Tiegel mit ca. 1800 g platinmetallfreiem Glas und 2900 g platinmetallhaltigem Glas aus der Startphase der Kampagne T9 gefüllt. Daraus ergab sich eine rechnerische Platinmetallbeladung von 37 % des Sollwerts. Den weiteren rechnerischen Anstieg des Platinmetallgehalts im Verlauf der Kampagne zeigt Tab. 52. Die Zusammensetzung von Speiselösung, HAWC - Glas und Grundglas ist Tab. 35a zu entnehmen. Die übrigen Daten sind identisch mit denen der Kampagne T4 (siehe Abschnitt 9.4.3.2.). Zur Markierung der Platinmetalle wurde, nachdem ca. 46 l Speiselösung dosiert waren (90 Betriebsstunden) zusätzlich zur Speiselösung während einer Charge 250 ml salpetersaure Platinlösung mit 27,5 g Pt dosiert.

Nach ca. 180 Betriebsstunden (18 Chargen) wurde die Versuchskampagne abgebrochen:

- Nach dem Dosieren der letzten Charge wurde nicht mehr abgesaugt.
- Nach Dosierende wurde der Schmelztiegel über Nacht (ca. 16 Stunden) auf etwa 1000°C gehalten. Danach wurde die Innen- und Außenheizung abgeschaltet.

9.6.4 Ergebnisse

9.6.4.1 Betriebsdaten

Abbildung 161 zeigt den Verlauf der Elektrodentemperatur während der Dosierphase im Vergleich zu Kampagne T9 (Kurve durch lineare Regression geglättet). Sie liegt, abgesehen von der Startphase, im Mittel bei ca. 1100°C.

Abbildung 162 zeigt den Verlauf des Elektrodenstroms und der Elektrodenspannung. Der Elektrodenstrom liegt zwischen 50 und 60 A. Dies entspricht einer Stromdichte von 0,77 bis 0,92 Acm⁻² (siehe Abb. 163). Die Elektrodenspannung fällt durch die mit dem Eintrag der Platinmetalle verbundenen Leitfähigkeitsänderung der Schmelze von 26 V auf ca. 20 V. Die Kurven wurden durch lineare Regression geglättet.

Die durch die Elektroden eingetragene Leistung lag zwischen 1200 und 1400 W (siehe Abb. 164, Kurve durch lineare Regression geglättet).

Abbildung 165 zeigt einen Vergleich des Badwiderstands mit dem bei der Kampagne T9. Da

der Schmelztiegel bei der Inbetriebnahme bereits mit platinmetallhaltigem Glasprodukt gefüllt wurde, war ein geringerer Abfall des Badwiderstandes im Vergleich zu anderen Kampagnen zu erwarten. Der hohe Ausgangswert und der relativ steile Abfall der Widerstandskurve zu Beginn der Kampagne ist auf eine niedrige Starttemperatur im Schmelzbad zurückzuführen. Nach der Dosierung von ca. 25 1 Simulat (nach ca. 45 Betriebsstunden) kommt der Widerstandsabfall praktisch zum Stillstand. Rechnerisch sollte zu diesem Zeitpunkt eine Platinmetallbeladung von etwa 89% des Sollwertes erreicht und der Schmelzerinhalt zweimal ausgetauscht sein.

9.6.4.2 Phänomenologische Beurteilung von Schnitten durch den Schmelztiegel

Auch im Schnitt durch den Schmelzer mit 60° Bodenneigung (Abb. 160) sind 3 Zonen zu unterscheiden (Abb. 166): Im oberen Teil (Zone 1) sind noch Schlieren als Relikte der "Kalten Kappe" zu erkennen. Die mittlere Zone 2 besteht aus praktisch klarem Glas mit wenigen kleinen Einschlüssen von Platinmetallphasen. Der Bodenbereich ab Unterkante der Elektroden ist mit Platinmetallsedimenten gefüllt, die z.T. auch noch von anderen Fremdphasen durchzogen sind.

9.6.4.3. Temperaturprofil im Schmelztiegel

Analog dem in Abschnitt 9.3.4.3. beschriebenen Vorgehen, wurde ein vertikales Temperaturprofil im Schmelztiegel vor der Produktion der letzten Kokille aufgenommen. Abbildung 167 zeigt die Temperaturen im Zentrum des Schmelzbads ohne Dosierung von Simulat vor und nach dem Absaugen von Glasschmelze. Beide Temperaturprofile wurden bei etwa der gleichen Elektrodentemperatur aufgenommen (1100 bzw. 1090°C). In beiden Fällen wurde die höchste Temperatur in der Schmelze etwa in Höhe der Elektrodenunterkante in 113 mm Höhe gemessen. Von diesem Punkt aus nimmt die Temperatur jeweils nach unten stetig ab und liegt am Tiegelboden um 80 bis 100 K tiefer. Diese Verhalten wurde für Glasschmelzen mit fließfähigem Platinmetallsediment erwartet. Insgesamt wird das Temperaturprofil nach dem Absaugen im oberen Teil steiler, was wohl auf die größere Nähe zur kühleren Badoberfläche zurückzuführen ist.

In Abbildung 168 sind die Temperaturprofile aus dem Zentrum des Schmelzers jeweils vor dem Absaugen von Glasschmelze bei einer Bodenneigung des Tiegels von 45 und 60° (Kampagne T3, Abschnitt 9.3.4.3. bzw. Kampagne T13) dargestellt. Der Vergleich beider Profile zeigt, daß sie im oberen Teil, wenn man von der Schmelzbadoberfläche ausgeht, praktisch identisch sind. Bei 60° Bodenneigung ist die Höhe des Bereichs mit geneigten Bodenflächen aber deutlich größer (113 mm im Vergleich zu 65 mm bei 45° Bodenneigung), d.h. sein unterer Teil ist weiter von den Elektroden entfernt und dementsprechend kühler: Die Bodentemperatur liegt ca. 80 K unter der Maximaltemperatur; bei 45° Bodenneigung waren es nur ca. 30 K.

9.6.4.4 Platinmetallbilanz

Zur Erstellung der Platinmetallbilanz wurden die Gehalte in den Kokillen, im Abgasrohr bis vor den Kondensator und in den drei Zonen des Schmelztiegels (Abb. 166) summiert und der dosierten Menge gegenübergestellt. Das Volumen der einzelnen Zonen im Tiegel wurde an Hand des Schnitts durch den Tiegel berechnet (Abb. 169). Als Indikator für die Beladung mit HAWC - Oxiden wurde daneben auch La bestimmt.

In Tabelle 53 sind die gemessenen Gehalte an den drei aus dem HAWC stammenden Platinmetallen und La in den Kokillen zusammengestellt. Für den zweiten Teil der Kampagne sind auch die Analysendaten für Pt angefügt. Die Konzentrationen der Platinmetalle schwanken von Kokille zu Kokille. Die Konzentrationen aller drei Platinmetalle variieren jedoch gleichsinnig, wie es auch schon bei der Kampagne T3 beobachtet wurde (Abschnitte 9.3.4.6 und 9.3.4.7). Die Variation im Platinmetallgehalt ist allerdings geringer als im T3- und T9- Versuch. Im Mittel liegen die Konzentrationen von Pd und Rh bei 91 % des Sollwerts, von Ru bei 83 %. Da Pt nur kurzzeitig dosiert wurde, sinkt der Pt-Gehalt in den Kokillen gleichförmig. Allerdings spiegelt sich der hohe Platinmetallgehalt in Kokille K16 auch im Pt-Gehalt wider: Gegenüber Kokille K15 ist der Abfall im Pt-Gehalt gering. Dies mag als Hinweis dafür gelten, daß Pt tatsächlich die übrigen Platimetalle begleitet und somit als Indikator dienen kann.

Der Lanthangehalt als Maß für die Oxidbeladung sinkt von einem zu Beginn der Kampagne über der Sollkonzentration liegenden Wert auf den Nominalgehalt. Im zweiten Teil der Kampagne schwankt er praktisch gleichsinnig mit den Platinmetallen Abb. 170). Dies war bei der Kampagne T3 (Abb. 57) weniger ausgeprägt. Dort waren die Schwankungen im Platinmetallgehalt zumindest zum Kampagnenende hin weitgehend unabhängig von der Variation der Oxidbeladung. Dies mag ein Zeichen dafür sein, daß die Platinmetalle bei der Kampagne T13 als gut fließfähige Suspension vorliegen und aus einem Tiegel mit 60° Bodenneigung vollständiger ausgetragen werden, als bei der Verwendung von Tiegeln mit 45° Bodenneigung.

Die 3 Zonen im Schmelztiegel (Abb. 169) wurden getrennt analysiert. Die Ergebnisse zeigt Tab. 54. In den Zonen 1 und 2 lag der Gehalt an den Platinmetallen weit unter dem Sollwert. In Zone 3 kommt es zur Anreicherung der Platinmetalle (1,4 bis 1,6facher Sollgehalt). Nicht erklärbar ist der geringe Gehalt an La in Zone 1 und 2 (Abbildung 171).

Im ausgetragenen Staub ist Ru stark angereichert (Tabelle 55). Während bei Pd, Rh und La etwa nur 50 bis 60% des Nominalwertes des Kalzinats erreicht wurden, lag die Ru-Konzentration beim 1,8fachen des Sollwertes. Bemerkenswert ist der hohe Gehalt an Pt im ausgetragenen Staub (0,638 Gew.-%), da Pt nur für ca. 8 h in der Mitte der Kampagne dosiert wurde. Für Pt existiert offenbar ein spezieller Verflüchtigungsmechanismus , möglicherweise über PtO₂.

Für die Erstellung der Platinmetallbilanz einschließlich des Platins wurden die in den Kokillen, den 3 Zonen des Schmelztiegels und im ausgetragenen Staub gefundenen Platinmetallmengen aufsummiert und der dosierten Menge gegenübergestellt. Erwartungsgemäß wird der überwiegende Teil der Platinmetalle beim Absaugen mit dem HAWC - Glas ausgetragen (80 - 85% bzw. 72% beim Pt; Abbildung 172). Im Schmelztiegel verbleiben 12 - 14% der eingesetzten Platinmetalle, vom Pt allerdings nur knapp 3 %. Bei der Ru-Bilanz ergibt sich ein Fehlbetrag von ca. 5%. Möglicherweise sind Ru-Verluste ins Abgassystem dafür verantwortlich. Für den Fehlbetrag von 23,2 % beim Pt (Abb. 172) kommen 2 Fehlerquellen in Betracht: Schnittverluste bei der Probenpräparation an der Grenzfläche Keramik/Glas im Bereich Pt-reicher Sedimente und Verluste ins Abgassystem. Die Hauptmenge der im Tiegel verbliebenen Platinmetalle sind wie erwartet im Bereich der Bodenschräge (Zone 3) akkumuliert und zwar 81 - 84% der im Tiegel verbliebenen Platinmetalle Ru, Rh und Pd und 66% des Pt (Tabelle 56).

9.6.4.5 Verbleib des Platins

Abb. 173 zeigt einen Vergleich des bei homogener Durchmischung im Schmelztiegel in den Kokillen zu erwartenden Platingehalts und der tatsächlich analytisch gefundenen Konzentration. In den Kokillen K12 - K17 liegen die Istgehalte jeweils etwa 0,06 Gew.% unter den erwarteten Werten. Bei den letzten 3 Kokillen sind die absoluten Konzentrationen schon so niedrig, daß die gemessenen Differenzen innerhalb der Fehlerbreite der Analysenmethode liegen. Betrachtet man den Platinaustrag aus dem Schmelzer, so ergibt sich die Kurve in Abb. 174. Wie die Bilanz schon gezeigt hat, entspricht die Differenz von erwarteter und gemessener Menge Platin nicht dem im Schmelzer akkumulierten Anteil, wie er naßchemisch bestimmt wurde. REM/EDS - Analysen über eine halbe Schnittfläche des Schmelztiegels (Abb. 175) zeigen aber, daß praktisch alle Schliffe aus der Grenzzone Glas/Keramik im Bereich der Bodenschräge platinhaltige Sedimente enthalten, während bei den Schliffen aus dem Zentrum kein Pt mehr nachgewiesen wurde. Beim Heraussägen des Glases aus dem Tiegel zur Gewinnung der Durchschnittsproben für die naßchemische

Analyse fällt der Grenzbereich Glas/Keramik nun gerade in den Bereich des Sägeschnitts, so daß daraus ein zu geringer Pt-Gehalt im Glas aus der Zone 3 des Schmelzers resultiert. Zum anderen könnte die Fehlmenge Pt auch auf eine Pt-Verflüchtigung zurückzuführen sein.

Aus Abb. 175 ist auf jeden Fall klar ersichtlich, daß ein Rest der in der Mitte der Kampagne gebildeten Platinmetallsedimente auch noch am Ende der Kampagne nach etwa 400 h (80 Betriebsstunden) im Schmelzer vorhanden ist. Diese Sedimente sind aber ausschließlich in Bodennähe zu finden. Im Zentrum des Schmelzers sind die platinhaltigen Sedimente schon komplett ausgetauscht. Dies stützt die bisherigen Befunde, daß in Betriebszeiten von wenigen 100 h keine ortsfesten Sedimente gebildet werden.

9.7 Kampagne T14

9.7.1 Hauptziele

Die Kampagne T14 wurde mit einem Ru-freien Simulat durchgeführt. Damit sollten Kenntnisse darüber gesammelt werden, ob eine Abtrennung von Ru aus dem HAWC im Zuge des Purex-Prozesses [22], [23] oder während der Verglasung selbst [24] den Verglasungsprozeß erleichtern könnte. Das RuO₂ bildet zusammen mit kugelförmigen Partikeln aus Pd-Rh-Te-Legierung zunächst ein voluminöses, fließfähiges Sediment. Bei längerer Verweilzeit findet Partikelvergröberung statt. Die groben Sedimente sind dann nicht mehr fließfähig und beeinträchtigen dauerhaft den elektrischen Haushalt des Schmelzers (siehe Abb. 50, Kampagne T3). Auf Grund der Morphologie der Platinmetallsedimente und der Größe ihres Einflusses auf die elektrische Leitfähigkeit der HAWC-Glasschmelzen scheint das RuO₂ hauptverantwortlich für diese Probleme bei der Direktheizung des Schmelzers zu sein (siehe Abschnitt 9.3.4.9.).

Daher sollten in der Kampagne T14 insbesondere der Betriebsverhalten des Schmelzers, die Morphologie der Platinmetallsedimente und deren Korngrößenspektrum untersucht werden.

9.7.2 Versuchsdurchführung

Vor dem Start wurde der Schmelztiegel mit 60° Bodenneigung mit platinmetallfreiem HAWC-Glas gefüllt. Die Zusammensetzung von Speiselösung, HAWC-Glas und Grundglas ist Tab. 57 zu entnehmen. Der Oxidgehalt des Simulats lag bei 52,33 g/l, die effektive Sollbeladung des Glases sollte bei 12,64 Gew.% liegen. Um diese Beladung zu erreichen, mußten pro Liter Speiselösung 364,1 g Grundglas dosiert werden. Die übrigen Daten sind identisch mit denen der Kampagne T4 (siehe Abschnitt 9.4.3.2.).

Insgesamt wurden 18 Kokillen produziert. Nach Dosierende für die 19. Charge wurde der Tiegelinhalt ca. 2 Stunden bei 1140°C bis 1150°C durchgeschmolzen und anschließend die Innen- und Außenheizung abgeschaltet.

9.7.3 Ergebnisse

9.7.3.1 Betriebsdaten

Abb. 176 zeigt den Verlauf der Elektrodentemperatur während der Dosierphase (Kurve durch Regression geglättet). Sie wurde im Zentrum der Elektrode gemessen und lag im Mittel bei ca. 1100°C.

Abb. 177 zeigt den Verlauf des Elektrodenstroms und der Elektrodenspannung während der Dosierphase. Der Elektrodenstrom lag zwischen 46 A und 54 A. Dies entspricht einer Stromdichte von 0,70 Acm⁻² bis 0,83 Acm⁻² (siehe Abb. 178; Kurve durch Regression geglättet). Die Elektrodenspannung fiel im Laufe des Experiments von ca. 35 V auf ca. 23 V ab. Die durch die Elektroden eingetragene Leistung lag im Mittel bei ca. 1300 W (siehe Abb.

179; Kurve durch Regression geglättet).

Der bei der Verglasung von platinmetallhaltigem HAWC gewöhlich beobachtete anfängliche Abfall des über die Badelektroden gemessenen Widerstands wurde auch bei der Verglasung von Ru-freiem HAWC festgestellt. Die Abbildung 180 zeigt den Verlauf des Badwiderstandes und der Badtemperatur während der Dosierphase. Der Abfall des Badwiderstandes zu Beginn der Kampagne kommt nach der Dosierung von ca. 201 Simulat, d.h. nach 4 Chargen praktisch zum Stillstand. Während der Kampagne fiel der Badwiderstand bei 1100°C von 0,7 V/A bis auf ca. 0,43 V/A ab. Dieser Widerstandsrückgang auf ca. 60 % des Ausgangswertes ist deutlich geringer als bei vergleichbaren Versuchen mit Ru-haltigem HAWC. Dies ist erklärlich, da die Platinmetallsedimente, die bei diesem Versuch allein aus Pd-Rh-Te-Legierung bestehen, nur ein kleines Volumen nahe dem Schmelzerboden und weit von den Elektroden entfernt einnehmen (Abb. 181).

9.7.3.2 Platinmetall- und Lanthankonzentrationen im Schmelzer

Der Inhalt des erkalteten Schmelztiegels wurde wie bei früheren Untersuchungen in drei Zonen aufgeteilt: Einschmelzzone (1), Zone mit wenigen Platinmetallpartikeln (2) und Sedimentationszone (3) (Abb. 182). Von jeder Zone wurden Durchschnittsproben gewonnen und diese auf Pd, Rh und La analysiert. Die Pd- und Rh- Konzentrationen liegen in Zone 1 und 2, wie zu erwarten, weit unter der Sollkonzentration (Tab. 58), wobei die niedrigsten Platinmetallgehalte in Zone 2 gemessen wurden (ca. 23 % der Sollkonzentration). In Zone 3 sind die Platinmetalle auf über den 3-fachen Sollwert angereichert (Tab. 58 und Abb. 183). Diese Anreicherung ist erheblich höher als in der unmittelbar vergleichbaren Kampagne T13 (Abschnitt 9.6.4.4) und auch noch höher als in der Kampagne T9 (Abschnitt 9.5.3.5.2) mit einem Tiegel mit 45° Bodenneigung. Die Abreicherung in den oberen beiden Zonen des Schmelzers ist im Vergleich zu den Kampagnen T13 und T9 weiter fortgeschritten. La als Indikator für die Oxidbeladung des Glases erreicht in Zone 2 und 3 den Sollgehalt gut. In der Einschmelzzone ist La dagegen leicht abgereichert (ca.80 % der Sollbeladung).

9.7.3.3 Untersuchung der Platinmetallpartikel durch Rasterelektronenmikroskopie und mit der Mikrosonde

Der Schnitt durch den erkalteten Schmelztiegel wurde entsprechend Abb. 182 beprobt. Die Anschliffe wurden mit dem Rasterelektronenmikroskop (REM) untersucht, die Partikelzusammensetzung mit der Elektronenstrahlmikrosonde quantitativ gemessen. Schon aus dem optischen Bild vom Schnitt durch den Schmelzer (Abb. 181) ist erkennbar, daß die Platinmetallsedimente in der Nähe des Schmelzerbodens im Vergleich zu Verglasung von Ruhaltigem HAWC dichter sind (Vergleich mit z.B. Abb. 166, Kampagne T13). Das REM-Bild in 10,2-facher Vergrößerung (Abb. 184) zeigt zusammenhängende Partikel von Pd-Rh-Te-Legierung. Details der Morphologie der Partikel sind in Abb. 185 bei 170-facher Vergrößerung zu sehen. Einzelne Tropfen der Legierung existieren praktisch nicht mehr. Die Abmessungen der Legierungspartikel sind größer als bei den Experimenten mit Ru-haltigem HAWC und liegen bei mehreren 10 bis 100 µm.

Neben diesen vergleichsweise dichten Sedimenten am Schmelzerboden bedecken tropfenförmige Platinmetallpartikel die Schmelzerwände bis in die Einschmelzzone hinein. Die Abb. 186 zeigt, daß die Partikel auf den Chromoxidteilchen des korrodierten Ofensteins aufliegen. Bei einer weiteren Anhäufung von Tröpfchen wäre, wie im unteren Teil des Tiegels bereits geschehen, ein Zusammenschmelzen der Pd-Rh-Te- Partikel und damit eine Metallisierung der Schmelzerwände wahrscheinlich.

Die Zusammensetzung Pd-Rh-Te-Teilchen chemische der wurde mit der Elektronenstrahlmikrosonde bestimmt. In Abb. 187 und 188 sind die Ergebnisse dargestellt. Dabei wurden jeweils die Schliffe zusammengefaßt, die Teilchen mit ähnlicher Morphologie enthielten (einzelne Tröpfchen bzw. zusammengeschmolzene Partikeln). Die Zusammensetzung der an der Tiegelwand haftenden kugelförmigen Partikel entspricht in

seiner Variation dem der Sedimente, die bei den Kurzzeitversuchen T7-T9 mit 30 - 200 h Versuchsdauer beobachtet wurden (Abb. 150a,b). Lediglich die Partikel aus der Einschmelzzone (Abb. 182, Schliff 4) enthalten im Vergleich zu den übrigen Proben weniger Te bzw. Rh. Sie entsprechen in ihrer Zusammensetzung den im T6-Experiment gebildeten Pd-Rh-Te-Teilchen (Abb. 150a). Demgegenüber ist die Zusammensetzung der am Tiegelboden zusammengeschmolzenen Partikel viel einheitlicher. Die Te-Konzentration beträgt im Mittel $2,6 \pm 0,7$ Gew.%, die Rh-Konzentration $20,5 \pm 2,5$ Gew.% (der Rest ist jeweils Pd). Dies ist erklärlich, da Teilchen dieser Zusammensetzung nach dem Stand der Kenntnis vom Dreistoffsystem Pd/Rh/Te bei Schmelzertemperatur einphasig und fest sein sollten.

Eine außergewöhnliche Zusammensetzung der Platinmetallphasen wurde im Schliff 24 (Abb. 182) beobachtet. Dieser Schliff enthält tröpfchenförmige Partikel auf der kurzen Schräge des Tiegelbodens mit Te- und Rh- Konzentrationen, die mit den Messsungen von Schliff 20 und 23 vergleichbar sind. Schliff 24 enthält aber außerdem Platinmetallpartikel in der Fuge zwischen der vertikalen Tiegelwand und dem Bodenformstein mit 60° Neigung. In diesem Zwischenraum wurden durchweg Partikel mit einem hohem Te-Gehalt zwischen 37% und 78% gefunden. Die Partikel enthielten jeweils einige % Ni, Spuren Cr, kein Rh und z.T. hohe Gehalte an Silber (bis über 50% Ag). Der Pd-Gehalt variierte je nach Lokalität der Partikel zwischen 0% und über 60%. Daraus ergibt sich, daß die hier gefundenen Partikel im wesentlichen aus einer Ag-Te - bzw. einer Pd-Te - Legierung bestanden. Die Partikelzusammensetzung - insbesondere der hohe Te-Gehalt - wird verständlich, wenn man bedenkt, daß der Schmelzer zum Start mit Te-haltigem aber platinmetallfreiem Glasprodukt befüllt wurde und sich die Fuge zwischen den Keramiksteinen mit diesem Glasprodukt gefüllt hat. Es ist anzunehmen, daß das Glas in der Fuge beim Start der Kampagne bereits Ag-Ni-Te-Partikel enthielt und sich Platinmetallpartikel, die im Laufe der Kampagne in die Fuge gerieten mit den Ag-haltigen Partikel legierten und zudem aus der Umgebung weiter Te aufnahmen. Mit dem Auftreten von hoch Te-haltigen Platinmetallegierungen, die einen Schmelzpunkt von < 800°C haben, ist also immer dann zu rechnen, wenn zumindest lokal ein Überangebot Te vorhanden ist, wie z.B. beim Übergang von platinmetallfreiem Glas zu platinmetallhaltigem Glas.

9.7.3.4 Partikelgrößenanalyse

Da im unteren Teil des Schmelzers praktisch keine isolierten Pd-Rh-Te-Teilchen im Sediment existieren, beschränkte sich die Partikelgrößenanalyse auf die Tröpfchen, die an der korrodierten Schmelzerwand anhafteten. Von Schliff 20 (Abb. 182) wurden REM-Bilder angefertigt und nach der im Abschnitt 9.3.4.13. beschriebenen Methode ausgewertet. Es ergab sich das in Abb. 189 gezeigte Partikelgrößenspektrum mit einem hohen Anteil an großen Partikeln. Auf eine Interpretation der Spektrenform wird allerdings verzichtet, da die Zahl der insgesamt vermessenen Teilchen klein ist. Die maximale Besetzungszahl einer einzelnen Klasse beträgt nur 7. Dennoch wird klar, daß der mittlere Partikeldurchmesser auf jeden Fall größer ist, als der für ein feines Platinmetallsediment zu erwartende Wert von ca. 4 μ m (Abschnitt 9.3.4.13.). Der errechnete Mittelwert beträgt etwa 25 μ m.

9.7.3.5 Korrosionsuntersuchungen an den Elektroden

Die in der Kampagne T4 benutzten Elektroden (Abschnitt 9.4.4.9.) wurden bei der Kampagne T14 weiterbenutzt. Nach Abschluß der Kampagne wurde wiederum eine untere Ecke einer Elektrode abgeschnitten. Die Materialveränderungen wurden -ausgehend von der Oberflächedurch REM/EDS - Messungen bestimmt. Die Ergebnisse zeigt Abb. 190. Die Cr- und Ni-Konzentrationsprofile zeigen Veränderungen bis in etwa 1,8 mm Tiefe (siehe auch Abschnitt 9.1.4.6).

<u>9.8 Kampagne T15</u>

9.8.1 Hauptziele

Da sich bisher nur bei den Langzeitversuchen während der Kampagnen T3 und T4 grobe gealterte Platinmetallsedimente im Schmelztiegel gebildet hatten, sollte nun in einem Langzeitversuch geprüft werden, ob sich diese Sedimente auch bei 60° Bodenneigung im Schmelzer ausbilden.

9.8.2 Versuchsdurchführung

Vor dem Start wurde der Schmelztiegel mit 60° Bodenneigung mit platinmetallfreiem HAWC-Glas gefüllt. Die Zusammensetzung von Speiselösung, HAWC-Glas und Grundglas ist Tab. 35b zu entnehmen. Der Oxidgehalt des Simulats lag bei 55,23 g/l, die effektive Sollbeladung des Glases sollte bei 13,3 Gew.% liegen. Um diese Beladung zu erreichen, mußten pro Liter Speiselösung 361,3 g Grundglas dosiert werden. Die übrigen Daten sind identisch mit denen der Kampagne T4 (siehe Abschnitt 9.4.3.2.).

Insgesamt wurden 51 Kokillen produziert. Bei Kampagnenende wurde ca 45 Minuten vor Dosierende die Außenheizung abgestellt, bei Dosierende auch die Direktheizung. Die Abkühlung des Schmelztiegels wurde nicht weiter kontrolliert. Durch diese Vorgehensweise blieb die "Kalte Kappe" im Schmelzer erhalten.

- 9.8.3 Ergebnisse
- 9.8.3.1 Betriebsdaten

Abb. 191 zeigt den Temperaturverlauf im Schmelztiegel während der Dosierung (Kurven durch Regression geglättet). Die Temperatur lag im Mittel zwischen 1120°C und 1130°C.

Abbildung 192 zeigt den Verlauf des Elektrodenstroms und der Elektrodenspannung. Der Elektrodenstrom lag bis auf die Zeit der Anfahrphase zwischen 50 A und 60 A. Dies entspricht einer Stromdichte von 0,8 bis 0,9 Acm⁻² (siehe Abb. 193). Die Elektrodenspannung fiel durch die mit dem Eintrag der Platinmetalle verbundenen Leitfähigkeitsänderung der Schmelze von 30 V auf ca. 20 V. Die Kurven wurden durch Regression geglättet.

Die durch die Elektroden eingetragene Leistung lag bei 1300 W (siehe Abb. 194, Kurve durch Regression geglättet).

Abbildung 195 zeigt den Verlauf des Badwiderstandes und der Badtemperatur während der Kampagne. Nach der Dosierung von ca. 201 Simulat läßt der steile Widerstandsabfall nach und kommt nach der Dosierung von ca. 1001 praktisch zum Stillstand. Insgesamt sinkt der Badwiderstand vom Ausgangswert 0,63 V/A auf 0,35 V/A (d.h. auf ca. 55%). Im Vergleich zur Kampagne T3, bei der ein Tiegel mit 45° Bodenneigung verwendet wurde, ist der Rückgang des Badwiderstands weniger stark (Abb. 196; siehe auch Abschnitt 9.3.4.1.). Wegen unterschiedlicher Grundgläser sind allerdings die absoluten Widerstände verschieden.

9.8.3.2 Partikelgrößenanalyse der Pd-Rh-Te - Phase im Schmelztiegel

Aus dem zentralen Schnitt durch den Tiegel (Abb. 197) wurden 23 REM-Proben geschnitten, von denen 4 keine Pd-Rh-Te- Teilchen enthielten (Abb. 198). Von jedem Schnitt wurden je 4 REM-Bilder mit der Vergrößerung 1500 angefertigt. An Hand dieser Bildern wurde nach der im Abschnitt 9.3.4.13 beschriebenen Methode die Größenverteilung der Pd-Rh-Te - Teilchen berechnet. Die Pd-Rh-Te- Teilchen waren fast immer kugelförmig. Die Partikelgrößenanalyse ergab Mittelwerte für die logarithmierten Durchmesser von 1,88 bis 4,42 µm. Dabei wurden

bei einigen Schliffen einzelne große Partikel nicht berücksichtigt (bei REM 1529, 1534, 1535, 1537 und 1546). Die kleineren Durchmesser findet man im Tiegel oben und im Zentrum, aber kaum in Wandnähe. Es gab keine Abgrenzung zwischen älterem und jungem Sediment. Unter Einbeziehung aller Partikel von allen Schliffen ergab sich ein mittlerer Durchmesser von 3,65 μ m, bei Ausschluß der o.g. einzelnen großen Partikel einer von 3,34 μ m Abb. 199). Im Vergleich zu früheren Versuchen (z.B. T3, T6 - T9) deutet dies auf ausschließlich junges Sediment. D.h. bei 60° Bodenneigung wird nach der o.g. Versuchszeit noch keine Akkumulation von älteren Sedimenten mit entsprechend großen Partikeldurchmessern (ca. 20 μ m bei T3, Abschnitt 9.3.4.13) beobachtet.

9.8.3.3 Optische Mikroskopie und Rasterelektronenmikroskopie an Proben aus den Kokillen

Optische Bilder und REM- Aufnahmen von Schliffen aus der Kokille K13/91 (REM 1493 bis 1499, siehe Abb. 200) zeigen nadelförmige RuO₂ Teilchen und zusätzlich Platten und Nadeln mit der mittleren Zusammensetzung 19 % Rh₂O₃, 74 % Cr₂O₃ und 7 % Fe₂O₃. Die mittlere Zusammensetzung der metallischen Ausscheidungen ist 8 % Te, 86 % Pd und 6 % Rh. Dies entspricht gut der mittleren Zusammensetzung der Metallpartikel im feinen Sediment der T3 Kampagne (Tab. 44). Auch dies deutet auf ausschließlich junges Sediment hin.

Beim Vergleich der Kampagnen mit Tiegeln mit 45° (T3) bzw. 60° (T15) Bodenneigung zeigte sich, daß die steilere Bodenneigung eine Akkumulation von älterem Sediment im Übergangsbereich Wand/Boden zumindest für die Versuchszeit von etwa 3000 h verhindert hat.

9.9 Kampagne T16

9.9.1 Hauptziele

In dieser Kampagne wurde HAWC unter Zusatz von Reduktionsmitteln verglast. Zunächst war dabei zu prüfen, welche Reduktionsmittel unter Prozeßbedingungen in der Schmelze wirksam werden können. Zum anderen sollte gezeigt werden, ob die Morphologie der Platinmetallphasen, insbesondere die der nadelförmigen RuO₂ - Kristalle, durch reduzierende Bedingungen zu beeinflussen ist. Dies sollte sich vornehmlich in einem geringeren Effekt der Platinmetalle auf den Badwiderstand zeigen.

9.9.2 Vorversuche

Vorversuche in 30 ml-Tiegeln mit in der HAWC-Lösung gelöstem Tannin bzw. auf den Grundglasperlen aufgezogenem Graphitpulver als Reduktionsmittel ergaben keinen meßbaren Effekt auf die Ausbildung der RuO₂ Kristalle und auf das Erscheinungsbild der unlöslichen Phasen. Vermutlich wird Tannin bzw. der fein verteilte Kohlenstoff schon in der siedenden Salpetersäure in der "kalten Kappe" bzw. bei der Zersetzung der Nitrate zerstört. Weitere Vorversuche mit metallischem Si-Pulver und mit C - Granulat ergaben, daß diese Reduktionsmittel in der Schmelze ihre Wirkung entfalten können.

9.9.3 Versuchsdurchführung

Die Verglasungskampagne wurde in vier Abschnitten durchgeführt, bei denen Siliciumpulver in drei verschiedenen Konzentrationen (0,3 bzw. 0,7 bzw. 1,2 Gew.% Si bezogen auf die Grundglasmenge) bzw. Kohlenstoffgranulat in einer Konzentration von 0,6 Gew.% (bezogen auf die Grundglasmenge) den Grundglasperlen zugesetzt wurde. Das Si-Pulver wurde auf dem Pelletierteller mit wenig Polyvinylalkohollösung (4%ige Lösung; ca. 20 ml/kg Grundglas) auf den Grundglasperlen fixiert und mit diesen zusammen dosiert. Das Kohlenstoffgranulat (1-1,5 mm Durchmesser) wurde mit den Grundglasperlen vermengt dosiert. Vor dem Start wurde der Schmelztiegel mit 60° Bodenneigung mit platinmetallfreiem HAWC-Glas gefüllt. Die Zusammensetzung von Speiselösung, HAWC-Glas und Grundglas ist Tab. 35b zu entnehmen. Der Oxidgehalt des Simulats lag bei 55,23 g/l, die effektive Sollbeladung des Glases sollte bei 13,3 Gew.% liegen. Um diese Beladung zu erreichen, mußten pro Liter Speiselösung 361,3 g Grundglas dosiert werden. Die übrigen Daten sind identisch mit denen der Kampagne T4 (siehe Abschnitt 9.4.3.2.).

Im ersten Teil des Versuchs wurde 1,2 % Si als Reduktionsmittel verwendet und es wurden 8 Kokillen produziert. Der Schmelztiegel wurde dann leergesaugt und mit platinmetallhaltigem Glas aus der Kampagne T15 gefüllt. Im zweiten Teil der Kampagne wurde unter Zusatz von 0,7 % Si 6 Kokillen produziert. In den letzten beiden Abschnitten der Kampagne wurde ähnlich verfahren: Mit Zusatz von 0,3 % Si wurden 5 Kokillen, mit Zusatz von 0,6 % C 6 Kokillen produziert. Rechnerisch bedeuten die Produktion von 5 bzw. 8 Kokillen ein Volumenaustausch im Schmelztiegel von 88 bzw. 95 %.

Nach Dosierung der letzten Charge wurde der Tiegel noch ca. 75 Minuten auf Temperatur gehalten und dann mit Hilfe zweier vergrößerter Kokillen praktisch leergesaugt. Ca. 300 ml Glas verblieben im Schmelztiegel.

- 9.9.4 Ergebnisse
- 9.9.4.1 Betriebsdaten

Die Temperaturen im Schmelztiegel während der Dosierung bei den vier Kampagnenabschnitten zeigen die Abb. 201a-d. Die Badtemperaturen lagen zwischen 1110°C und 1140°C (Kurven durch Regression geglättet).

Die Abbildungen 202a-d zeigen den Verlauf des Elektrodenstroms und der Elektrodenspannung während der Versuchsabschnitte. Der Elektrodenstrom lag in allen Versuchsabschnitten bei ca. 50A. Dies entspricht einer Stromdichte von ca. 0,8 Acm⁻² (siehe Abb. 203a-d, Kurven durch Regression geglättet). Die Elektrodenspannung fiel im ersten mit dem Eintrag Versuchsabschnitt durch die der Platinmetalle verbundenen Leitfähigkeitsänderung der Schmelze von 28,5 V auf ca. 23 V. Nach der Dosierung von etwa 16 l Speiselösung (2 Chargen) hatte sich die Spannung aber wieder erholt und lag dann bei ca. 26 V und fiel dann wiederum bis auf etwa 23 V ab. Im zweiten Teil der Kampagne, der mit oxidierend erschmolzenem und platinmetallhaltigem HAWC-Glas gestartet wurde, stieg die Spannung vom Ausgangswert 21 V auf einen Wert von 26 V am Ende dieses Abschnitts. In den beiden letzten Versuchsabschnitten war die Tendenz der Spannungsverläufe zum Ende hin immer sinkend.

Die über die Elektroden eingetragene Leistung lag bei 1200 W (siehe Abb. 204a-d, Kurve durch Regression geglättet).

Die Abbildungen 205a-d zeigen den Verlauf des Badwiderstandes und der Badtemperatur während der einzelnen Kampagnenabschnitte. Da die Stromstärke während der Kampagne kaum geändert wurde, verläuft der Badwiderstand parallel zur Badspannung. Im Vergleich zur Kampagne T15, bei der oxidierend geschmolzen wurde, ist der Rückgang des Badwiderstands bei der Dosierung der ersten 40 l Speiselösung (erster Teil der Kampagne mit Zusatz von 1,2% Si) weniger stark (Abb. 206; siehe auch Abschnitt 9.8.3.1.). Der Widerstand fällt nur auf ca. 85 % des Ausgangswerts (im Vergleich zu 68 % in der Kampagne T15).

Die Widerstandsentwicklung bei den vier Teilkampagnen läßt den Schluß zu, daß der Effekt der Platinmetalle auf den Badwiderstand durch Zusatz von 1,2 % bzw. 0,7 % Si verringert wird. Dies läßt sich einmal aus dem vergleichsweise geringen Widerstandsabfall während des ersten Teils der Kampagne (Einbringen von Platinmetallen unter reduzierenden Bedingungen in platinmetallfreies Glas) ablesen und wird durch den Widerstandsanstieg im zweiten Teil der Kampagne (Etablierung reduzierender Bedingungen durch Zusatz von 0,7 % Si in oxidierend geschmolzenem platinmetallhaltigen Glas) bestätigt. Der Zusatz von 0,3 % Si bzw. 0,6 %

Kohlenstoffgranulat im 3. bzw. 4. Teil der Kampagne hat keinen ausgeprägten Einfluß. Insbesondere im letzten Teil der Kampagne wird ein Badwiderstand erreicht, der an den der Kampagne T15 heranreicht (Abb. 205d).

9.9.4.2 Optische Mikroskopie und Rasterelektronenmikroskopie

۲

Die jeweils letzte Kokille aus den vier Teilkampagnen wurden mit dem opt. Mikroskop und dem Rasterelektronenmikroskop untersucht. Dabei sollte festgestellt werden, ob sich durch den Reduktionsmittelzusatz die Morphologie der Platinmetallphasen -insbesondere die des RuO₂- ändern. Durch REM/EDS sollte geklärt werden, ob die Platinmetallphasen außer den Platinmetallen und Te weitere Elemente aufnehmen.

 Teilkampagne mit Zusatz von 0,6 % C Das Glas enthielt Haufen von RuO₂ Nadeln (Opt. Mikroskopiebilder, Abb. 207). Mit REM/EDS waren keine anderen oxidischen Ausscheidungen nachweisbar. Bei den metallischen Ausscheidungen wurden mit REM/EDS nur Pd-Te Legierung mit 6 bis 16 Gew.% Te gemessen. Die nach den Redoxgleichgewichten in Glasschmelzen [25] in Gegenwart von Kohlenstoff mögliche Bildung von metallischem Mo wurde nicht beobachtet.

Teilkampagne mit Zusatz von 0,3 % Si Das Glas enthielt nach wie vor Bündel von nadeligen RuO₂ Kristallen (opt. Mikroskopiebilder, Abb. 208). Vereinzelt traten aber auch Cr₂O₃ Kristalle in nadeliger Form auf (vermutlich geschnittene Plättchen). Abb. 209 zeigt eine REM Aufnahme und Kopien davon, in denen nur die RuO₂- bzw. Cr₂O₃ Partikel dargestellt sind. Nicht vermessene Teilchen sind nicht dargestellt. Die Cr₂O₃ Kristalle sind in ihrer Zusammensetzung nicht homogen (Abb. 210): Sie enthalten unterschiedliche Anteile Ru und Rh. Bei den metallischen Partikeln traten neben Pd-Rh-Te Teilchen auch Ru-haltige

Legierungspartikel auf, die mindestens zweiphasig sind und von denen eine hauptsächlich aus Pd und Te besteht.

Teilkampagnen mit Zusatz von 0,7% bzw. 1,2 %Si Weitgehend aus RuO₂ bestehende Kristalle wurden nur noch selten beobachtet (Abb. 211). Die oxidischen Kristallarten sind vorwiegend Cr₂O₃ mit kleinen Anteilen Fe, Ni, Ru und Rh (Zusammensetzung z.B.: 83,7% Cr₂O₃, 9,1 % Fe₂O₃, 1,0 % NiO, 4,6 % RuO₂ und 1,5 % Rh₂O₃). Diese Chromoxidkristalle (Abb. 212) kommen - wie in nicht reduzierend geschmolzenen Gläsern das RuO₂- zusammen mit einer metallischen Phase vor, die hier im wesentlichen aus Ru, Rh, Pd und Te besteht und mindestens zweiphasig ist (Zusammensetzung z.B.: 74% Ru, 26% Rh und 72,5% Pd, 27,5% Te) (Abb. 213).

Andere metallische Partikel enthalten zudem noch Ni, S, As und Sb, aber kein Ru und sind zumindest auch zweiphasig (Zusammensetzung z.B. 70,1% Pd, 20,4% Te, 6,8% Sb, 1,9% As und 23,9% Ni, 24,1% Rh, 52,1% S), Abb. 214).

Diese Befunde lassen den Schluß zu, daß Kohlenstoff -auch in Form von Granulat- unter den Prozeßbedingungen, wie sie im Laborschmelzer gegeben sind, die Schmelze nicht erreicht. Im Gegensatz zu Tiegelversuchen ist kein reduzierender Effekt bei den untersuchten Gläsern zu beobachten.

Im Gegensatz dazu entfaltet metallisches Si (oder daraus in der Schmelze entstandene Reaktionsprodukte wie SiO) eine insbesondere bei Zusatz von 0,7 Gew.% bzw. 1,2 Gew.% beobachtbare Reduktionswirkung. Bei Zusatz von 0,3 % Si wird nach wie vor nadeliges RuO₂ im Glas beobachtet. Daneben tritt aber eine weitere oxidische Aussscheidung auf, die vorwiegend aus Cr₂O₃ besteht. Dies könnte so interpretiert werden, daß unter reduzierenden Bedingungen die Bildung von sechswertigem Cr verringert und so die Löslichkeit von Cr³⁺ in der Silikatschmelze überschritten wird [25]. Dabei werden die o.g. Elemente in das Cr₂O₃ mit eingebaut. Möglicherweise trägt auch insbesondere der Gehalt an Ru und Rh zu einer Verringerung der Löslichkeit des Cr2O3 in der Silikatschmelze bei.

Daneben findet schon eine teilweise Reduktion des RuO₂ zum Metall statt. Das entstehende 4-Komponentensystem Ru-Rh-Pd-Te bildet mindestens zwei Phasen, von denen die eine vornehmlich Ru und Rh enthält, die andere Pd und Te. Entsprechend dem Zustandsdiagramm des Systems Pd-Te [16] ist letztere bei Schmelzertemperatur flüssig.

Bei Zusatz von mehr Si (0,7% bzw. 1,2%) verschwinden die RuO₂ Kristalle fast völlig aus dem Glas. Es enthält dann nur noch Cr₂O₃ als unlösliche oxidische Phase. Die metallischen Ausscheidungen enthalten entsprechend mehr Ru-Rh Legierung und praktisch das gesamte Te. Das Auftreten von Ru-haltigen metallischen Phasen ist gelegentlich auch schon in früheren Kampagnen beobachtet worden und als Folge überhöhter lokaler Temperatur im Schmelzer mit einhergehender Zersetzung des RuO₂ zu Ru interpretiert worden (Kampagne T3, Abschnitt 9.3.4.12).

Die insbesondere bei Zusatz von 1,2 % und 0,7 % Si beobachteten Veränderungen bei den Platinmetallausscheidungen finden ihre Entsprechung bei den gemessenen Badwiderständen: Da der im Glas unlösliche Anteil Cr_2O_3 sicher kleiner ist als die Menge RuO₂, die unter oxidierenden Bedingungen im Glas ausgeschieden wird, hat die metallische Phase mehr Möglichkeiten, zu größeren Agglomeraten zusammenzufließen (geringere Stabilisierung von kleinen Platinmetalltröpfchen durch die oxidische Phase - siehe Kampagne T14 ohne RuO₂, Abb. 181 und 185). Der Effekt wird noch dadurch verstärkt, daß die Pd-Te-Phase praktisch das gesamte Te enthält und damit bei Schmelzertemperatur völlig im Liquidusbereich liegt [16]. Zudem ist Cr_2O_3 im Gegensatz zu RuO₂ kein guter elektrischer Leiter. Dadurch ist erklärlich daß der Effekt der Platinmetallausscheidungen auf den Badwiderstand des Schmelzers geringer ausfällt, als unter oxidierenden Bedingungen. Ungeklärt ist allerdings, ob langfristig Probleme durch die Bildung von größeren flüssigen metallischen Ausscheidungen (z.B. durch Tropfenbohren oder durch Metallisierung der keramischen Wände) entstehen.

9.9.4.3 Korrosionsuntersuchungen an den Elektroden

Die in den Kampagnen T4 und T14 benutzten Elektroden (Abschnitte 9.4.4.9.und 9.7.3.5.) wurden bei der Kampagne T16 weiterbenutzt. Nach Abschluß der Kampagne wurde wiederum eine untere Ecke einer Elektrode abgeschnitten. Die Materialveränderungen wurden -ausgehend von der Oberfläche- durch REM/EDS - Messungen bestimmt. Die Ergebnisse zeigt Abb. 215. Das Cr- und Ni- Konzentrationsprofil zeigt Veränderungen bis in etwa 2,2 mm Tiefe (siehe auch Abschnitt 9.1.4.6.).

<u>9.10 Kampagne T17</u>

9.10.1 Hauptziele

Bei der Kampagne T17 wurden als Grundglas keine kompakten Glaskugeln, sondern offenporige Sinterglasperlen verwendet. Es sollte geprüft werden, ob durch das Angebot von feiner verteiltem Grundglas die Bildung von nadelförmigen RuO₂ Kristallen zu Gunsten von gedrungeneren Kristallformen unterdrückt werden kann [26]. Zu Beginn der Kampagne wurde zudem Te-freie HAWC-Lösung verglast, um zu untersuchen, welche Platinmetallphasen sich unter solchen Betriebsbedingungen bilden.

9.10.2 Änderungen an der Anlage

Da die Sinterglasperlen zur Brückenbildung neigten und wenig druckfest waren, konnten sie nicht über Quetschventile dosiert werden. Statt dessen wurde zunächst eine Förderschnecke eingesetzt. Der Abrieb führte aber schnell zu Verstopfungen, so daß letztlich die Perlen in Portionen von Hand dosiert werden mußten.

9.10.3 Versuchsdurchführung

Für die Produktion der offenporigen Sinterglasperlen wurde Grundglas aufgemahlen. Die Kornfraktion < 63 μ m (50%-Wert = 13 μ m) wurde zur Sinterglasperlenproduktion benutzt. Dazu wurde das Pulver mit NaCl Pulver gemischt, das Gemisch mit Hilfe von Ethylenglycollösung pelletisiert und die Pellets gesintert. Anschließend wurde das NaCl ausgelaugt. Die so produzierten Sinterglaskugeln hatten eine Zusammensetzung entsprechend Tab. 59. Die erzielte spezifische Oberfläche betrug ca. 3000 cm²/g. Bei kompakten Kugeln ist die spezifische Oberfläche 14 cm²/g.

Zum Verglasungsversuch wurde der Tiegel mit Te- und platinmetallfreiem HAWC-Glas gefüllt. Für die Produktion der ersten 3 Kokillen wurden normale Grundglasperlen und knapp 15 1 Te-freie HAWC-Lösung mit vollem Platinmetallgehalt benutzt. Die Zusammensetzung von Speiselösung, HAWC-Glas und Grundglas für diesen Versuchsabschnitt zeigt Tab. 60. Der Oxidgehalt des Simulats lag bei 54,6 g/l, die effektive Sollbeladung des Glases sollte bei 13,1 Gew.% liegen. Um diese Beladung zu erreichen, mußten pro Liter Speiselösung 361,9 g Grundglas dosiert werden. Die übrigen Daten sind identisch mit denen der Kampagne T4 (siehe Abschnitt 9.4.3.2).

Danach wurde auf Sinterglasperlen und normale HAWC-Lösung umgestellt. Die Zusammensetzung von Speiselösung, HAWC-Glas und Grundglas für diesen zweiten Versuchsabschnitt zeigt Tab. 61. Der Oxidgehalt des Simulats lag bei 55,23 g/l, die effektive Sollbeladung des Glases sollte bei 13,3 Gew.% liegen. Um diese Beladung zu erreichen, mußten pro Liter Speiselösung 361,3 g Grundglas dosiert werden. Die übrigen Daten sind identisch mit denen der Kampagne T4 (siehe Abschnitt 9.4.3.2.).

Nach der Produktion von insgesamt 19 Kokillen wurde ca. 20 Minuten vor Dosierende der letzten Charge die Innen- und Außenheizung ausgeschaltet.

- 9.10.4 Ergebnisse
- 9.10.4.1 Betriebsdaten

Die Abb. 216a, b zeigt den Verlauf von Strom und Spannung (Kurven durch Regression geglättet) während der gesamten Kampagne. Der Spannungsrückgang während der Dosierung der ersten 35 l Speiselösung ist auf den Eintrag der Platinmetalle zurückzuführen. Abb. 217a, b zeigt den entsprechenden Verlauf des Leistungseintrags über die Elektroden. Er betrug gleichbleibend etwa 1200 W. Die Stromdichte lag im Mittel bei 0,9 Acm⁻² (Abb. 218a,b).

Bei einer mittleren Badtemperatur von 1120°C ging der Badwiderstand während der Dosierung der ersten 35 l Speiselösung von 0,64 V/A auf etwa 0,34 V/A zurück d.h.auf 53 % des Ausgangswertes (Abb. 219a, b). Dieser Widerstandsrückgang liegt in der gleichen Größenordnung wie bei der Kampagne T15 (Abb. 220).

9.10.4.2 Teilkampagne mit Te-freiem HAWC: REM Untersuchungen

In Glasproben aus der letzten Kokille des ersten Teils der Kampagne wurden RuO₂, Pd-Rh-Legierung und Cr₂O₃ (mit Anteilen von Fe und Rh) als unlösliche Phasen identifiziert (Abb. 221). Die Pd-Rh Legierungspartikel liegen trotz der Abwesenheit von Te praktisch kugelförmig vor. Der Rh-Gehalt der Legierung ist höher als es den Gewichtsverhältnissen im HAWC (Pd:Rh = 79:21) entspricht. Typische Meßwerte für den Rh Gehalt liegen bei 27 Gew.% Rh. Dies kann an einer geringen, im Vergleich zu Rh aber höheren Löslichkeit des Pd in den Silikatschmelzen liegen [26]. Die analysierten Chromoxidpartikel enthielten zwischen 5 und 15 Gew.% Rh₂O₃ und etwa 10 Gew.% Fe₂O₃.

Die Befunde zeigen, daß Pd und Rh auch ohne Beteiligung einer Te-haltigen Schmelze Legierungspartikel von einigen μm Durchmesser bilden. Allerdings ist ein Teil des Rh im

Chromoxid zu finden. Die Ausscheidung von Chromoxid im ersten Teil der Kampagne spricht für die schon in Abschnitt 9.9.4.2. gemachte Annahme, daß Cr₂O₃ mit der Aufnahme von Rh in Silikatschmelzen schwerer löslich wird.

9.10.4.3 REM/EDS -Untersuchungen an Proben aus dem Schmelztiegel

Abb. 222 zeigt einen zentralen Schnitt durch den erkalteten Schmelztiegel. Im unteren Teil des Tiegels sind Platinmetallausscheidungen zu erkennen, die in ihrer räumlichen Ausdehnung mit den Befunden aus der Kampagne T15 vergleichbar sind (Abb.197). Die Schnittfläche durch den Tiegel wurde entsprechend Abb. 223 beprobt. Die REM-Aufnahmen aus dem Sedimentationsbereich ergaben das gewohnte Bild, nämlich kugelförmige Pd-Rh-Te Teilchen und nadelförmiges RuO₂ (Abb. 224). Eine gravierende Veränderung der Morphologie der RuO₂ Partikel zu gedrungeneren Formen hin war nicht erkennbar. Dies steht in Einklang mit den Messungen des Badwiderstands, der ebenfalls keine Veränderung gegenüber den Messungen bei der Kampagne T15 aufwies.

REM/EDS Messungen an Pd-Rh-Te Teilchen ergaben im gesamten Schmelztiegel ungewöhnlich niedrige Te Konzentrationen. Von 21 vermessenen Teilchen wiesen über die Hälfte nur Te-Konzentrationen zwischen 0 und 3 Gew. % auf. Die Maximalkonzentration betrug 6,9 Gew. %. Dies bedeutet, daß die Zusammensetzung der Pd-Rh-Te Partikel trotz des Materialdurchsatzes für die Produktion von 16 Kokillen im zweiten Kampagnenabschnitt noch von den Anfangsbedingungen (Te-freies Glas) dominiert wird, obwohl der Tiegelinhalt rechnerisch nahezu 100 %ig ausgetauscht sein sollte (Tab. 52).

9.10.4.4 Korrosionsuntersuchungen an den Elektroden

Die in den Kampagnen T4, T14 und T16 benutzten Elektroden (Abschnitte 9.4.4.9, 9.7.3.5 und 9.9.4.3) wurden bei der Kampagne T17 weiterbenutzt. Nach Abschluß der Kampagne wurde wiederum eine untere Ecke einer Elektrode abgeschnitten. Die Materialveränderungen wurden -ausgehend von der Oberfläche- durch REM/EDS - Messungen bestimmt. Die Ergebnisse zeigt Abb. 225. Das Cr- und Ni- Konzentrationsprofil zeigt Veränderungen bis in etwa 2,2 mm Tiefe (siehe auch Abschnitt 9.1.4.6.).

Vergleicht man die nach den o.g. Kampagnen an den Elektroden gemessenen Konzentrationsprofile untereinander (Abb. 133, 190 und 215), so fallen die Unterschiede in der oberflächennahen Region bis in ca. 1mm Tiefe besonders auf. Bei den Proben, die nach den Kampagnen T4 und T16 gemessen wurden steigt die Ni-Konzentration monoton zum Rand hin, während die Cr-Konzentration monoton sinkt. Bei den Proben aus den beiden anderen Kampagnen zeigen die Konzentrationskurven bei etwa 1 mm Tiefe einen Wendepunkt. Aus Abb. 133 geht hervor, daß gerade die Region bis 1 mm Tiefe von Korngrenzen durchzogen ist und die Korrosion von dort ihren Ausgang nimmt (Abschnitt 9.1.4.6.). Die zufällige Lage von Korngrenzen ist daher mitbestimmend für die Form der Konzentrationsprofile in die Tiefe. Aus dem Befund für die Probe aus Kampagne T17 geht hervor, daß Konzentrationsänderungen im Material nicht wesentlich über 2,2 mm Tiefe hinausgehen.

<u>10</u> Zusammenfassung und Diskussion der Ergebnisse

<u>10.1</u> <u>Schmelzerbetrieb</u>

10.1.1 Badtemperatur

Die Temperatur der Glasschmelze an der Meßstelle im Zentrum einer Elektrode lag bei allen Experimenten wenig über 1100°C. Gelegentlich konnte die Temperatur beim Start einer Kampagne mit platinmetallfreiem Glas nicht gehalten werden (T6, T7), da die Maximalspannung von 30 V für einen ausreichenden Leistungseintrag zu gering war. Im Falle der Verglasung von MAWC/HAWC - Gemisch (T4) mußte die Schmelzbadtemperatur auf 1030°C zurückgenommen werden, um überhaupt eine "Kalte Kappe" aufbauen zu können. Die Einschmelzleistung steigt, wenn wie in diesem Fall die Speiselösung Alkalien enthält und so in der "Kalten Kappe" in größerem Umfang Salzschmelzen auftreten. Allerdings führte dieser Betriebszustand leicht zu Verstopfungen durch klebrige Stäube in den an den Schmelzer angeschlossenen Rohrleitungen.

Die vertikale Temperaturverteilung im Schmelzer hatte in Höhe der Elektrodenunterkante ihr Maximum. Die Temperatur nahm zum Boden hin um einige 10 K ab, bei 45°Bodenneigung weniger als bei 60° Bodenneigung (Kampagnen T3 und T13). In Schmelzerbereichen mit stationären Platinmetallsedimenten nahm die Badtemperatur monoton bis zum Schmelzerboden zu und erreichte dort Werte von weit über 1200°C (Kampagnen T3 und T4). Die hohen Temperaturen werden im wesentlichen auf durch Platinmetallsedimente gestörte Konvektion zurückgeführt. In einigen Fällen führten die hohen Temperaturen zur Zersetzung von RuO₂ und zur Bildung von Ru-haltigen metallischen Ausscheidungen.

10.1.2 Badwiderstand

Der Badwiderstand ist eine wichtige integrale Größe, die bei gegebener Schmelzergeometrie über die maximale Einschmelzleistung bestimmt, da die Stromstärke im Schmelzer wegen der Begrenzung der Stromdichte an den Elektroden nicht beliebig gesteigert werden kann. Darüber hinaus wird der Badwiderstand bei der Verglasung von HAWC wesentlich durch die Temperatur und die Grundglaszusammensetzung (Übergang auf Li-haltiges Glas während der Kampagne T3), in geringerem Maß auch durch den Füllstand und die Beladung mit HAWC-Oxiden bestimmt.

Weit stärker wirken sich die Platinmetalle auf den Badwiderstand aus: Bei der Verwendung von Tiegeln mit 45°Bodenneigung sank der Badwiderstand nach einem Durchsatz von etwa dem 35-fachen des Badvolumens auf ca. 30 % des Ausgangswiderstands (Kampagne T3). Bei 60°Bodenneigung ging demgegenüber der Badwiderstand nur auf ca. 55 % des Ausgangswertes zurück (Kampagne T15). Bei der Verglasung von Ru-freier Speiselösung war der Rückgang noch etwas geringer (Kampagne T14). Durch Zusatz von 0,7 bzw. 1,2 % Si zur Speiselösung ließ sich der Rückgang des Badwiderstands auf Werte zwischen 85 und 90 % des Ausgangswiderstands verringern (Kampagne T16).

10.1.3 Feldstärke

Der Verlauf der Feldstärke im Schmelztiegel ist nur einmal im Verlauf der T4 Kampagne gemessen worden. Daraus ergab sich, daß die Hauptkomponente der Stromlinien im oberen Teil des Schmelzers mit wenig Platinmetallpartikeln horizontal verläuft. Im Bereich der Bodenschräge verlaufen die Stromlinien im wesentlichen parallel zu den Bodenflächen. In diesem Bereich mit stationären Platinmetallausscheidungen ist die Feldstärke ca. eine Größenordnung kleiner als im oberen Teil des Schmelzers. Die örtliche Wärmefreisetzung (E² * σ) ist dort sehr wahrscheinlich vermindert, obwohl höhere Temperaturen gemessen wurden (siehe 10.1.1).

10.1.4 Beladung der Gläser mit Abfalloxiden

Die Beladung der Gläser in den Kokillen mit La als Vertreter der in Silikatschmelzen gut löslichen Oxide war recht gleichmäßig und entsprach dem Sollwert. Demgegenüber schwankte der Gehalt an Platinmetallen zwischen 60 und 160 % des Sollgehalts und zwar für alle drei Platinmetalle gleichsinnig (Kampagnen T3 und T9). Verstärkt wurden die Schwankungen des Platinmetallgehalts, wenn nicht am Schmelzerboden sondern in Höhe der Elektrodenmitte abgesaugt wurde. Im Mittel lagen die Platinmetallgehalte unterhalb des Sollgehalts: Die Platinmetalle akkumulierten im Schmelzer. In der platinmetallarmen Zone des Schmelzers wurden nur 20 bis 30 % des Sollgehalts an Platinmetallen gefunden, während der Gehalt in den Sedimentationszonen bei 350% (feines Sediment) bzw. 700% (grobes Sediment) lag. Diese Unterschiede erklären auch die Konzentrationsschwankungen im abgefüllten Glas (Kampagne T3).

Von außen aufgegebene nominale Beladungsänderungen zwischen 7 und 20% machten sich selbst bei der MAWC/HAWC Verglasung im Betrieb kaum bemerkbar. Die für den Verglasungsbetrieb maßgeblichen Glaseigenschaften Viskosität und spez. Widerstand werden offenbar durch die Platinmetalle dominiert.

10.1.5 Feststoffaustrag

Bei der Verglasung von HAWC betrug der Feststoffaustrag ins Abgas ca. 0,7 % der eingebrachten HAWC Oxide (Kampagnen T3 und T4). Im Vergleich zu ihrem Anteil im HAWC sind die Alkalimetalle, Ru und Te im ausgetragenen Feststoff leicht überrepräsentiert, Mo ist um den Faktor 4 und Cr um den Faktor 6 angereichert. Se findet sich praktisch zu 100 % im ausgetragenen Staub. Bei 5-fach überhöhtem Mo Gehalt im HAWC steigt der Feststoffaustrag um den Faktor 2 bis 3. Mo und Cr verhalten sich dann bezüglich ihres Austragsverhaltens wie die übrigen Elemente (Kampagnen T3 und T4).

Bei der Verglasung von MAWC/HAWC stieg der Feststoffaustrag auf 4,8 % der eingesetzten Abfalloxide. Im heißen Zustand hatte der Staub klebrige Konsistenz, was zu häufigen Verstopfungen in den angeschlossenen Rohren führte. Dies wird auf den Alkaligehalt der Speiselösung zurückgeführt.

- <u>10.2</u> Fremdphasen im Glas
- 10.2.1 Platinmetalle

Die Platinmetalle Ru, Pd und Rh sind in Silikatschmelzen praktisch unlöslich. Bei der HAWC Verglasung treten sie daher in separaten Phasen im Glas verteilt auf.

Unter normalen Betriebsbedingungen geht das Pd aus dem HAWC - bis auf den geringen Anteil, der in Silikatschmelzen löslich ist - quantitativ in eine Pd-Rh-Te Legierung. Rh geht zu ca. 70 % in die Legierung; der übrige Teil bildet mit dem Ru oxidische Mischkristalle Ru(Rh)O₂. Te geht etwa zur Hälfte in die Legierung; die andere Hälfte geht in die Silikatschmelze. Ru tritt im Normalfall nur oxidisch auf. Die beobachteten Legierungen waren gewöhnlich mehrphasig und von kugeliger Gestalt. Sie traten immer eng verwachsen mit der nadelförmigen RuO₂ Phase auf. Bei der Verglasung von Ru-freiem HAWC trat dagegen die metallische Phase in Form von zusammengelaufenen Tropfen auf. Die Legierung war Rhreicher, wahrscheinlich einphasig und daher relativ gleichförmig in der Zusammensetzung (Kampagne T14).

Legierungspartikel aus Pd, Rh und Te sowie RuO₂ Kristalle wurden schon nach wenigen Stunden im Glasprodukt beobachtet. Die metallischen Partikel erreichten eine konstante mittlere Zusammensetzung und Größe (ca. 4 μ m Durchmesser) nach weniger als 30 h. Sie bildeten dann zusammen mit RuO₂ Partikeln eine fließfähige Suspension, die im Schmelzer sedimentierte (Kampagnen T6 bis T9). Bei einer Bodenneigung von 45° bildeten sich nach
Betriebszeiten von mehreren 1000 h im Bereich des Übergangs Wand/Bodenschräge ortsfeste Sedimente mit gröberen Partikeln (ca. 20 µm Durchmesser; Kampagnen T3 und T4). Bei 60° Bodenneigung wurden bei vergleichbaren Versuchen keine ortsfesten Sedimente beobachtet (Kampagne T15). Allerdings ist auch bei 60° Bodenneigung der Austausch der Platinmetalle in Wandnähe stark verzögert (Kampagne T13), so daß es langfristig auch hier zur Ausbildung stationärer Sedimente kommen kann.

RuO₂ nahm im Verlauf von einigen 10 h Cr und Rh auf. Auch in den ortsfesten Sedimenten wurden dabei Konzentrationen von 3 bzw. 7 % nicht überschritten (Kampagnen T6 bis T9). Durch überhöhte Temperaturen im Schmelzer kann ein Teil des RuO₂ zersetzt werden. Ru tritt dann in den metallischen Partikeln auf. Derselbe Effekt ist bei reduzierendem Schmelzen durch einen Zusatz von Si zu beobachten (Kampagne T16).

10.2.2 Molybdat

MoO₃ ist nur sehr begrenzt in Silikatschmelzen löslich. Daher enthält HAWC Glas gewöhnlich geringe Anteile "Gelbe Phase" (Hauptkomponenten: Alkali- und Erdalkalimolybdat, MoO₃). Mit der vollen Spaltmolybdänmenge im HAWC enthielt das abgefüllte Glasprodukt 0,13 Gew.% ungelöste Molybdatphase (Kampagne T2), bei Berücksichtigung des Mo im Auflöserrückstand und damit geringerem Mo - Gehalt im HAWC betrug der Anteil "Gelbe Phase" noch 0,05 Gew. % (Kampagne T3).

10.2.3 Chromhaltige Phasen

Neben der Molybdatphase und den Platinmetallen wurde im Glas gelegentlich auch eine stark chromhaltige Phase gefunden (Kampagnen T1, T15, T16 und T17). In der Mehrzahl der Fälle handelte es sich um Cr_2O_3 mit kleineren Gehalten an Rh und Fe. Cr_2O_3 Ausscheidungen wurden insbesondere nach langen Leerlaufzeiten und unter reduzierenden Bedingungen beobachtet. Die Chromübersättigung wird daher auf einen erhöhten Anteil an Korrosionsprodukten vom Ofenstein und von den Elektroden bzw. auf die komplette Reduktion des Croms zu Cr(III) zurückgeführt.

Darüberhinaus wurden in einigen Proben Chevkinite gefunden, eine Kristallart, die einen hohen Anteil von in Silikatschmelzen gewöhnlich gut löslichen Elementen enthält.

<u>10.3</u> Effekte durch Änderungen des Verglasungsprozesses

10.3.1 Änderungen von Speiselösung und Grundglas

Die Verringerung insbesondere des Platinmetall- und Molybdängehalts im HAWC wegen der Berücksichtigung von Auflöserrückständen verringerte den Anteil "Gelbe Phase" im Glas um etwa 65 % (Kampagnen T2 und T3). Die durch die Platinmetalle bedingten Probleme beim Schmelzprozeß wurden dadurch nicht spürbar beeinflußt.

Der Übergang von MAWC/HAWC- zu HAWC- Verglasung mit Wechsel der Speiselösung und des Grundglases verlief problemlos (siehe auch 10.1.1. und 10.1.4).

Der Übergang von Li-freiem Grundglas auf ein Li-haltiges Glas mit geringerer Viskosität und geringerer elektrischer Leitfähigkeit machte sich durch den starken Einfluß der Platinmetalle auf die genannten Eigenschaften nicht bemerkbar.

10.3.2 Ru - freie Speiselösung

Bei Abwesenheit von Ru im HAWC erfolgte die Sedimentation der Platinmetalle im Schmelzer schneller als bei vergleichbaren Versuchen mit normaler Speiselösung. Dies drückt sich in höheren Platinmetallkonzentrationen in der Sedimentationszone nahe des Schmelzerbodens und in geringeren Konzentrationen im übrigen Teil des Schmelzers aus (siehe auch 10.1.2 und 10.2.1). Die gesamte von der Glasschmelze ankorrodierte Keramikoberfläche des Schmelzers war nach Kampagnenende mit Metallpartikeln durchsetzt. Dies könnte die Vorstufe zur Metallisierung der Schmelzerwände sein (Kampagne T14).

10.3.3 Te - freie Speiselösung

Bei Abwesenheit von Te in der Speiselösung bildeten sich Pd-Rh - Legierungspartikel von etwa der gleichen Größe wie unter normalen Bedingungen. Auch nach Übergang auf Tehaltige Speiselösung und einem Durchsatz, der rechnerisch dem 6 -fachen Austausch des Schmelzerinhalts entsprach, blieben die Pd-Rh-Te Partikel extrem Te-arm (Kampagne T17). Die Ursachen hierfür sind nicht geklärt. Falls sich auch Te-Überdosierung am Kampagnenanfang durch anhaltende Bildung besonders Te-reicher Legierungen auswirkt, so wären alle mit Te-haltigem, aber platinmetallfreiem Glas gestarteten Kampagnen entsprechend zu bewerten.

10.3.4 Zusatz von Reduktionsmitteln

Zur Einstellung reduzierender Bedingungen im Schmelzer ist der Zusatz von organischen Substanzen oder Kohlenstoff ungeeignet, da sie schon beim Eindampfen bzw. Kalzinieren der Speiselösung oxidiert werden (Kampagne T16). Ein Zusatz von 0,7 % Si zum Grundglas ist ausreichend, um praktisch das gesamte Ru und Te in die metallische Phase zu bringen (siehe 10.2.1.). Der Einfluß der Platinmetalle auf den Badwiderstand wird entscheidend verringert (siehe 10.1.2).

10.3.5 Verwendung von Sinterglasperlen als Grundglas

Die störungsfreie Dosierung von Sinterglasperlen in den Schmelzer wurde technisch nicht gelöst (Kampagne T17). Allerdings wurde auch keine Änderung der Morphologie der RuO₂ - Ausscheidungen durch die Verwendung von Sinterglas beobachtet. Seine Anwendung statt kompakter Glaskugeln hatte auch keinen Einfluß auf die Entwicklung des Badwiderstands.

10.4 Eigenschaften der HAWC-Glasschmelzen und -Gläser

10.4.1 Viskosität

Die Viskositätswerte der Glasschmelzen, gemessen an Durchschnittsproben aus Kokillen, lagen bei den Versuchen mit Li-haltigen Grundgläsern bei 1050 dPa s (950°C) bzw. 80 dPa s (1150°C) (Kampagnen T4 und T6-T9). Ein Einfluß der Platinmetalle war nicht erkennbar. Die Viskositäten der MAWC/HAWC-Gläser waren geringer und hatten ein Minimum bei einer Beladung von 15 % (Kampagne T4).

10.4.2 Elektrische Leitfähigkeit

Der spezifische elektrische Widerstand der Glasschmelzen hing wesentlich vom Platinmetallgehalt und von der Vorbehandlung der Proben zur Leitfähigkeitsmessung ab.Bei der MAWC/HAWC Verglasung ergab sich darüber hinaus ein sinkender spezifischer Widerstand mit steigender Beladung (Kampagne T4). Platinmetallfreie Proben von HAWC Glas hatten spezifische Widerstände von ca. 7,2 Ω cm bei 1150°C bzw 21 Ω cm bei 950°C (Lihaltige Gläser, Kampagnen T3 und T9). Bei den gleichen Temperaturen und bei Verwendung von gepulverten Proben sank der spezifische Widerstand je nach Platinmetallgehalt bis auf 19 % bzw. 15 % des Ausgangswertes (bei 4,8 Vol.% Platinmetalle). Bei Verwendung von Blockproben betrugen die spezifischen Widerstände unter den gleichen Bedingungen nur noch

6 % bzw. 15 % des Ausgangswerts. Bei der Messung von abgefülltem Glas wurde dementsprechend ein breites Spektrum von Daten erhalten. Bei der Behandlung der Platinmetallsuspensionen analog einem Einlagerungsgefüge konnte die Leitfähigkeitserniedrigung durch die Platinmetalle auf den Effekt von nadelförmigen, leitfähigenPartikeln (d.h. RuO₂) zurückgeführt werden. Da hoch platinmetallhaltige Gläser bei Raumtemperatur leitfähig sind, ist jedoch in solchen Fällen mindestens anteilig ein Durchdringungsgefüge anzunehmen.

10.4.3 Homogenität

Sowohl in Tiegeln mit flachem Boden (Kampagne T2) als auch in Tiegeln mit einer Bodenneigung von 45° (Kampagne T3) konnten praktisch homogene Gläser mit Beladungsschwankungen von wenigen zehntel Prozent erzeugt werden. Dies erforderte allerdings eine Mindestzeit zwischen Dosierende und Glasentnahme. Qualitativ gesehen waren die Gläser im unteren Teil der Kokille, der zuerst befüllt wird, höher mit HAWC-Oxiden beladen als im oberen Teil. Dies widerspiegelte sich auch in der Verteilung der La-Konzentration im Schmelztiegel (Kampagne T14).

10.5 Korrosion von Schmelzerkomponenten

10.5.1 Elektroden

Das Elektrodenmaterial Inconel 690 zeigte nach mehreren 1000 Betriebsstunden eine starke mm-Bereich. Kornvergröberung bis in den Eine Änderungen in der Materialzusammensetzung, nämlich Chromverarmung durch Korrosionsangriff der Glasschmelze, wurde bis in eine Tiefe von ca. 2,2 mm beobachtet (Kampagnen T1, T4, T14, T16 und T17). Nach fast 5000 h Expositionszeit betrug der Flächenabtrag zwischen 0,4 und 1,3 mm (Kampagne T4). Der größte Flächenabtrag erfolgte am unteren Teil der Elektrode, wo auch die höchste Stromdichte erwartete werden kann.

10.5.2 Keramik

Nach mehreren 1000 h Betriebszeit zeigte die Keramik ER 2161 Veränderungen bis in ca. 2,5 mm Tiefe. Der Korrosionsangriff der Glasschmelze erfolgte über den Glasanteil der Keramik und äußerte sich durch Lösen des ZrO_2 bis in eine Tiefe von ca. 1mm und in einem Herauslösen des Al₂O₃ aus dem Chromkorund in der insgesamt veränderten Schicht (Kampagnen T1 und T2). Unter ungünstigen Umständen (z.B. Ausscheidung von "Gelber Phase") wurde gleichzeitig ein lokaler Flächenabtrag von mehrere mm beobachtet (Kampagne T3).

<u>11</u> Danksagung

Die Autoren danken Herrn E.Heilig und Herrn H. John für ihr Engagement beim Aufbau und Betrieb der Laborschmelzer. Die Rasterelektronenmikroskopie übernahm freundlicherweise Herr Dr.W.Bernotat, die Partikelgrößenanalyse Fr. E.Bohnert und die Bestimmung der elektrischen Leitfähigkeit und Viskosität der Schmelzen Herr Dr.B.Luckscheiter. Die Homogenität der Gläser wurde von Fr. R.Hornig (Universität Münster) bestimmt, die

Die Homogenität der Gläser wurde von Fr. R.Hornig (Universität Münster) bestimmt, die chemischen Analysen wurden bei der Fa. W.C. Heraeus, Hanau (Platinmetalle) und bei der Fa. Schott, Mainz (Gläser) und die Mikrosondenanalysen beim Feuerfest-Prüflabor, Bonn durchgeführt. Die Sinterglasperlen wurden von der Fa. Schott, Mainz produziert.

<u>12</u> <u>Literatur</u>

1. Sammlung der Vorträge anläßlich des 6. Statusberichtes des Projektes Wiederaufarbeitung und Abfallbehandlung am 13./14. März 1986, KfK 4177, S. 135 - 185

2. Ergebnisbericht über Forschungs- und Entwicklungsarbeiten 1986, Institut für Nukleare Entsorgungstechnik, KfK 4228, S.8 - 13

3. Ergebnisbericht über Forschungs- und Entwicklungsarbeiten 1984, Institut für Nukleare Entsorgungstechnik, KfK 3886, S.6

4. Knitter, R., "Stoffliche Wechselwirkungen in einem keramischen Schmelzer zwischen Systemkomponenten und Glasproduktschmelzen", Dissertation Universität Münster, 1988

5. Scholze, H. ,Glas; "Natur und Eigenschaften", Springer Verlag, Berlin, Heidelberg, New York, 1977

6. Kelm, M., Oser, B., Luckscheiter, B., Bernotat, W., Pentinghaus, H. in "High Level Radioactive Waste and Spent Fuel Management", edited by S.C.Slate, R. Kohout, A. Suzuki (Proc. 1989 Joint Int. Waste Managm. Conf., Kyoto) p.171

7. Ergebnisbericht über Forschungs- und Entwicklungsarbeiten 1985, Institut für Nukleare Entsorgungstechnik, KfK 4042

8. Ergebnisbericht über Forschungs- und Entwicklungsarbeiten 1983, Institut für Nukleare Entsorgungstechnik, KfK 3692

9. Gmelin Handbuch, Mo.Erg.Bd. B1 (19) S. 192-193, Springer (1975)

10. Ergebnisbericht über Forschungs- und Entwicklungsarbeiten 1981, Institut für Nukleare Entsorgungstechnik, KfK 3301

11. Ryden, W.D., Lawson, A.W., Sartain, C.C., Electrical Transport Properties of IrO2 and RuO2, Phys.Rev. B, 1 (4), 1494 (1970)

12. Ondracek, G., Zur Leitfähigkeit von mehrphasigen Werkstoffen -Vergleich zwischen experimentellen und berechneten Werten von Cermets-, Z.Werkstofftechnik/J. Mater. Technology, 8, 416 (1974)

13. Ryden, W.D., Lawson, A.W., Sartain, C.C., Temperature Dependence of the Resistivity of RuO2 and IrO2, Phys.Lett., 26A (5), 209 (1968)

14. Weast, R.C., Handbook of Chemistry and Physics, 56th ed. CRC Press, Cleveland, p.F-166 (1979)

15. Schäfer, H:, Schneidereit, G:, Gerhard, W., RuO2: Chemischer Transport, Eigenschaften, thermischer Zerfall, Z.anorg. allgem. Chem. 319, 326 (1962/63)

16. Kelm, M., Görtzen, A., Kleykamp, H., Pentinghaus, H., On the Constitution of the Pd-Te System up to 28 at.% Te, J.Less-Common Metals, 166, 125 (1990)

17. Ding, Z., Kleykamp, H., The Constitution of the Rhodium-Tellurium System, J.Nucl.Mater. 171, 134 (1990)

18. Saltykov, S.A., Stereometrische Metallographie, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1974, p.238

19. Höhlein, G., Weisenburger, S., Tittmann, E., Wiese, H., "High Level Liquid Waste Vitrification Technique in a Ceramic-lined electric Glass Melter" in: Nuclear Energy of Today and Tomorrow; 4th Intern. ENS/AN Conf. and 9th Foratom Congress, Geneve, June 1-6 1986, Transactions, Bern: ENS 1986, Vol.4, p. 633-640

20. "Experimentelle Bestimmung der Zuordnung von elektrischen Potential- und Temperaturfeldern in elektrischen Glasschmelzwannen", Abschlußbericht des Elektrowärme-Instituts Essen e.V. (Okt. 1979)

21. Endreß, H., Bestimmung der Leistungsdichte und Temperaturverteilung in elektrischen Glasschmelzwannen, Glastechn.Ber. 56 (1983) Nr.8, S. 204-217

22. Motojima, K., Removal of Ruthenium from Purex Process, J.Nucl.Sc.Techn.26(3), (1989) 358-364

23. Ghafourian, H., Isolierung der Edelmetalle Ruthenium und Palladium aus komplexbildnerhaltigen salpetersauren Prozeßströmen der Kernbrennstoffwiederaufarbeitung, KfK 4568 (1989)

24. Bickford, D.F., Allen, P.M., Peters, S.M., Noble Metal Accumulation and Recovery in DWPF Waste Glass Melter, E.I. du Pont de Nemours and Company, Savannah River Laboratory, Aiken SC 29808, DP-MS-88-231

25. Schreiber, H.D., Hockman, A.L., Redox Chemistry in Candidate Glasses for Nuclear Waste Immobilization, J.Am.Ceram.Soc. 70, 8 (1987) 591-94

26. Krause, Chr., Luckscheiter, B., Properties and Behavior of the Platinum Group Metals in the Glass Resulting from the Vitrification of Simulated Nuclear Fuel Reprocessing Waste, J.Mater.Res. Vol.6, No 12 (1991) 2535-2546

- 76 -

Tal	pelle 1:	Durchgeführte	Versuchsprogramme
-----	----------	---------------	-------------------

	Kam	pagne	Speiselösung		Grundglas	Glasprodukt Menge	t Kokillen		Betriebs- weise
Nr.	Gesamtdauer h	Dauer der Stillstandszeit h	Menge I	Тур	Тур	kg	Anzahl	Nr.	h
T 1	4500	4480	8,0	HAWC ohne PM	VG 98/12.2		2	K04/86-K05/86	8
Т2	2900	2440	85 60,3 49,3	HAWC ohne PM HAWC ohne PM HAWC mit PM	VG 98/12.2 VG 98/12.2 VG 98/12.2 VG 98/12.2	35,7 26,8 22,5	21 13 11	K01/87-K21/87 K22/87-K34/87 K35/87-K45/87	8 24 8
Τ3	3700	3250	141,8 20 10,5 40.7	HAWC mit PM HAWC mit PM mit 5-fachem Mo-Gehalt HAWC mit PM HAWC mit PM	VG 98/12.2 VG 98/12.2 VG 98/12.2-Li VG 98/12.2-Li	75,7	30 4 3 7	K46/87 - K79/87 K80/87-K82/87 K83/87-K82/87	8 8 8 24
T 4	4900	4380	181.9	MAWC/WAW-	VG 98/12.2-Li-W3	63,4	37	K01/88-K37/88	8
			66,8	HAWC mit PM WAW-HAWC mit PM	VG 98/12.2-Li-W4 *	26,4	14	K38/88-K51/88	8
Т6	. 10		5	WAW-HAWC mit PM	VG 98/12.2-Li-W4 *				24
Τ7	30		15	WAW-HAWC mit PM	VG 98/12.2-Li-W4 *	4,2	2	K10/89-K11/89	24
T 8	90		45	WAW-HAWC mit PM	VG 98/12.2-Li-W4 *	16,3	8	K12/89-K19/89	24
Т9	200		101	WAW-HAWC mit PM	VG 98/12.2-Li-W4 *	38,8	19	K24/89-K43/89	24
T 13	768	588	91	WAW-HAWC mit PM + Pt	VG 98/12.2-Li-W4 *	36,1	17	K01/90-K20/90	10
T 14	1717	1527	104	WAW-HAWC mit Pd + Rh ohne Ru	VG 98/12.2-Li-W4	37,1	18	K21/90-K39/90	8
T 15	3640	3130	226,3	WAW-HAWC mit PM	VG 98/12.2-Li-W4	91,3	51	K40/90-K66/90 K01/91-K24/91	8
T 16	2376	2116	113,3	WAW-HAWC mit PM+C bzw. Si	VG 98/12.2-Li-W4	49,8	25	K25/91-K55/91	8
T 17	1730	1530	17,2 85,8	WAW-HAWC ohne PM ohne Te WAW-HAWC mit PM	VG 98/12.2-Li-W4 OSG	6,3 29,1	3 16		8 8

* Grundfritte mit fehlerhafter Zusammensetzung (siehe Tab. 35a)

Abkürzungen: HAWC: WAW-HAWC: MAWC: PM: OSG: Hochaktive Abfallösung mit vollem Spaltproduktgehalt Hochaktive Abfallösung unter Berücksichtigung von Auflöserrückständen Mittelaktive Abfallösung Platinmetalle offenporiges Sinterglas

	Element		Komponente					
Nr	Symbol	Konzen- tration im HAWC g/I	Formel	Gew% im Glasprodukt	Gew% im Grundglas	Gew%C im HAWC- Kalzinat	Konzen- tration im HAWC g/l	
1	K	0,125	K ₂ O	0,034		0,297	0,150	
2	Se	0,076	SeO ₂	0,025		0,214	0,108	
3	Rb	0,49	Rb ₂ O	0,121		1,056	0,534	
4	Sr	1,15	SrO	0,309		2,690	1,360	
5	Υ	0,66	Y ₂ O ₃	0,190		1,655	0,837	
6	Zr	5,46	ZrO ₂	1,675		14,586	7,375	
7	Мо	5,81	MoO ₃	1,980		17,231	8,717	
8	Ru	Die Inf	RuO ₂				2012 C. (1997)	
9	Rh	nananan kanan k	Rh		oppopulation and a second s			
10	Pd		Pd					
11	Ag	0,10	Ag ₂ O	0,025	-	0,214	0,108	
12	Cd	0,16	CdO	0,041	geppennen mensen men genege vegen mensen elemineter et de Gebier 1999 gege	0,360	0,182	
13	Sn	0,085	SnO	0,022		0,192	0,097	
14	Sb	0,019	Sb ₂ O ₃	0,005		0,045	0,023	
15	Те	0,90	TeO ₂	0,254	annen an	2,213	1,119	
16	Cs	3,54	Cs ₂ O	0,853	· ·	7,425	3,754	
17	Ba	2,65	BaO	0,672		5,850	2,958	
18	La	1,90	La ₂ O ₃	0,506		4,407	2,228	
19	Ce	3,70	CeO ₂	1,032		8,989	4,545	
20	Pr	1,78	Pr ₆ O ₁₁	0,489		4,254	2,151	
21	Nd	6,18	Nd ₂ O ₃	1,638		14,266	7,213	
22	Sm	1,35	Sm ₂ O ₃	0,356		3,097	1,566	
23	Eu		Eu ₂ O ₃			B .a		
24	Gd	0,25	Gd ₂ O ₃	0,065		0,562	0,284	
25	Cr	0,57	Cr ₂ O ₃	0,190		1,651	0,835	
26	Mn	0,063	MnO ₂	0,023		0,198	0,100	
27	Fe	2,19	Fe ₂ O ₃	0,711		6,193	3,131	
28	Ni	0,32	NiO	0,092		0,797	0,403	
29	Si	e	SiO ₂	47,091	53,2			
30	В		B ₂ O ₃	13,100	14,8			
31	Al	0,125	Al ₂ O ₃	2,178	2,4	0,465	0,235	
32	Ti		TiO ₂	3,806	4,3			
33	Mg	0,125	MgO	1,994	2,2	0,407	0,206	
34	Са	0,125	CaO	4,023	4,5	0,344	0,174	
35	Na	0,125	Na ₂ O	16,502	18,6	0,332	0,168	

Tabelle 2:Zusammensetzung von simuliertem Glasprodukt, Grundglas VG 98/12.2 und
HAWC (ohne Pt-Metalle)

Elektrische Großen (dei 1130°C)		
Elektrodenstrom	30 - 34 A	(Maximalwert: 48,2 A)
Elektrodenspannung	17 - 22 V	(Maximalwert: 28,3 V)
Widerstand ca.	0,57 Ω	
Stromdichte	0,5 A/cm ²	(Maximalwert: 0,75 A/cm ²)
Dosierraten		
Feeddosierrate	500 ml/h	
Grundglas	48,3 g/Dosierzyk	clus
Temperaturen		
Betriebstemperatur Schmelzer	1130°C (gemesse	en in den Elektroden)
Temperatur Außenofen	1200°C (gemesse	en nahe den Heizwicklungen)
Teresserveture mariada en		
Temperatur zwischen		
Schmelzofen- und Schutztiegel	1140°C - 1150°C	
Abgastemperaturen		
oberhalb des Schmelztiegels:	2000 - 3900	
obernalb des Schneizuegels.	200 C - 390 C	
nach dem Kippenwarmetauscher:	100-C - 180-C	
nach dem Flüssigkeitskühler:	25°C - 28°C	
Temperatur an der Eintropfstelle Speiselösung:	40°C - 100°C	

Maßnunkt	Konzentration in Gew% (Σ Cr,Fe,Ni,Ti = 100%)						
мевринкс	Cr	Fe	Ni	Ti			
1	100						
2	13	9,8	78,0				
3	15,0	9,8	75,2				
4	15,9	9,4	74,7				
5	17,1	9,4	73,5				
6	18,2	9,4	72,4				
7	20,8	9,8	69,3				
8	23,4	10,4	66,2				
9	26,5	10,1	63,4				
10	29,3	10,1	60,4	0,2			
Material unverändert	29,5	10,1	60,1	0,3			

Tabelle 4:	EDX-Analyse in der Randzone und im unveränderten Teil der
	Inconel 690-Elektrode

	Ele	ment	Komponente						
Nr	Symbol	Konzen- tration im HAWC g/l	Formel	Gew% im Glasprodukt	Gew% im Grundglas	Gew%C im HAWC- Kalzinat	Konzen- tration im HAWC g/l		
1	К	0,125	K ₂ O	0,033		0,255	0,150		
2	Se	0,08	SeO ₂	0,024		0,184	0,108		
3	Rb	0,49	Rb ₂ O	0,119		0,908	0,534		
4	Sr	1,15	SrO	0,303		2,313	1,360		
5	Υ	0,66	Y ₂ O ₃	0,187		1,424	0,837		
6	Zr	5,46	ZrO ₂	1,646		12,543	7,375		
7	Мо	5,81	MoO ₃	1,945		14,825	8,717		
8	Ru	3,38	RuO ₂	0,993		7,569	4,450		
9	Rh	2,46	Rh	0,632		4,813	2,83		
10	Pd	0,547	PdO	0,141		1,075	0,632		
11	Ag	0,10	Ag ₂ O	0,024		0,184	0,108		
12	Cd	0,16	CdO	0,041		0,310	0,182		
13	Sn	0,085	SnO	0,022		0,165	0,097		
14	Sb	0,02	Sb ₂ O ₃	0,005		0,039	0,023		
15	Те	0,90	TeO ₂	0,250		1,903	1,119		
16	Cs	3,54	Cs ₂ O	0,838		6,385	3,754		
17	Ba	2,65	BaO	0,660		5,031	2,958		
18	La	1,90	La ₂ O ₃	0,497		3,789	2,228		
19	Ce	3,70	CeO ₂	1,014		7,730	4,545		
20	Pr	1,78	Pr_6O_{11}	0,480		3,658	2,151		
21	Nd	6,18	Nd ₂ O ₃	1,610		12,269	7,213		
22	Sm	1,35	Sm ₂ O ₃	0,349		2,663	1,566		
23	Eu	0,279	Eu ₂ O ₃	0,072		0,543	0,323		
24	Gd	0,25	Gd ₂ O ₃	0,063		0,483	0,284		
25	Cr	0,57	Cr ₂ O ₃	0,186		1,420	0,835		
26	Mn	0,06	MnO ₂	0,022		0,170	0,100		
27	Fe	2,19	Fe ₂ O ₃	0,699		5,325	3,131		
28	Ni	0,32	NiO	0,090		0,685	0,403		
29	Si		SiO ₂	46,220	53,2				
30	В		B ₂ O ₃	12,858	14,8				
31	Al	0,125	Al ₂ O ₃	2,137	2,4	0,400	0,235		
32	Ti		TiO ₂	3,736	4,3				
33	Mg	0,125	MgO	1,957	2,2	0,350	0,206		
34	Са	0,125	CaO	3,948	4,5	0,296	0,174		
35	Na	0,125	Na ₂ O	16,197	18,6	0,286	0,168		

Tabelle 5:Zusammensetzung von simuliertem Glasprodukt, Grundglas VG 98/12.2 und
HAWC (mit Pt-Metallen)

Kokillen-Nr.	% der Endbeladung
1	40,4
2	64,5
3	78,8
4	87,4
5	92,5
6	95,5
7	97,3
8	98,4
9	99,1
10	99,4

Tabelle 7:Gemessene Konzentrationen von HAWC-Oxiden in einzelnen
Kokillen (Mittelwerte)

Kokille	Konzentration im Glasprodukt (Gew%)						
Nr.	RuO ₂	Pd	Rh	La_2O_3	Ce ₂ O ₃		
K36/87	-	-	-	0,37	-		
K38/87	0,394	0,275	0,053	0,33	0,90		
K40/87	-	-	-	0,44	1,20		
K42/87	0,481	0,341	0,072	0,30	0,92		
K44/87	-	-	-	0,36			
K45/87	-	5	-	0,37	0,81		
Soll	1,01	0,56	0,124	0,51	1,03		

.

Kokille	"Gelbe Phase" pro Kokille (g)			"Gelbe Phase": Gew% von		
Nr.	fein	grob	gesamt	Produkt	Gesamt-Cs	Gesamt-Mo
K 3/87	0.43	1.00	1.43	0.07	-0.17	1.79
K16/87	0.35	4.43	4.78	0.23	0.56	6.00
K24/87	0.34	1.23	1.57	0.08	0.18	1.97
K25/87	0.36	3.10	3.50	0.17	0.41	4.38
K26/87	0.36	4.16	4.52	0.20	0.53	5.66
K28/87	0.34	1.79	2.13	0.10	0.25	2,67
K29/87	0.36	1.93	2.29	0.10	0.27	2,87
K30/87	0.39	0.94	1.33	0.06	0.16	1.67
K32/87	0.35	3.73	4.08	0.19	0.48	5.11
K33/87	0.36	0.49	0.85	0.04	0.10	1,06

Tabelle 8: "Gelbe Phase" im Glasprodukt

Tabelle 9:Zusammensetzung der "Gelben Phase"

Zeit zwischen Dosierende und Glasentnahme (min)	Kokille Nr.	Elementkonzentration (Gew%)						
		Na	Ca	Ba	Cs	Мо	Cr	
1250	K 1/87	14	1,83	2,19	n.a.	34,4	1,72	
1138	K37/87	12,8	1,76	1,47	0,46	32,6	n.a.	
1115	K3/87	13,5	1,75	2,44	n.a,	36,6	1,55	
576	K5/87	13,8	2,16	2,21	1,4	39,0	1,69	
144	K 12/87	12,1	1,58	2,68	1,73	37,8	n.a.	
55	K10/87	12,3	1,43	2,21	1,66	36,4	1,04	
49	K8/87	6,1	1,49	2,21	n.a.	31,6	1,55	
25	K13/87	10,8	1,3	2,61	2,33	33,5	0,88	

Tabelle 10:	Viskosität und spez. elektr. Widerstand von abgefülltem Glasprodukt
-------------	--

Kokille	Viskosit b	ät (dPas) ei	spez. elektr. Widerstand Ωcm bei		
	950°C	1150°C	950°C	1150°C	
K36/87	790,1 50,9		20,0	7,0	
K40/87			11,3	4,6	
K45/87	752,7	61,7	6,2	3,2	
GP 98/12.2 (Laborprod.)	GP 98/12.2 833 aborprod.)		9,0	4,5	

Tabelle 11:Phys. Daten und chem. Zusammensetzung von Glasprodukt aus
verschiedenen Zonen des Schmelztiegels (entsprechend Abb. 31)

Glasprodukt aus	EM-Gehalt (Gew%)			Viskosit	ät (dPas)	spez.elektr. (Ωcm	Dichte	
	RuO ₂	Rh	Pd	950°C	1150°C	950°C	1150°C	kg m ^{. 3}
Zone 1	3,96	0,520	2,35	994,5	67,8	5,8	2,6	3,216
Zone 2	0,179	0,027	0,127	684,1	52,5	13,3	5,1	2,830
Zone 3	0,430	0,062	0,279					
GP 98/12.2	1,01	0,124	0,56	833	56	9,0	4,5	2,768

Tabelle 12:Edelmetallakkumulation in verschiedenen Zonen des
Schmelztiegels (entsprechend Abb. 31)

Zone	Höhe mm	Volumen ml	Dichte (kg m ⁻³)	Sollgehalt im Volumen (g)		Analysierter Gehalt im Volumen (g)			% des Sollgehalts im Volumen			
				RuO ₂	Rh	Pd	RuO ₂	Rh	Pd	RuO ₂	Rh	Pd
1	25	490	3216	15,9	1,95	10,2	62,4	8,19	37,0	393	420	363
2	15	294	2830	8,40	1,03	4,66	1,49	0,22	1,06	17,7	21,8	22,7
3	Zentrum: 0 Rand: 30	392	2735	10,8	1,33	6,00	4,61	0,67	2,99	42,7	50,0	49,8
1 + 2 + 3	Zentrum: 40 Rand: 70	1174		35,1	4,31	20,9	68,5	9,08	41,1	195	211	197

	Y							AND A 10 MILLION AND A 10
Größenklasse			Teilch	enzahle	en in Gru	upṗen		
μm	1	11	111	IV	V	VI	VII	VIII
0,1 - 0,16								1
0,16 - 0,25								
0,25 - 0,40				_				1
0,40 - 0,63								33
0,63 - 1,00			1		1		11	182
1,00 - 1,58	1	1				12	70	68
1,58 - 2,51	19			1	7	28	26	
2,51 - 3,98	38	8	3	2	16	47	2	
3,98 - 6,31	54	173	142	175	70	10		
6,31 - 10,00	70	194	175	184	34	1		
10,00 - 15,85	24	36	23	30	5			
15,85 - 25,12		4		1	1			
25,12 - 39,81								
39,81 - 63,10		(1)		(1)				

Tabelle 13: Größenverteilung der PdRhTe-Tröpfchen im Schmelztiegel

	Ele	ement	Komponente						
Nr	Symbol	Konzen- tration im HAWC g/l	Formel	Gew% im Glasprodukt	Gew% im Grundglas	Gew%C im HAWC- Kalzinat	Konzen- tration im HAWC g/l		
1	К	0,125	K ₂ O	0,034		0,255	0,150		
2	Se	0,08	SeO ₂	0,025		0,184	0,108		
3	Rb	0,49	Rb ₂ O	0,121		0,908	0,534		
4	Sr	1,15	SrO	0,309		2,313	1,360		
5	Υ	0,66	Y ₂ O ₃	0,190		1,424	0,837		
6	Zr	5,46	ZrO ₂	1,675		12,543	7,375		
7	Мо	5,81	MoO ₃	1,980	942-1424 (1997) - 1944 (1997) - 1944 (1997) - 1944 (1997) - 1944 (1997) - 1944 (1997) - 1944 (1997) - 1944 (19	14,825	8,717		
8	Ru	3,38	RuO ₂	1,011		7,569	4,450		
-9	Rh	2,46	Rh	0,643	9 - 2 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	4,813	2,83		
10	Pd	0,547	Pd	0,144		1,075	0,632		
11	Ag	0,10	Ag ₂ O	0,025		0,184	0,108		
12	Cd	0,16	CdO	0,041		0,310	0,182		
13	Sn	0,085	SnO	0,022		0,165	0,097		
14	Sb	0,02	Sb ₂ O ₃	0,005		0,039	0,023		
15	Те	0,90	TeO ₂	0,254		1,903	1,119		
16	Cs	3,54	Cs ₂ O	0,852		6,385	3,754		
17	Ва	2,65	BaO	0,672		5,031	2,958		
18	La	1,90	La ₂ O ₃	0,506		3,789	2,228		
19	Се	3,70	CeO ₂	1,032		7,730	4,545		
20	Pr	1,78	Pr ₆ O ₁₁	0,489		3,658	2,151		
21	Nd	6,18	Nd ₂ O ₃	1,638	2012 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -	12,269	7,213		
22	Sm	1,35	Sm ₂ O ₃	0,356		2,663	1,566		
23	Eu		Eu ₂ O ₃	0,073		0,543	0,323		
24	Gd	0,25	Gd ₂ O ₃	0,054		0,483	0,284		
25	Cr	0,57	Cr ₂ O ₃	0,190		1,420	0,835		
26	Mn	0,06	MnO ₂	0,023		0,170	0,100		
27	Fe	2,19	Fe ₂ O ₃	0,711		5,325	3,131		
28	Ni	0,32	NiO	0,092		0,685	0,403		
29	Si		SiO ₂	48,523	56,0				
30	В		B ₂ O ₃	12,997	15,0				
31	Al	0,125	Al ₂ O ₃	2,220	2,5	0,400	0,235		
32	Ti		TiO ₂	3,639	4,2	<u></u>			
33	Mg	0,125	MgO	1,780	2,0	0,350	0,206		
34	Са	0,125	CaO	4,373	5,0	0,296	0,174		
35	Na	0,125	Na ₂ O	9,396	10,8	0,286	0,168		
36	Li		Li ₂ O	3,899	4,5				

Tabelle 14:Zusammensetzung von simuliertem Glasprodukt, Grundglas VG 98/12.2-Li
und HAWC (mit Pt-Metallen)

	Ele	ement			Komponente		
Nr	Symbol	Konzen- tration im HAWC g/l	Formel	Gew% im Glasprodukt	Gew% im Grundglas	Gew%C im HAWC- Kalzinat	Konzen- tration im HAWC g/l
1	К	0,125	K ₂ O	0,032		0,160	0,150
2	Se	0,08	SeO ₂	0,023		0,115	0,108
3	Rb	0,49	Rb ₂ O	0,114		0,560	0,534
4	Sr	1,15	SrO	0,286		1,452	1,360
5	Υ	0,66	Y ₂ O ₃	0,175		0,894	0,837
6	Zr	5,46	ZrO ₂	1,552		7,874	7,375
7	Мо	29,05	MoO ₃	9,171		46,533	43,585
8	Ru	3,38	RuO ₂	0,936		4,751	4,450
9	Rh	2,46	Rh	0,596		3,021	2,83
10	Pd	0,547	Pd	0,133		0,675	0,632
11	Ag	0,10	Ag ₂ O	0,023		0,115	0,108
12	Cd	0,16	CdO	0,038		0,194	0,182
13	Sn	0,085	SnO	0,020		0,104	0,097
14	Sb	0,02	Sb ₂ O ₃	0,005		0,025	0,023
15	Те	0,90	TeO ₂	0,235		1,195	1,119
16	Cs	3,54	Cs ₂ O	0,790		4,008	3,754
17	Ba	2,65	BaO	0,622		3,158	2,958
18	La	1,90	La ₂ O ₃	0,469		2,379	2,228
19	Ce	3,70	CeO ₂	0,956		4,852	4,545
20	Pr	1,78	Pr ₆ O ₁₁	0,453		2,297	2,151
21	Nd	6,18	Nd_2O_3	1,518		7,701	7,213
22	Sm	1,35	Sm ₂ O ₃	0,330		1,672	1,566
23	Eu	0,279	Eu ₂ O ₃	0,068		0,345	0,323
24	Gd	0,25	Gd ₂ O ₃	0,060		0,303	0,284
25	Cr	0,57	Cr ₂ O ₃	0,176		0,891	0,835
26	Mn	0,06	MnO ₂	0,021		0,107	0,100
27	Fe	2,19	Fe ₂ O ₃	0,659		3,343	3,131
28	Ni	0,32	NiO	0,085		0,430	0,403
29	Si		SiO ₂	42,715	53,2		
30	В		B ₂ O ₃	11,883	14,8		
31	AI	0,125	Al ₂ O ₃	1,976	2,4	0,251	0,235
32	Ti		TiO ₂	3,452	4,3		
33	Mg	0,125	MgO	1,810	2,2	0,220	0,206
34	Са	0,125	CaO	3,650	4,5	0,186	0,174
35	Na	0,125	Na ₂ O	14,969	18,6	0,179	0,168

Tabelle 15:Zusammensetzung von simuliertem Glasprodukt, Grundglas VG 98/12.2 und
HAWC (mit 5-fachem Mo-Gehalt)

Tabelle 16:	Feststoffaustrag
-------------	------------------

Fi	le-Nr.	Filter-Nr.	dosierte Feedmenge	Feststoffaustrag
			(1)	(%)
\mathbf{LS}	125/87	2	1,026 *	2,0
\mathbf{LS}	126/87	3	3,766 *	500
LS	127/87	4	3,025 *	1,35
LS	128/87	5	4,822	0,56
LS	129/87	6	3,235	0,97
LS	131/87	9	0,977	1,96
\mathbf{LS}	132/87	10	3,660	0,71
LS	133/87	11	1,167	
LS	136/87	12	3,166	0,45
LS	137/87	13	4,810	0,22
LS	139/87	14	2,397	0,34
\mathbf{LS}	140/87	15	2,164	0,78
\mathbf{LS}	141/87	16	3,069	0,51
\mathbf{LS}	142/87	17	1,15	-
\mathbf{LS}	144/87	18	1,142	0,85
LS	145/87	19	3,669	0,26
LS	146/87	20	2,001	1,32
LS	148/87	21	2,457	0,50
LS	149/87	22	0,362	_
			Mittelwert:	0,68 <u>+</u> 0,13%

* Feedlösung enthielt den 5-fachen Gehalt an Mo

	HAWC-	C- Filter 3		Fil	Filter 11		ter 17	Filter 22	
60-	Simulat (१)	Analyse (%)	normierte Werte	Analyse (%)	normierte Werte	Analyse (%)	normierte Werte	Analyse (%)	normierte Werte
Na ₂ 0 *	0,29	2,7	7,74	7,08	3,99	14,1	4,55	4,6	4,73
Rb ₂ 0	0,91	0,6	0,44	0,4	0,22	0,52	0,26	1,0	0,27
Cs20	6,39	3,1	3,06	3,1	1,57	4,75	1,79	7,2	1,87
CaO *	0,30	0,4	1,89	0,97	0,97	1,2	1,11	0,9	1,15
Sr0	2,31	1,25	1,1	0,74	0,57	0,6	0,65	0,7	0,68
BaO	5,03	2,4	2,41	2,1	1,24	1,48	1,41	1,7	1,97
Cr203	1,42	0,9	0,68	2,05	0,35	2,5	0,40	2,4	0,42
Fe203	5,33	2,4	2,55	1,6	1,31	2,6	1,50	5,0	1,56
NiO	0,69	0,3	0,33	0,21	0,17	0,3	0,19	0,7	0,20
Se02	0,18	1,25	0,09	3,1	0,04	4,8	0,05	7,4	0,05
Te02	1,90	1,25	0,91	0,8	0,47	0,8	0,53	1,1	0,56
Mo0_3	14,83	33,0	35,4	21,0	3,65	11,8	4,17	18,7	4,35
Zr02	12,55	4,4	6,0	3,0	3,09	3,25	3,52	3,6	3,68
Ru02	7,57	1,35	3,62	3,1	1,86	3,1	2,13	4,6	2,22
^Y 2 ⁰ 3	1,42	0,8	0,68	0,38	0,35	0,4	0,40	0,4	0,42
La203	3,79	2,3	1,81	1,23	0,93	1,24	1,06	1,4	1,11
CeO2	7,73	3,65	3,70	1,9	1,90	2,0	2,17	2,0	2,27
Pr6011	3,66	1,05	1,75	1,2	0,90	1,2	1,03	1,3	1,09
Nd203	12,27	5,5	5,87	3,0	3,02	2,9	3,45	3,1	3,65
Gd203	0,48	0,31	0,23	0,16	0,12	0,33	0,13	0,18	0,14
Sm203	2,66	1,7	1,27	-	-	0,92	0,75	1,0	0,78
N03		1,7	10-0020001402000	7,9		7,1		3,14	
Σ		72,46		65,02		67,79		72,12	

Tabelle 17:Analyse der ausgetragenen Feststoffe (gelöster Anteil)
(* siehe Text)

Real Contents of Contents of Contents of Contents	Filter 3	Filter 11	Filter 17	Filter 22	
Na ₂ 0	0,35	1,77	3,10	0,97	
Rb ₂ 0	1,4	1,8	2,0	3,7	
Cs ₂ 0	1,,0	2,0	2,7	3,9	
CaO	0,21	1,0	1,08	0,78	
Sr0	1,1	1,3	0,92	1,0	
BaO	1,0	1,7	1,0	1,0	
Cr203	1,3	5,9	6,3	5,7	
Fe203	1,0	1,2	1,7	3,2	
NiO	1,0	1,0	1,0	1,0	
Se02	13,9	77,5	96,0	148,0	
TeO2	1,4	1,7	1,5	2,0	
Moo3	1	5,8	2,8	4,3	
Zro ₂	0,7	0,7	0,9	0,98	
Ru02	0,4	1,7	1,5	2,1	
^y 2 ⁰ 3	1,2	1,1	1,0	1,0	
La203	1,3	1,3	1,2	1,3	
Ceo2	1,0	1,0	0,9	0,9	
^{Pr} 6 ⁰ 11	0,6	1,3	1,2	1,2	
Nd203	1,0	1,0	0,8	0,9	
Gd203	1,4	1,3	2,5	1,3	
Sm ₂ O ₂	1,3	test.	1,2	1,3	

Kokillen-Nr.	Menge "Gelber	Phase" in	Gesamtmenge	Anteil bezogen auf Gesamtgewicht der		
	Feinfraktion	Grobfraktion		Kokille		
	(g)	(g)	(g)	(Gew%)		
к 57/87	0,36	0,42	0,78	0,04		
к 60/87	0,38	0,83	1,21	0,06		
K 61/87	0,35	0,41	0,76	0,04		
K 62/87	0,35	0,5	0,85	0,04 *		
K 64/87	0,30	98,5	98,8	4,9 *		
K 65/87	0,27	109,4	109,7	5,3 *		
K 67/87	0,35	17,4	17,8	0,86 *		
K 69/87	0,34	3,8	4,12	0,2		
K 71/87	0,34	0,09	0,4	0,02		

Tabelle 19: Menge an "Gelber Phase" im Glasprodukt

* 5-facher Molybdängehalt in der Feedlösung

Tabelle 20:Analyse der "Gelben Phase"

Zeitdauer		Gehalt (Gew%)							
Dosierende	Nr.								
Absaugen		Мо	Na	Cs	Mg	Ca	Sr	Ва	Cr
(min)	<u> </u>								
4048	К 79/87	37,48	16.59	4,13	0,25	2,62	0,40	2,51	1,81
1170	K 60/87	35,40	16,93	4,43	0,19	2,33	0,42	2,48	1,14
1061	K 65/87	38,84	13,97	3,39	0,32	2,57	0,58	2,15	0,38
199	K 69/87	36,91	16,39	3,83	-	2,40	0,44	1,02	0,97
96	K 67/87 *	36,68	14,26	3,43	0,30	2,67	0,50	1,98	0,47
90	K 66/87 *	41,58	13,87	3,50	0,31	2,87	-	2,20	0,48

* 5-facher Molybdängehalt in der Feedlösung

Verbindung	Sollkonzentration/	Istkonzentration/	Sollkonzentration im Grundglas/ Gew -%
NapO	16.16	16.23	18.6
	2.04	2.04	10,0
CaO	3,94	3,34	4,3
SrO	0,311	0,27	
BaO	0,677	0,61	
TiO ₂	3,73	3,54	4,3
ZrO ₂	1,689	1,80	
La ₂ O ₃	0,509	0,43	
CeO ₂	1,040	0,94	
Rh	0,125	0,082	
Pd	0,563	0,373	
Ru	0,774	0,456	
B ₂ O ₃	12,82	12,33	14,8
SiO ₂	46,15	45,96	53,2
MoO ₃	1,982	2,26	
Y ₂ O ₃	0,191	0,18	
Pr ₆ O ₁₁	0,492	0,64	

Tabelle 21:Analyse des Glasprodukts aus Kokille K71/87
(Grundglas VG 98/12.2, Oxidbeladung * 13,35 Gew.-%)

* Alle Elemente als Oxide berechnet

Verbindung	Sollkonzentration/ Gew%	lstkonzentration/ Gew%	Sollkonzentration im Grundglas/ Gew%
LiO ₂	3,90	3,61	4,5
NaO ₂	9,398	9,81	10,8
CaO	4,370	4,37	5,0
SrO	0,311	0,23	
BaO	0,677	0,58	
TiO ₂	3,64	3,78	4,2
ZrO ₂	1,689	1,52	
La ₂ O ₃	0,509	0,39	
CeO ₂	1,040	0,60	
Rh	0,125	0,065	
Pd	0,563	0,332	
Ru	0,774	0,374	
B ₂ O ₃	13,00	12,74	15,0
SiO ₂	48,52	49,65	53,2
MoO ₃	2,00	1,53	
Y ₂ O ₃	0,191	0,15	
Pr ₆ O ₁₁	0,492	0,50	

Tabelle 22:Analyse des Glasprodukts aus Kokille K87/87
(Grundglas VG 98/12.2-Li, Oxidbeladung * 13,35 Gew.-%)

* Alle Elemente als Oxide berechnet

Kokillen	Konzentration im Glasprodukt / Gew%				
Nr.	Ru	Rh	Pd	La	
K 46/87	0,150	0,028	0,122	0,480	
K 49/87	0,659	0,122	0,550		
K 52/87	0,622	0,117	0,522	0,482	
K 56/87	0,816	0,153	0,683	0,521	
K 60/87	0,634	0,118	0,529		
K 64/87	0,534	0,102	0,482	0,432	
K 67/87	0,337	0,062	0,314	0,389	
K 71/87	0,456	0,082	0,373	0,367	
K 74/87	0,845	0,135	0,662	0,498	
K 77/87 1)	0,460	0,077	0,388	0,336	
K 79/87 1)	0,344	0,063	0,303	0,420	
K 81/87 2)	1,100	0,183	0,879		
K 85/87	0,764	0,126	0,609	0,464	
K 87/87	0,374	0,065	0,322	0,333	
Soll	0,774	0,125	0,563	0,437	

Tabelle 23:Gemessene Konzentrationen von Ru, Rh, Pd und La in den
einzelnen Kokillen

 Kokille ca. 95 mm über dem Tiegelboden (in Höhe Mitte Elektroden) abgesaugt

2) 1. Kokille, die wieder 5 mm über dem Tiegelboden abgesaugt wurde

Kokillen	Gewicht	Gehalt / Gew%			Menge / g		
Nr.	g g	Ru	Rh	Pd	Ru	Rh	Pd
K 89/1/87	473,4	0,229	0,045	0,225	1,08	0,21	1,07
K 89/2/87	428,6	0,182	0,037	0,191	0,78	0,16	0,82
K 89/3/87	425,2	0,249	0,049	0,248	1,06	0,21	1,05
K 89/4/87	407,7	0,293	0,055	0,281	1,20	0,22	1,15
K 89/5/87	428,4	0,200	0,041	0,216	0,86	0,18	0,93
K 89/6/87	420,4	0,422	0,075	0,356	1,77	0,32	1,51
Sollwert		0,774	0,125	0,563	yang pang pang pang pang pang pang pang		
Summenwert über alle Kokillen (analysiert)				6,75	1.30	6,53	
Summenwert über alle Kokillen (dosiert)				16.27	2.63	11.84	

Tabelle 24:Platinmetallgehalte in den Kokillen K 89/1/87 bis K89/6/87

Tabelle 25: Platinmetallgehalte im Schmelztiegel

	Soligobalt/	Zone 3 *		Zone 1 *		Zone 2 *	
	Gew%	lstgehalt/ Gew%	(Istgehalt/ Sollgehalt) * 100	lstgehalt/ Gew%	(Istgehalt/ Sollgehalt) * 100	lstgehalt/ Gew%	(Istgehalt/ Sollgehalt) * 100
Ru ·	0,769	5,35	715	2,60	338	0,151	20
Rh	0,124	0,931	751	0,443	360	0,031	25
Pd	0,559	4,24	759	2,10	376	0,165	30

* siehe Abbildung 50

Tabelle 26:Verteilung der Platinmetalle auf die verschiedenen Zonen des
Tiegels *

Element	Anteil an der ingesamt im Tiegel gefundenen Men Platinmetall / Gew%			
	Zone 3	Zone 1		
Ru	86	9	5	
Rh	83	12	5	
Pd	84	11	5	

* siehe Abbildung 50

Tabelle 27: Platinmetallbilanz

	Dosierte Menge Platinmetall /		Nicht wieder ge- fundener Anteil /		
	g	Kokillen	Tiegel	Abgasrohr	Gew%
Ru	719,6	74,0	13,0	2,0	11,0
Rh	116,5	81,5	14,1	0,2	4,2
Pd	523,7	85,0	14,7	0,3	
ΣΡΜ	1359,8	78,8	13,7	1,2	6.3

Kokillen-Nr.	durchgesetzte Menge	dyn. Viskosität	spezif. Widerstand
	(1)	(dPas)	(Ω cm)
K 46/87	4,83		7,2
к 60/87	73,35	53,2	5,5
K 81/87 *	176,46	46,7	3,9
К 89/1/87 *	205,99	30,9	5,3
K 89/2/87 *	205,99	-	6,9
K 89/6/87 *	205,99	-	5,6
GP 98/12.2 +		69	7,4
GP 98/12.2-Li +		37	7,1

Tabelle 28:Dynamische Viskosität und spezifischer Widerstand der
Produktglasschmelze (bei 1150°C)

* Glasfritte: VG 98/12.2 Li

+ von edelmetallfreien Produkten aus dem technischen Schmelzer

Tabelle 29:Spezifischer elektrischer Widerstand von Glasproben mit
unterschiedlichem Platinmetallgehalt

Platinmetall- konzentration/	Spezifischer elektrischer Widerstand / Ω cm		
Vol.%	bei 1150°C	bei 950°C	
4,78 *	1,36	3,1	
4,78 *	0,42 #	2,35 #	
2,12 *	1,75	3,65	
0,866	3,86	10,63	
0,866	1,40 #	2,90 #	
0,596	4,6	12,7	
0,337	5,6	16,3	
0,296	5,99	17,43	
0,296	1,95 #	4,65 #	
0,154	6,9	19,5	
-	7,2	21,0	

* Proben aus den Sedimentationszonen des Schmelzers; alle anderen Proben stammen aus Kokillen

Blockproben

	Zusammensetzung der Pd-Rh-Te-Teilchen / Gew%				
7000	Schliff Nr	Te-reiche Phase		Rh-reiche Phase	
20112	SCHITT-NI.	Те	Rh	Te	Rh
1	825 826 827 828	14,2 16,5 12,8 7,5	1,5 1,3 2,8 6,0	5,2 6,5 5,4 5,0	12,2 12,1 11,8 11,5
3	829 830 831 832 833	28,8 22,0 13,1 21,3 18,6	0,9 0,0 2,2 0,3 0,1	5,9 1,4 0,6 0,2 0,3	27,2 59,8 56,2 62,5 77,6
	834 *	12,6	5,4	6,4	11,3
2	835 836 837	3,8 4,0 15,7	0,0 1,8 0,4	2,7 2,8 1,1	3,4 1,8 1,9
1	Mittelwerte	12,7	3,4	5,7	11,8
3	Mittelwerte	20,8	0,7	1,7	56,8
2	Mittelwerte	7,8	0,7	2,2	2,4

* Morphologie und Zusammensetzung entsprechen Zugehörigkeit zu Zone 1

Tabelle 31:Volumenanteil der Pd-Rh-Te-Phase im Glas
(berechnet aus Partikelgröße und Häufigkeit)

Zone	Probe	Anteil Pd-Rh-Te-Phase im Glas Vol.%
1 (feines Sediment)	825 826 827 828	1,72 1,07 1,50 1,94
3 (grobes Sediment)	846 847 848 849 850	3,30 3,20 1,98 2,60 2,41

Probenahmeort	Brechur	igsindex	Statistischer Fahler vom
Abb. 55	Meßwert	Mittelwert	Mittelwert
1	1.5837 1.5839 1.5845 1.5840 1.5842	1.5841	0.0003
2	1.5847 1.5841 1.5838 1.5842 1.5846	1.5843	0.0003
3	1.5841 1.5836 1.5840 1.5838 1.5837	1.5838	0.0003
4	1.5841 1.5841 1.5845 1.5849 1.5845	1.5844	0.0003
5	1.5851 1.5857 1.5856 1.5856 1.5854	1.5855	0.0003
6	1.5847 1.5841 1.5845 1.5840 1.5840	1.5843	0.0003
7	1.5851 1.5849 1.5846 1.5852 1.5850	1.5850	0.0003
8	1.5856 1.5861 1.5852 1.5854 1.5855	1.5856	0.0003
9	1.5850 1.5847 1.5856 1.5848 1.5854	1.5851	0.0003

Tabelle 32:Brechungsindex von Glasproben aus Kokille K 85/87

•

Element		Oxid		Eingesetzte Verbindung		
Symbol	(g/l)	Formel	(g/l)	Formel	(g/l)	
Na	11,64	Na ₂ O	15,690	NaCl	0,264	
				NaF	0,137	
				NaNO ₂	0,0003	
				Na ₃ PO ₄	0,004	
				Na ₂ SO ₄	0,969	
				Na-Citrat	0,071	
				NaNO ₃	40,73	
Cs	2,93	Cs ₂ O	3,106	CsNO ₃	4,298	
Sr	0,95	SrO	1,124	Sr(NO ₃) ₂	2,294	
Rb	0,40	Rb ₂ O	0,437	RbNO ₃	0,69	
Са	0,068	CaO	0,095	CaCO ₃	0,17	
Y	0,554	Y ₂ O ₃	0,704	Y ₂ O ₃	0,704	
Nd(+Pm)	4,94	Nd ₂ O ₃	5,76	Nd ₂ O ₃	5,76	
Ce	2,85	CeO ₂	3,50	Ce(NO ₃) ₃ .6H ₂ O	7,995	
Gd	0,158	Gd ₂ O ₃	0,182	Gd ₂ O ₃	0,182	
Sm	1,03	Sm ₂ O ₃	1,195	Sm ₂ O ₃	1,195	
La	1,43	La ₂ O ₃	1,677	La ₂ O ₃	1,677	
Cd	0,079	CdO	0,09	$Cd(NO_3)_2 \cdot 4H_2O$	0,22	
Pr	1,35	Pr ₆ O ₁₁	1,63	Pr ₆ O ₁₁	1,63	
Ni	0,32	NiO	0,407	Ni(NO ₃) ₂ .6H ₂ O	1,586	
Cr	0,94	Cr ₂ O ₃	1,37	Cr(NO ₃) ₃ .9H ₂ O	7,23	
Fe	3,03	Fe ₂ O ₃	4,33	Fe(NO ₃) ₃ .9H ₂ O	21,9	
Mn	0,08	MnO ₂	0,127	Mn(NO) ₂ ·4H ₂ O	0,366	
Eu	0,158	Eu ₂ O ₃	0,183	Eu ₂ O ₃	0,183	
Ru	1,74	RuO ₂	2,29	Ru-nitrat		
Pd	1,51	PdO	1,737	Pd-nitrat		
Rh	0,4	Rh ₂ O ₃	0,622	Rh-nitrat		
Те	0,4	TeO ₂	0,50	TeO ₂	0,50	
Se	0,06	SeO ₂	0,084	SeO ₂	0,084	
Zr	4,12	ZrO ₂	5,566	ZrO(NO ₃) ₂ ·xH ₂ O		
Ba	2,06	BaO	2,299	Ba(NO ₃) ₂	3,92	
Ag	0,024	Ag ₂ O	0,026	AgNO ₃	0,038	
Mo	3,64	MoO ₃	5,46	(NH4)6M07O24·4H2O	6,698	
Sn	0,032	SnO	0,036	Sn	0,032	

Tabelle 33a: Zusammensetzung des HAWC/MAWC-Simulats

Dodekan 0,01 g/l; TBP 0,002 g/l; Tensid (nicht ion.) 0,193 g/l; DBP 0,65 g/l

Tabelle 33b:Zusammensetzung von simuliertem Glasprodukt, GrundglasVG 98/12.2 -Li-W3 und MAWC/HAWC-Kalzinat

	Element			Komponente					
Nr	Symbol	Konzen- tration g/l	Formel	Gew% im Glasprodukt	Gew% im Grundglas	Gew% im Kalzinat			
1	Se	0,06	SeO ₂	0,024		0,139			
2	Rb	0,40	Rb ₂ O	0,127		0,726			
3	Sr	0,95	SrO	0,327		1,866			
4	Y	0,554	Y ₂ O ₃	0,205		1,169			
5	Zr	4,12	ZrO ₂	1,620		9,242			
6	Мо	3,64	MoO ₃	1,589		9,066			
7	Ru	1,74	RuO ₂	0,666		3,802			
8	Rh	0,4	Rh ₂ O ₃	0,181		1,033			
9	Pd	1,51	PdO	0,505		2,884			
10	Ag	0,024	Ag ₂ O	0,008		0,043			
11	Cd	0,079	CdO	0,026		0,149			
12	Sn	0,032	SnO	0,010		0,060			
13	Те	0,4	TeO ₂	0,146		0,830			
14	Cs	2,93	Cs ₂ O	0,904	ALL:	5,157			
15	Ва	2,06	BaO	0,669		3,817			
16	La	1,43	La ₂ O ₃	0,488	<u>,</u>	2,784			
17	Се	2,85	CeO ₂	1,019		5,811			
18	Pr	1,35	Pr ₆ O ₁₁	0,474		2,706			
19	Nd	4,94	Nd ₂ O ₃	1,676		9,564			
20	Sm	1,03	Sm ₂ O ₃	0,348		1,984			
21	Eu	0,158	Eu ₂ O ₃	0,053		0,304			
22	Gd	0,158	Gd ₂ O ₃	0,053		0,302			
23	Cr	0,94	Cr ₂ O ₃	0,399		2,275			
24	Mn	0,08	MnO ₂	0,037		0,211			
25	Fe	3,03	Fe ₂ O ₃	1,260		7,189			
26	Ni	0,32	NiO	0,118		0,676			
27	Si		SiO ₂	48,907	59,3				
28	В		B ₂ O ₃	13,031	15,8				
29	Al		Al ₂ O ₃	2,144	2,6				
30	Ti		TiO ₂	3,629	4,4				
31	Mg	-	MgO	1,732	2,1				
32	Ca	0,068	CaO	4,399	5,3	0,158			
33	Na	11,64	Na ₂ O	9,349	5,8	26,051			
34	Li		Li ₂ O	3,876	4,7				

Tabelle 34: Betriebsdaten

Simulat	Oxidbeladung		Glasfritten-	dos. Feedmenge pro	dos. Mengen pro Charge		
	nominal / Gew%	effektiv/ Gew%	g Glasfritte / Liter Feed	Frittendosierzyklus / ml	Glasfritte / g	Feedlösung / 1	
HAWC/	7	6,3	664,3	70,0	1852	2,79	
MAWC	15	13,6	283,4	164,4	1732	6,11	
	20	18,2	244,6	191,0	1621	6,63	
WAW- HAWC	15	13,3	361,2	128	1751	4,85	

	Element				Komponente		
Nr	Symbol	Konzen- tration im HAWC g/l	Formel	Gew% im Glasprodukt	Gew% im Grundglas	Gew%C im HAWC- Kalzinat	Konzen- tration im HAWC g/l
1	Se	0,08	SeO ₂	0,029		0,203	0,112
2	Rb	0,5	Rb ₂ O	0,132		0,990	0,547
3	Sr	1,2	SrO	0,342		2,568	1,418
4	Υ	0,7	Y ₂ O ₃	0,214		1,610	0,889
5	Zr	5,2	ZrO ₂	1,692		12,721	7,025
6	Мо	4,6	MoO ₃	1,662		12,494	6,900
7	Ru	2,2	RuO ₂	0,698		5,246	2,897
8	Rh	0,5	Rh	0,120		0,905	0,5
9	Pd	1,9	Pd	0,458		3,440	1,9
10	Ag	0,03	Ag ₂ O	0,008		0,058	0,032
11	Cd	0,1	CdO	0,027		0,206	0,114
12	Sn	0,04	SnO	0,011		0,081	0,045
13	Те	0,5	TeO ₂	0,151	anning annua Chanana shafa da asosoo oo costa Conacta ano ano ano ano ano an	1,134	0,626
14	Cs	3,7	Cs ₂ O	0,945		7,102	3,922
15	Ba	2,6	BaO	0,699		5,255	2,902
16	La	1,8	La ₂ O ₃	0,508	all bir hilden han filma af bir half half a far half a far an	3,823	2,111
17	Ce	3,6	CeO ₂	1,065		8,005	4,421
18	Pr	1,7	Pr ₆ O ₁₁	0,495	ennakinneksaansaanakinni. Enninaanni one enname een oo ee	3,719	2,054
19	Nd	6,24	Nd ₂ O ₃	1,753	9409699.9699.9699.9699.9699.969999999999	13,175	7,276
20	Sm	1,3	Sm ₂ O ₃	0,363		2,729	1,507
21	Eu	0,2	Eu ₂ O ₃	0,056		0,418	0,231
22	Gd	0,2	Gd ₂ O ₃	0,056		0,418	0,231
23	Cr	1,1	Cr ₂ O ₃	0,387		2,910	1,607
24	Mn	0,1	MnO ₂	0,038		0,286	0,158
25	Fe	3,7	Fe ₂ O ₃	1,274		9,581	5,291
26	Ni	0,4	NiO	0,123		0,922	0,509
27	Si		SiO ₂	51,13	59,0		
28	В		B ₂ O ₃	13,17	15,2		
29	Al		Al ₂ O ₃	3,55	4,1	2200-000-00-00-00-00-00-00-00-00-00-00-0	
30	Ti		TiO ₂	1,04	1,2		
31	Mg		MgO	1,82	2,1		
32	Са		CaO	4,33	5,0		
33	Na		Na ₂ O	7,89	9,1		
34	Li	Ĭ	Li ₂ O	3,47	4,0		

Tabelle 35a:Zusammensetzung von simuliertem Glasprodukt, Grundglas mit
fehlerhafter Rezeptur und WAW-HAWC

	Ele	ement	Komponente						
Nr	Symbol	Konzen- tration im HAWC g/l	Formel	Gew% im Glasprodukt	Gew% im Grundglas	Gew%C im HAWC- Kalzinat	Konzen- tration im HAWC g/l		
1	Se	0,08	SeO ₂	0,029		0,203	0,112		
2	Rb	0,5	Rb ₂ O	0,132		0,990	0,547		
3	Sr	1,2	SrO	0,342		2,568	1,418		
4	Υ	0,7	Y ₂ O ₃	0,214		1,610	0,889		
5	Zr	5,2	ZrO ₂	1,692		12,721	7,025		
6	Мо	4,6	MoO ₃	1,662		12,494	6,900		
7	Ru	2,2	RuO ₂	0,698		5,246	2,897		
8	Rh	0,5	Rh	0,120		0,905	0,5		
9	Pd	1,9	Pd	0,458		3,440	1,9		
10	Ag	0,03	Ag ₂ O	0,008		0,058	0,032		
11	Cd	0,1	CdO	0,027		0,206	0,114		
12	Sn	0,04	SnO	0,011		0,081	0,045		
13	Те	0,5	TeO ₂	0,151		1,134	0,626		
14	Cs	3,7	Cs ₂ O	0,945		7,102	3,922		
15	Ва	2,6	BaO	0,699		5,255	2,902		
16	La	1,8	La ₂ O ₃	0,508		3,823	2,111		
17	Се	3,6	CeO ₂	1,065		8,005	4,421		
18	Pr	1,7	Pr ₆ O ₁₁	0,495		3,719	2,054		
19	Nd	6,24	Nd ₂ O ₃	1,753		13,175	7,276		
20	Sm	1,3	Sm ₂ O ₃	0,363		2,729	1,507		
21	Eu	0,2	Eu ₂ O ₃	0,056	an a	0,418	0,231		
22	Gd	0,2	Gd ₂ O ₃	0,056		0,418	0,231		
23	Cr	1,1	Cr ₂ O ₃	0,387		2,910	1,607		
24	Mn	0,1	MnO ₂	0,038		0,286	0,158		
25	Fe	3,7	Fe ₂ O ₃	1,274		9,581	5,291		
26	Ni	0,4	NiO	0,123		0,922	0,509		
27	Si		SiO ₂	49,69	57,3				
28	В		B ₂ O ₃	15,17	17,5				
29	Al		Al ₂ O ₃	2,51	2,9				
30	Ti		TiO ₂	1,30	1,5				
31	Mg		MgO	1,91	2,2				
32	Са		CaO	3,99	4,6				
33	Na		Na ₂ O	8,67	10,0				
34	Li		Li ₂ O	3,47	4,0				

Tabelle 35b:Zusammensetzung von simuliertem Glasprodukt, GrundglasVG 98/12.2 -Li-W4 und WAW-HAWC

		La ₂ O ₃ -Geh	alt/Gew%	. 0] / Gew%			
Kokillen-Nr.	Abfallart	soll	analysiert	nominal	effektiv soll	effektiv aus La ₂ O3-Gehalt berechnet		
K 24/88	MAWC/HAWC	0,231	0,22	7	6,3	6,0		
K 12/88	MAWC/HAWC	0,488	0,53	15	13,6	14,8		
K 36/88	MAWC/HAWC	0,550	0,56	20	18,2	18,5		
K 50/88	WAW-HAWC	0,508	0,64	15	13,3	16,8		

Tabelle 36: La-Gehalt und Oxiddbeladung des Produktglases

Tabelle 37:Dynamische Viskosität und spezifischer Widerstand derProduktglasschmelze bei 1150°C

Kokillen-Nr.	Abfallart	Oxidbeladung / Gew%	Grundglas- typ	dyn. Vis d F b	kosität / Pas ei	spez. Widerstand / Ωcm bei	
				950°C	1150°C	950°C	1150°C
K 24/88	HAWC/MAWC	7	VG 98/12.2-Li-W3	575,1	53,9	20,0	6,70
K 12/88	HAWC/MAWC	15	VG 98/12.2-Li-W3	273,5	31,5	15,8	5,65
K 36/88	HAWC/MAWC	20	VG 98/12.2-Li-W3	374,5	38,5	11,3	4,50
Grundglas			VG 98/12.2-Li-W3	754,9	65,8		
K 50/88	WAW-HAWC	15	VG 98/12.2-Li-W4	1099,3	84,5	15,4	5,8
Grundglas			VG 98/12.2-Li-W4	837,9	76,4	22,1	7,3

Höhe über Boden	Spannungskomponenten		E∙a /	Spannungs- komponente	Winkel in xz gegen x-Achse /	Spannungs- komponente	Winkel in yz gegen v-Achse /	Temperatur /	
(mm)	x/ mV	y∕ mV	z∕ mV	mV	mV	Grad	mV	Grad	°C
122	27,37	0,06	-7,70	28,43	28,43	-15,71	37,74	-89,55	995
118	59,74	-15,69	-2,68	61,83	59,80	2,57	15,92	9,7	1022
118	40,26	-7,48	-3,95	41,11	40,42	-5,10	8,03	25,64	1021
113	47,40	-0,27	0,44	47,40	47,40	5,32	0,51	-58,5	1035
108	46,32	-7,39	7,24	47,46	46,89	8,89	10.35	-44,42	1046
103	65,25	-16,33	-17,00	69,37	67,42	-14,61	23,58	46,16	1060
98	67,90	-8,13	-9,97	69,11	68,63	-8,35	12,87	50,80	1065
93	76,53	-18,90	-23,35	82,21	80,01	-16,97	30,05	51,02	1070
93	86,95	-7,68	-38,55	95,45	95,14	-23,90	39,27	78,70	1070
88	80,43	-26,09	-25,39	88,30	84,35	-17,50	36,43	44,20	1073
83	71,78	-32,39	-18,39	80,38	74,09	-14,30	37,22	29,50	1075
78	76,26	-26,30	-65,48	101,91	100,51	-40,60	70,57	68,10	1079
73	47,26	1,74	-61,84	77,84	77,84	-52,60	61,84	-88,30	1076
68	21,25	-14,20	-25,40	38,95	33,99	-51,20	32,65	59,00	1077
63	7,55	-7,20	-5,90	11,95	9,55	-38,00	9,30	39,40	1079
58	5,95	-2,21	-2,32	6,79	6,42	-21,40	3,21	46,30	1081
58	5,86	-2,24	-2,58	6,78	6,40	-23,70	3,42	49,00	1089
53	5,95	-2,28	-2,61	6,88	6,49	-23,70	3,47	49,00	1118
48	9,24	3,01	-12,13	15,55	15,25	-52,70	12,50	-76,00	1133
43	8,14	9,18	-7,03	14,14	10,80	-40,80	11,56	-37,50	1130
38	6,59	4,44	-4,65	9,21	8,06	-35,20	6,44	-46,30	1123
33	6,60	4,36	-2,41	8,27	7,03	-20,00	4,98	-29,00	1117

Tabelle 38: Potentialmessung (normiert auf eine Elektrodenspannung an den Schmelzerelektroden von 1 V)
Filter-Nr.	Dosierte Feedmenge / ml	Feststoffaustrag bezogen auf dosierte Oxide / %
1	659	4,6 Beladung 20%
2	435	5,4 Beladung 20%
3	228	8,0 Beladung 15%
4	378	7,7
5	392	6,5
6	378	3,0
7	298	5,7
8	348	2,4
10	359	3,0
12	459	2,0
nas exam taun pang pang pang pang pang	Mittelwert:	4,8%

Tabelle 39:Feststoffaustrag (MAWC/HAWC)

 Tabelle 40:
 Feststoffaustrag (WAW-HAWC)

Filter-Nr.	Dosierte Feedmenge / ml	Feststoffaustrag bezogen auf dosierte Oxide / %
13	1101	0,7
14	1476	0,7
15	905	1,2
16	1518	0,5
17	463	0,5
18	914	1,0
19	2741	0,5
20	1215	0,7
namo entre cento gotta entre entre barro e	Mittelwert:	

Kam	ipagne	dosierte dosierte		abgesaugtes Glasprodukt			
Nr	Dauer	Feedlosung	Glasfritte	Menge		Kokillen	
141.	[h]	[1]	[kg]	[kg]	Anzahl	Nr.	
T6	10	4,97	1,79	6 9	e		
T7	30	15,08	5,38	4,19	2	K 10/89 - K 11/89	
T8	90	44,74	16,15	16,31	8	K 12/89 - K 19/89	
Т9	200	100,57	36,32	38,81	19	K 24/89 - K 43/89	

Tabelle 41: Massenbilanz der Kurzkampagnen T 6, T 7, T 8 und T 9

Tabelle 42:Dosierte Mengen der Platinmetalle Ru, Rh und Pd

Kampagne Nr.	EM ges. [g]	Ru [g]	Rh [g]	Pd [g]
Т6	22,8	10,9	2,5	9,4
T7	68,7	32,8	7,5	28,4
Т8	205,6	98,3	22,4	84,9
Т9	492,6	221,2	50,31	191,1

Tabelle 43:Mittlerer Durchmesser der Pd-Rh-Te-Partikel

Tiegel	Schliff	mittl. Durchmesser der Pd-Rh-Te- Partikel / µm
T6	30 31 30 + 31	1,73 1,84 1,82
Τ7	51 52 56 51 + 52 + 56	4,00 3,43 3,29 3,74
Τ8	5 6 7 5 + 6 + 7	4,17 6,53 4,98 5,35
Τ9	18 19 22 25 18 + 19 + 22 + 25	2,34 3,06 3,01 3,51 3,06

Tabelle 44:Mittlere Zusammensetzung der Pd-Rh-Te-Partikel aus
Mikrosondenanalyse

Experiment	Dauer	Mittlere Zusammensetzung der Pd-Rh-Rh- Teilchen / Gew%			
	2440,	Pd	Rh	Те	
Т6	20	87,9	5,0	5,8	
T7	30	76,0	13,7	10,9	
Т8	90	80,9	10,8	8,1	
Т9	200	83,9	9,8	4,5	
T3 *	3700	84,5	6,8	8,9	
T3 #	3700	75,0	14,3	10,7	

* feines Sediment # grobes Sediment

Tabelle 45:Gemessene Konzentrationen der Platinmetalle in den einzelnen
Kokillen; Kampagne T9

Kokille	Konzentra	ation im Glasproduki	:/Gew%
Nr.	Ru	Pd	Rh
K 25/89	0,146	0,145	0,035
K 26/89	0,234	0,235	0,063
K 27/89	0,138	0,153	0,037
K 28/89	0,327	0,320	0,087
K 29/89	0,579	0,562	0,150
K 30/89	0,323	0,320	0,086
K 31/89	0,379	0,377	0,099
K 32/89	0,227	0,229	0,058
K 33/89	0,466	0,461	0,111
K 34/89	0,365	0,363	0,089
K 35/89	0,402	0,394	0,105
K 36/89	0,457	0,447	0,120
K 37/89	0,282	0,290	0,075
K 38/89	0,412	0,411	0,107
K 39/89	0,524	0,500	0,133
K 40/89	0,280	0,282	0,073
K 41/89	0,462	0,446	0,120
K 42/89	0,387	0,373	0,100
K 43/89	0,460	0,440	0,116
Soll	0,530	0,458	0,120

Tabelle 46:Gemessene Platinmetallkonzentrationen und mittlere Dichte in Proben
aus dem Schmelztiegel T 9

	PM-Gehalt / Gew%			9	Dichte /		
	Ru	Pd	Rh	Ru	Pd	Rh	g/cm ³
Zone 1	0,123	0,141	0,035	26,6	30,8	29,2	2,6417
Zone 2	0,201	0,219	0,057	37,9	47,8	47,5	2,8390
Zone 3	1,462	1,339	0,362	276,0	292,0	302,0	2,9263
Soll	0,530	0,458	0,120	kend gang sana éere Lasa pana pana	2006 2009 2009 1000 1000 0000 10000	natu gana, gana kati kati kana pata p	nas inana gina ang ang ang ang ang ang ang ang ang a

Tabelle 47:Gemessene Platinmetallkonzentration im Staub aus dem
Abgasrohr, Kampagne T 9

	PM-Gehalt / Gew%	% des Sollgehalts im Kalzinat
Ru	10,92	274,1
Pd	1,856	54,0
Rh	0,465	51,4

Tabelle 48: Massenbilanz der Platinmetalle; Kokille der Kampagne T 9

	Ru			Pd	Rh		
	dosiert	im Produktglas	dosiert	im Produktglas	dosiert	im Produktglas	
K 25/89	10,92	3,38	9,43	3,35	2,48	0,81	
K 26/89	10,95	5,41	9,45	5,58	2,49	1,46	
K 27/89	10,90	2,71	9,42	2,98	2,48	0,72	
K 28/89	10,93	6,61	9,44	6,46	2,48	1,76	
K 29/89	10,93	10,96	9,44	10,64	2,48	2,84	
K 30/89	10,93	6,11	9,44	6,30	2,49	1,63	
K 31/89	10,94	7,14	9,44	7,11	2,49	1,87	
K 32/89	10,93	4,59	9,44	4,63	2,48	1,17	
K 33/89	10,93	9,69	9,44	9,59	2,48	2,31	
K 34/89	10,93	7,37	9,44	7,37	2,49	1,79	
K 35/89	10,93	8,44	9,44	8,27	2,49	2,21	
K 36/89	10,93	9,41	9,44	9,21	2,48	2,47	
K 37/89	13,58	5,64	11,73	5,80	3,09	1,50	
K 38/89	10,94	8,41	9,45	8,38	2,49	2,18	
К 39/89	10,93	10,53	9,44	10,05	2,49	2,67	
K 40/89	10,94	5,60	9,45	5,64	2,49	1,46	
K 41/89	10,92	9,47	9,43	9,14	2,48	2,46	
K 42/89	10,94	7,74	9,45	7,46	2,49	2,00	
K 43/89	10,92	9,25	9,43	8,89	2,48	2,34	
Summe	ne como mana (cons) (cons) (cons)	138,45	Gaine anna anna anna anna anna	136,85	ian anna anna tana anna anna	35,65	

	Ru/g	Pd / g	Rh/g
Zone 1	2,49	2,86	0,71
Zone 2	4,67	5,08	1,32
Zone 3	26,35	24,13	6,52
Summe	33,51	32,07	8,55

Tabelle 49: Massenbilanz der Platinmetalle; Tiegel der Kampagne T 9

Tabelle 50: Platinmetallbilanz in Kampagne T 9

	eingebrach- te PM	ausgetragene PM .				gebrach- ausgetragene PM		im Ti	egel	Diffe	erenz
		Kokillen Staub			verbli	eben					
	g	g	%	g	%	g	%	g	%		
Ru	221,3	138,5	62,6	9,51	4,3	33,5	15,1	39,8	18,0		
Pd	191,1	136,9	71,6	1,62	0,9	32,1	16,8	20,5	10,7		
Rh	50,3	35,6	70,9	0,41	0,8	8,6	17,0	5,7	11,3		

Tabelle 51: Viskosität und spez. elektr. Widerstand von abgesaugtem HAW-Glas

Kampagne Nr.	Kokille Nr.	Viskosität [dPas] bei		Spezif. elektr. Widerstand [Ωcm] bei		
		950°C	1150°C	950°C	1150°C	
T7	K 11/89	1128,2	79,7	26,0	8,7	
T8	K 19/89	1072,8	80,0	18,8	6,7	
Т9	K 43/89	1060,5	75,9	16,6	6,4	
	Grundglas	936,0	80,9	24,6	8,6	

Kokillen-Nr.	% der Sollbeladung
Ausgangsbeladung	37,6
1	55,6
2	68,8
3	77,9
4	84,2
5	88,5
6	91,5
7	93,6
8	95,0
9	96,0
10	96,6

Tabelle 52: Rechnerische EM-Beladung der Kokillen

Tabelle 53:Gemessene Konzentrationen von den Platinmetallen und Lanthan in
den einzelnen Kokillen

Kakillan Nr	Konzentration im HAWC-Glas (Gew%)						
Kokinen-ivi.	Ru	Pd	Rh	Pt	La		
K 01/90 K 02/90 K 03/90	0,421	0,376	0,105		0,61		
K 05/90	0,354	0,324	0,090		0,48		
К 07/90	0,368	0,343	0,092	-	0,43		
К 09/90	0,571	0,516	0,137		0,47		
K 11/90	0,576	0,521	0,138		0,44		
K 12/90	0,449	0,427	0,115	0,373			
K 13/90 K 14/90	0,384	0,372	0,098	0,208			
K 15/90	0,346	0,336	0,090	0,123			
K 16/90	0,641	0,611	0,161	0,113	A 11		
К 17/90	0,317	0,328	0,079	0,028	40 ML		
K 18/90	0,503	0,467	0,113	0,047	0,44		
K 19/90	0,446	0,442	0,110	0,036	0,44		
K 20/90	0,360	0,371	0,089	0,020	6 11		
Sollwert	0,530	0,458	0,120	na parata kutok gunta, kutok kutok ku	0,433		
Mittelwert % des Sollwertes	0,441 23,2	0,418 91,3	0,109 90,8		0,436 100,7		

Tabelle 54:Gemessene Konzentrationen von den Platinmetallen und Lanthan in
Proben aus dem Schmelztiegel

		Konzentration in Gew%							
	Ru	Pd	Rh	Pt	La				
Zone 1	0,115	0,130	0,032	0,011	0,057				
Zone 2	0,083	0,108	0,025	0,003	0,068				
Zone 3	0,750	0,726	0,191	0,019	0,419				
Sollwert	0,530	0,458	0,120		0,433				

Tabelle 55:Gemessene Konzentrationen von den Platinmetallen und Lanthan im
ausgetragenen Staub

	Konzentration in Gew%						
	Ru	Pd	Rh	Pt	La		
ausgetragener Staub	7,089	2,056	0,468	0,638	1,95		
Sollkonzentration im Kalzinat	3,984	3,440	0,905	-	3,26		

Tabelle 56: Platinmetallbilanz im Schmelztiegel

	Ru		Pd		Rh		Pt	
	Menge [g]	[%] *	Menge [g]	[%]*	Menge [g]	[%]*	Menge [g]	[%]*
Zone 1	2,08	8,4	2,35	9,5	0,58	9,0	0,20	25,0
Zone 2	1,84	7,5	2,39	9,6	0,55	8,6	0,07	8,8
Zone 3	20,74	84,1	20,07	80,9	5,28	82,4	0,53	66,3
Σ	24,66		24,81		6,41		0,80	

* bezogen auf die Gesamtmenge im Tiegel

	Ele	ement			Komponente		
Nr	Symbol	Konzen- tration im HAWC g/I	Formel	Gew% im Glasprodukt	Gew% im Grundglas	Gew%C im HAWC- Kalzinat	Konzen- tration im HAWC g/l
1	Se	0,08	SeO ₂	0,029		.0,203	0,112
2	Rb	0,5	Rb ₂ O	0,132		0,990	0,547
3	Sr	1,2	SrO	0,342		2,568	1,418
4	Y	0,7	Y ₂ O ₃	0,214		1,610	0,889
5	Zr	5,2	ZrO ₂	1,692		12,721	7,025
6	Мо	4,6	MoO ₃	1,662		12,494	6,900
7	Rh	0,5	Rh	0,120		0,905	0,5
8	Pd	1,9	Pd	0,458	ann ann an Anna an Anna ann an Anna ann an Anna an Anna ann an Anna ann an Anna ann an Anna ann an Anna Anna A	3,440	1,9
9	Ag	0,03	Ag ₂ O	0,008		0,058	0,032
10	Cd	0,1	CdO	0,027	annen men an	0,206	0,114
11	Sn	0,04	SnO	0,011		0,081	0,045
12	Те	0,5	TeO ₂	0,151		1,134	0,626
13	Cs	3,7	Cs ₂ O	0,945		7,102	3,922
14	Ba	2,6	BaO	0,699		5,255	2,902
15	La	1,8	La ₂ O ₃	0,508		3,823	2,111
16	Ce	3,6	CeO ₂	1,065		8,005	4,421
17	Pr	1,7	Pr ₆ O ₁₁	0,495		3,719	2,054
18	Nd	6,24	Nd ₂ O ₃	1,753		13,175	7,276
19	Sm	1,3	Sm ₂ O ₃	0,363		2,729	1,507
20	Eu	0,2	Eu ₂ O ₃	0,056		0,418	0,231
21	Gd	0,2	Gd ₂ O ₃	0,056	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,418	0,231
22	Cr	1,1	Cr ₂ O ₃	0,387		2,910	1,607
23	Mn	0,1	MnO ₂	0,038		0,286	0,158
24	Fe	3,7	Fe ₂ O ₃	1,274		9,581	5,291
25	Ni	0,4	NiO	0,123		0,922	0,509
26	Si		SiO ₂	50,09	57,3		
27	В		B ₂ O ₃	15,29	17,5	ana da kanan ka	and a second and a second s
28	AI		Al ₂ O ₃	2,53	2,9	and an	
29	Ti		TiO ₂	1,31	1,5		ana ang na mang
30	Mg		MgO	1,93	2,2	997-999 (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999	2000 2019 20 20 20 20 20 20 20 20 20 20 20 20 20
31	Са		CaO	4,02	4,6		
32	Na		Na ₂ O	8,74	10,0		

3,50

4,0

33 Li

Li₂O

Tabelle 57:Zusammensetzung von simuliertem Glasprodukt WAW-HAWC (ohne Ru),
Glasprodukt und Grundglas VG 98/12.2-Li-W4

.

	Gehalt [Gew%]			% des Sollgehalts		
	Pd	Rh	La	Pd	Rh	La
Zone 1*	0,211	0,053	0,342	46	44	79
Zone2 *	0,101	0,029	0,420	22	24	97
Zone 3 *	1,541	0,366	0,450	337	310	104
Sollgehalt	0,458	0,120	0,433			

Tabelle 58:Konzentration von Pd, Rh und La in Proben aus dem
Schmelztiegel

* entsprechend Abb. 182

Tabelle 59: Chemische Analyse de Sinterglaskugeln
--

-	
	Gew%
SiO ₂	56,66
B ₂ O ₃	16,09
Al ₂ O ₃	3,30
Fe ₂ O ₃	0,055
ZrO ₂	0,10
TiO ₂	1,40
Li ₂ O	. 3,52
Na ₂ O	10,37
K ₂ O	0,16
CaO	5,31
MgO	2,10
Cl-	0,89
Σ	99,96

Trockenverlust bei 120°C: 0,06% Gllühverlust bei 450°C: 0,19%

	Ele	ement			Komponente		
Nr	Symbol	Konzen- tration im HAWC g/l	Formel	Gew% im Glasprodukt	Gew% im Grundglas	Gew%C im HAWC- Kalzinat	Konzen- tration im HAWC g/l
1	Se	0,08	SeO ₂	0,029		0,205	0,112
2	Rb	0,5	Rb ₂ O	0,132		1,001	0,547
3	Sr	1,2	SrO	0,342		2,597	1,418
4	Υ	0,7	Y ₂ O ₃	0,214		1,628	0,889
5	Zr	5,2	ZrO ₂	1,692		12,867	7,025
6	Мо	4,6	MoO ₃	1,662		12,637	6,900
7	Ru	2,2	RuO ₂	0,698		5,306	2,897
8	Rh	0,5	Rh	0,120		0,915	0,5
9	Pd	1,9	Pd	0,458		3,479	1,9
10	Ag	0,03	Ag ₂ O	0,008		0,059	0,032
11	Cd	0,1	CdO	0,027		0,208	0,114
12	Sn	0,04	SnO	0,011		0,082	0,045
13	Cs	3,7	Cs ₂ O	0,945		7,183	3,922
14	Ba	2,6	BaO	0,699		5,315	2,902
15	La	1,8	La ₂ O ₃	0,508		3,867	2,111
16	Се	3,6	CeO ₂	1,065		8,097	4,421
17	Pr	1,7	Pr6O11	0,495		3,762	2,054
18	Nd	6,24	Nd ₂ O ₃	1,753		13,326	7,276
19	Sm	1,3	Sm ₂ O ₃	0,363		2,760	1,507
20	Eu	0,2	Eu ₂ O ₃	0,056		0,423	0,231
21	Gd	0,2	Gd ₂ O ₃	0,056		0,423	0,231
22	Cr	1,1	Cr ₂ O ₃	0,387		2,943	1,607
23	Mn	0,1	MnO ₂	0,038		0,289	0,158
24	Fe	3,7	Fe ₂ O ₃	1,274		9,691	5,291
25	Ni	0,4	NiO	0,123		0,933	0,509
26	Si		SiO ₂	49,77	57,3		
27	В		B ₂ O ₃	15,20	17,5		r
28	Al		Al ₂ O ₃	2,52	2,9		
29	Ti		TiO ₂	1,30	1,5		
30	Mg		MgO	1,91	2,2		
31	Ca		CaO	4,00	4,6		
32	Na		Na ₂ O	8,69	10,0		
33	Li		Li ₂ O	3,47	4,0		

Tabelle 60:Zusammensetzung von simuliertem Glasprodukt, Grundglas und WAW-
HAWC (ohne Te)

	Ele	ement	Komponente					
Nr	Symbol	Konzen- tration im HAWC g/l	Formel	Gew% im Glasprodukt	Gew% im Grundglas	Gew%C im HAWC- Kalzinat	Konzen- tration im HAWC g/l	
1	Se	0,08	SeO ₂	0,029		0,203	0,112	
2	Rb	0,5	Rb ₂ O	0,132		0,990	0,547	
3	Sr	1,2	SrO	0,342		2,568	1,418	
4	Υ	0,7	Y ₂ O ₃	0,214		1,610	0,889	
5	Zr	5,2	ZrO ₂	1,692		12,721	7,025	
6	Мо	4,6	MoO ₃	1,662		12,494	6,900	
7	Ru	2,2	RuO ₂	0,698		5,246	2,897	
8	Rh	0,5	Rh	0,120		0,905	0,5	
9	Pd	1,9	Pd	0,458		3,440	1,9	
10	Ag	0,03	Ag ₂ O	0,008		0,058	0,032	
11	Cd	0,1	CdO	0,027		0,206	0,114	
12	Sn	0,04	SnO	0,011		0,081	0,045	
13	Те	0,5	TeO ₂	0,151		1,134	0,626	
14	Cs	3,7	Cs ₂ O	0,945		7,102	3,922	
15	Ba	2,6	BaO	0,699		5,255	2,902	
16	La	1,8	La ₂ O ₃	0,508		3,823	2,111	
17	Ce	3,6	CeO ₂	1,065		8,005	4,421	
18	Pr	1,7	Pr ₆ O ₁₁	0,495		3,719	2,054	
19	Nd	6,24	Nd ₂ O ₃	1,753		13,175	7,276	
20	Sm	1,3	Sm ₂ O ₃	0,363		2,729	1,507	
21	Eu	0,2	Eu ₂ O ₃	0,056		0,418	0,231	
22	Gd	0,2	Gd ₂ O ₃	0,056		0,418	0,231	
23	Cr	1,1	Cr ₂ O ₃	0,387		2,910	1,607	
24	Mn	0,1	MnO ₂	0,038		0,286	0,158	
25	Fe	3,7	Fe ₂ O ₃	1,274		9,581	5,291	
26	Ni	0,4	NiO	0,123		0,922	0,509	
_27	Si		SiO ₂	49,30	56,86			
28	В		B ₂ O ₃	13,99	16,14			
29	AI		Al ₂ O ₃	2,87	3,31			
30	Ti		TiO ₂	1,22	1,41			
31	Mg		MgO	1,83	2,11			
32	Са		CaO	4,62	5,33			
33	Na		Na ₂ O	9,03	10,41			
34	Li		Li ₂ O	3,06	3,53			
35	CI		Cl	0,77	0,89			

Tabelle 61:Zusammensetzung von simuliertem Glasprodukt, Grundglas und
WAW-HAWC

- S = Schmelztiegel Pu 1, Pu 2 = Pulsatoren B 1, B 2 = HAWC-Vorratsbehälter B 3, B 4 = Grundglasperlen-Vorratsbehälter P 1, P 2 = HAWC-Dosierpumpen

Abb. 1: Fließbild Laborschmelzer

<u>Abb. 3:</u> Aufbau des Schmelzers

<u>Abb. 4:</u> Tiegeldeckel (1 = Absaugung, 2 = Schauglas, 3 = Feedzugabe, 4 und 5 = Elektroden, 6 = Perlenzugabe, 7 = Abgas, 8 und 9 = 0₂-Elektroden)

<u>Abb. 5:</u> Schnitt durch den Schmelztiegel

-121-

Wöhrle Restatt 40-1588

<u>Abb. 7:</u> Deckel Feedbehälter

-123-

gedruckt auf montgerone RacherBaroCenter, Karlsruhe 1 PGH 24.378

<u>Abb. 9:</u> Auslaßflansch Feedbehälter

- 125-

<u>Abb. 10:</u> Pulsator

gedruckt auf montgrono FischerBüreCenter, Karlsruhe 1 PGH 24.375

-127-

Abb. 12: Absaugen von Glasprodukt

Abb. 13: Gefüllte Kokillen

Abbildung 14: Viskosität des Glasprodukts aus Tiegel 1 (+) und von GP 98/12.2 (*)

Abbildung 15: Chromoxid-Kristalle, hexagonale Plättchen (Vergrößerung 1310fach)

Abbildung 16: Chromoxid-Kristalle (angeschnittene Plättchen) (Vergrößerung 1050fach)

Abbildung 17: Grenzschicht Ofenstein/Glasschmelze (Vergrößerung 75fach) Zone I: Zirkonoxid (weiß), Chromoxid (grau) Zone II: Chromoxid (grau), Glas (schwarz) Zone III: Kristallausscheidung (Oxide von Si, Zr, Cr, Ti, Ca, Nd und La)

Abbildung 18: Profil über die Randzone der Elektrode (Vergrößerung 156fach; 1 bis 10 = Meßpunkte der EDS-Analyse, Ergebnisse siehe Tabelle 7)

Abbildung 19: Chromoxidkristalle an der Grenzschicht Inconel/Glas (geätzte Probe, Vergrößerung 500fach, Lichtmikroskop, Inconel (weiß), Chromoxidkristalle (grau)

Abbildung 20:

Metallographisches Bild der korrodierten Grenzschicht Inconel/Glas (Inconel (weiß), Chromoxidkristalle (grau) Korngrenzen und Ausscheidungen (schwarz))

Abbildung 21: Temperaturverlauf während eines Dosierzyklus

Abbildung 22: Strom- und Spannungsverlauf während eines Dosierzyklus (ohne Platinmetalle)

Abbildung 23: Strom- und Spannungsverlauf während eines Dosierzyklus (mit Platinmetallen)

Abbildung 25: Brechungsindex der Glasphase an verschiedenen Orten in einer Kokille (links: homogenes Produkt, rechts: inhomogenes Produkt)

Meßpunkt	Zusammensetzung in Gew%		
	Pd	Rh	Те
1	67	23	10
2	59	32	9
3	40	53	7
4	79	7	14

Abbildung 26: Entmischung in einem PdRhTe-Tropfen

Abbildung 27: Röntgendiagramm von "Gelber Phase" aus Kokillen

Abbildung 28: Fein verteilte "Gelbe Phase" in Kokillen

Abbildung 31: Schnitt durch den erkalteten Schmelztiegel T 2

Abbildung 32: Korrosionsabtrag an der Keramik ER 2161

Abbildung 34: Spez. elektr. Widerstand (Proben aus dem Tiegel)

Abbildung 35: Dünnschliff aus Zone 1 (Abb. 31) (dunkel: Platinmetallausscheidungen)

Abbildung 36: REM-Aufnahme aus dem Übergang Zone 4 / Zone 3 (Abb. 31) (verschiedene Vergrößerungen)

Abbildung 37: REM-Aufnahme aus Zone 1 (Abb. 31)

Abbildung 39: Summenkurven für die Größenverteilung der PdRhTe-Partikel in Zone 1 und 2 (Abb. 31)

Abbildung 40: Elementverteilung in der Grenzschicht Glas/Ofenstein

Abbildung 41: Korrosion der Ofenkeramik ER 2161 (REM-Aufnahme) (Probenort und Schichtenbezeichnung wie in Abb. 40)

Abbildung 43: Aufbau des Schmelzers

Abbildung 44: Tiegelde

Tiegeldeckel (1 = Untertauchung, 2 = Schauglas, 3 = Dosierung Speiselösung/Absaugen, 4 und 5 = Elektroden, 6 = Dosierung Grundglasperlen, 7 = Abgas, 8 und 9 = Reserve)

Abbildung 45: Tiegeldeckel mit den wichtigsten Flanschen

Abbildung 46: Badwiderstand während der Versuchskampagne

Abbildung 47: "Badwiderstand" und Elektrodentemperatur nach Übergang auf kontinuierlichen Betrieb

Abbildung 49: Leistung und Stromdichte nach Übergang auf kontinuierlichen Betrieb

Zentraler Schnitt durch den Schmelztiegel nach Beendigung der Kampagne Zone 1: Feines, junges Sediment von Platinmetallen Zone 2: Glasprodukt mit einzelnen Platinmetallagglomeraten Zone 3: Grobes, älteres Sediment von Platinmetallen Abbildung 50:

Abbildung 51: Schmelztiegel in Draufsicht

- 155-

Abbildung 52: Temperaturprofil in Tiegelmitte

Abbildung 53: Temperaturprofil während der Dosierphase

Abbildung 54: DTG-Analyse von Aerosolfilter Nr. 3

Abbildung 55: DTG-Analyse von Aerosolfilter Nr. 11

Abbildung 57: Vergleich von Pd- und La-Gehalt in den Kokillen

-158-

Abbildung 58: Verteilung der Platinmetalle auf die Kokillen, das Abgasrohr und den Schmelztiegel nach Beendigung der Kampagne

Abbildung 59: Dynamische Viskosität des Glasprodukts von Kokille K 60/87 und K 89/1/87

Abbildung 60: Spezifischer Widerstand des Glasproduktes (1 = K 46/87; 2 = K 60/87; 3 = K 81/87; 4 = K 89/1/87; 5 = K 89/6/87)

Abbildung 61: Berechnete Achsenverhältnisse der Platinmetallpartikel

11 1 1 11 11 1 1 2 2 th

Jor Bald &

203x 18197

137

2019 - North Million (Million)

Let Add to be a

Abbildung 62: Abbildung der Durchstoßpunkte von "Strompfaden" durch Verkupferung links: REM-Bild rechts: EDS Cu-Verteilungsbild

Abbildung 63: Temperaturabhängigkeit des Widerstands einer Blockprobe beim Aufheizen unterhalb Tg

Abbildung 64: Temperaturabhängigkeit des Widerstands einer Blockprobe nach dem Aufschmelzen bei 1150°C

Abbildung 65: Probenahmeschema für Kokille K 75/87

Abbildung 66: Verteilung der Platinmetalllpartikel in Kokille K 75/87 (Probenort entsprechend Abb. 65)

Abbildung 67: Verteilung der Platinmetallpartikel in Kokille K 75/87 (Probenort entsprechend Abb. 65)

Abbildung 68: Verteilung der Platinmetallpartikel in Kokille K 75/87 (Probenort entsprechend Abb. 65)

Abbildung 69: Verteilung der Platinmetallpartikel in Kokille K 75/87 (Probenort entsprechend Abb. 65)

Verteilung der Platinmetallnartikel in Kokille K 75/87

10µm30,1kV 1,01E3 9369×07 INE-871

Abbildung 71: Verteilung der Platinmetallpartikel in Kokille K 75/87 (Probenort entsprechend Abb. 65)

Abbildung 73: Verteilung der Platinmetalle im Schmelztiegel (Probenort entsprechend Abb. 72; Zone 2)

Abbildung 74: Verteilung der Platinmetalle im Schmelztiegel (Probenort entsprechend Abb. 72; Zone 3)

Abbildung 75: Verteilung der Platinmetalle im Schmelztiegel (Probenort entsprechend Abb. 72; Zone 3)

Abbildung 76: Verteilung der Platinmetalle im Schmelztiegel (Probenort entsprechend Abb. 72; Zone 1)

Abbildung 77: Verteilung der Platinmetalle im Schmelztiegel (Probenort entsprechend Abb. 72; Zone 1)

Abbildung 78: Probenahmeschema für den Schmelztiegel (Horizontalschnitt)

Abbildung 79: Verteilung der Platinmetalle im Schmelztiegel (Probenort entsprechend Abb. 78; Zone 3)

Abbildung 80: Verteilung der Platinmetalle im Schmelztiegel (Probenort entsprechend Abb. 78; Zone 3)

Abbildung 81: Verteilung der Platinmetalle im Schmelztiegel (Probenort entsprechend Abb. 78; Zone 3)

Abbildung 82: Verteilung der Platinmetalle im Schmelztiegel (Probenort entsprechend Abb. 78; Zone 3)

01mm300kU 326E2 5188/20 IN906-5

Abbildung 83: Verteilung der Platinmetalle im Schmelztiegel (Probenort entsprechend Abb. 78; Zone 2)

Abbildung 84: Verteilung der Platinmetalle im Schmelztiegel (Probenort entsprechend Abb. 78; Zone 2)

Abbildung 85: Verteilung der Platinmetalle im Schmelztiegel (Probenort entsprechend Abb. 78; Zone 2)

Abbildung 86: Verteilung der Platinmetalle im Schmelztiegel (Probenort entsprechend Abb. 78; Zone 1)

-185-

Abbildung 87: Zusammensetzung der Pd-Rh-Te-Teilchen in den verschiedenen Zonen des Schmelzers in Gew.-% oben: Zone 2 (einzelne Agglomerate) Mitte: Zone 1 (feines Sediment) unten: Zone 3 (grobes Sediment

Abbildung 88: Mikrosondenanalysen: Rh- und Te-Konzentration in den Pd-Rh-Te-Teilchen (Zone 2 des Schmelzers; Abb. 50)

Abbildung 89: Mikrosondenanalysen: Rh- und Te-Konzentration in den Pd-Rh-Te-Teilchen (Zone 1 des Schmelzers; Abb. 50)

Abbildung 90: Mikrosondenanalysen: Rh- und Te-Konzentration in den Pd-Rh-Te-Teilchen (Zone 3 des Schmelzers; Abb. 50)

REM-Bild

Pd-Verteilung

Rh-Verteilung

Te-Verteilung

Abbildung 91:

Entmischung in einem Pd-Rh-Te-Teilchen (REM-Bild und EDS Elementverteilungsbilder)

Abbildung 92: Mikrosondenanalysen in Gew.-%: Die Endpunkte der Geraden (x) zeigen die Zusammensetzung der Te- bzw. Rh-reichen Phase in den einzelnen Zonen des Schmelzers (Mittelwerte über alle Proben entsprechend Tab. 30). Die Punkte (I, s) zeigen Liquidus bzw. Solidus in den Zweistoffsystemen bei 1150°C. (Auf die Umrechnung auf at.% wurde verzichtet, da sich die Lage der Punkte dadurch kaum ändert.)

Abbildung 93: Mikrosondenanalysen: RhO₂- und PdO-Konzentration in den RuO₂-Partikeln (Zone 1 des Schmelzers)

Abbildung 94: Mikrosondenanalysen: RhO₂- und PdO-Konzentration in den RuO₂-Partikeln (Zone 3 des Schmelzers)

-191-

Abbildung 95: Mikrosondenanalysen: RhO₂- und Cr₂O₃-Konzentration in den RuO₂-Partikeln (Zone 1 des Schmelzers)

Abbildung 96: Mikrosondenanalysen: RhO₂- und Cr₂O₃-Konzentration in den RuO₂-Partikeln (Zone 3 des Schmelzers)

Abbildung 97: EDS-Analysen: Rh- und Te-Konzentration in Pd-Rh-Te-Teilchen aus Kokille K 75/87

ŗ

Abbildung 99: Verteilung der Pd-Rh-Te-Phase auf verschiedene Partikelgrößen (Zone 3 des Schmelzers)

Größenklasse

Abbildung 100: Mittlere Partikeldurchmesser der Pd-Rh-Te-Teilchen in den verschiedenen Zonen des Schmelzers (Zone 1: feines Sediment) Zone 2: Glasprodukt mit einzelnen Platinmetallagglomeraten Zone 3: grobes Sediment; siehe Abb. 50)

Abbildung 101: REM-Bild der "Kalten Kappe" des Schmelzers: Grundglasperlen neben Kalzinat (Probenort entsprechend Abb. 72)

a) K, Mo

INE 1346 d) Nd, La, Fe, Zr, Ru

e) K, Ru

Abbildung 103: REM-Bild der Einschmelzzone des Schmelzers mit starken Schlieren (Probenort entsprechend Abb. 72)

INE 1348

b) Cs, Mo

INE 1348

e) Ba, Ca, Cr, Mo

INE 1348

d) Ba, Sr, Fe, Zr, Mo

Abbildung 105: EDS-Bild aus der Einschmelzzone des Schmelzers mit noch ungelösten Fremdphasen (Probenort entsprechend Abb. 72)

a) Seltene Erden, Ca, Si

b) Seltene Erden, Ti

c) Ce, Zr

Abbildung 106: EDS-Spektren von verschiedenen Lokalitäten der Proben REM 1349 und 1350 (Probenort entsprechend Abb. 72)

Abbildung 107: REM-Bild aus dem unteren Schmelzerbereich. Nur noch die Platinmetalle treten als ungelöste Phasen auf (Probenort entsprechend Abb. 72)

INE135

0.1mm30.1kU 3,26E2 7988/17

Abbildung 108: Probenahmeschema für die Homogenitätsmessung bei Kokille K 85/87 (Abstände der Probenahmestellen in mm)

Abbildung 109: Brechungsindex der Glasphase an verschiedenen Lokalitäten der Kokille K 85/87 (Pfeilrichtung kennzeichnet Zunahme des Brechungsindex)

-202-

30

dos. Feedmenge / I

40

50

60

70

20

10

Ó

Abbildung 111.2: Temperaturverlauf (MAWC/HAWC; Oxidbeladung: 7 Gew.-%

Abbildung 111.3: Temperaturverlauf (MAWC/HAWC; Oxidbeladung: 20 Gew.-%

Abbildung 111.4: Temperaturverlauf (MAWC/HAWC; Oxidbeladung: 15 Gew.-%

Abbildung 112: Verlauf des Badwiderstandes (Einzelwerte nach Dosierende bei 1120°C)

Abbildung 113.2: Badwiderstand und Temperatur (MAWC/HAWC; Oxidbeladung: 7 Gew.-%)

Abbildung 113.4: Badwiderstand und Temperatur (HAWC; Oxidbeladung: 15 Gew.-%)

Abbildung 114.1: Strom- und Spannungsverlauf (MAWC/HAWC; Oxidbeladung: 15 Gew.-%)

Abbildung 114.2: Strom- und Spannungsverlauf (MAWC/HAWC; Oxidbeladung: 7 Gew.-%)

Abbildung 114.3: Strom- und Spannungsverlauf (MAWC/HAWC; Oxidbeladung: 20 Gew.-%)

Abbildung 114.4: Strom- und Spannungsverlauf (HAWC; Oxidbeladung: 15 Gew.-%)

Abbildung 115.2: Elektrische Leistung der Innenheizung (MAWC/HAWC; Oxidbeladung: 7 Gew.-%)

LS02388 bis LS04088

Abbildung 115.3: Elektrische Leistung der Innenheizung (MAWC/HAWC; Oxidbeladung: 20 Gew.-%)

Abbildung 115.4: Elektrische Leistung der Innenheizung (HAWC; Oxidbeladung: 15 Gew.-%)

85

dos. Feedmenge / I

95

105

Stromdichte (MAWC/HAWC; Oxidbeladung: 7 Gew.-%) Abbildung 116.2:

75

65

LS00188 bis LS02288

dos. Feedmenge / I

Abbildung 116.4:

Stromdichte (WAW; Oxidbeladung: 15 Gew.-%)

Abbildung 117: Schnitt durch den Schmelztiegel

Abbildung 118: Schnittplan für REM-Proben

Abbildung 119: REM-Aufnahmen von Proben aus dem Tiegel

Abbildung 120: REM-Aufnahmen von Proben aus dem Tiegel

Abbildung 121: Spez. elektr. Widerstand von MAWC/HAWC-Glas

Abbildung 122: Spez. elektr. Widerstand von HAWC-Glas

Abbildung 124: Dynamische Viskosität von HAWC-Glas

-220-

Abbildung 125: Aufbau der Potentialmeßsonde

Abbildung 126: Lage der Koordinatensysteme und Anordnung der Potentialmeßsonde im Schmelztiegel

Abbildung 129: Feldstärkenverteilung im Schmelzbad (in relativen Einheiten; linker Balken zeigt Lage der Elektrode)

Abbildung 130: Temperatur/Zeit-Verteilung

Abbildung 131: Elektrode nach Abschluß der Kampagne (rechts: Inconelblock in Stärke des eingesetzten Materials)

Abbildung 132: Maße einer Elektrode vor und nach der Versuchskampagne (Maße nach der Kampagne sind unterstrichen)

Relative Massenverteilung in % (2 Cr,Fe,Ni = 100%) Analysen-punkt Cr Fe Ni 79,5 7,0 13,5 1 75,0 2 12,5 12,5 17,5 71,5 3 11,0 4 19,5 10,5 70,0 67,0 23,0 10,0 5 24,5 10,0 65,5 6 7 28,0 9,5 62,5 8 28,5 9,5 62,0 Inconel 690 30,0 9,5 60,0 (nach Fabrikangabe)

Abbildung 133: Schnitt durch eine korrodierte Inconel 690-Elektrode; EDS-Messung: Meßort und zugehörige Zusammensetzung (Vergrößerung 106fach)

Abbildung 134: Ansammlung von Chromoxid in der Grenzzone Glas/Inconel (Vergrößerung: 406fach)

Abbildung 135: Feststoffaustrag ins Abgassystem (Mittelwerte)

Abbildung 136: Verlauf der Schmelzbadtemperatur

Abbildung 137a:

Verlauf von Elektrodenstrom und -spannung oben: T6, unten: T7

<u>I-Elektrode</u>

U-Elektrode

Abbildung 137b:

Verlauf von Elektrodenstrom und -spannung oben: T8, unten: T9

-233-

Abbildung 138b:

Verlauf der elektrischen Leistung (Direktheizung) oben: T8, unten: T9

-234-

Abbildung 139a:

Verlauf der Stromdichte oben: T6, unten: T7

Abbildung 139b:

Verlauf der Stromdichte oben: T8, unten: T9

-236-

180

Abbildung 140: Verlauf des Badwiderstands oben: T6 und T7, unten: T8 und T9

Abbildung 141: Verlauf des Badwiderstands bei konstanter Temperatur und konstantem Füllstand

Abbildung 142: Schnitt durch Tiegel T6 (10 h Betriebsdauer)

bbildung 143: Schnitt durch Tiegel T7 (30 h Betriebsdauer)

Abbildung 144: Schnitt durch Tiegel T8 (90 h Betriebsdauer)

Abbildung 145: Schnitt durch Tiegel T9 (200 h Betriebsdauer)

Tiegel 6

Abbildung 146: Schnittplan für die Tiegel T6 - T9

Abbildung 147a:

Größenspektrum der Pd-Rh-Te-Partikel oben: T6, unten: T7

Abbildung 147b: Größenspektrum der Pd-Rh-Te-Partikel oben: T8, unten: T9

Abbildung 148: Größenspektrum der Pd-Rh-Te-Partikel aus allen Kampagnen

Zusammensetzung der Pd-Rh-Te-Partikel oben: T6, unten: T7 (Rest jeweils Pd)

-247-

Zusammensetzung der Pd-Rh-Te-Partikel oben: T8, unten: T9 (Rest jeweils Pd)

Abbildung 151: Elementverteilung in Pd-Rh-Te-Partikeln, Kampagne T7

Abbildung 152a: Cr- und Rh-Konzentration in RuO₂-Partikeln oben: T6, unten: T7

-250-

Abbildung 152b:

Cr- und Rh-Konzentration in RuO₂-Partikeln oben: T8, unten: T9

topmvorhpro

Abbildung 153: Konzentrationsverhältnisse der Platinmetalle im HAWC-Glas, Kokillen der Kampagne T9

teembgt

Abbildung 154: Platinmetallkonzentration in den verschiedenen Zonen des Schmelztiegels, Kampagne T9

tepmverh

Abbildung 155: Konzentrationsverhältnisse der Platinmetalle im HAWC-Glas, Tiegel der Kampagne T9

t9pmbil

Abbildung 156: Platinmetallbilanz, Kampagne T9

Abbildung 157: Spez. elektrischer Widerstand der HAWC-Glasschmelzen (jeweils letzte Kokille der Kampagnen T7 - T9

Abbildung 158: Spez. elektrischer Widerstand der HAWC-Glasschmelzen (verschiedene Zonen des Schmelztiegels T9)

tør

Abbildung 159: Viskosität der HAWC-Glasschmelzen (jeweils letzte Kokille der Kampagnen T7 - T9)

Abbildung 160: Aufbau des Schmelzers (Bodenneigung 60°)

Abbildung 161: Elektrodentemperatur in den Kampagnen T13 und T9

Abbildung 162: Verlauf des Elektrodenstroms und der Elektrodenspannung

Abbildung 163: Verlauf der Stromdichte

Abbildung 164: Elektrische Leistung der Direktheizung

Abbildung 165: Badwiderstand bei den Kampagnen T13 und T9

vildung 166: Zentraler Schnitt durch den erkalteten Schmelztiegel T13

Abbildung 167: Temperaturprofil im Schmelzbad vor und nach dem Absaugen (T13, Bodenneigung 60°C)

Abbildung 168: Temperaturprofil in den Kampagnen T13 und T3

Abbildung 169: Schnittplan für Proben aus dem Tiegel zur chemischen Analyse

Abbildung 170: Lanthangehalt in den Kokillen

Abbildung 171: Platinmetall- und Lanthangehalt im Tiegel

Abbildung 172: Platinmetallbilanz

t13ptt

Abbildung 173: Platingehalt in den Kokillen

Abbildung 174: Platinaustrag durch Absaugen von Glas

1	2	3	4			
5	6	7	8			
9	10	11	12			
13	14	15	16			
17	18	.19	20⁄	<i>y</i>		
21	22	23•	724			
25	26	27				
28 :	29.	×30				
31	• Fundorte einer platinhaltigen Phase					
33.	X34	Ē		-		
Tiegel 13						

Abbildung 175: Schnittplan für Proben zur REM/EDS-Analyse und Verteilung der Pt-Sedimente

Abbildung 176: Verlauf der Elektrodentemperatur während der Betriebszeit

Abbildung 177: Verlauf von Elektrodenstrom und -spannung während der Betriebszeit

-266-

Abbildung 178: Verlauf der Stromdichte während der Betriebszeit

Abbildung 179: Elektrische Leistung der Direktheizung während der Betriebszeit

30: T Elektrode

Abbildung 180: Verlauf von Badwiderstand und Elektrodentemperatur während der Betriebszeit

Abbildung 181: Zentraler Schnitt durch den erkalteten Schmelztiegel T14

Abbildung 183: Verteilung von Pd, Rh und La in den verschiedenen Zonen des Schmelztiegels T14 (Zoneneinteilung Abbildung 182)

Abbildung 184: Überblick über die Platinmetallsedimente nahe dem Schmelzerboden

Abbildung 185: Morphologie der Pd-Rh-Te-Partikel nahe dem Schmelzerboden

Abbildung 186: Morphologie der Pd-Rh-Te-Partikel auf den Oberflächen der keramischen Tiegelauskleidung

Abbildung 187: Zusammensetzung der tröpfchenförmigen Pd-Rh-Te-Partikel auf den Oberflächen der keramischen Tiegelauskleidung (Rest jeweils Pd)

Abbildung 188: Zusammensetzung der zusammengeschmolzenen Pd-Rh-Te-Partikel nahe dem Schmelzerboden (Rest jeweils Pd)

Abbildung 190: Korrosion der Elektroden aus Inconel-690 Veränderung der Zusammensetzung (T14)

Abbildung 191: Verlauf der Elektrodentemperatur

Abbildung 192: Verlauf von Elektrodenstrom und Elektrodenspannung

LS23290 bis LS25690

Abbildung 193: Verlauf der Stromdichte

Abbildung 194: Verlauf der elektrischen Leistung

<u> 30: T Elektrode</u>

Abbildung 195: Verlauf von Badwiderstand und Elektrodentemperatur

Abbildung 196: Abfall des Badwiderstandes in den Kampagnen T15 und T3

1526	1527	1528	1529	
2,96	1,88	kein	3,94	
		Pd-Te	(3,06)	
1530	1531	1532	1533	
2,66	kein	kein	4,00	
	Pa-re	Pa-1e		
1534	1535	1536	1537	
5,09	6,48 (3.93)	kein Pd-Te	4,85	
(1,73)	(3,33)	10 16		
1538	1539	1540		
3,34	3,30	3,49		
1541	1542	1543/	7	
2,54	2,71	2,87		
1544	1545	\neg		
2,64	3,33			
1546	1547/			
4,11	3,97	oben: R Mitte: r	EM Nr. nittl Partikal	durchmesser (um)
(3,89)		(unten): m	ittl. Partikel	durchmesser (µm) bei
1548		V	ernachläsigu	ng einzelner großer Part
3,62	/			

Abbildung 198: Schnittplan für die Proben aus Tiegel 15

Abbildung 199: Partikelspektrum (Pd-Rh-Te-Legierung)

REM - NR.

Abbildung 200: Schnittplan für Proben aus Kokille K13/91

Verlauf der Elektrodentemperatur (Zusatz von 1,2% Si)

Verlauf der Elektrodentemperatur (Zusatz von 0,3% Si)

Abbildung 201d: Verlauf der Elektrodentemperatur (Zusatz von 0,6% Graphit)

Abbildung 202a: Verlauf von Elektrodenstrom und Elektrodenspannung (Zusatz von 1,2% Si)

Abbildung 202b:

Verlauf von Elektrodenstrom und Elektrodenspannung (Zusatz von 0,7% Si)

Abbildung 202c: Verlauf von Elektrodenstrom und Elektrodenspannung (Zusatz von 0,3% Si)

Abbildung 202d: Verlauf von Elektrodenstrom und Elektrodenspannung (Zusatz von 0,6% Graphit)

Abbildung 203b: Verlauf der Stromdichte (Zusatz von 0,7% Si)

Verlauf der Stromdichte (Zusatz von 0,3% Si)

Abbildung 203d: Verlauf der Stromdichte (Zusatz von 0,6% Graphit)

Abbildung 204a: Verlauf der elektrischen Leistung; Elektrodenheizung (Zusatz von 1,2% Si)

LS11791 bls LS12791 (0,7%SI)

Abbildung 204b: Verlauf der elektrischen Leistung; Elektrodenheizung (Zusatz von 0,7% Si)

Abbildung 204c: Verlauf der elektrischen Leistung; Elektrodenheizung (Zusatz von 0,3% Si)

Abbildung 204d: Verlauf der elektrischen Leistung; Elektrodenheizung (Zusatz von 0,6% Graphit)

LS13891 bis LS14791 (0,6% Graphit)

Badwiderstand

Elektrodentemperatur

Abbildung 205a: Verlauf von Badwiderstand und Elektrodentemperatur (Zusatz von 1,2% Si)

Abbildung 205b:

Verlauf von Badwiderstand und Elektrodentemperatur (Zusatz von 0,7% Si)

Elektrodentemperatur

Abbildung 205d:

Verlauf von Badwiderstand und Elektrodentemperatur (Zusatz von 0,6% Graphit)

Abbildung 206: Badwiderstand in den Kampagnen T16 (Zusatz von 1,2% Si) und T15 (ohne Reduktionsmittel)

___ = 0,1 mm

_____ = 0,02 mm

____ = 0,01 mm

_ = 0,1 mm

____ = 0,02 mm

____ = 0,01 mm

Abbildung 208: RuO₂-Nadeln im HAWC-Glas (Zusatz von 0,3% Si); optische Mikroskopie

Abbildung 209: RuO₂- und Cr₂O₃-Kristalle im HAWC-Glas, REM-Aufnahme, Vergrößerung: 221fach

- 3011

Abbildung 210: REM-Aufnahme und EDS-Diagramme von Cr₂O₃-Kristall im HAWC-Glas

RuO₂

Abbildung 211: RuO₂-Kristalle im HAWC-Glas, REM-Aufnahme, Vergrößerung: 2620fach

Abbildung 212: Cr₂O₃-Kristalle und metallische Phase von Ru-Rh-Pd-Te

Abbildung 213: Metallische Phase, optische Mikroskopie, Vergrößerung: 500fach

Abbildung 214: Metallische Partikel im HAWC-Glas, REM-Aufnahme

Abbildung 215: Korrosion der Elektroden aus Inconel-690 Veränderung der Zusammensetzung (T16)

Abbildung 216: Verlauf von Elektrodenstrom und Elektrodenspannung

Abbildung 217: Verlauf der elektrischen Leistung; Elektrodenheizung

Abbildung 218: Verlauf der Stromdichte

Abbildung 219: Verlauf von Badwiderstand und Elektrodentemperatur

Abbildung 220: Badwiderstand in den Kampagnen T17 und T15

Hauptkomponenten:

Kugeln: Pd-Rh-Legierung Leisten: RuO₂ Plättchen: Cr₂O₃

Abbildung 221: Cr₂O₃- und RuO₂-Kristalle und metallische Phasen im HAWC-Glas

Abbildung 222: Zentraler Schnitt durch den Schmelztiegel T17

Abbildung 223: Schnittplan für REM-Proben aus dem Tiegel T17

Abbildung 224: RuO₂-Nadeln und Pd-Rh-Te-Kugeln im HAWC-Glas

Abbildung 225: Korrosion der Elektroden aus Inconel-690 Veränderung der Zusammensetzung (T17)