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Liquid Metal Flows in Manifolds and Expansions 
of Insulating Rectangular Ducts in the Plane 

Perpendicular to a Strong Magnetic Field 

Abstract 

Liquid metal flows in insulating rectangular ducts in strong magnetic fields are considered with 
reference to poloidal concepts of self-cooled blankets. Although major part of the flow in 
poloidal blanket concepts is close to being fully developed, manifolds, expansions, 
contractions, elbows, etc., which are necessary elements in blanket designs, cause three-
dimensional effects. The present investigation demonstrates the flow pattern in basic insulating 
3-D geometries for the actual and for more advanced liquid-metal blanket concepts and 
discusses the ways to avoid pressure losses caused by flow redistribution. Flows in several 
geometries, such as symmetric and non-symmetric 180° turns with and without manifolds, 
sharp elbows, sharp and linear expansions with and without manifolds, T-junction, etc., have 
been calculated. They demonstrate high reliability of poloidal concepts of liquid-metal blankets, 
since they guarantee uniform conditions for heat transfer. If changes of the duct cross-section 
occur in the plane perpendicular to the magnetic field (ideally a coolant should flow always in 
the radial-poloidal plane) the disturbances are local and the slug velocity profile is reached 
roughly at the distance equivalent to one duct width from the manifolds, expansions, etc. The 
effects of inertia in these flows are unimportant for the determination of the pressure drop and 
mean velocity profiles in the core of the flow but may favour heat transfer characteristics via 
instabilities and strongly anisotropic turbulence. 



Flüssigmetallströmungen in isolierten Rechteckkanälen in 
Sammlern und Expansionen in einer Ebene senkrecht zu 

einem äußeren starken Magnetfeld 

Zusammenfassung 

Im Hinblick auf Anwendungen für selbstgekühlte Flüssigmetall-Blankets werden 
Flüssigmetallströmungen in isolierten rechteckförmigen Kanälen unter Einwirkung äußerer 
starker Magnetfelder untersucht. Obwohl in poloidalen Blanketkonzepten die Strömung 
nahezu voll ausgebildet ist, werden in Verzweigungen, Erweiterungen, Verengungen, 
Krümmern etc. dreidimensionale Effekte erzeugt. In dieser Arbeit werden 
Strömungsstrukturen in isolierten, dreidimensionalen Basisgeometrien für aktuelle und 
fortgeschrittenere Flüssigmetall-Blankets diskutiert und Wege aufgezeigt, wie Druckverluste 
hervorgerufen durch Strömungsumverteilung vermieden werden können. Strömungen in 
unterschiedlichen Geometrien, wie z.B. in symmetrischen und asymmetrischen Umlenkungen 
mit und ohne Verzweigung, in scharfkantigen Krümmern, in linearen Expansionen mit und 
ohne Verzweigung, in T-Stücken, etc. werden berechnet. Sie erhöhen die Zuverlässigkeit von 
poloidalen Flüssigmetallkonzepten, da sie homogene Wärmeübertragungsbedingungen 
garantieren. Falls Querschnittsveränderungen in einer Ebene senkrecht zum Magnetfeld 
auftreten (unter idealen Bedingungen sollte das Kühlmittel in der poloidal- radialen Ebene 
fließen) sind Störungen lokal, und das kolbenförmige Geschwindigkeitsprofil wird etwa nach 
einer Lauflänge erreicht, die mit der Breite der Expansion oder des Verteilers vergleichbar ist. 
Trägheitseffekte in diesen Strömungen sind unwichtig für die Bestimmung des Druckverlusts 
und der mittleren Strömungsgeschwindigkeit. Durch das Auftreten von Instabilitäten und 
stark anisotroper Turbulenz können sie jedoch den Wärmeübergang günstig beeinflussen. 
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1. Introduction 

Blanket-relevant research in liquid-metal magneto-hydrodynamics has been recently 
shifted towards the flows in ducts with insulating walls. Although it was realised even at the 
early stage of blanket development that insulation of duct walls solves many of the problems of 
self-cooled liquid-metal blankets, it was unclear if an effective insulation can really be achieved. 
The progress in material research of insulating coatings which would cover electrically 
conducting walls and withstand high irradiation and mechanical stress made it possible to 
consider self-cooled blankets with insulating walls as a real option. As a result two new blanket 
concepts have been presented almost simultaneously by Sze et al. (1992) and Malang et al. 
(1993). Both of them are poloidal concepts which involve very simple (from 
magnetohydrodynamic point of view) flows in rectangular ducts in a transverse magnetic field 
as the main elements of the cooling system. A schematic diagram of the dual-coolant concept 
of blanket (Malang et al. 1993) is shown in Fig. 1. 

One of the advantages of flows in straight insulating ducts with respect to those in 
ducts with conducting walls is that in the former the pressure drop per unit length grows only 
linearly with BQ, the induction of the uniform transverse magnetic field, while in the latter it 
grows as B%. Since in tokamaks 50~5-10T, the difference is very high. The other advantage is 
a slug velocity profile in a straight insulating duct that implies uniform conditions for heat 
removal due to internal heating and for cooling the first wall. 

Although the major part of the flow in poloidal blanket concepts is close to being fully 
developed, elements such as manifolds, expansions, contractions, elbows, etc. cause three-
dimensional effects. If changes of duct cross-section occur in the direction of the strong 
magnetic field, or if magnetic field induction varies in the flow direction, the additional 
pressure drop due to three-dimensional effects in inertialess flow increases as B$ and the fluid 
velocity in the core close to the 3-D elements is strongly reduced (Walker, Ludford & Hunt, 
1972, Lavrentiev et al, 1990). In contrast, changes of the cross-section in the plane 
perpendicular to the magnetic field do not cause considerable three-dimensional effects. The 
present investigation concentrates on the latter flows in order to demonstrate the flow 
structure in basic insulating 3-D geometries and to show how to avoid pressure losses caused 
by flow redistribution in self-cooled liquid-metal blankets. 

9 



PbLi PbLi Helium 
up down 

Bottom Plate Manifold 

Fig. lc 

Fig. 1. Dual coolant liquid metal breeder blanket (from Malang et al. 1993). a) outboard 

blanket segment; b) cross-section of an outboard blanket segment; c) upper and lower end of 

the blanket segment. 

10 



2. Formulation 

Consider the steady flow of a viscous, electrically conducting, incompressible fluid in 
a rectangular duct (Fig. 2) or in the system of rectangular ducts (manifold). The duct consists 
of a straight part, which is in general connected to a variable-area part. The axis of the 
variable-area duct may be curvilinear. All walls of the ducts are electrically insulating. The x-
coordinate points in the main-flow direction in the straight part. One pair of the duct walls, 
called the side walls, is parallel to the strong uniform magnetic field B = BQy. The other pair of 

walls (top and bottom walls, which are also called the Hartmann walls) is perpendicular to the 

field in the straight part, or in general is inclined to the field. 

variable-area duct 

side walls 

Fig. 2 Flow in the variable-area duct 
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The dimensionless inductionless equations governing the flow are 

M _ 2 V 2 v + j x y = Vp + N~l(v- V)v, (la) 

j = - V > + v x y, (lb) 

V • v = 0, Oc) 

V - 7 = 0, (Id) 

where M = B^a^a/pv is the Hartmann number, TV = oaBl /pv 0 is the interaction parameter, 

a is half the distance between the Hartmann walls in the straight part, a, p, v are electrical 

conductivity, density and kinematic viscosity of the fluid, respectively. The fluid velocity 
v = ux + vy + wz, the electric current density j, the electric potential <j> and the pressure p 

are normalised by v 0 (average fluid velocity in the straight part), v0B0a, v0Boa and ov0B%a, 

respectively. 

The boundary conditions at each wall are the non-slip condition 

v = 0 (le) 

and the electrical condition for an insulating wall 

Of) 

where n is the normal unit vector to the wall. The condition of constant mass flux 

L 
Og) 

-1 -L 

normalises the solution to the problem (la-f). 
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3. General discussion 

Straight poloidal constant-area rectangular ducts with one pair of walls parallel to the 
strong toroidal magnetic field are main elements of a cooling system in poloidal concepts of 
self-cooled liquid-metal blankets. For flows in such ducts with insulating walls the exact 
solution to the problem (1) has been obtained by Shercliff (1953), who presents the expression 
for the fluid velocity, which is valid for arbitrary values of parameters M and L, in the form 

u - 2kf f l I c o s h m ' > / s i n h / w 2 -coshw^sinhw, } ^ _ ( 2 ) 

h ß l 1 s i n h 7 „ J 

where ßn = (n-fynl L, ml2 = \{-M±y„), y„ =yjM2+4ß2

n and the absolute value of the 

constant pressure gradient k = -dp/dx is 

•> f 7 „ ( c o s h M - c o s h v j l 

The velocity profiles and the pressure gradient for the square duct and for different values of 
the Hartmann number are shown in Figs. 3 and 4. Due to fully developed, unidirectional nature 
of the flow inertia terms vanish identically and parameter the N does not enter the steady 
solution (2), (3). 

The parameter M relevant to lithium-lead blanket conditions (Malang et al, 1993) is 
very high (8000-18000), while N varies from moderate to high values (160-2500). For lithium 
blankets the values of N are at least one order higher. In any case M»l and N»J, so that 
under blanket relevant conditions the flow exhibits certain asymptotic properties. 

Figure 3 demonstrates that for M higher than 50 the flow region consists of the inviscid 
core, which occupies the bulk of the fluid, where velocity is constant (slug velocity profile), 
and thin boundary layers at the duct walls. The thickness of the layers at the Hartmann walls is 
O f M - 1 ) , while the thickness of the side layers at the side walls is 0(M~J) (Fig. 3g). Viscous 
effects are confined to the boundary layers. The electric currents are induced in the core in the 
z-direction and return back in the layers (Fig. 3f). The asymptotic analysis of the flow for 
M»\ was performed by Shercliff (1953), who derived asymptotic expressions for the fluid 
velocity in the core, the Hartmann- and the side- layers (see also Roberts 1967, Temperley 
1976, Moreau 1990). The experiments of Branover & Gelfgat (1968), performed forM=174, 
/?e=25300 (/V=1.19) and 7?e=40200 (/V=0.75) confirmed SherclifFs results and the asymptotic 
flow structure even for relatively low values of M and N. Here Re = av01 v is the Reynolds 

number. 

(3) 
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Fig. 3d M=50 Fig. 3e M=WO 

Fig. 3 Flow in a straight rectangular duct with insulating walls (Shercliff s exact solution), a) 
flow scheme; b-e) fluid velocity for L=l and for different values of the Hartmann number; f) 
lines of electric current for M= 100, L=l; g) flow subregions at high Hartmann number. 
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z 

Hartmann layer 

0(M1/S) § 

•1 Hartmann layer 

Fig. 3g 

Fig. 3. For legend see previous page. 
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Vatazhin, Liubimov & Regirer (1970) present an asymptotic expansion of the pressure 
gradient in powers of M~^, namely 

M\ L4M MY 
(4) 

which has been obtained using SherclifFs asymptotic solution. The expression (4) may be used 
for calculating pressure drop in straight insulating rectangular ducts for M> 10 with the error of 
less than 10%, while even more simple expression 

k = M~ (5) 

may be used for M> 100 with the same accuracy (Fig. 4). 

More sophisticated fully developed flows with magnetic field inclined to the duct walls, 
or with non-perfect insulation of the duct walls have been considered by Vatazhin, Liubimov & 
Regirer (1970), Molokov (1990), Molokov & Shishko (1993) and Bühler & Molokov (1993). 

exact value (3) 
— — — — asymptotic expression 
- — - asymptotic expression 

80.0 100.0 40.0 60.0 
M 

Fig. 4 Variation of the pressure gradient in a straight insulating square duct (L=l) with the 
Hartmann number. 

The behaviour of the SherclifFs solution at high M justifies the application of the 
asymptotic theory to general 3-D flows in ducts. The general inertialess three-dimensional flow 
in a duct of arbitrary shape of the Hartmann walls but with no side walls has been treated by 
Kulikovskii (1968) and Hunt & Ludford (1968). Neglecting inertia terms in the core and in the 
Hartmann layers requires only that N»\. Neglecting also viscous terms for M»\, 
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Kulikovskii and Hunt & Ludford reduce the three-dimensional problem (1) to a number of 
two-dimensional equations for the core potential and the pressure. The solution to the resulting 
equations depends on the duct geometry. 

Three-dimensional flows in insulating ducts of finite cross-section have been considered 
first by Walker, Ludford & Hunt (1972) (hereinafter referred to as WLH), who treat the 
inertialess flow in a symmetric expansion of the rectangular duct in the plane of the magnetic 
field, while the side walls are parallel to each other. They present asymptotic solution to the 
flow in a straight duct connected to the linear expansion and show that in the core of the 
expanding duct the fluid is virtually stagnant with the magnitude of the velocity 0(M T ) , 
while all volume flux is carried by the high-velocity jets at the side walls. The velocity in the 
jets is 0 ( M T ) . The three-dimensional disturbance caused by the expansion extends into the 
straight duct to the distances 0(1), i. e. the disturbance dies out at about one characteristic 
length from the join of the expansion and the straight duct. The magnitude of the transverse 
electric currents due to the expansion (3-D currents) is 0(M T ) , and thus the 3-D pressure 
drop produced by these currents is 0(M~*), Since in fully developed flow the pressure 
gradient is 0(M~l), forM~10 4 the 3-D pressure drop is approximately two orders higher than 
the 2-D one for a straight duct per unit length, so that 3-D effects in insulating ducts expanding 
in the plane of the field are significant. The same effects as those in duct expansions are present 
in flows in straight ducts with nonuniform magnetic field varying in the flow direction 
(Lavrentiev et al. 1990). It is very important to note that the presence of the side walls 
radically changes the range of validity of the inertialess approximation in flows of W L H and 
Lavrentiev et al. from N»\ to N » M1, the latter being hardly realised in practice. 
However, there is a belief that apart from (quasi-) two-dimensional turbulence (Moreau 1990, 
Chap. VII), which may be present in the core and produce negligible additional pressure drop, 
inertia effects really affecting the pressure drop are confined to the side layers (cf. experiments 
by Picologlou & Reed, 1989). 

Strong 3-D effects in the flow of W L H are caused by the expansion in the field 
direction. In the present investigation a different case of parallel top and bottom walls is 
considered, while the variation of the duct cross section occurs in the plane (x,z) perpendicular 
to the magnetic field. In this case, as has been noted in concluding remarks by W L H , there is 
no considerable three-dimensional effect. The side layers do not carry 0(1) volume flux and the 
core is not stagnant. We present the analysis of the flow in several geometries due to their 
importance in blanket-relevant research. In Sec. 4 the analysis generally follows that of WLH. 
It is extended to obtain second terms in the asymptotic expansions in powers of M~7, since 
they determine the pressure drop. The flow structure in the core is valid for N»l, M»l; 
both assumptions hold for all self-cooled blanket concepts, while the effects of inertia in the 
side layers and their influence on the pressure drop are discussed in Sec. 6. 

17 



4. Flow analysis at large Hartmann numbers 

For convenience, in this section we refer to the flow in a symmetric 180°-turn (Fig. 5a), 

while the generalisation of the analysis to other geometries is discussed at the end of the 

Section. Flow subregions at high Hartmann number in a 180°-turn in the plane (x,z) are shown 

in Fig. 5b. 

At the first stage the Hartmann layers at the walls y = ±\ are excluded from the 

analysis, provided the core- and the side-layer- variables satisfy the conditions 

(6a,b) 

Fig. Sa 

Fig. 5b 

Fig. 5 Flow in a symmetric 180°-turn. a) flow scheme; b) flow subregions in the (x,z) plane at 

high Hartmann number: C - the core, S - the side layers. Corner and edge regions are 

unimportant for the analysis. 
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4. 1 Core regions 

In the core of the duct the main terms in the asymptotic expansions of the flow 

variables are 

<j> = <D (0) + AT*<& (}*>+..., p = M~?P0A) + A / - ' P ( 1 ) . . . , (7a,b) 

u = U(0)+M^U(V')+..., w = Wm + ATiWlii)+..., (7c,d) 

jx = M->jM + M-]J«)+..., jl=M-1>jM + M-{jV+.... (7eJ) 

Upper indices ( / ) denote coefficients in the asymptotic expansions at M~'. Capital letters 

denote the core variables. 

The ̂ -components of the fluid velocity v and of the electric current density jy vanish at 

least to the order and thus are unimportant for the analysis. The x- and z- components of 
the fluid velocity and the electric current are expressed in terms of the electric potential and the 
pressure as follows 

tf<WO = WV.X> = (7g,h) 
dz dx 

J(K.o = äP > J(M..) = _f«P ( 7 i J ) 

dz ox 

The 0(1) and 0{M~*) core electric potential and the 0{M~^) and 0{M~X) core 

pressure are stream functions for the fluid velocity and the electric current in the plane 

perpendicular to the magnetic field. They are two-dimensional harmonic functions, i . e. they 

satisfy the Laplace equations 

_ _ + _ _ = 0 , ,=0 , | , (8a) 

_ + _ = 0, ,=1,1. (8b) 

Thus, the flow in the core is the potential flow. The boundary conditions for the functions 

<3>(,)(x,z) and P ( / ) ( x , z ) are the conditions of matching with the side-layer solutions and the 

conditions of fully developed flow far from the joins between ducts and from the duct 

expansions. Then the conditions at x —> - ° ° are 

19 



— >0, P0A) -> 0, ^ >-i a S x -> - o o . (8c-ß 

dx dx 

Since the flow is inertialess, the conditions at the symmetry plane are 

= 0, i=\X (Sg.h) 
atz=I, 0<x<d 

^ = 0, ,=0,1 (8i,j) 
dz 

The conditions at z = ±L and at x=d for the core potential and the pressure require 

consideration of the side layers. 

4. 2 Side layer at z=-L 

Introducing the variable q = Vm(z + Z,) stretches the vicinity of the side wall z=-L. In 

the side layer the main terms in the asymptotic expansions of the flow variables are 

fa = <$» + Ar^y*>+..., ps= M^p^ + M-lp«\.., (9a,b) 

us = M±ul-K) + M W + . . v s = A/±v<-*> + v< 0 )+..., (9c,d) 

ws = w <°> + A T ^ > + . . . , = / , 3 + A ^ V ^ - h . . . (9eJ) 

jy,s = A ° i + ^ * / $ } + - - A,5 = A T ^ S > + A ^ V i , ] + . • • • (9g,h) 

The problems for the first two terms in the asymptotic expansions of the side-layer variables 

are 
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dx 

^•(O.K) ^/(O.H) 

cbc ö> <?c 

—4- + — ^ + — ä = 0. (10h) 
dx dy dg 

The conditions at the wall z=-L resulting from the conditions (le,f) are 

M ^ = 0, v ^ 0 ) = 0 , (lOiJ) 

ode dg ' <2x «9g3 

The mass-flux condition (lg), together with the equations (10d,f,h), gives 

l 

j $ M \ x , g = 0,y)dy = -2L. (10m) 

Equations (6a,b) give the conditions at the Hartmann wall, namely 

v (-K.o) = o 5 ^ _ + £ | ^ _ = 0 at^ = ± l . 
dy dg2 

(lOn) 

The conditions of matching with the core variables and the conditions of fully developed flow 

far from the turn are 

_> <j>«», <^> _> *<K> + g^-(x,z = 1), 
dz 

p f ) _> P0A)y p0) _> pd) as g -> ~ , f/Oo-r) 
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-}i(0,%) •> (I) 
£ ^ > o, # ->0, ^ — > - l a s x - > - ° ° . f/fts-v; 

ofcc dx 

From (10) and (8b) follows that the solution for the 0(1) electric potential in the side 

layer is 

^ = ^ ( x , z = -L) = -L, (11) 

while the first terms in the asymptotic expansions of all other variables in the side layer and the 
0(M~J) core pressure vanish, so that the pressure drop in a 180°-turn is 0(M~X). The 
same analysis and conclusions are valid for the side layers at z=L and x=d. This implies no jets 
in the side layers, so that all volume flux is carried by the core. The role of the side layers is to 
match the jump in the 0(1) core velocity to the no-slip condition at the side walls. The 
remaining boundary conditions for the 0(1) core potential are 

&0)(x = d,z) = -L, (12a) 

<D (0)(x, z = L) = L for x < 0. (12b) 

It turns out that both components of the 0(1) core velocity may be obtained with no 
reference to the side layer solutions and independent of the 0(M~l) pressure drop that is 
necessary for pumping the liquid metal through the channel. Thus, to determine the 
streamlines, one has to solve the equation (8a) with the conditions (8c,i), (11) and (12a,b). 

The analysis performed can be generalised to other geometries. For example, if the side 

walls are at z = ±g(x), i.e. not straight, the core still carries all volume flux, while the core 

electric potential 4>(0) is constant along the side walls, since 

Q = jdy Jumdz = 2{<D(0)(x,z = g(x)) -<D ( 0 )(x,z = -*(*))} = 4L, (13) 
- i -gw 

where Q is the flow rate. The same conclusions apply to ducts with manifolds. The potential is 

constant along each side wall, including the dividing walls, and the difference between side-

wall potentials in each subchannel determines the flow rates. 

In all these geometries 3-D pressure drop is of the same order as the pressure gradient 
in the fully developed flow, or equivalently, the pressure drop in a straight duct per unit length, 
and thus may be neglected in the first approximation. If necessary, 3-D pressure drop can be 
determined from the solution of the coupled problem (8), (10) and (11) for the second-order 
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approximation for the core and the side-layer variables. We do not solve this problem here. 

Instead the flow structure in several basic blanket elements is discussed. 

The problem consisting of the equation (8a), prescribed constant potential at the walls 
and the conditions of fully developed flow is solved numerically. Since the computational 
domain is complex, depending on the geometry being considered it is divided into several 
rectangular subdomains. The Laplace equation is solved in each subdomain with a Fast Poisson 
Solver. Iterations between solutions in subdomains are organised until continuity of the 
potential and its normal derivative holds at the joins between subdomains within specified 
accuracy. This procedure has been successfully applied to a much more complicated problem 
of the flow in an electrically conducting U-bend (Molokov & Bühler, 1993, 1994). 

4. Flow structure in basic blanket elements 

In this section the flow structure in basic blanket elements, such as elbows, expansions, 
manifolds, etc. is presented. The results are shown in Figs. 6-16. Although the flow geometries 
are different, there are certain common features. The figures indicate that the developing 
length, i.e the distance from the edges, corners, etc. where slug velocity profile is attained, is 
very short in all elements, and is roughly equal to the duct width. Peaks of velocity occur at the 
inner walls, and especially close to the edges, since the gradient of the electric potential is high 
there. At the edges the velocity may exceed the average one by the factor of 2-7, independent 
of the Hartmann number, provided the latter is high. This can be compared to duct expansions 
in the magnetic field direction, where the velocity at the side walls is proportional to 4M and 
may reach very high values. At the outer walls close to the corners the velocity may reduce by 
about 10-50%. Possible hot spots may be eliminated by rounding the corners. 

Flows in ducts with manifolds (Figs. 8, 9, 11, 12) are characterised by the presence of 
streamlines which terminate at the edges of the dividing walls. There are also streamlines which 
enter one subchannel, leave it and enter one of the other subchannels in the manifold. Note that 
part of the fluid which feeds the duct that is closest to that supplying liquid metal to the 
manifold must flow very close to the edge of the dividing wall, which in inertial flow can 
promote instabilities and turbulence, favouring heat transfer. This effect is even more expressed 
if other ducts in the manifold carry major part of the volume flux (Figs. 8c, 9c). 
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F i g . 6 Flow in a symmetric 180°-turn. a) Flow geometry; b) Streamlines 
in the xz - plane; c) Development of core velocity profile. 
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Fig . 7 Flow in a non-symmetric 180°-turn. a) Flow geometry; b) Streamlines 
in the xz - plane; c) Development of core velocity profile. 
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Q 

Qi=Q/3 

Q2=Q/3 

Q3=Q/3 

Q 

Qi=Q/4 

Q2=Q/2 

Q3=Q/4 

Fig. 8b 

Fig. 8c 

Fig . 8a-c F low in a non-symmetric 180°- tum with manifold, a) F low geometry; 
b) Streamlines in the xz - plane for equal flow distribution between 

the subchannels (Q=3Qi=3Q2=3Q3); 
c) Streamlines in the xz - plane for Q=4Qi=2Q2=4Q3. 
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F i g . 8d Flow in a non-symmetric 180°-turn with manifold. Development of the 
core velocity profile for equal flow distribution between the subchannels 
(streamlines are shown in figure 8b). 
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Fig . 9 Flow in a manifold distributing fluid from one straight duct 
to several, a) Flow geometry; b-d) Streamlines in the xz - plane 
for different flow partition between the subchannels. 
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Qi=0.1Q 

Q2=0.8Q 

Q3=0.1Q 

Fig. 9c 

Q i = Q 2 / 2 

Ch 

Q3=Q2/2 

Fig. 9d 

Fig. 9 For legend see previous page. 
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y HZ-
Fig. 10a 

Fig. 10b 

Fig. 10c 
X = 1 x = 2 

F i g . 10 Flow in a sharp expansion, a) Flow geometry; b) Streamlines 
in the xz - plane; c) Development of core velocity profile. 
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Fig. lib 

F i g . 11 Flow in a sharp expansion with manifold, a) Flow geometry; 
b) Streamlines in the xz - plane for equal flow distribution 

between the subchannels. 
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Fig. 12b 

F i g . 12 Flow in a linear expansion with manifold, a) Flow geometry; 
b) Streamlines in the xz - plane for equal flow partition 

between the subchannels; c) Development of core velocity profile 
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Fig. 12c For legend see previous page 

33 



Fig. 13a Fig. 13b 

F i g . 13 Flow in a T-junction for equal flow distribution between legs 1 and 2. a) Flow geometry; 
b) Streamlines in the jcz-plane; c) Development of the core velocity profile. 
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F i g . 14 Flow in a T-junction. A l l mass flux enters the leg 1. a) Flow geometry; 
b) Streamlines in the xz-plane; c) Development of the core velocity profile. 
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Fig. 15a Fig. 15b 

F i g . 15 Flow in a T-junction. A l l mass flux enters the leg 2. a) Flow geometry; 
b) Streamlines in the xz-plane; c) Development of the core velocity profile. 
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The flows considered can be extended into "multi-layered" flows, one of the examples of which 
is shown in Fig. 17. The fluid is distributed from three channels into nine. Al l channels have 
openings into a single tank. If the flow rates in the columns are equal (uniform vertical flow 
distribution), there is no 0(1) potential difference along the side walls and the flow structure is 
the same as in the 180°-turn with manifold (Fig. 8), so that the presence of the dividing walls 
perpendicular to the field is inessential. Note that the flow rates in rows may be different, as 
well as the number of channels in each of the columns. The latter feature may be used for 
creating desirable flow distribution. Obviously, this discussion can be applied to any geometry 
considered here. 

F i g . 17 F low in a multi-layered 180°-turn. A l l straight channels 
have openings into a single tank. 
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6. Inertia effects 

The solutions in the core presented in Sec. 5 are valid for M»\ and J V » 1 , while 
viscous and inertia effects are confined to the side layers. The type of flow in the side layers 
depends on the relative magnitude of viscous, electromagnetic and inertia forces. Depending 
on the relation between N and M three different situations can be distinguished. 

i) N»M 
The inertia terms in the side layer are negligible, while the flow in the layer is 

determined by viscous-electromagnetic interaction. This type of boundary layer has been 
considered in Sec. 4. The thickness of this layer is 0(M~*), while the 3-D pressure drop is 

A/>3D==0(M-). (14) 

ii) N=0(M) 
This type of layer is characterised by viscous-electromagnetic-inertia interaction. The 

thickness of the layer remains 0(M~^) or equivalently 0(N~^). Al l order-of-magnitude 
arguments used for N»M flow are valid for N=0(M) flow. Since N is of the order M, the 
pressure drop is 

Ap3D = 0(M~l) = 0((aN)-1) = 0(N~l). (15) 

iii) N«M 
If N«M, the side layer splits into two sublayers (Fig. 18). In the outer sublayer of 

thickness 0(N~*) there is electromagnetic-inertia balance of forces. The outer layer is 
thicker than inertialess layer i). In the inner side layer of thickness 0(Re~*) there is viscous-
inertia interaction. This layer is thinner than inertialess side layer i), and is in fact a usual, 
hydrodynamic, Prandtl layer. The interaction between the layers is based on the following 
mechanism. The outer layer conducts all electric current, which produces a longitudinal 
pressure gradient. This gradient passes unchanged into the inner layer and induces flow there. 
Since the pressure drop is created by the currents, the inner layer has no effect on the pressure 
drop (to the main order), and 

Apw=0(N-]). (16) 
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Fig. 18 Vicinity of the side wall and the structure of the side layer for N«M. 
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Fig. 19 Sketch of variation of the three-dimensional pressure drop with//. 

Combining the results for all three cases one may construct the following expression for 

the 3-D pressure drop 

Ap3D =axM~x +a2N~l (17) 
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The constants aX2 depend on the duct geometry. ApJD is qualitatively sketched in Fig. 19 as a 

function of N and for different values of M. It should be noted that the decay of the pressure 
drop with increasing N is very fast. This can be compared to a much slower decay in ducts 
expanding in the direction of the field, where the following dependency is valid 

Apw=alM-'+a2N~K (18) 

The expression (18) is based on the arguments of Tsinober & Stern (1964) and Hunt & 

Leibovich (1967) if applied to the side layers. 

The result (17) is of fundamental importance for a self-cooled liquid-metal blanket 
design. It shows that if fluid velocity is small or if the magnetic field is very strong (N»M) the 
3-D pressure drop is of the order M~\ the pressure drop in straight ducts per unit length. In 
moderate fields (1«N«M) it is of the same order (in the asymptotic sense) as the 
conventional, hydrodynamic pressure drop in ducts with no magnetic field. In fact, another 
normalisation for the pressure is to be used as that in hydraulics, namely \pv\, instead of 

aav0Bl. This gives 

i a - 1 &P* wi N M _, .... i A f t D = - f ^ T = WA/?3D =a 2 +a, — = a2 +a, — = a 2 +a,a , (19) 
2. 2 pVg M rve 

where 
_ A / _ Re 

a ~ N ~ M 

is a new parameter 0(1), p' is a dimensional pressure and Apw is a rescaled dimensionless 3-

D pressure drop. Note that parameter a is "responsible" for instabilities and turbulence in 

MHD-flows (Branover, 1978, Moreau, 1990). 

The discussion of inertia effects here is somewhat simplified since at low values of the 
interaction parameter separation effects at the edges and corners occur which may change the 
dependency (17). Nevertheless, in front and behind separation zones the present discussion still 
applies. There is an indication from the recent experiments in sharp elbows with manifolds and 
a T-junction that a large-scale separation zone is suppressed already at A M O (Reimann, 1993). 
Separation itself may create vortices which would favour mixing of the coolant and thus 
improve heat transfer. 
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7. Conclusions 

In poloidal channels of self-cooled liquid-metal blankets of rectangular cross-section a 

coolant flows with a constant velocity, so that the velocity profile is of slug type. The pressure 

drop per unit length is equal to M~x in non-dimensional terms. 

Order-of-magnitude estimates show that manifolds, expansions, contractions, elbows, 
etc. in the plane perpendicular to the magnetic field (poloidal-radial plane) cause additional 
pressure drop of the order of M~\ i.e. the pressure drop in the straight duct per unit length, 
and thus may be neglected in the first approximation. 

The asymptotic analysis performed for M» 1 and N»l demonstrates that viscous and 
inertia forces are confined to thin boundary layers, while the flow in the core is potential one. 
For N»M the side layers at the walls parallel to the magnetic field are of well-known 
parabolic inertialess nature, while for N«M& new type of the side layer has been obtained. It 
consists of two sublayers of thickness 0(N~U2) (outer sublayer) and 0(Re" 1 / 2 ) (inner 
sublayer). For N«M the 3-D pressure drop is of the order of N~\ i.e. the dimensional 
pressure drop is of the same order as the usual, hydrodynamic pressure drop. In fact, another 
scale for pressure is to be used, namely \pv2

0 instead of oav0B2. This is not to say that the 

magnetic field does not increase the pressure drop with respect to that in a hydrodynamic flow, 
but until N becomes of the order of M (in the asymptotic sense) the pressure drop is 
independent of B0. 

Flows in several basic geometries have been calculated. They demonstrate high 
reliability of poloidal concepts of liquid-metal blankets, since they guarantee uniform 
conditions for heat transfer. If changes of the duct cross-section occur in the plane 
perpendicular to the magnetic field (ideally the coolant should flow always in radial-poloidal 
plane) the disturbances are local and slug velocity profile is reached roughly at the distance 
equivalent to one duct width from the manifolds, expansions, etc. 

Calculating flow patterns in flows in the plane perpendicular to the magnetic field is, in 
fact, a trivial matter in contrast to calculating the pressure drop required for pumping the liquid 
metal through the 3-D elements, since it requires numerical solution of the side layer equations 
(10) together with the boundary conditions. The side-layer problem will be treated in a 
subsequent investigation, especially for manifolds and expansions in the plane of the magnetic 
field for which the pressure drop is an important issue. For the flows considered here the 
pressure drop is not important. 
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