KfK 5080 Februar 1994

Der Einfluß des δ-Ferrit-Gehaltes auf die Vergütungseigenschaften und das Zugfestigkeits- und Zeitstandverhalten eines Cr-Ni-Mo-V-Nb-Stahles mit 9-14 % Chrom

M. Schirra, S. Heger Institut für Materialforschung Association KfK-EURATOM

Kernforschungszentrum Karlsruhe

Kernforschungszentrum Karlsruhe Institut für Materialforschung

Association KfK- EURATOM

KfK 5080

Der Einfluß des δ-Ferrit-Gehaltes auf die Vergütungseigenschaften und das Zugfestigkeits- und Zeitstandverhalten eines Cr-Ni-Mo-V-Nb-Stahles mit 9 - 14 % Chrom

M. Schirra, S. Heger

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

ISSN 0303-4003

Kurzfassung

Von einem martensitischen CrNiMoVNb-Stahl (Typ 1.4914) wurden 6 Schmelzen mit abgestuften Cr-Gehalten von 9 - 14 % hergestellt, die im gehärteten Zustand Gefüge mit Spuren - δ-F (11 % Cr), 5 % δ-F (12 % Cr), 20 % δ-F- (13 % Cr) und 25 % δ-F (14 % Cr) aufweisen. Mit zunehmendem δ-F-Anteil verschiebt sich die Temperatur für die max. Härteannahme zu höheren Temperaturen hin und das Härteplateau wird niedriger. Allerdings neigen die δ -F-haltigen Chargen weniger zur Grobkornbildung bei Härtetemperaturen \geq 1075 ° als die Chargen ohne δ -Ferrit. Anlaßbehandlungen im Bereich 650 - 750°C ergeben für die Chargen mit bis zu 20 % δ-F fast gleiche Härtewerte, lediglich bei 25 % δ -F ist die Härte deutlich niedriger. Das Umwandlungsverhalten in der Perlitstufe bei kontinuierlicher Abkühlung wird mit steigendem Cr-Gehalt beschleunigt und bei δ-F-Anteilen von \geq 5 % wurde bei mittleren Abkühlgeschwindigkeiten erstmals das Auftreten der Phase $M_{23}C_6 + F$ in dendritischer Form beobachtet, die einen ungünstigen Einfluß auf das Kerbschlagzähigkeitsverhalten hat. Die Zugfestigkeits- und Zeitstandkennwerte werden bis 5 % δ -F nicht signifikant beeinflußt. Erst δ-F-Anteile von 20 - 25 % erniedrigen die Festigkeitskennwerte und erhöhen leicht die Duktilitätskennwerte. Ein Einfluß des Cr-Gehaltes bei den rein martensitischen Chargen mit 9 - 11 % Cr auf die mechanischen Eigenschaften ist nicht erkennbar. Wesentlich gravierender wirkt sich ein ungünstiges N/Al-Verhältnis aus, insbesondere auf das Zeitstandfestigkeits- und Kriechverhalten.

Abstract

Influence of the δ -Ferrit content on the heat-treatment characteristics and on the tensile- and creep-rupture behaviour of CrNiMoVNb-steels with 9 - 14 % Chromium.

From the martensitic CrNiMoVNb-steel (DIN 1.4914) 6 modifications with Cr-contents in the range from 9 - 14 % were produced, which have in the hardened condition a structure with trace amounts of δ -f (11 % Cr), 5 % δ -F (12 % Cr), 20 % δ -F (13 % Cr) and 25 % δ -F (14 % Cr). With increasing δ -F content the temperature for the maximum hardness shifts to higher temperatures and the hardness plateau is lower. But the tendency to grain coarsening for quenching temperatures 1075°C is smaller for the heats with δ -F. The hardness after tempering in the range of 650 - 750°C is almost the same for the heats up to 20 % δ -F; the heat with 25 % δ -F is evidently below the above mentioned values. The transformation behaviour in the pearlite-range at continuous cooling is accelerated at increasing Cr-contents and for the first time it was observed for medium cooling rates the formation of M₂₃C₆+F-phase in dendritic formation, which has a negative influence on the Charpy-impact test results. The tensile- and creep-rupture behaviour is not effected significantly. But contents with more than 20 % δ -F decrease the strength values and increase the ductility slightly. An influence of the Cr-content concerning the full-martensitic heats with 9 - 11 % Cr to the mechanical properties is not distinguishable. More distinct is the negative influence of the unfavourable N/AI ratio, especially to the creep- and creep-rupture behaviour.

Inhaltsverzeichnis

.

1.	Einleitung	3
2.	Versuchsmaterial	4
3.	Versuchsergebnisse	5
3.1	Härte- und Anlaßversuche	5
3.2	Umwandlungsverhalten	7
3.3	Zugfestigkeitseigenschaften	8
3.3.1	Einfluß des δ-Ferrit-bzw. Cr- Gehaltes	8
3.3.2	Einfluß der Anlaßtemperatur	9
3.3.3	Einfluß des Cr-Gehaltes und der Prüftemperatur auf Zugfestigkeit	
	und Streckgrenze	9
3.4	Zeitstandverhalten	10
3.4.1	Einfluß des N/AL-Verhältnisses	10
3.4.2	Zeitstandfestigkeit	12
3.4.3	Kriechverhalten	13
3.4.4	Duktilitätskennwerte	14
3.4.5	Einfluß der Abkühlgeschwindigkeit	15
4	Diskussion der Versuchsergebnisse	16
5.	Literatur	18

Einleitung

Martensitische CrNiMoV (Nb)-Stähle mit 9 - 12 % Chrom sind für die Verwendung als Strukturmaterialien in kerntechnischen Anlagen (Schneller Brüter - Fusionsreaktor) vorgesehen [1 - 4]. Aus der breiten Palette von Stählen dieser Gruppe für konventionelle Anwendungen wurden Varianten entwickelt und erprobt, die spezielle Fragestellungen und Anforderungen im nuklearen Bereich beantworten und erfüllen. Eine dieser Fragen ist der Einfluß des Delta-Ferrit-Gehaltes auf die mechanischen Eingenschaften, der je nach chemischer Zusammensetzung, Herstellungsverfahren und Wärmebehandlung, auftreten kann. Bei Änderungen der chemischen Zusammensetzung läßt sich das Auftreten von δ-Ferrit anhand des Cr-Ni-Diagrammes in etwa abschätzen [s. Annex I]

Bei der Halbzeugherstellung neigen Stähle mit $\geq 10 \% \delta$ -F zur Schuppenbildung beim Walzen und beim Schmieden kann es schon bei Anteilen $\geq 5 \%$ zu Aufplatzungen kommen, wobei insbesondere δ -F-Zeilen Ausgangspunkte für Risse sind [5]. Andererseits wirken sich einige % δ -F auf die Schweißbarkeit dieser Stähle günstig aus [6].

Der Einfluß auf die Härtbarkeit ist ungünstig, weil der δ-F-Anteil beim Abschrecken von der Austenitisierungstemperatur nicht in Martensit umwandelt und deshalb die Abschreckhärte niedriger ist. Der Einfluß auf die mechanischen Eigenschaften wird in der Literatur nicht klar und zweifelsfrei beantwortet. Einerseits sind Ergebnisse von bestimmten Stählen nicht ohne weiteres auf die gro-Be Gruppe der 9 - 12 % Cr-Stähle übertragbar, wie auch allgemeine Erkenntnisse nicht für eine bestimmte Variante gelten müssen. So wird einmal berichtet, daß bis 30 % δ-Ferrit bei Nb-freien 12 % CrMoV-Stählen keinen nachteiligen Einfluß auf die Zeitstandfestigkeit und das Zeitbruchverformungsverhalten haben [7], bzw. 5 % δ-Ferrit als zulässig angesehen werden können [8]; andererseits beschreibt E. Loria [9] Zug- und Zeitstandversuche an einem 12 % CrMoWNi-Stahl mit 0,22 % C, bei dem schon bei \geq 10 % bzw. \geq 4 % δ -Ferrit eine Erniedrigung der Festigkeitskennwerte beobachtet wurde. Allerdings stammen die Ergebnisse von verschiedenen Chargen, bei denen jeweils durch zwei verschiedene Austenitisierungstemperaturen (1800° und 1900° F) unterschiedliche δ-F-Anteile eingestellt wurden.

Eindeutig wird der ungünstige Einfluß des δ -F-Gehaltes auf die Kerbschlagzähigkeit dargestellt, insbesondere hervorgerufen durch die Zeiligkeit des δ -F bei Querproben, so daß δ -F-Freiheit gefordert wird, wenn besondere Anforderungen an die Zähigkeit des Werkstoffes gestellt werden [2,3, 9 -11]. Um für den Nb-haltigen Stahl 1.4914, der in zwei Varianten im Rahmen der Projektarbeiten für Schnelle Reaktoren und für Fusionsreaktoren im KfK-IMF entwickelt wurde, klare Aussagen zum Einfluß des δ -F-Gehaltes zu bekommen, wurden sechs Versuchsschmelzen mit unterschiedlichen δ -F-Gehalten hergestellt und umfassend untersucht. Die unterschiedlichen δ -F-Gehalte wurden dadurch erreicht, daß in der chemischen Zusammensetzung des Stahles 1.4914 der Cr-Gehalt von 9 -14 % abgestuft wurde. Dies bedeutet im Cr-Ni-Diagramm einen waagerechten Schnitt mit Übergang vom Martensitgebiet in den Gefügebereich Martensit+ δ -Ferrit bzw. Martensit + δ -F + Austenit, wie aus Bild 1 ersichtlich ist. In vorangegangenen Arbeiten [12 -15] wurde das Gefüge, Umwandlungsverhalten, Bruchverhalten und das Kerbschlagzähigkeitsverhalten dieser Versuchschargen beschrieben. Der vorliegende Bericht behandelt schwerpunktmäßig den Einfluß des δ -F-Gehaltes auf die Vergütungs- und Zugfestigkeitseigenschaften und das Zeitstandverhalten.

2. Versuchsmaterial

von der Fa. SAARSTAHL-DHS (vormals ARBED) wurde für jede Charge eine 25 kg-Schmelze nach dem SV-4-Verfahren doppelt-vakuumgeschmolzen. D. h., nach der 1. Erschmelzung im Vakuum-Induktionsofen hat der Kokillenabguß die Abmessung Ø 100 x 350 mm, der auf Ø 75 mm geschmiedet und auf Ø 70 mm abgedreht wird. Anschließend wird dieser Stab als selbstverzehrende Elektrode im Vakuum-Lichtbogenofen umgeschmolzen. Danach liegt ein Block von Ø100 mm vor, der in diesem Fall zu Stäben von 4 kt. 25 mm ausgeschmiedet wurde.

Für die Zug-, Zeitstand-, Kerbschlag- und Dilatometerproben wurden entsprechende Stababschnitte gevierteilt und diese Rohlinge im Muffelofen austenitisiert und angelassen und jeweils an Luft abgekühlt. Dadurch ist gewährleistet, daß die Entkohlungsschicht durch die Endbearbeitung der Proben entfernt ist. Für vorlaufende Härte- und Anlaßversuche sind Scheiben der Abmessung 25 x 10 x 12 mm (Härteversuche im T-Bereich 850 - 1150 ° C) bzw. 11 x11 x 6 mm (Anlaßversuche im T-Bereich 300 - 850 ° C) verwendet worden.

Die chemische Zusammensetzung geht aus Tabelle 1 hervor. Man erkennt, daß bis auf den abgestuften Cr-Gehalt, die Unterschiede in den Legierungselementen sehr gering sind. Allerdings liegt ein sehr unterschiedliches und stöchiometrisch ungünstiges N/AL-Verhältnis vor. Der über den Desoxidationsprozeß eingebrachte Rest-AL-Gehalt (700 - 1000 ppm) bindet den N-Anteil (40 - 60 ppm) völlig ab und führt rechnerisch zu einem N-Defizit. Insbesondere unter Einbeziehung dieser Chargenreihe wurde an einer größeren Anzahl von Schmelzen das Auftreten einer Kriechanomalie in Abhängigkeit vom N-Defizit erstmals beschrieben.[16] In einer weiteren Arbeit wurde gezeigt, daß bei zu hohen AL-Gehalten die Vergröberung der Ausscheidungen (M₂₃C₆) und die Rekristallisationsneigung begünstigt wird [17], so daß auch ein Einfluß auf andere mechanische Eigenschaften nicht ausgeschlossen werden kann. Im Kapitel 3.4.1. wird auf den Einfluß eines defizitären N/AL-Verhältnisses auf das Zeitstandverhalten nochmals näher eingegangen.

3. Versuchsergebnisse 3.1. Härte- und Anlaßversuche

Im Temperaturbereich 850° - 1150° wurden Proben jeweils 30 min austenitisiert und an Luft abgekühlt, um Aufschluß zu bekommen über Härteannahme, Korngröße und δ-F-Anteil. In Bild 2 a ist die Härteannahme (Ansprunghärte) in Abhängigkeit von der Härtetemperatur dargestellt. Die Chargen mit 9 - 11 % Cr erreichen praktisch ab ≥950 ° die maximale Härte HV30. Mit weiter steigendem Cr-Gehalt (und somit auftretendem δ -Ferrit) wird die maximale Härte erst bei \geq 1050° erreicht. Die Martensitkorngröße (Bild 2b) ist dagegen bei den Chargen mit 12 -14 % Cr bis 1125 ° als sehr fein anzusehen (25 - 35 μ m), wohingegen die Chargen mit 9 - 11 % Cr oberhalb 1075 ° schon deutlich zur Grobkornbildung neigen. Daher wurde für die weiteren Programme 1075° als Härtetemperatur für alle Chargen festgelegt. Die metallografischen Untersuchungen mittels Farbätzung verdeutlichen den 8- Ferrit -Anteil in dem martensitischen Grundgefüge, wie aus dem Bild 3 hervorgeht. Nach einer Härtung bei 1075 ° 30'/Luft liegt bei den Chargen mit 9 bzw. 10 % -Cr ein rein martensitisches Gefüge vor. Während die Charge C 833 mit 11 % Cr lediglich Spuren von 8-F aufweist (Bild 3a), ist mit weiter steigenden Cr-Gehalten der größer werdende & F-Anteil deutlich erkennbar (Bilder 3 b-d). Die Aufnahmen im Bild 3a - e zeigen die δ -F-Verteilung im Querschliff, wohingegen die Aufnahme im Bild 3f für die Charge C 835 mit 20 % δ -F im Längsschliff die Anordnung als δ -F-Zeilen veranschaulicht. Der δ -F-Anteil wurde bei allen zwischen 950° - 1150° gehärteten Proben mittels MOP-Integrationsverfahren bestimmt. Die Befunde sind im Bild 4a in Abhängigkeit von der Härtetemperatur und im Teilbild b für 1075 ° Härtetemperatur in Abhängigkeit vom Cr-Gehalt dargestellt. Vereinzelt wurden Spuren von Restaustenit beobachtet, der sich nach der Farbätzung als blauer Gefügeanteil gegenüber den hellen 8-F-Anteilen aus der martensitischen Grundmasse abhob. Als Mittelwert aus mehreren Bestimmungen wurden folgende δ-F-Anteile nach einer Härtung von 1075 ° ermittelt, die sich auch mit den Befunden von SAARSTAHL, an Dilatometerproben der ZTU-Schaubilder decken:

Charge	C 831	rd. 9 % Cr	0 % δ-Ferrit
"	C 832	" 10 % "	0% δ-Ferrit
"	C 833	" 11 % "	Spuren (deutlich < 1%)
"	C 834	" 12 % "	rd. 5 % 8-Ferrit
"	C 835	" 13 % "	rd. 20 % δ-Ferrit
"	C 836	" 14 % "	rd. 25 % δ-Ferrit

Wenn man sich die Gefügeaufnahmen im Bild 3 vergegenwärtigt, werden die größeren Streuungen der Härtewerte im Bild 2 a bei den Chargen mit den großen δ- F- Anteilen verständlich. Noch größer wird diese Streubreite, wenn mit HV10 geprüft wird, wie die Gegenüberstellung im Bild 5 zeigt, weil die Härteeindrücke unterschiedliche Anteile an hartem, martensitischen Gefüge und weicherem δ Ferrit erfassen.

Mikrohärtemessungen im vergüteten Zustand (1075° 30' + 700° 2h) ergaben für das martensitische Grundgefüge HV0,01 = 195 - 215 und für den δ -Ferrit HV0.01 = 153 - 165 (HV 30 = 246 - 269 s. Bild 5)

Die Härte in Abhängigkeit von der Anlaßtemperatur ist im Bild 6 dargestellt. Proben aller Chargen wurden einheitlich bei 1075 ° 30 '/ Luft gehärtet und im Temperaturbereich 300 - 950 ° 2h/Luft angelassen. Die δ -F- freien Chargen mit 9 - 11 % Cr zeigen, mehr oder weniger stark ausgeprägt, das übliche Sekundärhärtemaximum bei Anlaßtemperaturen von 450 - 525 °. Oberhalb 525° setzt erwartungsgemäß bei allen Chargen eine starke Härteabnahme ein bis 800° Anlaßtemperatur. Oberhalb 800° - 900° wiederum wird in Abhängigkeit von der Ac_{1b}-Temperatur infolge der einsetzenden α -Y Umwandlung und Martensitbildung bei Abkühlung, ein Härteanstieg beobachtet. Dieser Härteanstieg ist auch im Bild 2a ergänzend zu den Härtekurven eingezeichnet.

Als Ergebnis der Härte- und Anlaßversuche wurde für die weiteren Versuchsprogramme an diesen Chargen als Vergütungsbehandlung 1075° 30′ + 700° 2h festgelegt. Als Option für höhere Festigkeitswerte wurden teilweise auch Proben mit 650° Anlaßtemperatur und als Option für höhere Zähigkeitswerte Proben mit 750° Anlaßtemperatur untersucht. Die Wahl von 1075° als Härtemperatur und 700° als Anlaßtemperatur erlaubt auch einen direkten Vergleich mit Varianten dieses Stahltyps aus dem PSF (PSB) Programm(=K-Chargen) und dem PKF-Programm (MANET-Chargen).[18,19]

3.2. Umwandlungsverhalten

Die Festlegung einer Vergütungsbehandlung erfolgt nicht nur anhand der zuvor beschriebenen Härte- und Anlaßversuche, sondern auch mit Kenntnis des Umwandlungsverhaltens. Von der Fa. SAARSTAHL wurde in unserem Auftrag für jede Charge ein Zeit-Temperatur-Umwandlungsschaubild (ZTU) für kontinuierliche Abkühlung erstellt (Bild 7 + 8). Aus der Lage der Gefügebereiche ergibt sich einmal die Abkühlungsart (Wasser-Öl-Luft) von der Austenitisierungstemperatur, die zu einem vollmartensitischen Gefüge führt; desweiteren begrenzt die Lage des Ac_{1b}- Punktes (Beginn α - γ /Umwandlung)die maximale Anlaßtemperatur, die ca. 50° vor der A_{c1b}-Temperatur liegen sollte. Die Temperaturen für M_s und M_f geben an, wann bei der Abkühlung die Martensitbildung einsetzt bzw. beendet ist (90%).

Charge	Cr	A _{c1b}	A _{c1e}	Ms	Mf
C 831	9 %	800°	915° C	357 ° C	195 ° C
C 832	10 %	812	925	347	190
C833	11 %	810	930	345	170
C 834	12 %	825	905	275	190
C 835	13 %	850	915	265	140
C 836	14 %	875	930	255	140
1. K-Chg. MANET-I	10,5 % 10,6 %	780 790	905 870	365 310	165 155

Die Aufstellung zeigt, daß mit zunehmendem Cr-Gehalt (9 -12%) der Beginn der α -y-Umwandlung sich nur schwach, aber gleichzeitig mit zunehmendem δ -F-Anteil zwischen 12 und 14 % Cr stärker zu höheren Temperaturen hin verschiebt. Umgekehrt ergibt sich der gleiche Effekt, daß steigender Cr-Gehalt + δ -F-Anteil die Martensitbildungstemperatur drastisch erniedrigt. Das Umwandlungsverhalten dieses martensitischen Stahltyps ist allgemein als träge anzusehen (Bild 9). Das bedeutet, daß auch bei relativ langsamen Abkühlgeschwindigkeiten noch eine vollständige martensitische Umwandlung erfolgt und diese Stähle durch Abkühlung an Luft härten. Aus den ZTU-Diagrammen in den Bildern 7 + 8 ersieht man,

daß bei der Charge C 831 mit 9 % Cr erst bei der extrem langsamen Abkühlgeschwindigkeit von 0,4°/min die Perlitbildung einsetzt. Mit steigenden Cr-Gehalten setzt zwar die Perlitbildung immer früher ein, aber selbst bei 13 und 14 % Cr reichen 10 °/min Abkühlgeschwindigkeit noch für eine vollständige Umwandlung in der Martensitstufe aus. Konkret bedeutet das, daß bis \otimes 130 mm bei Luftabkühlung eine Durchhärtung erfolgt. Eine Besonderheit im Umwandlungsverhalten der Chargen mit δ -Ferrit wurde beobachtet. Bei mittleren Abkühlgeschwindigkeiten von λ ~6 bis~ 5°/min scheidet sich im T-Bereich 700 - 350 ° eine Phase M ₂₃C₆+F aus, wobei das M₂₃C₆ in dendritischer Form, von Ferrit durchsetzt, die δ -F-Anteile umhüllt. Diese Ausscheidungsform und ihr Einfluß auf das Kerbschlagzähigkeitsverhalten ist ausführlich in [12 - 15] beschrieben worden.

Die Tendenz, wie die wesentlichen Umwandlungspunkte A_{c1b} , A_{c1e} , M_s , M_f beeinflußt werden in Abhängigkeit von verschiedenen Legierungselementen, geht aus dem Bild 10 hervor.

3.3. Zugfestigkeitseigenschaften

Von allen Chargen wurden Zugversuche bei RT und im Temperaturbereich 400 - 700 °C in jeweils 3 Vergütungszuständen durchgeführt. Verwendet wurden Gewindekopfproben (M8) der Abmessung \oslash 5 x 25 mm (do x Lo). Die Versuche wurden auf einer Maschine mit mechanisch gesteuertem Querhaupt gefahren. Das Kraft-Weg Diagramm wird dabei über die Querhauptbewegung und den Papiervorschub (V = 50 fach) aufgezeichnet.

3.3.1. Einfluß des δ-Ferrit-bzw. Cr- Gehaltes

Für den Vergütungszustand mit 700° Anlaßtemperatur sind die Zugversuchskennwerte der verschiedenen Chargen im Bild 11 einander gegenübergestellt. Die Werte der Zugfestigkeit R_m und Streckgrenze R_{p0,2} der Chargen mit 9 - 12 % Cr liegen über dem genannten untersuchten T-Bereich relativ eng zusammen. Erst bei 13 % Cr mit 20 % δ-Ferrit werden diese Kennwerte etwas erniedrigt und bei 14 % Cr mit 25 % δ-Ferrit sind sie deutlich erniedrigt. Analog dazu werden durchweg etwas höhere Werte für die Gleichmaßdehnung Ag und die Bruchdehnung A bei den Chargen mit den hohen δ-F-Anteilen gemessen. Auf die Brucheinschnürung Z hat der Cr-Gehalt (bzw.δ-F-Anteil) keinen Einfluß. Die Werte aller Chargen liegen extrem nahe zusammen. Qualitativ die gleiche Aussage gilt für den Vergütungszustand höherer Festigkeit mit 650° Anlaßtemperatur und den Zustand niedrigerer Festigkeit mit 750° Anlaßtemperatur (Bilder 12 und 13)

3.3.2. Einfluß der Anlaßtemperatur

In den Bildern 14 - 16 sind die Zugversuchskennwerte getrennt nach Chargen zusammengestellt, um den Einfluß der Anlaßtemperatur auch quantitativ zu verdeutlichen. Bei RT und 400 - 600 ° Prüftemperatur ist allgemein eine deutliche Abnahme der Zugfestigkeit und Streckgenze mit steigender Anlaßtemperatur festzustellen, wohingegen die Duktilitätskennwerte nicht sehr unterschiedlich sind. Erst bei höheren Prüftemperaturen werden teilweise höhere Dehnwerte mit steigender Anlaßtemperatur gemessen. Lediglich die Chargen mit 20 bzw. 25 % δ-Ferrit weisen ansteigende Werte für die Gleichmaßdehnung mit steigender Anlaßtemperatur auf.

3.3.3. Einfluß des Cr-Gehaltes und der Prüftemperatur auf Zugfestigkeit und Streckgrenze

Im Kapitel 3.3.1. ist gezeigt worden, daß mit steigendem Cr-bzw. δ -F-Anteil nur die Zugfestigkeit und Streckgrenze mehr oder weniger deutlich abnehmen, wohingegen die Duktilitätskennwerte sich nicht signifikant ändern. Der Einfluß der Prüftemperatur wurde nicht explizit angesprochen, denn daß mit steigender Prüftemperatur Zugfestigkeit, Streckgrenze und Gleichmaßdehnung abnehmen und Bruchdehnung und Brucheinschnürung zunehmen, ist bei diesem Stahltyp selbstverständlich. Weniger deutlich hervor traten die Unterschiede in der Zugfestigkeit und Streckgrenze bei den Chargen C 831 - C 833, mit Cr-Gehalten von 9 -11 % und praktisch δ -F-freiem Gefüge.

In den räumlichen Darstellungen in den Bildern 17 - 19 sind jeweils Zugfestigkeit R_m bzw. Streckgrenze $Rp_{0,2}$ in Abhängigkeit vom Cr-Gehalt und der Prüftemperatur für alle drei untersuchten Vergütungszustände wiedergegeben. Der Einfluß des Cr-Gehaltes an sich im Legierungsbereich 9 - 11 % kann für den Prüftemperaturbereich RT-700° bei den drei Vergütungszuständen nicht eindeutig beantwortet werden. Wenn auch die Charge mit 9 % Cr teilweise etwas höhere R_m und $R_{p0,2}$ Werte aufweist als die Charge mit 10 % Cr. so muß darauf hingewiesen werden, daß die 10 % -Cr-Charge mit 0,1 % Al im N/Al-Verhältnis das größte Defizit aufweist, was bei der Darlegung der Zeitstandversuchsergebnisse noch eine erhebliche Rolle spielt. (s. Bild 21 und Kapitel 3.4.1.) Die ausgeprägtere Abnahme der R_m - und $R_{p0,2}$ -Werte mit weiter steigendem Cr-Gehalt bis 14 % ist der Zunahme des δ -F-Anteils anzurechnen.

Für die Bauteilbemessung in der Konstruktion spielt das Streckgrenzenverhältnis $R_{p0,2}/R_m$ eine wichtige Rolle. Es gibt an, welcher Anteil der Zugfestigkeit zu-

grundegelegt werden kann, ohne daß eine unzulässige plastische Verformung auftritt. Die aus den durchgeführten Zugversuchen ermittelten Verhältniswerte sind im Bild 20, getrennt nach dem Vergütungszustand, in Abhängigkeit von der Prüftemperatur aufgetragen. Für die beiden Vergütungszustände mit 650° bzw. 700° Anlaßtemperatur (Teilbilder a +b) ergaben sich für die Chargen mit 9 - 12 % Cr über den Prüftemperaturbereich RT-700° nahezu gleiche Werte, so daß ein Einfluß des Cr-Gehaltes als nicht existient und ein Anteil von 5 % δ -F als nicht nachteilig angesehen werden kann. Erst Cr-Gehalte von 13 - 14 % in Verbindung mit 20 - 25 % δ -F führen teilweise zu deutlich ungünstigeren Verhältniswerten. Diese Aussagen gelten auch für den bei 750 ° angelassenen Zustand bis 500° Prüftemperatur (Teilbild c). Bei 600° und 700° Prüftemperatur ergaben sich für diesen hochangelassenen Zustand Werte, die nicht mehr mit dem Cr-Gehalt zu korrelieren sind. Allerdings ist dies auch ein nicht mehr praxisrelevanter T-Bereich.

3.4. Zeitstandverhalten

Die Zeitstandversuche wurden mit Gewindekopfproben der Abmessung \oslash 5 x 25 mm (do x Lo) in Einprobenöfen durchgeführt. Die Belastung erfolgt über einen Hebelarm (1:15) durch Gewichte (Bauart MFL). Die Prüftemperatur wird durch einen 3-Zonen-Heizofen mit drei PID-Reglern (JUMO) eingestellt Die Temperaturkontrolle und Regelung erfolgt über 3 PtRh-Pt-Thermoelemente, die über die Probenlänge verteilt sind. Diese Anordnung gewährleistet ein homogenes Temperaturfeld über die Probenlänge und eine Temperaturkonstanz von ± 2 ° C über die Versuchszeit

Die Probedehnung (Kriechverlauf) wird über zwei induktive Wegaufnehmer erfaßt, die über ein Gestänge diametral an den Probenkragen befestigt sind. Zu jeder Probe bzw. jedem Extensometerpaar gehört ein x-t-Schreiber, der den Kriechverlauf kontinuierlich registriert. Der x-t-Schreiber kann in weiten Bereichen eingestellt werden, so daß für jede Versuchszeit bzw. jeden Kriechverlauf eine optimale Aufzeichnung erfolgt. Bei Langzeitversuchen sind kleine Kriechgeschwindigkeiten im Bereich von 10-7h-1 (abs.) noch sicher erfaßbar. Über eine Digitalisiereinrichtung wird der so erhaltene Kriechverlauf für die weitere Datenverarbeitung gespeichert.

3.4.1. Einfluß des N/AL-Verhältnisses

Bevor auf die Ergebnisse der Zeitstandversuche an den 9 - 14 % Cr- Chargen eingegangen wird, soll kurz die Rolle des N/AL Verhältnisses behandelt werden, das bei Zeitstandbeanspruchung im T-Bereich ≥550° bei den martensitischen Cr-Stählen sich negativ auswirken kann. Aluminium wird bei dieser Stahlgruppe nicht als Legierungselement angesehen und in der Literatur fehlen deshalb oft entsprechende Angaben zum Versuchswerkstoff bzw. ist nicht spezifiziert. Es wird bei der Stahlherstellung als Desoxidationsmittel benutzt und liegt bei Überschuß als Restaluminiumgehalt vor. Al ist ein stärkerer Nitridbilder als Cr, V und Nb und steht zumindest grundsätzlich zur Abbindung des N zur Verfügung.

Bei den Untersuchungen an zahlreichen Chargen bzw. Varianten des 1.4914-Stahles wurde im Kriechverlauf bei Prüftemperaturen von ≥ 600° in vielen Fällen ein Bereich erhöhter Kriechgeschwindigkeit gefunden, wie er im Bild 21 a halbschematisch dargestellt ist. Liegt dieser Zeitraum des beschleunigten Kriechens nahe bei oder im tertiären Kriechbereich ($\sigma 2$, $\sigma 3$) ist eine deutliche Verkürzung der erwarteten Standzeit die Folge und die tm-Kurve weist einen deutlichen Abfall bzw. S-Schlag auf, weil bei den niedrigeren Versuchsspannungen (σ 4 - σ 6) diese Kriechanomalie in einem relativ frühen Kriechstadium auftritt und somit auf einem etwas niedrigeren Spannungsniveau sich wieder eine gleichmäßige σ/tm Abhängigkeit einstellt. Wesentlich stärker wirkt sich diese Kriechanomalie auf die Zeit-Dehngrenzen aus, deren σ/t Kurven nicht nur einen S-Schlag sondern teilweise einen retrograden Verlauf haben, wie im Teilbild a für t_{1%} gezeigt wird. Nachverschiedene Ursachen für das Auftreten der Kriechanomadem lie(Wärmebehandlung, Unterschiede bei einzelnen Legierungselementen) ausgeschlossen werden konnten, blieb letztlich als einziges widerspruchsfreies Indiz das Verhältnis N/Al.[16]Chargen mit N-Überschuß (Nr. 1 u. 13 im Bild 21b) wiesen in ihrem Kriechverhalten keine Anomalie auf, wohingegen die in dieser Arbeit beschriebenen δ -F-Chargen (Nr. 7 -12) ein deutliches Defizit an "freiem" Stickstoff aufwiesen, und das frühere oder spätere Auftreten der Kriechanomalie mit der Höhe des Defizits korreliert werden konnte (Bild 21 c). Zum Zeitpunkt dieser Erkenntnis lief die Bestellung für den NET-Stahl MANET-II, bei dem das N/Al-Verhältnis entsprechend unserer Empfehlung

N + 100≥ Al · 0,52 (Gew. ppm)

spezifiziert und vom Hersteller eingehalten wurde. Gleichzeitig wurden 3 sog. Verifikationschargen mit gezielt eingestellten N/Al-Anteilen erschmolzen. Die in der Zwischenzeit durchgeführten Zeitstandversuche an MANET-II und den Verifikationschargen bestätigten die in [16] gemachten Befunde und zeigen, daß das Auftreten der Kriechanomalie verhindert wird, wenn entspr. unserer Empfehlung im Bild 21 b der freie N-Anteil oberhalb des schraffierten Bereiches liegt.

3.4.2. Zeitstandfestigkeit

Wie bei den Zugfestigkeitseigenschaften wurde für jede Charge auch das Zeitstandverhalten für drei Vergütungszustände bestimmt. Zunächst soll anhand der Bilder 22 - 27 der Einfluß der Vergütungsbehandlung für die einzelnen Chargen dargelegt werden.

Bei 550° Prüftemperatur sind die Unterschiede in der Zeitstandfestigkeit als Folge der unterschiedlichen Anlaßtemperatur (650-700-750°) erwartungsgemäß am größten, wobei der Festigkeitsabfall bzw. die Standzeiterniedrigung beim Übergang von 700° auf 750° Anlaßtemperatur ausgeprägter ist als der Festigkeitsgewinn bzw. die Standzeiterhöhung beim Übergang von 700° auf 650° Anlaßtemperatur. Bei den höheren Prüftemperaturen von 600° und 650° gleichen sich die Zeitstandfestigkeitskurven an, wobei lediglich bei den Chargen C 835 und C 836 mit 20 bzw. 25 % δ-Ferrit (Bilder 26 und 27), der mit 750° hochangelassene Zustand deutlich niedrigere Werte aufweist. Deutlich erkennbar ist in diesen Bildern auch die Auswirkung der im Kapitel zuvor beschriebenen Kriechanomalie, die den zeitlich begrenzten starken Abfall (S-Schlag) in den Zeitstandfestigkeitskurven für 600 und 650° Prüftemperatur verursacht. Bei den drei vollmartensitischen Chargen C 831 - C 833 läßt sich das zeitlich unterschiedliche Auftreten des S-Schlages auch gut mit dem unterschiedlichen N-Defizit korrelieren (C831 N= -330 ppm, C 832 N = -475 ppm, C 833 N = -314 ppm), wobei mit steigendem N-Defizit der S-Schlag früher auftritt.Der Einfluß des Cr- bzw. δ-Ferrit Gehaltes läßt sich am deutlichsten darstellen, wenn man die bei 550 - 650° ermittelten Standzeiten nach dem Larson-Miller-Parameter

$$P = T_K (25 + \log t_m)$$
 [20]

als Zeitstand -Hauptkurven vergleichend darstellt. Im Bild 28 erfolgt dieser Vergleich für den Referenzzustand mit 700° 2h als Anlaßbehandlung.

Im oberen Spannungsbereich liegen die t/T-Werte der Chargen mit 8 - 13 % Cr in einem sehr schmalen Bereich zusammen und lediglich die Charge mit 14 % Cr und 25 % δ -Ferrit liegt deutlich niedriger. Oberhalb von P = 24 fächert sich das Festigkeitsband stärker auf, so daß letztlich im niedrigen Spannungsbereich nur noch die drei martensitischen Chargen mit 9 - 11 % Cr praktisch gleiche Zeitstandfestigkeitswerte aufweisen und die drei Chargen mit 12 - 14 % Cr und 5 - 25 % δ -Ferrit deutlich abgestufte, niedrigere Zeitstandfestigkeitswerte haben. Absolut gesehen liegen die Zeitstandfestigkeitswerte in einem Festigkeitsbereich, der durch eine hochfeste Variante des Stahles 14914 (Chg 11368) und durch eine hochzähe Variante (Chg 51482) gebildet wird [18]. Oberhalb von P = 24,5 bewirkt der S-Schlag, daß die Zeitstandfestigkeitswerte aller Chargen noch unter die Werte der zähen Variante fallen. Diese vergleichende Bewertung der Chargen C 831 - C 836 gilt auch für die Vergütungszustände mit 650° bzw. 750° Anlaßtemperatur (Bilder 29+30).

3.4.3. Kriechverhalten

Die kontinuierliche Registrierung des Kriechverlaufes gestattet auch klare Aussagen zu den technologisch wichtigen Zeit-Dehngrenzen und zur Kriechgeschwindigkeit. Die Zeiten bis zum Erreichen der verschiedenen Dehngrenzen (0,1%-5%) sind in den Wertetabellen 6 - 22 mit den übrigen Zeitstandkennwerten zusammengestellt. Für eine vergleichende Betrachtung zum Einfluß des Cr - bzw. δ-Ferrit-Gehaltes sind als Beispiel die Zeiten bis zum Erreichen von 1 % Kriechdehnung in den Bildern 31 - 33 in Abhängigkeit von der Versuchsspannung aufgetragen. Die vergleichende Bewertung der verschiedenen Chargen ist allerdings nicht so eindeutig wie im Falle der Zeitstandfestigkeitskurven. Im Referenzzustand mit 700° Anlaßtemperatur (Bild 31) ergibt sich bei 550° Prüftemperatur zunächst im oberen Spannungsbereich eine Abstufung dergestalt, daß mit steigendem Cr-Gehalt die Zeiten bis zum Erreichen von 1 % Kriechdehnung kürzer werden, wobei die Charge mit 14 % Cr deutlich tiefer liegt. Bei 240 und 220 MPa überschneidet sich z. T. der Kurvenverlauf, so daß bei 220 MPa die Chargen mit 12 und 13 % Cr längere Zeiten aufweisen als die Chargen mit 10 und 11 % Cr. Dies muß nun nicht primär ein Einfluß des Cr- bzw. δ-Ferrit Gehaltes sein, vielmehr scheint sich schon das ungünstige N/Al-Verhältnis auszuwirken, wie es sich in den Kurvenverläufen bei 600 und 650° Prüftemperatur ausdrückt. Deutlich ist nicht nur der S-Schlag, sondern auch der teilweise retrograde Kurvenverlauf erkennbar. Dieses diffuse Bild in der Abhängigkeit der Zeit-Dehngrenzenkurven vom Cr-Gehalt ergibt sich auch bei den beiden zuständen mit 650° und 750° Anlaßtemperatur in den Bildern 32 und 33.

Diese Darstellung verdeutlicht auch die fatale technologische Auswirkung, die eine Nichtbeachtung des N /Al-Verhältnisses hat, wenn Dehngrenzwerte bei deutlich kürzeren Zeiten erreicht werden, als aus dem Kurvenverlauf über einen kürzeren Zeitraum abgeschätzt werden; oder wenn Zeitstandversuche ohne kontinuierliche Dehnungsmessung durchgeführt werden bzw. eine Vermessung durch Zwischenausbau erfolgt, wird dieses Werkstoffverhalten nicht sichtbar.

Vor dem Hintergrund dieser Darlegungen zum Kriechverlauf wird verständlich, daß dem Wert der minimalen Kriechgeschwindigkeit ϵ und seiner σ / T-

Abhängigkeit keine besondere Bedeutung beigemessen werden kann. Bei normalem Kriechverlauf mit ziemlich klar abgegrenztem primärem-stationärem- tertiärem Kriechabschnitt ist der Wert für die stationäre bzw. minimale Kriechgeschwindigkeit ε eine wichtige Kenngröße zur Festlegung eines Beanspruchungszeitraumes. Wird der Kriechverlauf durch das Auftreten einer Kriechanomalie gestört, so ist der Wert für ε p_{min} nur für einen sehr kurzen Zeitraum repräsentativ (s. Bild 21 a, σ 4 - 6) bzw. es ergibt sich ein zweiter Wert aus dem längeren stationären Kriechabschnitt nach dem Auftreten der Kriechanomalie (σ5, σ6) der deutlich größer ist. Die übliche Auftragung log $\sigma \Rightarrow \log \varepsilon p_{min}$ zur Beschreibung der Spannungsabhängigkeit der minimalen Kriechgeschwindigkeit erlaubt im Falle der hier untersuchten Chargen keine klare Aussage, weder zur o-Abhängigkeit noch zum Einfluß des Cr-bzw. δ-Ferrit -Gehaltes, wie aus Bild 34 hervorgeht. Während sich bei 550° Prüftemperatur im experimentell abgedeckten Spannungsbereich noch eine halbwegs vernünftige σ-ε-Abhängigkeit darstellen läßt, ist die Situation bei 600° und 650° sehr diffus, zumal sich z. B. bei 650° im Spannungsbereich 30 - 60 MPa ohne weiteres zwei stationäre Kriechbereiche, mit sehr unterschiedlichen ε-Werten, bestimmen lassen

3.4.4. Duktilitätskennwerte

Um den Einfluß des Cr-bzw. δ -Ferrit-Gehaltes auf die Duktilitätskennwerte Bruchdehnung A_u und Brucheinschnürung Z_u zu beschreiben, sind in den Bildern 35 -37 die Werte in Abhängigkeit von der Standzeit für den Referenzzustand mit 700° Anlaßtemperatur aufgetragen. Bei 550° Prüftemperatur (Bild 35) liegen die Bruchdehnungswerte A_u der Chargen 831 - 833 (9 - 11 %Cr) bei rd. 20 % mit leicht steigender Tendenz zu längeren Standzeiten hin. Die Chargen mit zunehmendem δ -F-Anteil (C834 - C 836) zeigen teilweise etwas höhere Werte. Die Brucheinschnürungswerte Z_u liegen chargenunabhängig bei \geq 80% mit ebenfalls leicht steigender Tendenz zu längeren Standzeiten hin.

Bei 600° Prüftemperatur (Bild 36) liegen die Bruchdehnungswerte zunächst im Bereich 27 - 33 % und beginnen sich ab ~ 800 std. Standzeit stärker aufzufächern, wobei insbesondere die Charge C 836 mit 25 % δ-Ferrit sehr hohe Werte aufweist. Diese Auffächerung hängt mit dem Auftreten der Kriechanomalie zusammen und ist verbunden mit dem ausgeprägten Festigkeitsabfall in den Zeitstandkurven (Bilder 22 - 27). Noch extremer ist diese Auffächerung und der Unterschied in den Bruchdehnungswerten bei den bei 650° geprüften Proben (Bild 37). Dagegen sind die Brucheinschnürungswerte auch bei 600 und 650°, wie schon bei 550°, chargenunabhängig und liegen zwischen 86 -94 % bzw. 92 -97%

Für die beiden Vergütungszustände mit 650° bzw. 750° Anlaßtemperatur gelten

diese Aussagen zur Chargenabhängigkeit qualitativ in gleicher Weise, wobei der Unterschied in den Bruchdehnungswerten als Folge unterschiedlicher Anlaßbehandlung nicht gravierend und nicht einheitlich ist; wie auch schon die Zugversuchsergebnisse gezeigt haben und auch aus den Bildern 38 - 46 hervorgeht. In diesen Bildern sind die Werte der drei Vergütungszustände, getrennt nach Chargen und Prüftemperaturen, einander gegenübergestellt.

3.4.5.Einfluß der Abkühlgeschwindigkeit

Bei der Beschreibung des Umwandlungsverhaltens anhand der kontinuierlichen ZTU-Schaubilder im Kapitel 3.2. wurde gezeigt, daß die Chargen mit 12 -14 % Cr bei mittleren Abkühlgeschwindigkeiten von der Austenitisierungstemperatur ($\geq \lambda 5 - 5^{\circ}$ /min) eine Phase M₂₃C₆ + F bilden, die in dendritischer Form den δ -Ferrit umhüllt, wie in [12+13] beschrieben. Wenn nun, wie in unserem Falle, eine größere Anzahl von Probenrohlingen an Luft abgekühlt wird, kann dieser Bereich der genannten Abkühlgeschwindigkeiten tangiert oder gar durchlaufen werden. Um den Einfluß extrem unterschiedlicher Abkühlgeschwindigkeiten zu erfassen, wurden von der Charge C 835 mit 20 % δ -Ferrit Probenrohlinge (4kt. 14mm) nach dem Austenitisieren bei 1075° in Wasser abgeschreckt. Dies entspricht einer Abkühlgeschwindigkeit von $\lambda \approx 0,02$, (Abkühlungszeit von 800° - 500° in sek. 10-2) gegenüber $\lambda 2 - 4$ bei Luftabkühlung, und unterdrückt auf jeden Fall eine voreutektoide Karbidausscheidung. Die Proben wurden anschließend im Zeitstandversuch bei 550° und 650° geprüft.

Im Zeitstandschaubild für die Charge C835 (Bild 26) sind die ermittelten Standzeiten den an Luft abgekühlten Proben gegenübergestellt (Zustand IV und II). Bei 550° Prüftemperatur erreichen die in Wasser abgeschreckten Proben deutlich kürzere Standzeiten als die an Luft abgekühlten Proben, was wegen der unterdrückten Sekundärkarbidausscheidung verständlich erscheint. Bei 650° ergeben sich annähernd gleiche Standzeiten, lediglich der S-Schlag in der Zeitstandkurve bildet sich zeitlich etwas verzögert aus. In gleicher Weise gelten diese Aussagen für die Lage der Zeit-Dehngrenzenkurven. Im Bild 47 sind diese Kurven für 0,1 - 2 % Kriechdehnwerte einander gegenübergestellt. Die Bruchdehnungswerte sind praktisch identisch (Bild 43 und 44). Auch in diesem Fall wird bei 650° Prüftemperatur der Anstieg in der Bruchdehnung durch das verzögerte Auftreten der Kriechanomalie zu längeren Zeiten hin verschoben.

4. Diskussion der Versuchsergebnisse

Die unterschiedlichen Aussagen zum Einfluß des δ-F-Gehaltes auf die mechanischen Eigenschaften von CrNi-Stählen beruhen einmal darauf, daß Befunde an einem Stahltyp nicht auf die breite Palette dieser Stahlgruppe verallgemeinert werden können. Desweiteren ist es ein gravierender Unterschied, ob Schmelzen, wie z. B. im vorliegenden Versuchsprogramm, durch abgestufte Cr-Gehalte, mit unterschiedlichen δ-F-Gehalten vorliegen, oder ob bei einer Charge durch verschiedene Austenitisierungstemperaturen unterschiedliche δ-F-Anteile erzeugt werden[9]. Im ersten Fall kann davon ausgegangen werden, daß bei fast gleicher chemischer Zusammensetzung (abgesehen vom Cr-Gehalt), die martensitische Matrix weitgehend gleich ist. Werden dagegen bei einer Charge unterschiedliche Austenitisierungstemperaturen angewendet, liegen auch in der martensitischen Matrix unterschiedliche Lösungsverhältnisse vor.

Neben dem Einfluß des δ-F-Gehaltes kann im Rahmen des durchgeführten Versuchsprogrammes auch der Einfluß des Cr-Gehaltes im Bereich 9 - 11 %, also der praktisch δ-F-freienChargen, betrachtet werden.

Das Härte- und Anlaßverhalten als Folge unterschiedlicher δ -F-Gehalte wird nicht unterschiedlich beurteilt. Allgemein wird festgestellt, daß die Härteannahme mit zunehmendem δ -F-Anteil schlechter wird, also die maximal erreichbare Härte niedriger ist. Für den CrMoVNb-Stahltyp 1.4914 ergab sich, daß 20 % und 25 % δ -Ferrit das Härteplateau drastisch erniedrigen und die maximale Härte erst bei Härtetemperaturen \geq 1075 °C erreicht wird. Die δ -F-freien Chargen erreichen schon ab 950° die maximale Härte, wohingegen schon 5 % δ -F die entsprechende Härtetemperatur auf 1050° verschieben. Die Neigung zur Kornvergröberung ist gegenläufig. Bei den δ -F-haltigen Chargen (5 -25 %) nimmt die Korngröße im Härtetemperaturbereich 1050 - 1125° bis auf max. 35 µm zu, wohingegen die rein martensitischen Chargen mit 9 - 11 % Cr oberhalb 1075° eine deutliche Kornvergröberung aufweisen (bis zu 125µm) (Bild 2). Das Anlaßverhalten wird nur schwach vom δ -F-Anteil beeinflußt. Im Anlaßtemperaturbereich 600 - 750° haben alle Chargen bis 20 % δ -Ferrit praktisch die gleiche Vergütungshärte, lediglich die Charge mit 25 % δ -Ferrit weist deutlich niedrigere Härtewerte auf.

Im Zusammenhang mit der Härtbarkeit kommt dem Einfluß des δ -F-Gehaltes auf das Umwandlungsverhalten eine ganz besondere Bedeutung zu. Die in den Bildern 7 und 8 dargestellten kontinuierlichen ZTU-Schaubilder beschrieben erstmals das Auftreten einer Phase M₂₃C₆+F in dendritischer Ausbildung bei Abkühl-

geschwindigkeiten von λ 5 bis~5°/min schon bei δ -F-Gehalten ab 5 % mit negativem Einfluß auf das Kerbschlagzähigkeitsverhalten [12, 13]. Bei den δ -F-freien Chargen erfolgt bis zu der relativ langsamen Abkühlgeschwindigkeit von 2,5°/min eine Umwandlung in der Martensitstufe, d. h. in der Praxis, bei Luftabkühlung erfolgt eine Durchhärtung bis Ø 400 mm. Bei Anwesenheit von z. B. 5 % δ -F und um das Auftreten der Phase M₂₃C₆+F zu vermeiden, sind Abkühlgeschwindigkeiten von λ <5 erforderlich. Für Luftabkühlung bedeutet das nur noch eine Durchhärtung bis Ø 40 mm. Für größere Abmessung müßte auf Öl- oder Wasserabschreckung gegangen werden.

Der Einfluß des δ -F-Gehaltes auf die Kurzzeit- und Langzeitfestigkeitskennwerte (Zug- und Zeitstandversuche) ist bis 5 % δ -F vernachlässigbar gering. Soweit bei 20-25 % δ -F geringere Festigkeitswerte gemessen werden, stehen dem etwas höhere Duktilitätskennwerte gegenüber. Im Zeitstandversuch werden erst bei der relativ hohen Prüftemperatur von 650° und langen Standzeiten (\approx 104 std) auch bei 5 % δ -F geringfügig niedrigere Zeitstandfestigkeitswerte gefunden.

Das Zeitstandfestigkeits- und Kriechverhalten wird in der vorliegenden Versuchsreiche wesentlich stärker durch das bisher wenig beachtete N/Al-Verhältnis beeinflußt [16], so daß klare Aussagen zur Spannungsabhängigkeit der minimalen Kriechgeschwindigkeit bei verschiedenen δ -F-Gehalten nicht möglich sind.

Der Vergleich der Chargen C 831 - 833 mit 9 %, 10 % und 11 % Cr, die praktisch als δ -F-frei anzusehen sind, beantwortet einige Fragen bezüglich Höhe des Cr-Gehaltes.

Das Härte- und Anlaßverhalten dieser drei Chargen ist identisch, jedoch neigt die Charge mit 9 % Cr oberhalb einer Härtetemperatur von 1075° eher zur Grobkornbildung (Bild 2). Das Umwandlungsverhalten (Bild 7) der Charge mit 9 % Cr ist etwas träger als das der Chargen mit 10 und 11 % Cr.

Beim Vergleich der Zugversuchs- und Zeitstandversuchswerte ist das N/Alverhältnis mit zu berücksichtigen. Die Chargen mit 9 % und 11 % Cr haben stöchiometrisch in etwa das gleiche N-Defizit (-330 bzw. -314) und die Charge mit 10% Cr weist ein Defizit von -475 ppm auf.

Zugfestigkeit und Streckgrenze der vergleichbaren Chargen mit 9 % und 11 % Cr sind für den Referenzzustand (Bild 18) im untersuchten Prüftemperaturbereich von RT bis 700° praktisch identisch; die Werte der 10 % Cr-Charge liegen etwas niedriger. In gleicher Weise ergeben sich in bezug auf das Zeitstandfestigkeitsverhalten für die Chargen mit 9 % und 11 % gleiche Werte und geringfügig niedrigere Werte für die 10 % Charge. Im Kriechverlauf und somit für das Erreichen der technologisch wichtigen Zeit-Dehngrenzen, besteht die allgemeine Tendenz, daß die Charge mit 11 % Cr günstiger ist als die mit 9 % und 10 % Cr.

Danksagung:

Die Autoren danken den Herren H. Meinzer, P. Graf und H. Zimmermann für die umfangreichen Wärmebehandlungen, Härtemessungen und metallografischen Arbeiten und den Herren W. Schweiger und A. Falkenstein für die sachgerechte Durchführung und Betreuung der Zug- und Zeitstandversuche. Herrn Dr. Schneider sei gedankt für die exakte Bestimmung der δ -F-Anteile mittels MOP und Hilfe bei der digitalen Datenauswertung. Last, but not least, sei Herrn Dr. Anderko an dieser Stelle gedankt, der in seiner aktiven Zeit als Institutsleiter dieses Versuchsprogramm initiiert, geleitet und durch eigene Beiträge mitrealisiert hat.

5. Literatur

- [1] K. Anderko, "Zur Eignung warmfester Vergütungsstähle mit 9 12 % Cr für Komponenten im Kern Schneller Reaktoren - ein Überblick "Journal of Nuclear Materials, 95 (1980) S. 31.
- [2] A.K. Khare, "Ferritic steels for high-temperature applications" Proc. of an ASM-Int. Conf. on Production, Fabrication, Properties and Application of Ferritic Steels in High-Temperature Applications, Warren, Pa,. 6. - 8. Okt. 1981, S. 1-334.
- [3] D.R. Harries, "Ferritic alloys for use in nuclear energy technologies" Top. Conf. on Ferritic steels for high-temperature applications, Snowbird, Utah, 19 - 23Juni 1983, S. 141-155.
- K. Ehrlich, D. Munz, K. Anderko, "Metallische Strukturwerkstoffe als Erste-Wandmaterialien", Jahrestagung Kerntechnik Karlsruhe, 2. - 4.06.1987, Fachsitzung Materialien für Kernfusionsanlagen, Seite 1 -29.
- [5] G. Kalwa, Mannesmann, K. David, SAARSTAHL-AG, pers. Mitteilung
- [6] J.Z. Briggs, T. D. Parker, "The Super 12 %-Cr-Steels", Climax Molybdenum Company, New York 1965.

- [7] U. Schieferstein, "Einige Bemerkungen zum Zeitstandverhalten von CrMoV-Stählen mit 12 % Cr.", Intern. Aussprache: Eigenschaften warmfeste Stähle, Düsseldorf 3. - 5. Mai 1972, Sektion VIII, Bericht 8.4.
- [8] W. Wesseling, "Wärmebehandlung und mechanische Eigenschaften der hochwarmfesten Vergütungsstähle mit 12 % Cr", Sie und Wir, Siegen, Bd. 17/1976, s. 4 - 14.
- [9] E.A. Loria, "Influence of Delta-Ferrite-Carbide Segregates on the Properties of 12 % Chromium Steel", Trans. ASM 54 (1961) p. 31 49.
- [10] E. Krainer, H. Scheidl, "Einfluß des Deltaferritgehaltes auf die mechanischen Eigenschaften der 12 %igen Chromstähle sowie Dämpfungsuntersuchungen an Turbinenschaufelwerkstoffen.", Radex-Rundschau, Heft 3-1977, S. 246 - 268.
- [11] E.A. Little, D-R. Harries, F.B. Pickering, S.R. Keown, "Effects of Heat Treatment on Structure and Properties of 12 % Cr Steels". Metals Technology 4, 1977, p. 205 - 217.
- [12] E. Materna-Morris, "The development of dendritic carbides in a dual-phase martensitic/ferritic steel". Scanning Microscopy, Vol. 4, Nr. 2, 1990, S. 287 -296.
- [13] E. Materna-Morris, H. Finkler, "Die Entstehung der Karbide in der Phasengrenze zwischen Deltaferrit und Martensit bei 9 - 14 % Chromstählen". Prakt. Metallographie, Sonderband 23 (1992), S. 35 - 46
- [14] E. Materna-Morris, L. Schäfer, K. Anderko, "Der Einfluß der δ-Ferrit-Phase auf das Bruchverhalten von 9 - 14 % Chromstählen im instrumentierten Kerbschlagversuch". Prakt. Metallographie, Sonderband 20 (1988) S. 283 -294
- [15] K. Anderko, L. Schäfer, E. Materna-Morris, "Effect of the delta-ferrite phase on the impact properies of martensitic chromium steels". Journal of Nucl. Mat. 179 - 181 (1991) S. 492 - 495
- [16] M. Schirra, K. Anderko, "Anomalies in creep curves of martensitic 9 14 % chromium steels under long-term loading". Steel research Nr. 6/90, p. 242 -250.

- [17] E. Materna-Morris, M. Schirra, "Mikrostrukturelle Untersuchungen zur Klärung von beobachteten Kriechanomalien in martensitischen 9 -14 % Chromstählen". 14. Vortragsveranstaltung VDEh: Langzeitverhalten warmfester Stähle und Hochtemperaturwerkstoffe. Düsseldorf 29.11.91.
- [18] M. Schirra, "Charakterisierende thermische und mechanische Untersuchungen an einem Nb-legierten martensitischen 12 % Cr-Stahl (W-Nr. 1.4914) mit abgesenktem Stickstoffgehalt", KfK-Bericht 3640, August 1984.
- [19] M. Schirra, S. Heger, H. Meinzer, B. Ritter, W. Schweiger, "Untersuchungen zum Vergütungsverhalten, Umwandlungsverhalten und der mechanischen Eigenschaften am martensitischen Stahl 1.4914 (NET-Charge MANET-1)", KfK 4561, Juni 1989.
- [20] F.R. Larson, J: Miller, "A time-temperature relationship for rupture and creep stresses", Trans. ASME 74 (1952) 765/75

Tabelle 1

$\label{eq:chemische-zusammensetzung, RNO-Sonderschmelzen (\delta-F-Chargen)$

Charg Nr.	C831	C832	C833	C834	C835	C836	1.4914 (mod.)
С	0.13	0.13	0.13	0.135	0.14	0.14	0.17
Si	0.38	0.34	0.34	0.34	0.33	0.30	0.34
Mn	0.66	0.65	0.62	0.61	0.60	0.62	0.54
Р	0.006	0.006	0.005	0.006	0.006	0.006	0.005
S	0.004	0.004	0.004	0.005	0.004	0.004	0.005
Cr	9.15	10.03	11.03	12.10	13.00	14.00	10.6
Ni	0.67	0.65	0.63	0.65	0.64	0.64	0.82
Mo	0.61	0.60	0.59	0.59	0.59	0.58	0.49
V	0.28	0.28	0.26	0.28	0.26	0.27	0.24
Nb	0.18	0.17	0.17	0.19	0.18	0.18	0.19
AI	0.075	0.100	0.070	0.097	0.090	0.085	0.05
В	0.005	0.005	0.004	0.0046	0.004	0.004	0.0024
N	0.006	0.004	0.005	0.004	0.004	0.005	0.003
Co	0.005	0.005	0.004	0.004	0.002	0.002	0.0015
Cu	0.01	0.01	0.014	0.015	0.01	0.014	0.010
Ti	0.005	0.006	0.005	0.006	0.006	0.006	
δ-Ferrit Anteil		-	Sp.	5%	20%	25%	-

Chg. Nr.	Prüf- temp. °C	R _{p_{0,2} N/mm²}	R _m N/mm²	A %	Ag %	Z %	Chg. Nr.	Prüf- temp. °C	R _{p0,2} N/mm²	R _m N/mm²	A %	Ag %	Z %
C831-I	RT	868	962	17.2	4.4	74.6	C832-l	RT	829	928	17.0	4.6	74.5
	400	706	767	15.2	2.7	74.4		400	668	734	16.0	3.0	72.4
	500	619	640	16.8	1.2	83.8		500	552	569	20.4	1.4	84.0
	600	395	416	22.8	1.3	87.2		600	399	410	22.8	0.8	90.8
	700	204	213	30.4	1.3	90.8		700	191	201	32.4	1.4	93.1
	RT	765	865	18.0	4.9	75.0	11	RT	724	829	18.4	5.8	69.4
	400	637	697	16.4	3.4	73.8		400	599	660	17.2	3.4	76.8
	500	554	574	19.2	1.4	86.2		500	494	514	24.0	1.8	90.3
	600	376	387	28.0	1.0	91.2		600	340	354	25.4	1.2	88.4
	700	188	197	32.0	1.5	94.2		700	183	194	35.2	1.5	93.2
HI	RT	667	775	19.6	6.0	72.7		RT	682	795	18.0	5.4	72.8
	400	562	634	17.0	3.6	75.0		400	519	574	17.2	3.3	78.8
	500	513	531	22.0	1.7	86.2		500	451	474	25.2	2.0	87.7
	600	299	310	27.6	1.7	93.2		600	308	354	28.8	1.3	92.1
	700	127	160	50.4	2.8	94.2		700	167	179	30.8	1.8	91.0

 Tabelle 2:
 Zugversuchsergebnisse: RNO-Sonderschmelzen (δ-F-Chargen)

I = 1075° 30'/L + 650° 2h/L

$$II = 1075^{\circ} 30'/L + 700^{\circ} 2h/L$$

III = 1075° 30'/L + 750° 2h/L

22 -

Chg. Nr.	Prüf- temp. °C	R _{p0,2} N/mm2	R _m N/mm²	A %	Ag %	Z %	Chg. Nr.	Prüf- temp. °C	R _{p0,2} N/mm²	R _m N/mm²	A %	Ag %	Z %
C833-I	RT	792	891	19.4	5.0	68.3	C834-I	RT	796	904	16.8	5.5	66.1
	400	643	713	17.8	2.8	74.9		400	670	738	16.4	3.0	68.4
	500	562	580	22.0	1.5	82.1		500	544	566	21.6	1.4	78.8
	600	393	402	20.4	1.1	88.7		600	386	398	27.2	1.0	88.3
	700	212	220	29.6	1.5	96.0		700	180	189	38.0	1.6	92.7
11	RT	742	843	19.1	5.0	70.7	11	RT	730	840	18.8	5.6	70.7
	400	625	684	16.0	3.1	70.6		400	604	665	17.2	3.4	74.9
	500	544	564	20.4	1.7	85.5		500	516	536	25.2	1.8	83.9
	600	359	375	35.6	1.2	93.2		600	329	344	26.4	1.6	92.1
	700	206	213	40.0	1.6	95.1		700	173	184	35.6	1.6	92.2
111	RT	644	760	19.2	5.5	70.6		RT	657	783	18.0	6.3	66.1
	400	527	601	16.4	3.1	74.9		400	537	612	16.8	3.8	73.0
	500	457	479	22.4	2.3	87.7		500	474	504	30.0	2.1	83.1
	600	296	312	29.8	1.6	93.2		600	294	308	36.8	1.8	92.6
	700	125	166	36.0	3.4	96.0		700	149	157	34.0	2.0	92.2

Tabelle 3: Zugversuchsergebnisse: RNO-Sonderschmelzen (δ-F-Chargen)

l = 1075° 30'/L + 650° 2h/L

ll = 1075° 30'/L + 700° 2h/L

III = 1075° 30'/L + 750° 2h/L

- 23 -

Chg. Nr.	Prüf- temp. °C	R _{p0,2} N/mm²	R _m N/mm²	A %	Ag %	Z %	Chg. Nr.	Prüf- temp. °C	R _{p0,2} N/mm²	R _m N/mm²	A %	Ag %	Z %
C835-I	RT	759	877	17.6	5.4	61.1	C836-I	RT	670	796	16.0	6.0	63.7
	400	609	669	15.6	5.7	67.4		400	556	637	16.0	4.8	61.1
	500	514	534	23.2	2.0	87.0		500	408	456	29.6	3.3	80.5
	600	345	359	28.0	1.4	87.6		600	292	314	29.6	2.5	89.7
	700	174	183	44.0	1.3	94.1		700	150	157	34.8	1.8	95.1
	RT	713	831	16.8	5.3	66.0]]	RT	622	757	19.2	7.0	63.4
	400	594	665	16.8	4.0	70.7		400	521	604	16.4	5.0	68.2
	500	494	519	22.8	2.2	81.4		500	418	451	31.2	3.4	80.5
	600	314	329	33.6	2.2	86.9		600	268	291	36.8	3.2	89.0
	700	173	182	36.8	1.4	94.2		700	146	147	34.8	1.0	96.7
	RT	587	724	19.2	7.4	64.0		RT	531	677	20.0	8.6	63.7
	400	480	560	18.0	5.2	68.6		400	428	524	18.4	6.3	67.2
	500	410	445	23.2	3.5	77.8		500	363	395	27.0	3.5	74.9
	600	262	278	39.2	2.3	92.7		600	233	248	44.0	3.3	92.1
	700	107	127	44.0	3.2	94.7		700	103	114	65.6	3.1	95.2

Tabelle 4: Zugversuchsergebnisse: RNO-Sonderschmelzen (δ-F-Chargen)

 $I = 1075^{\circ} 30'/L + 650^{\circ} 2h/L$ $II = 1075^{\circ} 30'/L + 700^{\circ} 2h/L$

III = 1075° 30'/L + 750° 2h/L

- 24 1

δ- F-C	ha	rge	n)
---------------	----	-----	----

Company and an other states						
		RT	400°	500°	600°	700°
1)	C831	0.90	0.92	0.97	0.95	0.96
	C832	0.895	0.91	0.97	0.975	0.95
	C833	0.89	0.90	0.97	0.98	0.965
	C834	0.88	0.91	0.96	0.97	0.955
	C835	0.865	0.86	0.96	0.96	0.95
2	C836	0.84	0.87	0.895	0.93	0.96
11)	C831	0.885	0.91	0.965	0.97	0.955
	C832	0.875	0.91	0.96	0.96	0.945
	C833	0.88	0.91	0.96	0.96	0.97
	C834	0.87	0.91	0.96	0.96	0.94
	C835	0.86	0.89	0.95	0.955	0.95
	C836	0.82	0.86	0.93	0.92	0.99
111)	C831	0.86	0.885	0.965	0.965	0.795
	C832	0.86	0.90	0.95	0.87	0.935
	C833	0.85	0.88	0.955	0.865	0.75
	C834	0.84	0.88	0.94	0.955	0.95
	C835	0.81	0.86	0.92	0.94	0.84
	C836	0.785	0.82	0.92	0.94	0.905

= 1075° 30'/L + 650° 2h/L = 1075° 30'/L + 700° 2h/L = 1075° 30'/L + 750° 2h/L I

П

Probe Ø 5 x 25 mm

<u>Tabelle 6</u>

(ZSV = Versuche in Vakuum)

Legierung Charge-Nr Zustand	Vers Nr.	^∕ °℃	0 ₀ MPa	t _r n	ε ₍₎ %	ɛ̂ք0,1% հ	€f0,2% Ի	<mark>ՇքՕ.5%</mark> հ	^Շ ք]% հ	Շ<u>ք</u>շ%։ h	<mark>8₁5%</mark> հ		Au Vi	Z ر بر,	Epmin(abs) x10-6/F
RNO	3198	550	350	130	0.24	0.5	2	16	46	89	126	fernin en provinsi mening bin na fin	23.2	89.6	174
C831	3217	"	320	319	0.20	-	4	27	8 5	205	307		22.4	88.3	80
1075°30'/L	3279	"	280	1552	0.18	3	10	130	500	1000	1477		23.3	88.4	12
+ 650° 2 h/L															
ZSV	2071	600	240	87	0.24	0.1	0.4	3.3	16	40	74		31.2	89.7	362
ZSV	2069	17	180	513	0.18	0.5	2.5	35	150	310	468		26.0	92 .1	41
ZSV	2052	"	140	1091	0.06	2	15	230	540	785	995		42.8	93.3	11.6
	3210	"	100	2049	0.08	16	140	880	1156	1304	1622		52.0	93.2	3.3
ZSV	2134	п	80	4494	0.10	6	170	990	1246	1495	2869		38.8	94.2	2.6
	3202	650	140	65	0.12	1	4	15	30	43	53		30.8	89.8	285
ZSV	2106	"	80	190	0.06	2	10	37	84	102	137		37.2	92.1	62
ZSV	2086	"	60	779	0.06	20	45	74	94	159	440		38.3	92.2	23-102
ZSV	2082	"	40	5712	0.06	3	24	127	198	750	3485		43.2	94.3	8.6
							<u> </u>								
ZSV	2127	700	35	497	0.08	3	8.2	13	24	80	308		48.4	96.0	143-213
	<u> </u>	1													
		1	1	[[[

Probe Ø 5 x 25 mm

<u>Tabelle 7</u>

Legierung Charge-Nr Zustand	Vers. Nr	م °ر	Ο _ດ MPa	t _e n	Е ₀ Я	€£0,1% h	[£] ք0,2% հ	^Ը քՕ,5% հ	Ef1% h	<mark>Շքշ%</mark> հ	^Ը ք5% հ		А _и %	Ζ _ι %	ε _{pmin(abs)} x10-6/h
RNO	3190	550	350	47	0.28	_	0.5	3.6	12.5	29			20.0	80.6	546
C831	3144	"	300	518	0.16	1	6	54	159	305	475		25.2	85.5	47
1075°30'/L	3191	"	250	1510	0.14	7	28	165	470	983	1439		22.4	85.6	16
+ 700° 2 h/L															
	3066	600	240	56	0.24	0.2	1	6	16	30	47		26.8	88.4	480
	3061	"	200	188	0.20	0.6	4	22	59	111	168		33.6	89.8	127
	3093	"	160	560	0.14	1.5	10	79	197	335	491		30.4	90.4	40
	3123	"	130	938	0.04	5	60	350	563	721	861		34.8	91.0	6.7
	3130	87	100	1347	0.08	30	215	608	743	820	1017		47.6	92.1	4.0
ZSV	2043	"	80	3492	0.06	10	116	615	802	975	2115		32.4	92.2	5.9
ZSV	2010	650	140	57	0.12	0.4	1.5	10	24	38	53		25.2	92.2	260
t)	1984	"	100	137	0.16	0.5	1.3	32	72	96	117		58.8	94.2	72
<i>n</i>	1839	- µ	80	208	0.10	1.5	12	65	95	113	146		41.6	93.2	44
**	2022	11	60	510	0.08	15	42	68	83	124	296		41.2	93.2	16
7	2030	"	40	6580	0.06	38	74	106	290	1315	4215		37.2	89.8	7.6
π	2076	"	30	o.B.	0.04	1	10	116	260	3022	-	bis	2 %	-	. 2.5
			[1									1	
			1		<u>†</u>	1								<u> </u>	
			İ									<u> </u>			

<u>Tabelle 8</u>

		r			1					r		1		r	¶
Legierung Charge-N Zustand	Vers. Nr	v °℃	σ ₀ MPa	t _e n	ε ₀ %	ՇքՕ ,1% հ	[£] ք0,2% հ	€£0,5% h	^Ը ք]% h	Շքշ% հ	<mark>Շք5%</mark> հ		A _u %	Z _L %	epmin(abs) x10 ⁻⁶ /h
RNO	3199	550	300	56	0.22		0.4	2	5.5	17	43		26.4	87.0	847
C831	3259	"	260	390	0.20	0.4	1.2	7	35	122	320		26.4	89.8	104
1075° 30'/L	3280	"	220	1735	0.16	0.5	3	44	265	855	1597		24.0	87.0	17
+ 750° 2h/L															
ZSV	2073	600	200	100	0.24		0.2	0.9	5.4	26	4		30.0	91.0	430
	3192	17	140	892	0.12	3	20	155	366	594	808		25.2	91.0	20.5
ZSV	2053	"	100	1390	0.10		89	395	637	821	1045		40.4	93.4	8.6
	3238	"	80	2761	0.08	135	320	605	740	930	1746		34.0	94.0	3.8
	3208	650	100	123	0.12	1	6	32	57	80	102		58.0	84.7	115
ZSV	2093	"	60	388	0.08	1	24	105	145	181	261		36.0	92.2	32
	3212	"	40	5184	0.04	42	72	105	335	1185	3140		55.2	92.2	11.2

Probe Ø 5 x 25 mm

<u>Tabelle 9</u>

Legierung Charge-Nr. Zustand	Vers. Nr.	≯ °℃	σ _o MPa	t _m h	Е ₀ %	[€] ք0,1% հ	^Շ ք0,2% հ	Շ ք.5% հ	Շք1% հ	Շ <u>քշ</u> գ հ	^Ե ք5% հ		А _и %	Zu %	έpmin(abs) x10 ^{-6/h}
RNO	3263	550	340	104	0.22	0.25	1	7.3	24	56	94		29.2	86.9	285
C832	3201	"	300	644	0.2	1	6	65	194	374	588		27.2	84.0	38
1075° 30'/L	3216	"	250	2752	0.16	11	50	445	1065	1938	2630	-	24.8	87.1	6.3
+ 650° 2h/L															
ZSV	2074	600	220	159	0.16	0.4	1.2	13	46	94	145		24.0	91.0	180
SV	2070	"	180	464	0.16	5.5	20	90	195	321	441		21.6	88.3	40
ZSV	2056	"	140	927	0.12	2	13	190	481	695	857		33.2	92.1	12
ZSV	2080	#	100	1345	0.08	2	13	275	650	819	1060		30.0	93.2	8
ZSV	3237	"	80	5423	0.10	455 -	970	1255	1424	2160	4220		44.4	90.0	1.1
	3204	650	120	85	0.12	1	5	25	43	60	75		38.4	90.9	155
ZSV	2107	"	80	179	0.06	1	8.5	50	73	87	123		47.2	92.1	61
ZSV	2096	"	60	753	0.04	2	14	84	111	156	435		38.4	92.2	29 -100
	3307	17	40	4810	0.08	70	102	140	407	1428	3440		36.4	93.2	9.5
ZSV	2123	700	35	496	0.08	1.5	5.5	9.75	25	98	287		44.4	95.2	120
					1										
		1													

<u>Tabelle 10</u>

Legierung Charge-Nr Zustand	Vers. Nr	، در	Ο _ο MPa	t _r . ŋ	ε _ύ %	Ըյը,1% հ	⁸ ք0.2% հ	^Ե քՕ,5% հ	^Ե ք1% հ	Շ <u>քշ</u> գ հ	^ይ ք5% հ		۵. م	Z. %	epmin(abs) x10-6/F
RNO	3138	550	300	221	0.16	0.5	2.4	16	54	126	207		24.0	89.7	123
C832	3152	"	250	1260	0.16	1	5.5	52	215	588	1103		27.2	84.0	26
1075° 30'/L	2061	"	220	3577	0.20	5	27	242	950	2180	3366		24.0	88.5	6
+ 700° 2h/L															
	3070	600	240	31	0.22		0.2	1.4	5.2	14	26		33.2	90.9	1080
	3065	"	200	243	0.14	0.4	2.5	21	68	136	214		30.0	91.0	108
	3094	IJ	160	520	0.18	1	7	75	198	334	463		33.2	92.1	37
ZSV	2011	"	130	771	0.10	1	18	198	408	575	717		24.8	91.0	15
	3139	"	100	1873	0.06	22	180	730	950	1086	1396		52.0	92.7	4.6
ZSV	2059	650	120	74	0.12	0.6	4.5	18.5	35	51	66		31.2	93.3	195
ZSV	2027	"	80	192	0.08	1.5	7	53	92	110	142		36.8	94.3	68
ZSV	2060	"	60	775	0.06	3	34	78	99	175	463		46.0	95.2	31-92
ZSV	2024	"	40	5690	0.04	1	42	88	260	1170	3740		50. 8	95.2	9.6
ZSV	2077	"	30	o.B.	0.04	38	79	188	1394	-	-	bis	1%		3.3
					1										
	1	1			1								1		

Probe Ø 5 x 25 mm

Tabelle 11

.

Legierung Charge-Nr Zustand	Vers Nr.	ئہ °ر	0 ₀ MPa	t _m h	Е ₀ Я	€£0,1% հ	€£10,2% h	<mark>ՔքՕ.5</mark> % հ	Եք1% հ	€ <u>12%</u> h	Բ <u>լ</u> ჯ հ		A _u %	Ζι %	έ _{pmin(abs)} x10 ⁻⁶ /Ի
RNO	3205	550	300	29	0.16	0.1	0.4	1.3	4	11	24		30.0	89.7	1400
C832	3252	"	250	94	0.16	0.2	0.4	1.8	6.8	22	66		29.2	87.0	58 0
1075° 30'/L	3253	"	220	1179	0.16	0.5	2.5	22	112	405	9 50		30.4	88.4	33
+ 750° 2h/L	3247	"	180	5834	0.14	2	32	620	2220	4065	5478		26.4	88.4	3.2
	3267	600	220	19	0.20		0.1	0.33	1.2	4.5	13		36.0	87.1	2633
	3195	"	180	240	0.10	0.4	1.5	15	56	128	205		30.8	88.4	116
ZSV	2064	"	140	466	0.14		1.5	21	102	225	362		34.0	91.0	59
ZSV	2057	"	100	1503	0.10	1	22	355	650	827	1059		47.6	94.2	7
	3206	650	80	58	0.18	0.3	1.4	8.7	21	35	50		32.0	92.2	375
ZSV	2145	"	60	608	0.06	5	35	72	92	143	350		58.8	95.2	30-124
ZSV	2099	"	40	5160	0.02	3	55	98	263	1145	3230		49.2	94.2	9.7
					1				Î						
												İ			
						Í						[
					İ	[1	1		
<u>Tabelle 12</u>

Legierung Charge-Nr. Zustand	Vers. Nr.	ر ، ځر	σ _o MPa	t _m h	Е ₀ %	^Շ ք0,1% հ	[£] ք0,2% հ	[£] ք0,5% հ	^E f1% հ	€ f2% h	Ե<u>15</u>% h	А _и %	Z _u %	έpmin(abs) x10-6/h
RNO	3287	550	350	67	0.28	0.1	0.6	4.7	17	37	60	25.2	85.4	399
C833	3074	"	300	279	0.18	0.5	3	26	79	157	265	25.2	87.0	88
1075° 30'/L	3118	"	250	2386	0.12	8	55	350	1010	1780	2309	25.6	88.1	7.2
+ 650° 2h/L														
	3069	600	250	39	0.24	0.15	0.7	4.5	11.5	22	35	29.2	89.7	680
	3072	"	220	114	0.16	0.4	2	13	37	68	101	29.6	90.8	200
ZSV	2007	"	160	795	0.16	1	5	54	170	389	674	31.2	93.2	41
ZSV	2008	"	130	2118	0.12	7	40	295	820	1420	1940	29.2	91.0	8.7
ZSV	1971	650	160	27	0.16	0.1	0.5	3	7.5	14	22	 29.6	94.2	1054
Π	1975	"	120	132	0.16	1	6	15	38	73	114	30.0	94.3	202
<i>п</i>	1979	"	80	433	0.08	0.1	3.5	70	218	317	391	46.8	93.2	24
ff	2005	"	60	944	0.08	1	8	158	383	500	708	36.0	95.2	10.2
"	2004	"	40	5353	0.08	1	12	290	439	1130	3605	40.4	91.0	6.7-10
Π	2128	700	35	417	0.04	1.5	22	54	71	105	232	 48.4	96.0	55-216

Probe Ø 5 x 25 mm

Tabelle 13

Legierung Charge-Nr. Zustand		Vers. Nr.	^ °℃	σ _o MPa	t _m h	ε ₀ %	^E ք0,1% հ	€£0,2% h	^E ք0,5% հ	^E ք]% հ	<mark>Շլշ</mark> ջ հ	[£] ք5% հ		A _u %	Z _ս %	epmin(abs) x10 ⁻⁶ /h
RNO	iliy işağı estşiler tim Rech	3091	550	350	23	0.32	0.1	0.25	1.4	4.5	11	21		20.8	83.9	1498
C833		3078	"	300	231	0.24	0.25	1.4	12.5	44	110	202		24.4	87.3	145
1075° 30'/L		3124	"	250	1436	0.20	2	10	97	375	887	1352		23.2	85.6	16.4
+ 700° 2h/L	ZSV	2058	"	220	3997	0.20	1	6	135	800	2090	3690		24.8	88.3	6.8
		3068	600	240	61	0.18	0.25	1.5	9	21.5	39	56		26.8	90.9	3 65
		3054	"	200	160	0.16	0.25	1.3	12.5	38	79	134		32.8	92.4	188
		3052	"	160	805	0.12	3	14	96	240	453	708		29.6	92.1	30
		3098	"	130	2728	0.10	8	65	510	1235	1977	2542		29.6	93.2	5.8
	ZSV	1986	650	140	60	0.18	0.3	1	6	16	31	51		36.4	94.2	470
	ZSV	1970	U U	120	140	0.14	0.3	2	13	39	76	117		44.4	94.3	192
	a	1974	"	100	229	0.16	0.5	3	28	85	148	204		31.2	94.2	81
	<i>a</i>	1836	"	80	458	0.12	3	11	84	226	336	413		33.6	95.2	29
	A	1978	17	60	939	0.08	1	8	208	390	479	681		39.2	95.2	10.4
	ħ	1977		40	4192	0.08	15	120	302	415	1040	2725		41.2	93.3	2.9-12
	<i>1</i> 7	2078	"	30	o.B.	0.04	13	125	400	1030	-	-	bis	1%	-	2.2-4.6
									Ì							

<u>Tabelle 14</u>

Legierung Charge-Nr Zustand	Vers. Nr.	∛ °℃	σ _o MPa	t _e n	Е ₀ %	Շ_{10.1%} հ	^Ե ք0,2% հ	^Ե ք0,5% հ	Շքլ % հ	€ <u>f2</u> % h	ւնքեն ե		A _u %	Z₀ %	epmin(abs) x10 ⁻⁶ /h
RNO	3092	550	300	14	0.32		0.1	0.4	1.4	3.8	9.6		28.8	97.1	392 0
C833	3079	"	250	161	0.16	0.1	0.3	2.2	8.3	33	110		30.0	88.5	340
1075° 30'/L ZSV	2020	"	220	1687	0.22	0.5	1	10	73	400	1446		22.4	88.6	22
+ 750° 2h/L															
	3055	600	200	48	0.20		0.15	0.75	3.3	12	34		32.0	90.9	1013
	3056	"	160	441	0.16	0.25	1	16	77	194	356		31.2	93.2	68
ZSV	2009	"	130	1231	0.10	5	21	145	388	713	1064		30.8	92.2	20
ZSV	2133	"	100	3569	0.08	0.5	2	190	1075	2070	3038		44.8	95.2	7.1
ZSV	1981	650	120	72	0.16	0.1	0.4	2.5	12	32	59		31.6	95.2	454
ZSV	1973	"	100	175	0.10	0.3	1.2	14	49	96	144		38.0	95.2	132
Γ	1976	"	80	285	0.10	0.5	5	63	132	185	232		42.4	95.2	48
77	1980	"	60	583	0.12	18	75	213	291	352	448		51.2	95.4	14
ť	2006	17	40	5535	0.06	8	120	373	558	1455	3795		40.4	95.2	79.8
			1												
	1														
				1						[1	Í	[

Probe ⊘ 5 x 25 mm

<u>Tabelle 15</u>

Legierung Charge-Nr Zustand	Vers. Nr.	∛ °⊂	0 ₀ MPa	t _r . h	Е ₀ %	€£0,1% h	^Ե ք0,2% հ	^E f0,5% h	² ք1% հ	Շ<u>քշ</u>‰ հ	⁸ ք5% հ		А _и %	Z _u %	ėpmin(abs) x10-6/h
RNO ZSV	2169	600	220	107	0.16	0.8	2	13.5	36	65	9 5		31.2	91.0	207
C834	3361	600	160	1069	0.12	2	17	162	437	760	1010		26.0	88.4	16.5
1075° 30'/L	3313	600	140	1600	0.05	4	53	375	848	1287	1547		27.2	89.6	. 7.7
+ 650° 2h/L	3316	600	100	2360	0.08	22	310	1325	1665	1907	2162		44.8	92.2	1.9
	3326	650	100	220	0.06	2.5	12	62	119	161	197		24.8	92.2	60
ZSV	2219	650	50	1048	0.04	1.5	26	148	196	290	674		46.4	94.2	19-63
ZSV	2129	700	35	270	0.04	10	16	21	31	69	164		65.2	95.2	70-680
1075° 30'/L	3295	600	180	123	0.12	-	0.2	3	13	44	97	117	32.0	89.8	308
+ 750° 2h/L	3302	600	140	1263	0.18	3	30	250	570	928	1182	-	33.6	98.7	11
	3328	600	100	2094	0.08	38	340	955	1356	1649	1927	-	44.4	91.0	3.3
	3372	650	80	254	0.10	3	27	103	148	181	216		47.2	94.2	28
ZSV	2236	650	50	825	0.08	6	61	134	174	276	579	729	35.2	93.3	18-68
		1			<u> </u>										
					[<u> </u>								

<u>Tabelle 16</u>

Legierung Charge-Nr. Zustand	Vers. Nr.	v °c	σ _o MPa	t _m h	е _о %	^E ք0.1% հ	⁸ ք0,2% հ	^ɛ f0,5% հ	811% Н	€<u>ք</u>ջ % հ	[£] ք5% հ		Α υ %	Ζ _υ %	epmin(abs) x10 ⁻⁶ /h
RNO	3141	550	300	156	0.16	0.5	1.5	8	29	75	142		23.6	84.0	212
C834	3189	н	250	956	0.12	1	6	46	180	484	858		34.7	88.4	33
1075° 30'/L	3209	"	220	4079	0.16	3	27	385	1410	2760	3820		27.6	88.3	5
+ 700° 2h/L															
	3071	600	240	9 0	0.20		0.2	1.2	4.2	11.5	24		32.0	90.9	1424
	3064	"	200	227	0.18	0.3	2	19	55	115	193		32.8	89.8	137
	3075	N	160	877	0.1	3	20	128	309	565	808		27.6	93.2	25
	3102	"	130	1871	0.08	5	45	468	1007	1434	1723		34.0	92.2	6.4
ZSV	1999	650	140	78	0.88	0.5	1.5	8.5	23	44	67		36.8	93.2	329
ZSV	1983		100	189	0.12	0.6	3	45	100	139	172		40.4	95.2	63
ZSV	1837	~	80	329	0.10	3	30	140	206	247	294		34.0	93.3	23
ZSV	2018	"	60	588	0.08	5	52	164	203	247	406		42.8	94.3	15
ZSV	2031	"	40	2296	0.08	22	115	203	278	646	1587		36.4	93.8	13-22
ZSV	2079	"	30	o.B.	0.04	9	65	248	555	-	-	bis	1 %	-	7.5-9.5
				[
			1												
							[

Probe Ø 5 x 25 mm

Tabelle 17

Legierung Charge-Nr. Zustand		Vers. Nr	ک م د	σ _ο MPa	t _{rr} h	ε ₀ %	^Ը ք0,1% հ	€ք0,2% հ	[£] ք0,5% հ	Եք1%։ h	€ <u>ք2%</u> հ	Ե<u>լ</u>5% h		A _u %	Z. %	epmin(abs) x10-6/h
RNO		3309	600	220	102	0.16	0.4	1.7	12	33	59	88	inin milan pana manana	30.0	8 5.5	235
C835		3297	"	180	353	0.14	3	10	68	150	240	327		26.8	88.4	50
1075° 30'/l	-	3310	"	130	1064	0.10	20	130	463	700	867	1001		30.8	90.9	10
+ 650° 2h/	L															
		3327	650	100	132	0.08	2	12	51	81	102	120		39.2	92.1	68
		3334	"	60	294	0.08	15	56	111	136	159	209		58.0	93.2	22
	ZSV	2130	700	35	145	0.04	0.7	5.5	17.2	23	37	77		48.0	96.0	126-1080
														1		
								<u> </u>								
1075° 30'/L	ZSV	2168	600	150	143	0.16	-	-	2	10.5	38	97		32.0	89.8	350
750° 2h/L	ZSV	2170	"	120	474	0.16	0.5	2	29	119	255	400		27.9	91.0	52
	ZSV	2177	".	80	1286	0.04	-	23	261	528	760	982		56.8	95.2	9
	ZSV	2251	650	80	119	0.10	0.65	4	25	48	69	91	j	48.4	93.2	147
		3371	650	60	137	0.06	4	17	39	55	71	89		52.0	92.2	67
	ZSV	2237	"	40	1361	0.06	2.5	95	155	214	417	816		46.0	94.3	10-44
	<u></u>		<u> </u>			<u> </u>										
				 												

Probe ⊘ 5 x 25 mm

<u>Tabelle 18</u>

Legierung Charge-N ^{.,} Zustand	Vers. Nr.	v °c	0 ₀ MPa	t _m h	Е ₀ %	[£] ք0,1% հ	⁸ ք0,2% հ	^E f0,5% հ	%11 ³ ۲	ɛ_{f2% հ}	<mark>Եք5</mark> % հ	A _u %	Zս %ċ	epmin(abs) x10-6/n
RNO	3140	550	300	249	0.2	0.2	1.3	13	46	115	211	27.2	82.4	130
C 835	3167	*	250	1269	0.26	0.5	6	78	310	730	1156	28.4	91.0	20
1075° 30'/L	3183	~	220	4006	0.16	5	53	640	1860	2973	3780	24.4	86.9	3.6
+ 700° 2h/L														
	3063	600	240	25	0.22	-	0.15	0.75	3	8 .5	19	30.8	88.5	1739
	3057	"	200	182	0.16	0.5	2.5	18	52	100	155	35.2	91.0	149
	3086	"	160	449	0.04	4	24	105	212	318	410	37.2	89.8	35
	3104	"	130	1044	0.04	7	60	400	661	837	973	40.0	93.2	7.8
	3128	ж	100	2200	0.08	65	400	1200	1555	1835	2081	32.4	92.2	2.6
ZSV	2151	650	160	15	0.24	-	0.17	1	3	6.5	12	36.4	93.3	2467
ZSV	2062	H	120	63	0.12	0.5	2	13	27	41	55	28.8	93.2	280
ZSV	2028	H	80	129	0.08	1	12	54	80	97	113	41.6	94.2	51
ZSV	2063	H	60	312	0.04	1	26	110	143	168	222	42.8	95.2	23
ZSV	2029	"	40	714	0.04	1	8	78	113	160	329	80.4	95.2	35
ZSV	2067	н	30	4206	0.06	9	120	212	358	1130	2428	73.2	94.2	2.8-12.0
										Î				

.

Probe ⊘5 x 25 mm

Tabelle 19

Legierung Charge-Nr. Zustand		Vers. Nr.	۲ °c	σ _o MPa	t _m h	ε ₀ %	^ք ք0,1% հ	^E f0,2% հ	€ք0,5% հ	թք ղ Ի	Շ<u>ք</u>շ % հ	^E ք5% հ	A _u %	Ζυ %	epmintabs) x10-6/h
RNO		3283	550	300	18	0.24	-	-	0.25	2	4.5	11.5	34.8	85.3	2533
C835	ZSV	2150	"	240	681	0.22	0.25	0.9	8.5	42	181	517	28.0	89.8	64
1075° 30'/W	zsv	2156	"	220	1144	0.20	0.25	1.25	13	74	318	873	34.8	89.7	37
+ 700° 2 h/	N														
										<u> </u>					
	zs∨	2147	650	221	23 min	0.52	-	-	-	0.05	0.11	0.25	 31.2	92.2	112000
	"	2149	"	120	106	0.18	0.4	1.5	14.5	39	67	93	 38.4	92.2	200
	"	2124	"	80	305	0.09	0.7	3.4	62	161	219	265	 41.6	94.2	32
	"	2105	"	60	424	0.08	1.8	9	143	198	235	305	 38.0	94.2	15
	"	2118	"	40	1891	0.04	4	80	210	266	455	1175	42.4	95.2	10.5
	"	2116	"	30	6569	0.20	90	175	247	535	2020	4720	59.6	95.1	6.2
							·						 		

.

<u>Tabelle 20</u>

Legierung Charge-Nr. Zustand	Vers. Nr.	≯ °℃	0 ₀ MPa	t _m h	Е ₀ %	ՇքՕ,1% հ	€ք0,2% հ	€ք 0,5% հ	€f1% h	€ <u>f2</u> % h	^E ք5% հ	۵ ₀ %	Zu %	ε _{pmin(abs)} x10-6/h
RNO	3200	550	300	86	0.30	1	11	8	23	45	78	24.0	80.5	360
C836	3193	"	250	607	0.22	1	4.5	52	168	348	5331	 28.4	82.3	41
1075° 30'/L	3194	"	220	1365	0.24	3	33	290	680	1034	1293	25.2	88.4	11
+ 650° 2h/L	3214	"	200	2338	0.14	28	125	735	1315	1800	2185	24.8	85.5	4
ZSV	2146	600	200	86	0.2	0.15	0.6	6	22	48	71	32.8	87.0	291
	3218	"	160	339	0.12	4	26	122	204	265	315	28.8	90.9	28
	3245	"	120	899	0.16	140	345	570	687	767	840	35.6	82.0	4
	3254	"	80	1806	0.04	75	450	950	1115	1260	1480	46.4	92.1	2.3
ZSV	2051	650	120	48	0.16	0.3	1	8	19	30	42	58.0	92.2	380
ZSV	2048	"	80	121	0.08	1	5.5	48	78	95	109	34.4	93.2	68
ZSV	2042	"	50	293	0.06	1	4	57	114	142	186	72.4	95.2	50
ZSV	2032	"	30	2970	0.04	10	110	195	308	630	1387	54.4	94.2	8.5-30
ZSV	2131	700	35	88	0.04	0.75	3.5	14	19	27	48	50.4	97.4	217
	1				1									

Probe Ø 5 x 25 mm

<u>Tabelle 21</u>

Legierung Charge-Nr. Zustand	Vers. Nr	ہ °°	σ _o MPa	t _r n	Е ₀ %	<mark>Քք0,1%</mark> հ	€£0,2% h	^Շ քD,5% Ի	ՇՈ1% հ	<mark>Շքշ</mark> գ հ	^ይ յ <u>5</u> % _ h		۹ ₀ ۹	۲ ₀ %	epmin(abs) x10-6/h
RNO	3125	550	300	31	0.24	0.1	0.2	0.5	2.1	7	21		35.6	83.9	1894
C836	3126	"	250	183	0.28	0.1	0.2	0.5	5	34	127		28.0	82.3	289
1075°30'/L	3127	"	200	1553	0.16	1	11	118	417	920	1366		32.8	89.7	15.6
+ 700° 2h/L															
	3060	600	200	23	0.16	0.1	0.25	0.8	2.8	7.3	16		31.2	87.0	2144
	3073	"	160	223	0.12	1	7	50	106	158	201		32.8	85.6	66
	3085	"	120	848	0.08	11	80	370	566	685	779		40.4	93.2	8
	3106	"	100	1119	0.04	50	270	605	773	891	1007		54.8	92.2	4
	3129	"	80	1555	0.16	55	375	806	1000	1158	1330		68.4	93.2	2.7
	3182	"	60	3207	0.10	400	855	1235	1430	1685	2247		53.6	93.2	1.8
									, in the second s						
ZSV	1998	650	120	41	0.10	0.5	2.5	10	18	26	34.5		41.2	93.2	368
ZSV	1982	· #	100	95	0.14	0.5	2	23	47	65	82		44.8	94.3	135
ZSV	1997	"	80	124	0.16	5	22	57	79	94	109		40.8	95.2	60
ZSV	2021	"	60	180	0.08	5	25	78	102	119	139	-	53.2	93.3	36
ZSV	2023	21	40	498	0.08	0.5	8	96	123	150	237		82.4	95.2	15.2
ZSV	2034	"	30	1920	0.04	0.5	23	153	213	433	930		86.4	96.8	2.8-42
	1														

Tabelle 22

Legierung Charge-Nr Zustand	Vers. Nr.	۰ ° در	0 ₀ MPa	t _m h	Е ₀ %	ℇ_{ฦ0,1%} հ	[€] ք0,2% h	[£] ք0,5% h	Շք1% հ	ɛ₁շ % հ	[£] ք 5 % հ	A _u %	Zu %	epmin(abs) x10-6/h
RNO	3197	550	250	31	0.16	-	0.2	1	2.5	6	18	36.8	82.4	2290
C836	3278	"	220	91	0.18	0.15	0.3	2	5.75	16	50	29.6	87.0	873
1075°30'/L	3282	"	180	605	0.14	0.5	1.5	9.5	36	119	352	36.4	87.1	96
+ 750° 2h/L	3306	"	150	2960	0.08	-	7	69	270	868	2077	35.6	88.4	13
	3268	600	160	43	0.14	-	0.15	0.75	2.5	8.7	22	52.0	91.0	1766
ZSV	2081	17	120	222	0.12	0.4	1.5	15	47	98	164	40.0	88.5	157
ZSV	2091	"	80	857	0.08	1	8	147	350	518	684	41.6	91.0	16.5
	3269	"	60	1575	0.04	55	155	374	560	735	957	58.4	92.2	6.4
ZSV	2055	650	120	21	0.2	-	-	0.45	2.1	6	12	44.8	92.3	2532
ZSV	2050	"	80	98	0.1	0.2	1	15	37	55	73	38.8	93.3	175
ZSV	2046	"	50	195	0.1	0.5	4	30	48	66	93	70.4	94.3	86
ZSV	2045	"	40	707	0.06	-	2.5	47	81	133	307	64.8	95.2	48-149
ZSV	2033	"	30	2210	0.04	20	58	97	148	331	897	56.8	95.2	7.5-45

- 43 -

1

762/5

763/5

x500

Charge: C835 13,0% Cr M+20% δ -F Querschliff

- 46 --

▶<u>02</u> ₩mm

Längsschliff

<u>Bild 5</u>: Härte in Abhängigkeit von der Härtetemperatur bei 9–14% Cr-Stählen mit unterschiedlichem &-Ferrit-Gehalt

- 49 -

— 51 —

des CrNiMoVNb-Stahles 1.4914

.

1075°C-30'/L+700°C-2h/L

<u>Bild 11:</u> Zugfestigkeitseigenschaften in Abhängigkeit vom δ -Ferrit-Gehalt

Bild12: Zugfestigkeitseigenschaften in Abhängigkeit vom &-Ferrit-Gehalt

RNO-Sonderschmelzen

- 57 -

Bild 15 Zugfestigkeitseigenschaften in Abhängigkeit vom Vergütungszustand

- 58 -

- 59 -

- 62 -

Bild 21a-c: Das Auftreten der Kriechanomalie in Abhängigkeit vom N/Al-Verhältnis(b) und die Auswirkung auf den Kriechverlauf und die Zeitstandkurve(a+c).

- 67 -

- 68

- 69 -

- 70 -

Larson-Miller-Parameter

- 74 -

- 75 -

- 76 -

- 77

- 78 -

- 79 -

- 80 -

- 81 -

1 83 1

. 84 –

- 89 -

Bild47: Zeit - Dehngrenzen - Kurven, Vergleich Luft-bzw. Wasserhärtung

- 00 -

6. Annex

Die historisch-empirische Entwicklung des Gefügediagramms der Cr-Ni-Stähle [10]

Das Gefügediagramm der Cr-Ni-Stähle erlaubt in gewissem Rahmen eine Voraussage, welches Gefüge sich bildet; insbesondere zum Auftreten des δ-Ferritgehaltes in Abhängigkeit vom Cr- und Ni-Gehalt und unter Berücksichtigung weiterer Legierungselemente. Es erscheint sinnvoll, an dieser Stelle einmal auf den historischen Ablauf einzugehen, der zum heutigen Stand dieses Diagrammes führte: Die erste Darstellung erfolgte <u>1920</u> durch Strauss / Maurer im Zusammenhang mit der Entwicklung des 18/8 Cr-Ni-Strahles V2A durch Krupp [1].

1

Abbild. 22. Diagramm der quaternären Chromnickelstähle.

Dieses, als Maurer-Diagramm bekannt gewordene Bild I zeigt, mit dem Cr-Gehalt als Abszisse und dem Ni-Gehalt als Ordinate, vier Gefügegruppen und bildet praktisch den linken Teil des heute bekannten Diagramms. Bei der Aufstellung des Bildes haben die Autoren auch metallografische Befunde von Guillet und Giesen [2] berücksichtigt. Einschränkend wird allerdings damals schon gesagt: "Die Grenzlinien sind natürlich in Wirklichkeit in der angegebenen Schärfe nicht vorhanden. Auch variierte der Kohlenstoffgehalt bei unseren Stählen von 0.1-0.5%." Dieses Urdigramm wurde von Scherer-Riedrich-Hoch <u>1939</u> durch Untersuchungen an 22 Versuchslegierungen zum Studium des Kornzerfalls modifiziert [3]. Das Material der Versuchslegierungen war auf 3 mm gewalzt und von 1050°C an Luft abgekühlt worden. Die Ergebnisse der Gefügeuntersuchungen erweiterten bzw. ergänzten das Maurer-Diagramm auf der Chromskala auf der rechten Seite zu höheren Chromgehalten hin.

Dieses, oft fälschlicherweise als Schaeffler-Diagramm bezeichnete Bild, war der Ausgangspunkt für mehrere Arbeiten von A. L. Schaeffler. Aufbauend auf seiner Dissertation von 1944 [4a] veröffentlichte er 1947 eine später vielfach zitierte Arbeit [4b] über umfangreiche Gefügeuntersuchungen an einer größeren Anzahl von Schweißverbindungen (8 austen titische Elektroden mit 2 Basismaterialien). Ausgehend vom Diagramm <u>II</u> (Scherer et al.), das er originalgetreu übernahm (s. III), stellte er für die von ihm untersuchten Schweißverbindungen 11 verschiedene Gefügediagramme auf.

Dabei wurden die Gefügebefunde allerdings nicht mehr nur in Abhängigkeit von dem jeweiligen Chrom- und Nickelgehalt aufgetragen, sondern auch die Wirkung weiterer Legierungselemente berücksichtigt. Die verschiedenen Legierungselemente wurden mit entsprechenden Faktoren versehen. Unter Einbeziehung vorangegangener Arbeiten von Newell-Fleischmann, Post-Eberly, Thielemann und Campbell-Thomas schlug Schaeffler folgende Form der Cr- und Ni-Äquivalente vor:

Cr-Äquivalent = Cr + 2.5 Si + 1.8 Mo + 2 Nb

Ni-Aquivalent = Ni + 0.5 Mn + 30 C

D.h., im neuen Cr-Ni-Gefügediagramm erscheint auf der Abszisse das Cr-Äquivalent (Ferrit-Bildner) und auf der Ordinate das Ni-Äquivalent (Austenit-Bildner). Dieses Diagramm stellte er in einer <u>1949</u> veröffentlichten Arbeit vor [4c]. Aufgrund zahlreicher zusätzlicher Untersuchungen modifizierte er in dieser Arbeit sowohl einige Gefügemultiplikatoren als auch die Gefügebereiche gegenüber seiner 1947 erschienen Arbeit, so, daß nun folgendes Diagramm (IV) und folgende Form der Cr-Ni-Äquivalente (B) vorlagen:

Cr-Äquivalent = Cr + 1.5 Si + Mo + 0.5 Nb

Ni-Äquivalent = Ni + 0.5 Mn + 30 C

Metal Progress Data Sheet; November 1949; Page 680-B

В

<u>A</u>

<u>1960</u> erschien eine ebenfalls oft zitierte Arbeit von H. Schneider [5]. Diese Arbeit beschreibt Untersuchungen an einem 12 % Cr-Stahlguß. Ohne weitere Quellenangaben wird darin das folgende Gefügediagramm (V) gezeigt, das gegenüber dem Diagramm IV von Schaeffler lediglich eine Verschiebung der Linie M/M + δ F und A/A + δ F zeigt, die auf der Abszisse bei 10 beginnt.

<u>V</u>

C

FIG. 1.—Structural diagrams of chromium steel and chromium/nickel steel (chromium equivalent = Cr + 2 Si + 1.5 Mo + 0.5 Nb, and nickel equivalent = Ni + Co + 0.5 Mn + 30 C + 7.5 Nb.

Bei den Faktoren für die einzelnen Legierungselemente fällt auf, daß Nb mit 0,5 bei Chrom und mit 7,5 bei Nickel steht.

Dagegen wird Schneider in der Arbeit von Briggs-Parker <u>1965</u> [6] in bezug auf die Cr-Ni-Äquivalente wie folgt zitiert und ergänzt durch weitere Elemente anderer Autoren:

<u>Schneider</u>	andere Autoren					
Cr _{Äqu.} = Cr + 2 Si + 1.5 Mo + 5 V	+ 5.5 Al + 1.75 Nb + 1.5 Ti + 0.75 W					
Ni _{Äqu.} = Ni + 0.5 Mn + 30C + Co	+ 0.3 Cu + 25 N <u>D</u>					

H. Ornig wiederum behandelt in einer <u>1968</u> erschienen Arbeit Aufbau-Anwendung und Genauigkeit des Schaeffler-Diagrammes anhand einiger Schweißverbindungen [7]. Er zitiert zwar die Arbeit [4b], benützt aber das Diagramm aus [4c] mit der Darstellung und den Cr-Ni-Äquivalenten nach B. In einer Übersicht über hochwarmfeste 12%-Cr-Stähle [8] zitiert H. Wisniowski <u>1969</u> das Diagramm von H. Schneider (VI = V) die Cr-Ni-Äquivalente allerdings in der Vollständigkeit, wie sie von Briggs-Parker [6] aufgeführt wurden (Form D).

 $\underline{VI = V}$

-Bild-2- Abgeändertes Schaeffler-Diagramm nach H. Schneider 13)

In gleicher Weise wird dieses Diagramm von Honeycombe [9] in seinem Buch 1981 dargestellt mit den Cr-Ni-Äquivalenten nach (D) [6].

K. Anderko hat 1986 für die Elemente Ta, Hf, Ce, Zr Faktoren für die Äquivalentberechnung abgeschätzt:

"Von verschiedenen Ansätzen, die "ferritisierende Kraft" der Legierungselemente mit den empirischen Faktoren F in der Formel zur Berechnung des Chromäquivalentes in Beziehung zu setzen, erwies sich die max. Konzentration, bis zu der die _Y- Phase im binären Zustandsdiagramm mit Fe existent ist (Scheitelpunkt oder Vertex der _Y-Schleife), als am brauchbarsten. In Fällen, bei denen die _Y-Schleife nicht voll ausgebildet ist, da sie durch die Gleichgewichte des Fe-Mischkristalls mit einer intermediären Phase abgeschnitten wird, wurde eine "virtuelle Schleife" aus dem Verlauf der Gleichgewichtslinien bei niedrigen Leg.-Konzentrationen extrapoliert (Fe-Nb, Fe-Ta, Fe-Hf)."

Diese chronologische Darstellung zeigt die rein empirische Entwicklung des Cr-Ni-Gefügediagrammes. Für die Anwendung und Genauigkeit gilt auch weiterhin die schon von Maurer gemachte Einschränkung, die auch z. T. die anderen Autoren machen, daß die Grenzlinie in dieser Schärfe absolut nicht existieren, denn es handelt sich ja nicht um ein Gleichgewichtsdiagramm. Die hauptsächlich metallografisch bestimmten Gefügezusammensetzungen werden unter bestimmten Bedingungen erhalten. Von wesentlicher Bedeutung ist z.B., ob sich das Gefüge im Zusammenhang mit einer Schweißung bildet, oder ob eine Legierung als Block erschmolzen und durch Schmieden bzw. Walzen zu Halbzeugen weiterverarbeitet wird. So kann das Seigerungsverhalten der Elemente bei großen Schmiedeblöcken oder Gußstücken zu Ungenauigkeiten in der Vorausberechnung des δ -Ferrit-Gehaltes führen. Desweiteren steht der chemisch gebundene Anteil der verbindungsbildenden Elemente (Karbide-Nitride) nicht mehr der Äquivalentberechnung zur Verfügung. Auch ist letztlich die Bestimmung des δ - Ferrit-Gehaltes von der Methode abhängig (metallografisch, magnetische Waage). D. h., die vorsätzliche Änderung einzelner Legierungselemente in engen Grenzen bietet keine absolute Gewähr zur Erreichung einer bestimmten Gefügezusammensetzung nach dem Diagramm bzw. δ -Ferrit-Freiheit; vielmehr ist in einer Reihe von Versuchslegierungen der Trend vorgegeben. Daher scheint es auch unerheblich, ob bei der Berechnung der Cr-Ni-Äquivalente beispielsweise Si mit dem Faktor 2 oder 1,5 eingesetzt wird.

Die Verschiebung der Linie M / M + δ -F bzw. A / A + δ -F auf der Abszisse von 7 auf 10 durch Schneider (Diagramm V) kann durch eigene Untersuchungen (KfK-IMF) an einer größeren Zahl von Varianten des CrNiMoVNb-Stahles 1.4914 bestätigt werden.

In der Regel handelte es sich um 25 kg-Chargen, die im Vakuum-Induktionsofen erschmolzen und im Vakuum-Lichtbogenofen umgeschmolzen und zu 4 kt.-Stäben umgeschmiedet wurden. (Firma Saarstahl - Völklingen). In einigen Fällen sind auch Chargen im Tonnen-Bereich hergestellt worden. Bei einer Chargenreihe wurde bei sonst praktisch gleicher Zusammensetzung der Cr-Gehalt systematisch von 9-14% abgestuft (o). Die metallografische Untersuchung ergab für die Chargen mit 9 bzw. 10% Cr ein δ -F-freies Gefüge, bei 11% Cr fanden sich Spuren von δ -Ferrit und die Chargen mit 12-13-14% Cr wiesen δ -F-Anteile von 5%-20%-25% auf.

Das Auftreten von δ -Ferrit in Abhängigkeit von den Schmelz- bzw. Erstarrungsbedingungen konnte an einer weiteren Chargenreihe (\Box) gut verfolgt werden, wie aus der nachfolgenden Aufstellung hervorgeht. Sowohl nach der ersten Erschmelzung im Vakuum-Induktionsofen (\emptyset 90 × 300 mm Block), als auch nach dem Umschmelzen im Vakuum-Lichtbogenofen (\emptyset 100 mm auf 4 kt. 30 mm bzw. 4 kt. 12,5 mm geschmiedet) wurde die chemische Zusammensetzung und der δ -F-Anteil bestimmt.

1. Erschmelzung (Vakuum-Induktionsofen)				Umschmelzung (Vakuum-Lichtbogenofen)		
Chg.	B 696	Äcr Äni δ-Ferrit	= 15,39 = 6,23 = 3-5%	15,10 6,27 Spuren		
	B 694	ÄCr ÄNi δ-F	= 15,0 = 5,99 = 6-8%	15,02 5,93 1-2%		
	B 695	Äcr Äni δ-F	= 14,61 = 4,72 = 10-12%	14,49 4,97 3%		

Diese Gegenüberstellung zeigt, daß die chemische Zusammensetzung und somit die Lage der Äquivalentwerte im Diagramm sich nur unwesentlich ändert, wohingegen der δ-F-Anteil sich deutlich erniedrigt.

Sechs weitere Chargen eines martensitischen 10% CrMnWV-Stahles, die noch zusätzlich Ce + Ta bzw. Ta + Hf (<1%) enthielten, waren δ -F-frei ($\Delta \nabla \Box$).

						¥	
Jahr	Autor	Literatur	A	Diagramm Abszisse-Ordinate		Cr-Ni-Äquivalent	
1920	Strauss-Maurer	/1/	I	Cr-Ni	-/-		
1939	Scherer-Riedrich-Hoch	/3/	II	Cr-Ni	-/-		
1947	Schaeffler	/4b		Ä _{Cr} -Ä _{Ni}	A	Cr+25Si+18Mo+2Nb Ni+05Mn+3oC	
1949	_"_	/4c/	I¥	_"_	В	Cr+1,5Si+Mo+0,5Nb Ni+0,5Mn+30C	
1960	Schneider	/5/	v	- " -	C	Cr+2Si+1,5M0+0,5Nb Ni+0,5Mn+30C+7,5Nb+Co	
1965	Briggs-Parker	/6/	v	_"_	D	Cr+2Si+15M0+5V+55Al+175Nb+15Ti+075W+	
1968	Ornig	171	IV	-"-	В	N1+0,5Mn+30C+C0+0,3Cu+25N Cr Ni	
1969	Wisniowski	/8/	v	_"_	D	Cr Ni	
1981	Honeycombe	/9/	v	-"-	D.	Cr	
1986	Anderko	priv.Inf.			Е	Cr +12Ta+12Hf+1Ce+98Zr+12Ge	
	l	1	• 1	1			

Gefügediagramm der Cr-Ni-Stähle - Historische Übersicht

Literatur

- [1] B. Strauss, E. Maurer "Die hochlegierten Chromnickelstähle als nichtrostende Stähle" Kruppsche Monatshefte 1. Jhrg., August 1920, S. 129-146
- [2] Guillet: Rev. de Met. 1906, S. 462 Giesen: Carnegie Scholarship Memoirs, 1909, S. 15
- Scherer, Riedrich, Hoch [3] "Einfluß eines Gehaltes an Ferrit in austenitischen Cr-Ni-Stählen auf den Kornzerfall Archiv für das Eisenhüttenwesen 13 (1939) Heft 1, S. 53-57

[4a] A.L. Schaeffler

"The Investigation of Microstructures of Single Bead Cr-Ni-Austenitic Weld Deposits on SAE 4340 + V-Stock" M.S. Thesis, Univ. of Wosconsin, June 1944

- [4b] "Selection of Austenitic Electrodes for Welding Dissimilar Metals"
 Welding Research Supplement, The Welding Journal 26 (1947) Heft 10, S.
 601s-620s
- [4c] "Constitution Diagram for Stainless Steel Weld Metal" Metal Progress, 1949, Vol. 56, S. 680 A, B
- [5] H. Schneider
 "Investment Casting of High-hot-strength 12-per-cent. Chrome Steel"
 Foundry Trade Journal, May 1960, S. 562-566
- [6] J.Z. Briggs, T.D. Parker
 "The Super 12% Cr-Steels"
 Climax Molybdenum Company, 1965, S. 6/7
- [7] H. Ohrnig
 "Das Schaeffler-Diagramm, Aufbau-Anwendung-Genauigkeit"
 Zeitschrift für Schweißtechnik 10/1968, S. 307-317
- [8] H. Wisniowski
 "Hochwarmfeste 12% Cr-Stähle"
 DEW-Technische Berichte, 9. Band, 1969, Heft 2, S. 117-133
- [9] R.W. Honeycombe"Steels-Microstructure and Properties"Edward Arnold 1981
- [10] M. Schirra
 "Die historisch-empirische Entwicklung des Gefügediagrammes der Cr-Ni-Stähle"
 Stahl und Eisen 112 (1992) Heft 10, S. 117-120