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Abstract

The results of separate-effects tests performed at the Kernforschungszentrum Karlsruhe (KfK)
and at the Japan Atomic Energy Research Institute (JAERI) on "low-temperature" physico-che-
mical material interactions have been critically reviewed. The range of "low-temperature" mate-
rial interactions spans between 1200 K and 1690 K, the melting temperatures of stainless steel
and Inconel respectively. The following material interaction couples have been examined and
compared with data from literature: Ag / Zircaloy, (Ag,In,Cd) / Zircaloy, stainless steel / Zirca-
loy, Inconel 718 / Zircaloy, B4C / Zircaloy and B4C / stainless steel. In addition the
experimental procedures and the results have been compared. The reaction kinetics generally
obey parabolic rate laws indicating that the basic process is a diffusion controlled. The tempera-

ture dependence of the reaction rates can be described by Arrhenius equations.

The chemical interactions between Ag/Zircaloy and (Ag,In,Cd)/Zircaloy are controlled by
diffusion of Zr into the liquid phase, which is about two orders of magnitude faster than the
diffusion coefficient of Ag in solid Zircaloy.

The stainless steel /Zircaloy and the Inconel / Zircaloy reaction rates measured at KfK and
JAERI show some differences at temperatures below 1373 K, which can be explained by
different contact conditions between the Zircaloy crucible and the stainless steel or Inconel
discs and rods, respectively. At temperatures above 1473 K the crucibles at KfK were liquified,
whereas at JAERI isothermal tests could be performed up to 1573 K, probably due to the higher
Zircaloy mass of the crucibles. The kinetics of both types of interactions are mainly controlled
by diffusion of Zr into the liquid mixtures, which form as a result of eutectic interactions; but

the diffusion of Fe and Ni in the solid Zircaloy cannot be neglected.

The chemical interactions of B4C, the BWR absorber material, are investigated in the reaction
couples B4C/Zircaloy and B4C/stainless steel. Both sets of reaction rates (KfK, JAERI) are

comparable and show nearly the same liquefaction temperatures.

In addition, the influence of thin oxide layers on Zircaloy surfaces (10-100pum) were investiga-
ted. Generally, the oxide layers delay the onset of the chemical interactions and shift the
liquefaction to higher temperatures. Below 45 pm thick oxide layers the KfK and JAERI results
are comparable and can be explained by oxygen diffusion from ZrO7 into -Zircaloy until the
ZrO7 has been dissolved completely. At higher oxide layer thicknesses the porosity of the ZrO9
allows some penetration of Fe, Ni, and Zr, so that the time delay does not increase with

increasing oxide layer thickness as observed below 45 pm.



Materialwechselwirkungen wiahrend eines schweren LWR-Stérfalles
Zusammenfassung der Ergebnisse von Einzeleffektuntersuchungen

Kurzfassung

Die Ergebnisse von Einzeleffektuntersuchungen von physikalisch-chemischen "Nieder-
Temperatur"-Materialwechselwirkungen, die am Kernforschungszentrum Karlsruhe (KfK) und
am Japan Atomic Energy Research Institute (JAERI) durchgefiihrt wurden, sind kritisch
tberpriift worden. Der "Nieder-Temperatur"-Bereich erstreckt sich von 1200 K bis 1690 K, der
Schmelztemperatur von Edelstahl und Inconel. Die folgenden Materialkombinationen wurden
untersucht und mit Literaturwerten verglichen: Ag / Zircaloy, (Ag,In,Cd) / Zircaloy, Edelstahl /
Zircaloy, Inconel 718 / Zircaloy, B4C / Zircaloy und B4C / Edelstahl. Ferner wurden die experi-
mentellen Methoden gegeniibergestellt. Die Reaktionen verlaufen nach einem parabolischen
Zeitgesetz, ein Hinweis, dal es sich um Diffusionsprozesse handelt. Die Temperaturab-
hingigkeit der Reaktionsraten kann durch eine Arrhenius Gleichung beschrieben werden.

Die chemischen Wechselwirkungen von Ag/Zircaloy und (Ag,In,Cd)/Zircaloy werden durch
Diffusion von Zr in die fliissige Phase bestimmt, die etwa zwei Groenordnungen schneller ist
als die Diffusion von Ag in festem Zircaloy.

Die in den KfK- und JAERI-Experimenten gemessenen Reaktionsraten von Edelstahl / Zircaloy
und Inconel / Zircaloy zeigen unterhalb von 1373 K gewisse Differenzen, die auf unterschiedli-
che Kontaktbedingungen zwischen dem Zircaloy-Tiegel und den Edelstahl- oder Inconel-
Scheiben bzw. -Rundstében zuriickgefiihrt werden kénnen. Oberhalb von 1473 K verfliissigen
sich die Tiegel in den KfK-Experimenten, wihrend bei JAERI isotherme Versuche bis ca. 1573
K durchgefiihrt werden konnten, offenbar aufgrund der gréBeren Zircaloy-Masse der Tiegel.
Die Reaktionskinetik der beiden Wechselwirkungstypen wird hauptsichlich durch die Diffusion
von Zr in die fliissige Phase bestimmt, die sich aufgrund der eutektischen Wechselwirkung
bildet; die Diffusion von Fe und Ni im festen Zircaloy kann jedoch nicht vernachléssigt werden.

Die chemischen Wechselwirkungen des SWR-Absorbermaterials B4C wurden in den Material-
paarungen B4C / Zircaloy und B4C / Edelstahl untersucht. Die Ergebnisse der KfK- und
JAERI-Experimente sind vergleichbar und zeigen fast dieselben Verfliissigungstemperaturen.

Zusitzlich wurde der Einfluf von diinnen Oxydschichten auf dem Zircaloy (10-100pum) unter-
sucht. Im allgemeinen verzogern die Oxydschichten den Beginn der chemischen
Wechselwirkung und verschieben die Verfliissigung zu héheren Temperaturen. Unterhalb von
ca. 45 um Schichtdicke sind die KfK- und JAERI-Ergebnisse vergleichbar. Die
Verzégerungszeit kann allein durch die Sauerstoffdiffusion vom ZrO7 ins metallische (-
Zircaloy bis zur vollstindigen Auflosung des ZrOy erkldrt werden. Bei hoheren
Oxydschichtdicken erlaubt die zunehmende Porositdt der Oxydschicht eine gewisse
Durchdringung von Fe, Ni und Zr, so dal die Verzégerungszeit nicht mehr mit zunehmender
Oxydschichtdicke ansteigt wie unterhalb von 45 pum.
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1. INTRODUCTION

As part of the post-accident analysis of the partial core-meltdown accident at TMI-2 a great
number of integral experiments have been performed to investigate the physico-chemical mate-
rial phenomena and processes during a severe fuel damage (SFD) accident /1/. Within the reactor
safety research program "Projekt Nukleare Sicherheitsforschung" (PSF) at the Kernforschungs-
zentrum Karlsruhe (KfK) extensive separate-effects tests were performed as a part of the CORA

program.

The state of common understanding of the different material behavior processes documented in
/1/, defines some areas which are not yet completely understood. One of these areas is the influ-
ence of the early-phase core melt formation on the further damage and melt progression within a
bundle or a core. The early-phase melt phenomena include liquefaction of fuel rod cladding, In-
conel spacer grids, stainless steel tubes of the control rods, and control rod alloy (absorber alloy)

due to eutectic interactions.

The CORA early-phase core melt progression experimental program is focused on the investiga-
tion of material behavior phenomena /2/ to provide a database necessary for model and code
system development and verification /3/. Analyses of the global behavior of fuel elements have
been performed, based on measurements of the fluid composition (steam and argon), temperatu-
res of the heated and unheated rods and spacer grids, internal fuel rod pressures, and material re-
locations during the tests as well as axial material redistribution, changes in the bundle cross-sec-
tion, hydrogen generation, and oxidation state after test /4,5/. The results indicate that eutectic
interactions do initiate or trigger low-temperature early-phase melt progression in a fuel rod bun-

dle due to the formation and release of liquid materials.

To explain the different chemical compositions of various reaction products, formed by chemical
interactions between stainless steel (SS) / Zircaloy® (Zry), Inconel®/ Zircaloy or (Ag,In,Cd) /
Zircaloy B4C / SS, and B4C / Zry , found in CORA experiments /6,7/ as well as in material
examinations of core bore specimens taken from the degraded TMI-2 reactor core /8/, separate-
effects tests were performed at KfK and the Japan Atomic Energy Research Institute (JAERI). To
investigate the influence of thin oxide layers on the Zircaloy surface, pre-oxidized Zircaloy was

used in addition to as-received material.

The first aim of this report is to compare the different results obtained by KfK with those from
JAERI and to explain apparent discrepancies in some experimental results. The main aims,

however, are to identify common mechanism of these chemical interactions and to describe the

(1) ZIRCALOY is a trademark of Westinghouse Electric Company, Pittsburg, PA. In this report Zircaloy-4 is meant.
(2) INCONEL is a trademark of the INCONEL Corporation, USA. In this report Inconel-718 is meant.
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influence of thin oxide layers on the Zircaloy cladding surfaces on the chemical interactions.
Finally recommendations are given on how this data base should be used for model development

and verification.



2. MATERIAL INTERACTIONS DURING SFD-ACCIDENTS

Severe reactor accidents can be divided into several phases depending on temperature and boun-
dary conditions in the core and the primary cooling system. To investigate the material behavior
phenomena and processes during these phases integral bundle test were performed in-pile as well
as out-of-pile /1/. The most significant phases of a severe accident will be illustrated using an
integral out-of-pile test, which was performed in the CORA test facility (s. Figure 1 /6/). The
CORA bundle tests were well instrumented to obtain all data necessary for the explanation of the
phenomena and the physico-chemical material processes observed /1,2/. As an example, the
pressurised water reactor (PWR) specific test CORA-13 was choosen, which was also selected
by the OECD/ CSNI as an International Standard Problem (ISP-31) /6/.

The experimental results of the test CORA-13 are summarized in one test-sequence diagram (s.
Figure 2 /3/), which allows a precise reconstruction of the time-dependent test history of the
bundle. The diagram is composed of three parts representing the most significant phases of the
test. It starts at 3000 s with the initial heat-up phase and ends with the quench-phase, which is
magnified for better resolution.

In the upper part of the diagram the phenomena occuring in an axial test-section length of 1.2 m
are represented as a function of time. The temperatures are given as temperature front (TF) lines
derived from the thermocouple measurements of the heated rods (dashed lines, indicated by S).
The TF-lines indicate in the vertical direction the axial temperature gradient at any time between
3000 s and 5050s and in the horizontal direction the temperature histoty at any axial elevation
between 0.0 m and 1.20 m. Furthermore, local temperatures measured at grid spacer locations are
marked (upper Zircaloy spacer grid: Z, Inconel spacer grid: I), to demonstrate their thermal
response during heat-up.

Cladding failure derived from the measured internal rod pressure history (dotted area) and the
bundle melt progression observed as melt release and relocation in the video films (dashed area)
are also shown in_Figure 2. The bundle melt progression shows many details which would com-
plicate this picture too much, so that only the first and the last phenomena are indicated. At the
lower end of this part, the melt drainage into the water pool obtained by analysis of thermocouple

readings near the water level in the quench tank (s. Figure 2) is shown by droplet symbols.

The center part of Figure 2 gives the fluid composition at the lower end of the bundle. Here, the
time delay caused by mixing of steam in the Ar carrier gas after 3300 s in the large cavities of the
steam generator system is taken into account, as well as evaporated water from the quench tank
(Figure 1). At temperatures beyond 1500 K (see upper part) the Zircaloy/steam reaction pro-

duces large quantities of hydrogen, especially during the quench process. The mass flux of
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hydrogen measured in the off-gas system is represented by the dashed area. Moreover, the
electric bundle power ramp (P,;) is shown (dashed-dotted line).

Combining all the data in Figure 2, the axial and temporal locations of the phenomena observed
can be given for each test-phase. The sequence of phenomena, listed in the lower part of Figure
2, allows a classification of the recognized effects concerning their influence on the damage initi-
ation and damage progreésion (local or global), which is valid for all PWR-specific CORA tests.

The phases indicated in Figure 2 are chosen by temperature and experimental conditions (shut
down of electrical power starts the cool-down phase) . For material interactions the escalation
phase must be split into a phase of low-temperature interactions (s. section 2.2) and one of high-
temperature interactions (s. section 2.3). This split is rather uniform in the axial direction as can be
seen in the TF-lines of Figure 2. The TF-line of 1773 K approximately indicates the beginning of
the high temperature phase with melting of stainless steel and Inconel, as indicated in Figure 3.

2.1. THERMOHYDRAULIC PHASE

If in a nuclear reactor design basis accident the heat sinks or the heat transport mechanisms
(forced or natural convection) fail, the temperatures in the core increase and the evaporation of
the water results in uncovering of the upper part of the core. In the remaining water as well as in
the two phase region above, low temperatures are maintained, whereas in the dry or superheated
steam region above the water level rapid temperature increase of the fuel rods occurs. Assuming
adiabatic boundary conditions for the fuel elements an average heat-up rate of 1 K/s is estimated,

which was used as a guidance for the performance of most of the CORA tests.

Therefore, the heat-up phase indicated in Figure 2 is the end of the thermohydraulic phase of a
SFD accident, leading to temperatures which allow the melting of PWR control rod material (Ag,
In, Cd; indicated by the 1073 K TF-line) and ballooning or collapsing of the cladding tubes. Up
to the end of the thermohydraulic phase (T < 1200 K) only the beginning of the oxidation of
Zircaloy and stainless steel has to be considered.

For accident management measures, this phase has the largest potential for delaying the heat-up
of the core which leads to temperatures above 1500 K and to subsequent core damage and

possibly also core meltdown.
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2.2, LOW-TEMPERATURE MATERIAL INTERACTIONS

The range of physico-chemical material interactions and the formation of liquid phases covers
more than 2000 K, starting at around 1000 K with the melting of (Ag,In,Cd) alloy and ending
with the melting of UO, at about 3000K. The interval of low-temperature material interactions
spans up to 1750 K, the liquidus temperatures of stainless steel and Inconel (s. Figure 3). In
Figure 3 the chemical material interactions and the formation of liquid phases are shown on the
left side. In the center part, the processes occurring during a PWR SFD accident for a control rod
are given as a function of temperature and initial pressure ratio (bottom). The behavior of the fuel
rods, however, is much more complicated, so that it is divided into mechanical , physical and
chemical behavior. At the left side of Figure 3 typical time scales calculated from the initial
heat-up rates (min: 0.2 K/s max.: 1 K/s) are outlined. The corresponding reaction kinetics of the
indicated chemical interactions are summarized in Figure 4, which gives an overview of the
reaction kinetics of the low- and high temperature material interactions /2,15,21,26,31/.

In detail Figure 3 shows schematically the influence of individual processes on the global course
of a SFD accident during early phase melt relocation up to the formation of ceramic (U-Zr-O)
melts. As can be seen easily, low-temperature material interactions strongly influence the integral

behavior of the bundle by formation of predominantly metallic melts.

From the isothermal section of the ternary phase diagram Fe-Ni-Zr /8, 9/ and the relevant binary
phase diagrams of Fe-Zr or Ni-Zr /10/, the lowest eutectic temperature is found in the Fe-Zr
system at about 1200 K on the zirconium rich side. This temperature is exceeded in the center of
the bundle after 3800 s and in the lower third between 3900 s and 4100 s as can be seen in Figure
2. With respect to the physical state of the reaction components (bundle or core elements) three
types of interactions can be distinguished (s. Figure 3):

1. Solid - gaseous reactions at the interface bundle components-fluid:
- Oxidation and embrittlement of Zircaloy in a steam atmosphere,
- Oxidation of stainless steel and Inconel, and

- Hydrogen dissolved in metallic Zircaloy (below 1200 K /12/)
(so far not observed in CORA fuel rod bundles).

2. Solid - solid chemical interactions :
These only take place as long as no liquid phases in the reaction zone appear, for example

due to eutectic interactions:
- Inconel springs in spacer grids with the Zircaloy of the cladding tubes,

- BWR control rod material (B4C) in contact with the stainless steel tubes,
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- Beginning of fuel dissolution due to interaction with Zry cladding,

- Stainless steel of the PWR control rod cladding with the Zircaloy of the control rod guide
tube.

3.  Solid - liquid chemical interactions:

- PWR control rod material (80 wt% Ag, 15 wt% In, 5 wt% Cd /11,14,15/) with the Zir-
caloy of the cladding surface after failure of the stainless steel cladding of the control rod,

- BWR absorber material (B4C) and stainless steel mixtures (B4C+SS) with the Zircaloy of
the canister walls and adjacent fuel rods.

A change from solid-solid interactions to solid-liquid interactions can sometimes be detected by
a sudden increase of the reaction rates, as observed in the B4C/Zry system (s. Figure 8 ) /31/. The
interactions and the reaction kinetics are discussed in section 4 in detail.

Low-temperature material interactions result in the formation of a metallic melt. The uranium
concentrations in the stainless steel-Zircaloy and Inconel-Zircaloy melts are negligible as long as
solid Zry protects the UO- pellets from being attacked by the melt. If such metallic melts remain
in the hot zone of a bundle, they will be transformed into ceramic phases by steam oxidation of
(Fe,Cr,Zr). The lowest liquefaction temperature of the eutectic material interactions is exceeded
at around 3900 s at app. 0.9 m elevation (see Figure 2).

In CORA-13 the failure of the fuel rod cladding was indicated at app. 4100 s by a drop of the
internal rod pressure from 0.45 MPa to system pressure (0.22 MPa). The initial internal rod pres-
sure was kept low to avoid clad ballooning. From the video films, however, first melts were
observed earlier, as rivulets at 4080 s at 0.8m and as droplets at 0.4 m bundle elevation. No
identification of the origin of the melts was possible. This indicates that the interaction between
stainless steel and Zry at the control rods has perforated the Zry guide tube wall earlier than the
interaction between Inconel and Zry at the upper grid spacer at app. 0.85 m.

Though material thicknesses and interaction kinetics are of the same order of magnitude, the dif-
ferences in the axial temperature distribution inside the bundle (given by the TF-lines between
3900 s and 4100 s) have to be considered too. Also, it can be assumed that no large protective
oxide layer has been formed on the inner surface of the Zry guide tube, retarding the onset of
interaction. Further on, the internal pressures of the fuel rods and the simulators, as well as those
of the control rods and the system pressure influence the burst times /3/. Considering all these
uncertainties, including the errors in the temperature measurements, only one conclusion can be
given: the two independent concurrent processes lead to perforation of the cladding tubes in the

same time period but at different elevations and temperatures.
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From the axial bundle temperature profiles the axial location of the perforation of the guide tubes
is located at 0.95 £ 0.1 m, whereas the fuel rod claddings fail at the upper Zircaloy spacer location
at 0.88+0.02 m bundle elevation.

After release, the molten (Ag,In,Cd) PWR absorber alloy comes into contact with the cladding
surfaces of the adjacent fuel rods. The subsequent interactions between the control rod alloy and
the fuel rod cladding cannot be observed directly. To identify and locate results of the material
interactions, metallurgical post-test examinations of bundle cross-sections at elevations where
relocated material is present are necessary. Here the observation of the mass of the adherent
material as well as its chemical composition are helpful in understanding the physical and

chemical phenomena which take place.

During the time required for the perforation of the cladding its temperature is increased up to
1773 K, so that melting of metallic bundle components (stainless steel and Inconel) is a simulta-
neous process. As can be seen, the heat-up rate limits the dissolution time, so that in this case a
clear separation between the different processes cannot be obtained by the global analysis.
Metallurgical analyses of the reaction products, however, cannot distinguish between the proc-
esses, because the subsequent high temperatures during the test transient (s. Figure 2) destroy the
initially formed eutectic interaction products.

2.3. HIGH-TEMPERATURE MATERIAL INTERACTIONS

In Figure 3 the boundary between the high- and low-temperature phase is arbitrarily defined as
the melting point of stainless steel, the maximum temperature considered for low-temperature
material interactions. The high-temperature material interactions end at around 3000 K, above
which only melting of all initial materials or reaction products takes place. Above 1773 K the
material interactions are strongly accelerated by the fast heat-up (about 10 K/s) due to the
exothermic Zircaloy oxidation by steam, starting at around 1500 K. If enough oxygen from the
steam environment is available all metallic surfaces or melts which have been released after

cladding failure, will be covered with oxide layers at these temperatures.

The main reactions in the reactor core to be considered are:
1. Oxidation of Zircaloy and stainless steel by steam,
2. Fuel dissolution by molten Zircaloy in contact with the UO» pellets,

3. Interaction between disintegrated and /or partially dissolved UO7 and molten Zircaloy
forming a metallic (U-Zr-O) melt with ceramic precipitations at higher temperatures /2/,

4. Eutectic reaction between o-Zr(O) and ZrO», and
5. Oxidation of the fuel by steam, and



6. Oxidation of the B4C by steam.

Furthermore, at high temperatures melting of remaining core components or reaction
products can occur:

7. B4C, AlpO3 (burnable poison rods in some US PWRs), and
8. ZrOy, and UO7.

In the CORA-13 test, reactions 1 to 5 are found, the other phenomena cannot occur because these
materials were not present (5, 6) or the temperature did not reach the melting points (7, 8). The

melts formed during this period have mostly a ceramic character.

As can be seen by the TF-lines in Figure 2, these material interactions took place up to 4100 s in
the upper third of the bundle. The heat transport by relocating melts with subsequent solidifica-
tion increases the temperatures in the lower third of the fuel rod bundle, which remained rather
cold due to the enhanced convective cooling /3/, so that these high-temperature interactions can
occur only down to 0.15 m bundle elevation. Due to failure of the thermocouples after 4700 s in
the lower half of the bundle, no temperature information is available on cool-down, but it can be
assumed that the temperatures remain above 1773 K up to the beginning of the quench phase.

During the quench phase a secondary renewed heat-up is detected for a short period of time be-
tween 0.7 m and 1.0 m bundle elevation indicating that there was sufficient metallic material left,
though protected by oxide layers. The thermal shock of the materials induced by the two-phase
liquid above the flooding front (water) cracks the protective oxide layers creating fresh metallic

surfaces, which will be oxidized immediately by steam.

The short time period at high temperature, less than 30 s above 2273 K, give some hints about
the amount of metal which remaind for further oxidation. Generally, two processes stop finally
the oxidation, cool-down below 1200 K and the lack of metallic Zircaloy. For example, above
0.9 m bundle elevation the oxidation is stopped earlier, as the temperature drops due to the
quench front reaching this bundle elevation. This may indicate, that rather than a complete

consumption of the metallic Zr, the sudden temperature decrease has stopped the oxidation.

Generally, the large amount of hydrogen produced in the quench phase can be explained by the
sudden increase of the metallic surface at high temperature, due to crack formation in the

protective ZrO» layer and the subsequent oxidation by steam.



3. RESULTS OF SEPARATE-EFFECTS TESTS

The short overview of the early phase melt progression phenomena in a PWR fuel rod bundle or
core indicates that the processes leading to damage of fuel rods are the failure of control rods, the
release of absorber alloy (Ag, In, Cd), and the subsequent chemical attack of the Zircaloy fuel
rod claddings by the ejected absorber alloy. Therefore, these chemical interactions have to be
investigated in detail. The reaction kinetics have been examined in separate-effects tests in Ger-
many (KfK) and Japan (JAERI). For all investigations the zirconium alloy used was Zircaloy-4
(Zry) and the nickel-based alloy Inconel 718 (Inconel).

3.1. EXPERIMENTAL SETUP

At the Institut fiir Materialforschung (IMF) of the Kernforschungszentrum Karlsruhe (KfK) iso-
thermal annealing experiments were performed in a high temperature muffle furnace which pro-
vides an isothermal environment, so that the small reaction samples do not experience any tem-
perature gradient /13,14,15,21,26,31/. All test configurations show similar cylindrical arrange-
ments as can be seen in Figure 5a (left), except for the liquid-solid separate-effects tests perfor-
med at JAERI (s. Figure Sa right) /15/.

At the Department of Fuels Reliability Laboratory of the Japan Atomic Energy Research Institute
(JAERI) experiments were performed below 1473 K in an resistance furnace and above up to
1953 K in an infrared-mirror furnace shown in Figure 5b . Here the samples are inserted in a
quartz crucible, which is encapsulated by tantalum cladding which acts as a radiation receiver (s.
Figure 5b). A surrounding quartz tube protects the four heater pins. The atmosphere, inert or
oxidizing (steam), is controlled by flow-meters. The main heat transport mechanism is radiation
amongst the four heater pins, the tantalum cladding, and the crucibles or test materials.

In the separate-effects tests typical heat-up rates are about 5 - 10 K/s. The cool-down rates
depend on the stored (latent) heat and the cooling conditions. Depending on the temperature the

annealing times vary from one to several hundred minutes.

3.2. POST-TEST INVESTIGATIONS

After the test, the samples were mechanically cut, grinded, polished and analyzed by an optical
microscope. The extend of the interaction zone has been measured at several positions to obtain
the minimum, maximum and the average thicknesses of the remaining materials. Though the in-
teraction zone is often not planar and varies circumferentially the average value is appropriate to

define the kinetics. With respect to perforation, however, the maximum value gives the minimum
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time required to dissolve a given thickness of Zircaloy and can be used as a conservative ap-
proach.

Moreover, special reaction zones of interest were examined by a scanning electron microscope
(SEM) with an energy dispersive X-ray (EDX) system to obtain the detailed structure and the
morphology of the interaction zone and the spatial distribution of the elements. The latter infor-
mation is very useful to determine the most significant reactions between the components of the
investigated material couples. The shape of the interfaces gives some hints about the basic

diffusion processes leading partially to liquifaction due to eutectic reactions.

3.3. INVESTIGATED‘SYSTEMS

3.3.1. Absorber Alloy (Ag,In,Cd) / Zircaloy

The absorber alloy of PWR control rods is the material with the lowest melting point (T,,~1073
K) in a LWR core. The (Ag,In,Cd) alloy is kept in its stainless steel cladding until this fails (s.
Figure 3). Latér, when released under high internal pressure (low system pressure) after mechani-
cal or chemical failure of the stainless steel cladding and the Zircaloy guide tube the interaction
with the cladding of adjacent fuel rods becomes interesting. Liquid control rod material reloca-
ting down the fuel rod cladding causes chemical interactions which are assumed to be the
processes initiating cladding failure and subsequent flowering /5/.

Generally, all separate-effects tests performed at KfK /14,15/ and JAERI /16-18/ show that the
reaction kinetics of the chemical interactions (Ag, In, Cd)/Zry and Ag/Zry lead a rapid dissolu-
tion of the Zircaloy by the liquid. The reaction rates are listed in Table 2.

At KfK the liquid control rod alloy (Ag,In,Cd) is kept in a Zircaloy crucible of 6 mm inner di-
ameter with a 2 mm thick wall which is closed gas-tight by a conical Zircaloy plug (s. Figure 5a).
At JAERI a Zircaloy disc is immersed in the liquid alloy, which is kept in a quartz crucible as
can be seen on the right side Figure Sa. In both cases the ratio of interface surface and liquid
volume is comparable, but at KfK the initial mass of Zircaloy is twice as high. At temperatures
near the melting point of the absorber alloy (low overheating) saturation along the solid-liquid
interface can occur for long annealing times.

The annealing capsules at JAERI allow evaporation of the cadmium (app. 0.1 MPa at 1500 K),
so that a reduction of the Cd content in the absorber alloy cannot be excluded for long annealing
times and/or high temperatures. Quantitative data of the concentration of Ag, In, Cd, and Zr in
the solidified liquid after the test are not available. In real SFD accidents the early released con-
trol rod alloy still has the initial composition, whereas after some time the Cd content will be de-
creased /18/ so that the liquid alloy is mainly composed of Ag and In.



-1 -

To compare the results of the different test series the measured reaction rates (x’/t) and the corre-
lations obtained from the experimental data are plotted versus the reciprocal temperature in
Figure 6. The Arrhenius plots show the reduction of the Zircaloy wall or disc thickness due to the
dissolution in the molten Ag or (Ag,In,Cd) absorber alloy. The two upper solid lines reflect the
interaction between liquid absorber alloy and Zircaloy. Between the experimental results of KfK
and JAERI no pronounced difference can be observed . The data are completely within the error
bands.

For comparison the interaction between liquid Ag and Zircaloy is also shown (dotted line). A
larger difference in the reaction kinetics is found between the (Ag,In,Cd) / Zry and the Ag / Zry
interaction systems. The deviation is large at lower temperatures and levels out near liquifaction
temperature at about 1500 K, this behavior will be discussed in section 4.1.2.

Moreover, at KK the (Ag,In,Cd) / pre-oxidized Zry interaction was examined using a Zircaloy
crucible with an initial ZrO- layer of 10 um thickness (dashed line). A different behavior is seen
comparing the results obtained with a protective thin oxide layer with those obtained from as-
received materials. The reaction rates are about one order of magnitude smaller. The reaction
rates given here x%(t-tg) do not account for the "incubation time" t( necessary to convert the
protective ZrO» layer into an a-Zr(O) layer. The basic processes are discussed in section 4.2.1 in
detail.

The results are consistent with each other, as can be seen in Table 2 and Table 6. The influence

of the In and Cd on the dissolution, however, has to be checked in detail (see section 4.1.2).

3.3.2. Stainless Steel / Zircaloy

In PWR's each control rod is composed of a Zircaloy guide tube in which a stainless steel tube
containing the absorber alloy (Ag, In, Cd) is inserted. The stainless steel / Zircaloy interaction
occurs at the contact positions between the outer surface of the control rod cladding and the inner
surface of the guide tube. As already pointed out the ratio between inner pressure (hydrostatic
and vapor pressure) and system pressure influences the contact pressure in radial direction (s.
Figure 3). Also after perforation of the claddings the axial and radial relocation of the molten
control rod alloy is dominated by this pressure ratio, until the whole amount of the liquid control
rod alloy above the location of the breach is released.

At KK stainless steel (AISI 316) rods are pressed into a Zircaloy crucible (s. Figure 5a) so that,
due to the smaller thermal expansion of Zircaloy, a good solid-state contact is established at
higher temperatures /15,23/.
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The same geometrical arrangement is used at JAERI /20/ (s. Figure 5a ) but here stainless steel
AISI 304 instead of AISI 316 was used (see section 4.1.3.). Furthermore, the crucible walls were
3 mm thick and the initial Zry mass was nearly twice as high. An annular gap of 50 pm separates
both species in the radial direction at room temperature. No information about the real contact
conditions at temperature is available, but from the individual thermal expansion coefficients /13/
it can be calculated that the annular gap should have disappeared by around 1330 K.

After the test in all cases a nearly homogenous interaction layer is found, which was liquid at
temperature. The decrease of the stainless steel rod diameter (dashed lines) and Zircaloy (solid
lines) wall thicknesses were measured. The results obtained at KfK are indicated by dark lines,
whereas those of JAERI are drawn as light grey ones (s. Figure 7). Both materials participate to
different extents in the chemical interactions. Within the error band of the experiments both sets
of results are comparable, even taken into account the different chemical compositions of the
stainless steel alloys (316, 304). The measurements at 1523 K made by JAERI have to be
checked because no solid stainless steel remained to be measured. One possible reason is the
higher Zry inventory leading to a complete liquifaction of the stainless steel at around 1473 K.
The correlations obtained from these data are nearly parallel indicating that no change in the ba-
sic interaction process occurs between 1273 K and 1573 K. A list of the reaction rates is given in
Table 3.

For comparison the results of isothermal diffusion-bonding experiments /23/ at 1373 K between
stainless steel 304 and Zircaloy are outlined in Figure 7 as single symbols (+,0). The slightly hig-
her reaction rates can be explained by the good solid state contact, which was achieved by poli-
shed surfaces and good positioning of both materials using a spring load during annealing time.

In addition, the influence of a initial thin oxide layer (< 50 um) on the Zircaloy surface is inves-
tigated. The results (s. Figure 13) will be discussed in section 4.2 in comparison with those of the
reaction couples (Ag,In,Cd) / Zircaloy (s. Figure 6 ) and Inconel / Zircaloy (s. Figure 14 ).

3.3.3. Inconel 718 / Zircaloy

All fuel rods of a LWR fuel element (FE) are fixed laterally by grid spacers, which are mounted
at app. 0.5 m to 0.7 m distances along the rods. Two types of spacer grids are used: pure Inconel
spacers and Zircaloy spacers with springs made of Inconel 718 or another nickel-based alloy. So
the local areas of interaction are well defined and it only depends on the local temperature, which

can be obtained from the axial temperature profile, whether or not interaction starts.

In the CORA tests the Inconel / Zry interaction leads to perforation of the fuel rod cladding at

around 1500 K releasing the fill gas as noticed in the internal pressure recordings. From the axial
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temperature gradient it can be deduced that the upper Zircaloy spacer is the first of the three
spacers in the CORA bundles which exceeds 1230 K (s. Figure 2).

In Figure 8 the temperature dependence of the reaction rates in Inconel (dashed lines) and in the
Zircaloy (solid lines) are given (s. Table 4). Both materials participate e.g. are consumed to diffe-

rent extents in the chemical interactions. The experimental results obtained at KfK are indicated
by light grey lines /25, 26/, whereas those obtained by JAERI /27, 28/ are drawn by black ones.
The activation energies for the reaction rate of the Zry attack are nearly the same up to app. 1423
K. The difference in the reaction rates is within the experimental accuracy, as can be seen by the
single points. At app. 1440 K, however, a sudden increase (jump) of one order of magnitude is
detected for the JAERI data, which may be correlated with the formation of a liquid phase (an
eutectic at the Zr-rich side of the binary Ni-Zr phase diagram). This behavior was not observed in
KK experiments.

The reaction rates for Inconel are about one order of magnitude smaller. Up to 1373 K the results
of both sets of experiments fit very well, the activation energy differs only slightly. Above this
temperature, no data from the dissolution of the Inconel are available, due to its complete
liquifaction. A complete list of the measured reaction rates is given in Table 4.

Except for the increase of the reaction rates discussed above, the kinetics of this system are com-
parable with the interaction system stainless steel/Zircaloy and are discussed in section 4.1.3. Also
the influence of an initial oxide layer on the Zircaloy is analyzed and compared with results obtai-
ned from the other interaction systems, The results coincide with measurements at 1273 K /29/.

Separate-effects tests with real geometries were also performed at JAERI /28/, using a represen-
tative segment of an Inconel spacer grid and LWR fuel rod cladding. Without an initial protec-
tive oxide layer on the cladding the well-known structure of the reaction zone was observed:
a small layer adjacent to the Inconel (51 pm) with an enriched Cr content and a much larger layer
in Zircaloy (330 pm, 1248 K, 900s in Ar), liquid at temperature.

Tests performed in pure oxygen revealed no interaction below 1473 K. Above this temperature
the onset of the reaction was observed to be retarded, while the oxidation of the Zircaloy conti-
nues. The thicknesses of the oxide layers obtained are calculated by phenomenological equations
to 10-20 pm on the uncovered surface of the tube cladding /30/. At the contact area it is assumed
that no oxide layer has formed. The observed behavior correlates with results obtained earlier
124/.

In the real geometry, however, the molten materials are not kept at place, so that the liquid can
relocate axially and laterally. The liquid increases the contact area so that parts outside the initial
contact area can be partially dissolved too.
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3.3.4. By4C/Stainless Steel and B4C / Zircaloy

In BWR's the control rod is composed of four blades forming a cross. Each blade is composed of
numerous small stainless steel tubes containing boron carbide powder. In axial direction, the pow-
der is kept in place by stainless steel bullets, which are crimped within the stainless steel tube of
the control rod. The control rod failure is initiated by the interaction between boron carbide and

stainless steel,

Direct contact to the adjacent flow channel walls of the fuel elements (canister) made of Zircaloy
is possible due to bowing of the absorber blades at higher temperatures or after failure of support
structures. From integral tests it is known that also molten stainless steel - boron carbide (B4C)
mixtures can interact with the Zircaloy of adjacent fuel rod channel (canister) walls. In case of

bowing a solid-state contact is established.

The two interaction systems B4C/stainless steel and B4C/Zry are therefore discussed together in
this section. So far results of separate-effects tests (s. Figure 9) are available for B4C/SS 316 from
KfK 731/, for B4C/SS 304 from JAERI /30/, and for B4C/Zry from KfK /31/ and JAERI /30, 32/.

A complete list of the reaction rates is given in Table S.

Furthermore, at JAERI the interaction behavior of B4C powder (solid grey line) was compared
with that of B4C pellets (short dashed line), which were used in liquid metal fast breeder reactors,
but no significant difference in the reaction kinetics could be observed. The chemical interaction
only allows the measurement of the decrease of the Zry wall thickness or stainless steel discs
directly. Another method would be the determination of concentration profiles across the interac-
tion zone. The interaction zone shows some layered structures which are discussed in /31,33/.

In the B4C/stainless steel system reaction rates are available from KfK (long dashed lines) up to
1523 K and from JAERI up to 1623 K (s. Figure 9). Up to app. 1300 K the KfK results are below
those obtained at JAERI. The original KfK correlation was steeper, indicating a slightly higher ac-
tivation energy compared to the results of JAERI, in the same manner as observed in the stainless
steel Zircaloy system (s. section 3.3.2). Theoretical consideration indicated that the results of the
B4C/Zry interaction have to be checked again /33/, neglecting the results at the lowest tempera-
ture (1073 K) and including those of 1573 K. The corresponding correlation is shown as the thin
dash-dotted line which is nearly equal to the latest experimental result obtained by JAERI /32/.

Around 1500 K a jump of the reaction rates for the system B4C/stainless steel of more than two
orders of magnitude is noticed which can be explained by a liquifaction of the B4C /stainless steel
interaction layer shortcutting the diffusion path. One possible reason why this behavior was not
observed at KfK may be the different mass ratio and will be discussed in detail in /33/.

A detailed discussion of both interaction systems will be performed in section 4.1 .4,
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4. DISCUSSION

The experimental results obtained from the separate-effects tests performed so far are classified
and compared with respect to the type and the kinetics of the interactions. Furthermore the rele-
vant chemical processes will be discussed. The reaction kinetics of the investigated chemical in-
teractions generally show a parabolic behavior of the interface movement, indicating that the
basic process should be a diffusive mass transport either in the solid or in the liquid phase(s).

A liquid phase is present from the beginning for the Ag/Zry and the absorber alloy (Ag,In,Cd)/
Zry interactions or formed during interaction due to eutectic reactions (SS/Zry, Inconel/Zry). The
general temperature dependence obtained from results of various isothermal separate-effects tests
reveal that the basic processes are thermally activated and can be described by Arrhenius

correlations.

4.1. INTERACTIONS WITH AS-RECEIVED ZIRCALOY

The interaction between (Ag,In,Cd) and Zircaloy seems to be dominated by diffusion of either
Ag, In, and Cd into the solid Zircaloy or by Zr in the liquid absorber alloy. To avoid problems
associated with the required quaternary phase diagram to extract the exact boundary con-
centration, the simpler system Ag/Zr is discussed first, which was investigated at JAERI /18/.

411. Ag/Zry

In the binary system Ag/Zr two diffusion processes have to be taken into account: 1. solid state
diffusion of Ag in the Zry and 2. diffusion of Zr in the liquid Ag. Between 1200 K and 1500 K
the diffusion coefficient of Ag in solid B-Zry is in the order of the self-diffusion of Zr /35/:
10-13 < Dag < 10-12 m?/s /35/, two orders of magnitude lager than in o-Zr at 1117 K /37/. The
diffusion process in the liquid is effected by the physical and thermodynamical properties of the
liquid and can be estimated using a semi-phenomenological correlation based on measurements
and microscopic theory (the liquid is assumed to be composed of rigid spheres) /36/:

Dy =3.27%107 (Sn Yisp 5 2, 1)
with M the molar mass, V the molar volume and Ty, the melting temperature of Ag (T,=1234 K).
Using the data published in /36/ a self-diffusion coefficient for Ag is calculated to D Ag= 3%10-9
m’/s, which can be assumed as an upper limit for the diffusion coefficient of Zr in liquid Ag.
Since this value is more than three orders of magnitude larger than those in solid Zr, the diffusion
of Ag into the solid Zr can be neglected henceforth.
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A more sophisticated approach is to calculate the diffusion coefficients from the reaction rates
measured in the separate-effects tests and from the boundary concentrations extracted from the
binary phase diagram of Ag-Zr. A solution of the diffusion problem can be assumed, if the
characteristic diffusion length L of the chemical interactions is small (L. < 0.2 * H) compared to
the dimension of the sample (H) vertical to the interface. Than the concentration changes are
negligible for |x| > L, as illustrated in the schematics below.
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Schematics of the liquid/solid interaction (Ag, In, Cd)/Zry or Ag/Zry with the initial interface
("Matano interface"). The boundary concentrations of Zr are indicated by ¢ , those of
Ag by b.

Next the Stefan problem for the moving boundary with fixed boundary concentrations &, &t
has to be solved for the diffusion coefficients of Zr from the measured reaction rates kp.

dg 1 * DI * dC] DII # dc” n

S = _ =), > 2

dt Ac, (D, e dx)’s’ @
with Ac = c&+ - ¢&- the concentration jump of Zr at &, and D' and D" the diffusion coefficients of
Zr in liquid Ag and in solid B-Zry. Since the diffusion coefficient in the liquid is more than three

orders of magnitude larger than that in the solid state (s. Table 13), Eq. (2) can be simplified as

follows:
a 1 D! « de' N
s 4 =y, 3
dt Acg ( Zr Z ) b K3 ( )

So the concentration gradient del/dx on the liquid side of the interface at & can be estimated
using the characteristic length L:
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with A ¢l = cg™ - ¢(L) » the bulk concentration in the liquid (here ¢(1) = 0.0). Than Eq. (3) can be
integrated to :
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The effective diffusion coefficient of Zr in liquid Ag is then given as a function of the boundary
position £ after the annealing time t which is assumed to be short (t « £2/D):

2
Ac'\2 2
D] oc é * m 5
Zr 4*t (Acg) 7y 0 ()

or as a function of the measured reaction rates kp = E2/t:

I
Dy e (B, 2 ©
As a first approach the diffusion coefficients are estimated using the minimum, the average, and
the maximum reaction rates measured at JAERI /18/ and the boundary concentrations from the
binary phase diagram at & /11/. The values obtained in the temperature range between 1273 K
and 1473 K are within the range of: 8*10-11 <Dy, < 9*10-10 m?/s. Due to this first approach
based on experimental data the diffusion values given in Table 9 may differ from the exact

values by one order of magnitude.

The estimated diffusion coefficients are one order of magnitude smaller than the self-diffusion of
liquid Ag but more than two orders of magnitude larger than the self-diffusion of Zr and more
than three orders of magnitude larger than the diffusion of Ag in solid Zr. Even if diffusion along
grain boundaries or sub granular boundaries is taken into account /35/ this large difference is

only reduced by a factor of three.

As indicated by the cool-down temperature curves measured at JAERI, the increasing Zr content
influences the liquefaction and solidification temperatures of the alloy. Depending on annealing
time, reaction species and temperature, various stagnation points can be found during cool-down,
indicating various solidification temperatures of the different phases in the liquid alloy.

For a precise calculation of the diffusion coefficients the solubility of Zr in Ag has to be consi-
dered more carefully. For higher Zr concentrations in the liquid the estimation discussed above

fails because a concentration-dependent diffusion coefficient D(T,c) is required (see Eq. 7).
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4.1.2. (Ag,In,Cd)/Zry

For a sufficient description of the (Ag,In,Cd)/Zr interaction the diffusion coefficient of Zr and
the corresponding boundary concentrations are required. Therefore the SEM-WDX results be-
tween 1273 K and 1423 K (s. Table 10) are reviewed indicating the existence of mainly three
phases in the vicinity of the solid-liquid interface (< 0.5 mm) as can be seen in Table 10 A. Ex-
cept for one phase the Cd concentrations are less than 1 at%. Though no Zr is found in this phase
the influence of Cd on the chemical interaction can be neglected, so that a ternary phase diagram
of Ag-In-Zr is sufficient to describe the (Ag,In,Cd)/Zr interaction. The indicated "phase type" in
Table 10 only expresses the optical impression due to the grey value.

In section B of Table 10 the relevant concentration of the boundary layer is given. The concen-
trations behave as expected; the Zr concentration rises with temperature and reaction time so that
they are used to determine the diffusion coefficients Dy, in the liquid absorber alloy. The values
estimated by Eq. (6) are in the order of 10-11 m¥s for 1273 K and 1373 K (s. Table 11),
somewhat smaller than those obtained from the minimum reaction rates of Ag/Zr interaction
(s. Table 9).

From tracer diffusion measurements in solid Ag-Zr alloys with various Ag contents /19/
diffusion coefficients Dy, were measured between 10-13 up to 10-12 m#/s between 1200 K and
1500 K. The diffusion processes at Ag concentrations above 8 at% Ag dissolved in Zr were not
investigated. The additional influence of In can also not be estimated. Therefore, no recommen-
dation for the diffusion coefficient in the liquid can be given.

Since the concentration values are obtained at single points, averaging was performed neglecting
the Cd concentration (s. Table 10, C) along a line parallel to the interface at a distance of app.
(DZr*t)l/2 . The results indicate that an integral analysis is required since the visual integration

can only distinguish between different grey levels and not between chemical compositions.

For a more appropriate solution of this diffusion problem, measurements of the diffusion coeffi-
cient and boundary concentrations are necessary for various Zr and In concentrations. The tem-
perature and concentration dependence of the diffusion coefficient can be determined. From the

literature the concentration dependence of the diffusion coefficients can be described as /19/:
DZ]r(cAgoT):DO *exp(—QRT)*eXp(%,z) b (7)

where o, describes the unknown concentration dependence of diffusion coefficient.

So far, no reliable diffusion data for Zr in (Ag,In,Cd) could be measured so that for model devel-
opment and verification, the measured reaction rates have to be used since no phase change takes
place above 1200 K in the (Ag,In,Cd)/Zry system. Both sets of reaction rates (KfK or JAERI)
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can be used, if the solubility limit of Zr in the alloy is checked by the solidus lines of the ternary
Ag-In-Zr phase diagram.

4.1.3. Iron-Nickel Alloys / Zircaloy

In this section the results of two interaction systems, the stainless steel / Zry (s. Figure 7) and
Inconel / Zry (s. Figure 8), will be dicussed togehter because both systems are iron-nickel alloys
and the reaction kinetics are similar. As already pointed out, the main diffusion processes in both
systems takes place in the liquid formed due to the eutectic reactions above 1200K. Furthermore
Fe and Ni are known as ultra-fast diffusers (together with Co /36, 38/) associated with small
ionic radii (<0.1nm) allowing fast interstitial movements in the bec lattice of 3-Zry /35, 39/. The
third element of the alloys, chromium, has a lower mobility than Fe or Ni (one order of magni-
tude above self diffusion of Zr /35/), so that its influence on the reaction kinetics can be neglec-
ted henceforth, because it enriches at the boundary adjacent to the stainless steel or Inconel /21/.

Chemical composition:

Zircaloy (Zry) : 1.5 wt% Sn, <0.2 % Fe, > 0.07 % Cr, < 0.1 % Ni

Stainless steel:  (AISI 316): 18 wt% Cr, 14 % Ni, 2.5 % Mo, balance Fe
(AISI 304): 20 wt% Cr, 11 % Ni, no Mo, balance Fe

Inconel 718: 53.4 wt% Ni, 18 % Fe, 17.9 % Cr, 3.1 % Mo,

Both alloys, stainless steel (SS 304 and SS 316), are composed of Fe and Ni of various concen-
trations, allowing the formation of ternary interaction products such as (Fe, Ni) Zr9, as indicated
in the isothermal section of the ternary phase diagram Fe-Ni-Zr (s. Figure 12). Therefore, the
chemical compositions of the alloys are idealized to clarify the most significant diffusion

process.

Idealized chemical composition:

Zircaloy: 100 wt% Zr
Stainless steel: 80 wt% Fe, 18 % Cr, 2 % Mo
Inconel 718: 72 wt% Ni, 18 % Cr, 3 % Mo, ...

The two stainless steel alloys have nearly the same chemical composition except for Mo which is

only present in the AISI 316 type, to enhance the corrosion resistance against acids.

At temperature the Zircaloy has a bcc-lattice (B-Zry) in which the diffusion coefficients of Fe
and Ni are somewhat smaller (s. Table 13) compared the hcp of the a-Zry /35/, but nevertheless
two orders of magnitude larger than the self-diffusion coefficients of Zr /38, 39/.
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In both chemical systems diffusion layers are formed at both sides of the initial Matano interface,
forming three different layers. In the liquid layer (I) diffusion coefficients are unknown whereas
in the two layers in the solid state (I and III) the diffusion coefficients are known from the litera-
ture. The layer I is liquid above 1200 K (Fe-Zr) and 1233 K (Ni-Zr) respectively, due to the eu-
tectic reactions at the Zr-rich side of the binary systems (s. Figure 12), so that for all tempera-

tures discussed herein two solid-liquid interfaces ¢ and & have to be taken into account.

Concentration Matano interface
<- ds/dt ) -
N CFe, Ni | g(at' g Czr

Inconel solid
stainless steel

Zircaloy

|
|

Schematics of the liquid / solid interaction (Iron-Nickel) / Zircaloy at 1218 K <T <1600 K with
one liquid reaction layer (I) and three solid ones in the Zircaloy (II), in the stainless
steel or Inconel (III), and adjacent to the Iron-Nickel alloy (IV) in which the chro-

mium is enriched. The boundary concentrations of Zr are indicated by ¢, those of Fe
or Ni by b.

In this paper, only the order of magnitude of the diffusion in the liquid layer I will be estimated
based on the experimental results. A detailed theoretical analysis which considers all processes
in the four layers is under way elsewhere and will be published soon /27/. From the ternary phase
diagram (s. Figure 11) it can be seen that the deviations between the tie lines of both reaction
couples and the relevant binary systems at the boundary are small but not negligible so that the

concentrations given by the binary phase diagrams can be used only for a first estimation.

The movement of the phase boundaries are controlled by diffusion of Fe, Ni from layer (III)
through (IV) to (I) and of Zr from layer (II) to (I). The diffusion of Zr into the solid layer (III)
can be neglected since the solubility is <1 at% (s. Figure 11). The diffusion coefficients of Zr in
SS or Inconel (IIT) are comparable with the self-diffusion coefficient, so that the movement of
this interface is controlled by the diffusion coefficient of Fe and/or Ni in the liquid and their
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boundary concentrations in layer I. Moreover, the diffusing materials have to penetrate the layer
IV in which chromium is enriched.

At the other interface the diffusion of Fe and Ni into the Zry cannot be neglected, since their
diffusion coefficients are of the same order of magnitude as the expected diffusion of Zr, D, in
the liquid. From section 4.1.1 the diffusion coefficient in the liquid p. is known to be in the

order of 1010 m2/s at around 1273 K and from Table 13 D; i is found to be in the order of
10-11 m?/s (at 1200 K).

For a first approach based on the experimental results and using the values from Table 13 diffu-
sion coefficients for p! were estimated in the order of 6*10-11 to 4¥10-9 m¥s for the Fe/Zr
system and to 2* 1079 to 3*10-10 m?/s for the Ni/Zr system in the temperature interval between
1273 K and 1473 K (see Table 14). Though the temperature dependence and the boundary con-
centrations are not well known in the latter case (Ni/Zr) a more detailed investigation is

necessary, which is beyond the scope of this review.

The theoretical considerations, however, can help to discuss the experimental findings in detail

and to determine the most reliable experimental results.

4.1.3.1. Stainless steel / Zircaloy

As estimated, the diffusion of Zr in the liquid reaction layer dominates the reaction kinetics of
the interface adjacent to the Zircaloy if no saturation occurs in the liquid. A closer look to the
temperature dependence shown in Figure 7 reveals that some kind of saturation may have oc-
curred in JAERI's test capsules above 1423 K. Neglecting the reaction rate at 1573 K which is
affected by the second eutectic at around 1577 K (0.088 at% Zr), then an increasing deviation
from the postulated parabolic behavior can be noticed (thin dotted line).

Since such a behavior was not observed at KfK this can only be explained by a saturation of the
liquid, so that the diffusion coefficient and /or the concentration gradient across the liquid is re-
duced. The lower volume ratio at KfK V7,/Vgg ~ 2.7 compared to Vz,/Vgg =~ 5 at JAERI may
have contributed to an earlier consumption (liquefaction) of the stainless steel disc before the
Zircaloy crucible is liquefied completely. For a more sophisticated approach the final chemical
composition of the liquid is required. Exceeding the eutectic temperature of app. 1570 K a jump
in the boundary concentration at the interfaces may lead to a faster movement of the boundary &
due to the increased Zr transport.
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Below 1570 K no change in the reaction system is detected. Therefore the experimental correla-
tions obtained from isothermal experiments can be used as a first approach for model develop-
ment and verification.

4.1.3.2. Inconel / Zircaloy

The system Inconel / Zircaloy seems to be more complicated as can be seen in the temperature
dependence of the reaction rates (s. Figure 8). Below app. 1443 K no significant deviation from
parabolic behavior is observed. Above 1373 K the lack of solid Inconel is indicated as observed
in the SS/Zry interaction. The jump at 1443 K indicate the same process as discussed for the
results at 1573 K in section 4.1.3.1.

The estimated effective diffusion coefficients given in Table 14 do not show the expected tempe-
rature dependency. One explanation is that the boundary concentrations depicted from the binary
boundary systems of the ternary phase diagram Fe-Ni-Zr do not describe the situation in reality
very well. Here only measured concentrations can give the basis for a more detailed explanation
and further modelling. As described above, the experimental correlations obtained from iso-

thermal experiments can be used as a first approach.

4.1.4. B4C/ Stainless steel and B4C / Zircaloy

The slopes of the measured reaction rates are given in Figure 9. The physical and chemical inter-
action of the two couples are discussed in detail elsewhere /31,33/. Generally the diffusion of B
and C into stainless steel or Zircaloy are the rate-controlling processes, creating carbides and
borides in the steel or Zircaloy matrix. In both cases ternary phase diagrams are required to

explain the observed reaction layers.

The results of the B4C / Zry interaction (lower solid line at Figure 9) reflect two different ther-
mal activated processes. The lowest eutectic temperature in the equilibrium binary phase dia-
grams of Zr-B, Zr-C and Zr-B() 5C( 5 is around 1888 K, so that the formation of a liquid layer is
not supported. Another possible explanation is that the measurement at 1870 K is influenced by
the eutectics mentioned above, and the data at 1773 K are still a result of the process determining
the kinetics at lower temperatures. Then, neglecting the data at the lowest temperature, the
experimental reaction rates can be described by the thin dashed line (s. Figure 9) /27/. A detailed
theoretical consideration of the complex B4C/Zircaloy diffusion processes provided the basis for
this approach /33/, which was experimentally confirmed by recent results of JAERI /28/.

The theoretical description of the B4C/Zircaloy. interactions /31/ in the temperature range from
1073 K up to 1773 K is given in /33/. Up to app. 1500 K, only one layer, a two-phase-mixture of
ZrBy and ZrC is formed, whereas above 1400 K, an additional layer of ZrBo appears. The meas-
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ured reaction rates, however, can be described very well by only one Arrhenius equation (see
Figure 9), so that the rate-determining process should be the same. As was found, the limiting
process of the mass transfer through the two-phase region is the diffusion of boron atoms in the
ZrB9 phase. The diffusion coefficient of boron in ZrBj, which was estimated from interaction
experiments between Zr and B, correlates within the limits of the accuracy of the measurements
with the observed reaction rates in the B4C/Zircaloy interaction /33/.

Above app. 1870 K localized liquid phases appear due to eutectic melting in the ternary B-C-Zr
system. In this temperature region, the thermodynamic and kinetic data are scarce, so that only

supplementary measurements can give hints about the basic processes and their kinetics.

As a result, the correlations obtained from the measured reaction rates can be used within the
temperature range mentioned above, because the relevant physical process do not change their
character or other processes do not contribute significantly. Also above 1870 K, the measured

reaction rates /30, 31/ which are in a good agreement can be used too.

In all cases the mass or volume ratio of both species have to be considered carefully, especially
with respect to the use of experimental correlations in integrated code systems for analysis of

integral tests or reactor applications.
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4.2. INFLUENCE OF AN INITIAL ZRO2 LAYER ON THE CHEMICAL
INTERACTIONS

In all the interaction systems discussed above as-received materials were used; no oxide layer
influenced the reaction kinetics of the chemical interactions. However, if a thin oxide layer on
the Zircaloy surface prevents the direct contact between the components, a delay of the reaction,
called the incubation time, is noticed. This incubation time can be explained as the time
necessary for the dissolution of the ZrO) layer by diffusion of oxygen from the ZrO into the

metal, forming a growing oxygen stabilized a-Zr(O) layer.

According to the experimental observations /21, 26/ the ZrOy_x layer becomes permeable at a
certain thickness, so that Fe and Ni, can diffuse through the ZrO into the a-Zr(O). So the first
eutectic interaction between (Fe, Ni) and Zr occurs at grain boundaries of the o-Zr(O) layer
forming local liquefaction (liquid islands) as depicted in the center part of the schematics below.
Due to the oxygen concentration gradient in the a-Zr(O) layer the islands become larger with in-
creasing distance from the ZrOy / a-Zr(O) interface (see lower part of the schematics). The end
of the incubation time is defined by the onset of the eutectic interaction at the B-Zry / a-Zr(O)
interface leading to a liquid (Fe, Ni, Zr) phase. The reaction kinetics in the post incubation period
are reduced than those measured in case of a metal / metal reaction couples with no oxide layer,

because of the lower mobility of Fe and Ni in the ZrO9 and the a-Zr(O) layer.

4.2.1. Incubation Period

The incubation times t() (see Table 8) shown in Figure 12 for the three investigated reaction cou-

ples (Ag,In,Cd)/Zry, SS 316 /Zry, and Inconel 718/Zry were calculated from the measured iso-
thermal reaction rates, which show a parabolic behavior after the incubation time t():
g, g,
p (t i t 0) k p
with: kp the parabolic reaction rate, and g; the layer thicknesses measured in the experiment j

after an annealing time t; = t+t(. Several deviations from the expected behavior can be seen in
Figure 12 :

1. The incubation times do not increase as expected with increasing initial oxide layer thick-
nesses above 20 um ,

2. above 1450 K, the incubation times for Inconel / pre-oxidized Zry and SS 316 / pre-oxidized
Zry decrease faster than below this temperature, and

3. in the case of (Ag,In,Cd) / pre-oxidized Zry, the incubation times are more than one order of
magnitude smaller than in the other examined systems.
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In the following schematics a possible sequence of intermediate states of the oxide layer dissolu-
tion and/or penetration leading to a non-protective remnant oxide layer is shown.

e e T T T T T T T T T T T T T S o T

(Ag, In, Cd)

stainless steel (AlS] 316)

Inconel 718

b wamen

|
| stainless steel (AISI 316)

Inconel 718

liquid (Fe,Ni)Zr & liquid islands

Schematics of the dissolution and penetration of a thin initial oxide layer on the Zircaloy surface:

a. initial layer sequence: metallic material (liquid or solid), ZrO9 , a-Z1(O) ,
(app. same thickness as ZrO7) and B-Zr,

b. partially dissolved ZrO9 layer by diffusion of O into the growing a-Zr(O) under
the formation of substoichiometric ZrO9_y ;
(Fe,Ni) diffusion through the ZrOy_x , and
eutectic interactions between (Fe,Ni) and Zr at the a-Zr(O) grain boundaries,

c. formation of liquid islands at the a-Zr(O) grain boundaries due to eutectic
interaction between (Fe,Ni) and Zr,
formation of a liquid (Fe, Ni, Zr) phase at the a-Zr(O)/B-Zry interface due to
Fe and/or Ni penetration through the remnant ZrO_y and the enlarged a-Zr(O)
layer, and
oxygen diffusion from a-Zr(O) into the liquid alloy forming a (Fe,Ni,Zr,0) phase.
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These observations cannot be explained if only the oxygen diffusion is taken into account. Other

material-dependent processes have to contribute to the observed behavior of the incubation times
for oxide layers <20 pm:

e In the tetragonal oxide (above 1480 K) penetration can occur along defects such as lateral

or vertical (to the interface) cracks formed due to tensile stress /43/, grain and/or sub-

granular boundaries and/or along oxidized precipitates (Fe, Ni)Zry due to the impurities
in the Zircaloy /44/. These processes can lead to non-protective remnant oxide layers.

e Local liquid islands in the a-Zr(O) layer form a short-circuit, so that diffusion in the
liquid (Fe, Ni) Zr has to be taken into account as the fastest diffusion process instead of
volume diffusion in the a-Z1(O) layer.

The influence of these postulated processes can be estimated from the deviation of the measured
incubation times from the idealized ones, which can be calculated from the ZrO dissolution.
The calculated incubation time due to oxide dissolution can be estimated neglecting the oxygen
diffusion in the ZrOy (dc/dx ~ 0). Furthermore the thickness H of the a-Zr(O) is regarded as
large compared to the characteristic diffusion length L (see also schematics in section 4.1.1).
Then the diffusion coefficient D in a-Zr(O) (see Table 13) and the boundary concentrations at
the interface & (ZrOp, o-Z1(0O)) c§+ and cg” determine the incubation time:

2 2
f o~ Sox o Ac )
0 1 Ac )
4*D0 a-2zr(0) @

with Acg = p*cg” - cgt and p the Pilling-Bedworth ratio (1.56). With this first approach the incu-

bation times can be estimated to be of the same order as the measured ones. For an improved

solution the diffusion of oxygen in the ZrO7 as well as in the B-Zr has to be taken into account.

From the theory mentioned above the dependence is like 80y 2. To fit the experimental data two
extensions of the correlation are proposed to take into account the deviation from parabolic be-
havior. In Eq. (10) the deviation from 80" behavior is expressed by a parameter A(0). To
account for the observed remnant oxide layers (8y,), Eq. (11) was used to fit the calculated incu-
bation times (s. Table 8). The "activation energy" Q and the pre-exponential factor A should

be of the same order of magnitude for both interaction systems. The results of a non-linear fit is
given in Table 12.

l‘o (anaT)= A(l)* SOEZ_A(O)) * exp(%T) 2 8 (10)

foGoeT) e A% (8 0x=8 rom ) * o0 (Yr) 5 8 (1)
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4.2.1.1. (Ag,In,Cd)/Zry

For the system (Ag,In,Cd)/Zry, only the influence of an oxide layer of 10 um thickness was exa-
mined. The measured incubation times are more than one order of magnitude smaller than those

obtained from the Inconel/Zry or SS/Zry systems as can be seen from Table 8.

One possible explanation may be the instantaneous liquid-solid contact between the alloy and the
ZrOo surface above 1073 K. In the experimental procedure the Zry crucible with the control rod
alloy is heated up in an tube furnace under flowing argon until the temperature exceeds 1173 K.
Then the crucible with the liquid alloy is transferred into the annealing furnace /14/ and when its
temperature is 20 K below the desired annealing temperature time measurement was started. For
each annealing temperature and species this time is roughly the same, but for the (Ag,In,Cd)/Zry
interaction the time of liquid/oxide interaction is increased because the absorber alloy is liquid

above app. 1023 K. To determine a correlation of tg = f (8, T) the database is too small.

4.2.1.2. Iron-Nickel Alloy / Zircaloy

As can be seen from Figure 12, at low oxide layer thicknesses (< 20 pm ) the incubation times
correlate very well. Above 45 um, only the results from the SS 316 / Zry interactions are reliable.
The resuits of the Inconel / Zry interactions show at larger oxide layers even smaller incubation
times. Such a behavior cannot be explained except by assuming a very porous oxide structure
above 50 um, so that liquid material can penetrate along them, short-circuiting the oxide layer

and creating non-protective remnant ZrO9 layers.

From the fit of Eq. (10) a value of 8y, is obtained of app. 12 pm, but the pre-exponential factor is
very different, indicating different dependencies on the initial oxide layer thickness. Due to the
large uncertainties in the measurements and the subsequent calculation of t( (s. Table 8), the
database is not sufficiently consistent to allow a microscopic interpretation of the results. Never-
theless, for the purposes of integral codes, for each of the investigated reaction couples, a consis-

tent set of parameters can be given, allowing determination of the onset of eutectic reaction.

4.2.2. Post-Incubation Period

In this section, only the measured reaction rates are discussed, the onset of the reactions, how-

ever, is delayed by the incubation times given in Table 8 and shown in Figure 12. The relevant

reaction rate of the interaction (Ag,In,Cd)/Zry is given as a dashed line in Figure 6, those of SS
316 / Zry in Figure 13, and those of Inconel /Zry in Figure 14.
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4.2.2.1. (Ag,In,Cd)/Zry
With a 10 pm initial oxide layer the reaction rates of the (Ag,In,Cd)/Zry interaction do not differ

significantly from those measured between as-received materials at low temperatures. Near the
liquifaction temperature (app. 1500 K), however, the difference is app. one order of magnitude.
In this case the higher stability of a-Zr(O) and the lower diffusion of Zr in this layer are

responsible for the reduced reaction kinetics since ZrO7 is considered to be stable.

4.2.2.2. Stainless steel 316/ Zry
Generally, the reaction rates of the SS 316/Zry interaction (s. Figure 13) are about one order of

magnitude smaller than those measured between as-received materials (s. Figure 7), but the tem-
perature dependence is nearly the same, showing slightly different behavior above and below
app. 1480 K. Such a behavior may be associated with the phase transition in the remnant oxide
layer situated within metallic melts. The dependence of the reaction rates on the initial ZrOp

layer thickness, which determines the final thickness of the a.-Zr(O) layer, is not well expressed.

As a first attempt, especially for transient conditions, an averaged value of the reaction rates can
be used neglecting the dependence on the initial oxide layer. A more sophisticated description is
beyond the scope of this report, because the oxide layer dependence as well as the different tem-
perature ranges have to be included (see Figure 13).

As can be seen from Figure 13 ,the dependence of the activation energy on the initial oxide layer
thickness is within the accuracy of the measurements. So far it is not clear why the reaction rates
on both sides of the Matano interface show slightly different change in the temperature depen-
dence at app. 1480 K. One possible explanation is that the phase transition from monoclinic to
tetragonal ZrO» allows a faster diffusion of the Fe and Ni ions through the oxide. The fast lique-
faction is shifted to temperatures above 1573 K due to the limited velocity of the diffusing

species and the larger oxygen concentration in the liquid and solid materials.

4.2.2.3. Inconel 718/ Zry

A comparison of the reaction rates of the as-received material interactions Inconel/Zry (s. Figure
8) with those obtained with pre-oxidized Zry (s. Figure 14) reveals an increasing temperature
dependence with increasing initial oxide layer thickness beyond an initial oxide layer of 10 pm.
Above 1523 K the difference levels out for all reaction rates until fast liquefaction occurs at
around 1580 K. Generally, the database is limited and the accuracy of the measurements is not
sufficient to clarify the reasons of the observed microscopic behavior completely.

If the spatial distribution of the oxygen is nearly uniform, for example if the sample is annealed
in vacuum for long time, so that the initial ZrO7 layer is completely reduced to a-Zr(O), then
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nearly the same temperature dependence is obtained /21/. The diffusion coefficients of Fe and Ni
in Zr, however, are approximately five times larger in B-Zr than in a-Zr at 1200 K (s. Table 13).
The measured reaction rates differ by more than two orders of magnitude. One possible
explanation may be the high oxygen content dissolved in the metal, hindering the interstitial
diffusion mechanisms of the Fe and Ni by blocking interstitial sites. If the ratio of the reaction
rates is applied to the diffusion coefficient of Fe or Ni in a-Zr(O), than a value in the range of the
oxygen diffusion is achieved.

This finding is also supported by the change in the slope of the measured reaction rates at around
1480 K. This change, associated with the phase transformation, increases the oxygen diffusion
coefficient in the ZrO». If the oxygen diffusion is the limiting process in the ZrO7 as well than in
the a-Zr(O) , than the oxygen mobility in the tetragonal oxide has to be the same or even higher
as in the o-Zr(O) (s. Table 13). This hypothesis has to be supported be measurements of the
oxygen concentration in the samples and the thickness of the remnant oxide layer. The deviations
between the slopes discussed herein and those drawn in Figure 14 can be explained by the
limited accuracy. As a first recommendation an extended rate equation is given which also

considers the oxygen dependence of the experimental results. -
k,@.7) =85 4, exp(~ ;% ), with Q"= 4% (1- 4% 82 )*R. (12)

with parameters A ..A4 defined from experimental results. The results are summarized together
with those of the incubation times in Table 12. For calculations of transient integral experiments
or even reactor transients, however, the correlations obtained here may be sufficient, since the
boundary and contact conditions, the initial oxide layer thickness and its behavior during heat-up

give rise to a much larger uncertainty.

4.3. MODELLING OF THE AG/ZRY AND (AG,IN,CD)/ZRY INTERACTIONS

From the present understanding an adequate description of low temperature material interactions

during LWR SFD accidents has to include two major processes:

1. dissolution of the ZrO» layer by oxygen diffusion into the B-Zry, forming a growing layer of
o-Zr(0), and

2. dissolution of the Zry by diffusion processes which are dependent on temperature and
oxygen concentration in the B-Zry and o-Zr(O).

Since the basic processes are diffusion in the solid state and in the liquid layer formed due to the
eutectic reaction, only the solution of the relevant diffusion equation(s) can lead to reliable
results, especially when two liquid-solid interfaces are formed. If the diffusional mass transport

in the liquid is larger than the convective one no ideal mixing can be assumed, so that a concen-
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tration profile in the liquid has to be calculated, depending on the boundary concentrations and
the thickness and geometry of the liquid layer.

Since the (Ag,In,Cd)/Zry system is quite complicated and the database, such as boundary con-
centrations and diffusion coefficients, is limited the Ag/Zr system will be discussed first. In this
case the mass transport of the dissolved Zr into the liquid can be calculated from the interface

movement measured in the experiments.

Cladding (Zircaloy)

X In the schematics on the left side the
Crucible wall

different dimensions are given:

r{ denotes the inner radius of the li-
Oxide Layer quid ( = 0 for separate-effects test),
d 1y the interface to the Zircaloy
(AgIn.Cd) cladding or crucible,

13 is the interface oxide / a-Z1(0O),
X(Ag,ln,Cd) 14 is the outer diameter of cladding or

crucible.

The phenomenological model is based on quasi stationary conditions, so that for a time step At
the temperature does not change. Than the actual position of the interface E(t+At) can be
calculated as:

E+an=(Ea2+k=an)”, with k, = 4, *ex0("%) (13)

with the boundary concentrations discussed in section 4.1.1. and 4.1.2. For the calculation of

separate-effects tests and for reactor purposes, the following limitations have to be checked:
1. the average concentration of Zr in the liquid alloy cjjy = f(T), and

2. the amount of solid Zr consumed due to liquefaction : r  (t=0) * & (t+At) <T 4 .

For reactor purposes where the liquid alloy relocates down the cladding surfaces for a limited
time, the mass and the average chemical composition of the liquid alloy has to be checked. In

case of the control rod alloy, a modified quasi binary phase diagram (Ag, In)/Zr is required.

For item 1 a global mass balance is required to calculate the increasing Zr concentration in the

liquid while the mass of the absorber alloy is assumed to be constant (separate-effect tests).

m, O*¥AV *pg ) with: AV y= (rzz(r—m)—rzz (1))*H*h, , (14)

»

u+an =M,

(3

where 17 is the interface & (see schematics above) and by is the axial length of the liquid-solid
interface in the test capsule. The volume increase due to liquefaction and thermal expansion is
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not yet considered. Then the average concentration of Zr in the liquid alloy, which is important

to determine the solidus temperature for subsequent material relocations, can be calculated by:

~ m . .
Cu+an=—2—_ inwt% with : mAg(r+A1)=r22*H*h,,. (15)

er + mAg

However, the concentration profile in the liquid layer is not determined since intermetallic com-
pounds (AgZr, AgZry) may exist below 1426 K. For a precise determination of saturation
effects the diffusion equation has to be solved and the solubility limits given by the relevant
binary or pseudo-binary phase diagram have to be checked.

In case of thin initial oxide layers and under isothermal conditions the calculation of the Zry dis-
solution starts when the annealing time exceeds the calculated incubation time (s. Eq. 2). For
transient conditions, however, the actual incubation time is calculated for each time step consi-
dering the actual cladding temperature and the actual oxide layer thickness. For integral tests the
calculation of the incubation times is started at the time when the cladding temperature exceeds a
critical temperature. This temperature is assumed to be the lowest eutectic temperature of the
calculated interaction type, since significant interactions have to be expected only when a liquid

phase has been formed as a result of the chemical interaction.

So the incubation time is not a fixed time period, since the temperature increase also enhances
the oxygen diffusion coefficient, accelerating the dissolution of the oxide layer. If the time
difference in Eq. (15) is less than zero, the calculation of eutectic interaction starts using the

reaction rates measured for an initial oxide layer of 10 pm.

(1+A1)
A t(/ + A= tsyslem - (to (T80y) + ZLc«mlacl ) L) (16)

Using the experimental reaction rates from the (Ag,In,Cd)/Zry or Ag/Zry interaction the move-
ment of the interface £ can be calculated respectively by Eq. (12). The oxygen concentration is

neglected.

In integral tests as well as in SFD accidents, the boundary conditions are not so well defined as
in separate-effects test discussed here. Moreover, flowing control rod melts would complicate the
interaction, but in this case saturation can be neglected, because during relocation always
material of initial chemical composition will interact with the Zircaloy. After relocation some ab-
sorber alloy remains at the cladding surface, so that in this case the thickness is small compared
with the cladding thickness. The relevant thickness of the remained absorber alloy attached to the
cladding surface can be obtained by detailed post-test investigations of integral tests
(e. E. CORA-7).
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5. TRANSIENT BEHAVIOR

As already pointed out in section 2, the environmental conditions in a severe core damage acci-
dent of a LWR or in a simulation (integral in-pile or out-of-pile tests) are quite different from
those of the separate-effects tests. Instead of isothermal and well-defined contact conditions be-
tween the materials, fast temperature increases (up to several tens of K/s) due to the exothermal
zirconium/steam reaction and undefined contact pressures have to be considered in reality. Due
to the strong temperature dependencies of the interactions discussed herein, the transient heat-up

strongly influences the kinetic behavior of the interactions.

From integral tests, informations on intermediate states cannot be extracted easily from the post-
test state of a degraded fuel rod bundle. To overcome this deficiency, results of calculations
using integral codes have to be used. As already pointed out (s. section 2.2) in a fuel rod bundle,
which is only a small scale simulation of a complete reactor core, various processes occur at the
same time and may interact or influence each other. Generally, such interactions are very compli-
cated and have to be investigated in detail. For the purposes of this paper, however, only proc-
esses which may initiate or trigger other processes will be discussed (process chaining) with re-

spect to the global behavior of a bundle or a core.

5.1. SEQUENCE OF MATERIAL INTERACTIONS DURING HEAT-UP

As an attempt to demonstrate the influences between individual processes at different spatial po-
sitions Figure 3 was developed, based on the findings of integral test in the out-of-pile facility
CORA, separate-effects tests and code calculations. The primary goal is to determine the influ-
ence of localized processes on the global course of a SFD accident. Moreover, capabilities to
enhance reactor safety in the temperature range of "low-temperature" material interactions can be
extracted. Figure 3 only represents the states of a horizontal cut through a fuel rod bundle or fuel
rod element. No information about the variation of the states in vertical direction can be ob-
tained, since the axial temperature gradient, which is influenced by heat transport mechanisms
such as melt relocation, convection, and/or radiation, is not considered in this schematic. A sepa-
ration of processes occurring at control rod assemblies and fuel rods is important to clarify that

different separate processes take place at the same time with subsequent interactions.

From the various parameters, determining the course of a SFD accident after a reactor scram and
core uncovery, two basic parameters, the pressure ratio, calculated from the internal rod pressure
and the system pressure, and the time since core uncovery are selected to show their influence on
the processes in the temperature range of "low-temperature" material interactions.
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- The pressure ratio controls the mechanical cladding deformation, leading to ballooning
(Ap » 1) or collapsing (Ap « 1) of the cladding. If the pressure difference is small (Ap >
1), the burst temperature is very high, so that a perforation due to eutectic reactions
release the gaseous inventory (fill gas plus gaseous fission products) and small amounts
of metallic melt (shown as double line in mech. behavior of Figure 3).

- Two heat sources determine the heat-up rate after core uncovery:
primary, the decay heat of the fission products, which is only determined by the power
history of the reactor and the time since scram, and secondary, the exothermal zirco-
nium/water reaction, controlled by the oxygen supply and the initial oxide layer
thickness.

Below 1200 K only mechanical deformation of the cladding due to the pressure difference is
significant. An early solid state contact is achieved due to the high system pressure of the "high-
pressure case", enhancing the fuel-clad interactions. In the "low-pressure case" plastic deforma-
tion called "ballooning" locally prevents this contact, but increase the cladding surface after clad
rupture so the gaseous fission products are released and oxidation of the inner surface take place

later on.

The temperature range between 1200 K and 1790 K is dominated by the fast heat-up rates above
1500 K due to the exothermal zirconium/steam reaction. Eutectic interactions at the control rods
(SS / Zry) and at spacer grids (Inconel / Zry) locally liquefy cladding material with subsequent
release of gaseous inventory and metallic melts, [(Ag,In,Cd) + (Fe, Ni, Zr)] mixtures.

In the low-pressure case the liquid control rod alloy is sprayed on the cladding surfaces of adja-
cent fuel rods. There, the melt relocates down, stopping the oxidation and starts to interact with
the Zircaloy after dissolution of the oxide layer. All liquid absorber alloy above the location of
the breach is released. If the liquid alloy contacts the cladding surface of adjacent fuel rods direct
chemical interactions at the control rods initiate chemical processes at the fuel rods. Up to this
time the chemical processes in the control rods and in fuel rods did not interact with each other

due to the spatial separation.

In all the PWR CORA tests analyzed so far, the failure of control rods or fuel rod claddings due

to eutectic interactions occurred below the melting point of SS or Inconel, respectively /3, 5/.

Between 1790 K and app. 2300 K, high-temperature cladding deformation ("flowering" /4/) oc-
curs which may be initiated by a dissolution of the ZrO layer due to relocated metallic melt (Fe,
Ni, Zr, O) on the outer cladding surface, which prevents further oxidation. The melting of metal-
lic B-Zry (T = 2033 K) intensifies the fuel-cladding interaction ("low-pressure case"). The oxy-
gen solubility in the liquid B-Zry lead to a local thinning of the «-Zr(O) and the ZrO, layer so
that breaching can occur at ~ 2230 K. After the release of the liquid (Zr, U, O) mixture the sub-

sequent oxidation of inner cladding surface can lead to a high-temperature cladding deformation
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too. Both processes locally declad the fuel pellet stacks and prevent them from further fuel clad
interaction /5/. Damage continues and changes from a primarily local to a global character.
Control rod alloy relocates as rivulets forming blockages in the lower regions of the bundle or

core. Non-coherent melt relocation dominates the damage propagation in vertical direction /5/.

Above 2300 K, the character of the melts is primarily ceramic, with large amounts of uranium.
The higher solidification temperatures lead to early freezing. The heat-up rates are reduced due
to the increasing oxide layers and the already high oxygen concentrations in the ceramic melts.

Above app. 2700 K, material interactions do not play an important role since nearly all materials

are liquid due to melting or eutectic interactions.

5.2. TIME SCALES DURING HEAT-UP

After core uncovery the energy released by the zirconium/steam interaction controls the heat-up
rate and the maximum temperature. As was found in integral experiments, the time scales, es-
pecially for the temperature range of "low-temperature”" material interactions are strongly influ-
enced by the initial heat-up rate. Furthermore, the reaction kinetics are determined by the initial
oxide layer thickness. Both factors determine a range in which the "low-temperature" material

interactions become significant for the subsequent processes.

On the right side of Figure 3 the time scales for an upper and lower limit of the heat-up rate are
given. Above app. 1.5 K/s the system only requires app. 200 s to reach 1790 K , the liquifaction
temperatures of SS or Inconel alloys. This time interval is too short for a significant damage due

to eutectic interactions.

Below app. 0.3 K/s the system stays more than 1600 s below 1473 K, sufficiently long to create
thick oxide layers on the unprotected or unshielded cladding surfaces. These thick oxide layers
also limit the subsequent heat-up rate beyond 1500 K from app. 12 K/s to less than 2 K/s. The
whole time interval increases up to more than 2000 s, which is long enough to allow fuel rod
damage due to eutectic interactions. But, if sufficient oxygen is supplied to the cladding, the in-
creasing oxide layers inhibit these interactions below 1470 K. So only a 300 s long time interval

separates eutectic interactions from melting of the initial materials.

At moderate heat-up rates 0.3 K/s < dT/dt < 1.5 K/s, cladding perforation and interactions be-
tween control rod alloys (Ag,In,Cd) and structure materials (SS, Inconel) take place long before
melting of the original alloys. As can be seen from Figure 3 various reaction paths are possible
depending on the boundary conditions (pressure ratio, temperature heat-up rate). Chemical
reactions in the temperature region of "low-temperature" material interactions strongly influence
the further reaction path.
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6. SUMMARY AND CONCLUSION

The results of separate-effects tests on chemical interaction studies have been reviewed with re-
spect to fuel element and core structure materials such as Zircaloy, stainless steel (AISI 304,
316), Inconel 718, control rod alloys (Ag,In,Cd) and B4C in the temperature range between 1200
K and 1700 K ("low-temperature"). The results obtained at KfK are compared with those meas-
ured at JAERI and with additional data from the literature.

For each of the investigated material interaction couples, the experimental boundary conditions
have been described, discussed and compared to check the possible experimental effects such as
different sample geometries or mass ratios on the reaction kinetics. Also the various Arrhenius

correlations derived from the measurements have been checked and compared.

For the interaction system (Ag,In,Cd) / Zry the different measured reaction rates fit very well
with each other. The basic interaction process is the diffusion of Zr into the liquid Ag or
(Ag,In,Cd) alloy. In case of the Ag/Zr system the diffusion coefficients could be estimated from
the reaction rates and the binary phase diagram and the diffusion of that in the (Ag,In,Cd) alloy
was estimated from the measured phase boundary concentrations. The estimated diffusion coef-
ficients are one order of magnitude smaller than the self-diffusion coefficients in liquid Ag and
two orders of magnitude larger than the diffusion of Ag in solid Zr. That means Zircaloy is
liquefied by the absorber alloy.

The results of the investigations in the systems stainless steel / Zircaloy and Inconel / Zircaloy
show some differences between KfK and JAERI results, which may be explained by the higher
Zr mass inventory used at JAERI.

The kinetic results of the chemical interactions B4C / Zircaloy indicate a similar behavior in the
various tests. In case of B4C / stainless steel the kinetic results of JAERI show a jump in the re-
action rates at 1480 K probably due to formation of a liquid phase. This behavior was not ob-

served in the KfK experiments.

The measured reaction rates in separate-effects tests performed with pre-oxidized Zircaloy (10 -
100 um ZrO9 layers) show a delay in the onset of the interactions . First a complete reduction of
the ZrO9 layer by diffusion of oxygen into the B-Zry forming an o-Zr(O) layer is required to in-
itiate the chemical interactions. As soon as the oxygen concentration in the ZrO» is reduced to
that in a-Z1(O) the chemical interaction starts. The observed reaction kinetics are reduced due to
the increased oxygen concentration in the Zircaloy metal lattice. Below 45 pm ZrO9 thickness
the delay times can be explained by oxygen diffusion, above, the increased porosity of the oxide
reduces the delay time.
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Table 8:
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Table 10:

Table 11:

Table 12:

Table 13:

Table 14:

List of chemical interactions found in the examinations of the TMI-2 core bore
samples analyzed at KfK /8/.

Measured reaction rates (m?%s) for the diffusion couples: Ag/Zry and (Ag,In,Cd)/
Zry as-received and for (Ag,In,Cd) / Zry with an initial oxide layer of 10 pm.

Measured reaction rates (m?%s) of the chemical interaction stainless steel / Zircaloy,
with as-received and pre-oxidized Zircaloy.

Measured reaction rates (m?%s) of the couple Zircaloy and Inconel 718 with as-
received and pre-oxidized Zircaloy.

Measured reaction rates (m?*s) of the chemical interaction couples: B4C / Zry and
B4C/SS, B4C used in form of powder (KfK, JAERI) and pellets (JAERI).

Experimental correlations of all investigated interactions with as-received Zircaloy.
Experimental correlations of all investigated interactions with pre-oxidized Zircaloy.

Comparison of incubation times due to thin initial oxide layers on the Zircaloy sur-
face for the interaction couples: SS 316/Zry, Inconel 718/Zry, and (Ag,In,Cd)/Zry.

Diffusion coefficient of Zr in liquid Ag calculated from the measured Ag/ Zr reaction
rates and from boundary concentrations depicted from the binary phase diagram.

Concentrations extracted from SEM-WDX measurements of the chemical interaction
(Ag,In,Cd)/Zr between 1273 K and 1423 K (A), at the boundary adjacent to the inter-
face (B), and estimated concentrations at different distances from the interface (C).

Diffusion coefficients estimated from extracted SEM-WDX measurements of the
chemical interaction (Ag,In,Cd) / Zry between 1273 K and 1373 K.

Results of a non-linear fit to the incubation times for (Ag, In, Cd) / Zry,
SS 316/ Zry, and Inconel 718 / Zry

Diffusion coefficients of Ag, Fe, Ni and oxygen in various host materials
(in B-Zr, a-Zr, and ZrOy).

Estimated diffusion coefficients for Fe, Ni in the liquid phase of the chemical
interactions (A) stainless steel/Zry and (B) Inconel / Zry.
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9.2. LIST OF FIGURES

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Schematic overview of the CORA test section: including the most important features
such as fuel rod bundle, shroud with high-temperature ZrO» fibrin insulation, high-
temperature shield (HTS) with videoscopes, and quench tank. The dotted area
represents water to cool the ends of the heater rods /3/.

Test sequence diagram of CORA-13, (ISP 31) upper part: axial temperature front
lines (TF-lines) derived from the experiment, clad failure extracted from the internal
rod pressure analysis (dotted area), and melt relocation derived from the videoscope
films (dashed area); center part: fluid composition at the lower end of the bundle
(argon and steam), volume fraction of hydrogen in the off-gas-system and total
electric power (P,); lower part. identified and localized phenomena.

Chemical interactions and formation of liquid phases in a pressurised water reactor
SFD accident between 1000 K and 2600 K (left side), interaction of individual
processes at absorber and fuel rods (center) and time scales defined by the heat-up
rates (right).

Reaction kinetics of chemical material interactions in the "low-temperature" and
"high-temperature" region during LWR severe fuel damage accidents.

Test apparatus and geometry of the arrangement of specimen used for separate-effects
tests: a) specimen configurations used at KfK (left) and JAERI (right),
b) electric resistance and infrared furnace used at JAERI.

Measured reaction rates (x*t) of the chemical interaction couples with as-received
Zry: Ag/Zry (JAERI) and (Ag,In,Cd)/Zry (KfK, JAERI), and with a 10 pm ZrO9
layer pre-oxidized Zry (Ag,In,Cd)/Zry (KfK) between 1273 K and 1573 K.

Measured reaction rates (x%t) of the chemical interaction couple stainless steel / Zry
between 1273 K and 1573 K, top: reaction rate in Zircaloy , bottom: reaction rate in
stainless steel.

Measured reaction rates (x%t) of the chemical interaction couple Inconel / Zry
between 1273 K and 1573 K, solid lines: reaction rate in Zircaloy, dashed lines
bottom: reaction rate in Inconel.

Measured reaction rates (x*t) of the chemical interaction couples: B4C / Zry and
B4C / stainless steel, B4C used as powder (KfK, JAERI) and pellets (JAERT)
between 1273 K and 1953 K.

Binary phase diagrams of the systems Ag-Zr /11/ and In-Zx /10/.
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Figure 11:

Figure 12:

Figure 13:

Figure 14:

Isothermal section of the ternary phase diagram of Fe-Ni-Zr /8/ and the relevant
binary phase diagrams Fe-Zr and Ni-Zr above 1200 K. The corresponding tie lines
are given as thin dashed lines between -Zr and stainless steel (open circle) and
Inconel (solid circle)

Measured incubation times for various initial oxide layer thicknesses for the couples:
(Ag,In,Cd) / Zry, SS 316 / Zry, and Inconel / Zry.

Measured reaction rates x%(t-to) for various initial oxide layer thicknesses for the
chemical interaction couple: stainless steel / Zry.

Measured reaction rates x?/(t-to) for various initial oxide layer thicknesses for the
chemical interaction couple: Inconel / Zry.
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Table 1:

samples analyzed at KfK /8/.

List of chemical interactions found in the examinations of the TMI-2 core bore

Type A melting reactions

<absorber> = {Ag,In,Cd}

<Inconel,steel > + <Zry> = {Fe,Cr,Ni,Zr,Sn}
<steel> + {absorber} = {Fe,Cr,Ni} + {Ag,In,Cd}

Tsol = 760 °C
Teut = 1200 OC*
Tron = 1435 °C

<steel> + <Mo,T¢,Ru,Rh,Pd> = {Fe,Ru,...} Tsol = 1433 °C
Exchange reaction in the liquid

{Fe,Cr,Ni,Zr,Sn}+{Ag,In,Cd} = T > 1435°C
{Fe,Cr,Ni,Zr} +{Ag,In,Ni,Sn}+(Cd)

Side reaction during cooling

{Ag,In,Ni,Sn} = {Ag,In,Sn} + <Ni3zSng> Tm = 1264 °C
Type B melting reactions

{Fe,Cr,Ni,Zr} + <UQ9> = {Fe,Cr,Ni,Zr,U,0} T = 1300 °C
Main metallic reactions during cooling (St = Fe,Cr,Ni)
{Fe,Cr,Ni,Zr,U,0} = <U(Zr)O2> + {St,Zr; U,O depleted} |T < 2200 °C
{St,Zr; U,0 depleted} = {St,Zr,U,0} + <ZrStg> Tm = 1675°C
{St,Zr,U,0} = <U(Zr)09> + <StZro04> T = 1600 °C
Type C melting reactions

<UO09> + <ZrOg> — <(U,Zr)02> = {(U,Zr)09} Tm = 2550 °C
<AloO3> + <Zr> = {Zr,Al,0} Teut = 1350 °C
<FeAlp04> = {FeAloOy4} T = 1770°C
<FeCr904> = {FeCro04} T = 2150°C

Main ceramic reactions during cooling

{(U,Zr)09} = <(U,Zr)0g>

<(U,Zr)02> = <U(Zr)02> + <Zr(U)0y>
{U,Zr,Al,Fe,Cr,0} = <(U,Zr)0O9> + <Fe(Al,Cr,Zr)o04>

Tsol = 2550 °C
T = 1600 °C
Tyt = 1500 °C

Oxidation at higher oxygen potentials
<BtZro0y> + 09 = <St3Zr30>

* a further invariant point in the pseudo-ternary exists at 930 °C which may
ive rise to local liquefaction; it 1s masked by fast Zr(Fe,Cr,Ni)2 Laves phase

ormation.
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Table 2:

Measured reaction rates (m?/s) for the diffusion couples: Ag/Zry and (Ag,In,Cd)/

Zry as-received and for (Ag,In,Cd) / Zry with an initial oxide layer of 10 um.

T/°C

Zircaloy - Interface

T/K 1.E4T min Correl. max.
1000 1273 7.9 26E-12  7.7E-12  6.0E-12
1050 1323 7.6 2.5E-11 5.8E-11 8.3E-11 no experiments
1100 1373 7.3 21E-10  3.8E-10 3.1E-14 performed
1150 1423 7.0 1.9E-09 2.1E-09 3.1E-09
1200 1473 6.8 36E-08 11E-08 1.3E-08

Zircaloy - Interface Zircaloy - Interface | Zry - Interface
T/°C T /K 1.E4/T | average Correl. max. " max. Correl. | Correl. (1993)
1000 1273 7.9 1.2E-10 1.9E-10 1.4E-10 | 2.6E-10 25E-10
1050 1323 76 6.2E-10  6.2E-10  6.7E-10 8.6E-10
1100 1373 7.3 3.1E-09 1.9E-09 ~ 3.3E-09 2.6E-09 2.7E-09 6.711E-10
1150 1423 7.0 5.3E-09 74E-09  7.8E-09 3.093E-09
1200 1473 6.8 8.3E-09 1.4E-08 1.0E-08 | 2.2E-08 2.1E-08 1.285E-08

(Ag,In,Cd) - Interface

Zircaloy - Interface

T/°C TI/K 1.E4T min Correlat. max. max. Correlat. tg/s
1000 1273 7.9 7.5E-11  7.1E-11 283
1050 1323 7.6 liquid at temperature 1.8E-10 -

1100 1373 7.3 41E-10  4.3E-10 65

1150 1423 7.0 8.6E-10  9.8E-10

1200 1473 6.8 2.4E-09 2.1E-09
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and

Table S: Measured reaction rates (m?s) of the chemical interaction couples: B4C / Zry
B4C/SS, B4C used in form of powder (KfK, JAERI) and pellets (JAERI).
BaClzry
Powder JAERI KK
T/°C T/K 1.EAT Zry Correl. [Correl/new Zry Correl.1  Correl. 2
800 1073 9,3 KfK 1993 | 1,11E-15 i 4,44E-16
900 1173 8,5 1,10E-15 i 6,18E-16 | 5,88E-16 | 6,61E-16 i 143E-15
1000 1273 7,9 1,53E-15 i 2,60E-15 | 2,33E-15 | 1,80E-15 ; 3,85E-15
1100 1373 7,3 8,20E-15 | 8,87E-15 | 7,54E-15 | 1,01E-14 | 8,96E-15
1200 1473 6,8 3,50E-15 | 2,56E-14 | 2,08E-14 | 1,96E-14 ; 1,86E-14
1300 1573 6,4 2,45E-14 | 6,46E-14 | 5,05E-14 | 4,89E-14 i 3,51E-14
1400 1673 6,0 1,54E-13  1,46E-13 | 1,10E-13 | 6,83E-14 | 6,15E-14
1450 1723 5,8 2,38E-13 ¢ 2,12E-13 | 1,58E-13 7,94E-14
1500 1773 5,6 3,41E-13 ; 3,01E-13 | 2,20E-13 | 3,35E-13 3,36E-13
1550 1823 | 55 | 620813 | 419B13 | 303B-13 | | _____|488B12
1600 1873 5,3 5,18E-11 | 3,66E-11 6,13E-11 6,15E-11
1650 1923 5,2 5,18E-11 | 6,46E-10
1680 1953 5,1 6,20E-09 | 3,37E-09
B4 C/stainless steel
Powder - JAERI KfK
T/°C T/K 1.E4T| Ss304 Correl.1 Correl.2 | SS 316 Correl. 1
800 1073; 9,3 4,87E-15; 5,09E-15 3,65E-16; 3,48E-16
900 1173: 8,5 4,77E-14: 7,61E-14 1,25E-14i 1,29E-14
1000 1273: 7.9 2,14E-12¢ 7,43E-13 2,48E-13} 2,71E-13
1100 1373t 7,3 3,79E-12i 5,21E-12 3,67E-12i 3,65E-12
1200 1473 6,8 2,32E-11;  2,80E-11 3,62E-11i 3,46E-11
1250 1523; 6,6 7,92E-09 1,10E-08
1300 1573; 64 5,77E-08 2,90E-08
1350 1623; 6,2 5,11E-08 7,23E-08
B4 C/Stainless steel
Pellets JAERI KfK
T/°C TI/K 1.E4/T| SS304 Correl.1 Correl.2 | SS 316 Correl. 1 Correl. 2
800 1073 9,3 1,13E-14:  1,01E-14
900 1173 8,5 6,28E-14; 1,10E-13
1000 1273 7,9 1,96E-12; 8,23E-13
1100 1373 73 4,24E-12! 4,60E-12 no experiments performed
1200 1473 6,8 1,69E-11; 2,03E-11
1225 1498 6,7 1,00E-09 1,24E-09
1250 1523 6,6 2,88E-09 2,53E-09
1300 1573 6,4 1,16E-08 9,92E-09
1350 1623 6,2 3,04E-08 3,57E-08
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Table 6:  Experimental correlations of all investigated interactions with as-received Zircaloy.
KfK JAERI
Interface | Interface Il Interface | Interface I
Tempera- A Q A Q A Q A Q
ture range
Couple K m?/s kd/mol m?/s kJ/mol m?/s kJ/mol m?/s kJ/mol
(Ag,In,Cd) _ 75 liquid 3.55E4 | 344.87 liquid 1.23E4 | 336.8
| Zry
<1473 3.49E12 | 580.8
AglZry (<1423) no experiments performed liquid 3.99E13| 603.6
(>1423) 5.18E9 | 496.5
SS/Zry 1273 - 119E-6 | 4356 |1.02E '*9 481.8* 1.08E15| 688.8 |[2.78E15| 642.8
1523 (1.49E9)| (671.6)
1273 - 40.8 261.0
Inconel |3 1473 | 2.884E1| 2040 | 4435 | 25200 | 1.02E:3| 1805
I Zry - 1523 59.7 245.8
BAC / 1073 -1773 415E10| 122.6
4 1173 -1823| no layer found 2.38E-8 | 170.8 no layer found |5.38E-08| 178.3
Zry
1823 -1953 7.94E37 | 1438.3 3.37E37 | 1720
1073 0.304 283.0
B4C - 1473, 876 | 378.0
1SS316 1498 no layer found no layer found | 2.22E5 | 388.0
- 1623
(powder)
B4C 1073- 1.49E-2 | 250.0
4 - 1473, no experiments performed no layer found
1SS 304 |1498 1.15E10 | 544.0
(pellets) - 1623

Table 6 contains the values for: Kp= A - exp (-Q/ RT), R=8.314 kJ/mol K.
The correlation coefficients in Table 6 are calculated from the maximum layer thicknesses, the

growth rates are defined as : Kp = 82/¢

Interface I : movement of the interface: diffusion zone - first material,

Interface II : movement of the interface; diffusion zone - second material:

(*) Results from shrinking measurements at KFKI, Budapest.
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Table 7:  Experimental correlations of all investigated interactions with pre-oxidized Zircaloy.

KfK
Interface | Interface Il
Interaction Tempera- |Initial Oxide A Q A Q
ture range Layer
10 pm
(Ag,In,Cd) | _ 475 liquid 467 263.7
| Zry
SS 316 1323 -1573 10 um 0.034 250.8 1.43E2 311.1
1323 - 1473 20 um 0.028 242.4 0.103 224 1
| Zry 50 pm 0.815 289.2 8.93E3 368.9
1473 - 1573 20 pm 9.36E10 592.4 1.58E8 482.8
(*) 50 um 1.107E19 827.8 8.93E3 368.9
1473
SS 316/ and a-Zr(0) 7.588E26 | 1101.6 5.408 282.1
o~Zr(O) 1573
1373- 20 pum 173E9 | 507.4 2.095 246.4
Inconel 1573 45 um 54E15 | 6990 | 544E5 | 4103
I Zry

The correlation coefficients in Table 7 are calculated from the maximum layer thicknesses,

the measured reaction rates are defined as ;

Kp(ox) = 82/(t - tg). Kp(ox)=A * exp (- URr),
R =8.314 kJ/mol K,

& = position of interface at annealing time ty, =t - tg
The corresponding t( values are listed in Table 8.

(*) Results from JAERI not sufficient to calculate temperature dependencies
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Table 8: Comparison of incubation times due to thin initial oxide layers on the Zircaloy sur-
face for the interaction couples: SS 316/ Zry, Inconel 718 / Zry, and (Ag, In, Cd) /
Zry
A: Stainless steel (AISI 316) / Zircaloy-4
T/°C T/K 1.E4T 10 um 20 um 50 ym
1050 1323 7.558 8.6E+03
1100 1373 7.283 4.0E+02 3.0E+03 3.5E+04
1150 1423 7.027 2.1E+02 1.6E+03 1.7E+04
1200 1473 6.788 7.0E+01 7.6E+02 5.1E+03
1250 15623 6.566 3.1E+01 2.8E+02 1.8E+03
1300 1573 6.357 1.4E+01 1.9E+02 6.3E+02
B: Inconel 718 / Zircaloy-4
T/°C T/K 1.E4T 10 um 20 um 45 uym 100 ym
1100 1373 7.283 4.0E+02 7.0E+03 1.1E+04
1150 1423 7.027 2.2E+02
1200 1473 6.788 8.1E+01 3.3E+02 3.1E+02 8.5E+02
1300 1573 6.357 2.2E+01 5.4E+01 2.1E+02
1400 1673 5977 3.1E+01
C: (Ag, In, Cd) / Zircaloy-4
T/°C T/K | 1.E4T 10um
1000 1273 7.85 2.8E+02
1100 1373 7.28 6.6E+01
1150 1423 7.03 1.0E+01
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Table 9;

Diffusion coefficient of Zr in liquid Ag calculated from the measured Ag / Zr reaction

rates and from boundary concentrations depicted from the binary phase diagram

Minimum Values

R=8.314J/mol K

TIK  |eg* (Ag) |c¢"(Ag) |Ac I(zr) Acg (Zr) |KP(mess) D eff D eff (T) AD
1273 0.963 0.108 0.037 0.856 | 2.55E-12 3.4E-10 3.06E-11 91%
1323 0.80 0.13 0.2 0.67 2.48E-11 6.96E-11 7.85E-11 -13%
1373 0.73 0.17 0.267 0.567 | 2.14E-10 | 241E-10 1.88E-10 22%
1423 0.58 0.20 0.425 0.375 | 1.91E-09 | 3.72E-10 | 4.23E-10 -14%
1473 0.23 0.18 0.767 0.058 | 6.20E-09 | 8.86E-12 9.03E-10 | -10084%

Pre-exponential factor: Dg= 2.038 Correl.-
Activation energy: Q 263762 coef.=0.969

Average Values:

TIK | cc* (Ag) | cz™ (Ag) |Ac l(zr) | Acg (21) | kP(mess) D off D off (T) AD
1273 0.963 0.108 0.037 0.865 | 4.21E-12 5.62E-10 7.01E-11 88%
1323 0.80 0.13 0.2 0.67 5.08E-11 1.43E-10 1.45E-10 -1%
1373 0.73 0.17 0.267 0.567 | 2.56E-10 | 2.89E-10 2.83E-10 2%
1423 0.58 0.20 0.425 0.375 | 2.68E-09 5.22E-10 5.28E-10 -1%
1473 0.23 0.18 0.767 0.068 | 9.83E-08 1.41E-10 9.45E-10 -573%
Pre-exponential factor: Dg= 0.015 Correl.-
Activation energy: Q = 202795 coef.=0,999
Maximum Values:
TIK | c*(Ag) | cg™(Ag) |Ac!(Zr) | Acy () | kpmess) | D eff D eff (T) AD
1273 0.963 0.108 0.037 0.855 | 6.03E-12 8.05E-10 1.32E-10 84%
1323 0.80 0.13 0.2 0.67 8.26E-11 2.31E-10 2.25E-10 3%
1373 0.73 0.17 0.267 0.567 | 3.10E-10 3.49E-10 3.68E-10 -5%
1423 0.58 0.20 0.425 0.375 | 3.08E-09 5.99E-10 5.82E-10 3%
1473 0.23 0.18 0.767 0.058 1.04E-07 1.49E-10 8.91E-10 ~499%
Pre-exponential factor: Dg= 1.69E-04 Correl.-
Activation energy: Q = 148829 coef.=0.995

AD = deviation between correlation D g (T) and calculated diffusion coefficients D g
c(g* » Cg” (Ag) = boundary concentrations of Ag from binary Ag-Zr phase diagram [11].
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Table 10: Concentrations extracted from SEM-WDX measurements of the chemical interaction
(Ag,In,Cd)/Zr between 1273 K and 1423 K (A), at the boundary adjacent to the inter-

face (B), and estimated concentrations at different distances from the interface (C).

A TIK t/s Phase czrat cpgath cpat% ccqath
Sample type
164AB 1273 300 black 70 6 23 1
light-gray 50 45 2 0
dark-gray 57 9 33 1
166AB 1273 1800 black 57 9 33 1
light-gray - 82 4 14
dark-gray 50 47 1
169AB 1373 600 black 51 47 1 1
light-gray 67 32 1
dark-gray 67 8 22 3
174AB 1423 120 black 54 12 32 2
light-gray -- 76 3 21
dark-gray 50 46 1 0.2
B T/K tls Position czrath cpgat% cipath ccd at
Sample
164AB 1273 300 x=~10pum 52 43 5 0
166AB 1273 1800 x = 50pm 55 37 6 16
169AB 1373 600 x=~10pm 73 18 3 4
174AB 1423 120 x=10um - -- -- -
C T/K t/s Position czrat% cagat%n cjpath ccdat®
Sample
164AB 1273 300 x=~180um 53 30 17 -
166AB 1273 1800 x~ 185um 20 72 8 --
169AB 1373 600 x=200pum 62 31 7 -
174AB 1423 120 x=~410um 14 62 24 -
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Table 11: Diffusion coefficients estimated from extracted SEM-WDX measurements of the
chemical interaction (Ag,In,Cd)/Zry between 1273 K and 1373 K.

Diffusion coefficients of Zr in (Ag,In,Cd)/Zry

Temperature | Concen- Concen- | Concen- | Difference Kp (mess) D eff (Z1)
tration tration tration até¢

2 2

T/K | et (@) | ce(Ag) [ce@) | Ack e e

1273 0.52 0.372 1.09E-11

0.108 0.892 2.50E-10
0.55 0.342 9.19E-12
1373 0.73 0.17 0.834 0.104 2.70E-09 1.05E-11
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Table 12: Results of a non-linear fit to the incubation times for (Ag, In, Cd) / Zry,
SS 316/ Zry, and Inconel 718 / Zry

Reaction
Couple

Temperature
range
/K

Oxide layer
thickness
range /um

Parameter
A0

Parameter
A1

Parameter
A2

(Ag,In,Cd) / Zry
SS 316/ Zry

Inconel 718 / Zry

1273 -1473
1273 -1673

1273 -1573

10 (< 20)
<50

<45

+0.110

+ 0.475

- 0.457

0.352
2.87*104

6.49 *10-9

333.05

280.36

502.94

(Ag,In,Cd) / Zry
SS 316/ Zry

Inconel 718 / Zry

1273 -1473

1273 -1573

1273 - 1573

10 (< 20)

<50

<45

+12.52

+12.61

+13.07

13.59
1747.35

2.56%*10-9

308.36

276.62

495.2

with:

or

to (80x’T)= A(l)* 60(‘:2—_14(0)) % exp(%T)

£ GooD = A% (8 0= 8 o N * o0 (Yp)

(13)

(14)
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Table 13:

Diffusion coefficients of Ag, Fe, Ni and oxygen in various host materials

(in B-Zr, o-Zr, and ZrO»).

Tracer Host Do ha Dj 1s00k) | Dj 1200k | Literature
species |Material m?/g J'mol m?/g m?/g

Oxygen |ZrOz ~1. E-11 ~1. E-16 [43]
Zr ZrOo ~ 1.E-16 <1.E-22

Oxygen |2rO9 1.27E-9 144907 1.E-10 6. E-12 [23]
Oxygen |a-Zr(O) 3.92E-4 214148 1.4 E- 11 2.E-13 "
Oxygen B-Zr 2.63E-10 118411 20E-10 2. E-11 "
e P [ uE | | GER | wEN| ™
Co  IBZr | ey | wow | 2k40 | sear |
o e EER | Em
Zr B-Zr 8.E-13 1E-13 "
Cr B-Zr 7.E-7 142300 8.E-12 5 E-13 !
Ni B-Zr

Fe o-Zr 7.E-11 3.7E-12 [35]
Ag a-Zr 56:3EE-_2 128170100000 12E-15 9. E-17 !
7r o-Zr 1. E-17 2. E-19 "
Cr o-Zr 49E-7 126000 8. E-13 1.3E-13 "
Ni o-Zr 9.E-11 4. E-11 "
Fe FeZrs 32E-10 120000 3E-15 4.E-16 [40]
Ni NiZr 119000 76E-13 [42]
Ni Nizro 103000 21E-13 "
7r Fe 103000 21E-13 "
Zr Ni 103000 21E-13 "

Diffusion coefficients defined as: Dy(T) =Dy - exp (-hy/ RT), R=8.314 J/mol K
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Figure 1. Schematic overview of the CORA test section: including the most important features
such as fuel rod bundle, shroud with high-temperature ZrO, fibrin insulation, high-
temperature shield (HTS) with videoscopes, and quench tank. The dotted area
represents water to cool the ends of the heater rods /3/.
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Figure 7: Measured reaction rates (x*t) of the chemical interaction couple stainless steel / Zry between 1273 K and 1573 K,
top: reaction rate in Zircaloy, bottom: reaction rate in stainless steel.
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Figure 9: Measured reaction rates (x*t) of the chemical interaction couples: B4C / Zry and B4C / stainless steel,
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Figure 10: Binary phase diagram of Ag-Zr /11/ and In-Zr /10/ .



Isothermal section of the ternary phase diagram of Fe-Ni-Zr /8/ and the relevant binary phase diagrams Fe-Zr and Ni-Zr above 1200 K.
The corresponding tie lines are given as thin dashed lines between 8-Zr and stainless steel (open circle) and Inconel (solid circle).
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Figure 12: Isothermal section of the ternary phase diagram of Fe-Ni-Zr [8] and the relevant binary phase diagrams Fe-Zr and Ni-Zr above 1200 K.
The corresponding diffusion paths between B-Zry and stainless steel (open circle) and Inconel 718 (solid circle) are marked by thin
dashed lines.
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Figure 13: Measured reaction rates x*/(t-to) for various initial oxide layer thicknesses for the couple: stainless steel / Zircaloy

between 1273 K and 1573 K.
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Figure 14: Measured reaction rates x?%(t-to) for various initial oxide layer thicknesses for the chemical interaction couple Inconel / Zircaloy

between 1273 K and 1573 K.
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