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Abstract

The chemical reaction behavior between Zircaloy-4 and 1.4919 (AISI 316) stainless

steel, which are used in absorber assemblies of Pressurized Water Reactors (PWR)

and Boiling Water Reactors (BWR), has been studied in the temperature range

1000 - 1400°C. Zircaloy was used in the as-received, pre-oxidized and oxygen­

containing condition. The maximum temperature was Iimited by the fast and

complete liquefaction of the reaction couple as a result of eutectic chemical inter­

actions. Liquefaction of the components occurs below their melting point.

The effect of oxygen dissolved in Zircaloy plays an important role in the interac­

tion; oxide layers on the Zircaloy surface delay the chemical interactions with

stainless steel but cannot prevent them. Oxygen dissolved in Zircaloy reduces the

reaction rates and shift the liquefaction temperature to slightly higher levels. The

interaction experiments at the examined temperatures with or without pre­

oxidized Zircaloy can be described by parabolic rate laws. The Arrhenius equa­

tions for the various conditions of interactions are given.

Chemische Wechselwirkungen von Zircaloy-4 im Anlieferungs- und voroxidier­

ten Zustand mit rostfreiem Stahl bei hohen Temperaturen

Zusammenfassung

Es wurden die chemischen Wechselwirkungen zwischen Zircaloy-4 und dem

austenitischen Stahl 1.4919 im Temperaturbereich 1000 - 1400°C untersucht. Der

Stahl ist Bestandteil der Absorberelemente in Druck- und Siedewasserreaktoren.

Das Zircaloy kam im Anlieferungszustand und im voroxidierten Zustand zum Ein­

satz. Die maximalen Reaktionstemperaturen waren auf 1400°C begrenzt, da es

bei höheren Temperaturen zur Verflüssigung der Materialproben infolge chemi­

scher Wechselwirkungen kam.

Oxidschichten auf dem Zircaloy oder gelöster Sauerstoff im Zircaloy verzögern

die chemischen Wechselwirkungen, können diese aber nicht verhindern. Die Ver­

flüssigung wird nur zu etwas höheren Temperaturen verschoben. Die verschiede­

nen chemischen Wechselwirkungen können durch parabolische Zeitgesetze be­

schrieben werden; die Arrheniusgleichungen werden angegeben.
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1.lntroduction

In a severe reactor accident a number of chemical interactions between the

various core components of an LWR take place at high temperatures because they

are not in thermodynamic equilibrium with each other. Of special interest are the
interactions between Zircaloy-4 and stainless steel in absorber assemblies of

Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR).

The absorber assembly of a PWR consists of (Ag, In, Cd) absorber material with

stainless steel c1adding (AISI 316). The absorber rod is inserted into a Zircaloy-4

guide tube (Figure 1). At high temperatures the absorber rod will deform or

balloon and locally contact the Zircaloy guide tube. As a result of chemical
interactions, the stainless steel c1adding of the absorber rod will fail. The released

molten (Ag, In, Cd) absorber alloy will then attack the Zircaloy of the guide tube

and fuel rods and dissolve (liquefy) it much below its melting point [1].

The absorber rods in Boiling Water Reactors (BWR) consist of boron carbide (B4C)

pellets or B4C powder in thin walled stainless steel tubes. The absorber rods are

contained in a four-bladed stainless steel assembly. Four fuel rod bundles, each

surrounded by a Zircaloy flow channel box arranged around the cross-shaped

control element (Figure 1). The boron carbide/stainless steel system is not stable

thermodynamically, Le. chemical interactions have to be expected to take place.
Under normal reactor operation conditions the Iimited chemical interactions

between B4C and stainless steel can be tolerated. But the question is how the

absorber rods behave chemically at temperatures beyond 1000°C which have to

be assumed to prevail in severe reactor accidents. First scoping tests with small

LWR fuel rod bundles containing B4C absorber rods showed strong chemical

interactions at temperatures above 1250°C wh ich resulted in fast liquefaction and

subsequent relocation of the absorber rod materiaI[2]. The liquid B4C/stainless

steel reaction products then interact with the Zircaloy flow channel box and the

adjacent U02/Zircaloy fuel rods(Figure 1). For this reason, it has also been of

interest to study the chemical interactions between B4C and Zircaloy; the results
are described in [3].

The objective of this paper is to describe quantitatively the chemical interactions

between Zircaloy and stainless steel up to complete liquefaction of the reaction

specimens: of particular interest is the knowledge of the reaction kinetics and the

determination of the critical temperature at which liquid phases form. As a result

of the oxidation of the Zircaloy of the fuel rod c1adding and flow channel boxes

by the H20 coolant under conditions of normal reactor operation, the influence



-2-

of thin Zr02 layers on the Zircaloy/stainless steel interactions has been studied in

addition. The oxide layers can prevent or delay the chemical interactions. At high
temperature thin Zr02 layers will disappear if no steam is available and will form
oxygen-stabilized a-Zr(O). It was therefore also important to study the reaction
behavior between oxygen-containing (dissolved) Zircaloy and stainless steel.

The following reaction couples have been studied at temperatures;;:: 1000°C:

stainless steel / as-received Zircaloy;

stainless steel / pre-oxidized Zircaloy with Zr021ayers

of 10, 20 and 50 p.m; and

stainless steel / oxygen-containing Zircaloy (about 3.5 wt % oxygen)

The maximum temperature at which experiments could be made was Iimited by

complete Iiquefaction of the specimens already during heatup. The results of

these separate-effects tests are important to understand and describe analytically

the complex material behavior in integral experiments like the CORA fuel rod

bundle meltdown experiments [4].

2. Experimental procedure

The isothermal annealing experiments were performed with Zircaloy-4 (Zry)

capsules into which short cylindrical rods of 1.4919 (AISI 316) stainless steel (ss)

were pressed and c10sed gas-tight by a conical Zry plug. Figure 2 shows the

components of a compatibility specimen before being loaded.

The annealing experiments were perfomed in a tube furnace under flowing

argon. The specimens were heated up to about 900°C and then placed into the

pre-heated furnace wh ich had the desired annealing temperature. The annealing

time started when the temperature of the specimen was 20 K below the

annealing temperature. The specimens were cooled down outside the furnace at

room temperature. The temperatures investigated ranged from 1000 to 1400°C
and the maximum annealing time was 900 minutes.

After annealing, the specimens were mechanically cut and then

metallographically prepared for examinations of the reaction zones with an
optical microscope. A few specimens were etched to recognize better the various

phases. The reaction zone thicknesses were measured at four different locations
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of the interface. The kineties data were evaluated on the basis of the maximum

thiekness of the reaction zones. In addition, some Scanning Electron Microscopy

(SEM)/Energy Dispersive X-Ray (EDX) or SEM/Wave Length Dispersive X-ray

(WDX) and Auger Electron Spectroscopy (AES) examinations were performed to

obtain information on the chemieal compositions of the reaction products and

diffusion zones.

To pre-oxidize the Zircaloy specimens, the crucibles were exposed to a steam
atmosphere in an apparatus made of stainless steel whieh was connected to a

steam generator. The apparatus was introduced into a furnace maintained at the

desired temperature. Figure 3 is a schematie of the system used. The temperature

and the time selected for the oxidation were taken from a study carried out by R.

Pawel et. al [5] in which the following equation is given for the oxide layer

growth:

8
2

12(cm
2 Is) = O.01126exp(- 35890JRT), R = 1.987callmol·K (1)

The temperatures used to obtain an oxide layer of 10, 20 and 50 11m were 870, 900

and 980°(, respectively. The metallographie examinations showed Zr02 layer

thieknesses between 9 - 12, 19 - 22 and 49 - 53 11m. To study the effect of the
oxygen on the interaction between a-Zr(O) and stainless steel, it was necessary, to
introduce first oxygen into the Zircaloy and then to homogenize the specimens to

obtain a homogeneous distribution of oxygen. The oxygen concentration in the

Zircaloy was around 3 weight percent; whieh had been determined by weight

measurements. The oxidation was carried out in a steam atmosphere.

The combinations of temperature and time needed for the oxidation were taken

from the study carried out by Ballinger [6] who gives the following equation for

the total oxygen absorbed:

I w (mg/cm2 ) = 195.3v' t (8) exp ( - 33370JRT)

The weight gains in our specimens are in agreement with this equation, the

average of 21 crucibles was 3.17 weight percent. After oxidation, the crucibles

were annealed for 22 hours at 12000
( in adynamie vacuum of 9 x 10-6 mbar to

homogenize the oxygen distribution. The average weight gain after this

treatment was about 0.28 weight percent. According to the DISOL code [7] the

oxygen concentration difference between the centre of the crucible wall and the

outside or inside surface of the wall should be lower than 0.025 mg/mm3 after 20

hours. To avoid damage to the thin oxide layer on the inner crucible wall, the
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stainless steel rods were cooled in liquid nitrogen before being loaded into the

pre-oxidized Zircaloy crucibles.

Additional experiments were performed to determine the time of dissolution of

the Zr02 layer while a-Zr(O} was formed. Eleven specimens of Zircaloy were
oxidized in steam to produce an oxide layer thickness of 50 p.m (using equation 1).
Then the specimens were annealed under dynamic vacuum conditions at 1100,

1200, 1250 and 1300°C for different durations at each temperature. The initial

and final oxide thicknesses were measured at three locations. The same heatup

and cooldown rates were used for dissolution.

The time of Zr02 dissolution was compared with the incubation period

determined experimentally in the pre-oxidized Zry/ss reaction couples.

3. Results

3.1 Chemical behavior

The Fe-Zr, Ni-Zr, and Cr-Zr phase diagrams indicate that eutectic interactions

occur in each system (Figures 4, 5) [8, 9]. The lowest eutectic temperature occurs

in the Fe-Zr system at about 930°C on the Zr-rieh side. The diffusion of

approximately 5 wt. % Fe into Zr results in the formation of a liquid phase even at

this low temperature (Fig. 4). The eutectic temperature on the Fe-rich side is

about 1337 oe. The Ni-Zr system has four eutectie temperatures whieh vary

between 960 and 1170 °C, while the eutectie temperatures in the binary Cr-Zr

system are 1332 and 1592°e.

The cross-sections of metallographically prepared Zry/ss reaction specimens after
annealing at 1000, 1100, 1150 and 1200°C for various duration of reaction times
are shown in Figure 6. The cross sections of both pre-oxidized Zry/ss reaction
specimens (initial Zr02 layer thickness: 10 p.m) are presented for comparison. In

order to recognize better the metallic reaction zone which forms as a result of the

chemical interactions, the specimens were etched which produced a dark looking

phase (Fig. 6). The eutectic interactions, which occur between 1000°C and higher,

result in the formation of liquid reaction products and voids form as some of the

molten material relocates.

Although the specimens were annealed in an upright position, the reaction zones
of the as-received Zry are not symmetrieal around the circumference. Apparently,
very small forces are sufficient to induce asymmetrie reaction zones in the Zry
wall. First interactions have been noticed at 1000°C after annealing times longer

than 5 minutes. At 1200°C, the Zry cruc.ible wall of 2.25 mm thiekness was already
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completly dissolved after 2 minutes. In all cases, the reaction in the Zry was much

stronger than in the stainless steel. This may be explained by phase diagram
considerations (Figs. 4, 5). Only small amounts (~ 5 wt. %) of Fe or Ni are necessary

to Iiquefy large quantities of Zr. Also, since the lowest eutectic temperatures in

the Fe-Zr, Cr-Zr, and Ni-Zr systems are on the Zr-rich side, Zr can be liquefied at

much lower temperatures than Fe, Cr, or Ni. Liquefaction starts as soon as the

solid/liquid two phase field has been reached. The cross sections of Zry/ss

specimens and typical microstructures produced by the chemical interactions are

shown in Figures 7 through 10.

The reaction zones were examined by SEM/EOX. Besides the determination of the

element distribution, quantitative measurements were performed. A typical

result of a specimen annealed at 1200°C for 2 min is shown in Figure 11~ As can be
recognized, the molten reaction zone consists mainly of a (Zr-Fe-Ni) alloy with (Zr­

Fe-Cr) precipitations. The metallic (Zr-Fe-Ni-Cr) melts decompose into various

phases on cooldown. The integral chemical composition of the solidified melt

(about 83 wt. % Zr, 12 % Fe, 3 % Ni, 2 % Cr) is very similar to the chemical

composition of the eutectic point on the Zr rich side in the Fe-Zr system (Fig. 4).

From the binary (Fe-Zr) and (Ni-Zr) phase diagrams (Fig. 4, 5) and chemical

composition of the reaction zone (Figure 11, 12) it is c1ear that the diffusion of Fe

and Ni into Zr causes liquefaction of Zircaloy. Table 1 indicates the chemical

composition of the phases in the reaction zone. The chemical analysis indicates

that the composition of the different phases is very similar to ZrFe2, Zr2 Fe and 13­

Zr in the binary Zr-Fe phase diagram (Fig. 4). Apparently, the expected Zr3Fe does

not form, as a result of rapid cooling.

The ternary (Zr-Fe-Ni) and (Zr-Fe-Cr) phase diagrams at 1000°C [10] are shown in

Figure 13. The dashed areas indicate the chemical composition of the various

phases formed in the reaction zone for specimens tested at different

temperatures and times. For comparison, some phases observed in the chemical

analysis of sampies selected from the TMI-2 reactor core are also included in the

(Zr-Fe-Cr) phase diagram [10].

Figure 13 A shows that the integral composition of the reaction zone (dark area)

lies in the liquid zone; during cooldown the composition of the two phases, 13-Zr

and Zr2 (Fe, Ni) Iie on opposite ends of a straight line passing through the original

composition point. The point "X" at the end of the connecting tie line indicates
the Fe/Ni ratio in the AISI 316 ss.

Figure 13 B shows that the path of composition change of Zr2 (Fe, Cr) and Zr (Fe,

Crh phases deviates from the direct path between Zr/ 76 at. % Fe- 24 at. % Cr,
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represented by the tie line as a first approximation of the Zry/AISI 316 ss
interaction. This is as a consequence of the large difference in the diffusion

velocities of Fe and Cr in Zry which produces a zone enriched in Cr in the ss matrix

adjacent to the molten reaction zone. Therefore, the alloy "Y" on the Zr-Cr edge

changes its composition and becomes a Cr enriched and Fe depleted zone in the

phase diagram. Point "8" shows the point analysis on the ss a few 11m away from

the ss/liquid interface.

Although the integral analysis of the reaction zone is dose to the eutectic
composition in the (Zr-Fe) and (Zr-Ni) systems, i. e. 83 wt. % Zr, local compositions
deviate from that of the eutectic one. In the case of the Zr (Fe, Crh phase, which

forms as aseparate primary precipitation at the ss/Iiquid interface (Cr enriched

zone). The volume of this Zr (Fe, Crh phase (with a shape of idiomorphic particles,
Figs. 12, 13) changes with the distance from the sslliquid interface, it has

apparently been reduced by the Zr-rich molten alloy. During cooldown, the liquid

alloy starts to solidify into the phases Zr2 (Fe, Cr) and ß-Zr; the remnant liquid

solidifies as Zr2 (Fe, Ni) and ß-Zr.

3.2 Reaction kinetics

The maximum reaction zone thicknesses in the as-received Zry crucible and ss rod
are listed in Tables 2 and 3. The reaction zones in Zry and ss are plotted versus the
square root of time in Figures 14 and 15, respectively. The isothermal growth of

the reaction zones (dissolution of Zr and ss) obey parabolic rate laws, indicating a

diffusion-controlled process. Fe and/or Ni diffuse into Zry and initiate Zry

liquefaction as soon as the solid/liquid phase field has been reached. To show the

large differences in the amounts of dissolved Zry and ss, the reaction zone

thicknesses in Zry and ss are plotted in Figure 16 as a function ofthe temperature

for an annealing time of 5 minutes. Only small amounts of ss are necessary to

dissolve large amounts of Zry. Above about 1250 °c complete Iiquefaction of the
specimens occurs.

The growth rates of the reaction zones for the Zry/ss interactions are Iisted in

Table 4 and plotted as a function of the reciprocal temperature in Figure 17. The

growth rate equations determined for the temperature range of 1000 to 1200 °c
are:
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For Zircaloy-4:

x2/t (cm2/s) = 2.78xl019·exp (- 6428641RT) J
For stainless steel:

x2/t (cm2/s) = l.08xl019·exp (- 6887901RT)

R = 8.314J/mol·K

(3)

(4)

These equations can be extrapolated to lower temperatures, but not to higher

temperatures since fast and complete liquefaction of the materials takes place at

about 1250 oe. One can recognize the difference in growth rates of the reaction

zones for Zry and ss.

3.3 In11uence 01 oxide layers on the Zry-4/ss interactions

The Zr02 layer on the inner Zry crucible wall delays and reduces the chemical

interactions between Zry and ss, but cannot prevent them. Stainless steel does

not interact with stoichiometric Zr02, but the oxide layer will be dissolved by the

Zry during a time-dependent incubation period, ta. The cross sections of Zry/ss

reaction specimens annealed at 1000, 1100, 1150 and 1200°C for various reaction

times are shown in Fig. 6. The cross sections ofboth as-received and pre-oxidized

specimens (initial Zr02 layer thickness 10 11m) are presented for comparison.

The experimental studies with preoxidized Zry specime!",s (10,20 and 50 11m thick

Zr02 layers) have shown that the liquefaction of the specimens is shifted to
higher temperatures. The chemical reaction rate was slower when compared with

those of the specimens tested in the as-received condition. In the experiments

with the thicker oxide layer, 50 11m Zr02, the interaction process can be described

in three stages with different reaction rates; the difference was more evident at

the lower temperatures due to the slower reaction rate. The first stage, in which

the chemical interaction between Zry/ss does not occur, extends till the

disappearance of the oxide layer; this stage is called incubation period.

The second stage, in which the eutectic Zr-Fe interaction begins, extends from the
end of the incubation period till the moment at which the eutectic liquid reaches
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the a-Zr(Q)/ ß-Zry interface. The reaction rate in this stage is relatively low. The

eutectic interaction develops mainly along the grain boundaries.

The third stage begins when the liquid phase comes into contact with the

Zircaloy ß phase which has a low oxygen content. In this stage, the reaction rate

increases and the liquid phase moves forward as a continuous front, as in the as­

received condition. The reaction rate in this last stage is higher than in the
second, but is lower compared with the reaction rate of the experiments
performed with Zircaloy in the as - received condition. The difference could be

attributed to the smaller number of Fe atoms available to produce the eutectic

reaction with Zr, due to the "filter" effect caused by the a-Zr(Q) phase.

These three stages developing in the interaction process can be c1early seen in

Figures 18, 19, 20 and 21. The photos show the reaction zone of specimens
annealed at 11 OOO( with an initial oxide layer of 50 11m. According to Figure 18

there is no interaction after 4 hours due to the remaining, but reduced oxide

layer. Figures 19 and 20 show the reaction after an annealing time of 10 hours.

The oxygen supplied by the ZrQ2 layer diffused into the Zircaloy, stabilizing the
a-Zr(Q) phase at high temperatures. In this zone the eutectic reaction due to the

Zr - Fe interaction develops and moves forward mainly through the grain

boundaries, reaching a zone in the vicinity of the a-Zr(Q) / ß-Zry interface where

small regions start to melt. Such small regions, liquid at temperature, form as a
result of the lower oxygen content in the a-Zr(Q) phase. Figure 20 also shows a

mapping of Fe in the eutectic region; Fe was selected because it is the main

component of steel which forms a eutectic alloy with Zr at low temperatures.

With longer annealing times, the local molten regions become larger and finally

approach the ß-Zr phase, as can be seen in Figure 21. The a-Zr(Q) grains are
surrounded and partially dissolved by the liquid of eutectic composition whose

front advances as a continuous interface into ß - Zry.

The three stages of material-interaction behaviour on the reaction rate could

have developed in the whole range of temperatures and oxide layer thicknesses,

but it was more c1early seen at the lower temperatures and thicker oxide layers.

Due to the low reaction rate in the second stage, the annealing time could be

selected in a wide range in order to observe the reaction layer morphology in the

narrowa-Zr(Q) phase.

The reaction zone thicknesses in Zry and ss measured for the preoxidized Zry/ss

reaction specimens are Iisted in Tables 6 and 7 and plotted versus the square root
of time in Figures 22 through 27. The figures show the strong impact of the oxide

layers on the chemical interactions between Zry and ss. The reaction zone growth
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rates are Iisted in Tables 8, 9 and 10 and plotted as a function of the reciprocal

temperature in Figure 28. The growth rate equation and "to" values were

determined from x2 versus t correlations of the experimental data. The values of

the reaction zone growth rate of Zry shown in Figure 28 apply to the third stage

of reaction kinetics. The difference is only noticeable in the experiments

performed at 1100°C with an initial oxide layer of 50 11m, see Figure 26.

3.4ln1luence 01 oxygen dissolved in Zry on the Zry-4/ss interaction

The chemical interaction between a-Zr(O) and stainless steel shows that the

reaction rate and morphology of the reaction zone are different from those in

the experiments carried out in the as-received condition with an initial oxide

layer at the Zry/ss interface. The differences are a consequence of the high

oxygen content of Zry of around 3.5 wt. %. Figures 29 and 30 show the reaction

zone generated by the chemical interactions of specimens annealed at 1200 and

1300°C for 10 min. The liquid phase (which forms as a result of eutectic

interactions between Zr and Fe and/or Ni) does not advance as a continuous

interface, but develops along the grain boundaries. Metallic Fe and/or Ni

penetrate and/or diffuse into the a-Zry(O), primarily along grain boundaries, to

interact chemically with oxygen - poor Zr. The reaction zone also shows many

small previously molten regions within the grains with some Fe dissolved in the a­

Zry (0) matrix. These regions, liquid at the annealing temperature, are larger and

connected to each other in the vicinity of the interface, the number of these

liquid regions decreases with the distance from the interface.

The measurement of the lengths of the liquid phase regions, which develop along

the grain boundaries, is difficult. The Zry crucibles are very brittle due to the high

oxygen content; they show cracks and voids produced mainly by the different

thermal expansions between the steel rod and the Zry crucible. These defects act

as a liquid short-circuit. Therefore, it was necessary to differentiate between

these zones and the liquid regions which formed exclusively along the grain

boundaries by a diffusion process. The diffusion rate and morphology of the

reaction zone in Zry indicate that Fe diffuses slowly in a-Zry (0); the diffusion rate

depends on the oxygen content. The lower the oxygen content in Zry, the faster is

the diffusion process.

The reaction morphology on stainless steel was different depending on whether

the experiments were carried out at 1300°C and above or at lower temperatures.

At 1300°C, the reaction zone shows two different layers, Figure 31; the first

nearer to the Zry/ss interface is liquid due to the diffusion of Zr into the ss, the
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second consists of stringers, which develop in the radial direction. In the
experiments performed at 1350 and 1400°(, the steel rods have Iiquefied (with
the exception of the experiment performed at 1350°(/10 min). The diffusion of Zr

into stainless steel attained the eutectic composition between Fe and Zr, which

forms at 1337°( with a Zr content of 15 wt. %; Figure 4.

Due to the growth of the liquid phase in Zry, which is mainly intergranular and

not a continuous interface, the growth of the reaction zone was calculated from

the measurements of the maximum length of the liquid branch at four positions

along the circumference, starting from a random point of the specimen. The
values are given in Table 11 and plotted vs. the square root of time in Figure 32.

Table 11 also shows the reaction thicknesses measured in stainless steel for the

two reaction layers. In Figure 33 the values are plotted of the homogeneous

liquid zone in ss vs. the square root of time. The reaction zone growth versus the

reciprocal temperature plotted in Figure 34 is a comparison with the results in the

as-received condition and with an initial oxide layer of Zr02 of 10 11m. The growth
rate equations determined for the temperature range of 1100 to 14000

( are:

For Zircaloy-4:

x2/t (cm2/s) =5.04x104·exp (-281100IRT)

For stainless steel:

x2/t (cm2/s) = 5.98xl030·exp (-1098800IRT)

R = 8.314J/mol·K

(5)

(6)

Figure 34 indicates a very strong reduction in the reaction rate compared with the

previous experiments; for example, in the as-received condition, a Zry tube of 0.7

mm wall thickness at 12000
( would melt in less than 15 seconds, in the case of

specimens with 3.5 weight percent of oxygen, the results indicate that the wall
thickness would be crossed bya liquid branch after about 13 minutes. The same

occurs with the steel rod, Le. in the as-received condition, the same wall thickness

at 12000
( would melt in 23 minutes, but in contact with a-Zry (0) at 1200°(, the

wall would be molten after about 210 hours.

Although liquid phase formation on the Zircaloy does not affect the whole
material (but develops mainly along grain boundaries), the reaction rate was

calculated considering the maximum length of the intergranular liquid branch.
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Figures 35 and 36 show the reaction depth and the reaction zone growth rate as a

function of temperature for all experimental conditions.

3.5 Dissolution 01 the ZrOz layer; Experimental determination

Additional experiments were performed to determine the time until
disappearance of the Zr021ayer on the Zry surface and to correlate this time with
the delay in the beginning of Zry/ss interactions; this time is called the incubation
time. The measured oxide layer thicknesses remaining after annealing at
different temperatures for various times are Iisted in Table 13 and plotted versus

the square root of time in Figure 37. The initial oxide layer thickness was 50 11m.

The time for the disappearance of the Zr02 layer and the incubation time for the

Zr/ss interactions are plotted in Figure 38 versus the reciprocal temperature. The

time until disappearance of the Zr02 layer calculated with the DISOL code [7]

(which describes the dissolution of the oxide layer when the oxygen supply is

interrupted) is also included; the agreement in the activation energy between

the experimental and calculated results is reasonably good; small differences in
the dissolution time can be attributed to experimental procedures. Some

differences can be recognized when the experimentally determined dissolution

time for the Zr02 layer and the incubation time in the Zry/ss interactions are

inter-compared. At higher temperatures the incubation time is shorter than the

time necessary to dissolve the Zr02 layer; this means that the liquid phase due to

Zry/ss interactions begins before the oxide layer has completely disappeared. This

was proved by metallographie examinations; remnants of oxide layers still exist in

the liquid reaction zone, Figure 39.

The chemical behavior can be explained on the basis of the (Zr, Fe, 0) ternary

phase diagram, Figure 40 [10]. Fe does not interact with Zr02, but different
phases can form with a sub-stoichiometric Zr02 (Zr02-x can form due to oxygen
diffusion into Zry to form oxygen stabilized a-Zr(O». In this way, Zr from the

oxide layer can interact with Fe, producing a liquid phase which penetrates into

the cracks of the brittle and porous oxide layer reaching the narrow a-Zry(O)

phase. Figure 39 shows the chemieal interactions and the liquid phase in the

stainless steel when in contact with a Zry specimen with an initial oxide layer

thickness of 50 11m annealed at 1300 °C for 10min.

At lower temperatures (T < 1150°C), the incubation time in the Zry/ss

interactions seems to be slightly longer than the Zr02 dissolution time (Fig. 38),
the reason is the effect of the a-Zry(O) layer described as a second stage in
Chapter 3.3. This a-Zry(O) phase produce a certain delay in the formation of a
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liquid phase in the 13-Zry phase, which is more pronounced at lower temperatures

and greater initial oxide layer thicknesses.

4. Discussion

In the Zry/ss system, a considerable amount of a Zr-rich liquid phase is formed
around 1000°C, and the amount of Iiquefied material increases with increasing

temperature and time.

These results are in agreement with results of integral tests (CORA experiments)

in which fuel rod bundles containing absorber rods were heated to temperatures

of about 2000°C [2, 11, 12]. The onset of liquid-phase formation and the complete

Iiquefaction of the absorber rod components at temperatures above 1200°C were

detected by video systems. The low-temperature failure of the absorber rods

initiated core melt progression. The resulting melt attacked the fuel rods

chemically dissolving the Zry c1adding and some of the U02 fue!. By this process,
"molten" fuel relocation and early fission productrelease can take place even
weil below the melting point of the Zry c1adding (~ 1760°C). The melts relocate

towards cooler regions of the core where they may produce coolant channel

blockages on solidification.

The main purpose of this work has been to determine the kinetics of reactions

between Zry and stainless steel absorber rod components. Although some

interaction experiments have been described in the literature, no Arrhenius

equation had previously been developed from the data. In all cases, the
maximum reaction zone thickness was used in the evaluation of the kinetics data

to obtain conservative results.

Thin oxide layers on the Zry surface can delay the chemical interactions with the

ss, but cannot prevent them. Zr02 interacts with metallic Zr while forming

oxygen-stabilized a-Zr(O) and sub-stoichiometric Zr02-x which is then able to
interact with the ss components.

The reaction zone growth rates of pre-oxidized Zry are slower than those of as­

received Zry (Fig. 36). The oxygen dissolved in the Zr lattice exerts an influence on

the diffusion and/or dissolution processes; the reaction rates are slower. The
delay in the interaction of Zry with ss, called the incubation time, to, increases

with increasing Zr02 thickness, and complete meltdown of the components is

shifted to higher temperatures. The Zr02 layers on metallic Zry disappear only if
no further oxygen is available in the environment or has no access to Zry to

continue the oxidation. In all other cases, the reaction of Zry with oxygen or
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steam is more favorable thermodynamieally than the reactions with stainless
steel. But, as the integral LWR bundle meltdown experiments [2,12,13] show, a

steam environment cannot prevent the chemieal interactions between Zry and ss

since steam starvation conditions may exist locally. In these experiments, the

bundle components were used in the as-received condition. The

chemieal/physieal behavior of heavily preoxidized bundle components has
produced similar results [4].

During a severe reactor accident not only Zry but also ss will be oxidized by steam

at comparable rates [13]. If the resulting oxide layers are in solid contact with

each other, eutectie interactions will take place with liquid phase formation
between 1200 and 1400 oe [14]. Therefore, the oxide layers offer only limited

protection from the chemieal interactions. In all cases, Iiquefaction of the non­

oxidized and oxidized components will occur below their melting points.

The metallographie and chemieal/analytieal examinations of the specimens

revealed a large number of various phases at room temperature. Since only a

Iimited number of mainly binary phase diagramsare available, the observed

phases cannot all be described by phase diagram considerations. In addition,

some of the phases will not be in equilibrium since cooldown of the specimens

occurred rather fast. The integral chemieal compositions of the solidified melts

indicate for the Zry/ss system that only small amounts of ss are needed to dissolve
large quantities of Zry (Fig. 4, 5). The integral compositions are nearly identical
for all interaction temperatures examined.

The kinetie evaluation of these interaction experiments is problematie since a

liquid phase forms as areaction product. The liquid causes relative movements

between the Zry crucible and the ss rod during annealing of the diffusion couple.

Depending on the annealing conditions of the specimens (upright, horizontal),
the ss rod can penetrate into the Zry crucible wall by liquefying it at different

velocities. As a result, the interaction zones in the Zry crucible or the amount of

Zry dissolved are not uniform along their axes and circumference. This can be
c1early recognized in Figure 41. It shows specimens whieh were annealed at 1100

oe for 15 minutes in upright and horizontal positions. In a few cases the inserted

ss rod turned even by about 900 at higher temperatures (Figure 42). The

penetration of the ss rod into Zry is deepest at locations where the liquid film is

thinnest. Thus, for the kinetie evaluation of the Zry/ss reaction experiments the

maximum attack of Zry was considered. The different extents of Zry Iiquefaction
by ss are shown in Figure 43 as a function of the annealing conditions. The ss rod

behaves the same as Zry, but, at lower temperatures the differences with respect
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to the reaction zone growth rates between the two annealing conditions

examined become larger.

5. Summary and Conclusions

• Failure of the stainless steel c1adding of the absorber rod takes place as a
result of either internal pressurization (high Cd vapor pressure) or chemical
interactions with the Zircaloy guide tube (bowing of the rods at high
temperatu res).

• As soon as solid state contact is established between stainless steel and
Zircaloy, eutectic interactions take place which can be described by

parabolic rate laws. Liquid phases form at around 1000°C, and a fast and

complete liquefaction of both components takes place above 1250°C.

• Only small amounts of stainless steel are necessary to dissolve great

amounts of Zircaloy, and it takes only a Iittle more than 2 minutes to

destroy the 2.25 mm thick Zircaloy crucible wall at 1200°C.

Thin Zr02 layers on the Zircaloy surface delay the eutectic interactions of
Zircaloy with stainess steel, but cannot prevent them; the interaction

processes can be described in three different stages with different reaction

rates. The incubation period depends on the initial Zr02 thickness and
temperature.

Oxygen dissolved in the Zircaloy, forming oxygen-stabilized a~Zr(O),

reduces the reaction rates and shifts the liquefaction temperature to

slightly higher levels.

The liquid phase could have a substantial influence on further damage

progression of the fuel bundle components; the Iiquefaction of
components provides a mechanism for low-temperature material
relocation and blockage formation.
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Table 1: Quantitative analysis of phases in the Zircaloy-4/stainless
steel 1.4919 (AISI 316) reaction zone.

Position
Element Conc. in at. % Phase

(see Fig. 11, 12)

Zr 36
1 Fe 34 Zr(Cr, Feh

Cr 30

Zr 67
2 Fe 20 Zr2 (Fe, Cr)

Cr 13

Zr 68
3 Fe 23 Zr2 (Fe, Ni)

Ni 7
Cr, Sn Mn 2

Zr 94
4 Fe 4 a-Zr

Sn, Cr, Ni 2
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Table 2: Measured maximum reaction zone thickness in Zircaloy for
the diffusion couple Zircaloy-4/stainlesssteeI1.4919 (AISI
316) as a funetion oftemperature and time (Fig. 14).

Specimen Temperature Time Reaction zone thicknessoe min 11m

177 1000 5 0

178 " 15 80

179 " 15 80

198 " 30 150

197 " 30 120

192 1100 2 370

189 " 5 670

196 " 10 840

180 " 15 1200

182 " 30 1610

193 1150 1 550

184 " 2 960

183 " 5 1530

194 1200 1 1390

187 " 1 1150

188 " 2 1740

185 " 3 2250
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Table 3: Measured maximum reaction zone thickness in stainless steel
for the diffusion couple Zi rca loy-4/stainless stee11.4919 (AISI
316) as a function of temperature and time (Fig. 15).

Specimen Temperature Time Reaction zone thicknessoe min pm

177 1000 5 0

178 11 15 0

179 11 15 0

198 11 30 15

197 11 30 6

192 1100 2 35

181 11 5 15

189 11 5 65

196 11 10 105

180 11 15 65

193 1150 1 30

184 11 2 60

183 11 5 110

194 1200 1 145

188 11 2 190

199 11 4.5 375



-23-

Ig.

Temperature Reaction zone growth rate, x2/t
cm2/s

oe 1/K Zircaloy-4 stainless steel

1000 7.855'10-4 9.48'10-8 5.74'10-10

1100 7.283'10-4 1.44,10-5 8.72'10-8

1150 7.027'10-4 7.69'10-5 3.81'10-7

1200 6.789'10-4 3.33'10-4 4.79'10-6

Table 4: Reaction zone growth rates in Zircaloy and stainless steel for
the diffusion couple Zircaloy-4/stainless stee11.4919 (AISI 316)
(F' 17)

Growth rate equation:

For Zircaloy-4:

x2/t (cm2/s) = 2.78·1019·exp (- 642864/RT)

For stainless steel:

x2/t (cm2/s) = 1.08·1019·exp (- 688790/RT)

R = 8.314J/mol·K
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Table 5: Measured maximum reaction zone thickness in Zircaloy and
stainless steel for the diffusion couple pre-oxidized Zircaloy­
4/stainless stee11.4919 (AISI 316); initial Zr02 oxide layer
thickness: 10 llm (Figs. 22 and 23).

Reaction zone thickne55
Specimen Temperature Time llm

oe min
Zircaloy-4 1.491955

29 1000 15 0 0

22 " 30 0 0

37 " 30 0 0

38 " 60 0 0

25 1100 3 0 0

33 " 10 198 54

21 " 15 287 66

27 " 30 513 119

34 1150 2 0 0

26 " 5 263 57

30 " 5 192 45

35 " 10 440 95

23 " 15 683 124

36 1200 1 0 0

32 " 2 160 40

31 " 3 393 73

24 " 5 490 112

28 " 10 793 151
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Table 6: Measured maximum reaction zone thickness in Zircaloy and
stainless steel for the diffusion couple pre-oxidized Zircaloy­
4/stainless stee11.4919 (AISI 316); initial Zr02 oxide layer thickness:
20 11m (Figs. 24 and 25).

Reaction zone thickness

Specimen Temperature Time 11moe min.
Zircaloy-4 1.49195S

201 8 1050 90 0 0

2028 " 120 0 0

212 " 180 463 100

2128 " 240 872 175

213 " 300 1195 255

205 1100 30 0 0

204 " 45 123 24

2048 " 60 425 115

206 " 90 755 170

210 " 120 1207 275

203 1200 10 127 38

201 " 20 827 158

202 " 30 1240 290

208 " 30 1115 258

214 " 45 1630 385

218 1250 5 155 197

216 " 10 977 395

215 " 15 1473 635

217 " 20 1890 837

209 1300 3 430 160

220 " 5 850 407

207 " 7 1930 627
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Table 7: Measured maximum reaction zone thickness in Zircaloy and
stainless steel for the diffusion couple pre-oxidized Zircaloy­
4/stainless stee11.4919 (AISI 316); initial Zr02 oxide layer thickness:
50 p.m (Figs. 26 and 27)

Reaction zone thickne55

Specimen Temperature Time p.m
oe min.

Zircaloy-4 1.491955

233 1100 180 0 0

234 " 240 0 0

235 " 300 37 0

239 " 420 175 0

236 " 600 340 20

237 " 900 1493 381

222 1200 60 0 0

221 " 90 687 38

240 " 90 810 120

223 " 120 1237 202

224 " 180 2500 485

241 "11 180 melted -
231 1250 30 190 313

232 " 30 305 -
230 " 40 802 -

229 " 60 1787 1175

243 " 60 1815 850

228 1300 5 0 0

227 " 10 0 253

246 " 10 195 315

225 " 15 836 670

226 " 20 1180 1477

245 " 20 1185 -
244 " 25 2190 -



-27-

Table 8: Reaction zone growth rates in Zircaloy and stainless steel for
the diffusion couple pre-oxidized Zi rcaIoy-4/stainless steel
1.4919 (AISI316); initial Zr02 oxide layerthickness: 1011m
(Fig.34).

Temperature Reaction zone growth rate, x2/t
cm2/s

oe 1/K Zircaloy-4 stainless steel

1000 7.855'10-4 - -
1100 7.283'10-4 1.9'10-6 9.7'10-8

1150 7.027'10-4 6.7'10-6 2.1'10-7

1200 6.789'10-4 1.2'10-5 4.3'10-7

Growth rate equation:

For Zircaloy-4:

x2/(t - to) (cm2/s) = 1.43,106'exp (- 3111 OO/RT)

For stainless steel:

x2/(t - to)(cm2/s) = 3.4·102·exp (- 250817/RT)

R = 8.314J/mol·K

to values (1011m Zr02 layer), s

Temperature Zry ss

1000 0e - -
1100 oe 426 371

1150 oe 239 176

1200 oe 83 56
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Table 9: Reaction zone growth rates in Zircaloy and stainless steel for the
diffusion couple pre-oxidized Zi rca loy-4/sta inless stee11.4919 (AISI
316); initial Zr02layerthickness: 20 11m (Fig. 36).

Temperature Reaction zone growth rate, x2/t
cm2 /s

oe 1/K Zircaloy-4 stainless steel

1050 7.558·10-4 1.666·10-6 7.639·10-8

1100 7.283.10-4 2.502.10-6 1.662·10-7

1200 6.789·10-4 1.249'10-5 7.158·10-7

1250 6.566·10-4 3.95·10-5 7.428·10-6

1300 6.357·10-4 1.54·10-4 1.531·10-5

Growth rate equation:

For Zircaloy-4:

1050 oe :;; T :;; 1200° e

Ix2 / (t-to) (cm2/s) = 1030'exp (-224062/ RT)

1200 oe s; T s; 1300° e
x2 / (t-to) (cm2/s) = 1.582,1012. exp. (-482794/ RT)

For stainless steel:

1050 oe :;; T :;; 1200° e
x2 / (t-to) (cm2/s) = 282 'exp (-242428 / RT)

x2 / (t-to) (cm2/s) = 9.36,1 014'exp (-592439 / RT)

R = 8.314J/mol·K

to values (20 pm Zr02 layer), s

Temperature Zry ss

1050 7450 9770

1100 3170 2870

1200 800 710

1250 250 310

1300 205 170
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Table 10: Reaction zone growth rates in Zircaloy and stainless steel for the
diffusion couple pre-oxidized Zircaloy-4/stainless stee11.4919 (AISI
316); initial Zr021ayer thickness: 50 11m (Fig. 36).

Temperature Reaction zone growth rate, x2/t
cm2

oe lIK Zircaloy-4 5tainle555teel

1100 7.855·10-4 1.174·10-6 8.033·10-8

1200 6.789·10-4 9.473·10-6 4.482·10-7

1250 6.566.10-4 1.78.10-5 5.294·10-6

1300 6.357·10-4 4.67·10-5 3.29·10-5

Growth rate equation:

For Zircaloy-4:

x2 / (t-to) (cm2/s) = 8.925·107·exp(-368975 / RT)

For stainless steel:

11 00 oe :s T :s 1200° e

Ix2 / (t-to) (cm2/s) = 8152'exp (-289244 / RT)

x2 / (t-to) (cm2/s) = 1.107,1023'exp (-827825 / RT)

R: 8.314J/mol·K

to value5 (50 pm Zr02 layer), 5

Temperature Zry 55

1100 34060 35950

1200 4750 5470

1250 1660 1890

1300 640 610
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Table 11: Measured reaction zone thickness in the oxygen stabilized a-Zry(O)1
stainless steel 1.4919 (AISI 316) system (Figs. 32 and 33). Initial oxygen
content about 3.5 wt. %.

Reaction zone th ickne55, IJm

1.491955

Specimen Temperature Time Zircaloy-4oe min Zone 1 [A] Zone 2 [B]

42 1100 60 650 - -

58 11 90 740 - -
43 11 120 804 - -
52 11 120 866 - -
53 1200 10 475 18 -
41 11 15 675 25 -
45 11 25 960 28 -
44 11 40 1270 42 -

48 11 60 1510 48 -

54 1300 5 525 182 420

47 11 10 995 155 -

55 11 15 1150 467 935

46 11 25 1637 868 1378

49 11 40 1730 470-

57 1350 40 2330 457 1210

50 11 5 1348 molten -
51 11 10 1625 978 1267

56 11 15 1910 molten -

59 1400 5 1743 molten -
60 11 15 3000 molten -

[A]: Length ofthe eutectic liquid zone, Figure 31
[8]: Length ofthe total reaction zone (eutectic plus radial stringers), Figure 31
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Table 12: Reaction zone growth rates in Zircaloy and stainless steel for the
diffusion couple a-Zry(O)/stainless stee11.4919 (AISI316), (Fig. 34).

Temperature Reaction zone growth rate, x2/t
cm2/s

oe 1/K Zircaloy-4 stainless steel

1100 7.283-10-4 9.97-10-7 -
1200 6.789-10-4 6.31-10-6 6.51-10-9

1300 6.357-10-4 1.73-10-5 1.99-10-6

1350 6.161-10-4 4.29-10-5 -
1400 5.977-10-4 1.00-10-4 -

Growth rate equation:

For Zircaloy-4:

x2/(t - to) (cm2/s) = 54078-exp (-282106/RT)

For stainless steel:

x2/(t-to)(cm 2/s) = 7.588-1030-exp(-1101622/RT)

R = 8.314 J/mol-K
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Table 13: Dissolution of the oxide layer; initial oxide layer thickness:
50 11m (Fig. 37).

Specimen Temperature Time Oxide thicknessoe min 11m

11 1100 60 25

12 " 90 20

13 1200 10 34

15 " 20 28

14 " 30 21

16 1250 5 35

18 " 10 29

17 " 15 23

19 1300 3 36

21 " 7 27

20 " 10 20
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after 2 min at 1200°C.
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