KfK 5264 August 1994

Bestrahlungsprogramm SAMARCANDE

Ergebnisse der Kerbschlagbiegeversuche

M. Rieth, B. Dafferner, H. Ries, O. Romer Institut für Materialforschung Hauptabteilung Versuchstechnik Projekt Nukleare Sicherheitsforschung

Kernforschungszentrum Karlsruhe

Kernforschungszentrum Karlsruhe

Institut für Materialforschung Hauptabteilung Versuchstechnik Projekt Nukleare Sicherheitsforschung

KfK 5264

Bestrahlungsprogramm SAMARCANDE

Ergebnisse der Kerbschlagbiegeversuche

M. Rieth, B. Dafferner, H. Ries, O. Romer

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

ISSN 0303-4003

i.

KURZFASSUNG

Zum Nachweis der Tauglichkeit des martensitischen 10,5% Cr-Stahls 1.4914 als alternatives Kastenmaterial wurde anhand von Kerbschlagbiegeversuchen die bestrahlungsinduzierte Versprödung charakterisiert. Die Untersuchungen stützten sich hauptsächlich auf Proben, die aus einem im Rahmen des EFR-Projekts in Cadarache (PHENIX-Reaktor, Bestrahlungsprogramm SAMAR-CANDE) bestrahlten Brennelementhüllkasten gefertigt wurden. Die Auswertung der Sprödbruchübergangstemperatur und der Schlagarbeit in der Hochlage der sicherheitsrelevanten Segmente des Hüllkastens führte zu einer positiven Bewertung: der 10,5% Cr-Stahl 1.4914 ist für den Einsatz als Brennelementhüllkastenwerkstoff bestens geeignet.

ABSTRACT

Irradiation Programme SAMARCANDE: Impact Test Results

To produce proof of the usability of the martensitic 10.5% Cr-steel 1.4914 as alternative wrapper tube material the irradiation induced embrittlement was characterised with impact tests. The examinations were based on specimens, which were fabricated out of an irradiated wrapper tube. The irradiation was carried out within the EFR project (European Fast Reactor) in the PHENIX reactor in Cadarache (irradiation programme SAMARCANDE). The evaluation of ductile-to-brittle-transition temperatures and upper shelf energies of safety relevant segments of the tube led to a positive assessment: the 10.5% Cr-steel 1.4914 is excellently suited to the usage as wrapper tube material.

1 EINLEITUNG	
2 VERSUCHSMATERIAL	5
3 PROBENHERSTELLUNG	6
4 VERSUCHSTECHNIK	10
5 VERSUCHSERGEBNISSE	11
5.1 UNBESTRAHLTER KASTENWERKSTOFF	11
5.2 UNBESTRAHLTE SCHWEIßVERBINDUNGEN	12
5.3 UNBESTRAHLTER, AUSGELAGERTER KASTENWERKSTOFF	13
5.4 Bestrahlter Kastenwerkstoff	13
5.5 BESTRAHLTE SCHWEIßVERBINDUNGEN	16
6 DISKUSSION DER VERSUCHSERGEBNISSE	18
6.1 PROBENGEOMETRIE	18
6.2 BEURTEILUNG DER UNBESTRAHLTEN SCHWEIßNÄHTE	19
6.3 EINFLUß DER AUSLAGERUNG (THERMISCHE ALTERUNG)	20
6.4 EINFLUß DER NEUTRONENBESTRAHLUNG	21
6.4.1 VOLLMATERIALPROBEN	22
6.4.2 Schweißnaht	
6.5 BEURTEILUNG DES BRENNELEMENTKASTENS	24
7 ZUSAMMENFASSUNG	25
8 LITERATUR	26

9	ANHANG	27
9	.1 TABELLARISCHE ZUSAMMENSTELLUNG DER VERSUCHSERGEBNISSE	27
	9.1.1 UNBESTRAHLTER KASTENWERKSTOFF	.27
	9.1.2 UNBESTRAHLTE SCHWEIßVERBINDUNGEN	. 28
	9.1.3 UNBESTRAHLTER, AUSGELAGERTER KASTENWERKSTOFF	.29
	9.1.4 BESTRAHLTE SCHWEIßVERBINDUNGEN, SEGMENT 1	. 30
	9.1.5 BESTRAHLTER KASTENWERKSTOFF, SEGMENT 2	31
	9.1.6 BESTRAHLTER KASTENWERKSTOFF, SEGMENT 3	.32
	9.1.7 BESTRAHLTER KASTENWERKSTOFF, SEGMENT 4	.33
	9.1.8 Bestrahlter Kastenwerkstoff, Segment 5	34
	9.1.9 BESTRAHLTE SCHWEIßVERBINDUNGEN, SEGMENT 6	35
9	.2 BRUCHFLÄCHENAUFNAHMEN	36
	9.2.1 UNBESTRAHLTER KASTENWERKSTOFF	36
	9.2.2 UNBESTRAHLTE SCHWEIßVERBINDUNGEN	52
	9.2.3 UNBESTRAHLTER, AUSGELAGERTER KASTENWERKSTOFF	62
	9.2.4 BESTRAHLTE SCHWEIßVERBINDUNGEN, SEGMENT 1	74
	9.2.5 BESTRAHLTER KASTENWERKSTOFF, SEGMENT 2	82
	9.2.6 Bestrahlter Kastenwerkstoff, Segment 3	89
	9.2.7 BESTRAHLTER KASTENWERKSTOFF, SEGMENT 4	96
	9.2.8 Bestrahlter Kastenwerkstoff, Segment 5 1	04
	9.2.9 BESTRAHLTE SCHWEIßVERBINDUNGEN, SEGMENT 6 1	11

1 EINLEITUNG

Im Rahmen des EFR-Projekts wurde ein Brennelementkasten deutscher Fertigung im PHENIX-Reaktor (Cadarache, Frankreich) zwei Jahre lang bestrahlt. Dieses Bestrahlungsprogramm mit dem Namen SAMARCANDE beinhaltet umfangreiche mechanische und werkstoffkundliche Materialuntersuchungen. Das Ziel des Programms ist die Zusammenstellung einer Datenbasis als Entscheidungsgrundlage für die künftige Herstellung oder Weiterentwicklung von Brennelementkästen aus martensitisch-ferritischen Werkstoffen als Alternative zu den bisher verwendeten Austeniten.

Im vorliegenden Bericht werden nur die Kerbschlageigenschaften betrachtet. Die Untersuchungsergebnisse aus Zugversuchen sind in [1] zusammengestellt. Für die weitere Kastenproduktion sind dabei die Ergebnisse der Untersuchungen an den Schweißverbindungsstellen von besonderem Interesse. Dagegen liefern die Untersuchungen am martensitischen Grundwerkstoff im Bereich der höchsten Dosis (>100 dpa) wichtige sicherheitsrelevante Kennwerte für die Einsatzmöglichkeiten und Anhaltspunkte für die weitere Materialentwicklung.

2 VERSUCHSMATERIAL

Der eigentliche Brennelementkasten besteht aus einem 2,50 m langem Sechskantrohr mit einer Wanddicke von 3,4 mm. Bei dem verwendeten Stahltyp handelt es sich um einen 10,5 % martensitischen Cr-Stahl (X18CrMoVNb 12 1, W.-Nr. 1.4914, Charge 51482). Eine genaue Charakterisierung dieses Werkstoffs findet man in [2]. Die Herstellung erfolgte nach einem Mannesmannverfahren mit der Abschlußwärmebehandlung bei 1075°C / 0,5 h + 700°C / 2 h.

Dem Kasten wurden an beiden Enden Manschetten aus austenitischem AISI 316-Stahl aufgesetzt. Die Verbindung wurde durch WIG-Schweißen mit INCONEL 82 als Schweißzusatzwerkstoff hergestellt. Die chemische Zusammensetzungen der unterschiedlichen Werkstoffe sind in den Tabelle 1-3 angegeben. Die Schweißnähte wurden abschließend bei 700°C / 0,5h spannungsfrei geglüht.

С	Si	Mn	Р	S	Cr	Ni	Mo	V	Nb	AI	В	N	Co	Cu	Fe
0,17	0,31	0,64	0,005	0,005	10,5	0,87	0,56	0,25	0,2	0,05	0,002	0,003	0,02	0,01	Rest

Tabelle 1: 1.4914, Chg. 51482, chemische Zusammensetzung in Gew.-%

Tabelle 2: AISI 316, chemische Zusammensetzung in Gew.-%

0,040	С
0,32	Si
1,30	Mn
0,024	Ρ
0,009	S
16,30	Cr
12,17	Ni
2,64	Мо
	v
	Nb
<0,01	AI
0,001	В
0,042	N
0,32	Cu
Rest	Fe

Tabelle 3: INCONEL 82, chemische Zusammensetzung in Gew.-%

С	Si	Mn	Р	S	Cr	Ni	Мо	V	Nb	AI	В	N	Cu	Fe
0,046	0,21	3,03	0,003	0,008	19,13	70,92							0,01	3,75

Während der Bestrahlung im PHENIX-Reaktor war der Hüllkasten infolge des Kühlmittelflusses einem Temperaturgradienten ausgesetzt. Dabei betrug die Einlaßtemperatur am Fuß des Kastens 380°C und stieg bis auf ca. 630°C bei der oberen Austrittsseite an.

3 PROBENHERSTELLUNG

Für die Nachuntersuchungen wurden aus dem Brennelementkasten sechs Segmente herausgetrennt. Die Numerierung dieser Segmente erfolgt von 1 bis 6 (von unten nach oben).

Damit beinhalten die Hüllkastensegmente 1 und 6 Schweißnähte zwischen martensitischem und austenitischem Stahl bei gleicher Bestrahlungsdosis von 10 dpa mit Bestrahlungstemperaturen von 380°C bzw. 600°C. Alle anderen Segmente bestehen einheitlich aus martensitischem Stahl mit Bestrahlungsdosen zwischen 10 und 105 dpa sowie Bestrahlungstemperaturen von 380°C bis 540°C. Das Schnittschema der einzelnen Segmente und die dazugehörigen Bestrahlungsparameter sind in der Abbildung 1 dargestellt.

Abbildung 1: Schnittschema, Bestrahlungsparameter

In der Hauptabteilung Versuchstechnik / Heiße Zellen der KfK wurden aus den verschiedenen Segmenten die Kerbschlagbiegeproben gefertigt. Die Probengeometrie wurde in Anlehnung an die ISO-V-Normproben gewählt (Höhe x Breite x Länge = 10mm x 2,5mm x 55mm bei einer Kerbtiefe von 2mm). Die Probenbreite ist damit aufgrund der Wandstärke des Hüllkastens viermal kleiner als bei den Normproben (s. Abbildung 2).

Abbildung 2: Geometrie der 1/4-ISO-V Flachproben

Die Proben wurden in L-T-Orientierung längs zur Walzrichtung ausgearbeitet. Bei den Proben mit Schweißverbindung wurde die Kerbe innerhalb der Wärmeeinflußzone auf der Seite des martensitischen Werkstoffs eingebracht (s. Abbildung 3).

Die sechs Flanken des Brennelementkastens wurden mit A, B, C, ..., F bezeichnet. Für die Herstellung der Kerbschlagbiegeproben wurden lediglich die Flanken A und C benutzt. Die Kodierung der Proben aus dem bestrahlten Hüllkasten erfolgte nach dem Schema **S-F-n**, mit **S**=Segment-Nr., **F**=Flankenbezeichnung und **n**=fortlaufende Probennummer. Damit kennzeichnet z.B. die Kodierung 4C5 die 5. Kerbschlagbiegeprobe aus der Flanke C des 4. Kastensegments.

Für Vergleichsuntersuchungen wurden noch 10 unbestrahlte Proben mit Schweißverbindung hergestellt. Allerdings wurde hier der martensitische 1.4914-Stahl der Charge 53093 entnommen. Weiterhin wurden aus einem unbestrahlten Hüllkasten eine Reihe Proben aus verschiedenen Flanken hergestellt, wobei zusätzlich jeweils 8 Proben bei 400°C, 500°C und 600°C ausgelagert wurden.

PROBENHERSTELLUNG

Abbildung 3: Lage der Wärmeeinflußzone bei der Probenherstellung

Die Dauer der Auslagerung entsprach den Vollasttagen des PHENIX-Reaktors (719 Tage). Dadurch kann bei einem Vergleich zwischen den unbestrahlten Proben und den Proben, die aus dem im PHENIX-Reaktor bestrahlten Hüllkasten hergestellten wurden, der thermische Alterungseinfluß ermittelt und berücksichtigt werden.

4 VERSUCHSTECHNIK

Die Kerbschlagbiegeversuche wurden mit einem im IMF-II entwickelten Prüfsystem durchgeführt. Die Prüfeinheit wurde in der Hauptabteilung Versuchstechnik / Heiße Zellen installiert und liefert auch bei bestrahlten Proben durch den Einsatz eines Computersystems bei den meß-, regel- und steuertechnischen Komponenten äußerst zuverlässige und präzise Versuchsergebnisse [3, 4, 5].

Die technische Auslegung der Prüfanlage entspricht den Angaben in DIN 50115, DIN 51222, EN 10045 und DVM 001. Detaillierte technische Angaben sind im nebenstehenden

Kasten zusammengefaßt.

Bei den Kerbschlagbiegeversuchen wurde zu jedem Versuch eine Kraft-Durchbiegungskurve der jeweiligen Probe aufgezeichnet. Durch die gegebene Korrelation zwischen Kraftverlauf eines Versuchs und der entsprechenden Lage im Schlagar-

Technische Daten

50 J Pendelschlagwerk Hammerfinnenradius 2 mm Widerlagerabstand 40 mm Schlaggeschwindigkeit 3,85 m/s Kraftmeßeinrichtung in der Hammerfinne Meßwerterfassungsrate 1 MHz Meßverstärkerbandbreite 1 MHz (-3dB) A/D-Wandlerauflösung 1,2 mV Halbautomatische Probenbeladevorrichtung Beladeverzugszeit max. 2 sec PC-gesteuerte Versuchsdurchführung Prüftemperaturbereich -180°C bis +600°C

beit-Temperatur-Diagramm war somit eine genaue Ermittlung der Sprödbruchübergangstemperatur auch mit wenigen Proben möglich.

Die Schlagarbeit bei Hochlage bzw. USE (Upper Shelf Energy) und die Sprödbruchübergangstemperatur bzw. DBTT (Ductile to Brittle Transition Temperature) bilden die klassischen Kerbschlageigenschaften eines Werkstoffs. Die USE wurde als Maximalwert des Schlagarbeit-Temperatur-Verlaufs definiert. Als DBTT wurde diejenige Temperatur gewählt, bei der die Schlagarbeit die Hälfte der Hochlagenenergie erreicht.

5 VERSUCHSERGEBNISSE

In den folgenden Kapiteln werden die aus den Kerbschlagbiegeversuchen ermittelten Schlagarbeit-Prüftemperatur-Kurven dargestellt. Die genauen Zahlenwerte der einzelnen Ergebnisse sowie die Probenzuordnung befinden sich in Tabellenform im Anhang (Kapitel 9.1).

Zusätzlich wurden die Probenhälften und deren Bruchflächen nach den jeweiligen Versuchen fotografiert. Diese Bruchflächenaufnahmen sind ebenfalls im Anhang (Kapitel 9.2) abgebildet.

5.1 UNBESTRAHLTER KASTENWERKSTOFF

Die Resultate der Versuche mit Proben aus dem unbestrahlten Kastenwerkstoff 1.4914 sind in der Abbildung 4 dargestellt.

Abbildung 4: A_V-T-Kurve des unbestrahlten Kastenvollmaterials

Besonders auffällig sind dabei die im Vergleich zu Untersuchungsergebnissen mit Standardproben relativ hohe Streuungen der Schlagarbeit bei Prüftemperaturen unterhalb von -100°C und zwischen -20°C und +60°C. Die einzelnen Versuchspunkte sind deshalb in einem Streuband von $\pm 2,5$ J im Bereich der Hochlage zusammengefaßt. Damit ergibt sich bei der Ermittlung der Kerbschlageigenschaften für die Übergangstemperatur -100°C (± 20 °C) und für die Hochlage ein Wert von 30 J ($\pm 2,5$ J).

5.2 UNBESTRAHLTE SCHWEIßVERBINDUNGEN

Abbildung 5: A_V -T-Kurve der unbestrahlten Schweißverbindungen

Abbildung 5 zeigt die Schlagarbeit-Temperatur-Kurve, die aus den Versuchsergebnissen der Schweißverbindungsproben gewonnen wurde. Die dabei auftretenden Streuungen aufgrund inhomogener Wärmeeinflußzonen sind auch hier wiederum mit einem entsprechenden Streuband zusammengefaßt.

Damit erhält man eine Sprödbruchübergangstemperatur von -80°C (±20°C) und eine Energie in der Hochlage von 35 J (±2 J).

5.3 UNBESTRAHLTER, AUSGELAGERTER KASTENWERKSTOFF

In Abbildung 6 sind die Schlagarbeiten der ausgelagerten Proben in das Streuband aus Abbildung 4 eingezeichnet. Die Versuchsergebnisse fügen sich gut in das schon ermittelte Schlagarbeit-Temperatur-Diagramm ein.

Abbildung 6: Vergleich zwischen unbestrahltem ausgelagertem und nicht ausgelagertem Kastenvollmaterial

5.4 Bestrahlter Kastenwerkstoff

Bei der Prüfung der bestrahlten Proben aus den Hüllkastensegmenten 2, 3, 4 und 5 ist eine leichte, stetige Zunahme der Schlagarbeit im Bereich der Hochlage mit steigender Prüftemperatur festzustellen. Da bei Temperaturen oberhalb 400°C Ausheileffekte zu erwarten sind, wurde die Hochlagenenergie einheitlich bei einer Prüftemperatur von 300°C bestimmt.

Für den praktischen Einsatz des Kastenmaterials sind zwei Temperaturen ausschlaggebend: zum einen die Betriebstemperatur, die hier der Bestrahlungstemperatur des Hüllkastens entspricht, und zum anderen die Temperatur, bei der der Hüllkasten aus dem Reaktor ausgebaut wird. Diese Ausbautemperatur wurde im folgenden mit der Raumtemperatur (RT, ca. 25°C) gleichgesetzt

und liefert somit eine konservative Beurteilung der Kerbschlagzähigkeit, da die tatsächlichen Ausbautemperaturen wesentlich höher liegen.

Die Abbildungen 7 bis 10 zeigen getrennt für jedes Segment die jeweiligen Schlagarbeit-Temperatur-Kurven und die relevanten Versuchsparameter.

Abbildung 7: A_V-T-Kurve des Kastensegments 2

Abbildung 8: A_V-T-Kurve des Kastensegments 3

Abbildung 9: A_V-T-Kurve des Kastensegments 4

VERSUCHSERGEBNISSE

Abbildung 10: A_V-T-Kurve des Kastensegments 5

5.5 BESTRAHLTE SCHWEIßVERBINDUNGEN

Die Ergebnisse der Kerbschlagbiegeversuche mit den bestrahlten Schweißverbindungsproben aus den Segmenten 1 und 6 sind in den Abbildungen 11 und 12 dargestellt. Die höheren Streuungen werden hier, wie schon beim unbestrahlten Werkstoff, durch Inhomogenitäten der Wärmeeinflußzone der Schweißverbindungen verursacht.

Abbildung 11: A_V -T-Kurve des Kastensegments 1

Abbildung 12: A_V-T-Kurve des Kastensegments 6

6.1 PROBENGEOMETRIE

Im Vergleich zu Kerbschlagbiegeversuchen mit ISO-V-Standardproben verschiebt sich die Sprödbruchübergangstemperatur bei den hier vorliegenden Flachproben mit einer Dicke von 2,5 mm zu tieferen Temperaturen hin. Da die Kastenwandstärke jedoch 3,4 mm beträgt, sind sämtliche aus den Versuchen mit den Flachproben ermittelte Sprödbruchübergangstemperaturen im Hinblick auf das reale Hüllkastenverhalten zu optimistisch. Eine genaue Angabe der Sprödbruchtemperatur bei der tatsächlichen Wandstärke ist wegen fehlender Vergleichsversuche nicht zu machen. Die Größenordnung läßt sich jedoch ungefähr abschätzen. Kerbschlagbiegeversuche mit ISO-V-Proben mit einer viermal größeren Dicke (10 mm) bei einer Schlaggeschwindigkeit von 5,5 m/s (anstatt 3,85 m/s bei den Flachproben) liefern eine um ca. 110°C höhere Sprödbruchübergangstemperatur. Daher wird bei einer Schlaggeschwindigkeit von 3,85 m/s der Unterschied zwischen einer Probendicke von 2,5 mm und 3,4 mm sicherlich nicht größer als 50°C sein. Addiert man zu den hier aus Kerbschlagversuchen mit Flachproben ermittelten Sprödbruchtemperaturen 50°C dazu, so gelangt man zu einer konservativen Abschätzung der tatsächlichen Brennelementkastenversprödung.

Eine weitere Eigenart der Flachproben ist in Abbildung 4 in Form scheinbar hoher Streuungen der Versuchsergebnisse zu erkennen. Auf den ersten Blick sind die Abweichungen der Energiewerte im Bereich von -20°C bis +60°C erstaunlich, da eine äußerst präzise und über mehrere Jahre hinweg perfektionierte Versuchsanlage verwendet wurde. Eine Wiederholung einzelner Versuche änderte jedoch nichts am Ergebnis. In dem erwähnten Temperaturbereich zeichnen sich deutlich zwei Kurven mit einem höherem und einem um ca. 4 J niedrigerem Energieniveau ab. Betrachtet man nun noch die dazugehörigen Bruchflächenaufnahmen z.B. der Proben S10 und S20 im Anhang (Kapitel 9.2), so erkennt man die Ursache. Der Zähbruch der Probe S20 erfolgt "konventionell" über eine duktile Rißverlängerung. Der Riß verläuft im wesentli-

chen senkrecht zur Probenebene. Dabei bilden sich an beiden Rändern der Probe Scherlippen. Bei der Probe S10 bildet sich kein Scherlippenpaar. Der gesamte Riß breitet sich eben mit einem Winkel von ca. 30° zwischen Bruchfläche und Probenebene aus. Im Prinzip besteht hier der gesamte Bruch aus einer einzigen Scherlippe. Man könnte deshalb den Bruch als Scherbruch bezeichnen. Diese Bruchart tritt auch bei den Proben S9-S12, S19, S21 und S23 auf. Da die Rißausbreitung bei den Scherbrüchen energieärmer abläuft, weisen die entsprechenden Schlagarbeiten niedrigere Werte auf. Somit handelt es sich bei den unterschiedlichen Versuchsergebnissen nicht um Streuungen, sondern vielmehr um verschiedene Rißausbreitungsarten. Aufgrund der vorliegenden Experimente ist anzunehmen, daß gerade im oberen Übergangsbereich zur Hochlage Scherbrüche bevorzugt stattfinden.

Die unterschiedlichen Ergebnisse der Proben S17, S25 und S26 im Tieftemperaturbereich lassen sich anhand der Rißausbreitung erklären. Bei ISO-V-Proben bilden sich besonders bei Versprödung (also bei niedrigen Temperaturen und instabiler Rißausbreitung) gerade, ebene Bruchflächen. Bei den Flachproben findet jedoch keine gerade, instabile Rißausbreitung statt. Hier ist die Rißausbreitung mit einigen Richtungsänderungen verbunden (s. Bruchflächenbilder im Anhang). Dadurch entstehen Risse mit unterschiedlicher Länge und damit unterschiedlicher Energieaufnahme.

6.2 BEURTEILUNG DER UNBESTRAHLTEN SCHWEIßNÄHTE

Die Streuungen der Ergebnisse aus den Kerbschlagbiegeversuchen mit Schweißverbindungsproben sind, wie man anhand der Bruchflächenfotografien erkennt, nicht auf unterschiedliche Bruchmodi zurückzuführen. In den Wärmeeinflußzonen der Schweißverbindungen bilden sich offensichtlich Inhomogenitäten, die diese Streuungen verursachen.

In der Abbildung 13 sind die Schlagarbeit-Temperatur-Kurvenverläufe von Schweißverbindungs- und Vollmaterialproben einander gegenübergestellt.

Abbildung 13: Vergleich der unbestrahlten Schweißverbindungen mit dem Vollmaterial

Die Hochlagenenergie liegt bei den Schweißverbindungsproben im Mittel um 5 J höher. Dagegen setzt der Sprödbruchübergang schon bei um 20°C höheren Temperaturen ein. Damit weist der Brennelementkasten im Bereich der Schweißnähte zwischen dem martensitischen Kastenwerkstoff und dem austenitischen AISI 316 eine höhere Kerbschlagzähigkeit auf als im mittleren, vollmartensitischen Kastenbereich. Dafür setzt die Tieftemperaturversprödung schon bei etwas höheren Temperaturen (-80°C) ein.

Damit bilden die Schweißnähte hinsichtlich der Kerbschlageigenschaften im unbestrahlten Zustand keine Schwachstelle im Brennelementkasten.

6.3 EINFLUß DER AUSLAGERUNG (THERMISCHE ALTERUNG)

Die Versuchsergebnisse mit den für 719 Tage bei 400°C, 500°C und 600°C ausgelagerten Proben (s. Abbildung 6) zeigen keinen Einfluß auf die Kerbschlageigenschaften. Damit ist sichergestellt, daß bei der Auswertung der Untersuchungsergebnisse des bestrahlten Brennelementkastens nur die Einflüsse

der unterschiedlichen Bestrahlungsparameter zu berücksichtigen sind, nicht jedoch thermische Alterungseffekte.

6.4 EINFLUß DER NEUTRONENBESTRAHLUNG

Abbildung 14 und Abbildung 15 zeigen die Versuchsergebnisse aus dem bestrahlten Brennelementkasten in numerischer und grafischer Form.

Abbildung 14: Versuchsergebnisse des bestrahlten Hüllkastens

Abbildung 15: A_V-T-Kurven der bestrahlten Hüllkastensegmente

Die Proben aus den Segmenten 2, 3, und 4 zeigen ungefähr dasselbe Verhalten. Deshalb sind diese Schlagarbeit-Prüftemperatur-Kurven in einem dickeren Streuband zusammengefaßt.

Die besten Kerbschlageigenschaften nach Bestrahlung weist das Hüllkastensegment 5 auf. Geringfügig schlechter liegen die Werte der Schweißverbindungsproben aus dem Segment 1. Der mit Abstand niedrigste Hochlagenenergiewert wird bei den Schweißverbindungsproben aus dem Segment 6 beobachtet.

6.4.1 VOLLMATERIALPROBEN

Wie schon erwähnt, weisen die Segmente 2, 3 und 4 mit einer Sprödbruchübergangstemperatur von ca. -40°C bis -60°C und einer Hochlagenenergie von ca. 23 J annähernd dasselbe Verhalten auf, obwohl die Bestrahlungsdosis zwischen 10 dpa und 105 dpa und die Bestrahlungstemperatur zwischen 380°C und 480°C variiert. Wie ist das zu erklären ?

Aus früheren Untersuchungen am 1.4914-Stahl [6] ist bekannt, daß der Einfluß der Bestrahlungstemperatur im Bereich von 380°C bis 450°C auf die Spröd-

bruchübergangstemperatur mit maximalen Unterschieden von 20°C gering ist. Die tendentielle Verschlechterung der DBTT beim Segment 3 gegenüber dem Segment 2 ist hauptsächlich auf die fünffach höhere Dosis zurückzuführen. Desweiteren ist anzunehmen, daß eine weitere Verdopplung der Bestrahlungsdosis beim Segment 4 gegenüber dem Segment 3 eine zusätzliche Verschlechterung der DBTT hervorruft. Durch die ebenfalls höhere Bestrahlungstemperatur (480°C gegenüber 410°C) wird dieser Einfluß jedoch kompensiert, so daß die Segmente 3 und 4 nahezu identische Kerbschlageigenschaften aufweisen.

Dementsprechend sind die guten Ergebnisse des Segments 5 nicht mehr verwunderlich. Bei der hohen Bestrahlungstemperatur von 540°C dominieren bei gleicher Dosis im Vergleich zum Segment 3 die Ausheilvorgänge. Dadurch sinkt die Sprödbruchübergangtemperatur um ca. 30°C und die Hochlage erhöht sich um 3 J.

6.4.2 SCHWEIßNAHT

Die Schweißnahtproben aus Segment 1 zeigen fast genau dieselben Ergebnisse wie die Vollmaterialproben aus dem Segment 2. Da in beiden Segmenten dieselben Bestrahlungsbedingungen herrschen (380°C, 10 dpa) und da die Schweißverbindungsproben alle im martensitischen Bereich der Wärmeeinflußzone gebrochen sind (s. Bruchflächenaufnahmen) ist dieses Ergebnis verständlich.

Um so überraschender ist daher das Untersuchungsergebnis der Schweißnahtproben aus Segment 6. Obwohl am martensitischen 1.4914-Stahl keine thermische Alterung festgestellt werden konnte (vgl. Kapitel 6.3), tritt bei den Schweißverbindungsproben bei einer Bestrahlungstemperatur von 600°C (10 dpa) ein erheblicher Rückgang der Hochlagenenergie auf. Mögliche Erklärungen hierfür sind zum einen Diffusionsvorgänge in Verbindung mit der Schweißnaht, die zu einer Änderung der chemischen Zusammensetzung der Wärmeeinflußzone und damit zu veränderten Materialeigenschaften führen oder andererseits massive Heliumversprödung. Für eine Verifikation dieser Annahmen sind noch umfangreiche Rasterelektronenmikroskopuntersuchungen erforderlich.

6.5 BEURTEILUNG DES BRENNELEMENTKASTENS

Die Voraussetzung für den Einsatz des martensitischen 1.4914 Stahls als alternativer Kastenwerkstoff ist ein experimenteller Nachweis für ein duktiles Materialverhalten im Bereich der Betriebstemperatur bis hinunter zur Handhabungstemperatur, die bei ca. 200°C liegt. Das schwächste Glied im gesamten Brennelementkasten ist die Schweißnaht im Segment 6. Gegenüber dem unbestrahlten Zustand weist dieser Teil des Kastens nach zweijähriger Bestrahlung nur noch die halbe Kerbschlagzähigkeit auf.

Während des Reaktorbetriebs befinden sich die Schlagenergien aller Bereiche des Brennelementkastens weit im Bereich der Hochlage. Damit ist ein sicherer Kastenwechsel im Reaktor auf jeden Fall gewährleistet.

Anhand der Abbildung 15 ist ebenfalls deutlich zu erkennen, daß die Werte der Schlagarbeit bei der Handhabungstemperatur (ca. 200°C, z. B. im Abklingbecken) deutlich im Hochlagenbereich liegen. Damit ist ein sehr duktiles Materialverhalten sichergestellt.

Aufgrund dieser Untersuchungsergebnisse kann der Einsatz des 10,5% Cr-Stahls vom Typ 1.4914 als Brennelementkastenwerkstoff voll und ganz befürwortet werden. Selbst die Anwendung der in Kapitel 6.1 aufgeführten konservativen Korrekturverschiebung der Sprödbruchübergangstemperatur um 50°C im Hinblick auf die dickere Hüllkastenwandstärke ändert an der positiven Bewertung des 1.4914-Stahls nichts: der gesamte Hüllkasten weist bei Handhabungstemperaturen von ca. 200°C auch im Bereich der Schweißnähte sehr duktiles Materialverhalten auf.

Die niedrigste Temperatur, bei der gerade noch keine Sprödbrüche auftreten, liegt bei den untersuchten Flachproben nach Bestrahlung um -30°C. Damit können die Hüllkästen bei vorsichtiger Handhabung selbst noch bei Raumtemperatur (s. Abbildung 15) transportiert werden. Dies wäre nach längerfristigen Lagerzeiten bei Wiederaufbereitungsmaßnahmen äußerst vorteilhaft.

7 ZUSAMMENFASSUNG

Zur Herstellung von Brennelementhüllkästen werden bisher austenitische Stähle wie z. B. AISI 316 oder 1.4970 verwendet. Eine Alternative hierzu wären ferritisch-martensitischen Stahllegierungen, die eine wesentlich geringere Neigung zum Schwellen, Bestrahlungskriechen und zur Hochtemperaturversprödung durch Helium aufweisen. Für einen möglichen Einsatz muß jedoch nachgewiesen werden, daß die bestrahlungsinduzierte Tieftemperaturversprödung bei diesen Alternativmaterialien keine kritischen Werte erreicht.

Dieser experimentelle Nachweis wurde für den martensitischen 10,5% Cr-Stahl 1.4914 erbracht. Hierzu wurden Kerbschlagbiegeproben, die aus allen sicherheitsrelevanten Segmenten eines bestrahlten Hüllkastens deutscher Fertigung herausgearbeitet wurden, geprüft.

Die Auswertung der Ergebnisse zeigt, daß der Werkstoff 1.4914, Chg. 51482, hervorragend für die Herstellung von Brennelementkästen geeignet ist.

Die Untersuchung der unbestrahlten Proben zeigte, daß die Schweißnähte zwischen dem eigentlichen Hüllkasten (1.4914) und den Manschetten (AISI 316) am Kopf- und Fußteil keine Schwachstellen darstellen. Weiterhin wurde festgestellt, daß der Martensit nach zweijähriger Auslagerung bei 400°C, 500°C und 600°C keine thermischen Alterungseffekte aufweist.

Nach Neutronenbestrahlung steigt die Sprödbruchübergangstemperatur im Bereich der Kastenmitte und vor allem im Bereich der oberen Schweißnaht am stärksten an. Da die Hochlagenenergie gleichzeitig im oberen Schweißnahtbereich am stärksten absinkt, ist der Kopfteil als das schwächste Glied im gesamten Hüllkasten nach Bestrahlung zu betrachten.

Insgesamt weist der bestrahlte Brennelementkasten bei Handhabungstemperaturen von ca. 200°C sehr duktiles Materialverhalten auf. Dies war die Voraussetzung für die Eignung des 1.4914 Stahls als Kastenmaterial, welche hiermit experimentell bestätigt wurde.

8 LITERATUR

- [1] E. Materna-Morris, L. Dörr, O. Romer, H.-J. Bergmann, Vergleichende Festigkeitsuntersuchungen an Grundmaterial und Schweißnähten des martensitischen Werkstoffs Nr. 1.4914 nach Hochdosisbestrahlung im PHENIX-Reaktor, Jahrestagung Kerntechnik 1994, 17.-19. Mai, Stuttgart, S. 351-354
- [2] M. Schirra, Charakterisierende thermische und mechanische Untersuchungen an einem Nb-legierten martensitischen 12% Cr-Stahl (W.Nr. 1.4914) mit abgesenktem Stickstoffgehalt, Institut für Materialforschung, Kernforschungszentrum Karlsruhe, KfK-Bericht 3640, August 1984
- [3] M. Rieth, B. Dafferner, C. Wassilew, Der Einfluß von Wärmebehandlung und Neutronenbestrahlung auf die Kerbschlageigenschaften des martensitischen 10,6% Cr-Stahls MANET-I, Institut für Materialforschung, Kernforschungszentrum Karlsruhe, KfK-Bericht 5243, September 1993
- [4] M. Rieth, B. Dafferner, C. Wassilew, Ein modulares Softwarepaket f
 ür die Analyse, Auswertung und Verwaltung von instrumentierten Kerbschlagbiegeversuchsdaten, Jahrestagung Kerntechnik 1993, 25.-27. Mai, Köln, S. 413-416
- [5] M. Rieth, B. Dafferner, C. Wassilew, Ein flexibles System zur Durchführung, Auswertung und Analyse von instrumentierten Kerbschlagbiegeversuchen, Jahrestagung Kerntechnik 1993, 25.-27. Mai, Köln, S. 409-412
- [6] M. Rieth, B. Dafferner, C. Wassilew, Der Einfluß der chemischen Zusammensetzung verschiedener Hüllkastenwerkstoffe vom Typ 1.4914 auf die Kerbschlageigenschaften vor und nach Neutronenbestrahlung, Jahrestagung Kerntechnik 1994, 17.-19. Mai, Stuttgart, S. 347-350

ANHANG

9 ANHANG

9.1 TABELLARISCHE ZUSAMMENSTELLUNG DER VERSUCHS-ERGEBNISSE

9.1.1 UNBESTRAHLTER KASTENWERKSTOFF

Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J	Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J
S09	26	25,43	S17	-150	9,63
S10	-2	24,97	S19	-20	24,41
S11	-20	23,77	S20	±0	28,77
S12	60	27,01	S21	26	26,30
S13	200	32,76	S23	60	26,36
S14	-40	27,65	S24	450	28,62
S15	-60	25,34	S25	-130	10,01
S16	-80	23,77	S26	-110	10,54

9.1.2 UNBESTRAHLTE SCHWEIßVERBINDUNGEN

Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J	Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J
1/1	26	33,08	2/1	50	32,24
1/2	-50	36,07	2/2	-10	36,97
1/3	-100	17,15	2/3	-60	16,44
1/4	-150	0,42	2/5	-90	6,13
1/5	-75	6,04	2/6	-125	7,84

9.1.3 UNBESTRAHLTER, AUSGELAGERTER KASTENWERKSTOFF

Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J	Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J
S01A	26	32,83	_61A	26	27,68
S02A	300	27,44	_62A	300	28,44
S03A	-50	24,02	_63A	-50	26,70
S04A	-100	12,52	_64A	-100	10,90
_51A	26	31,31			
_52A	300	31,72			
_53A	-50	25,24			
_54A	-100	11,96			

9.1.4 BESTRAHLTE SCHWEIßVERBINDUNGEN, SEGMENT 1

Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J	Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J
1A1	26	21,98	1C1	-100	4,31
1A2	-20	17,68	1C2	100	20,31
1A3	-80	13,33	1C3	300	22,02
1A4	150	26,49	1C4	-50	14,56

9.1.5 BESTRAHLTER KASTENWERKSTOFF, SEGMENT 2

Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J	Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J
2A1	26	18,77	2C1	-20	16,50
2A2	-50	13,00	2C3	450	24,00
2A3	-80	5,41	2C4	300	22,72
2A4	150	21,44			

9.1.6 BESTRAHLTER KASTENWERKSTOFF, SEGMENT 3

Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J	Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J
3A1	26	19,10	3C1	-20	13,67
3A2	-50	6,19	3C2	300	22,80
3A3	-80	3,80	3C3	450	25,50
3A4	150	19,01			

9.1.7 BESTRAHLTER KASTENWERKSTOFF, SEGMENT 4

Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J	Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J
4A1	26	16,13	4C1	-50	7,54
4A2	-20	15,89	4C2	100	17,92
4A3	-80	5,28	4C3	300	21,84
4A4	150	21,81	4C4	-20	16,19

9.1.8 BESTRAHLTER KASTENWERKSTOFF, SEGMENT 5

Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J	Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J
5A1	26	21,98	5C1	150	23,96
5A2	-50	18,69	5C2	300	25,62
5A3	-80	13,33	5C3	450	28
5A4	-110	6,20			

9.1.9 BESTRAHLTE SCHWEIßVERBINDUNGEN, SEGMENT 6

Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J	Proben- Nr.	Prüftempe- ratur in °C	Schlag- arbeit in J
6A1	26	15,94	6C1	-100	6,05
6A2	-20	11,12	6C2	100	16,00
6A3	-50	11,52	6C3	300	18,71
6A4	150	16,03			<u></u>

9.2 BRUCHFLÄCHENAUFNAHMEN

9.2.1 UNBESTRAHLTER KASTENWERKSTOFF

Proben-Nr,	Prüftemperatur	Schlagarbeit
S09	26°C	25,43 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
S10	-2°C	24,97 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
S11	-20°C	23,77 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
S12	60°C	27,01 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
S13	200°C	32,76 J

Anhang

Proben-Nr.	Prüftemperatur	Schlagarbeit
S14	-40°C	27,65 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
S15	-60°C	25,34 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
S16	-80°C	23,77 J

Anhang	
--------	--

Proben-Nr.	Prüftemperatur	Schlagarbeit
S17	-150°C	9,63 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
S19	-20°C	24,41 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
S20	0°C	28,77 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
S21	26°C	26,30 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
S23	60°C	26,36 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
S24	450°C	28,62 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
S25	-130°C	10,01 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
S26	-110°C	10,54 J

9.2.2 UNBESTRAHLTE SCHWEIßVERBINDUNGEN

Proben-Nr.	Prüftemperatur	Schlagarbeit
1/1	26°C	33,08 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
1/2	-50°C	36,07 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
1/3	-100°C	17,15 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
1/4	-150°C	0,42 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
1/5	-75°C	6,04 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
2/1	50°C	32,24 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
2/2	-10°C	36,97 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
2/3	-60°C	16,44 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
2/5	-90°C	6,13 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
2/6	-125°C	7,84 J

9.2.3 UNBESTRAHLTER, AUSGELAGERTER KASTENWERKSTOFF

Proben-Nr.	Prüftemperatur	Schlagarbeit
S01A	26°C	32,83 J

•	- H					F 1					1.1.1			
		~		•				1.1.2		с.	_			
									•					
						_						<u>.</u>		
		_					_							
			•	10.7			- 1 -1-1	•						
	- 10		-	-			- -							
	1.1				6.6	1.63		- X - C	N 61			14.5		

Proben-Nr.	Prüftemperatur	Schlagarbeit
S02A	300°C	27,44 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
S03A	-50°C	24,02 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
S04A	-100°C	12,52 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
_51A	26°C	31,31 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
_52A	300°C	31,72 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
_53A	-50°C	25,24 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
54A	-100°C	11,96 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
61A	26°C	27,68 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
_62A	300°C	28,44 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
63A	-50°C	26,70 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
_64A	-100°C	10,90 J

9.2.4 BESTRAHLTE SCHWEIßVERBINDUNGEN, SEGMENT 1

Proben-Nr.	Prüftemperatur	Schlagarbeit
1A1	26°C	21,98 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
1A2	-20°C	17,68 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
1A3	-80°C	13,33 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
1A4	150°C	26,49 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
1C1	-100°C	4,31 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
1C2	100°C	20,31 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
1C3	300°C	22,02 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
1C4	-50°C	14,56 J

9.2.5 BESTRAHLTER KASTENWERKSTOFF, SEGMENT 2

Proben-Nr.	Prüftemperatur	Schlagarbeit
2A1	26°C	18,77 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
2A2	-50°C	13,00 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
2A3	-80°C	5,41 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
2A4	150°C	21,44 J

Proben-INr. Pruttemperatur Schlagarbeit	
	Proben-Nr.

۰.				0 C (14					-	۰.	۰.				
					-	6.1		•		•			6.8			- 24	_	•		
				 •		-												- 11 - 2		
			-	•		n							 •							
				•				•				 ۰.						т		
				-							•	•		•						
			•				 													
		. *																-		
							 _													

Proben-Nr.	Prüftemperatur	Schlagarbeit
2C3	450°C	24,00 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
2C4	300°C	22,72 J

9.2.6 BESTRAHLTER KASTENWERKSTOFF, SEGMENT 3

Proben-Nr.	Prüftemperatur	Schlagarbeit
3A1	26°C	19,10 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
3A2	-50°C	6,19 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
3A3	-80°C	3,80 J

Anhang

Anhang

Proben-Nr.	Prüftemperatur	Schlagarbeit
3A4	150°C	19,01 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
3C1	-20°C	13,67 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
3C2	300°C	22,80 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
3C3	450°C	25,50 J

9.2.7 BESTRAHLTER KASTENWERKSTOFF, SEGMENT 4

Proben-Nr.	Prüftemperatur	Schlagarbeit
4A1	26°C	16,13 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
4A2	-20°C	15,89 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
4A3	-80°C	5,28 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
4A4	150°C	21,81 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
4C1	-50°C	7,54 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
4C2	100°C	17,92 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
4C3	300°C	21,84 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
4C4	-20°C	16,19 J

9.2.8 BESTRAHLTER KASTENWERKSTOFF, SEGMENT 5

Proben-Nr.	Prüftemperatur	Schlagarbeit
5A1	26°C	21,98 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
5A2	-50°C	18,69 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
5A3	-80°C	13,33 J

						- e - E					- A. C.						
		с н														10	
			14	6			419		4.1	-	1.1				14		
	11	1	٩.						Λ.	. 8	C 1						
		-			×.		_			ъĿ	× 1			۰.	ю.		
	- 1	•	. •		- 24			B 17	-	ч.				•	- 14		
	- 14	ι.										1.7	-	۰.	22		

Proben-Nr.	Prüftemperatur	Schlagarbeit
5A4	-110°C	6,20 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
5C1	150°C	23,96 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
5C2	300°C	25,62 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
5C3	450°C	28,00 J

9.2.9 Bestrahlte Schweißverbindungen, Segment 6

Proben-Nr.	Prüftemperatur	Schlagarbeit
6A1	26°C	15,94 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
6A2	-20°C	11,12 J

Anhang

Proben-Nr.	Prüftemperatur	Schlagarbeit
6A3	-50°C	11,52 J

Anhang

Proben-Nr.	Prüftemperatur	Schlagarbeit
6A4	150°C	16,03 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
6C1	-100°C	6,05 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
6C2	100°C	16,00 J

Proben-Nr.	Prüftemperatur	Schlagarbeit
6C3	300°C	18,71 J

