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ABSTRACT 

Steam generator tubing represents a substantial part of the second fission product barrier in 

a pressurized water reactor nuclear power plant. Various ageing processes might significantly 

decrease its structural reliability. In particular, stress corrosion cracking ofinconel-600 tubes 

results in deep, often through-wall axial cracks which initiate in the areas dominated by the 

residual stresses. 

In order to maintain an acceptable Ievel of the steam generator reliability, different 

maintenance strategies have been developed and implemented. Usually, the non-destructive 

examination of tubes is performed followed by plugging excessively damaged tubes, which 

on the other band reduces the heat transfer and steam generator life-time. The definition of 

the allowable tube darnage criteria implicitly defines the efficiency of the maintenance both 

in terms of steam generator reliability and life-time. The world praxis recognized two 

approaches, based on either allowable defect depth or length. 

In this report, an original probabilistic model aimed to assess the efficiency of particular 

maintenance strategy in terms of tube failure probability is proposed. The model concentrates 

on axial through wall cracks in the residual stress dominated tube expansion transition zone. 

1t is based on the recent developments in probabilistic fracture mechanics and accounts for 

scatter in material, geometry and crack propagation data. Special attention has been paid to 

model the uncertainties connected to non-destructive examination technique (e.g., 

measurement errors, non-detection probability). First and second order reliability methods 

(FORM and SORM) have been implemented to calculate the failure probabilities. This is the 

firsttime that those methods are applied to the reliability analysis of components containing 

stress-corrosion cracks. 

In order to predict the time development of the tube failure probabilities, an originallinear 

elastic fracture mechanics based crack propagation model has been developed. 1t accounts for 

the residual and operating stresses together. Also, the model accounts for scatter in residual 

and operational stresses due to the random variations in tube geometry and material data. 

Due to the lack of reliable crack velocity vs Ioad data, the non-destructive examination 

records of the crack propagation have been employed to estimate the velocities at the crack 

tips. 
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Abstract 

Two numerical examples are provided. The first correlates the performance of the model to 

some earlier work. In particular, a numerical example with results obtained by different 

numerical techniques has been employed. Qualitative agreement of the results was 

satisfactory despite the significant differences in the crack propagation and maintenance 

models employed. 

The second numerical example considered the Krsko NPP steam generator nurober 1 after 

the 1992 refuelling maintenance. The potential of the crack length based plugging criterion 

to reduce the tube failure probability for a few orders of magnitude is shown, whereas the 

possible failure probability reduction depends strongly on the reliability of the non-destructive 

examination technique applied. Furthermore, concentrating the plugging on tubes with Ionger 

cracks significantly reduces the probability of multiple tube rupture. Comparing the 

performance of the crack length and crack depth based maintenance strategies showed that 

the crack depth plugging criterion may miss the majority of the long cracks, which Ieads to 

a high probability of multiple tube rupture following a hypothetical feed line break. 

Based on the overall performance of the model, some comments conceming the risk-based 

steam generator life-time optimisation are given. 
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ZUSAMMENFASSUNG 

EFFIZIENZBETRACHTUNGEN FÜR DIE INSTANDHALTUNG VON 

DAMPFERZEUGERN UNTER VERWENDUNG VON METHODEN DER 

PROBABILISTISCHEN BRUCHMECHANIK 

Rohre in Dampferzeugern sind wesentlicher Teil der äußeren Barriere zur Rückhaltung von 

Spaltprodukten in Druckwasserreaktoren. Ihre Zuverlässigkeit kann durch verschiedene 

Alterungsprozesse beträchtlich vermindert werden. Besonders bei Rohren aus dem Werkstoff 

Inconel-600 können durch Spannungsrißkorrosion tiefe, oft durchgehende axiale Risse 

entstehen, vorzugsweise in jenen Bereichen, wo hohe Eigenspannungen vorhanden sind. 

Zur Sicherstellung eines vertretbaren Zuverlässigkeitsniveaus wurden verschiedene 

Instandhaltungsstrategien entwickelt und verfolgt. Üblicherweise werden zerstörungsfreie 

Untersuchungen durchgeführt und Rohre die starke Schäden aufweisen, werden durch 

Pfropfen verschlossen. Das führt jedoch andererseits zu verringertem Wärmeübergang und 

reduzierter Lebensdauer des Dampferzeugers. Bei der Festlegung eines Kriteriums für 

zulässige Schädigung eines Dampferzeugerrohrs muß deshalb sowohl Ansprüchen an die 

Zuverlässigkeit des Dampferzeugers als auch an seine Lebensdauer Rechnung getragen 

werden. Weltweit existieren zwei Ansätze, die auf totetierbarer Fehlertiefe (Rißtiefe) oder 

Fehlerlänge basieren. 

In der vorliegenden Arbeit wird ein eigenes probabilistisches Modell vorgeschlagen, das zur 

Abschätzung der Effektivitäteiner bestimmten Instandhaltungsstrategie die Wahrscheinlichkeit 

für das Versagen von Rohren verwendet. Das vorgeschlagene Modell beschreibt 

durchgehende axiale Risse in der von hohen Eigenspannungen charakterisierten 

Übergangszone in der Nähe der Befestigung der Dampferzeugerrohre am Einlaß des 

Dampferzeugers. Dabei finden neuere Entwicklungen der probabilistischen Bruchmechanik 

Anwendung. Streuende Materialkennwerte, Geometriegrößen und Rißwachstumskennwerte 

können modelliert werden. Außerdem wurden Unsicherheiten in Verbindung mit 

zerstörungsfreien Prüfverfahren berücksichtigt (wie z. B. Meßfehler, 

Nichtentdeckungswahrscheinlichkeit von Fehlern). Zur Berechnung der 

Ausfallwahrscheinlichkeiten wurden Zuverlässigkeitsverfahren erster (FORM) und zweiter 

Ordnung (SORM) implementiert. Damit wurden diese Methoden zum ersten Mal zur 

Zuverlässigkeitsanalyse von Bauteilen im Bereich der Spannungsrißkorrosion angewandt. 
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Zusammenfassung 

Um den zeitlichen Verlauf der Ausfallwahrscheinlichkeit für die betrachteten Rohre 

vorherzusagen, wurde ein eigenes bruchmechanisches Rißwachstumsmodell entwickelt. Es 

erlaubt die gemeinsame Berücksichtigung sowohl von Eigenspannungs- als auch von 

Betriebsbelastungen. Außerdem berücksichtigt das Modell von zufälligen Schwankungen in 

der Geometrie der Rohre und in den Materialkennwerten herrührende Streuungen der 

Eigenspannungs- und Betriebsbelastungen. Da keine verläßlichen Daten zur 

Rißgeschwindigkeit in Abhängigkeit von der Belastung existieren, wurden Aufzeichnungen 

aus zerstörungsfreien Untersuchungen des Rißwachstums verwendet, aus denen die 

Rißgeschwindigkeiten an den jeweiligen Rißenden abgeschätzt wurden. 

Die vorgeschlagenen Verfahren wurden anhand von zwei Beispielen durchgeführt. Das erste 

Beispiel bestätigt die Leistungsfahigkeit des Modells anhand eines Vergleichs mit früheren 

Arbeiten. Bei diesem Beispiel wurden verschiedene numerische Verfahren angewendet. Es 

zeigt sich, daß die Übereinstimmung der Ergebnisse zufriedenstellend war, obwohl die 

verwendeten Modelle für Rißwachstum und Instandhaltung beträchtliche Unterschiede 

aufweisen. 

Im zweiten Beispiel wurde der Dampferzeuger Nr. 1 des Kdko Kernkraftwerks in Slowenien 

betrachtet, wobei die Daten der im Rahmen eines Brennelementwechsels 1992 stattfindenden 

Wartung verwendet wurden. Es wird gezeigt, daß das verwendete auf der Rißlänge 

basierende Kriterium zur Außerbetriebsetzung von Rohren eine Reduzierung der 

Ausfallwahrscheinlichkeit um einige Größenordnungen erlaubt, wobei das Ausmaß der zu 

erreichenden Reduzierung stark von der Zuverlässigkeit der zerstörungsfreien Prüfverfahren 

abhängt. Darüberhinaus ist zu sehen, daß durch Beschränkung der Außerbetriebsetzung auf 

Rohre mit längeren Rissen die Wahrscheinlichkeit des gleichzeitigen Bruches mehrerer Rohre 

signifikant verringert wird. Vergleicht man rißlängen- und rißtiefenorientierte 

Instandhaltungsstrategien, so zeigt sich, daß durch rißtiefenorientierte Kriterien zur 

Außerbetriebsetzung von Rohren ein Großteil langer Risse nicht erfaßt wird, was zu einer 

hohen Wahrscheinlichkeit für Mehrfachbrüche infolge eines hypothetischen Bruchs der 

Zuleitung führt. 

Abschließend werden einige Überlegungen formuliert, die sich aus der Leistungsfähigkeit des 

Modells im Hinblick auf eine Risiko-basierte Optimierung der Lebensdauer von 

Dampferzeugern ergeben. 
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1 INTRODUCTION 

Steam generators in nuclear power plants with pressurized water reactors have to transfer 

heat from the primary to secondary coolant, which vaporizes. The boundary between both 

coolants is a bundle of thin-walled tubes, which represent the major part of the reactor 

coolant pressure boundary. The tube bundle should be designed and manufactured to satisfy 

both of its main functions: 

The largest possible heat transfer. Due to large thermal convection from the primary 

coolant to the tube and from the tube to the secondary coolant, the conduction through 

the tube wall controls the heat transfer rate. 

The integrity of the reactor coolant pressure boundary prevents the penetration of the 

radioactive reactor coolant into the secondary coolant. General design criteria for 

nuclear power plants ([95], criterion 14) requires that reactor coolant pressure 

boundary is " .. . designed, fabricated, erected and tested so as to have an extremely 

low probability of abnormal leakage, of rapidly propagating failure, and of gross 

rupture. ". Thicker tube walls therefore represent larger safety against overloading and 

ruptures. 

Optimal fulfillment of both contradictory requests is possible by the appropriate choice of 

material and manufacturing process. 

1. 1 Steam generator description 

The description of steam generators, ageing processes and maintenance strategies is limited 

to the steam generators with vertical U-shaped tubes, made of Inconel 600. Such steam 

generators accumulated the majority of the operational experience and the problems related 

to ageing [10, 27] and are also installed in Slovenian nuclear power plant at Krsko. This 

Iimitation does not restriet the theoretical investigations of this study, but enables direct 

comparison of theoretical assumptions and findings with the data base describing the state of 

Krsko steam generators. 

A cross-section of a steam generator is shown in Fig. 1-1. .Bach of Krsko steam generators 

contains 4586 tubes. Their total heat transfer surface represents more than half of the reactor 

coolant pressure boundary. The operational pressure of the reactor coolant is 155.6 bar at 
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the average temperature of 305.9°C. The outside diameter of tubes is 19.05 mm, the tube 

wall thickness of 1.09 mm which is extremely thin in comparison with other parts of the 

· reactor coolant pressure boundary. The straight part of the tubes is 7181.9 mm long and 

guided by 11 support plates. Tube bends are manufactured with radii between 57.2 and 

1352.6 mm. They are supported by 4 groups of anti-vibration bars. Tubes are made of nickel 

based alloy with commercial name lnconel 600 [99]. 

The design capacity of a steam generator is 510 kg/s of saturated steam at 63.4 bar. 

Feedwater temperature is 221 oc. The heat flux through the tube walls is about 190 kW/m2, 

which is only possible in the two-phase fluid flow conditions and at extremely thin tube 

walls. 

~ steam outlet 

steam dryer 

inspection opening 

centrifugal steam separator 

.,--- auxiliary feed water 

antivibration bars 

tube bundle 

support plates 

preheater main feed water 

flow distribution baffle tube-sheet 

reactor coolant inlet ~ inspection opening 

Figure 1-1 Cross-section of a steam generator 
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1.2 Aging mechanisms 

Fig. 1-2 gives an overview of the ageing rnechanisrns which are causing darnage in the tubes. 

They are caused by chernical, thermal and mechanical effects. Those effects can interfere and 

tend to reduce the load carrying capacity of some tubes. Detailed descriptions of ageing 

processes are given elsewhere [ 10], [36]. 

intergranular stress corroslon typlcaJ defects on the tube outside surfaoe 

locallon defectcauae locatlon defecttype defecl cause 

tub& bends retklual~ tube bendl frettlog exceaalve frlctlon 

ri 
due to bendlng between tube 

and antlvlbratlon n bm 

--~ 
retklual atreaaea SUpport plates denting sedlmentallon 

-expanalon due to expanslon of corroslon 

tranaltlon zone producta 

I 

~~ 
retklual atreaaea support plates Intergranular attack local conoentrallon 
due to expanslon of agl'8!8!ve 

·S· 
lmpurltlel 

I; 

Figure 1-2 The most cornrnon stearn generator tube ageing rnechanisrns 

1.2.1 Intergranularstress corrosion cracking 

This is one of the rnost frequently observed darnage rnechanism. It results in the initiation 

and propagation of cracks, rnainly in the areas with high tensile stresses, such as residual 

stress dominated expansion transition area at the top of tube-sheet (Fig. 1-3). Axial cracks 

initiate in this area and propagate out of it as nearly through-wall cracks. Up to 1/3 of the 

tubes in a steam generator rnay be affected [56]. 
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tube-sheet 

Figure 1-3 Tubeexpansion transition area 

1.2.2 Intergranular attack 

tube 

expansion 
transition zone 

This is another important degradation mechanism (see Fig. 1-2) and develops mainly at the 

intersections of tubes and support plates. lt is caused by high local concentrations of 

aggressive impurities and results in a random crack pattem. lt is not further studied in this 

report. 

1.2.3 Denting 

This degradation mechanism is caused by the Sedimentation of the corrosion products in the 

crevice between tubes and support plates (see Fig. 1-2). Due to different thermal expansion 

of tubes and support plates, tubes affected can be plasticaly deformed during steam generator 

heat cycles. lt is not further studied in this report. 

1.2.4 Importance of particular ageing mechanisms 

Fig. 1-4 shows the percentage of causes for plugging of tubes in Krsko plant during the 

period from 1985-1992. The decrease of the number of plugged tubes which were affected 

by sec can be related to the fact that the plugging criteria after 1990 allowed for small 

cracks whereas all cracked tubes were plugged in the previous years. In recent years, the 
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defects at the tube to tube support plate intersections tend to dominate the plugging process. 

Those defects and their impact on the plant safety are not considered in this study. 

other 

100% __ _ 

1986 1987 1988 
Year 

Figure 1-4 Kdko NPP tube plugging history 

1.3 Maintenance of steam generator tubes 

1989 1990 1992 

In the following, the preventive and corrective actions are described which are mainly used 

in the steam generator maintenance practice. Corrective actions are those, which remove a 

cracked tube from operation. It should be noted, that such corrective actions in the vast 

majority of cases occur before the actual tube (and consequently steam generator) failure. 

1.3.1 Preventive actions 

Measures taken to reduce the rate of stress corrosion cracking are chemical control of the 

coolant, removal of sludge, relieving of residual stresses by shot peening. 

The effects of preventive actions are not explicitly addressed in this study. They are however 

incorporated in the model through the crack growth rates. 
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1.3.2 Corrective actions 

Excessively degraded tubes are plugged in order to avoid tube rupture. Alternate possibility 

is to instal sleeves, which are then welded to the tube below and above the damaged area. 

The magnitude of defects is determined by periodic non-destructive examinations. A plugging 

criterion defines tolerable defects [27]. In some cases a destructive examination of tubes 

pulled out of steam generator is also required [27, 60, 85]. 

Plugging criterion should be conservative for safety reasons. On the other hand the efficiency 

of the plant is reduced by plugging because of reduced heat transfer. For example, a typical 

design margin for the heat transfer capability is in the order of 20%. This means that about 

20% of tubes could be plugged without reducing the plant power. Exceeding such margin 

requires the reduction of the plant power or major modifications like replacement of steam 

generators. 

1.3.3 Plugging criterion 

The plugging criterion defines the largest acceptable defect. The criterion which has been 

used traditionally was based on the assumption that the defects found were part-through. The 

critical defect depth (in the order of 50% of the initial wall thickness) was calculated using 

a Iimit load criterion [93]. The defect depth was determined by the analysis of eddy current 

signal obtained from bobbin coil [27, 36]. 

Hence the uncertainty of the defect depth determined by inspection is very high. Due to the 

!arge number of tubes a sampling plan has been set up [94] in order to reduce the inspection 

time. However this plan was not very well-defined and could Iead to non-conservative 

inspection results [22]. 

The use of the defect depth criterion has been enhanced by its simplicity and conservativity. 

For example, it does not require the determination of defect morphology. However, as the 

large number of tubes have been affected by stress corrosion cracking [59], the strict use of 

such criterion would require immediate shut down of affected steam generators. 

One of possible solutions which emerged was the development of defect specific plugging 

criteria. Accounting for specific properties of the defect and implementation of a dedicated 

inspection method could relax the plugging criterion considerably without jeopardizing the 
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plant safety. Crack length based criterion was therefore implemented in the case of axial 

stress corrosion cracks [96]. 

1.4 Defect length based plugging criteria 

A new plugging criterion has been introduced using the critical crack length 2ac for plastic 

collapse of through-wall axial cracks in the tube expansion zone [ 49]. The plugging limit is 

defined by [96]: 

1 -PL = a - a - a 2 C B g 
(1-1) 

The uncertainty 2ae of the inspection is mainly caused by problems in Controlling the velocity 

of the dedicated motorized rotating pancake (MRPC) probe. It is reported to be in the order 

of ± 1.5 mm [29, 43]. 

The amount of crack growth between to inspections 2a
8 

has been analyzed in [56] on the 

basis of compiled inspection data. 

1.5 Impact of plant maintenance strategy on plant safety 

The main goal of every maintenance strategy is to assure the reliability of steam generator 

and consequently the plant safety. The basic measure of reliability is the probability of having 

one or more tubes failed. This section contains a review of existing probabilistic analyses on 

failure of steam generators. 

• Pitner [77] performed a probabilistic safety analysis using a systems approach. The 

goal was to determine the number of tubes tobe inspected. The uncertainty of the 

inspection was not taken into account. 

• Remalsteen [56] was concemed with leakage caused by the through-wall cracks. 

U sing probabilistic methods, leak rate and tube failure probability were predicted. He 

did a very profound statistical analysis of crack growth based on inspection data. This 

kind of analysis can only be used to predict the expected crack growth between two 

inspection intervals and does not allow any extrapolation beyond this interval. 
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• Granger et al. develop the code COMPROMIS to assist at steam generator 

maintenance. Information on this code is only available in rather general conference 

papers [40, 52, 78]. Apparently a probabilistic analysis is performed including the 

influence of inspection uncertainty. A semi-empirical crack propagation law [51] has 

been applied, which can apparently not account for the scatter of the residual stress 

field. The excessive leak rates are incorporated as the second steam generator failure 

mode. 

• Gunseil [53] performed a probabilistic safety assessment (system approach) using 

second moment analysis. The number and lengths of cracks to be left in operation 

were related to the failure probability. 

Mavko et al. [68] performed an analysis of tube failure using probabilistic fracture 

mechanics. The empirical crack growth law of [56] was employed as weil as a 

simplified model for inspection uncertainly. 

Conclusions about state-of-the art: the French analysis (Pitner et al [40, 52, 78]) probably 

is the most advanced analysis but has some weak points (scatter of residual stress field not 

accounted for, semi-empirical crack propagation model). All others used simplified models. 

1.6 Scope and limitations of this research 

A method to assess the safety consequences of plugging criteria will be developed. The 

analysis will be limited to axial stress corrosion cracks in the expansion transition zone. The 

following points will be addressed: 

• Probabilistic fracture mechanics model, which deals with all parameters influencing 

the tube failure probability (Section 2). 

• Parametrie residual stress analysis in the tube expansion transition zone (Section 3). 

• Model describing propagation of cracks in residual stress field (Section 4). 

• ReHability methods (Section 5). 

• Applications (Section 6). 
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The study considers only through-wall axial stress corrosion cracks in the tube expansion 

transition zone. However, the basic concept allows for extensions incorporating other darnage 

mechanisms. 
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2 PROBABILISTIC FRACTURE :MECHANICS MODEL 

Probabilistic fracture mechanics (PFM) deals with the reliability analysis of cracked 

components. It has mainly been applied to reactor and aerospace components. A review of 

nuclear application was given by G. Johnston [62]. 

2 .1 Theoretical background 

The failure integral is the probability content of the failure domain defined by values of the 

failure function g(X) <0: 

P1 = J f<x> dX (2-1) 
g(X)<O 

Only independent random variables x=(xl! x2, ... , xn) will be considered here. Numerical 

evaluation of the failure integral will be discussed in chapter 5. 

2.2 Failure function 

g(X) depends on the tube faJlure mode, crack propagation and the maintenance strategy 

implemented. 

2.2.1 Assumptions 

Cracks develop at the inside of tubes as axial through wall cracks. Only rupture of tubes is 

considered, developments of leaks and leak-detection arenot considered. Bach tube contains 

exactly one crack (which may have length zero to simulate crack-free tubes). Failure of a 

complete steam generator is represented by a failure of at least one steam generator tube. 

2.2.2 Fallure of an axiaUy cracked tube 

The failure functions is defined by the Iimit load model: 

(2-2) 

where u1 is the flow stress, uct> is the pressure induced hoop stress and the bulging factor mp 

is given by [35]: 
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( al ) ( l -225- a 
mF = 0.614 + 0.386e . .fRt + 0.866 - 1

-

{Rt 
(2-3) 

a11 R and t being the crack half-length at the end of inspection cycle, the tube mean radius 

and the tube wall thickness, respectively. The flow stress u1 is defined by the yield strength 

CJy and the ultimate tensile strength uM and adjusted to the operating temperature conditions 

by application of the correction coefficient On where appropriate: 

(2-4) 

K represents the experimentally determined constant which actually describes the degree of 

strain hardening behavior of the tube material. The membrane stress perpendicular to the 

crack direction uq, is the pressure (p) induced tube hoop stress: 

o = Ap ( R - .!.) 
~ t 2 

(2-5) 

2.2.3 Tube-sbeet reinforeerneut 

The tubes are fixed into a tube sheet which provides additional circumferential rigidity and 

obstructs bulging. The Tube Sheet Reinforcing Factor (RF) has been proposed to account for 

this effect [43]. 1t is defined as correction coefficient to the flow stress factor Kat the critical 

crack length (see eq. (2-4)): 

RF(ac) = 1 + 10 exp [ -1.8 ac ] 
{fit 

(2-6) 

ac represents the critical crack length in a free span tube and can be obtained by setting uf 

mp<Tq,=O and inverting eq. (2-3). Unfortunately, its use is restricted to the cracks tangent to 

the tube sheet, which may not be true for the numerous cracks propagating out of the tube 

sheet. 

2.3 Distribution of crack lengths 

In a previous paper [68] the crack length a1 at the subsequent inspections which determines 

the value of the bulging factor mF (eq. (2-3)) was calculated from the following relation: 
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(2-7) 

The sizing uncertainty was taken into account by introducing the error term ae which was 

assumed to be independent of the measured crack length ~' ag accounted for the crack 

growth. PL represents the plugging Iimit and P ov the crack detection probability. 

Hence the maintenance strategy was taken into consideration by replacing a1 by the 

corresponding random variables. 

A more advanced analysis should take into account the correlation between real and measured 

crack size and the efficiency of the inspection. Those quantities will affect the distribution 

of the crack length which in turn affects the integrand of the failure integral (eq. (2-1)). The 

analysis presented in the following section was first given in [6]. 

2.3.1 Probability of detection 

According to Bayes' theorem the conditional probability of event E1 to take place under the 

condition that event E2 has already occurred follows from: 

(2-8) 

lf E1 denotes the event that the random crack length A assumes values in the interval [a, 

a +da) and E2 is the event D denoting detection of a crack of arbitrary size, we have: 

P(a~<a+da ID) = P(D I a~<a+da) P(a~<a+da) 
P(D) 

which yields the following expression for the probability densities: 

J pA.(a 1
) P0D(a 1

) da 1 

0 
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where P ov is sometimes called the detection probability, p .la) is the probability density 

function of the actual crack length and pA
1
v(a) is the probability density function of the 

detected cracks provided that there is no sizing error. 

2.3.2 Sizing errors 

Let M be the random variable for the measured crack length which assumes values denoted 

by m. If PA,M denotes the joint probability density function of actual and measured crack 

length, we can derive the following expression for the marginal distribution functions: 

.. 
Pu(m) = J PA, u(a, m) da 

0 

for the p.d.f. of the measured crack length and 

PA(a) = J PA, u(a, m) dm 
0 

(2-11) 

(2-12) 

for the p.d.f. of the actual crack length. PA,M(a,m) is generally only specified for the detected 

cracks; this effect will be taken into account at the end of this section. This difficulty can be 

circumvented if non-detected cracks have m=O. 

Again using Bayes' theorem leads to the conditional p.d.f. of finding a value of m giving an 

actual crack of length a: 

(2-13) 

Solving for PA,M(a,m): 

(2-14) 

and integrating over a leads to an expression of the p.d.f. of measured crack length: 

.. 
Pu(m) = J PuiA(m, a) Pia)da (2-15) 

0 
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lf the possibility of missing a crack is explicitly included in eq. (2-15) PA(a) has to be 

replaced by the p. d. f. of detected cracks ( eq. (2-10)). Hence the following expression is 

obtained: 

J PMIA(m Ia) pA(a) P oD(a) da 
pM(m) = _o ________ _ 

... 
jPA(a') PoD(a') da' 
0 

relating the p.d.f. of the measured crack lengths to that of the actual crack lengths. 

(2-16) 

Inverting eq. (2-16) gives a possibility to determine the PA(a) from PM(m). This represents 

of course a difficult problern which is solved numerically using a procedure proposed by 

Barnier et a1 [6]. First the functional form of PA(a) is selected. Then PM(m) is calculated using 

eq. (2-16) which depends on the unknown parameters of the assumed p.d.f. These can be 

determined by fitting calculated values of PM(m) to the empirical distribution of measured 

crack lengths which can be done by minimizing x2
• Moredetailsare found in ref. [6]. 

2.3.3 Effect of plugging 

Let F in denote the fraction of tubes inspected: 

(2-17) 

lf PL denotes the plugging Iimit, a given crack of size a is supposed to exceed the plugging 

limit with probability: 

00 

P(M>PLia) = L PMIA(mla) dm (2-18) 

The probability that a crack of size a is found during the inspection and has a measured crack 

size larger than the plugging Iimit is equal to: 

P(M>PL, Dia) = P oD(a) P(M>PLia) (2-19) 

The plugging procedure has a reliability: 

(2-20) 
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As each tube contains exactly one crack, an inspected tube containing a crack of length a is 

successfully plugged with probability: 

(2-21) 

Multiplying this equation by the inspection probability Fin eq. (2-17) yields the probability 

that a tube containing crack of length a is plugged: 

The fraction of plugged tubes follows from: 

The quantity: 

FP1 = J PA (a) PP1(a) da 
0 

(2-22) 

(2-23) 

(2-24) 

corresponds to the probability that a tube contains a crack of length a and the tube is not 

plugged. Dividing this quantity by the fraction of non-plugged tubes Ieads to the probability 

density function of remaining cracks (Bayes theorem): 

pia) [1 - PP1(a)] 
PR (a) = -----=-----=--____;. __ 

0> ! Pia') [1 - PP1(a')] da' 
(2-25) 

2.3.4 Tubes without cracks 

To account for tubes without cracks, the procedure proposed in [83] has been used: 

(2-26) 

FA represents the fraction of tubes containing zero length cracks. ö(a) is Dirac function and 

fJia) the probability density of real crack lengths. 
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From the normalization property of probability distributions: 

(2-27) 

the relation between PA(a) andp..(a) is determined as: 

(2-28) 

Fractions of cracked tubes FA and those with detected cracks FM can be estimated from the 

inspection data and parameters: 

F = 1 A 
(2-29) 

(2-30) 

where NM represents the number of tubes with detected cracks and Nsa the total number of 

tubes in a steam generator. 

2.3.5 Stahle crack growth 

Stahle crack growth has been found to be the most important factor affecting the tube failure 

probability [25] and will be discussed in detail in Section 4. 1t affects the failure function by 

the crack length a1• 

2.4 Multipletube rupture 

All tubes contain exactly one crack which fails with probability Pi' Hence the probability that 

i tubes fail is equal to: 

p(i) = (N Pt); e -NP! ; 

i I 
= 0, 1, ... , N (2-31) 

where N is the total number of tubes and advantage has been taken of the fact that the 

number of tubes is large. The probability that at least one tube fails follows from eq. (2-31): 
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At least two tubes fail with probability 

-Np 
P(i:2:.2) = 1 - (1 + NP1 ) e I 

Hence the ratio of multiple tube failure to single tube failure is given by: 

18 

Q = P(i~2) 
P(i = 1) 
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3 STRESSES IN STEAM GENERATOR TUBES 

Classification of stresses according to their origin was performed by Flesch et al [39]: 

• residual stresses from manufacturing process such as bending and drawing of tubes; 

• residual stresses from expanding tubes into tube sheet; 

• operational stresses caused by thermal loading and pressure difference; 

• sludge induced stresses. 

The residual stresses due to the expansion of tubes into tube sheet and operational stresses 

have the most pronounced effect on the propagation of axial cracks. They are further 

investigated below. 

3.1 Residual stresses 

3.1.1 Origin of residual stresses 

Tubes are expanded into tube sheet (see Fig. 3-1) by plastic deformation to obtain a leak tight 

joint. The procedure used is mechanical rolling (as illustrated in Fig. 3-2). In Krsko plant 

a one-step rolling procedure is used (see Fig. 3-3a) as opposed to two-step rolling (Fig. 3-

3b). 

2R 
1 

--~-

At ... A2 

tl > t2 
R < R 

out, 1 out, 2 

Figure 3-1 Expansion of tube into tube-sheet 
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tube 

tube sheet 

Figure 3-2 Tooling for tube-to-tube-sheet rolling 

a b 

Figure 3-3 One- and two-step rolling 
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The main control parameter of the rolling process is torque [100]. lts value is preset to 

achieve the 20 bar residual contact pressure between tube and tube sheet. Another important 

technological parameter is the apparent wall reduction o [63]: 

d;2 -(d/ + 2c) 
0 = * 100 

2t 
[%] (3-1) 

The optimal value is of the order of 3-6% [63], experimental data lead to o=S% [67]. 

3.1.2 Estimating the residual stresses 

First attempts aimed at estimating the residual stresses far away from the expansion zone [61 

and 63]. Middlebrooks et al [72] performed a non-linear finite element analysis (ABAQUS) 

for hydraulic expansion of tubes. An axisymmetric model was considered to be adequate. 

Flesh et al. [39] experimentally determined residual stresses in tubes for some French nuclear 

power plants (different geometry compared to Kdko plant). The values obtained in the 

expansion zone were 370 MPa for the hoop stress and 340 MPa for the axial stress. 

Duc et al [33] performed a non-linear FE-analysis for this case using an axisymmetric model. 

They got good agreement with [39] but overestimated the axial stresses as compared to the 

experiment (see discussion in 3.1.5). Also, a good qualitative agreement with [72] was 

obtained. 

No parametric study is available which takes into account the variation of the residual 

stresses with variation of the input parameters. 

3.1.3 Finiteelementmodel 

A finite element analysis with the ABAQUS codewas performed in order to simulate tube 

expansion. The axisymmetric meshes are shown in Fig 3-5 (coarse mesh) and Fig. 3-6 (fine 

mesh). The rolling tools were modelledas rigid surfaces which were pushed on to the tube 

surface until a residual contact pressure of 20 bar is reached. The friction coefficients (rolling 

tools-tube 0.1, tube-tube sheet 0.2) were taken from [67] and [72]. The tubewas long enough 

to model the far-field solution at the far end. The tube sheet was modelled as a very thick 

tube with a wall thickness corresponding to the average distance between tubes (see Fig. 3-

4b) which is in agreement with recommendations in [72]. 

KfK-5359 21 



Section 3: Stresses in Steam Generator Tubes 

R'l'S I R out ... 1.83 

a c 

Figure 3-4 Possibilities for the axisymmetrical simulation of tube to tube-sheet joint 

0 Distance along tube 

Figure 3-5 Model of the tube to tube-sheet joint (coarse mesh) 
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0 Distance along tube 

Figure 3-6 Model of tube to tube-sheet joint (fine mesh) 

The elements used allow thermal as well as mechanicalloading. The stress-strain curve was 

bilinear. The von Mises yielding condition and isotropic hardening was used as weH as the 

Prandtl-Reuss law for plastic flow. Material data are given in Table 3-1. 

Table 3-1 Material parameters for tube and tube sheet 

Temp. 
Youngs Tangent Poisson Conductivity* 

Thermal 
modulus modulus** ratio expansion * 

Material [OC] 
[GPa] [Gpa] [-1 [W/mK] 

[lo-6/K] 
T k 

E Er Jl CXr 

Tubes 20. 200. 3.00 0.3 (20.) (14.04) 
Inconel600 

[98, 4] 340. 190. (3.00) 0.3 20. 14.04 

Tube-sbeet 20. 192. 2.88 0.3 (40.) (13.10) 
SA 508 

[4] 340. 168. (2.88) 0.3 40. 13.10 

Thennal properties at 20•c were not relevant for the present analysis. 
Tangent modulus after ref. [33]. lts value at 340°C unlmown and does not affect the results of the present analysis. 
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3.1.4 Finiteelement results 

Fig. 3-7 shows the profile of the inner wall of the tube after completion of the rolling. Both 

meshes yield identical results. Fig. 3-8 shows the residual hoop stresses at the inner and the 

outer side of the tube, whereas Fig. 3-9 shows the residual stress field obtained for the axial 

stresses. In all areas both meshes yield virtually the same results. At the transition between 

the expanded tube and the expansion zone there are some oscillations in the residual stress 

field which can be attributed to the discontinuous boundary conditions in the expansion 

process (end of tool). Comparatively high tensile residual stresses develop in the expansion 

zone at the inner wall of the tube, whereas the other wall is under compression. The absolute 

values of the axial stresses inside and outside are approximately the same, i.e. the axialload 

in the expansion process correspond to bending. The maximum values of the axial stresses 

are higher than those of the hoop stresses. This would imply that circumferential cracks are 

formed in contradiction to what is observed in real steam generator tube which contain 

mostly axial cracks. 

0.22 

0.20 

0.18 

1 0.16 

0.14 """"' 
§ 0.12 

·m 0.10 
~ 0.08 

~ 0.06 

0.04 

0.02 

0.00 

-0.02 -10 -s 0 s 10 
Distance along tube[mm] 

Figure 3-7 Calculated tube internal surface profile 

+ coarse mesh 

f'me mesh 

1S 20 

Fig. 3-10 shows the variation of the residual hoop stress across the wall thickness. Almost 

70% of the wall is subjected to tensile residual stresses. 
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Figure 3-8 Residual hoop stress - comparison of meshes 
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Figure 3-9 Axial hoop stress - comparison of meshes 
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Fig. 3-11 summarizes the distributions of the residual stress field in the expanded zone. A 

3-D model would be more adequate but does not seem tobe feasible at the time being. 
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t - tube wall thickness 0.20 

300 0.18 

0.16 
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Distance along tube[mm] 

Figure 3-10 Distribution of hoop residual stresses through the wall thickness 

3.1.5 Discussion of results 

The high values of the axial residual stresses have been also observed by Duc et al [33] and 

can be attributed to the effect of axisymmetric modelling. There are two versions for this. 

First the real tube material flows in axial direction during the expansion process which is not 

observed for the FE model. Second the axisymmetric model assumes constant displacement 

along the circumference, whereas in reality, local tube thinning occurs depending on the 

position of the roles. The tube sheet cannot be made stiff enough to account for this effect 

in an axisymmetric model. 

3.2 Operational stresses 

Table 3-11 summarizes the temperatures and pressures which are present in the tubes and the 

tube sheet under normal operating conditions. 1t also contains the heat transfer coefficients 

which were assumed in the analysis for tubes and the tube sheet with and without sludge. 

The operationalloads were applied immediately after the release of the expansion load, i.e. 

the validity of the Superposition principle could be checked. 
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0 1 2 3 4 s 6 

1 2 4 
Distance along tube[mm] 

Figure 3-11 Comparison of axial and hoop residual stresses 

Table 3-ll Basic tube operational loading data 

Pressure Temperature 
Location [bar] [OC] 

p Ta. 

Reactor coolant 155.6 325.1 
Tube 

Secondary coolant 63.4 279.1 

Tube-sheet 63.4 279.1 

3.2.1 Operational tube Ioads 

7 8 9 

7 9 

Film coeff. h [kW/m2K] 

Without With 
sludge sludge 

25. 25. 

20. 5.·10"3 

5. 2.·10"3 

The pressure difference inside and outside the tube can be determined from Table 3-11. In 

the FE-model the effect of the pressure difference on the gap between the tube and the tube 

sheet is simulated. Both mechanical and thermal expansion are taken into account. For the 

thermal Ioads, the convectional heat transfer is assumed. In the gap, the heat transfer depends 

on the gap distance. In the presence of sludge the heat transfer to the secondary coolant is 

severely restricted, whereas full heat transfer is observed for clean tubes. 
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3.2.2 Stresses in sludge region 

Figure 3-12 shows the total hoop stress at the inner and the outer tube wall where it was 

assumed that sludge hampers heat transfer. The coarse and the fine FE mesh show some 

disagreement (10% ), and only the results obtained with the fine mesh will be considered in 

the following. 

400.------------------------------------------. 

200 

~ 
0 

j -200 

-400 

-600 

-800 -10 -5 

Inside surface 

0 5 
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+ * coarse mesh 

Inside profile 
........ ·····'. ······· ........... ,, . 

10 15 

Distance along tube[mm] 

Figure 3-12 Total hoop stresses under sludge 
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0.16 
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0.12 

·I 0.10 

0.08 ~ 
0.06 ~ 
0.04 

0.02 

0.00 

-0.02 

The operational stresses are obtained by subtracting the residual stresses obtained in the 

previous analysis from the total stresses. Fig. 3-13 shows the variation of the operational 

hoop stresses along the tube including the expansion zone. The oscillations observed in the 

expansion zone are probably caused by numerical effects because the total stresses are almost 

equal to the residual stresses. 

At far end of the tube, outside and inside stresses are almost equal indicating the absence of 

thermal stresses. 

3.2.3 Stresses in clean tubes 

Fig. 3-14 contains the total hoop stresses at the inner and the outer wall of the tube. Again 

there is some difference in the results obtained using the course mesh and the fine mesh 
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Figure 3-13 Operational stresses under sludge 
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Figure 3-14 Total hoop stresses in a clean tube 
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which will be used in the following. Inside and outside hoop stress at far end are different 

because of thermalloading. This can also be seen in Fig. 3-15 which shows the operational 

stresses obtained by subtracting the residual hoop stresses from the total hoop stresses. The 
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oscillations of the operational stress in the expansion zone are again attributed to numerical 

effects. 
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Figure 3-15 Operational hoop stresses in a clean tube 
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The tensile stresses at the inner wall are higher when sludge is present than for clear tubes. 

3.2.4 Discussion of results 

The values of the operational stresses determined in the FE analysis agree very weil with the 

results obtained by Garud [48] who calculated the operational stresses and did not analyze 

the expansion process. This implies that the Superposition principle is valid. Figs. 3-16 and 

3-17 summarize the hoop stress distribution obtained for tubes with sludge and clean tubes. 

In addition the shape of an axial through-wall crack is shown which was found by 

destructively inspecting a tube. The stress profile agrees very weil with the crack shape 

especially for the case with sludge. This is considered to be an experimental confirmation of 

the stress analysis for the hoop stress. 
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Figure 3-16 Typical crack shape and total hoop stresses in the sludge region 

9 

Figure 3-17 

3.3 Parametrie stress analysis 

The stress field depends on the geometry of the tubes and the material properties. A variation 

of these input parameters will affect the stress field. This becomes important in reliability 

analyses where the scatter of the input parameters has to be taken into account. 

A detailed sensitivity analysis within the framework of a reliability analysis is not feasible 

because a non-linear FE analysis has to be performed for each combination of input 

parameters. A parametric analysis is performed instead in order to find simple formula for 

interpolation of the stress field. 

3.3.1 Residual stresses 

Middlebrooks et al [72] performed a parametric study for the case of an axisymmetric model 

with hydraulic tube expansion. He identified three dominant input parameters. The yield 

strength of the tube, the thickness of the tube and the initial clearance between tube and tube 

sheet. 
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Table 3-m Design matrix for the residual hoop stress calculations 

Realparameter values Coded parameter values • Analysis 
number t [mm] c [mm] ur [MPa] t c C1y 

1 0.9906 0.1016 276 -1 -1 -1 

2 0.9906 0.1016 448 -1 -1 1 

3 0.9906 0.2921 276 -1 1 -1 

4 0.9906 0.2921 448 -1 1 1 

5 1.1938 0.1016 276 1 -1 -1 

6 1.1938 0.1016 448 1 -1 1 

7 1.1938 0.2921 276 1 1 -1 

8 1.1938 0.2921 448 1 1 1 

9 1.0922 0.1969 362 0 0 0 

10 0.9687 0.1969 362 -1.216 0 0 

11 1.2158 0.1969 362 1.216 0 0 

12 1.0922 0.08011 362 0 -1.216 0 

13 1.0922 0.3127 362 0 1.216 0 

14 1.0922 0.1969 257 0 0 -1.216 

15 1.0922 0.1969 467 0 0 1.216 

parameters are coded in the following way: coded value 0 represents the mean value while -1 and + 1 the 
lower and upper Iimit of the interval considered. 

lt is assumed that these parameters are also relevant in the analysis presented here 

(axisymmetric model with tube expansion by mechanical rolling). 

An orthogonal experimental design plan (see [74]) was used to determine a quadratic 

response surface for the hoop stresses. The contribution of input parameters selected is 

summarized in Table 3-III. A non-linear finite element analysis was performed for all 15 

cases. Figures 3-18, 3-19 and 3-20 illustrate the variation of the residual stresses at the inside 

surface of the tube wall. Whereas a variation of the wall thickness shifts the maximum tensile 

residual stress by about 1 mm (Fig. 3-18), a variation of the clearance width Ieads to a shift 

of about 2 mm (Fig. 3-19). The yield strength changes the peak height considerably (Fig. 3-

20). 
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Figure 3.,18 Sensitivity of the residual hoop stress to the wall thickness 
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Figure 3-19 Sensitivity of the residual hoop stresses on the initial tube to tube-sheet 
clearance 

3.3.2 ModeDing residual stresses by response surface technique 

The FE-results were used to fit an independent quadratic response surface to the residual 

hoop stresses obtained for each node. The correlation coefficient of the fitting was better than 
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Figure 3-20 Sensitivity of the residual hoop stresses on the tube yield strength 

99.6%. Spline interpolation was used to obtain the stresses between the nodes. The peak 

residual stress value aR, max and its position along the tube axis Linit are defined by: 

0 R, max = 361. + 1.421 t + 16.566 C + 73.955 Oy -

- 0.104 t 2 - 11.612 c 2 - 2.473 a~ + 

+ 0.500 tc - 1.250 tay + 9.500 cay 

Linit = 3.324 + 0.126 t + 0.465 c - 0.217 Oy + 

+ 0.0778 t2 + 0.0786 c2 + 0.091 o~ + 

+ 0.0355 tc - 0.0257 tay + 0.0270 coy 

(3-2) 

(3-3) 

To assure continuous first and second order partial derivatives, a cubic spline stress field 

interpolation was introduced as shown in Fig. 3-21. The error at the stress intensity factor 

level (see chapter 4.4.1) was below 1%. 

3.3.3 Operational stresses 

The distribution of operational stresses was approximated by: 

a(x) = (1- e-o.6 x) alx ... oo 
(3-4) 
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Figure 3-21 Cubical spline interpolation of the residual stresses along the tube length 

where u I x-+CX> represents the far field solution. This ignores the slight maximum of the 

operational stresses obtained in the expansion zone ( see Fig. 3-13 and 3-15). This seems to 

be justified by the fact that the stress field is dominated by the residual stresses in this area. 

Eq. (2-5) has been used to estimate the pressure induced stresses. Thermal stresses are 

calculated according to eqs. (3-5) to (3-10) given below. Both analytically obtained values 

confirm the numerical results obtained by ABAQUS code. 

Thermal stresses 

Assuming the radial temperature distribution in the form: 

T(r) = llT ln(R I r) 
In( Rou, I Rin) out 

(3-5) 

where AT is the temperature difference between the inner (Rin) and outer (R0 uc) surface, the 

hoop stress follows as [92]: 

o 4>,U( r) = ___ «_r_E_Il_T__ 1 -In Row - Rl! ( 1 + R;w ]In R;ut l (3-6) 
2(1- v)ln(RouiRin) r R2 -P~ r R~ 

out .. ~n 1n 
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E and cx are Youngs modulus and linear thermal expansion coefficient (Table 3-1) and v the 

Poisson's ratio. Temperature difference Ll.T is obtained by setting convective boundary 

conditions at both tube surfaces [73]: 

(3-7) 

with: 

(3-8) 

and: 

hout Rout T,_ = T. + ---(T - T ) 
"' ua,.. hin Rin out out, .. 

(3-9) 

Tin, oo are Tout, oo temperatures of primary and secondary coolants, h;n and hout are the 

corresponding heat transfer coefficients. e is defined by the means ofthermal conductivity 

of the tube k: 

(3-10) 
9 k 

Constants Tin, 00 , Tour, 00 , hin, hout are given in Table 3-11 and k in Table 3-1. Both tube radii 

are considered as random variables. 
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4 STRESS CORROSION CRACK PROPAGATION 

Stress corrosion cracking determines the lifetime of the steam generator tubes. Further, crack 

propagation has a dominant influence on the failure probability [25]. This chapter contains 

a review of the database for stress corrosion cracking in Inconel-600. The crack propagation 

law used in the subsequent calculations is derived. Only through-wall axial cracks in the 

tubes will be considered. 

4 .1 Basic facts about stress corrosion cracking 

Stress corrosion cracks are known to develop in a reactive environment at relatively low 

sustained stress levels. Thus, loads which are safely applied to a structure in an inert 

environment could cause catastrophic failure at the presence of a reactive gas or fluid. 

Generally, stress corrosion crack growth strongly depends on the materials and temperatures 

involved. On the micro scale, a lot of different processes or their combinations cause the 

crack initiation and propagation. In this subsection, only a very brief review of basic facts 

is given. 
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Figure 4-1 Initiation and propagation of stress corrosion cracks 

Fig. 4-1 depicts the sequence of events in stress corrosion [70]. First, the oxide layer on the 

surface breaks, then a corrosion pit is formed from which a crack is initiated. The rate of 

stress corrosion crack propagation depends on temperature and loading for a given 

combination medium/base material. The loading is given in terms of stress intensity factor 

K. Three different crack growth regimes are generally observed: chemical dissolution of base 
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material in region I, diffusion controlled crack growth in region II, and mechanical breaking 

in region 111 (see Fig. 4-2). The temperature dependence in region II is shown in Fig. 4-3 

and can be described by the Arrhenius equation (eq. (4-1)): 

log da 
dt 

( 
da ) oc e -E"''Pf(RT) 

dt li 

Figure 4-2 Crack tip velocity as a function of Ioad 

4.2 Stress corrosion cracking in Inconel-600 

(4-1) 

The chemical composition of Incone1-600 is given in Table 4-1. Stress corrosion cracking 

occurs in bot water for temperatures higher than approx. 300°C. A review of the influence 

parameters is given in [5, 19]. 

4.2.1 Basic mechanisms of stress corrosion cracking in Inconel-600 

There is no agreement about the dominant mechanisms of stress corrosion cracking in Inconel 

600 [8, 9]. Some reports are briefly reviewed below. 
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log da 
dt 

l/T 

Figure 4-3 Crack tip velocity (daldt) as a function of temperature (7) 

Table 4-1 Chemical composition of Inconel 600 

Chemical composition in % (the rest is Ni) 

Source 

Cr Fe Si Mn Cu Mo 

< .. · ..... ···•·. ···.·•··· 
.1\sMs s:a i~3• .. 
. ~~~d·~~bn [41 ·. 

·············· Ü:dd . .\ 6.o6 . ······ ·.. .... .... ·.· ··.•· ... ··· 
>) •·••.·•·•.··. < .· ········.•············o·.·.max·····.•.·.•·s••.····o· .. ··• .. ·.·.·.·•.··•·•·•·•· ~~·· · .. lma ..•...•... oo ... ·.x .•.... ·.·.· .. •·.·.··.· , .••.•. oma··········~.xo·.·.·. r NlM C 

....... ····.•······ I J7;(jQ )~.q{> ,. ··•·· ...• ·.·· 
Kr~ko NPP min [98] 14.00 6.43 0.04 0.10 0.02 N/A 

~ko NPP max [98] 16.83 10.0 0.40 0.52 0.49 N/A 

Speidei [89] 15.60 8.40 0.32 0.24 0.18 0.13 

no data available. 

c s 

0.01 0.001 

0.06 0.012 

0.10 0.004 

Shen and Shewmon [87, 88] reported that the dominant darnage mechanism is hydrogen (H2) 

diffusion which is enhanced by the presence of methane (CH4). In steam generator tubes, 

methane is formed from the free carbon (C) in the metal and free hydrogen in the water. 

This was found at rather high stress intensity factor values (K = 72-80 MPa m'h), which are 

not typical for normal operation. 
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Rebak et al [81] report that the crack propagation is affected simultaneously by three 

different mechanisms: nickel dissolution, hydrogen diffusion and creep. Further, the 

variations of the reactor coolant chemical composition (pH between 6.9 and 7.4) appeared 

not to have any influence on the crack tip velocity. 

Another darnage mechanism suggested in the Iiterature (formation of carbides on the grain 

boundaries and subsequent nickel dissolution [5, 42]) seems to be less important for the 

Krsko plant, because it mainly occurs in sensitized material, whereas the tubes in Krsko 

steam generators are from non-sensitized material. 1t should be noted here that sensitized and 

non-sensitized Inconel 600 are typically affected only in BWR and PWR conditions, 

respectively. 

The following is a summary of stress corrosion mechanisms in a Inconel-600 steam generator 

tube (PWR environment): 

• crack propagation is faster if the carbides do not precipitate on the grain boundaries; 

• the crack velocity is enhanced by increasing the partial pressure of hydrogen in water 

up to 1 bar. At 10 bar, a decrease of the crack velocity has been observed; 

• crack tip velocity is very sensitive to the increase in temperature. Activation energy 

in eq. (4-1) is reported tobe between 74 and 138 kJ/mol [87, 89]; 

plastic deformation enhances the crack velocity [87, 88, 89]; 

• expected Ph values of reactor coolant are between 6.9-7.4. In this range, the change 

of pH does not significantly affect the crack velocity. 

4.2.2 A vailability and reliability of crack velocity data 

Most of the data available in the Iiterature are concemed with time to crack initiation, not 

with crack propagation. Only recently some attempts to determine the crack tip velocities 

have been published. An overview of the data on crack propagation is given in [19]. The 

results are summarized in Fig. 4-4 for the reactor coolant temperature of 330°C. The reasons 

for large scatter in the experimental data are difficulties in determining the crack initiation 

time and controlling the loading during the experiment [19]. 
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The threshold for crack propagation is of the order of 5-10 MPa m 'h. The transition between 

region I and region li occurs at about 30 MPa m 'h. The upper limit of region li occurs at 100 

MPa m'h, The plateau velocity with prior plastic deformation is approximately equal to 9.5 

mm/year; without prior plastic deformation this value is reduced to 1.6 mm/year. this is 

important since the cracks considered in this report develop inside the cold-worked tube and 

propagate towards the non-deformed tube. 

10 

......... ::::::: ::::::::::: ............................ 

···························· 

llliMiMI Rebak et al 
·II 

----- Scott C=2.8·10 
-12 

-·-·-·-·- Scott C=2.8·10 

Cassagne- tubes 
~----------------~ 

......L....----'----'----..._ ____ ...__ _ ___,.___ _ __, 0.0315 
20 30 40 50 60 70 80 

Stress intensity factor K [MPa vm] 

Figure 4-4 Range of reported crack tip velocities (Rebak et a1 [81], Cassagne [ 19] in 
Scott [86]) 

4.3 Overview of crack propagation models 

Three different approaches are used in the literature: 

• statistical analysis of non-destructive measurements, 

• linear elastic fracture mechanics and 

• 1ocal strain rate. 

Further details on each of them are given below. 
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4.3.1 Statistical analysis of results of non-destructive examination 

A Gammadistribution was introduced in [56, 58, 59] for the distribution of measured crack 

indication length: 

j(l) 
= P" zcx-1 e-IH 

r(«) 

where r represents the Eulers Gamma function: 

.. 
r(tx) = f x«-l e -x dx 

0 

(4-2) 

(4-3) 

The amount of crack indication growth between two inspections is described by an 

exponential distribution: 

h(!ll) = p e -p 1:.1 (4-4) 

The crack indication length distribution of inspection number j + 1 follows from the data of 

the j th inspection using: 

I 

~.1(1) = J~(x) h(l - x) dx (4-5) 

0 

The parameters a, ß of j(l) (eq. (4-2)) and h(!ll) (eq. (4-4)) are determined as follows: 

2 
tx (l) = ö~,o 

p (l) = ö,,o } 

Those parameters depend on the initial crack indication length /0, defined as: 

11. _ W 3 O . -0.4H0 
ui,O - + . e 

The parameter W has to be inferred form the experimental data. 

(4-6) 

(4-7) 

The parameters of the distribution describing previously non-detected cracks are defined as: 
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«1 = (W+3.0)2 

Pi = W+3.0 } 

However, this model is not able to predict the number of new cracks. 

(4-8) 

The statistical approach is very weil suited to evaluate an existing database but it can not be 

extrapolated to other Ioad cases where ft..l) and h(D.l) may not be known with sufficient 

accuracy. 

4.3.2 Linear elastic fracture mecbanics 

Scott [86] described the crack growth rate as: 

da = C (K - Kiscc)'" 
dt 

(4-9) 

The constants were determined as m=l.16, 2.8·10-12 <C<2.8·10-11 and K1scc=9 MPa m'h 

in typical reactor coolant. The crack growth curve is shown in Fig. 4-4 together with other 

relevant data available. 

These constants were found by fittingexperimental results in [71]. The stress distribution in 

the tube expansion transition zonewas modelledas shown in Fig. 4-5, which corresponds 

to a sum of residual and operational stresses. The fracture mechanics model is restricted to 

one-way crack propagation, i.e. cracks can only propagateoutside the tube sheet. The scatter 

of the stress field was not taken into account in [86]. 

A similar model for crack propagation is used in the COMPROMIS code [52, 78], which also 

accounts for the scatter observed in inspection data. However, the details of the model are 

not clear from the published literature. 

4.3.3 Local strain rate 

Ford and Andresen [42] developed a semi-empirical model for stress corrosion crack 

propagation in sensitized stainless steels. The basic mechanism assumed was the breaking of 

the oxide film at the crack tip. Hence, the crack velocity is related to the strain rate which 

is responsible for film breaking (film rupture model). The crack growth rate is determined 

by: 
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Stress [MPa] 
500~---------------------------------------------------, 

400 

300 

200 

Estimated upper Iimit 
100 Minimalstress .. · ......... . 

required for crack growth· ~ .. ~ .. ~ .. ~ .. ~. -.. -.. -.. -.. -. "'" .. -.. -.. ..: .. =. :. · =. :::Estima:::.::::ted::::lo:w:e:r:h:.m:i=lt 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Distance from expansion ttansition [mm] 

Figure 4-5 Total residual and operational hoop stresses in a tube (Scott [86]) 

da = ~"( w ) e (&) 

dt J' ct 
(4-10) 

where w accounts for the electro-chemical properties of the system under consideration and 

ec, is the local strain rate at the crack tip. An empirical relation between the local strain rate 

and the stress intensity factor K is proposed by Andresen [42]: 

(4-11) 

(4-12) 

which, together with eq. (4-10) leads to a daldt-K relation. This means that the film rupture 

is equivalent to the fracture mechanics model. 

Another version of this model also includes crack initiation [45, 47]. 

4.3.4 Summary of tbe state of the art 

The statistical analysis provides an excellent database for comparison of models, but cannot 

be adapted to the specific conditions of a given plant. Moreover, only predetermined 
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inspection intervals can be taken into consideration because the model does not contain an 

explicit time dependence. 

The approach using linear elastic fracture mechanics seems to be most promising since it 

relies only on material data and can be adopted to plant specific loading conditions. The 

scatter present in inspection data can be included using probabilistic fracture mechanics. 

4.4 Asymmetriecrackpropagation 

Linear elastic fracture mechanics can be used to determine the loading parameters for axial 

cracks in steam generators tubes for two reasons: 

• Under normal operating conditions the K-factor is of the order K = 15-25 MPa m'12 

[71] whereas linear elastic fracture mechanics can be applied to stress corrosion 

cracking up to 40 MPa m'12 [19]. 

• The electro-chemical corrosion process causes the embrittlement of the material [64, 

70]. 

4.4.1 Stress intensity factor 

The stress in the neighborhood of the axial cracks in the transition zone is varying 

considerably in axial (x) direction (see Fig. 4-6). This implies that: 

• The stress intensity factors at the crack tips of the axial cracks are different from each 

other. Hence, the center of the crack alters its position if the crack starts to grow. 

• There are regions with high gradients of the stress in x-direction. Hence the K-factors 

depend strongly on the position of a crack center. 

A similar problern was analyzed by Terada and Nakajima [91] who considered a crack in a 

plate. The method developed in [91] will also be used here. A local coordinate system (~, 

fl) is introduced with origin at the center of the crack (see Fig. 4-6). The position of the 

crack is defined in terms of the distance L from the origin of the stress field. lf the variation 

of the stress field is given in terms of er(~+ L), the K-factors at both crack tips can be 

determined using the corresponding Green's function: 
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(4-13) 

where mp(a) denotes the bulging factor given in eq. (2-3). The K-factor depends strongly on 

the crack length 2a and the distance L from the stress field origin. 

Figs. 4-7 and 4,.8 show the results obtained for the crack tips ±a (see Fig. 4-6). For L<O, 

K becomes negative which implies that cracks can propagate only a small distance towards 

the tube sheet. Cracks will initiate at L = 4 mm in the vicinity of the residual stress peak. The 

cracks will first propagate with high velocity towards the tube sheet an then stop (see Fig. 

4-7, K-a) whereas the other crack tip will move at a fairly constant rate (see Fig. 4-8, K+a) 

because K+a is only slightly influenced by the residual stresses in the transition zone. 

(J 

X 

-a +a 

da-a dL da +a 

Figure 4-6 Crack position in the residual stress field (asymmetrical propagation) 

A Gaussian type integration procedure is used to perform the integration over the stress field. 

The corresponding formulae are given below [2]: 

(4-14) 
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K [MPa Vm] 

Figure 4-7 Stress intensity factors at the left ( -a) crack tip 

60 

K [MPa Vm] 
so 
40 

Figure 4-8 Stress intensity factors at the right ( +a) crack tip 
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x = cosl( (2j - l}1t) 
~ 2(2N + 1} 

w = j 

21tXJ 

2N + 1 

(4-15) 

(4-16) 

(4-17) 

N=30 integration points were enough to stabilize the integral value inside the ±5% interval. 

In order to maintain reasonably continuous derivatives, it was unfortunately not enough to 

increase the N value to very high values. The bicubic spline approximation was introduced 

which allows an accurate approximation of the functional values together with fairly stable 

derivatives. 

4.4.2 Asymmetrie crack propagation 

A stress intensity factor K±a is calculated for each crack tip. The corresponding crack growth 

rates ä±a can then be determined using the crack growth law eq. (4-20}. The rate of increase 

of the average crack length is given by: 

. da 1 (. . ) a=-=- a +a dt 2 +a -a 
(4-18) 

whereas: 

L = dL = _! [a - a ] 
dt 2 +a -a 

(4-19) 

describes the migration rate of the crack center. 

4.4.3 Position of the crack with known length 

Cracks are initiated at the peak value of the stress distribution which follows from the 

response surface (eq. (3-3}). The corresponding value L1n11 is the initial value of L in the 

crack growth analysis, whereas the initial crack size a1n11 is equal to zero. Integration of the 
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crack growth equations ( 4-18) and ( 4-19) from a1n11 to llo yields the position of crack of size 

a0 for a given set of material constants, loading conditions and parameters C and K1scc· 

4.4.4 Crack propagation law 

The crack propagation law is given by: 

(4-20) 

The constants C±a may be different for each crack tip at ±a. This is because crack tip -a 
moves into material which has been subjected to cold working whereas crack tip +a is 

leaving this area. Based on results of Cassagne et al [19], the relation between C-<l (cold 

worked) and c+a is given by: 

1 c =- c +a -a 
Pc 

(4-21) 

A value of Pc~6 is consistent with the crack growth data reported in the literature. 

The material constants m, C and K1scc are assumed to be random variables whose mean 

values correspond to those given in [86] (m=1.16, C+a=2.8·10-12 as lower bound [86] and 

K1scc=9 MPa m'12
). This is in agreement with what has been observed elsewhere. The 

temperature of 330°C and pressure loading are assumed to be constant under operating 

conditions. 

4.5 Discussion of the crack propagation model results 

4.5.1 Stress intensity factors 

Figures 4-9 and 4-10 contain the stress intensity factors obtained for both crack tips for 

various combinations of a and L. The value L=O corresponds to the last contact point 

between the rolling tool and the tube. The dashed line (L=3 mm) corresponds to the top of 

the tube sheet. 

For L > 20, both K-factors are approximately equal to the ones obtained for a free tube with 

constant membrane hoop stress, i.e. the effect of the residual stress is essentially limited to 

L ~ 20 mm. No crack can propagate far into the tube sheet because of K < 0 for L < 0. 
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20 t 
I 
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8 
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Figure 4-9 Values of K-(l as a function of crack center position and length 
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Figure 4-10 Values of K+a as a function of crack center position and length 
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4.5.2 Movement of the center of a crack 

The variation of the stress intensity factor with both the crack length 2a and the position L 

shows (see Figures 4-9 and 4-10) that the center of the crack moves considerably in the 

course of crack propagation. 

7r----------------------------------------------------, 

1 

2 4 6 8 
0 

0 

Crack length 2a [mm] 

Figure 4-11 Predicted and observed crack center path 

0 average 

+ standard deviation 

10 12 14 

The hold line in Figs. 4-9 and 4-10 shows the expected crack path for a crack which is 

initiated at the point of maximum stress. The value K"" drops below the threshold K1scc=9 

MPa m'h at about 2a=8 mm, then the -a crack tip is arrested. The +a crack tip propagates 

at maximum growth rate, i.e. follows the maxima of the K+a(a, L) surface. 

In Fig. 4-11 the results of the crack propagation model are compared with inspection data 

from the Krsko plant, where mean values were inserted for the parameters of the model. The 

error bars of the data corresponds to the standard deviation from the inspection data. Only 

one data point has been obtained for crack lengths of 1, 2 and 3 mm (also shownon Fig. 4-

11). The ratio of the constants C"" and C+a at the crack tips corresponding to -a and +a, 
respectively, was varied with Pc=l, 2 and 6 (see eq. 4-21). The agreement is quite 

satisfactory compared to the accuracy of the inspection procedure ( ± 1. 5 mm on crack length, 

see [31, 32]). 
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4.5.3 Crack propagation 

In the statistical model [58] (see also sect. 4.3.1) the amount of crack propagation Aa 

depends on the initial crack length a0• Aa to a0 relationship was therefore obtained from the 

fracture mechanics modeland compared with inspection data from the Krsko plant (Fig. 4-12 

for Pc=1, Fig. 4-13 for Pc=2 and Fig. 4-14 for Pc=6). The error bars correspond to the 

maximum and minimum values observed. The time interval between two inspections was 15 

months. Average values ± 10% were used for the parameters of the crack growth law. The 

best agreement is obtained for Pc=2 which will be used in subsequent calculations. 

g.---------------------------------------------------. 

c+a- c..., avg. 

Krsko NPP, 15 months cycle 
observed minima 

4r-------2+-------+4------~-------48------~10r-----~12 

Initial crack length 2a [mm] 

Figure 4-12 Predicted and observed crack growth (C+a=C-a) 
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Figure 4-13 Predicted and observed crack growth (C+a= 1/2C-a) 

1 ........ 

~ 
8 
'il 

I 
~ 
Q 

8 

6 

4 

2 

0 

-2 

t 
<b 
I 
+ 

c..,- 1/6C .... 

Krsko NPP, 15 months cycle 

observed maxima 

I 
I 

I 
I + observed minima 

40~------2~------~4------~6------~8------~10~----~12 

Initialcrack length 2a [nun] 

Figure 4-14 Predicted and observed crack growth (C+a= 1!6C-a) 
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5 ON NUMERICAL SOLUTION TECHNIQUE FOR TIIE FAlLURE 

INTEGRAL 

In general the failure integral eq. (2-1) has tobe evaluated numerically. There are only a few 

isolated cases where an analytical solution is possible. Conventional numerical methods are 

not applicable because of the high nurober of basic variables (5-10) and the low values of lf· 
The methods used to evaluate P1 are Monte Carlo simulation and approximate methods [15, 

82]. 

5 .1 Monte Carlo family 

5.1.1 Direct simulation 

The results obtained by direct Monte Carlo simulation are considered to be exact within a 

given numerical accuracy [12]. However, direct simulation may be very time consuming. 

Direct simulation corresponds to a sequence of numerical experiments. The failure function 

g(X) is evaluated for n realizations of the random vector x. Let n1 denote the nurober of 

realizations with g(X) <0. An estimator of P1 is given by [15]: 

with the standard error: 

5.1.2 Other methods 

n p ::: _] 
I n 

(5-1) 

(5-2) 

The nurober of realizations has tobe reduced for complicated g-functions. Variance reduction 

methods have been introduced in the literature. A weil known example is latin hypercube 

sampling. In probabilistic fracture mechanics most efforts were concentrated on introducing 

some kind of weighted sampling around the failure surface, e.g. importance sampling [15], 

adaptive sampling [17], efficient sampling [55]. However, the evaluation of the weight factor 

may also be time consuming. 
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5.2 Methods using first and second order approximations 

First- (FORM) and Second Order ReHability Methods (SORM) were first used in civil 

engineering [37]. Their applicability to PFM problems including creep and fatigue have been 

demonstrated in the Iiterature [82]. An upgraded version of the ZERBERUS codewill be 

used in this study [83]. 

5.3 Firstorder reliability method 

The failure integral can be solved analytically for standard normal basic available and linear 

failure functions: 

(5-3) 

where <I> is the c.d.f. of the standard normal distribution, ß is the minimal distance of the 

origin to the failure surface with: 

and 

ß 
g(i*) -a·x· 

liil 

a v g "" , ... , -=-::____:... 
.... = " (::1*) = ( og(x*) og(x'')) 

axl axll 

ß is the reliability index: the point on g=O closest to the origin is the design point. 

5.3.1 Non-linear failure function 

(5-4) 

(5-5) 

In this case g(ij=O is linearized in the design point and the approximate relation is valid: 

(5-6) 

The approximation error is not known in general. 

5.3.2 Arbitrarily distributed variables 

Standard normal variables are introduced by the transformation: 

(5-7) 
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where F; is the c.d.f. of random variable X; with the inverse transformation: 

(5-8) 

The transformation is illustrated in Fig. 5-1. 

The failure function in u-space gu(il) is given by: 

(5-9) 

Its partial derivatives are evaluated using the chain rule: 

ßgu = ßg ßx, = ßg(x) f9(U1) = ßg(X) fl)(cll-
1
(F1(X1))) (5-10) 

au, ax, aul ax, fi(x,) axl fj(x,) 

1.0 1.0 

u X 

0 0 

Figure 5-l Transformation of a basic variable into a standard normal space 

5.3.3 The design point determination 

The design point is the point in u-space on g(il)=O with minimal distance to the origin. 

Hence it is a solution of the constrained optimization problern with: 
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(5-11) 

This non-linear optimization problern can be solved by the following iteration algorithm [66]: 

with 

a<m) = 
Vgu(a<m>) 

I Vgu(a<m>) I 

and 

The iteration procedure is illustrated in Fig. 5-2 
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a 

Figure 5-2 Searching for the design point in case of two basic variables 
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Some numerical examples exhibited two minima of ß. This caused the series given by eq. 

(5-12) to oscillate between two different values instead tending to its limit. The problern has 

been solved by appropriate selection of starting value if0
J and reducing the step between two 

consecutive design point approximations: 

a<m+l)1 
= a<m> + z ·(a<m+l) - a<m>) (5-15) 

Good convergency was obtained by setting z=0.5. 

5.3.4 Sensitivity analysis 

The sensitivity factors 

(5-16) 

determine the dependence of the failure integral on a specific basic variable. The vector of 

sensitivity factors ä"=(a1", ... , an") is a unit vector pointing towards design point. 

5.4 Second order reliability method 

In SORM the failure surface in the design point is approximated by a quadratic surface with 

the same values for the principal curvatures K1 [66]. The failure integral is approximated by: 

with 

n-l 

st = i!>( -p) 11 (1 - PKiro.s 
js} 

s3 = <P + 1) [Pil><-P>- <p(ß)]· 

·{ fi (1 - PKjr0
·
5 

- Re[fi (1 - o~ +i)Kjr0
·
5
]} 

J=l j=l 
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(5-18) 

(5-19) 

(5-20) 
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i is the imaginary unit and Re() denotes the real part. S1 converges to the exact value of P1 

for ß_.oo. S2 and S3 are regarded as correction terms. 

In order to evaluate the principal curvatures the standard space is first rotated in y-space such 

that the position vector of the design point lies in the direction of the ntJ• basic vector. This 

is obtained by the transformation: 

(5-21) 

with inverse given by (D-1 =Dl): 

U = DY (5-22) 

The principal curvatures Kj are obtain as solutions of the characteristic equation: 

(5-23) 

where G, represents the matrix of second derivatives of the failure function in the design 

point in y -space. I is the unit matrix. 
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6 NUMERICAL EXAMPLES 

Two examples will be considered in the following. The first example corresponds to the one 

which has also been considered in refs. [25, 68]. The second example is based on the data 

obtained for the Krsko plant on the occasion of the '92 maintenance inspection. 

6.1 Comparison with results from Iiterature 

The database explained in refs. [25, 68] is used to generate input data for a study using 

probabilistic fracture mechanics methods along the lines explained in the previous sections. 

The results are compared with the results given in [25, 68]. There are the following 

differences between the two approaches: 

• The increase in crack length between successive inspections was described in [25, 68] 

in terms of random variables, whereas asymmetric crack propagation is considered 

in this study. 

• Plugging resulted in a truncated crack length distribution in the model given in [25, 

68]. Inspection uncertainties are taken into account here as was explained in section 

2.3. This implies that quite long cracks may remain in the tubes after the inspection. 

The failure probabilities are calculated using FORM/SORM as in ref. [25]. The Monte Carlo 

approach used in [68] is not applicable here because of the amount of computing time needed 

in an extended sensitivity analysis for rare events. 

6.1.1 Geometry and material data 

The statistical distributions of the input variables which were given in [25, 68] are 

summarized in table 6-1. The only difference hereisthat yield strength and ultimate strength 

are given separately instead of their sum. This was necessary as only aY influences the crack 

propagation law but their sum is needed to evaluate the failure function. The operational 

load, ll.p = 195.6 bar, was taken from the plant specifications (limiting hypothetical accident 

- feed line break). 
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Table 6-1 

Basic 
variable 

R.ut 
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2 am 

K 

Or 

CTy 

UM 
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Geometry and material data 

Distribution 

Type Parameters 

normal ~=9.525, u=0.0254 

normal ~ =9. 709, u=0.0106 

normal ~ = 1.055, u=0.0464 

normal a=10.3, ß=l.O 

normal ~=0.545, u=0.03 

normal ~=0.928, u=0.003 

normal ~=362., u=38. 

normal ~=718., u=38. 

Distributions are not truncated 

6.1.2 Crackpropagation 

Unit Comments 

mm -

mm -
mm -

mm Assumed 

- -

- -
MPa -

MPa -

A r-distribution with parameters a=l.25, ß=0.8 was introduced in [68] to describe the 

amount of crack growth within an inspection interval of one year. The mean values of the 

parameters of the crack propagation law were taken from Iiterature (see Sec. 4). The 

statistical distributions which were assumed for these parameters are given in table 6-11. The 

best fit to the inspection data was obtained using Pc=3. 

Table 6-II Basic variables with direct impact on the crack propagation 

Ba sie Distribution 

variable 
Unit Comments 

Type Parameters 

C-a normal p.=2.8·10-11 , u=l.O·l0-12 m/s Assumed 

KISCC normal ~=9.0, u=0.3 MPa m'h Assumed 

m normal p.=l.16, u=0.03 - Assumed 

Distributions are not truncated 
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6.1.3 Fallure probability 

Two different maintenance strategies are compared with each other: the simple model used 

in [25, 68] leading to eq. (2-7) and the complex model described in Sec. 2.3.3 and [6]. Fig. 

6-1 shows the failure probability just before the next yearly inspection as a function of the 

plugging limit PL. The dashed lines are results obtained with the crack propagation model 

for the different maintenance strategies, whereas the solid line is taken from [25]. 

····················································································· 
10~~-----L------~----~------~----~------~----~ 

8 10 12 14 16 18 20 00 

Plugging limit PL [mm] 

Figure 6-1 Fraction of failed tubes (Cizelj et a1 [25], simple model eq. (2-7), complex 
model eq. (2-25)) 

There is almost no difference in P1 for large values of PL. Cracks with lengths below 15 mm 

are slowed down in the crack propagation model compared to the random variable approach. 

Hence the failure probability decreases more rapidly, if tubes containing long cracks are 

plugged. The plateau value of P1 obtained for the complex maintenance strategy in case of 

PL < 10 mm can be attributed to long cracks which are not discovered during the 

inspection. 

Both SORM (symbols) and FORM (lines) results are shown in Fig. 6-1. The relative errors 

of FORM with respect to SORM is shown in Fig. 6-2. The comparatively large deviations 

for low values of PL can be attributed to the increase of the curvature of the Iimit state 

surface with decreasing PL and the fact that the second derivatives of the K-factors needed 
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Figure 6-2 Relative error of FORM compared to SORM 

in SORM are numerically unstable in many cases. A comparison with Monte Carlo results 

was given in [25] where FORM- and SORM- results tumed out to be upper and lower 

bounds for the Monte Carlo results. 

6.1.4 Sensitivity analysis 

The highest sensitivity factors were obtained in [25] for the initial crack length and the crack 

growth increment. The more complex model described here also yields a high absolute value 

of the sensitivity factor for the crack length, whereas the crack growth increment is a 

function of several independent random variables. The following is an ordered Iist of input 

quantities with decreasing sensitivity factors: tube wall thickness, flow stress factor, yield 

stress, ultimate tensile strength, exponent of crack growth law, constant C-a of crack growth 

law, temperature factor Ör and outer pipe radius. The influence of the threshold value of the 

crack growth law is negligible. 

6.2 Steam generator No. 1 in Krsko power plant 

The example is based on data collected during the 1992 inspection. Interest is focused on the 

effect of the assumed crack length distribution, and of the reliability of the inspection and 
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plugging procedure. The failure probability at the subsequent inspection is given as weil as 

P1 as a function of the length of the inspection interval. 

6.2.1 Geometry and material data 

The stochastic input quantities are summarized in table 6-III. Deterministic input quantities 

are: the crack growth parameter Pc=2 (see section 4), the radius of the hole in the tube sheet 

( = 9. 709 mm), the pressure difference of the operational loading ( = 195. 6 bar, see Sec. 

6.1.1) and the interval between subsequent inspections (1 year unless explicitly stated). 

Table 6-ill Geometry and material data (Kdko steam generator No. 1) 

Basic Distribution 

variable 
Unit 

Type Parameters 

ROU/ normal ~t=9.525, tr=0.0254 mm 

t normal ~t=1.0922, tr=0.039 mm 

K normal ~t=0.545, tr=0.03 -

Ör normal ~t=0.928, tr=0.003 -

t1y normal jt =362.' tr=34. MPa 

UM normal ~t=713., u=25. MPa 

Distributions are not truncated 

6.2.2 Crack length distribution 

273 indications were found during the 1992 inspection of steam generator #1 in Krsko power 

plant. Fig. 6-3 contains the histogram of the measured crack lengths. The actual crack length 

distribution can be derived from these data using the procedure described in [6] and Sec. 2.3. 

This procedure takes into account the sizing uncertainty, the detection probability and the 

plugging probability. 

The detection probability is given by (see ref. [69]): 

(6-1) 

which implies that there isaresidual probability e0D of missing very long cracks. The sizing 

uncertainty is assumed to be independent of the crack length. Only random errors (as 
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Measured crack length [mm] 

Figure 6-3 Distribution of crack length indications in the tube expansion transition zone 
of Krsko NPP steam generator No. 1 after 1992 inspection 

opposed to systematic errors) are considered, and a normal distribution with mean value 

equal to zero and a standard deviation of 0.75 mm (see [43]) is selected. 

Table 6-IV Parameters and quality estimation for assumed real crack length distributions 

Parameter x2 test Fon 
Distribution Significance Fraction of 

Shape Scale x2 detected cracks Ievel 

Lognormal 0.532 1.627 134.760 0. 32.52 % 

Exponential 0.489 - 35.2839 5 •10"5 47.94% 

Gamma 0.521 1.244 29.2635 6. 104 53.89% 

Weibull 2.063 1.155 27.5182 1 •10"3 48.99% 

The following crack length distributions are considered: lognormal, exponential, Gamma, 

Weibull. Bach set of parameters is fitted to the histogram Fig. 6-3 according to the procedure 

described in ref. [6] and in Sec. 2.3. The results are summarized in Table 6-IV. The 

lognormal distribution yields the worst fit, but also the most conservative results as the 

fraction of cracks detected (F0n) is lowest. Also, the lognormal distribution exhibits the 
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largest probabilities of long cracks, which has been observed elsewhere [54]. The other three 

distributions Iead to comparable results. None of the distributions is strictly comparable with 

the data, as they are only accepted in a ')( test at a very low significance Ievel. 

Fig. 6-4 shows the fitted distributions with special emphasis on their behavior for 2a > 8mm. 

Figs. 6-5 and 6-6 show the histograms of measured crack length tagether with the results of 

the fitting procedure. All distributions except the Weibull distribution Iead to higher numbers 

of long crack than observed in the inspection. 
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Figure 6-4 Comparison of assumed real crack length distributions 

6.2.3 Effects of plugging 

In some cases, tubes with long cracks remain unplugged due to the sizing uncertainty and the 

limited efficiency of the plugging procedure (see eq. (2-16)) and of the inspection given by 

the detection probability. On the other hand, tubes containing relatively short cracks may be 

unnecessarily plugged due to the sizing uncertainty. The effect of the inspection procedure 

on the crack length distribution is shown in Fig. 6-7 which contains both the crack length 

distribution before inspection (lognormal) as weil as the normalized length distribution of 

those cracks which remain in the operation after inspection and plugging. 
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Figure 6-5 Comparison of crack indication length distributions (SG No. 1, exponential 
and Gammadistribution of real crack lengths) 
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Figure 6-6 Comparison of crack indication length distributions (SG No. 1, lognormal and 
Weibull distribution of real crack lengths) 
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Figure 6-7 Plugging impact on the real crack length distribution 

6.2.4 Fraction of failed tubes 

The failure probability P1 eq. (2-1) is calculated for four different crack length distributions 

as a function of the plugging Iimit PL and shown in Fig. 6-8. P1 is approximately constant for 

PL larger than 20 mm. This implies that the plugging procedure has no significant effect on 

the reliability of the steam generator. Cracks below the plugging limitwill propagate during 

the inspection interval and potentially cause failure, whereas cracks exceeding the plugging 

Iimit are very scarce. 

The failure probability decreases for 10 mm < PL < 20 mm with decreasing plugging Iimit. 

There are two contributions to the failure probability. First, tubes containing cracks of the 

size of the plugging Iimit remain unplugged due to the sizing uncertainty. Second, a certain 

percentage of the cracks is not detected due to the limited efficiency of the inspection 

procedure. 

The failure probability approaches a constant value for PL < 10 mm. This can be explained 

by the fact that cracks of the order of PL (or below) make only a minor contribution to the 

failure probability as they do not reach a critical crack size within one inspection period. 

Therefore it is irrelevant whether these cracks are detected and plugged or left in the tubes. 
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The most important contribution to the failure probability stems either from those tubes 

which contain large cracks which arenot found or from those tubes which arenot plugged. 

The absolute value of the failure probability changes by three orders of magnitude depending 

on the crack length distribution selected. However, the characteristic shape of the P)PL)­

curve remains unchanged with the two plateau-values of Pi for PL < 10mm and PL > 20mm 

and the transition zone between. 

The effect of the efficiency of the inspection and the plugging procedures is analyzed in Fig. 

6-9 foralognormal crack length distribution. The bold line corresponds to 100% inspection 

efficiency, whereas the other curves are determined using different values of the plugging 

probability 1 - ePL and of the residual non-detection probability eov· The behavior of P)PL) 

in Fig. 6-9 can be explained along the same lines as Fig. 6-8 (see Sect. 6.2.4). 

We should note here that ePL and e0v affect the distribution of crack lengths after plugging 

in exactly the same way (see eqs. (2-22) and (6-1)). 

6.2.5 Relative error of the FORM/SORM results 

The relative differences of the FORM and the SORM results for a lognormal crack length 

distribution are shown in Fig. 6-10. The error is relatively small except a peak for 

10mm < PL < 20 mm which corresponds to the transition of Pi between the low and the high 

stationary level. This difference between FORM and SORM results can be partially attributed 

to problems with the numerical derivatives. These problems can be neglected for PL > 20 

mm and PL < 10 mm, because all sensitivity factors are approximately zero except the 

sensitivity factor of the crack length (see subsequent section). 

Another important consideration considering the relative errors is the observation of two 

failure modes. This occurs at PL values in the vicinity of 10 mm, where the transition of Pi 

values starts. FORM tends to detect two design points and consequently two Pi values in this 

area. The first one actually lies on the perfect detection curve (see Fig. 6-9), whereas the 

second complies with the plateau value. In most cases, the initial design point estimate 

controls the design point detected. 

The numerical errors affect the shape of the transition curve in Fig. 6-8, but not the fact that 

there is a transition between two stationary Ievels of the failure probability in the range of 

10 mm < PL < 20 mm. 
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Plugging Iimit P L [mm] 

Figure 6-10 Comparison of FORM and SORM results 

6.2.6 Sensitivity analysis 

Figs. 6-11, 6-12, 6-13 show the sensitivity factors eq. (5-16) obtained using a lognormal 

crack length distribution as a function of the plugging limit PL for the crack length, the 

exponent m in the crack growth law, the tube wall thickness, and the flow stress factor K. 

These are the dominant input variables. Less important quantities are the constant in the Paris 

law C-a the outer pipe radius, the yield strength, the ultimate tensile strength and the 

temperature factor l>r. The scatter of the threshold for stress corrosion cracking is negligible 

as in the previous example. 

All the sensitivity factors show a characteristic jump at PL = 10 mm which can be explained 

along the same lines as in Fig. 6-8 (see Sect. 6.2.4). If higher values of the relative number 

of unplugged tubes and/or the residual non-detection probability are assumed, the absolute 

value of the sensitivity factor of the crack length increases. 

6.2. 7 Dependence of P1 on the length of the inspection interval 

Figs. 6-14 and 6-15 show the failure probability as a function of the length of the inspection 

interval. The optimal value of PLis decreasing with increasing length of inspection interval. 
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Figure 6-13 Sensitivity factor of flow stress factor (K) 
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Figure 6-14 Influence of time between two consecutive inspections on the fraction of failed 
tubes P1 
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Figure 6-15 Development of fraction of failed tubes P1 in time 

6.2.8 Single vs multiple tube failure (rupture) 

15 

The probability for multiple tube failure (rupture) was determined in Sect. 2.4. Table 6-V 

summarizes the results obtained. The total number of cracked tubes N is estimated to be 841 

based on the information that 273 flawed tubes were found and on the formula for the 

inspection uncertainty (see Sect. 2). The number of plugged tubes NPL follows by multiplying 

eq. (2-23) with N, whereas the number of remaining flawed tubes NR is equal to the 

difference between N and NPL· 

The probability that exactly i tubes fail during the inspection interval is given in eq. (2-31). 

For high values of PL, multiple tube failure becomes highly probable. At PL=6.4 mm 

(Krsko plant), single tube rupture is dominating failure mode. 

The predicted number of plugged tubes given in Table 6-V can be compared with the 

findings of the 1992 inspection of the Krsko plant. Altogether 43 tubes were plugged. Since 

the reason for the plugging was not recorded, the effect of other degradation mechanisms is 

included in this number, and the agreement is considered satisfactory. 
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Table 6-V Single and multiple tube rupture probabllity 

• 

PL 
[mm] 

P(i;;::: 1) [%] P(i=1) [%] 

FORM SORM FORM SORM 

6 18 .146·10·5 .145•10"5 823 0.12 0.12 

.· •· ·•··· .. ·.·· · ··•· ·· · · ·, .. ·.·.·.·.·.·.··::.•.···~:·.··4······s· ... · .• ····.·.·t:·.·.·~.·.· •. :· •.• .t.·'.> .. I··• ·1·4·· ·7 · ... ·:·.· .• ··:·•·.··:1•:.~ .... : .. ~.:·:········ · .... ·.·::··.· ·7··. ·9·.··•.·.·s· ·.·.·. 1 :.·: < .... o: ·.···.···:1•···2····· .. ·.•.·:·. 1 
...... . / 6;4 / r'7r V -l :···· V" ! I .•. 

· ... ·. . . .. :::•. . .·. .... . : .·· ..... •"• ·.: 
0.12 

8 12 .156 ·10·5 .162. 10"5 829 0.13 0.13 

10 9 .141. 10"5 .142. 10"5 832 0.12 0.12 

12 8 .199. 10"5 .17•10"5 833 0.17 0.14 

14 7 .687 ·104 .527 ·104 834 5.57 4.21 

16 5 .592 •10"3 .425 •10"3 836 39.05 24.93 

18 4 .196. 10·2 .163. 10·2 837 80.61 34.87 

20 3 .369 •10"2 .343 •10"2 838 95.46 16.23 

Theoretical prediction. 43 tubes were plugged in SO 111 in Krsko plant. However, those tubes have been 
damaged also on other Jocations not accounted for in this study. 
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Figure 6-16 Single and multiple tube rupture probabilities 

In Fig. 6-16 the probabilities P(i'2:.1), P(i= 1), and P(i'2:.2) are compared with each other as 

a function of the plugging limit. Figure (6-17) shows the ratio of the probabilities of single 
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Figure 6-17 Singletube rupture probability (given a tube rupture) 

tube rupture and of multiple tube rupture, which decreases rapidly for PL > 12 mm, i.e. 

multiple tube rupture becomes the dominant failure mode. 

6.3 Optimizing the steam generator life time 

6.3.1 Comparison of düferent plugging strategies 

Two different strategies are compared with each other: 

• bobbin coil inspection and plugging based on crack depth criterion; 

• MRPC inspection and plugging based on crack length criterion. 

Table 6-VI Comparison of defect length and defect depth plugging criterion 

No. of plugged Probability of tube Probability of multiple 
tubes rupture tube rupture 

Length criterion 17- 43" 1. 20 • 10·3 -1. 16 • 10·3 7.22 •10"7-6.78 •10"7 

Depth criterion 3 1.00 0.99 
17 ts a theorettcal redtctton; 43 or tubes have been >Iu p p gg ed m Kral o :su No. 1 m 1992 
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Table 6-3 shows the number ofplugged tubes and the probabilities P(i~ 1) and P(i~2). The 

probabilities for the crack depth criterion have been calculated assuming that very poor 

correlation between the crack length as measured by the MRPC inspection and crack depth 

as measured by the bobbin coil inspection exists [34]. Therefore, plugging the tubes 

following the crack depth criterion assumes the P1 at PL-+oo. 

The crack length criterion dramatically reduces the probability of multiple tube rupture. 

6.3.2 Number of plugged tubes vs failure probability 

Figure 6-18 shows the number of plugged tubes and the failure probability as a function of 

the plugging limit. As the failure probability is almost constant for PL < 12mm and the 

number of plugged tubes decreases monotonically with increasing PL, an optimum value of 

PLis around 10-12 mm. 
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Figure 6-18 Optimizing the steam generator life time 

The plugging limit can be adjusted during each inspection using the following procedure: 

• inspection; 

• determination of crack length distribution from inspection results; 
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• calculation of the failure probability and of P(i ~ 1) as a function of the plugging 

Iimit; determination of optimum value for PL; 

• plugging of tubes. 

Such approach enables the most efficient use of all available information about the steam 

generator state. This enables reduction in conservativities, which are built in the maintenance 

procedures and the steam generator life-time optimization at given risk of tube failure. 
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7 CONCLUDING REMARKS 

Ageing of steam generator tubes made of Inconel 600 may severely affect their structural 

reliability and reduce the steam generator life-time. The main objective of the present study 

was to develop and propose a procedure to estimate the tube failure probability, based on 

scatter of geometry, material data, defect size and growth rate and the efficiency of applied 

maintenance strategy. As the particular ageing mechanism studied, the axially oriented 

through-wall stress corrosion cracking in the residual stress field in the tube expansion 

transition zone has been selected. 

7 .1 Summary of the proposed procedure 

The probabilistic fracture mechanics provided the basis for the reliability model. Unstable 

crack propagation has been assumed to occur at hypothetical aceidentat conditions and 

predicted by the plastic Iimit Ioad concept. Stahle crack propagation during normal operation 

between the two consecutive tube inspections has been modelled using linear-elastic fracture 

mechanics theory. Residual stresses have been estimated using the non-linear finite element 

techniques ( code ABAQUS [ 1]). The scatter in residual and operational stresses driving the 

crack has been accounted for by the response surface method. The efficiency of the 

maintenance strategy consisted of detection reliability, sizing accuracy and probability of 

plugging the tube containing long crack. The reliability calculations have been performed 

using the First- and Second order reliability methods (FORM and SORM) using the modified 

ZERBERUS [83] code. 

7.2 Experience using the proposed procedure 

Two numerical examples were studied. The first one was selected based on the results 

available in the Iiterature and showed reasonable agreement. The second considered the 

Krsko p<;>wer plant steam generator after the 1992 maintenance activities. The numerical 

results assumed the use crack length tube plugging criterion and 100% tube inspection by 

motorized rotating pancake coil eddy current technique. In both cases, the conditional tube 

failure probabilities have been calculated assuming the hypothetical feed line break accident 

as an initiating event. 

The failure probability of the steam generator considered depends strongly on the assumed 

crack length distribution and applied allowable crack length (plugging Iimit PL). Considering 
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the failure probability as a function of plugging Iimit, two plateau regions are obtained at low 

( < 10 mm) and high plugging Iimit ( > 20 mm) values. The intermediate PL values exhibit 

a transition region extending over four orders of magnitude in the numerical example 

considered. The high PL value plateau failure probability is controlled exclusively by the 

probability of having long cracks. Nearly identical situation occurs at low PL values, where 

the reliability of the inspection and plugging methods completely controls probability of long 

cracks. 

Similar conclusions are obtained from the FORM sensitivity analysis. lt has been shown that 

the scatter in crack length dominates the overall uncertainty and therefore the failure 

probability both at the low ( < 10 mm) and high ( > 20 mm) PL values. At the intermediate 

PL values, the uncertainty in the flow stress factor and the tube wall thickness arealso shown 

to be important. 

Two different maintenance strategies have been compared based on the Krsko steam 

generator No. 1 analysis. It has been shown that the use of the suitable crack length plugging 

Iimit with appropriate inspection technique significantly reduces the tube failure probability. 

Furthermore, the probability of multiple tube rupture tends to vanish with decreasing PL 

value. On the other band, application of the crack depth plugging strategy with bobbin coil 

inspection technique tends to result in multiple tube rupture. 

Some results conceming the risk based steam generator life time optimization are also 

provided. The model is namely able to predict the number of plugged tubes and the tube 

failure probability given the value of plugging limit. The optimal PL value in the numerical 

example considered is estimated tobe between 10 and 12 mm. 

7.3 Weak points of the analysis 

The probabilistic fracture mechanics and the First- and Second order reliability methods have 

been shown to enable relatively easy and accurate analysis of reliability problern studied. The 

relative errors of both numerical methods were limited to 40% in the transition region at 

intermediate PL values and 10% in the plateau regions (low and high PL values) in the 

analysis of the Krsko steam generator. The main cause of observed discrepancy between 

FORM and SORM results is considered tobe relatively unstable numerical differentiation of 

stress intensity factors, which lead to similar instabilities in the derivatives of failure 

function. In addition to that, two failure modes have been observed at the failure probability 

plateau at low PL values. This caused some difficulties in FORM convergence. However, 
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the errors observed affected the quantitative results only. The qualitative behavior of the 

systems analyzed was consistent regardless of the method used in range of parameters 

analyzed. Therefore, the results obtained are considered to be reliable. 

7 .4 Future work 

The future work is related mainly to some weak points of the procedure proposed: 

• increasing the accuracy of stress intensity factor calculation, leading to "more 

continuous" first and second order failure function derivatives, 

implementing two-dimensional crack propagation instead of one-dimensional. This 

should enable more accurate description of crack propagation kinetics. Also, the full 

leak-before-break and leak rate analysis can be developed, which has not been 

considered here. To solve this problem, stochastic finite elements techniques may be 

used. 

The formulation of the procedure allows for relatively easy modifications in order to 

investigate other failure mechanisms in steam generator tubes, such as intergranular attack 

at the tube to tube support plate intersections. 

7.5 Recommendations for the steam generator maintenance 

Based on the results obtained in the analysis of the Krsko steam generator No. 1, the 

following activities are recommended to be performed in the framework of tube maintenance: 

• inspection; 

• determination of crack length distribution from inspection results; 

• calculation of the single and multiple tube rupture probabilities as a function of the 

plugging Iimit; determination of optimum value for PL; 

• plugging of tubes. 

Such approach enables the most efficient use of all available information about the steam 

generator state. This enables reduction in conservativities, which are built in the maintenance 

procedures and the steam generator life-time optimization at given risk of tube failure. 
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