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Contributions to the R-curve behaviour of ceramic materials

Abstract

Several ceramic materials show an increase in crack growth resistance with increasing
crack extension. Especially, in case of coarse-grained alumina this “R-curve effect” is
caused by crack-face interactions in the wake of the advancing crack. Similar effects
occur for whisker reinforced ceramics. Due to the crack-face interactions so-called
“bridging stresses” are generated which transfer forces between the two crack surfaces.
A second reason for an increase of crack-growth resistance are stress-induced phase
transformations in zirconia ceramics with the tetragonal phase changing to the mono-
clinic phase. These transformations will affect the stress field in the surroundings of
crack tips. The transformation generates a crack-tip transformation zone and, due to
the stress balance, also residual stresses in the whole crack region which result in a
residual stress intensity factor. This additional stress intensity factor is also a reason for
the R-curve behaviour. In this report both effects are outlined in detail.

Beitrdge zum R-Kurvenverhalten keramischer Materialien

Kurzfassung

Eine Reihe keramischer Werkstoffe zeigt einen “R-Kurveneffekt”, d.h. einen Anstieg des
RiBwiderstands bei RiBverlangerung. In grobkérnigem Aluminiumoxid ist dieser An-
stieg auf Reibungseffekte und RiBflankenverhakungen im Bereich hinter der RiBspitze
zuriuckzufihren. In umwandlungsverstarkten Keramiken treten spannungsinduzierte
Phasenumwandlungen auf, deren Umwandlungsdehnungen zu einer Reduzierung des
Spannungsfeldes im RiBspitzenbereich fuhren. Derartige Effekte treten insbesondere
bei Zirkonoxid-Keramiken auf, wobei im singuldren Spannungsfeld um die RiBspitze die
tetragonale Phase in die monokline Phase umwandelt. Sowohl die RiBflankenverhakung
wie auch die Phasenumwandiung fithren zur Reduktion der RiBspitzenbelastung und
damit zu einer Erhéhung der ertragbaren Belastung. Beide Effekte werden im Detail dis-
kutiert.
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1. Preface

in this report the author will give an overview of his present activities in the field of R-curve
behaviour resulting either from bridging interactions in the wake of cracks or from phase trans-
formations in the crack-tip region.

Several aspects were published in the last two years but have been examined in a wider context
in the last months. The R-curves for growing natural cracks should be mentioned as an example
(Section 14) which now also include subcritical crack growth.

Besides, the results of a number of completely new investigations have been incorporated.
These are for example:

A derivation of a bridging-stress relation, which combines elastic and frictional contributions
(Section 4.2);

the computation of phase-transformation zones for cracks in finite bodies {Section 5.1);

the computation of shielding stress intensity factors for phase-transformation zones at the
onset of stable crack propagation and during crack growth (Section 5.2);

the applicability of the well-known irwin relation between the stress intensity factor K; and
the energy release rate G, discussed for materials with R-curve behaviour and outlined in
detail for the case of bridging interactions (Section 6);

an experimental procedure for the determination of the stress intensity factor K, which gov-
erns the onset of stable crack extension, proposed in section 12.4; and

the possibility of determining the true R-curve from a load vs. displacement curve, discussed
in Section 12.5,

Since this publication as a KfK-report will have a limited circulation only, the author is planning
to publish single topics in international journals, too.




2. Introduction

Failure of ceramic materials often starts from cracks, which may originate at pores and inclu-
sions or may be generated during surface treatment. Various failure modes are responsible for
failure and finite lifetimes of ceramic materials. At moderate temperatures the most important of
them are:

spontaneous failure,

subcritical crack growth under static load,
cyclic fatigue,

thermal shock and thermal fatigue.

Ao -

Spontaneous failure occurs when the applied stress reaches the strength of the material or, in
terms of fracture mechanics, when the stress intensity factor K, of the most severe crack in a
component reaches or exceeds the fracture toughness K. Therefore, K. must be known for the
spontaneous failure behaviour to be assessed.
Delayed failure at moderate temperatures may be caused either by subcritical crack growth gov-
erned by the actual stress intensity factor K, or by crack propagation under cyclic load governed
by the range of stress intensity factors AK and probably by the R-ratio defined as the quotient of
minimum and maximum K-values.

Thermal fatigue features at least a combination of the failure modes mentioned before. Addi-
tional effects, for instance oxidation, may also have an influence.

The loading quantity in linear-elastic fracture
mechanics which governs failure is the stress
intensity factor K. The stress intensity factor K;
K; which is called the “mode-|” stress intensi-
ty factor and is caused by stresses normal to
the crack area is of greatest importance to
the sirength- and failure behaviour. The
stresses at a crack tip are directly related to
K, by the Sneddon equations, which are re-
ported in most fracture-mechanics handbooks K
(e.g. [1]). Failure of a component occurs
when the stress intensity factor of the most
severe crack reaches a critical value K, the
fracture toughness of the material. In case of a—qp
ideally brittle materials the fracture toughness
is independent of the crack extension and,
consequently, identical with the stress intensi-
ty factor Kj; necessary for the onset of stable Figure 1. Flat crack-resistance curve. Crack-re-
crack growth (fig.1) sistance for ideally brittle materials.

KI = K,o = KIC (201)




It is a well-known fact that the failure of several ceramics is influenced by an increasing crack-
growth resistance curve. Three effects are responsible for this behaviour.

¢ In coarse-grained alumina the crack-growth resistance increases with increasing crack ex-
tension due to friction-like crack-border interactions in the wake of the advancing crack.

° |n transformation-toughened ceramics the material undergoes a stress-induced martensitic
transformation while the tetragonal material changes to the monoclinic phase (t- to m-Zr0,).
This transformation generates a crack-tip transformation zone and, due to the stress bal-
ance, also residual stresses in the whole crack region which result in a residual stress in-
tensity factor. This stress intensity factor has to be added to the externally applied one.

*  Further mechanisms are the generation of a micro-crack zone ahead of the crack tip and
crack branching.

The effect of increasing crack resistance has consequences on many properties of ceramic ma-
terials. The following list contains only some of them:

e strength of components with natural cracks,

e delayed failure caused by subcritical crack growth,

°  cyclic fatigue,

e thermal-shock resistance,

e fracture-toughness measurements by indentation tests.

In this report the author will make some contributions to the topic of R-curve behaviour.




3. Stable crack propagation and R-curves

3.1 Definition of the R-curve

In early measurements Hibner and Jillek [2] observed for alumina an increase in crack resist-
ance with increasing crack extension. In fig.2 a crack-resistance curve is plotted. Crack propa-
gation occurs when the applied stress intensity factor reaches the material property K, which is
responsible for the onset of crack growth. For further crack extension the externally applied load
has to be increased. From the external load a characteristic stress o}, results and the applied
stress intensity factor is given by

K appt = a;‘pp, Jay (3.1.1)

Kshield

Figure 2. R.curve. Definition of an R-curve.

This stress intensity factor also increases during crack extension. K., is a loading quantity and
the crack-resistance curve describes a material property. We have to distinguish between these
quantities. Therefore, the material response to an applied load will be called Kir below. The
difference between the actual stress intensity factor K., and Ky is called the shielding stress
intensity factor.
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Figure 3. Failure behaviour. Influence of the R-curve on failure of a small crack; solid curve: Kz, dashed
curves: Kjappr.

3.2 Influence of R-curves on the failure of components with
macro cracks and natural cracks

A first - and perhaps the most important - consequence of a rising crack-resistance curve is its
influence on the strength. The principal strength behaviour in the presence of an R-curve effect
is explained in figs.3 and 4. In case of a short crack (fig.3) the applied stress is increased. The
lower dashed line intersects the R-curve (solid line in fig.3) at Aa=a —a;=0, and also for the
second dashed curve, which represents a state with increased loading, no crack growth is found.
The upper curve represents the critical state where the applied stress intensity factor reaches
the onset-value K, of stable crack growth. Since for the propagating crack always the condition
Ki sppi=>Kyo is fulfilled, catastrophic failure must occur at this point.

In fig.4 a longer crack is considered. Also in this case no crack propagation occurs for the two
lowest dashed curves. At the moment when the condition K, .., = Ky is fulfilled, the crack may
extend. With increasing crack length a, the crack resistance as well as the applied stress intensi-
ty factor K., increase. In the first part of crack propagation the crack extension is stable since
for all stresses an intersection of the curves for the applied stress intensity factor and the R-
curve is found. This is possible until the failure point is reached which is given by the condition
that the applied stress intensity factor curve is a tangent to the R-curve:

K appi _ 9K

Kiappr = Kir % % (3.2.1)

It becomes obvious that for longer cracks failure occurs at a higher applied stress intensity fac-
tor Kap. From these two examples we can conclude that R-curve effects may influence the
strength of components with large cracks, but may have no significant effect on specimens with
small defects. This is - of course - only a question of the initial steepness of the rising R-curve,
i.e. for very steep R-curves also the small-crack behaviour must be affected.

The influence of an R-curve on the sirength distribution has been discussed in [3]-[6] and the
tendency has become evident that the R-curve behaviour will result in a reduced scatter of
strength.
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Figure 4. Failure behaviour. Influence of the R-curve on failure of a large crack; solid curve: Kz, dashed
curves: Kjappr.

From these schematic considerations it has to be expected that the influence of R-curve behavi-
our on failure is more pronounced for macro-cracks. But in case of a very steep R-curve also
the strength of smail, natural cracks can be affected.

In recent papers [7] [8] strength measurements for coarse-grained alumina have been de-
scribed. In a Weibull-plot of inert bending strength a non-linear behaviour was observed as can
be seen from fig.5. Such a behaviour can be caused, in principle, by a specific ftaw population.
But a second way of explaining it is provided by the R-curve effect. Since specimens with longer
cracks (i.e. specimens with low strengths) may be more affected by the R-curve behaviour, devi-
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Figure 5. Strength of coarse-grained alumina. Four-point-bending strength of two batches of coarse-
grained 99.6%-A/,03.




2
] -
r ®
12Ce~TZP 80
N 0_
n o © I
N (o]
Xl o e
= o ®
£ e
e © e
_3_ o
i e
._4 | { i 1
100 200 300 400 500
Bc (MPaq)

Figure 6. Strength of TZP-zirconia. Bending strength of 12Ce-TZP at room temperature (closed circles)
and 600°C (open circles) reported by ProB [9].

ations from a linear Weibull distribution have to be expected. Details of the fracture-mechanics
analysis will be outlined in Section 7.1. A very impressive result indicating R-curve effects on
strength has been reported by ProB [9] for zirconia. Strength measurements (fig.6) performed
with 12Ce-TZP showed a very high Weibull modulus of m=92 at room temperature and a strong-
ly reduced value of m=9 at 600°C. Under the assumption of an identical flaw population at both
temperatures, the difference in strength behaviour should only be the consequence of a strong
R-curve effect:

i At room temperature, stress-induced martensitic transformation at the crack tips might oc-
cur which yields the shielding effect.

e At 600°C no martensitic transformation is possible and the material exhibits a Weibull modu-
lus as usually found for ceramic materials




THEORETICAL CONSIDERATIONS ON R-CURVES




4. R-curves caused by crack-face bridging

4.1 Bridging stresses

Coarse-grained Al,Q; shows an R-curve behaviour which is characterised by an increase in
crack growth resistance with increasing crack extension [2]-[21]. It was demonstrated exper-
imentally [10],[11] that this effect is caused by crack-border interactions in the wake of the ad-
vancing crack. Recently, the crack-surface interactions have been detected in-situ under the
electron microscope [22],[23]. The bridging interactions were observed mainly on large grains.

Figure 7. Bridging stress. Crack surface interaction due to friction forces (schematic).

in fig.7 such a bridging interaction influenced by a friction stress F is schematically iillustrated.
The crack face interactions localised at single grains can transfer loads which can be modelled
in a more homogeneous way by so-called bridging stresses o5, Which depend only on the crack
opening displacement 6. The bridging stresses shield the crack tip from the external loads as
iltustrated in fig.8 schematically.
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Figure 8. Bridging stress. Modelling of crack surface interactions by homogeneously distributed bridging
stresses.

4.1.1 Bridging relations for friction induced stresses

For bridging stresses which are caused by friction effects Mai and Lawn [24] proposed a relation
oo(1—6/65)" for 6/6,<1

Obr.grain = , m=0,1.2,... (41
0 for 6/6,>1

that is shown in fig.9.

it is assumed that the characteristic displacement for which the bridging stresses vanish is pro-
portional to the grain size. On account of grain size distribution, also the characteristic displace-
ment is distributed,

It is assumed that the distribution density of 8. is a I'-distribution, as represented in fig.10.

f(oc) =+~ e exp( — 8¢/60) (4.1.2)
0

Other I'-distributions are considered in [18].
The macroscopically averaged bridging stresses result from

oo
Cbraver = J. Opr,grain (8c) dd; (4.1.3)
0

For the most appropriate I'-distribution, eq.(4.1.2), the following averaged bridging stress re-
lations result:

Obr,aver = 60 9(6/¢) (4.1.4)

with

10




g(8/6g) = (1 + 8/6g) exp(— 6/dg) for m=0 (4.1.5)
g(8/6q) = exp(— 6/dp) for m=1 (4.1.6)

g(8/6g) = (1 — 8/6p) exp(— 6/dp) + (6/60)2Ei(6/60) for m=2 4.1.7)

where Ei is the exponential integral defined by
Ei(x)=f —eT— dat , x>0 (4.1.8)
X

available in most computer libraries.

6/6, f(6,)
1
m=0
1
2
3. D.o J. i )\ J
1 2 3 4
6/8, 5o/,
Figure 9. Bridging stresses. Stress-displacement Figure 10. Bridging stresses. Distribution of the
relations for a single grain. characteristic COD-value 6. (abscissa

normalised: &y/8q).
These bridging relations are shown in fig.11.
They ensure a continuously decreasing effect of crack-border interaction with decreasing dis-
piacement. Especially the mostly applied case m =1 is used in the subsequent calculations.
Equation (4.1.6) describes friction-like bridging stresses in the wake of the propagating crack
which step-like reach their maximum value directly at § > 0. In order to “smooth” this behaviour
we propose a rewritten version

opr = 00 exp(— 8/b0) h(5/60) (4.1.9)

where h(6/do) is a “switch-on” function for the bridging stresses which avoids that maximum
stresses occur in the absence of any displacement. in eq.(4.1.6) a step function occurs with

0 for 6=0

h(5/60)={1 5o (4.1.10)

The maximum bridging stress occurs at 6{6,=0 :

4.1.11)

%max = €0

11
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Figure 11. Bridging stresses. Influence of the parameter m in eq.(4.1.1) on the averaged bridging stress.

and the specific work necessary for dissolving the bridges is given as

o0
0

In this paper a continuous switch-on function is chosen

h(6/60) = 1 — exp(— 4 8/8p) (4.1.13)
1.00r
6/6,
0.50
00% j :

6/6,

Figure 12. Bridging stresses. Stress-displacement relations for friction-like crack surface interactions ac-
cording to eqs.(4.1.9) and (4.1.13).




This relation, initially only an assumption, will be justified in section 4.2. The relation is illus-
trated in fig.12 for A = 20. The maximum bridging stresses are found for 8/8,=0.1522

Omax = 0.8178 o4 (4.1.14)

and it results

[o ]
20
Wbrzj abr(é) d5 ='2'TO'0 60 (41.15)
o

4.1.2 Springs with limited extensions

In case of spring-like stresses the bridging stresses in a single bridge may be expressed by

600/6, for 6/6,<1
%br,spring = 0 (4.1.16)

for 66, > 1

with maximum extension 6. and maximum stress oo, shown in fig.13.

6/6
o 6/6,
ik .40
0.20+
N— 0.0 ) . i} 1 ]
1 2 3 4
678, 516,
Figure 13. Local bridging stresses. Stress-dis- Figure 14. Global bridging stresses. Stress-dis-
placement relations for a single spring placement relations for spring-like
obefoo = f(6/8g), €q.(4.1.19). crack surface interactions,

Similar to [19] it is assumed that the characteristic displacement §. for which the bridging
stresses vanish is also I'-distributed

] 5c,spring

f(‘sc,spring) = '% 5 exp(— 6c,spring/60) (4.1.17)

with a characteristical displacement value &, characterising the “width” of the distribution. Fig-
ure 10 illustrates eq.(4.1.17). The macroscopically averaged bridging stresses result from

13
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Figure 15. Bridging stresses. Intercomparison of stress-displacement relations; solid curve: eq.(4.1.19);
dashed curve: eq.(4.1.22).
o0
Opr= f Obr,spring f (6c,spring) déc,spring (4.1.18)
and we obtain by integration
é
O’br=0'0"3;‘exp(—6/60) (4119)
6/6,
1.00p
Il \\
4 AN
0-80- ', \\
l‘ \\
] AN
! .
0.60F /!
l’ N\
] N
I‘ \\
0.40' l' S
, \\~\
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0.20
I J
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6 /O mex

Figure 16. Bridging stresses.
dashed curve: eq.(4.1.26).
14
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Intercomparison of stress-displacement relations; solid curve

eq.(4.1.19);




In this case one obtains at 6/6,=1:

Omax = 0o/e = 0.3679 o (4.1.20)

and
o0
Wy, =f op{6) dé = o by (4.1.29)
0

In [25] the authors used a Morse-like bridging relation
opr = ool exp( — 8/3g) — exp( —26/5o)] (4.1.22)
with a maximum bridging stress at 6/d,=1n(2):

max %0 (4.1.23)

1
4
and

Wbr=j opr{) dé =’;‘00 b0 (4.1.24)
0

The relation eq.(4.1.22) is a special case of eqgs.(4.1.9) and (4.1.13) with A=2. Equation (4.1.22) is
plotted in fig.15 together with eq.(4.1.19) in a normalised representation. There is a quite good
agreement obvious. From this point of view both relations are appropriate to describe spring-like
bridging interactions. If we now assume a more narrow distribution of the 8.'s we can use the
next higher order I'-distribution, namely

1 ¢ ’
f(6.) = 70- 30— exp( — d,/dq) (4.1.25)

and we obtain for the bridging-relation
6 o

A comparison between the bridging relations for the first and second order I'-distributions is
made in fig.16.

4.2 A model for bridging-stress relations

The bridging effect is modelled as a two-dimensional problem for an internal crack in an infinite
body, which is bridged by a single grain. This grain is assumed to be rigid (E — c0). Between
the bridging grain and the surrounding material a residual stress acts due to mismatch of ther-
mal expansion which creates the force F. This configuration is loaded by a remote stress o,y
it is the aim of the following considerations to calculate the displacements at a remote location
¥y =yp as a function of the applied stress. Figure 17 illustrates the geometry in the absence of
externally applied stresses.
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Figure 17. Bridged crack. Model of a bridged crack (unloaded).

For small, externally applied remote stresses oy (fig.18) the siresses and displacements are
governed by the mixed boundary problem

6 =0 for x| < b
(4.2.1)
c=0 for |d| < |x] < |a|

These conditions are valid until the load carried by the grain reaches the maximum friction force
uFq, between the bridging grain and its surroundings, i.e. for

6

appl

2 4 4+ 4+ 1+ 1+ 2 2+ 2

L AR 2EE 2K 2K 2 2 2 N

Figure 18. Bridged crack. Stresses and displacements for low remote loadings (schematic).

16




6

appl

2 4 2 2 4+ 2+ 2 2+ 2

=

¢ ¢ I+ 4 I I ¢ d I

Figure 19. Bridged crack. Stresses and displacements for high remote loadings (schematic).

d
2 j o(x)dx < uF, (4.2.2)
0

If the load carried by the grain exceeds pFy, sliding between the bridging grain and the sur-
roundings, with an amount Ah, occurs {fig.19), the interaction force reduces to

F = Fp Al (4.2.3)

and the equilibrium condition of forces reads

b

2 f o(x) dx = pFo LA (4.2.4)
0

In this case, the boundary problem can be expressed by
6 =Ah for x| < b

(4.2.5)
c=0 for |d < |x| < |a|
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4.2.1 Calculation of displacements

Due to the symmetry of the problem with respect to x =0, the computations can be restricted to
positive values of x. Using the relation between siresses and displacements, see eq.(4.3.4) in
section 4.3, the mixed boundary problem can be written

apsa
ij h(a’ X)h(a', X')e(X)da’dx’ = Ah  for x < b
E" Jo max(x,x’) (4.2.6)

=0 for b<x<a

The weight function for an internal crack in an infinite body under symmetrical load is ([1])

1 a+x\"? a—x\"? 2 a

h(x,a) = = 4.2.7

xa) = —= [(a_x) v (2452 e (427)

In the absence of a bridging interaction the crack opening displacement field is given by
26

So(X) = éf’p’ a?—x° (4.2.8)

6°PP| 6uppl
* P ®* + *+ 2+ 4 * ¢ ® + 4+ +

| St i—" - e—

L -

f 2 2c
¢ ¢ $ ¢ ¢ ¢ I ¥ ¥ ¥ ¢ ¢ ¢ I
6oppl 6uppi
Figure 20. Partial crack problem. Case 1: Pair of Figure 21. Partial crack problem. Case 2: Single
collinear cracks. crack opened by a wedge of constant
thickness.

The stresses in the grain have to balance these crack opening displacements in the range
|x| < b. 8o we have to solve

There are different possibilities of proceeding:
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e Equation (4.2.9) can be solved numerically.
e The displacement field can be superimposed by solutions existing for partial problems.

We will choose the second way here. As a first partial problem we compute the crack opening
displacements for two neighbouring single cracks, fig.20, ensuring zero displacements within
|x] <b. The crack opening displacements are (see for instance [1])

2a Cappl
64() = W[K(k) E(p, k) — E(k) F(e, K] (4.2.10)

where F(p, k) and E(e, k) are the first and second elliptical integrals to the modulus k with

2 2
k =+/1—(bja)? ., ¢ = arcsin [2—=*_ (4.2.11)

a2—b2

and K(k), E(k) are the complete elliptical integrals. In this context, it should be mentioned that in
[1] the elliptical integral K is missing in the denominator of eq.(4.2.10). Equation (4.2.10) repres-
ents the displacement field for Ah=0. In order to satisfy the constant displacements Ah >0 in
—b < x< b, we have to add the displacement field for a parallel rigid wedge of thickness 2Ah
within —b < x < b. In order to avoid a separation of the contact surfaces, we assume the wedge
to be welded with the surrounding material along the interfaces. The displacements are also
given in handbooks (e.g. [1]). It holds

F(e, k)
K(k)

Sy(x) = Ah (4.2.12)

and, finally, the iotal solution for the displacements is given by

2a S appl F(o, K)
TEKK) [K(k) E(p, k) — E(K) Flp, K)] + —¢ ® Ah (4.2.13)

o(x) =

The crack opening displacement field resulting from eq.(4.2.13) is shown in fig.22,

4.2.2 Calculation of stresses in the bridging element

The corresponding stresses o(x) in the grain can be calculated numerically with eq.(4.2.9). In or-
der to solve eq.(4.2.9) we will first calculate as a partial problem the stress distribution for a
crack of length 2a which is opened by a parallel wedge of length 2b and thickness Ah (see
fig.21). The Westergaard stress function for this problem is given in [1] as

. k=+/1-(b/a)? (4.2.14)

E'ha 1
2K(k) \/22 _ 42 \/22 — b2

2(2)=

from which the normat stress o, results by

s, = Re{Z(2)} — yIm{Z'(2)} (4.2.15)

For y =0 one obtains
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Figure 22. Bridged crack. Displacements calculated with eq.(4.2.13), b/a=0.2 and o,,,=constant,
Ah' = E'Ah{(20 oppia).

E'Aha 1
2K (k) \/az —x2 \/b2 — 2

For the pair of coliinear cracks - which result for Ah=0 - the stresses in the range —b<x<b
caused by the remote applied stress o.,, are (see [26])

o, = Re{Z(2)} - oy = (4.2.16)

oappl a°E(k) — X°K(K)

oy = (4.2.17)
K(k) \/(32 _ x2)(b2 _ xz)
Superposition of the two partial crack problems yields
2 2 '
o oappll @ E(K) — X°K(k)] — aARE'[2 .
y K(k) 2 2,2 2
(@ —x°)d°—x9)
The total force P carried by the bridging element is then
b
P = 2J. o, dx = 20,,,a[ 2E(k’) — K(k')] — E’'Ah (4.2.19)
0

kK = J1-k* = bja (4.2.20)
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Figure 23. Stresses in the bridging grain. Stresses calculated with eq.(4.2.9), b/a=0.2, g,y,=const.,
Ah' = E’Ah[(20 sppia).

4.2.3 Load-displacement curve

The total volume V resulting from the local crack opening displacements

X==a
V = 4bAh + 4[ 5(x) dx (4.2.21)

X=b

is a measure of the externally recorded loading-point displacements. From eqs.(4.2.2) and
{4.2.19) we find the applied stress at which the maximum friction force F, is reached

1Fy
= 4222
7appl0 = 2a2E(K) — K(K')] (4.2.22)
The volume at o.pp = Gappio iS
8ao a a
Vo = —2220 | k) f E(, k) dx — E(K) J F(e, k) dx (4.2.23)
E'K(k) b b
For stresses below this iimit the volume is
Gappl
= 4.2.24
v Vo Cappl,0 ( )
and for higher stresses applied one obtains
V= Vool 4 4bAh + 4—A’l-faF( K) dx (4.2.25)
"0 oappio K(k) Jp @
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Figure 24. Volume of the opened crack. Volume of the opened crack as a measure of the “loading-point

displacements”, Geometrical data: specimen thickness=1 (i.e. crack-opening area = crack-o-
pening volume), b/a=0.2, different values of h’ as defined by eq.(4.2.27).

with Ah given as

~ 2E(K") — K(K') S appl
A = D ] ( o —1) (4.2.26)
h=-——DE__ (4.2.27)

Zaaapp,,o

The volume - standing for the remote displacement at a given point - as a function of the applied
remote stress is shown in fig.24. We can identify three regions:

1. FOr oap < oap0 the displacements are proportional to the applied load as expressed by
€q.(4.2.24).

2. At 6.0 the applied stress overcomes the friction forces pFy. FOr Gappip < Gappt < Gapprmax the
increase in displacements is steeper than in the range .. < Ganpio.

3. At o, max the bridging element is completely pulied out, equivalent to Ah = h,

G appl,max h'
= 4.2.28
Sappl,0 2E(k") — K(K') ( )
and the subsequent curve follows according to
Cappl
V= 5——— Vappimax (4.2.29)

appl,max

Dauskardt [27] reports load-COD-curves which are very similar to those represented in fig.24. A
typical P-COD-curve is schematically shown in fig.25 for one cycle of a cyclic test. Dauskardt
calls the first steep part (corresponding to the initial flat parts of fig.24) “elastic bridging” and the
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Figure 25. COD-behaviour. Applied load, P, versus crack opening displacement curves for A/,O; as ob-
tained by Dauskardt [27] (schematic).

following phase “frictional bridging”. Having in mind the COD-calculations made in this section,
we can interpret the displacements during elastic bridging as the displacements occurring in the
crack regions outside the actual bridging element (no elastic strain of the bridging element it-
self). Obviously, the displacements in [27] were not large enough (K, = K,c may be reached be-
fore) to exhibit the third part of the curve, i.e. the unbridged state.

The bridging stresses result from the difference between the curve plotied in fig.24 and that
curve which is obtained by prolongation of the line for ., = 6apmax 10 the origin (representing
the completely unbridged state) as symbolised by the insert in fig.26. The resuit looks like the
bridging relations proposed in fig.12. Considering the statistical distribution of the bridging-ele-
ment lengths h, one obtains a smoother curve. If é. is the displacement corresponding 10 o500
and ¢, is the displacement at o.p,,ma, We can write the local bridging stresses as

6/d ¢ for 8 < d¢

o ) %0 for 8y <6< 6 (4.2.30)
%0 85— 01 ct ¢

0 for 6 > 6,

in the most general case one may consider the two typical displacements to be distributed inde-
pendent of each other. But since the maximum friction force F, characterising the onset of slid-
ing, & = 8., is proportional to the length h of the bridging element and also the characteristic
displacement of complete pull-out is identical to h, it is sufficient to consider the distribution of é.
by introducing the ratio

A = 8./6,1 = constant (4.2.31)

Replacing 8.1 in €q.{4.2.30) by 4 and é. and introducing this local bridging relation into eq.(4.1.3)
yields for a I'-distributed &, according to eq.(4.1.2) the averaged bridging relation

%r =7 i1 [ exp(—6/30) — exp(—16/60)] (4.2.32)
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Figure 26. Bridging stress relation.
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Bridging stress resulting from fig.24.

10

which is identical with the estimated relation described by eqs.(4.1.9) and (4.1.13).
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4.3 Calculation of the bridging stress intensity factor for
one-dimensional cracks

A test specimen with a crack may be loaded by an external load, which leads to a stress distrib-
ution o,,,(X) at the location of the crack in the uncracked component. The geometrical quantities
of such a crack are explained in fig.27. In case the material exhibits a bridging zone with crack-
surface interactions, the total stress is the sum of the applied stress and the bridging stress oy,
i.e.

S1otal(X) = Tappi(X) + opp(X) (4.3.1)

Figure 27. Weight function method. Crack with arbitrary crack face loading o(x).

These stresses are responsible for the stress intensity factor, which is given in the represen-
tation of the weight function [28]

K,=jo h(=- —aW—)a(x) dx (4.3.2)

The total displacements of the crack surface can be easily derived by the relation existing be-
tween crack surface displacements, weight function and stress intensity factor as proposed by
Rice [29]

h(ca) = E dé(x,a)

4.3.3
KI Oa ( )

with E' = E/(1 — v?) for plane strain.
Integration of this formula yields the crack-surface displacements § caused by the stress o [30]
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Figure 28. Stress intensity factors during crack extension. Normalised stress intensity factor K’y, as a
function of the applied stress intensity factor K’,s for bending (6’o=1, ao/W=0.5); dashed curve:
stable crack growth, solid curve: subcritical crack growth.

1 apa
6(x) = -E—,f h(a’ x)h(@', x"yo(x")da'dx’ (4.3.9)
0

max(x,x")
where x is the coordinate with the displacement computed and x’' is the location where the
stress o acts. Equation (4.3.4) can also be derived from the procedure of Paris [31] based on
Castiglianos Theorem. A detailed description is given in the Appendix of Tadas’ Handbook [1].

The stress intensity factors describing the R-curve behaviour can be obtained in the following
way:

1. The total crack surface displacements according to the iotal stress, eq.(4.3.1), resuit as the
solution of the integral equation

a pa
5= %J‘ f h(@' x)h(@", x') (o 4pps + op/(5))da’dx’ (4.3.5)
0 “max(x,x’)
The solution of the integral equation (4.3.5) provides the distribution of the bridging stresses
as a function of the stresses applied.
2. The related bridging stress intensity factor K, results from eq.(4.3.2) as
® x a
Kior= [ HCA- Yo (4356)
3. and the applied stress intensity factor K; .. as

a
a
Ki app1 = fo h( % s W PappiX) dX (4.3.7)

4. Finally, the crack tip stress intensity factor K, is given by [32]

26




[ @3]
.S

3
Kloppl

Figure 29. Subcritical crack extension. Development of the crack-tip stress intensity factor during subcrit-
ical crack growth with different initial stress intensity factors.

Kitip = Kiappr + Kipr (4.3.8)

The solution of the integral equation (4.3.5) can be determined by several methods. The simplest
one is the iterative approximation. In the first step, the applied stress .,y is introduced in the
integrand of eq.(4.3.5) yielding the crack surface displacement field é,,,. A first approximation of
the bridging stresses is obtained by introducing &, in the bridging stress law. The bridging
stresses obtained are then introduced once more in eq.(4.3.5) and the procedure is repeated as
long as the bridging displacements are constant.

4.3.1 General results

In fig.28 results of calculations for a crack with an initial relative crack size (e.g. a saw notch) of
a/W=0.5 (m=1, 6'c=1) under bending are represented as K, V5. Ki . fOr several actual crack
lengths a/W using the weight function proposed in [33]. In this figure, the stress intensity factors
are normalised with respect to the maximum bridging stress o, and the specimens width W as

Ki
K' = (4.3.9)
! Go«/W
The displacements can be normalised by ;
s=-E s (4.3.10)
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Figure 30. R-curves. Development of the bridging stress intensity factor during crack extension; dashed
curve: stable crack growth, solid curves: subcritical crack growth for different loads.

4.3.2 Constant load tests

The representation of the stress intensity factor, fig.28, allows to describe crack extension tests
under different loading conditions. In fig.28 crack propagation in a constant load test under sub-
critical crack growth conditions is illustrated by the solid line for o/o,=0.4 and §’o=1. The curve
starts at point A corresponding to K,a,,,,,=K,,,~,,=a\/gY. With increasing crack length, first the
crack-tip stress intensity factor Ky, decreases and afier reaching a minimum value, Ky, in-
creases monotonically. The resulting R-curve is plotted in fig.30. The curve first starts with a
square-root shape, passes a maximum and decreases for large crack extension.

Constant load tests for several initial stress intensity factors K, are shown in fig.29. The influ-
ence of the initial stress intensity factor on the R-curve can be seen from fig.30. It is evident that
the R-curve is more pronounced for low values of applied stress.

4.3.3 Controlled fracture test

In this section tests with constant siress intensity factor K¢, are considered. Such tests are diffi-
cult to perform under subcritical crack growth conditions. One possibility would be to perform
tests with constant crack growth rate. A much simpler possibility is to consider stable crack pro-
pagation, i.e. crack growth at K., =Ky, in a controlled fracture test. This type of test is repres-
ented in fig.28 by the dashed horizontal line. The related K;.,,rvs. Aa-curve is also entered in
fig.30 as dashed line. At the beginning of crack extension, also this curve is approximately
square-root shaped. For small crack extension this curve deviates hardly from the curve ob-
tained under constant load conditions. Significant differences in the shapes of the R-curves be-
come obvious for large crack extensions.

From the curves in fig.30 it becomes obvious that the R-curve depends

e on the special type of crack propagation (stable crack propagation or subcritical crack
growth)

* and in case of subcritical crack growth on the level of applied stress.
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Figure 31. Influence of the bridging stress relation. Comparison of the R-curves (K, =f(Aa) for different
bridging stress relations; solid line: ((4.1.9) and (4.1.10)), dashed line: ((4.1.9) and (4.1.13)), dot-
ted line: (4.1.19)).

4.3.4 Influence of bridging relations on the shape of the R-curve

From the solution of eq.(4.3.5) the bridging stresses along the crack can be computed for a given
applied stress o,y and eq.(4.3.2) provides the related siress intensity factors K.,y and Kip.
Since in a controlled frature test the crack-tip stress intensity factor K., = K is constant,
namely Ky =Kp, the R-curve K ., = fla — ag) results from eq.(4.3.8) as

K appr = Kio + 1K byl (4.3.11)

This correctly derived applied stress intensity factor K, will be denoted below as the real one.
In fig.32 the entire R-curve is plotted for the bridging relation eqs.(4.1.8) and {4.1.13). Since Ky is
constant, K., reflects all further information on the R-curve behaviour.

In order to allow a comparison to be made with the influence of the shape of the bridging-siress
relation, we will choose the parameters o, and &, in such a way that the maximum bridging
stresses as well as the separation energies are identical in all cases. Figure 31 shows the
bridging stress intensity factor K;,, as a function of the crack extension Aa in a normalised repre-
sentation for the bridging relation egs.(4.1.9) and (4.1.10) as solid curve, for relation (4.1.9) and
(4.1.13) as dashed curve, and for eq.(4.1.19) as dotted line.

It is obvious that the dependency of (4.1.9) and (4.1.10) is square-root shaped at the beginning of
crack extension. Also (4.1.9) and (4.1.13) shows a strong increase at Aa=0. The initial siope for
spring-like bridging stresses eq.(4.1.19) is much less steep.

29




(=]
h'd
~
B,
23
h'd .
, -—— tension
--- bending
O 1 ] X 1 N ] N 1
40 .50 .60 .70 .80

a/W

Figure 32. Influence of loading case on the R-curve. R-curve for a crack of initial crack depth ao/W=0.5
computed with eqs.(4.3.5) to (4.3.8) for the bridging stress relation ((4.1.9) and (4.1.10)); Loading
cases: bending (dashed curve), tension (solid curve).

4.4 Calculation of the bridging stress intensity factor for
embedded circular cracks

Very often the R-curves are determined from specimens with macro-cracks, especially from
through-the-wall cracks in plates. Sometimes these R-curves have to be transformed into small
natural cracks. In this section simplified relations are derived for real cracks.

The R-curve behaviour has consequences on the strengths and lifetimes of ceramics.

in order to allow a simple analysis to be made, the natural cracks in ceramics are modeiled by
one half of a circular embedded crack {fig.33). For such a crack, loaded by a stress o(r), the
related stress intensity factor is given by

a
2 ro(rydr

[za 22 _ 2

KI=

(4.4.1)

where a is the crack size and r is the distance from the origin.

The COD-field exposed to combined loading by externally applied stresses and internal bridging
stresses can be expressed in a power series representation with respect to \/1 — (r/a)? as

o0
2
5=y C1 =Pt co=—E= o T Ky (4.4.2)
n=0

Jr

In order to describe the characteristic features of the stress intensity factor solution only the do-
minating term of eq.(4.4.2) is considered. For an arbitrary bridging stress relation
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Figure 33. Semi-circular crack. A semi-circular crack with the total crack size a and the initially inter-
action free region 0 <r < a.

Opr = Og f((S/(So) (4.43)

the bridging stress intensity factor K;,, results from eq.(4.4.1)

0.00k-
N/,

Figure 34. Bridging stress intensity factors for embedded circular cracks. Bridging stress intensity factor
normalised on the maximum value for the bridging stress relations eq.(4.4.6) (solid curve),
(4.4.10) (dash-dotted lines), and (4.4.14) (dashed line); relation (4.4.10) is plotted for A=2 (Morse
law} and A=20 (this curve is very closed to the solid line).
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P Co
Kipr~ —=./a o T f<7 1 —p2 >dp (4.4.4)
1—p 0

apla

or after substituting

Klbrr__\_/ (445)

J1-@a /e
0

‘“g_«/é—“of f( % y>dy

NG 0

This relation can be integrated analytically for all bridging relations considered in section 4.1.

we find for:

@

opr = 6o exp(— 6/dp) (4.4.6)

Kitip NS

If we consider (formaltly) the limit case a — oo, we obtain from eq.(4.4.7) a maximum stress
intensity factor

E'ond Ky \/_
Ky pr & ——— 1—exp< 22— 1= (afa)’ (4.4.7)

E'o0 (4.4.8)

K; br,max = K, tip

and eq.(4.4.7) can be expressed by

2 %0 \/
K br = K brymax| 1 = eXp< - \/— Ko v/ 1— (ap/a) > (4.4.9)
T | brymax

In this context it should be mentioned once more that the displacement field described by
eq.(4.4.2) is an approximation, which is valid especially for small crack opening displace-
ments. Nevertheless, numerical computations using the correct crack opening displacement
field result in a similar relation [34].

opr = oo [1— exp(— 15/5)] exp(— 5/60) (4.4.10)
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Elaoéo A 2 K’ tlp '\/_
Kl br = KI tip 142 — exp \/—— \/ (aO

(4.4.11)

+Al1exp(—(l+1)ﬁ_ “’pf\/ ~ (agla) >

{For Morse-like bridging stresses we have to introduce 1=1). Or, with the maximum value

E'aody )
=90 s 4,412
K; br,max Kltlp 1+ A ( )
144 2 ‘70\/‘3T A f 2
Kipr 2K 1———expl — 1—(ap/a
I br I br,max ) < \/7—; Klbr,max 14 2 (0/ ) )
(4.4.13)
1 2 Go«/_
+—exp| — ——— A/ 1—(ag/a
A ( ﬁ Klbr,max (0 ) )
0
Opr = Op —6-;—exp(— 6/60) (44.14)
E'oyd Kt \/—
Kibr s —— 1—(1+ 2 ”’ J1 — (aola)?
Itip Jr
(4.4.15)
K
: exp( j_ ”'p\/— J1 = (aola)’ )
and with the same maximum value as given by eq.(4.4.8)
2 /
Kip,>K 1- ap/a)
Ibr I br,max ( \/T KI br.max ( o/ >
(4.4.16)

2 “o\/_ /
. exp(_\/ﬂ— Ki br,max 30/3) )

In fig.34 the bridging stress intensity factors normalised to the maximum values are plotted for
the bridging relations considered before. Whilst for eq.(4.4.6) the increase in the bridging stress
intensity factor is square-root shaped, the initial part is linear for the other bridging relations. In
the case of eq.(4.4.10) with 1=20, the bridging stress intensity factor is very ciose to that for
€0.(4.4.6). This becomes obvious from fig.34 where only for small displacements a deviation from
the exponential behaviour can be detected. The other relations which exhibit a more pronounced
linear initial part in the o, — § —curve yield rather linear R-curves.
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5. R-curves caused by phase transformations

5.1 Phase-transformation zone at the crack tip

Due to the singular stress field near the crack tip in transformation-toughened ceramics, the ma-
terial undergoes a stress-induced martensitic transformation and the tetragonal material chang-
es to the monoclinic phase (t- to m-Zr0,). This transformation occurs when the local stresses
reach a critical value and the result is a crack-tip transformation zone. In the following consider-
ations it is assumed according to the analysis of McMeeking and Evans [35] that the transforma-
tion is initiated when the hydrostatic tensile stress reaches a characteristic value of,a. For the
special case of a crack in an infinite body McMeeking and Evans [35] and Budiansky et al. [36]
computed the transformation zone ahead of a crack tip under conditions of small-scale phase
transformation (zone size < crack size) neglecting the pertubation of the stress field due to the
transformation.

5.1.1 Weak phase transformations

In the next sections it is assumed that the influence of the dilatation stresses on the shape and
the size of the zone is negligible, i.e. we will restrict the considerations to the iimit case
plofya — 0, i.e. the case of weak transformation. The quantity p is given by

.
_ e fE
P =312 1.1

where ¢ is the volumetric phase transformation strain, f the volume fracture of transformed ma-
terial, E Young’s modulus and v Poisson’s ratio.

5.1.1.1 Small-scale transformation zones

For the special case of a crack in an infinite body McMeeking and Evans [35] computed the
transformation zone ahead of a crack tip under conditions of small-scale phase transformation
(zone size < crack size). In this limit case the stresses ahead of a crack tip are given in polar
coordinates with the origin at the tip by

K

cos(/2)(1 + sin’(¢/2))
2nr

O’r=

(5.1.2)

.

o, \/_’_ cos(/2) cosz(go/2)

2nr

It
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where K; is the mode-l crack-tip stress intensity factor. From the sum of stress components,
€4q.(5.1.2), the hydrostatic stress o, results for plane strain conditions

14 1+
Opyg =5 (07 +0,) =z (ox+ 7)) (5.1.3)

yielding

21 +v) K
Chyd = 3 \/’2—”7 cos(¢/2)

(5.1.4)

In the special case of phase transformation activated by hydrostatic stress the size and shape of
the zone results from the condition

Ohyd = Ohyd (5.1.5)

when the hydrostatic stress reaches the characteristic value of,s. Combination of egs.(5.1.4) and
(5.1.5) gives the transformation zone as

r= %(HV)%K//G?M)Q cos?(¢/2) (5.1.6)

If we introduce the width of the transformation zone @, which is obtained for ¢ = =/3, we can
write

2
O kgl o r= —B w cos(2) (5.1.7)

B 4\/3_71' 3\/3_

This formula has been derived at an early stage by McMeeking and Evans [35]. Figure 35 shows
the geometrical data occurring in eq.(5.1.7). It should be mentioned once more that this relation
is only valid if the boundaries of the body are far away from the crack tip.

Figure 35. Transformation zone ahead of a crack tip. Geometrical data.
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Figure 36. Transformation zone in front of an internal crack. Geometrical data.

5.1.1.2 Transformation zones for internal cracks in infinite bodies

To show the effect of the crack length on the phase transformation zone, we will consider an
infinite body containing an internal “through-the-thickness” crack of total length 2a under remote
tension loading. Figure 36 shows the relevant geometrical data.

The stresses acting on this type of crack are exactly known (see e.g. [26]), and we obtain the
sum oy + o, as

2rg ( 04+ 65 )
ox+o,=0_| ————-cos| g ————— } —1 (5.1.8)
X y oo[ /—rArB 0 2

with the radii

o= \/rAQ +a’ +2ar, cos 0

(5.1.9)
rg= \/rAz + 4a° +4ar, cos 0,
and the angles
rasinf,
0o = arctan( a+rycosfy, >
(5.1.10)

0 / rasinf,
B = AICaMN e+ r,cos 0,

Also in this case, the size and shape of the transformation zone result from the condition

c
Chyd = Chyd
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Figure 37. Transformation zone in front of an internal crack. Change of the transformation zone with the
initial crack length a for a hydrostatic stress of,y=200 MPa and a crack-tip stress intensity
factor Kyp=4 MPa \/m ).

The influence of this characteristic stress and the influence of the initial crack size on the phase-
transformation zone are shown in fig.37. Other than for the limit case of smali-scale transforma-
tion zones, we conclude that the zone size is dependent on the crack length. For large cracks
the size of the zone increases monotonically with increasing initial crack length. In case of a
small crack the applied tensile stress has to be increased considerably to reach the same Ky as
obtained for a long crack under lower siress. If the crack is very smail (or the critical phase-
transformation stress is low), a large transformation zone will result.

From eqs.(5.1.8)-(5.1.10) we can conclude that the hydrostatic stress can be written as

1+
Ohyg = —=—K;*f(rala, 0 ) (5.1.11)

3\/;75
where the stress intensity factor is given by

K| = o, ~/ra (5.1.12)

The size and shape of the transformation zone result from eq.(5.1.5) and the zone contour re-
presented implicitly by

4
Shyd
5.14.13
Jma K, (5.1.13)

3
firsla, 8,4) = T+

from which we conclude that a normalised representation

K
rala = gl 0p ——F— (5.1.14)
( ";yd\/; ) .

is possible. Figure 38 shows the results of fig.37 in this representation. If we now consider a
very long crack with a»w, it results for the quantities of eqs.(5.1.8)-(5.1.10):
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Figure 38. Transformation zone in front of an internal crack. Change of the transformation zone in a nor-
malised representation.

ro—’a s I‘B—->23 , 00—’0 s GB—*O
and after introducing these limit values in eq.(5.1.8) we get

2a cos(6,4/2
ry = ©al?) (5.1.15)

2
c
3 S hyd
<1+1+v«/1ra K, )

In case of an infinite crack length the term 1 in the denominator can be neglected and eq.(5.1.7)
results as a first-order approximation.

5.1.1.3 Transformation zones for finite cracks in finite bodies

No exact stress solution is known for finite bodies. The transformation zone can be calculated
from the Airy stress function @, which satisfies the bi-potential equation

AAD =0 (5.1.16)

If this function is known for a given crack in a component, the stresses result as

sl 1 &0
_
(e (5.1.17)
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Figure 39. Hydrostatic stresses ahead of an edge-crack in a bending bar. Comparison between the total
stresses (solid curve) and the singular stress term (dashed curve).
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The symmetric part of the stress function - the only part of interest here - reads [37]

e o]
n+ 3/2
O, = Z’n+3/2A”[ cos(n + 3/2)¢ — TJ':T;? cos(n — 1/2)qo] (5.1.18)
n=0
o0
+ Zr'H' 2A*[ cos(n + 2)¢ — cos ng]]
n=0

For practical application of eq.(5.1.18), the infinite series must be truncated after the Nth term for
which an adequate value must be chosen.

The still unknown coefficients in eq.(5.1.18) can be determined using the Boundary Collocation
Method (BCM). For the special case of an edge crack in a bending bar the coefficients for
(5.1.18) were determined and tabulated in [38].

The series representation of the stress function leads to the hydrostatic stress

o0

Opyg = —4 L : v Z[Anr"_ 112 0+ ?7/?(:/: 12 cos(n — 1/2)e

Ld (5.1.19)

+AX" (n + 1) cos ng |
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Figure 40. Transformation zone. Influence of the initial crack size on the size of the transformation zone;
W=4.5mm, a=2.25mm, K;=4MPa r/m , a) opya=200MPa, b) onyq=100MPa, c) o1yg=50MPa (for ¢
and w see fig.35), d} Shape of zones for W=4.5mm, K,=4MPa «/‘m , Thya=50MPa.

In fig.39 the hydrostatic stress ahead of a crack in a bending bar with a/W = 0.5 is plotted for the
situation K;=4 MPa ./m with v=0.2 and W =4.5mm. Whereas the solid curve represents the
complete stress solution, the dashed curve only represents the first (singular) term of the series.
It becomes obvious that for o, > 300 MPa the hydrostatic stresses are sufficiently represented
by the singular stress term. For stresses o409 < 100 MPa the deviations from the correct solution
are strong.

Figure 40 shows the influence of the transformation stress, of,q, on the width @ and the length ¢
of the transformation zone for the limit case pfof,s — 0. The influence of transformation on the
shape of the zone is neglected. With increasing a the width w of the transformation zone at K;=
Kio increases and, after passing a maximum at about a/W=0.6, » decreases again. The same
dependency can be observed for the “length” of the transformation zone, i.e. for the distance
ahead of the crack where the material changes from the transformed to the original state. Part
d) gives an impression of the changes in size and shape for a low critical transformation stress.
Figure 41 illustrates the change of size of the transformation zone as a function of the critical
hydrostatic stress in a normalised representation

o* = 0(of, /K43 m|(1+ ) | & = e(ofyglK)P4/3 n)(1+ v (5.1.20)
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Figure 41. Transformation zone. Change of size of transformation zone with critical hydrostatic stress in a

normalised representation; a/W=0.5, upper scale valid for W = 4.5mm and K,=4 MPa./m ; solid
curve: complete stress solution, dotted lines: singular stress term eq.(5.1.7); (for ¢* and «w* see

eq.(5.1.20)).
oh WK | v | a/W=025| 04 0.5 0.6 0.7 0.85
0.5 0.2 0.478 0457 | 0434 | 0399 | 0348 | 0.232
0.3 0.448 0423 | 0400 | 0365 | 0317 | 0.209
1.0 0.2 0.728 0748 | 0744 | 0719 | 0666 | 0510
0.3 0.703 0718 | 0710 | 0683 | 0628 | 0472
1.5 0.2 0.832 0872 | 0881 | 0873 | 0839 | 0.708
0.3 0.815 0852 | 0859 | 0847 | 0809 | 0.669
2.0 0.2 0.884 0928 | 0943 | 0945 | 0926 | 0832
0.3 0.871 0915 | 0929 | 0928 | 0905 | 0.800
3.0 0.2 0.931 0972 | 0990 | 0999 | 099 | 0.955
0.3 0.923 0.966 | 0984 | 0892 | 0987 | 0936
5.0 0.2 0.964 0995 | 1010 | 1020 | 1024 | 1.022
0.3 0.960 0993 | 1008 | 1018 | 1023 | 1016
10. 0.2 0.984 1.002 | 1.011 1.018 1.023 | 1.032
0.3 0.982 1.002 | 1.011 1018 | 1024 | 1.033
15. 0.2 0.990 1002 | 1009 | 1014 | 1018 | 1.026
0.3 0.989 1002 | 1009 | 1014 | 1019 | 1.028

Table 1. Phase-transformation zone., Normalised zone width w* according to eq.(5.1.20).

For very high transformation stresses the curves tend towards 1 for o* and towards 8/./27 for

e*,

We can conclude from this plot that small-scale transformation conditions are fulfilled for
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ok /W [K; > 5. The zone width has been computed for a field of parameters and the normalised
data have been entered in Table 1.

5.1.2 Phase transformation zones for strong transformations

Under conditions of smali-scale transformation, the influence of the dilatation stresses on the
zone size and zone shape was studied by Stump and Budiansky [40] and Amazigo and Budian-
sky [41] using Hutchinson’s [42] analytical solution for a stress field of pairs of small circular
spots of dilatation. Their procedure leads to an integral equation that has to be solved numer-
ically. The result is a relation which contains eq.(5.1.3) as the principal term and provides an
additional term representing the influence of the phase-transformation stresses on the total hyd-
rostatic stress

2(1+v) K,
Ohyd = 3 \/’g[‘_— COS(¢/2) +
(5.1.21)
+ p(16—”2v) 11“: fRe{ 1 -t ! . }dso
s |V (E +m) N +E)

where
z=rexplip) , Z =rexp(—ie) (5.1.22)

z describes the location where the stresses are evaluated and z, are the locations of the dilata-
tion spots.

A different approach to determine the initial phase transformation zone is the use of the fracture
mechanics weight function.

5.1.2.1 Calculation of crack-tip stress fields with the weight function

A crack of length a in a body may be loaded by tractions T(s) acting normal io a curve I" (fig.42).
The tractions are responsible for a stress field at the crack tip which can be characterised by a
stress intensity factor K™ where the supscript “T” refers to the loading system. One can write

KT = fT-hds (5.1.23)
T

where h is the vector of the weight function h = (hy, h)” and T=(T,, T,)". In the following consid-
erations only loading cases symmetrical to the x-axis will be taken into account, i.e. only mode-|
stress intensity factors will occur.

Rice [29] has shown that the weight function is related to the displacement field u = (u,, &,)” by

h= E.04 (5.1.24)

where K, is the stress intensity factor for an arbitrary reference loading case. Subsequently, this
reference loding case is identified with the loadings by the tractions T, i.e. K,=K’. Equations
{5.1.24) then enable the displacements to be determined at an arbitrary location characterised by
the coordinates x,y. In order to avoid confusions, the location where the tractions act may be
described by X,y. The weight functions are distinguished in the same way (h = h(x, ¥)). The
displacements result from eq.(5.1.24) as
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Figure 42. Crack loaded by tractions. Geometrical data.

afr T
1 g ! 4
uy=—E,—fo frh -TdSJ hy@)da" + uy (5.1.25)
10 (50 gel
ux=7:_—,—f fhonS hy(a)da' + uy (5.1.26)
oLl J
where uy, and uy, are the displacements in the absence of a crack. The strains are obtained
vo
from
1 0 (][> ]
£y = "ET—a-y—J-O i J;h -Tng hy(a’) da’ + 0 (5.1.27)
1 0 ] [= ]
Ex =—ETE(" J;) ] J;..h °TdS— hX(a,) da’ + Ex0 (5128)

Finally, the stresses result from Hooke’s law

_ ar o T oh,(a") oh.(a")
==y . _ )Y X '
oy =T %y J;) [frh TdS— <(1 v) 3y +v o da' + oy (5.1.29)
_ ar o 1/ ohla") oh,(a")
_ 11— . y _ X '
Ox =4 oy fo [jrh TdSJ <v oy +(1—v) i da' + o4 (5.1.30)

The hydrostatic stresses in a phase transformation zone at a crack tip will be considered as a
practical example. In order to be able to compute the size of the transformation zone, we are
interested in the hydrostatic tension stress ([35]). For plane strain conditions it holds
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Figure 43. Stress intensity factor caused by the transformation zone. Value of the integral K7(a’) in
eq.(5.1.33) (first approximation).

1+ E
oo =" (ox+ o) =5 gy (ex %) (5.1.31)
1 -2 ar~ 03] 0
-V . L N4 = ) da’ 5.1.32
O'hyd 3(1—2\1) 0[fr‘h Tds]( 6x hx(a)+ ay hy(a )) a +“hyd,0 ( )
written in the short form as

a

1—+° T(a"\ V  h(a’) da’ (5.1.33)
hyd = 31 = 2v) K (@) @)da’ + opyap aE
0

where onyqp is the hydrostatic stress in the absence of the crack. It can be conciuded from gener-
al principles that for an inclusion (and also for a phase transformation zone) in an infinite body
the hydrostatic stress is ([39],[43])

_11__....2‘_'_p for X,yES

Onao=4 ° 17V (5.1.34)
0 for X,yéS

For the numerical evaluation of eq.(5.1.33) in the limit case of small-scale transformation zones
we will use the weight function for a long crack in an infinite body as given by Tada et al. [1]

hx=—\/—57—1(1—_-7)[2v 1 +sin(—£§—) sin(%q,)] cos(%qo) (5.1.35)
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Figure 44. Hydrostatic stress around the transformation zone, o4y caused by the first-order transforma-
tion zone,

hy=m[2 —2v—cos<%> COS(%@)]SH\<%~({)) (5.1.36)

where r and ¢ are polar coordinates with the origin at the crack tip. We will use the result of
McMeeking and Evans [35] as a first approximation. Starting with the transformation zone given
by eq.(5.1.7), the second approximation of the transformation zone was determined. For the nu-
merical evaluation v =0.2 was chosen. Since the value K(a’) at a’ = a disappears, we see that
the transformation zone in the first approximation does not create a shielding stress intensity
factor. Figure 43 represents the stress intensity factor K(a’) which is necessary to evaluate
eq.(5.1.33). As a result of eq.(5.1.33), fig.44 shows the hydrostatic stress component outside the
first estimation transformation zone as a function of the distance from the crack tip. An arbitrary
hydrostatic stress on,y caused by the externally applied load is reached at the distance r

2

¢
O hyd
r= rc< S hyd ) (5.1.37)

introducing eq.(5.1.7) yields

4 cos(ef2) 5.4.38

Uhyd(r: CP) = Czyd 3/4
3 \/2— riw

The size of the phase tansformation zone in the second approximation results from the condition

¢
%hyd = Chyd,appi + Opyd transfzone = hyd (5.1.39)

leading to the relation
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Figure 45. Phase transformation zone. Change of the transformation zone by the hydrostatic stress por-
tion caused by the transformation zone itself, outer solid line: final zone size (p/ofys = 15).

4  cos(o[2) Opyelrl®) — p

-

(5.1.40)

from which the radius of the zone can be obtained using a zero routine. The phase transforma-
tion zone resulting as the second approximation was chosen as the input to determine the zone
in a third approximation. The change in size of the zone with the humber of iterations is given in
fig.45. Whereas the zone for ¢ < 0.7 reaches its limit of saturation early, the minimum dimension
attains it later. The shape of the transformation zone tends more and more to become a circle
with the crack tip inside. The shielding stress intensity factor is also plotted as a function of the
number of iterations (fig.46). With increasing number of iterations, K(a’) first increases and hav-
ing passed a maximum this stress intensity factor decreases continuously towards zero.

in order to avoid a great number of additional iteration steps demanding much expenditure in
computer time, we will use an accelerated procedure for the further computations. The final
shape of the zone can be estimated from a plot r(¢) versus 1/N and from extrapolating to 1/N=0.
In this way, the contour of the final zone can be determined with sufficient accuracy in the range
0< ¢ <0.6z. This estimated zone contour is now considered as a first approximation to the pro-
cedure described before. The change of zone size from the first approximation to the second is
very small. A comparison of the second approximation with the third showed that no further
change in zone size had occurred, i.e. the final zone was determined with sufficient accuracy.
The final contour is plotted as the outer solid line in fig.45. The shielding stress intensity factor
corresponding to the last iteration was found to be (for p/ef,y = 15) K/(p\/w_)=0.00055 and
K/(p~/ew ) = 0.0025 in the step before. These results (entered in fig.46 as circles) ensure that the
final shielding stress intensity factor is zero within the accuracy of the numerical analysis. This is
in good agreement with the general proof by Budiansky et al. [36]. They showed by application
of the J-integral that in case of small-scale transformation zones the shielding stress intensity
factor vanishes for a non-extending crack. The influence of the ratio p/ef,q is shown in fig.47. An
agreement with the results of Stump and Budiansky [40] is evident.
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Figure 46. Convergence of the computations. Shielding stress intensity factor K(a’ = a) for (p/ofys = 15);
circles: results for the additional iterations using the accelerated procedure.

5.2 Calculation of R-curves

5.2.1 Stress intensity factor

In this section a stress intensity factor analysis will be made similar to the investigation of
McMeeking and Evans [35] who used an Eshelby technique [39]. Therefore, we assume the
transformation zone ahead of the crack tip (see Section 5.1) to be removed from the original
material. The transformed material which under unconstrained transformation exhibits a strain 7
is assumed to be restored to the original shape of the non-transformed material by applying sur-
face tractions T to the transformation zone. The zone now fits again into the body and equilib-
rium can be obtained by nullifying the surface tractions with a layer of body forces. The surface
tractions then result in a residual stress intensity factor K7. Since this stress intensity factor is
caused by the residual stresses caused by the phase transformations it may be denoted in the
following as Kjes

K,,es=f Tehds (5.2.1)
St

where Sy is the line describing the contour of the transformation zone and h is the vector of the
weight function h = (h,, h,)". Also for calculating stress intensity factors it is assumed that the
change of shape of the zone by the transformation is negligible.

In the special case of a dilatational transformation the surface tractions are given by the normal
pressure p defined by eq.(5.1.1), and the residual stress intensity factor K. results

K,,es=pf nehds (5.2.2)
Sp
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Figure 47. Final phase transformation zone. Shape of zone for several values of p/afya.

where n is the outward surface normal along the contour of the transormation zone. For numer-
ical computations we rewrite eq.(5.2.2)

Kires = P L (hydy — hya) (523)

p

where the x-axis corresponds to the axis of the crack. The components h, and h, of the weight
function are given by eqs.(5.1.35) and (5.1.36) for infinite bodies and by the relations in Section
A.1 for rectangular plates and bars of finite dimensions.

5.2.2 Stress intensity factor at the onset of crack extension

If a cracked body undergoes growing external loading, the transformation zone increases simul-
faneously and at the onset of crack extension it reaches its charcteristic size. A first question is
whether this zone with its stress field leads to a shielding stress intensity factor before crack
growth starts. Therefore, it is necessary to calculate the stress intensity factor which is caused
by the tractions needed to restore the initial shape of the zone.

The weight function procedure is appropriate to solve the problem. This will be outlined in two
steps:

1. First, the transformation zone is assumed to be small compared with the crack length and
with the specimen width, i.e. w<a,W. In this limit case the exact weight function is known.

2. Then, the transformation zone and the crack size are assumed to be small compared with
the specimen size, but may be of the same order of magnitude, i.e. w~a<W. This special
case will be considered for an internal crack for which the exact weight function is known,
too.
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5.2.2.1 Small-scale transformation zones

The weight function method was used by McMeeking and Evans [35] at an early stage already.
For transformation activated by hydrostatic stress the shape of the zone has been computed an-
alytically (see eq.(5.1.7)).

8

2
@ cos (p)2
5 /3 (¢/2)

In [35] the dominating term of the weight function was used as described by eqgs.(5.1.35) and
(5.1.36). it was shown that the resulting stress intensity factor is K. =0.

This important result could also be confirmed by an analysis on the basis of the J-integral as has
been shown by Budiansky et al. [36]. On the other hand, it is not self-evident that

e also the higher terms of the correct weight function wili not make a contribution to the stress
intensity factor K., and
*  Kies=0, especially for shapes of zones deviating from that in infinite bodies (eq.(5.1.7)).

5.2.2.2 Internal crack with transformation zones at both ends

The weight function for an internal crack in an infinite bedy loaded with symmetrical remote trac-
tions (symmetrical with respect to x =0 and y = 0) is given by [45]

1 k=1( /7Ta /T8 04— 05
__ _ 5.2,
hy T {K+1 ( o Fa cos 5 + (5.2.4)
2 [ra . rg . 30,—0g rg 3-8y g  30,+0p
+ B E sin HAI: T SIH—E—-—ESIH 2 — T sin —“—“2

1 I [Ta\ . 8p—0g
hy-_—\/_{< ﬁ+ 'rE)Sm_"2_—+ (5.2.5)

a

/r r 36 — 0 r 36,—0 305+ 0 30,+0
s s A s 2 A 2

x +1 2 r 2

with

rg= \/rAQ + 48° +4ar, cos 0, (5.2.8)
and the angle

2a +r, cos @
0p = arccos( __.ér__.,i ) (5.2.7)
B
where the subscript A refers to the crack tip A (see fig.36). The quantity « is defined as
(3—v)/(1 +v) for plane stress
K= (5.2.8)
3—4v for plane siress
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Figure 48. Residual stress intensity factor, Influence of ratio “crack length/zone size”, solid curve:
Kresipn/o , dashed curve: Kos/pa/o + (a]w).

Introducing the contour of the phase-transformation zone into eq.(5.2.2) and applying the weight
function, eq.(5.2.4) and (5.2.5), allows the residual stress intensity factor K, to be determined.
The result of such computations has been entered in fig.48. It is obvious that the residual or
shielding stress intensity factor does not vanish at the onset of crack extension.

5.2.3 The crack-extension phase

5.2.3.1 Repetition of the analysis made by McMeeking and Evans

In [35] McMeeking and Evans considered the stress intensity factor of a transformation zone af-
ter a crack propagation Aa (see fig.49). In their analysis it was assumed that the transformation
zone is negligible compared with the crack length and the ligament, i.e. o <a, W—a. In this
special case, the leading term of the crack-tip stress field governs the transformation zone, and
the crack-tip displacement field is sufficient for the derivation of the weight function. First, the
analysis of McMeeking and Evans will be repeated here.

After a crack extension of Aa (fig.49) the transformation zone is described by

r=—2_ & cos?(e2) for ¢ < u3 (5.2.9)

3.3

o for n/3<¢ < o, (5.2.10)

and
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Figure 49. Phase-transformation zone during crack propagation. Shape of zone after a crack extension
Aa. Definition of the limit angle ¢, and the polar angle ¢.

with
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= arc tan
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for o > ¢, (5.2.11)

r = \/rf — 2riAacos ¢4 + (Aa)2

® McMeeking/Evans
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Figure 50. Normalised shielding stress intensity factor. K*=K(1 —v){3p (1 — 2v); results compared with

data tabulated in [35].
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w tan(z/3)
o — Aa tan(r/3)

@, = n — arc tan (5.2.12)

The coordinates (ry, ¢4) describe points at the boundary of the transformation zone for ¢ > ¢,.
These coordinates are the polar coordinates with the origin at the initial location of the crack tip
before crack extension occurred.

The result of the calculations is shown in fig.50. In addition to the own results the data tabulated
in [35] are entered. A saturation behaviour of the stress intensity factor is obvious.

5.2.3.2 Relation between shielding and applied stress intensity factor

For small-scale transformation zones a simple expression between the shielding and the applied
stress intensity factors can be derived for steady-state conditions, i.e. after a sufficiently long
crack extension phase. From the width o of the phase transformation zone provided by
eq.(5.2.15)

(1 + v)?

4\/3_11

and the steady-state value of the shielding stress intensity factor

(K yplo Zyd)2

1—2v
Ksh,steady—state = 0.66p/ @ 1T—v (5.2.13)
we obtain

044 (1+V(1—=2v) p

K = K
sh,steady — state 114 — c I'tip
AN T—v hya

(5.2.14)

5.2.3.3 Calculation of stresses along the crack line

The phase-transformation zone generates tensile stresses in the surrounding non-transformed
material. These stresses act in the body when the externally applied surface tractions T are
removed. Of special interest for weight function applications is the stress distribution along the
crack-propagation line in the uncracked body.

We imagine that a virtual crack is introduced into the body with the tip embedded in the transfor-
mation zone. lts length a’ is assumed to be different from the real crack of length a that has
produced the transformation zone, i.e. a’ # a. This virtual crack is used as a sensor for the resi-
dual stress field (fig.51).

The residual stress field o..(x) gives rise to the residual stress intensity factor K.

a'

Kres(@') = f ores(X) h(x,a) dx (5.2.15)
0

where h(x, a’) is the crack-surface weight function, i.e. the weight function for ¢ = =. Since the
stress intensity factor |K.s can be computed with the weight function procedure of Sections
5.2.2.1 and 5.2.3.1, the left-hand side of eq.(5.2.15) is known. In this case one has to solve
eq.(5.2.15), which is a Volterra integral equation of the first kind.

In order to demonstrate the procedure, the near-tip weight function (eqs.(5.1.35) and (5.1.36)) is
used. For ¢ == one obtains the simple expression
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Figure 51. Determination of the stresses near a transformation zone. A fracture mechanical approach for
the determination of stresses at the crack propagation line by computation of stress intensity
factors for virtual ‘test cracks’.

h(x, &) = /;ﬁ (5.2.16)

Introducing eq.(5.2.16) into (5.2.15) yields the Abe! integral equation

Figure 52, Stress intensity factors for test cracks. Influence of crack length on the stress intensity factor
K,es caused by the residual stresses on the crack propagation line of a real physical crack.
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Figure 53. Stresses caused by the transformation zone. Stress distribution in the uncracked component
along the crack and in the transformation zone.

W T
f ﬁ ax = -2— K(a) (5,2.17)
0

with the well-known solution

X
1 d K(a’) ,

Vor || o=
0

o(x) = (5.2.18)

As an example, the procedure is now applied to the initial transformation zone at the onset of
crack propagation, i.e. at K;=Kj. The stress intensity factor K(a’) has been determined for differ-
ently chosen virtual crack lengths a’. The values - normalised to the pressure p - are plotted in
fig.b2. The stress distribution resulting from eq.(5.2.18) is shown in fig.53.

5.3 Crack opening displacements

Knowledge of the stresses in the uncracked body containing the phase-transformation zone al-
lows: the corresponding crack opening displacements to be determined by evaluation of
eq.(4.3.4), which reads in case of the residual stress field o/.s(x)

a

a
8ras(X) = -EL fo h(@' X)h(@’, X')o es(x')da’dx’ (5.3.1)

max(x,x’)
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Figure 54. Crack-opening displacements caused by the transformation zone. Normalised displacements
for a large crack a»w; (note the absence of a square-root shaped crack opening displacement at
the crack tip).

It should be noted that the notation § is used for the crack-face displacements (x<a, y=0) as a
special case of the displacement component u,. The displacements can, in principle, be com-
puted by evaluating this double integral using the stresses o, The numerical evaluation be-
comes much simpler if eq.(5.3.1) is rewritten

a a’
1 X a’ x a ’ ’ [
Sres(X) =?f h(— W)Uo h(Zr 7 )oresX)dx ]da (58.3.2)
X
where the inner integral is identical with K(a’) represented in fig.52. Consequently, one obtains
1 (% x a
6res(x) = ”Ef J; h( _aT W ) Kres(a') da’ (5.3.3)

The evaluation of eq.(5.3.3) needs the evaluation of cracks with a’ < a. The numerical effort may
be drastically reduced by introducing the Green’s function which reduces the evaluation to a
fixed crack length a and one single integration. With the Green’s function the displacements at
any jocation of a body can be determined. In the following we will compute this function for crack
opening displacements in case of loadings acting on the crack faces. The Green’s function
G(x,x') describes the displacement at a point x for a pair of single forces acting at the point x'.
Consequently, the crack opening displacement for a distributed stress results as

800 = Ei fo GxX') (') dx’ (5.3.4)

Comparing egs.(5.3.2) and (5.3.4) gives

Gx.x') = ) h(a’x)h(a’, x") da’ (5.3.5)

‘[ max(x,x")
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Figure 55. Area or volume caused by crack opening due to the transformation zone. The ordinate repres-
ents the integral explained by eq.(5.3.15).

The main advantage of the Green’s function becomes obvious for the case that eq.(5.3.5) can be
integrated analytically. If we are interested in the near-tip crack opening displacement field we
have to introduce the singular term of the weight function resulting in

a
’ a—x +.a—x
G(X) = %j da . J J (5.3.6)

Ja —x Ja —x' |x — x'|
max{x,x’)

If the displacements at any other location has to be computed this can be done by application of
€¢s.(5.1.25) and (5.1.26). Greens functions for crack opening dispiacements can be derived for
tractions at any location of a component. If we write eqgs.(5.1.25) and (5.1.26) in the form

1 ~ o~ ~ o~
uy=7_:,—fr[Ty Gyy(X.Y, X, ¥) + Tx Gye(x.y. X, ¥) ] dS + uyg (5.3.7)

1 ~ o~ ~ ~
quE;—fr[Ty Gyy(XY, X, ¥) + Ty Gyu(X.y, X, ¥) ] dS + Uyg (5.3.8)

we obtain the Green’s functions (notation see fig.42) as

a a
G, (XY, X, V) = J hy@') h(a')yda’ , Gy (xy.X.y) = f hy(a’) hy(a") da’ (5.3.9)
0 0
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a a
Gye(Xy. X, Y) = f h(a’) h(a')da' , Geu(xy,X,y) = J h,(a") h(a') da’ (5.3.10)
0 0

in matrix representation we can abbreviate the last relations
u = fQTdS + ug (5.3.11)
r

with u = (u, u)7, o= (U, Uw)", T=(T,, T,)", and

ny G}’X
G = (G = (5.3.12)
Xy GXX
a
0

In the same way we can derive Green’s functions for the stress components o, o, (eqs.(5.1.29)
and (5.1.30)) and for the hydrostatic stress ((5.1.32)).

5.3.1 Crack opening displacements for nonpropagated cracks

5.3.1.1 Small-scale transformations

The resulting crack opening displacements for a crack with a>»w resulting from application of the
near-tip weight function, egs.(5.1.35) and (5.1.36), are plotted in fig.54. It can be seen that no
square-root shaped displacements occur directly at the crack tip (x — a). This confirms the fact,
Kres = 0, resulting from the stress intensity factor calculations. The volume (or the area) due to
the crack opening is given by

pow’
v = 225 Fajo) (5.3.14)
with
ajow
Flajw) = J (5,63-5%)d—(§ (5.3.15)
0

The integrai has been evaluated numerically and the result is plotted in fig.55. For a/o>1 we
can approximate the function F by

1,22y o 1063
Flajo) = %exp[—t&(v <) ] (5.3.16)

with
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Figure 56. Crack opening displacements caused by phase transformation zones.

1 for plopg=0

'y =
2 for plopy,y=15

(5.3.17)

It should be noted that the quantity y can approximatively be described by the height of the

phase-transformation zone

Fa/w)

1.50~

1.001-

0.50+

Figure 57. Area or volume caused by crack opening due fo the transformation zone.

ents the integral explained by eq.(5.3.15).

58

The ordinate repres-




Figure 58. Stress intensity factor for propagated cracks caused by the phase-transformation zone. Crack
extensions; a) Aajw =1, b) Aajw =2, ¢) Aajw = 4, d) Aajw = 6, dashed curve: Aa = 0.

zone height for p/s?,
~ hyd (5.3.18)

~ zone height for pjofyy =0

5.3.1.2 Finite internal crack

The crack opening displacements resulting from application of the weight function eq.(5.2.5),
which reads for ¢ = = and symmetric loading

2 1
h, = (5.3.19)
y
vra | /1 - (x[a)?
are plotted in fig.56 for v=20.2.
The volume (or the area) of the crack can be determined from the displacements as
vV 402 p
res = 40" = F(ajw) (5.3.20)

E/

with F defined by eq.(5.3.15). The integral F(a/w) is shown in fig.57. For 1 <ajw < 6 the function
F(aJw) may be approximated by the straight line

F(ajo) ~ 042 + 0.2 -2 (5.3.21)

which is represented in fig.57 by the dotted line. The residual crack opening displacements may
be important in investigations of components compliances since total crack closure of present
micro-cracks only takes place under external compressive siresses.
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Figure 59. Crack opening displacements caused by phase transformation zones.  Near-tip behaviour;
crack extensions as fig.58.

5.3.2 Crack opening displacements for propagated cracks

For the numerical evaluation of crack opening for propagated cracks we will restrict the compu-
tations again to the limit case of small-scale transformations. The stress intensity factor K,..(a’)
for a crack length a’ <a - but fixed location of the phase transformation zones - can be com-
puted with e€q.(5.1.23). Now we are interested in the crack opening displacement field for a dis-
appearing crack-tip stress intensity factor. In order to compensate the negative residual stress
intensity factor K,.s of the propagated cracks and to get K, =0 we have to apply an external

Figure 60. Crack opening displacements at K;4,=0. Combination of loading by residual stresses and
external load.
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load which causes a stress o4, along the crack line. In case of pure tensile loading this stress
must be

Kres
e (5.3.22)
f h(x,a) dx
0

Cappl =

and the corresponding crack opening displacement field results as
Sappi¥) = a"”’ f h(x, &’ f h(x', a’)dx’ |da’ (5.3.23)

The residual stress intensity factors K,.s(a’) are plotted in fig.58 for several grown cracks. The
related crack opening displacements &, resulting by application of the near-tip weight function,
eq.(5.1.36), which reads for ¢ = = and symmetric loading

h= ;(3—2_;)— (5.3.24)

are plotted in fig.59 for v=0.2. It can be seen that in case of Aa =0 no square-root shaped dis-
placements occur directly at the crack tip (x — a). This confirms the fact, K., =0, resulting from
the stress intensity factor calculations.

Introducing eq.(5.3.19) into eqs.{5.3.22) and eq.(5.3.23) yields for a constant applied stress and for
Kitip=0

6 = I'ES
total E\/’_ \/—+\/5—_7

Figure 60 shows the total displacements for Ky, = 0. It can be seen that in the case of small-
scale transformation at all iocations along the crack the condition .., > 0 is fulfilled, i.e. a crack
opens exactly at K, =0. The equivalence

<J_— e ) (5.3.25)

Sota; 2 0 V x<a < K/t[p =20 (5.3.26)

- self-evident for the near-tip crack opening displacements - can consequently be used also for
the far-tip crack opening displacements which reduces considerations of crack closure to the
consideration of residual stress intensity factors.
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6. Energy release rate, stress intensity factors and
compliance

6.1 Basic relations

The bridging stresses in ceramics are exiremely non-linear and their range of extension is not
negligible compared with the crack length. The consequences of the bridging interactions on
fracture-mechanical considerations may become very serious.

Some special questions are:

1. R-curves are often expressed in terms of energy release rates instead of stress intensity
factors using the well-known Irwin-relation

G, = K}|E’ (6.1.1)

with E' = E/(1 — v?), E=Youngs modulus and v=Poisson ratio. This relation was proposed
for linear-elastic material behaviour. Now the question arises whether or not this relation
can be also applied in presence of R-curve behaviour for the applied stress intensity factors
Klappl-

2.  What is the meaning of the compliance in presence of non-linear bridging interactions and is
the crack-length measurement via compliance correct?

These two questions will be considered here, following the analysis given in [47].

Let us consider a specimen (fig.61) of width W, thickness B, and length 2L which contains a crack
of depth a, with completely separated crack surfaces (produced, e.g., by a very narrow saw-cut
with negligible notch-root radius). Starting from this initial crack size, a crack may propagate
under increasing external loads, and in case of coarse-grained materials bridging interactions
occur which result in bridging stresses depending on the actual crack opening displacements 6.
The externally applied load P is related to o,y by

P = 04p WB (6.1.2)

where B is the thickness of the plate.

For the description of crack opening and crack propagation in terms of energy we consider a
crack of total length a with crack surface interactions in the range ay<x<a in the unloaded
state (6 = 0).

The specimen is exposed to increasing externally applied stresses o, at the free ends of the
specimen. For reasons of simplicity, this stress is assumed to be constant, i.e. independent of
the coordinate x. In eq.(4.3.4) x is the coordinate where the displacement is computed and x’ is
the location where the stress o acts. If the applied stress ., as well as bridging stresses oy,
act on the crack surfaces, the total stress is

Ototal = Oappi + Obr  + 0pr<0 (6.1.3)
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Figure 61. Edge-cracked plate. Geometrical data of an edge-cracked plate under tensile load.

and the total crack opening displacements result as

a

a
Sotal (X) = Sapps + Opr = _E1'_ fo ( )h(a’,x) h(a’, x") [aapp,(x’) + op{x') ] da’dx’  (6.1.4)
max(x,x’

where 6,,, is the displacement caused by the applied stress. o.(x’) is the stress in the un-
cracked component at the location of the crack. For the plate under uniform tension o,(x) is
identical with the externally applied stress. Note that &, is the crack opening displacement of
one crack border, whereas ;5 is the total load point displacement (see fig.61).

Far away from the crack, the crack opening displacements 8, lead to displacements 6, which
will be called the "loading point displacements”. It holds for tensile loading

a
Cappl 2
op= —aE ~2L + W_[ Ototal(X) dX (6.1.5)
0

A similar relation for bending is given by eq.(12.5.6). The first term in (6.1.5) represents the dis-
placements of the uncracked structure in pure tension and the second term is the contribution of
the crack. If a minimum length of L > W is ensured the stress intensity factor and S are inde-
pendent of L. In ail further equations the first term in (6.1.5) is omitted.

Under loading conditions different from pure tension (o, # constant) (6.1.5) has to be replaced
by

a
P déLp =4 2BJ. O'appl d‘stotal(x) ax (616)
0
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6.2 Energy considerations

6.2.1 Definition of the crack driving force

6.2.1.1 Linear-elastic material behaviour

In case of linear-elastic fracture mechanics the energy release rate G - called the crack driving
force - is defined as the virtual change of potential energy 8U, available for a virtual crack-area
increment B 8a and is directly related to the stress intensity factor by

U K2
p !
Bda _ E 6.2.4)

In order to separate loading quantities which are related to virtual crack extensions from energy
consumptions during real crack extensions we will use in this section as a special notation for
the virtual crack changes the symbol 3.

The potential energy consists on the virtual work 3A done by the external load and the virtual
change of the elastically stored energy in the component dU:

8U, = 8U—BA , BA=PBp (6.2.2)

In the sense of eq.(6.2.1) G is a loading quantity {not a material property}) and up to now not
related to real crack extensions da. In case of a real crack extension the energy dW.,.« is nec-
essary to create the new crack increment Bda. The energy per crack area increment defines the
material property called “crack resistance” R

1 dWerack
R = B Ja (6.2.3)

The condition for maintaining crack propagation is expressed by
G =R (6.2.4)

where Gy is a characteristical value of G that governs onset of stable crack growth. The lefi-
hand side describes the available energy and the right-hand side the necessary energy.

6.2.1.2 Nonlinear-elastic material behaviour

If nonlinear material behaviour plays a role - this is the case in the presence of strongly nonline-
ar bridging stresses - the relations of linear-elastic fracture mechanics have to be replaced by
the J-integral concept. In order to apply J-integral we have to consider that the energy storaged
in the bridges W,, is elastically stored energy and therefore completely reversible. In this state it
is not of importance what the real material response during unloading as long as no real dis-
placement reversals occur. Here it should be emphasized once more that the J-integral is a
loading quantity and not influenced by real material behaviour. Under these circumstances the
virtual change of potential energy is

8U, = 8U+8W,,—B8A , BA=P85p (6.2.5)
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Figure 62. Change of energies. Energy portions for specimens with crack lengths a and a + da: a) elas-
tically stored energy for a crack of length a; b) elastically stored energy for a crack of length
a + da; c) work increment done by the external load; d) increment of potential energy.

The virtual energy contributions are illustrated in fig.62. Because of the lack of the special differ-
ential sign for virtual increments in the computer chart program the symbol d is used in fig.62.
For nonlinear elastic material behaviour the loading quantity is

3U
P (6.2.6)

Jz.—Béa

and by definition G = J = K¢/E' for the linear elastic case.
From eq.(6.2.1) and (6.2.5) it results for the J-integral [48]

J= — (6—”) 46’ p (6.2.7)
6’
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Figure 63. Integration increments. Energy increments according to eqs.(6.2.9) and (6.2.10).

P
05" 1p
= _— dpP’ 6.2.8
-] (52), 02
0
and by using eq.(6.1.5)
6total
a 60" /
J= —2 fo dx < 62”” A6’ otal (6.2.9)
6'
0 tota/
T appl
a 66'
J = 2f dx (—5‘;’&’> Ao’ appr (6.2.10)
0 O aopt

0

Figure 63 shows the related potential energy dU,.

6.2.1.3 Stress intensity factors, J-integral and energy release rate

If we introduce Sieter = dappr + Opr iN €0.(6.2.10)
T appl

a 86 1ppi 06’y ,
J = 2J;) ax <T> + <—‘gg—) de’ appi (6.2.11)

(] '
9 oppi T appi
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and applying eq.(4.3.3) in the form

BSapp1 _ Kappi h(x,a)

= = (6.2.12)
we obtain
ah(x a) Tepp! N 86’
J = 2J o dx f K’ appi 06" appi + 2 f dx ( 63"’ ) do'app (6:2.13)
0 0 0 b &’ ool
Since
K’} appt = —’f,g%‘;—' o appl (6.2.14)
the first term in (6.2.13) can be evaluated
) h(x,a) a o 86’
J = f ~— 2 Fappi Ki appi dX + 2 L dx ( v ) Aoy (6.2.15)
0 b G app!
and after introduction of eq.(4.3.2) into the first term
G appl
J = 2K appi+2 dex (%) e (6.2.16)
0 7 ap!

Since the second term in eq.(6.2.16) will vanish only in the case of cracks without bridging
stresses we can conclude that the Irwin formula - written in terms of the applied stress intensity
factor K . - is not generally valid

2
KI appl
El

J # (6.2.17)

This inequality holds for the general case without special assumptions made on the bridging
stresses,

6.2.1.4 Special assumption on bridging stresses

Now a special assumption is made on the bridging stresses. It is physically meaningful to as-
sume that the bridging stresses are only dependent on the actual crack opening diplacements
(Gtotar)

6 pr = fd1otar) (6.2.18)

and, for instance, not explicitly on the x-coordinate. Furthermore, it is assumed that this stress
vs. displacement relation is a unique law for monotonically increasing displacements. The ques-
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tion whether or not the bridging-stress relation may change in unloading situations, i.e. in situ-
ations where the displacements can decrease, is without importance to the present consider-
ations, since in controlled fracture tests the crack opening displacements increase monotonocal-
ly during crack extension.

This fact can easily be concluded from the weight function relation (4.3.3). In controlled fracture
tests crack propagation occurs at Kiw=Kispy=Kn. From (4.3.3) we conclude that for any given
value of x - since h(x,a)>0-forall0<x<a

36 K
—fotal =—2 p(x,a) > 0 (6.2.19)
da Kiotar = Ko E

i.e. a monotonic increase in COD with increasing crack length.
Introducing eq.(6.1.3) into (6.2.9) gives

‘5total

a 6 ’ 6 '
J= —2 f dx (M By 46 o1 (6.2.20)
0

da da

!
‘5ltotal & total
0

If o'y, is a unique function of ..., One can write for the second term in brackets (since &' iS
kept constant)

6 !
( 7 br =0 (6.2.21)
Oa ,
‘5total
and (6.2.20) reduces fo
‘5total
a 60"
J = -2f dx (%ﬁ) A6’ 1ot (6.2.22)
0 o ‘S'tota/

After integration by parts (see fig.63 and replace the vertical axis by o) this reads

Ototal

@ 86 totar ,
J = 2| dx ototal ) gt (6.2.23)
0 da
o

T total

and with eq.{(4.3.3), written in the form

Bb1otal _ Kiotar h(x,a)

o = (6.2.24)

we obtain

a Trotal , ,,
K
J =2 f dx j ;‘3“”” h(x,8) do” 1o (6.2.25)
0
0
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Figure 64. Energy balance. Global energies for a cracked component under tesion; Load and loading-
point displacement normalised on the values at the onset of stable crack extension (*).

Changing the order of integration results in

Ktotal 2
2 K total
J= —= K’ totar IK' totar = E

= 6.2.26
e G (6.2.26)

Since during crack propagation the crack-tip stress intensity factor equals Ki, we finally can
write

energy/A*

5- .
-l.
r -/"
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4l g
td
ke
: A
.
3+ -
.’.’
r
2L P U
s ‘ g /””—
,””” e
1 W T T
| erack_——" . &W
- ’,/” ___________ br
- -
%4f” il 1 . 1
50 .60 .70

Figure 65. Energy balance. Energy contributions during stable crack propagation; A* = P*6%/2, loading
case: tension.
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K
Gjo = Jo = —,i-(f (6.2.27)

6.2.2 The crack resistance

6.2.2.1 Energy balance during crack propagation

During stable crack propagation the externally applied force P performs the mechanical work A,
which is identical with the area under the load-displacement curve

Sip
A= j P'd5',p (6.2.29)
O\

This energy equals the sum of

¢ the elastically stored energy in the specimen U,

e the energy necessary to create a new fracture surface We.cr, and
¢ the energy deposit in the bridges W,,,

i.e.

A=U+ Weaer + Wy (6.2.30)

The energy necessary to create a new crack surface is

Ki?
Werack = —pr (@ — @) (6.2.31)

and the energy consumed in the bridges is given by
a 6total,c
Wbr = — ZBJ‘ dxf O"br d‘sltotal y Ubr<0 (6.232)
0 0
In the special case of the exponential relation, eqs.(4.1.9) and (4.1.10), the inner integral can be
evaluated and it results
a
Wyr = —2Bagdp| [1— exp(— biotarc/dp)ldx ; 0g<0 (6.2.33)
0

The elastically stored energy U in the specimen is given by (see fig.64)
U= —;—P 8.p (6.2.34)

in a simple way from the applied load and the locading point displacement. The different energy
contributions are plotted in fig.65 versus the crack extension Aa=a — a, for tension as the load-
ing case. Whilst the “bridging energy” W,, and the crack surface energy W.,..x increase monoton-
ically with crack extension, the elastic energy seem to reach a saturation. The incremental ener-
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Figure 66. Energy rates. Energy rates according to fig.65.

gies dA/da, dW,/da, dW..«/da, and dU/da are plotted in fig.66. dU/da may change its sign at
ajW>0.7.

In the linear-elastic case with unloaded crack faces the crack resistance was defined by the en-
ergy that has to be provided to create new crack surface. In the presence of bridging stresses an
additional energy has to be provided to overcome the attracting bridging stresses. Consequently,
the crack growth resistance now reads

Figure 67. Applied stress intensity factor and crack resistance. Applied stress intensity factor K; 4 and
crack resistance R (expressed in terms of stress intensity factor) for the tensile loading case,
computed with the bridging stress relation o = o exp( — 8/6y).
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_ 1 dWerack dWy,
R= B( da ' da
(6.2.35)
2
Ko | 1 dWpr

R B da
6.2.2.2 The crack resistance and the applied stress intensity factor
It can easily be shown that the applied stress intensity factor K. and the crack resistance R

are not identical in the general case. For the further conclusions we consider the tensile loading
case. We express the term K?,,,/E’ by definition of the weight function in the form

E' 0
= 6.2.36
h(x,a) Koy 08 Sappi(X:2) ( )
as
K a a 08
1 .2 lappl appl
Introducing eq.{6.1.5) yields
aé
1,2 1 LP,app!
FKIappl = 28" " (6.2.38)
The loading point displacements 8,5 ., can be written
6.pappl = Oipyiotal = SLpbr = OLpotar T |61p byl (6.2.39)
and consequently
86
1 .90 1 LP,total
K #* 55 PG
(6.2.40)
1 .2
“ETKI appl # R

In cases where the bridging zone increases with increasing crack length (before a saturation in
R is reched) we will find

1,2
dO.papp) > dOipiota) = Fr Kiappr > R (6.2.41)

As an example the applied stress intensity factor K,.,» and the crack resistance R have been
computed numerically for a component under tensile loading containing a crack of initial length
a/[W=0.5 using the bridging stress relation o, = coexp(—d8/) with ag=K10/\/V_V— and
69 =>5/6 « (coW/E'). The results of R are formaily expressed in terms of stress intensity factors
and plotted in fig.67. The disagreement of the two quantities is clearly obvious.

72




6.3 Application of a Dugdale model by Evans and McMeeking

In a simpie modei Evans and McMeeking [49] considered the conversion of energy release rates
in stress intensity factors in a special model. They studied a small scale bridging zone in a brit-
tle material reinforced by fibers (see fig.68). in the following the nomenclature of [49] will be
used. The crack surface stresses transferred by the fibres are considered to be homogeneously
distributed in the bridged crack area. The maximum size of the bridging zone is D. where the
subscript refers to the critical situation at the crack tip, i.e. Ky =K.

From the J-integral around the traction zone the critical value of the change in energy release
rate AG is derived as

AG, = 20fu, (6.3.1)

with the tractions in the fibers o, the area fraction of reinforcements on the crack plane and u.
the critical crack opening at the end of the bridging zone, given by

41 —v) <fo—DC N KIO\/EZ) (6.3.2)

u, =

G T G./2n

where G is the shear modulus and Ky, is the critical crack-tip stress intensity factor.
The contribution of the bridging zone to the stress intensity factor results with the near-tip weight
function as

D,
o(X)
AK = — /2= ff dx (6.3.3)
|

where x is the distance from the crack tip. The “change in fracture toughness” AK. results from
eq.(6.3.3) as

AK, = 20f./2D |x (6.3.4)

The following definitions are introduced

2GG, )
= 6.3.5

1—v Ke (6.3.5)
K, = K + AK, (6.3.6)
G, = Gy + AG, (6.3.7)

In the opinion of the author eqs.(6.3.6) and (6.3.7) are definitions of the quantities K. and G.. On
the other hand there is no additional freedom to define a relation between the two quantities of
type eq.(6.3.5). The validity of eq.(6.3.5) has to be proved.

If we assume eq.(6.3.5) would be correct, it results by combining eqs.(6.3.5) to (6.3.7) yielding

26AG, /(1 — v) = (AKy)? + 2K,AK, (6.3.8)
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Figure 68. Bridging zone in reinforced materials. Bridging zone for slipping fibers according to Evans and
McMeeking [48].

Introducing of eq.(6.3.1) and eq.(6.3.2) at the left side of (6.3.8) and eq.(6.3.4) at the right hand
side it results that the left-hand side is twice the right-hand side.
The reason is a typing error in eq.(6.3.1) since

J=0:COD - AG, = ofy, (6.3.9)

The analysis of Evans and McMeeking confirms the correctness of relation (6.3.5) for a special
case, namely the steady-state behaviour of a growing crack in an infinite body with a small bridg-
ing zone of constant length behind the crack tip.

In this special case it holds (in notation of the previous sections)

f dpr(X) dx = const.
(crack)

(6.3.10)
d ad
da 6appl(x) ax = —— ‘5total(x) dx
(crack) (crack)
and from the considerations made in section 6.2.2.2 we can conclude
(i K2 ) - R (6.3.11)
E’' lappl — "'steady — state o

steady — state
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Figure 69. Griffith crack with bridging zone. Griffith crack with constant bridging stresses; loading situ-
ation and geometry.
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Figure 70. Bridging COD fieid. Griffith crack with constant bridging stresses; displacemet field caused by
the strip load.
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Figure 71. Total COD field. Griffith crack with constant bridging stresses; total displacemet field.

6.4 R-curve for a Griffith crack with constant bridging stresses

A restriction of the model used by Evans and McMeeking is that an approximate weight function
has 1o be used which becomes correct only in the limit case of an infinitely large crack com-
pared with the dimension of the bridging zone. In order to investigate the relation between
crack resistance and applied stress intensity factor it is useful to apply an analytically exact sol-
ution.

) ' 1.5 ' 5.0
a/q,

Figure 72. Applied stress intensity factor. R-curve for a Griffith crack with bridging stresses ¢ =constant.
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Figure 73. . Ratio of crack resistance and stress intensity factors according to eq.(6.4.10).

Let us consider a Griffith crack (a straight through-the-thickness crack) of size 2a in an infinite
body which is symmetrically loaded in the range a. < |x| <a by a constant stress . Figure 69
illustrates geometry and loading conditions. The displacements under this strip load are given by
€q.(4.3.4) and the weight function reads

h(x.a) = —2 a__ (6.3.12)

<
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Figure 74. . Ratio of crack resistance and stress intensity factors according to eqs.(6.4.10) and (6.4.12) for

the first phase of crack extension a < a..
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We find for the crack opening displacement field according to [80]

. 2 . .
sin®“(f — sin 8+ sin
s(xa) = 22|49 sin g —cos ¢ - ln—z(—i’l)——z cosf- In—————2 | (6.4.1)
E'n sin’(0 + o) sin @ —sin o
0 = arccos(ag/a) , ¢ = arccos(x/a) (6.4.2)
as plotted in fig.70. The related bridging stress intensity factor results as
a
I dax aflm= ;
Kl br = o2 6/7‘[ ——\/_2___—2 = 20 3 [?—arcsm(ac/a)] (643)
a“—x
aC

The crack opening displacement field caused by the applied stresses o,y is

[4)
5(x.a) = 2 Z’f"’ Ja?—x? (6.4.4)

and the applied stress intensity factor K ., is given as

Kiappr = Gappr/m@ (6.4.5)

The total crack opening displacement field follows from the superposition of egs.(6.4.1) and
(6.4.4), and the total stress intensity factor from superposition of eqs.(6.4.3) and (6.4.5). Figure 71
shows the total crack opening displacement field for |6}/ apm=1.

Figure 75. Crack surface loading. A crack loaded by a crack surface pressure p and by bridging stresses
modelled by a system of non-linear springs.
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For the calculation of the R-curve it is assumed that a critical crack opening displacement 6.
exists at which the bridging interactions become abruptly dissolved, i.e. o, =0 for & > 6. Now
we can determine the R-curve numerically from the two conditions:

1. The total stress intensity factor must coincide with K

Sappn/Ta = lopl2y/ 5 [ &= arcsin(ala) | = Kio (6.4.6)

2. At the end of the bridging zone the critical crack opening displacement must be reached
Cappl [2 2
2 5 a“—x° — |6, = 6, (6.4.7)

The solution of these two relations results in o, and a. for a given crack length a. From o, the
stress intensity factor K., can be calculated. An R-curve resulting for a crack of initial crack
length a, is represented in fig.72. The calculation of the R-curve was performed in the following
way. A crack of initially unbridged length a = a, is considered. The applied stress is increased up
to a certain value that satisfies the condition for the onset of stable crack extension, namely

Ky = Cappiv Tag (6.4.8)

Then a is increased as long as é(x =ag) < d.. The applied stress intensity factor results from
eq.(6.4.6) as

Ki appr = Kip + |Gbr|2\/% [g—— arcsin(ao/a)] (6.4.9)

During further crack extension it resulis a. > a, and the solution of eqs.(6.4.6) and (6.4.7) can be
found with a zero routine. The R-curve, resulting for 8.E'/(|os|a0)=1.5 is plotted in fig.72. The R
curve starts very steep like K, oc/a—a, and after 8. is reached (in the plotied example at
a = 1.47a;) the applied stress intensity factor decreases slightly against the asymptotic value of
KiappifKio = 2. The crack resistance obtained with eq.(6.3.1) has been plotted in fig.73 in a normai-
ised representation according to eq.(6.3.8) as the ratio

£ (6.4.10)
Kivr+ 2|1K; prl Kio

This ratio should be @ =1 if the Irwin equation would be valid in the presence of an R-curve
behaviour. From fig.73 we find that at the onset of crack extension the ratio is Q@ = 1. In this situ-
ation the bridging zone is negligible in size compared with the initial crack length a,. Then we
detect a significant deviation from the value Q =1 and after very long crack propagation, when
the bridging zone of finite length is again small compared with the crack length, the ratio Q
tends asymptotically against Q = 1.

If we consider the work done by the external load against the constant bridging stresses we can
write for a < a.

a
Wpr = af 26(x) dx (6.4.11)
=
that-allows to define the ratio
dw, /da
) = br (6.4.12)

2
Kibr+ 21K prl Kio
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Figure fig.74 illustrates the two ratios @, Q, for a < a.. This ratio also deviates from the value
Q=1

6.4.1 A simple model for the crack surface loadings

The main topic of this section was to prove the validity of the Irwin relation eq.(6.1.1) in presence
of bridging stresses. If this is really a general relation it must be correct for any conceivable
loading case. In the previous considerations the crack surface loading was a virtual pressure of
same value as the tensiie stresses o.,, Which are caused in uncracked body by the externally
applied load. This load has been assumed to be a remote stress in a long tensile specimen. The
loading situation becomes more clear when the principle of superposition - yielding the virtual
crack surface loadings - is dropped and the virtual pressure is substituted by a real crack sur-
face load.

In the simple model illustrated by fig.75 a crack is opened by an incompressible liquid with the
directly applied pressure p and the bridging interactions are represented by non-linear springs.
The externally applied load P results as the product of the actual pressure and the area A of the
piston

P = pA (6.4.13)

which squeezes the liquid into the crack. The volume caused by the crack surface displacements
6(x) is then given by the “loading-point displacement” é,» as

a
V = ZBJ 5(x)dx = Adp
0
(6.4.14)

a
O —2;?-! 5(x) dx
0

in agreement with eq.(6.1.5). The fracture mechanical treatment is then identical to that done be-
fore with the virtual stresses.
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6.5 Compliance in presence of R-curve effects

In presence of bridging stresses at the crack faces also deviations in the compliance have to be
expected [50].

Due to the bridging stresses, the specimens’ stiffness is greater than that obtained for speci-
mens with completely free crack surfaces, i.e. the crack length resulting from compliance meas-
urements will be lower than the real physical crack length. Two special questions are:

*  What is the meaning of the compliance in presence of non-linear bridging interactions?
* |s the crack-length measurement via compliance correct?

In fig.76 measurements of crack length based on compliance and on microscopic observations
are compared [20]. For larger crack extension it is obvious that the compliance method underes-
timates the real crack length. These differences give rise for a detailed analysis of compliance
behaviour.

6.5.1 Loading-point compliance

The compliance of a cracked specimen is defined as the relative displacement of the loading
points é,» divided by the load applied

F)
c=—t2 (6.5.1)

The compliance is applied in fracture mechanics

e for the determination of the actual crack depth, and
« for the computation of energy release rates from load vs. displacement curves resulting in
controlled fracture tests,

In case of a crack in a component with crack faces completely free of stresses the compliance is
directly related to the crack depth. Under pure tensile loading it holds

o
C=Co+ %J Y2 ol do’ . a=alW (6.5.2)
0

where Y is the geometric function for the stress intensity factor calculation, defined by
K=o0,pp Y Ja (6.5.3)

which can be taken from handbooks.

Due to the bridging stresses, the specimens’ stiffness is greater than that obtained for speci-
mens with completely free crack surfaces, i.e. the crack length resulting from compliance meas-
urements will be lower than the real physical crack length.

Equations (6.1.4) and (6.1.5) provide the possibility of computing a differential compliance Cys
which gives the increment of displacement for a given increment of load (or stress applied)

dé;p

Caitr =g (6.5.4)

81




o
tn
?

—~ Ale3 /./'
8 s @ e
.E 0.40- . e ®
:
7’
8 0.30F o7 e ®
N /,/ @
O ‘e ®
0201 ®
_/
P4
._/'
0.101 ..o/.’
'/
»
{ 1

] 1
00% 40 20 30 40 50 50
/A A (microscope)

Figure 76. Crack-length measurements, Crack length measurements for a crack of initial depth
ap=2.25mm in a bending bar of W=4.5mm thickness; material 99.6% A/,0; (mean grain size
2220 um).

whilst the global compliance Cy is defined by eq.(6.5.1).

For numerical calculations the bridging stress relations given in section 4.1 are used in the fol-
lowing. In order to allow dimensionless computations to be made, the numerical results for the
stress intensity factors and displacements are normalised by the characteristic bridging stress o
and the specimen width W according to

K OF’
K = \ & = (655)
ap w o-OW

In fig.77 the loading-point displacements are plotted as a function of the stress applied. The
displacements are normalised on that value that is reached at K'yo=1. As can be seen from
fig.77, most of the deviations between the loading-point displacements in the presence of bridg-
ing stresses and the displacements calculated ignoring these additional stresses (dash-dotted
straight line) occur at lower loads. The higher the load, the smaller is the remaining bridging
zone, and the influence of bridging stresses decreases. A lower limit of the displacements can
be calculated by considering only the initial crack size a = a,. This limit case is introduced in
fig.77 as a dotted straight line.

In fig.78 the total compliance is shown for a crack of a/W=0.7 and a,/W=0.5. As expected from
the non-linear bridging stress, the comliance is not constant. Under low loads the compliance in
the presence of bridging stresses tends towards the compliance of a crack of length a,/W without
bridging stresses. At high loads the compliance tends asymptotically to the compliance of a
crack of depth a/W without bridging stresses.

The differential compliance resulting from the resulis given in fig.78 is shown in fig.79. Signif-
icant deviations between differential compliance and global compliance are evident.

The total compliance of the whole crack-containing component is then given by

Ctotal = Cglob + CO s Co = “E'gvé.é— for tension (656)

where C; is the compliance of the uncracked component. In fig.80 the compliance of the speci-
men in the presence of bridging stresses is represented together with the compliance in the ab-
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Figure 77. Loading-point displacements. Loading point displacements as a function of load, calculated
with eq.(4.1.9) and (4.1.13) for a/W = 0.7, dash-dotted straight line: displacements for the elastic
case with interaction free crack surfaces, dotted straight line: limit case for a/W=0.5.

sence of bridging interactions versus the actual crack size. It is obvious that the specimens with
bridging interactions react more rigidly than the ideal fracture-mechanics specimens with com-
pletely free crack faces. Two types of crack depth can be concluded from fig.81, namely the real
physical crack depth a,n,s and the apparent crack depth acm, Which can be conciuded from the
compliance by application of pure linear-elastic relations. In the representation fig.80 one can
also see that the real crack size is larger than that obtained from the compliance.
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Figure 78. Global compliance. Global loading point compliance, calculated with eq.(4.1.9) and (4.1.13) for
aJW = 0.7; dash-dotted straight line: limit case for interaction free crack with a/W=0.7; dotted
straight line: compliance of an interaction free crack with a/W=0.5.
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Figure 79. Differential compliance. Differential compliance according to eq.(6.5.4) derived from the data of
fig.77.

6.5.2 Crack-mouth compliance

A very popular possibility of indirect determination of the crack depth is the measurement of
crack-mouth opening. The related crack-mouth compliance Cey can be derived from the dis-
placements dcy at the location x =0 and the actual load P as

é
Com = —,9}”— (6.5.7)
n
o
g , without o
o =1 bridging stresses .
3 ) >,
\ 3— \l’
O a,/W=0.5

A 1 N J
) 60 - 70
Figure 80. Global compliance. Global compliance as a function of crack length for K';y=1.
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Figure 81. Crack length. Deviations between the physical crack depth a,,,s and the apparent crack depth
dcompt @s resulting from the compliance.

where the crack-mouth displacements may be determined from eq.(6.1.4) as
1 apa
Scp = E L f h(a’,0)h(@’, x') Loapp(X') + op{(x")] da’dx’ (6.5.8)
xl

Figure 82 shows the crack profiles under different loads for cracks with and without bridging in-
teractions in the region a; <. x < a for a crack with a,/W=0.5, a/W=0.7. In fig.83 the crack-mouth
displacements resulting from (6.5.8) are plotted for a,/W=0.5, a/W=0.7 and the bridging stress
relations given by eqgs.(4.1.9) and (4.1.13). A curve is obtained which is qualitatively identical to
that for the loading-point displacements. Figure 84 represents the crack-mouth displacements
for the three bridging relations used. In all cases the crack-mouth displacement underestimates
the actual crack length, i.e. the curves run below the upper straight line.
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Figure 82, Crack profile. Crack profile for a crack (in a bent plate) with bridging stresses in the range
ao/W < x|W < a]W, dashed curves: crack profiles in the absence of bridging stresses (loaded by
the same applied stress intensity factor K’.pp).
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Figure 83. Crack-mouth displacement. Crack-mouth displacements as a function of load calculated with
eqs.(4.1.9) and (4.1.13) for a/W = 0.7; straight line: displacements for the elastic case with inter-
action free crack surfaces.
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Figure 84. Influence of bridging relation. Crack-mouth openings for a crack with ag/W=0.5, a|W=0.7, cal-
culated with different bridging stress relations; solid line: eqs.(4.1.9) and (4.1.13), dashed line:
eqs.{(4.1.9) and (4.1.10), dotted line: eq.(4.1.19).
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INFLUENCE OF R-CURVE EFFECTS ON MECHANICAL
PROPERTIES
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7. Influence of R-curve effects on the inert strength

7.1 R-curves due to bridging interactions

In the past R-curve effects were investigated mainly with specimens containing artificial macro-
cracks. From section 3.2 it can be concluded that for very strongly rising R-curves also small
natural cracks can be affected. An analysis of this topic is given in [51]

Due to the crack-surface interactions, the stress intensity factor acting at the crack tip K¢, devi-
ates from the externally applied stress intensity factor K; .. according to eq.(4.3.8). This relation
is the basis for understanding R-curve influences on the strength behaviour. To be abie to evalu-
ate it we need the applied stress intensity factor as well as the bridging stress intensity factor. In
this section first relations are presented for K, and K;., for circular and elliptical cracks. Then
the development of cracks in the presence of R-curve effects and their influence on bending
strength is discussed and finally a procedure is described which allows the bridging stresses to
be estimated.

The cracks in the surface region of ceramic materials caused by surface grinding which propa-
gate under increasing load are assumed to be semi-elliptical in shape. The stress intensity fac-
tor caused by the externally applied stress o results as

Kiappi= Y(alc,a|W)o «/5_ ) (7.1.9)

where Y is the so-called geometric function, depending on the aspect ratio a/c and the relative
crack depth a/W. The geometrical quantities are explained in fig.85. Different types of stress
intensity factors are available to solve two-dimensional crack problems. One possibility is to use
local stress intensity factors which vary along the crack front. Such stress intensity factors are
available for simple load cases. Newman and Raju provided solutions for semi-elliptical surface
cracks under tension and bending [52].

Beside the local stress intensity factors also averaged stress intensity factors are currently used
in fracture mechanics. These stress intensity factors are defined in terms of the 2-dimensional
weight function as

—  F ov,
K =TJ 6t dS (7.1.2)
Kir Jis) 9(AS)

where E' = E/(1 — v¥). dv, is the virtual change of the crack opening displacements of a reference
loading case (mostly tension) for a virtual extension d(AS) of the crack surface S, o is the arbi-
trarily distributed normal stress in the uncracked structure, and K, is the reference stress inten-
sity factor defined by
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Figure 85. Geometry of a surface crack. Semi-elliptical surface crack in a ceramic specimen (not truely
scaled).

K2 = A1_S J‘K,,Zd(AS) (7.1.3)

The main advantage of averaged stress intensity factors is their availability for arbitrary stress
distributions. In order to reduce the infinite number of possible virtual crack extensions Cruse
and Besuner [53] suggested for semi-elliptical surface cracks that a virtual crack exiension
should lead again to a semi-ellipse. Cruse and Besuner’s proposal is expressed by

d(AS ) = % chasin®pde  AS,= % wcAa (7.1.4)

describing a crack extension in direction of the semi-axis a and leading to the stress intensity
factor Ky, and

d(ASp) = % aAccoslpde  ASp= % ralc (7.1.5)

describing a virtual crack extension in c-axis direction resulting in the stress intensity factor K.
The practical application of averaged stress intensity factors has been described in more detail
in [54]. The reference crack opening displacement field for semi-eiliptical surface cracks neces-
sary for the evaluation of eq.(7.1.2) has been derived in [55].

Especially for the bending load case one obtains averaged stress intensity factors directly from
eq.(7.1.3) by inserting the local bending solution in eq.(7.1.3). The resulting averaged stress in-
tensity factors can be computed by

R—A,B = C’bendVA,B\/a_ (7.1.6)

with
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Figure 86. Virtual crack increments. Virtual crack extensions for weight function applications as proposed
by Cruse and Besuner [53] (illustration restricted to one half of the embedded crack).

12

/2

VA=[_;‘_ ) Y2(¢) sin’e do (7.1.7)
xJ2 412

VB=[7‘1- ] Y2(p) cos’e do (7.1.8)

For the numerical calculations the bending solution of Newman and Raju [52] is recommended.

7.1.1 The bridging stress intensity factor

Bridging stress intensity factors are available only for a few types of crack, namely edge cracks
and embedded circular cracks [18]. It will be shown in this section how the bridging stress in-
tensity factor for an embedded elliptical crack can be estimated from the bridging stress intensi-
ty factor of an embedded circular crack by application of the weight function procedure for aver-
aged stress intensity factors

in the subsequent considerations the additional assumption is made that bridging stress intensity
factors for semi-elliptical surface cracks can be approximated by the bridging stress intensity
factors of embedded elliptical cracks with the same aspect ratio.

Circular cracks:
The friction induced bridging stresses o, as a function of the crack opening displacement é may
be described by a nhumber of relations. Here we use the exponential description

opr =g exp(— 6/dp) (7.14.9)
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with a maximum stress o, and a characteristic range &p.
The bridging stress intensity factor K,,, for a penny-shaped embedded crack was calculated ap-
plying the weight function method [18]. According to [34] the results can be approximated by

-%{1 - exp( — C +/ajag — apla )} (7.1.10)

K brcircle =

with the abbreviation

4144101 — VDK o/ag
YE'TL'(SO

(7.1.11)

For bridging stresses with a large range of action (6, — oo) €q.(7.1.3) reduces to become

2
Ki br circie(80 = 00) = ag¥Afa /1 — (ao/a) (7.1.12)

For numerical calculations the following parameters - characteristic of coarse-grained ALO; -
were maintained constant:

E=36-10°MPa, v=0.2, Kq=3MPa,/m

and the bridging parameters were considered to be variable.

Elliptical cracks:

In order to take into account the influence of the elliptical crack shape we apply an estimative
relation which is often used in fracture mechanics. Since the bridging stress intensity factors in
elliptical cracks can be computed (at least in terms of averaged stress intensity factors) for the
case of (d, — co) One can approximate

— _ Kpr, eliipse(80 = ©0)
Kbr, enipse(90) = Kpr, circie(0) —= (7.1.13)
Kbr, circle(0g = ©0)

In this context it should be mentioned that in case of a radial symmetrically loaded circular crack
the local stress intensity factor and any averaged stress intensity factor are identical. The great-
er the parameter §, is the better will be the approximation.

The averaged stress intensity factors for the elliptical crack with 6, — oo, needed in eq.{(7.1.13),
are given in the Appendix. In the subsequent considerations the bars over the averaged stress
intensity factors and related geometric functions will be dropped.

7.1.2 Crack development in bending strength tests

In the subsequent considerations two assumptions will be made:

e It is assumed that eq.(7.1.13) will also describe surface cracks.

¢ The width of bending bars is assumed to be large so that a finite width correction is neither
necessary for the bridging stress intensity factor nor for the externally applied stress intensi-
ty factor.

e |t is assumed that the initial cracks are semi-circular.

With increasing applied bending stress o, a semi-circular shaped surface crack (g, = ¢,) starts to
propagate at point B - where the geometric function Y(ax/W, a/cy) reaches its maximum value - if
the condition
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Figure 87. Stress and aspect ratio. Development of the aspect ratio under increasing applied stress in a
strength test (8, = 1um ao=100 MPa.).

a5Yp(@0/Co: a0/W)/ao = Ki (7.1.14)

is fulfilled. Crack propagation at point A occurs at a higher stress level where the two conditions

(7.1.15)
abyB(aO/C! aO/W)»\/aO - K/bl',B lAC —eea = KIO
==&
1.00-
0.901 \
O 0.80}
R
0.70-
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s { . | ) |
0.50; o . o
a (um)

Figure 88. Crack shape. Development of the aspect ratio a/c as a function of the initial crack size ap.
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Figure 89. Strength. Strength o, for a material with é,=1um (dash-dotted line: bending strength in the
absence of bridging stresses).

are simultaneously fulfilled. The further crack development is then described by the equations

apYsalc.alW)fa — Ky I =Ko

Aa=a—a,
(7.1.16)
opYp(alc.alWfa —Kipp I =Ko

Ac=c— 3

After stepwise increased external bending stress o, failure can be observed at that stress value
where for the first time no solution of eq.(7.4.16) is found. In egs.(7.1.15) and eq.(7.1.16) the bridg-
ing term is introduced with a minus sign since the bridging stresses are acting against the
stresses applied.

For numerical calculations the equations (7.1.16) were solved by use of two coupled zero-rout-
ines resulting in the crack data a, ¢ for a given stress o.

In fig.87 the applied stress for a crack of initial crack size a;=200um is plotted as a function of
the crack length. The calculations were carried out with o,=100MPa and §;=1um. Failure oc-
curs at about a=240um. Additionally the aspect ratio a/c is shown. With increasing crack size
the aspect ratio decreases and the initially semi-circular shaped crack becomes a semi-ellipse
but the maximum deviations from the semi-circular shape are relatively small.

The development of the aspect ratio with crack extension is illustrated in fig.88 for three cracks
of different initial crack sizes a,. It is obvious that the strongest change of the aspect ratio occurs
at the beginning of crack propagation.

fFigure 89 shows the bending strength influenced by the bridging stresses (solid lines) as well as
the bending strength in the absence of an R-curve effect (dash-dotted line) as a function of the
initial crack size a, in a representation where the abscissa is scaled according to log(1/\/§). it
can be seen that the bending strength deviates from the linear dependency, especially for rela-
tively large cracks, i.e. for relatively low strength values. This behaviour is a consequence of the
R-curve effect and the significantly deviating stress intensity factors in bending compared to pure
tension.
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Figure 90. Strength calculation. Strength data of fig.5 compared with calculations using data-set (7.1.18);
dash-dotted curve: bending strength in the absence of bridging stresses; dashed curve: tensile
strength in the absence of bridging stresses.

7.1.3 Estimation of bridging parameters from strength measurements

Now the question arises whether strength data can provide information on the bridging parame-
ters 8o and oo. For a determination of these parameters the bending strength data of fig.5 are
used. The bending strength measurements were carried out on 3.5x4.5x50mm specimens made
of coarse-grained 99.6% AlLO, (Frialit/Degussit, Friedrichsfeld AG, Mannheim, FRG) with a mean
grain size of 20um. A strong R-curve behaviour has been found for this material by measure-
ments performed with macro-cracks [18]. The bending bars were only roughly ground which
resulted in a relatively low strength. Such a surface state can ensure that all specimens will fail
due to only one flaw population, namely surface cracks. Before testing the specimens were ann-
ealed in the vacuum for 5 hours at 1200°C. The typical effect illustrated in fig.89 seems to be
present. Under the assumption that the initial crack size distribution is given by a two-parame-
tric Weibul! distribution

riag = ono| (22| 7.147)

with the Weibull-parameters m, a,, one can determine the unknown parameters.

With a least-squares procedure the parameters og, 8o, anw, m were determined in the following
way:

For the parameter field 6,=(0/0.5/1/2/4um), m=(1.5/2/2.5/3), &= (0/50/100/150/200MPa), and
age = (50/100/200/400/700um) a field of related strength values has been determined. Application
of cubic splines then allowed the data to be interpolated. A least-squares routine (the author
used the Harwell Subroutine VA02A) yielded the best parameter set. In each step of the least-
squares routine the strength distribution is calculated for the actual parameter set. The subrou-
tine compares the calculated distribution with the measured one and changes the actual param-
eters systematically as long as the best parameter set is obtained. The resulting parameters for
the data of fig.5 are:

oo =120MPa, 6y5=1um, agy=200um, m=2 (7.1.18)
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Figure 91. R-curves. a) R-curve for a semi-circular surface crack with initial crack size a;=400um calcu-
lated with data set (7.1.18) based on bending strength results;
b) R-curve calculated for the same crack with bridging stress parameters derived from macro-
cracks [18];
¢) macro-crack R-curve obtained in [18] from subcritical crack growth tests with notched bend-
ing specimens,

Figure 90 shows the fitting curve together with the strength data of fig.5. Additionally the bend-
ing strength in the absence of any bridging effect is plotted as a dashed line. In a previous study
[18] the "macro-crack behaviour” of the same material has been investigated in static bending
tests with notched specimens yielding the parameters ;=45 MPa, §,=1um. For the natural
cracks the maximum friction stresses are distinctly higher. Whiist in macro-crack tests an aver-
age value of ¢, along the macroscopic specimen width of 3.5mm was determined the averaging
length for the natural cracks is by a factor of about 10 shorter and more local effects may influ-
ence the result.

Figure 91 shows the R-curve (at point A) from strength evaluation as a solid line compared with
the R-curve for identical cracks calculated with the bridging parameters derived in [18] (dashed
curve) and the “macro-crack R-curve” obtained in [18] (dotted curve). The significant influence of
the different values for oy is evident.

Iin conclusion: As a consequence of bridging interactions it can be concluded that there are
deviations from the expected straight line in the Weibull-plot. Such an effect may become pro-
nounced, especially in case of a large scatter of the initial crack size distribution.

It has been shown how the bridging stresses for coarse-grained AlLO; can be estimated from
bending strength data. The main intent was to explain a procedure for evaluating the bridging
parameters for natural cracks. The absolute results should not be overrated since a number of
assumptions (e.g. the initial shape of cracks, the infinite specimen width, the Weibull distributed
initial crack sizes) had to be made. Calculations in terms of averaged stress intensity factors
show the development of surface cracks until failure providing the strength. In this context two
important points must be taken into account:

1. The change of crack shape during crack extension in bending strength tests, i.e. the aspect
ratio a/c is not constant!

2. The stress intensity factors at the two points A and B of the crack are responsible for crack
development and strength.
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8. Influence of R-curve effects on subcritical crack
growth

8.1 General influence of R-curve effects on lifetimes in static
tests

In materials without R-curve behaviour the crack-tip stress intensity factor K;4, - responsible for
crack growth - is identical with the externally applied stress intensity factor Ki.... In ceramics
with R-curve behaviour the crack tip is shielded by the shielding stress intensity factor. There-
fore, the crack tip stress intensity factor resuits as given by

Ki tip = K appi + Ki shieia (8.1.1)

This relation is the basis for understanding R-curve influences on the lifetime behaviour.

I’<| shield

Figure 82. Development of K-values. Development of the stress intensity factors of eq.(8.1.1) in a stable
crack growth test.

Whiist stable crack propagation occurs with a constant crack tip stress intensity factor, namely
Kitp =Ki, during subcritical crack growth in a lifetime test under static load, the value of K4,
must change with K., and Kgew according to eq.(8.1.1). This behaviour is explained in fig.92.
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Figure 93. Lifetime. Influence of R-curve effects on lifetimes in static tests [56].

At the beginning of crack extension the crack-tip stress intensity factor decreases significantly
with increasing crack length, passes a minimum value and increases again. The applied siress
intensity factor K., (dashed curve) increases monotonically and the difference between these
two curves is the shielding stress intensity factor Kpierg.

In the presence of crack-tip shielding the lifetime t; results for a given stress ¢ as

aC
a,
‘da 1 da
tf=J - =7 - (8.1.2)
a A .[ l:“Y\/‘;'J"Kshield:|

in (8.1.2) a; is that crack size where slow crack growth starts and a. is the critical crack size. At
the point of failure (a = a;) the crack tip stress intensity factor K4, reaches Ky and, consequently,
the subcritical crack growth rate becomes extremely high. Therefore, the integral in eq.(8.1.2)
may be extended to infinity without loss of accuracy worth mentioning. Only in case of negligible
crack extensions, i.e. ac/a, ~ 1, this approximation will fail. With this assumption made one ob-

tains
1 da
& 8.1.
tf A J‘ ( 13)

n
[oYJa + Kgpieia]

The influence of R-curve effects on lifetimes has been computed in [56]. Figure 93 shows the
lifetimes for a material without R-curve and a material with strong R-curve behaviour but identi-
cal initial crack size distribution and identical subcritical crack growth parameters. As shown in
fig. 93, the lifetime curve including shielding effects is flatter than the curve obtained in the ab-
sence of crack-tip shielding, i.e. the apparent power law exponent n’, defined by lifetimes ob-
tained at different stress levels

, d logtf

_—W (8.1.4)
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Figure 94. Weibull distribution of lifetimes. Lifetimes measured in a static bending test at 20°C in air for

coarse-grained A/,O;.

This effect can also be shown analytically. The lifetime in the absence of a shielding effect

(Kshietd = 0) results as

o0
1 J __da _ consteo "

tf(Kshield =0~ "4 [oY\/;]n

i

From eq.(8.1.3) differentiation with respect to the stress o yields

dt Y./ a da
de " n+
[oY./a + Kspieia]

1

a;

This can be written by use of the mean value theorem for integrals as

dt; v.fa"

—lt—rn
de o¥a' + K'spiera

ts

where the primes indicate a certain crack size in the range a; < a’ < a,( = oo).

Introducing logarithmic derivatives yields

d log(ty o¥Je'
=—nNn
d log(o) o¥Ja' +K'spie

From eq.(8.1.4) it resuits for the n-value in presence of an R-curve effect
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Figure 95. Stress intensity factors. Change of stress intensity factors during crack extension under con-
stant load.

o¥fa’ (8.1.9)

>n

n'=n
o¥Ja' +K'spiew

Finally we can conclude

n">n (8.1.10)

8.2 A detailled analysis of the influence of bridging interactions

In this section it is ilustrated how the bridging interactions in coarse-grained Al,O; will influence
the subcritical crack growth and lifetime behaviour of specimens with natural crack populations
[57]. Calculations using averaged stress intensity factors - as used for the strength in section
7.1 - show the development of surface cracks until failure. Since spontaneous failure in strength
tests is affected by bridging stresses [51],[58], it must be expected that delayed failure due to
subcritical crack growth will be influenced, too. This must be the case for alumina [56] [4] as
well as for zirconia [9].

In a recent paper [7] lifetime results obtained under constant load have been presented for
coarse-grained alumina. In a Weibull-plot a non-linear behaviour was observed which can be
seen from fig. 94. As mentioned for the strength behaviour such a behaviour can be also
caused, in principle, by a specific flaw population.

In coarse-grained alumina the crack growth resistance increases with increasing crack extension
due to friction-like crack-border interactions in the wake of the advancing crack. As a result of
these crack surface interactions, the stress intensity factor acting at the crack tip Ky, deviates
from the externally applied K, according to eq.(8.1.1)

K; tip = K appr + Kior = K appt = | Kirl

where K. is the bridging stress intensity factor. This relation is the basis for understanding R-
curve influences on lifetime behaviour. For its evaluation one needs the applied stress intensity
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Figure 96. Initial crack size. Definition of initial crack size for a constant-load test.

factor caused by an externally applied load as well as the bridging stress intensity factor. In
contrast to the strength computations the abbreviation C is now defined as

2
4114111 = DK, 45 /3
Cc = (1 =K tpr/ Y=2/Jx (8.2.1)
YErdy

The occurrence of K;4, in the quantity C makes iterative solutions necessary.

8.2.1 Crack propagation under constant load

Surface cracks in ceramic materials caused by surface grinding are commonly assumed to be
semi-circular shaped. During crack extension in bending a change of the crack shape must be
expected. Therefore, also bridging stress intensity factors for semi-elliptical surface cracks are
necessary. In the subsequent considerations the assumption will be made that bridging siress
intensity factors for surface cracks can be approximated by the bridging stress intensity factors
of embedded cracks with the same aspect ratio.

For numerical computations the same material parameters were chosen as already used in 7.1.
All calculations are performed for a specimen thickness W=23.5mm that has been used also in
the experimental lifetime tests. The specimen width is assumed to be large so that finite width
correction is neither necessary for the bridging stress intensity factor nor for the externally ap-
plied stress intensity factor.

Whilst in strength tests crack propagation occurs with a constant crack tip stress intensity factor,
namely K;;, =Ky, the value of K, must change with K., and K;», according to eq.(8.1.1) during
subcritical crack growth in a test performed under static load. This behaviour is schematicaily
explained in fig. 92. The applied stress intensity factor K, ., (dashed curve) increases monotoni-
cally with crack extension. The bridging stress intensity factor is negative and also increases
with crack extension. The sum of these two curves is the crack-tip stress intensity factor K4,
which first decreases significantly with increasing crack length, passes a minimum value and
increases again.
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Figure 97. Crack shape. Development of the aspect ratio a/c as a function of the initial crack size ag (
N = 30).

Unfortunately, subcritical crack growth does not start in all cases at the initial crack size. This
has to be considered especially for relatively high loads applied. Figure 96 illustrates the prob-
lem.

* In case of a low applied stress o, it holds
Ki appi,a+ Kiappis < Kpo

and, consequently, the crack can propagate only by subcritical crack grdwth, starting from
ap, Cp.

° In case of a higher stress, o, > a4, the crack will extend at the moment of load application up
1o a crack of dimensions a’ > ay, ¢’ = ¢, which are given by the solution of the equations

opYa(@'lc’a'|W)va' —Kipra I =Ko

Aa=a'—a )
(8.2.2

opYp(@’[c’a' W) /a’ _Klbr,BI . =Kp
Ac=c'— ¢y

In this case in eq.{8.2.1) the crack-tip stress intensity factor K;y, must be K.

The crack-growth relation describing subcritical crack growth is assumed to be a power law
0 for Kyp<Kpn
da N
v=—"p =< AKiup)  for Kin<Kiip<Kp (8.2.3)

- oo for KItIPZKIO

where Ky, is the threshold stress intensity factor below which subcritical crack growth does not
occur. From theoretical considerations a threshold stress intensity factor for thermally activated
bond breaking must occur [59] [60].
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Figure 98. Crack resistance curve. R-curves for the two points A/B computed with a;=200um,
Obend =185MP3, N=30.

Numerical procedure
Some details of the numerical evaluation of a static lifetime test will subsequently be explained
for the special case of Ky, =0. Immediately after load application the crack may have the dimen-
sions ay, ¢ = & ( case o =0 in fig. 96).
Step 1: The stress intensity factors for this situation are

Kiapprago » Kibraso=0 . Kitip a,0=Kiapp1 aB,0

A crack size increment da = da,, A<1 is chosen. The related crack increment dc, results from
eq.(8.2.3) as

N
dco = (K} 4ip B,olKi tip a0) da (8.2.4)

and the time increment needed for the crack extension da is

da

dty=—233
N
A Kitipao

and the new crack dimensions are a; = a, + da ; ¢, = ¢y + dcy.
Step 2. The stress intensity factors for the extended crack are

Kiappiasa » Kivrasa=TKiup) + Kitip a1 =Kiappiapir — Kivras
The next crack increments are
de, = (K K Nd
da, dcq= (K uppalKitipas) da

and the time increment becomes
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Figure 99. Lifetimes in static tests. Lifetimes in a normalised representation for N=230, calculated for a
crack of initial size ag=200um; solid curve: with R-curve behaviour, dashed curve: without R-
curve effect.

da

dt1 =
N
AKitip an

) t1=t0+dt1

It should be noted that K;,, depends on the crack-tip stress intensity factor K;4p. There are se-
veral possibilities to determine K;», and K;y,. The simplest ones are:

¢ Replacing the unknown value K4, in eq.(8.2.1) by the value obtained in the preceding step,
i.e.

Kibr agn =K v aB,n—1)

This is recommended above all for very small values of 1.
» The stress intensity factors K., Ky can be obtained from the solution of the implicit
equation

Ki appt — Kitip — K1 pr(K; 4ip) =0
which can be found for each step by a zero-routine.

These steps are repeated until K,y =Ko and dK;q, > 0 is fulfilled. The lifetime is given as the sum
of all time increments.

In case of o = o, the initially stable crack development is described by the equations (8.2.2). This
system of equations yields the crack dimensions a,c from which subcritical crack growth starts.
The further computation is identical with that for ¢ = a4.

Numerical results

In fig.97 the development of the crack shape during a static bending test with 185MPa bending
stress is shown for initial crack sizes of a,=50, 100 and 200um. The principal shape of the curves
is identical with that of stable crack extension occurring in bending strength tests. The related
R-curves are shown in fig.98 for the crack with a;=200um. The R-curve for point A is plotted as a
solid line and the R-curve for the surface point B as a dashed line. Both curves are nearly identi-
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Figure 100. Initial crack size. Influence of the initial crack size ag on the applied and crack-tip stress in-
tensity factors.

cal. Figure 99 represents the lifetime t; as a function of the externally applied bending siress
Obeng fOr @ crack of a,=200um and a subcritical crack growth-exponent N=230. Whilst for a materi-
al without an R-curve effect a straight line with slope -1/N has to be expected {dashed line) the
curve (solid line) deviates from a straight line in case of an R-curve effect due to bridging stress-
es and the steepness of the curve is significantly lower. This is in agreement with eatrlier resuits
obtained by the author [18], [4]. The existence of a threshold stress intensity factor Ky, affects
the limit stress value below which crack arrest occurs. The development of the crack-tip stress
intensity factor Ky, is illustrated in fig.100 for several initial crack sizes. For lifetimes especially
the regions around the minimum values of K¢, (named Kiup mn) are of at most importance since
crack extension here takes the main part of the whole lifetime. The interdependency of minimum
crack-tip stress intensity factor and initial crack size is plotted in fig.101. If a threshold stress
intensity factor K4 > 0 exists, all lifetime tests With Kisp min < K Will result in an infinite lifetime
since crack arrest must occur.

Finally, the distribution of the lifetimes is shown in fig.102 for the crack size distribution de-
scribed by eq.(7.1.17) and different K;us-values selected. Figure 102 represents the results for
N=20 and fig.103 for N=30. The solid lines, which describe the lifetime behaviour in the ab-
sence of a threshold stress intensity factor, have the same shape as the fitted strength curve in
[51]. The influence of a threshold value K, leads to a stronger non-linearity of the lifetime dis-
tribution. A sufficient description of the measured lifetime by the calculations can be found for

N = 20 7 KI th/KIO = 05 7 lgA = — 108 (A in: MPa,S,m) (825)

With these data the computed lifetime distribution is plotted in fig.104 together with the meas-
ured data of fig.93. The only deviation worth mentioning is that the threshold effect does not
begin as abruptly as calculated. Also this effect can be understood from the v — K —behaviour
plotted in fig.105. The solid lines represent eq.(8.2.3). It can be shown theoretically [59] [60]
that the threshold effect is asymptotically reached and the transition from v>0 to v—0 is
smoother than given by eq.(8.2.3). This more realistic behaviour is illustrated by the dashed
curve. Having this in mind, the deviations in fig.104 are self-explanatory.

The bridging parameters and the parameters of subcritical crack extension are compared in Ta-
ble 1 (at the end of this section) with parameters obtained from static tests with specimens con-
taining macrocracks, The bridging stresses obtained from the tests with macrocracks are lower

105




a\ K e
S~ 3 opel ¢
!-E [_ Ill
(o} S’
0 Kip
E ['
p - ?
’

Ktip min

00 200 300 400 500 600
g, (pm)

Figure 101. Minimum stress intensity factor. Minimum crack-tip stress intensity factors during crack ex-
tension in a constant load test (¢ =185MPa), (crack arrest situation for K;u = 0.4Kj indicated
by solid circle).

than those obtained in the tests with microcracks. The parameter N is similar; however, the
parametier A is considerably lower for the macrocracks.

In fig.106 the v-K,-curve obtained from macro-crack measurements [18] is plotted as a dashed
line together with the micro-crack relation proposed in this investigation (solid curve). The sub-
critical crack growth rates for the micro-cracks are significantly lower than the crack velocities
obtained with macro-cracks.,

8.2.2 Discussion

The evaluation of the lifetime results shows that it is possible to explain the non-linear Weibull-
plot by the R-curve effect. The curve in fig.104 of the lifetime distribution and in fig.106 of the
da/dt — K; —relation have been obtained from the bridging stress parameters oo and &, evajuated
from the strength distribution. The freely selected parameters are N, A and Ky.

The large discrepancy in the crack-growth rate between micro-cracks and macro-cracks can be
reduced if lower values of o, are applied. From fig.107 it can be seen that a reduction in oo from
120 MPa to 100 MPa still leads to a reasonably good description of scatter in lifetime. The corre-
sponding threshold value is 1.75 MPa\/E—. The corresponding growth-rate parameters are
N =20, IgA =-12.8 leading to a better agreement with the macro-crack behaviour as can be seen
from fig.108. However, the crack growth rate is still higher. Therefore, under the assumption
made it continues to apply that the bridging stresses for micro-cracks are larger than for macro-
cracks and that the crack-growth rate for the same crack-tip stress intensity factor Ky, is higher
for the micro-cracks. A further decrease in o, for the micro-cracks would yield a lifetime distrib-
ution not agreeing with the experimental results.

it cannot be excluded that the assumptions made influence the result. These assumptions are:
Weibull distribution without R-curve effects, application of averaged instead of local stress inten-
sity factors, approximation of R-curves of surface cracks by R-curves of embedded cracks.

Considering all these assumptions, nevertheless the cautious conclusion may be drawn that the
dajdt — K,y relation of micro-cracks and macro-cracks deviate from each other. There may be
different reasons for this effect. Generally, the linear-elastic relations are not fully correct for
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Figure 102. Weibull distribution with threshold. Weibull-distribution of lifetimes under openqs=185MPa,
computed for N =20 (dash-dotted lines: influence of a threshold stress intensity factor).

small cracks as can be seen from strength tests. It is also possible that the stress intensity factor
of a real flaw/crack-configuration, e.g. a pore with a circumferential crack, deviates from that of a
flat crack.

Also the experimental finding of Steinbrech [115] that in stable crack-growth tests small cracks
can grow under significantly lower applied stress intensity factors than necessary for macro-
cracks may be valid for subcritical crack growth, too.

Ig(A),
Test Crack type Ref. N (Ain MPa,m.s) oo (MPa) o (um)
Static tests micro-cracks [57] 20 -10.8 120 1
Static tests macro-cracks [18] 25 -15.9 46.4 0.95

Table 2. . Comparison of subcritical crack growth with bridging parameters.
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Figure 104, Lifetimes. Lifetimes in static bending tests; circles: measurements from fig.93, solid line: cal-
culated with data set (8.2.2).
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Figure 106. v.K-curve. v-K;-curves for coarse-grained A/,Os solid curve: obtained from lifetime measure-
ments, dashed curve: macro-crack result from [18] (stress intensity factors in terms of K ).
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Figure 108. v-K-curve. Influence of the chosen value ¢y on the v-K;-curves (stress intensity factors in
terms of K ). '
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9. Influence of R-curve effects on cyclic fatigue

9.1 Experimental facts

Several ceramic materials show the effect of cyclic fatigue. In this section it will be shown that
strong R-curve effects can be responsible for this behaviour. In order to prove an effect of cyclic
fatigue in a ceramic material, three different types of test are recommended:

1. The comparison of cyclic lifetimes from experiments with predictions from static tests on the
basis of K;-governed subcritical crack growth [61].

2. A second method is the measurement of cyclic lifetimes with very different frequencies but
identical upper and lower stresses and identical shape of the amplitude.
In case of a real fatigue effect the lifetime must decrease with increasing frequency.

3. In the absence of a real cycle effect lifetimes in tests with step-shaped waves should be
identical for R=0 and R=-1 and should differ only by a factor of 1/2 for R=1.

Results of tests with specimens containing natural flaws are given in fig.109 [62]. Lifetimes ob-
tained in tests with constant siress are shown in this diagram as open circles. From a least-
squares fit n,=40 was obtained according to f; oc 6. The results of the cyclic tests obtained for
a frequency of 50Hz and an R-ratio of R = — 1 are given as solid circles. The slope of the dotted
straight line gives an exponent of n. = 28 for a power-law description of cyclic crack growth sig-
nificantly lower than the value for the static tests. It is obvious that the scatter of the cyclic
lifetimes is reduced compared with the static lifetimes. Based on the lifetimes in the constant
load tests the cyclic lifetimes were predicted and entered in fig.109 as solid line. The predicted
and measured lifetimes are significantly different.

Influence of frequency on cyclic lifetimes: From the lifetime prediction on the basis of subcritical
crack growth no influence of the frequency has to be expected. In order fo check such an influ-
ence cyclic tests were carried out with different frequencies. In fig.110 lifetime results are shown,
obtained for a maximum stress of omx=175MPa and frequencies of 0.2, 2, and 20Hz [63]. In addi-
tion also static tests are introduced which can be interpreted by a frequency of zero. All static
tests yield survival, i.e. lifetimes of more than 200h. The lifetimes in the cyclic tests decrease
with increasing frequency. Also this fact is an indication that not only subcritical crack growth
may be the reason for failure in cyclic tests.

Influence of the R-ratio: Figure 111 shows cyclic lifetimes of Knoop-damaged specimens ob-
tained with material li. The size of the Knoop-cracks could be measured under the light micro-
scope, and the maximum initial stress intensity factor was calculated.

The tests were carried out with step-shaped pulsating and alternating loads. Since no crack
growth under compressive stress intensity factors is possible one should expect identical life-
times for the R-ratios R =—1 and R =0. This is obviously not the case, since the lifetimes un-
der R = — 1 are significantly lower than under R = 0. Static tests should exhibit lifetimes reduced
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Figure 109. Lifetime measurements and lifetime predictions. Static and cyclic lifetime tests performed on
specimens.with natural cracks made of coarse-grained A/;O; (material |); solid line: prediction
of cyclic lifetimes based on static results.

by a factor of 2 compared with the cyclic ones. In contrast we find significantly higher static
lifetimes. These disagreements are a further indication for a real fatigue effect.

In cyclic tests performed with small natura!l and artificial cracks the following main results were
obtained:

1. Lifetimes in cyclic tests are significantly lower than the predictions based on static lifetime
tests [64],[65]-[68].

, R=—1 6_. =175MPa
4 & 20Hz 4 o
= ®
o A 2Hz - 4 Ob
e A @
— ® 0.2Hz " Ao o
g 2 o+
=_,1 (o oHz) -
£ ® A o
£, ® A
o
~3- a "o statlc (R=1)
L. i | | 1
0.01 0.1 1 10 100
te (h)

Figure 110. Influence of frequency. Lifetime measurements with specimens containing natural flaws made
of material Il
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Figure 111. R.ratio. Influence of the R-ratio on the lifetime, Knoop-damaged specimens (materiai Ii); open
symbols: fracture toughness.

2. In a power law description the exponents n..c are obviously lower than the exponents ng.asic
resulting in static lifetime tests [62],[64],[65],[66].

3. The scatter of cyclic lifetimes is reduced compared with the scatier in static tests.

4. The influence of cyclic loading mentioned before appears for natural cracks as well as for
small artificial Knoop-cracks [64],[62].

5. Materials exhibiting a significant cycie effect also exhibit a pronounced R-curve effect [69].

6. Only a moderate influence of frequency on lifetime can be stated [63].

A model for explanation of cyclic fatigue effects in specimens with small cracks should take
these findings into account.

9.2 Theoretical considerations

With the following three assumptions all experimental findings mentioned under items 1.-6. can
be explained.

¢ The mechanisms of crack growth under cyclic load and static loading are identical.

® It is assumed that the fatique behaviour in Al,O; is a direct consequence of the R-curve ef-
fect, which is caused by crack surface interactions distributed over the crack.

e These crack surface interactions are assumed to become more and more dissolved with in-
creasing number of cycles [70],[71].

In materials with R-curve the crack tip is shielded by the shielding stress intensity factor K, and
the real stress intensity factor at the crack tip Ky, deviates from the applied stress intensity fac-
tor K app s

K tip = K appr + Kis (9.2.1)

Without any detailed calculation we come to the obvious consequences:
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A lifetime prediction for cyclically loaded ceramics becomes complicated in the presence of R-
curve effects due to crack bridging interactions. In cyclic tests these crack interactions are as-
sumed to become more and more reduced with increasing number of cycles [22] [23] as has
been shown experimentally by in-situ microscopic examinations [22], [23]. In this case the
crack tip is exposed 1o higher loading in cyclic tests than in static tests,

Since for small cracks in coarse-grained AlLO; with a < 100um the maximum crack opening is
small compared with §, one can approximate [72]

6 = 0 (9.2.2)

In case of cyclic loading the surface interactions may be reduced by the cycles. The number of
bridging events will be reduced and in terms of bridging stresses the stress parameter og will
decrease. In order to be able to model the fundamental behaviour we will assume that the de-
crease of the maximum value of bridging stresses is proportional to the number of cycles (N)
and to the actual value of o, which in the integrated form reads

oo = ogp exp(— aN) (9.2.3)

Now we will consider two limit cases.

 Case 1: The bridging interactions remain unaffected by the cycles, i.e. « — 0. This case
describes also the bridging stress intensity factor for static load. The corresponding limit
values for the bridging stress intensity factors results with with Y = 2//=

2
900 [h2_ ag’ (9.2.4)

K =
1 br,4 \/';a—

e Case 2: Only a few cycles are necessary to dissolve the crack surface interactions newly
created during crack propagation, i.e. « — oo. This yields

Kipra=0 (9.2.5)

Lifetimes:

The influence of cycles on lifetimes becomes obvious by consideration of the limit cases, namely
crack surface interactions for static tests and totally vanished crack surface interactions for cy-
clic tests. For the following considerations a step-shaped load-time history may be chosen

oy for 0<t<T(2

o= (9.2.6)
—og for T2<i<T

resulting in step-shaped stress intensity factors. Thereby the cyclic problem can be reduced to a
static problem. The subcritical crack growth law is given by a power law

AK,U n for Klt' >0
y=9a _ g » (9.2.7)

0 else

The lifetime t in a static test performed with stress o results to be
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a
‘da 1 da
tr static =f v =7 5 (9.2.8)
a; N [aY\/a_ _Kls]

/
t

where a; is the initial value of the crack length a and a, is the crack length at failure. Since the
main part of the lifetime results at that state where the denominator of the integrand has its min-
imum value, the upper integration boundary is without much relevance for the lifetime and can
be replaced for instance by infinity.

o0

1 da

testatic = 3~ ; (9.2.9)
A [O'Y,\ / - K’S]

The lifetime for the cyclic limit case of a completely dissolved crack surface interactions (Kjs — 0)
then results as

2 da -n
troycl, lim = —J —————=consteo (9.2.10)
’ A n
5 [o—Y\/a_J

1

The factor 2 enters eq.(9.2.10) due to the special step-shaped loading profile.

If a time-dependend K-value is taken into account a differential equation has to be used instead
of eq.(9.2.10) Nevertheless the main result can be obtained by considering €q.(9.2.7) directly.
8ince K, is positive the crack growth rate is always

. n
Vstatic < Veyelic -6 AK; appl"Kls)n < AKj appi (9.2.11)

window of
frequency
influence

log (lifetime)

log (frequency)

Figure 112. Cyclic lifetimes. Change of lifetime in cyclic tests with frequency (schematically)
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and therefore the lifetime in a cyclic test must be lower than predicted from static tests. Due to
the high exponents n this effect can become very strong.

n-values:
The n-values of a power law for crack growth can be derived by

d log t;

n=

Especially for the cyclic limit case it results that in this case the n-value becomes trivially identi-
cal with the exponent for subcritical crack growth used in eq.(9.2.7). On the other hand the n-va-
lue resulting from lifetime measurements in static tests must deviate from the "true value”
(Nstatic > n) as shown in [4],[56].

From eq.(9.2.9) differentiation with respect to the stress o yields

YJa d
datr Ja da (9.2.13)

+1
do [oV./a — Kl

a

This can be written by use of the mean value theorem for integrals as

—n
do oY Ja — K

where the primes indicate a certain crack size in the range a; < a’ < a.( = o0).
Introducing logarithmic derivatives yields

dlogty) oY@’

i AL (9.2.14)

=—n (9.2.15)
d log(o) oYa — Ky
From eq.(9.2.12) it results for the static tests
Y.a'
Nstatic = ___n__i_____,___ n>n (9.2.16)
aY\/a’ —K/sl
Finally we can conclude

Nstatic = Neyclic (9.2.17)

Scatter behaviour
Let m,, be the Weibull-modulus of the inert strength o, and m* the Weibull-modulus obtained in
lifetime tests then it hoids

m* = (9.2.18)

For the static and cyclic lifetime tests it holds
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Figure 113. Lifetime prediction. Lifetime predictions for static (dashed line) and cyclic (hatched area)
tests calculated with n=20, ¢;=100MPa and a median value of crack distribution of ap=100um;
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* TN cie —2
Mgtatic cyclic

As a consequence of eq.(9.2.17) it resulis

*#* #*
Meyelic = Mstatic (9.2.20)

i.e. the scatter of cyclic lifetimes is less than the scatier of static lifetimes.

Influence of frequency
The influence of frequency can easily be understood by a rough estimation. The span of possi-

ble lifetimes in cyclic lifetime tests is limited by

teyontim < troyer < lrstatic (9.2.21)

For a frequency f— 0 the static lifetime (apart from the factor 2) will result and for f— oo the
crack surfaces are instantly free of interactions and the resulting lifetime will be identical with
the limit case trepciim. The influence of frequency on cyclic lifetime is schematically shown in
fig.112. Let f; be that frequency where log t; — log frcyeriim = 0.5( 100 trstatic — 10@ treyerim).  This fre-
guency should result a significantly reduced value of K during the lifetime test. We can conclude
from eqs.{8.2.3) and {9.2.4) as a tendency:

KIS o~ KlSO exp( — o ft) (9222)

If for the frequency f; the value of K. is significantly changed from K, during the lifetime it be-
comes evident - at least for the exponential dependency based on eq.(9.2.3) - that the frequency
i, = 10f; approximatively vields the limit case K;;~0 and for ;= 0.1f; no change of K;; due to fre-
quency influences has to be expected (K;~Kip). With other words: There must be a relative
small “window of frequencies” where a significant decrease in lifetime (from t st 10 treyerim) €aAN
occure. Outside of this range of frequencies the influence of frequency on lifetime must become
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moderate. From previous results we conclude that the coarse-grained 99.6%-Al,0; exhibits a
cyclic effect that exceeds the effect expected from subcritical crack growth in static tests. The
conspicuous disagreement between predictions based on static lifetimes and the experiments as
well as the influence of frequency on the number of cycles to failure are significant indications of
this fact.

Figure 113 shows the median values of static lifetimes (dashed line) as predicted by using the
data-set

n=20, m=10, og=100MPa , ag=100um

and the two limit cases of cyclic fatigue (solid lines) computed with eq.(9.2.4) and (9.2.5).

The range where the real cyclic lifetimes have to be expected is hatched. As can be seen from
fig.113, the n-value (i.e. the negative reciprocal slope of the curves) is lower for the limit case 2
than for the limit case 1.
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10. Influence of R-curve effects on thermal shock
behaviour |

10.1 General remarks

During thermal shock of ceramic materiais crack propagation of initial cracks leads to an in-
crease in crack length. Therefore, the strength after thermal shock is reduced from o, to ¢, This
reduction in strength can be described by application of fracture mechanics methods [73]-[77].
The final crack length and thus the strength after the thermal shock depend on

° the size and geometry of the component,

e the thermal shock conditions (temperature of component, temperature of shock medium,
heat transfer),

°  physical properties of the material which influence the temperature and stress distribution
{thermal conductivity, thermal expansion coefficient, heat capacity, density, elastic con-
stants),

* mechanical properties of the material.

—————

K2 envelope

unstable

t, stable crack propagation

o, ¢ crack length @ a;

Figure 114. Crack propagation under TS.conditions. Crack propagation under thermal shock conditions
for a material without R-curve behaviour; (dash-dotted curve: Kig, solid curves: K; gpp1), [78].
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Figure 115. Crack propagation under TS-conditions, Crack propagation under thermal shock conditions
for a material with a strong R-curve behaviour; (dash-dotted curve: Kz, solid curves: K i),

[78].

Orie relevant mechanical property is the crack growth resistance. For some materials the crack
growth resistance can sufficiently be characterised by the fracture toughness K.. For materials
whose crack growth resistance increases with crack extension (rising R-curve) the situation is
more complicated. A first evaluation can be made under the assumption that crack growth resist-
ance can be described by a unique curve - the relation between Kiz and the crack extension
Aa=a—a, A more realistic description takes into account that the crack growth resistance
curve depends on the actual loading situation and the initial crack length. This has been done in
[78]. For the numerical calculations the relation

oy = 00 exp(— 8/6p) (10.1.1)

was used.

The crack extension during thermal shock can be described by a diagram, in which the stress
intensity factor is plotted versus the relative crack length a/W, fig.114. At any time after the ther-
mal shock gets effective, the stress intensity factor first increases with the crack length and then
decreases again. All curves have an envelope which also has a maximum in K, .. First the situ-
ation will be considered of a material with a flat crack growth resistance. A crack of initial
length a; extends in an unstable mode at time f, (black arrow fig.114), when the condition K; o=
K is fulfilled for the first time. Due to dynamic effects the crack can be driven to a crack length
ar where K, is below K. Then the crack stops for a moment until K, ., reaches Kj, again. Aft-
erwards, undet the condition K, .,y =Kj, the crack extends in a stable mode (open arrow) until its
final length a = &, when the envelope of K, ., is reached.

For a rising crack growth resistance curve (see fig.115) the crack follows the points of inter-
section between the time-dependent stress intensity factors applied, K, ,pi(a,f) and the Kiz-curve.
Depending on the initial crack length a,, the shape of the Kjr-curve and K,.,{a,t), stable crack
extension may take place until complete crack arrest or it first may be stable, then unstable and
then stable again, as shown in fig.115. A comparison of fig.114 with fig.115 shows that the final
crack length a is reduced due to the rising crack growth resistance.
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10.2 Experimental results

10.2.1 Experimental and theoretical Kiz-curves for thermal shock

Schneider et al. [79],[80],[81] measured crack extensions in Al,O; disks under thermal shock
loading conditions. The disks were heated in the central part by halogen lamps where the volt-
age of the lamps increased linearly with time. The details of the experimental set-up are given in

[79].
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Figure 116. Measured R-curve. Crack growth re- Figure 117. Measured R-curve. Crack growth re-
sistance in a thermal shock test sistance in a thermal shock test
(ao=0.7mm);(curves: K; appr). (@o=1.75mm);(curves: K; sopi).

The applied stress intensity factor as a function of time and the crack length, K, ... (a,f), has been
calculated from the corresponding stress distribution. The results have been plotted in fig.116
and fig.117, where instead of the time the voltage of the lamps is entered as a parameter. The
Kir(a) —curve (squares) is obtained from K;.,(a,t) and the relation t(a) taken from the exper-
iment:

Kir(@) = K appila. t(a)] (10.2.1)

It can be seen that for a large initial crack length the crack extension is stable, whereas for
small initial crack length the extension is first stable, then unstable and then stable again. The
crack growth resistance curve of the material applied obtained in a three-point bending test with
a crack of initial length a,/W=0.5, is shown in fig.158. From these results 6,=44 MPa, §,=0.25
pm, Ko=25 MPa\fﬁ]_ was obtained. In addition to the experimental thermal shock Kiz(a) —curve
a theoretical Kiz(a) —curve can be obtained by inserting a theoretical {(a) in eq.(10.2.1). A theore-
tical #(a) is given by

K tip(a.t) = Ko (10.2.2)

The results of Ky, in fig.118 and fig.119 were calculated by means of the boundary element pro-
gram ATHENE [82] as an alternative procedure to the weight function method ([78]). !t can be
seen in fig.118 and fig.119 that in agreement with the experimental results complete stable crack
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Figure 118. Crack-tip stress intensity factor. K4, during a TS-test (ag=0.7mm) [78].

extension is predicted for the longer initial crack length and stable-unstable-stable extension for
the small initial crack length. In fig.120 a comparison is shown between the measured and the
predicted Kiz-curves. This figure also shows the Ki-curve for the bending tests from which the
bridging parameters were obtained.

Comparing this curve with that predicted for the thermal shock test the effect of specimen geom-
etry and type of loading can be seen again. Comparison of the predicted with the measured
curves makes evident that for both initial crack lengths the trend of the curves (increase - maxi-
mum - decrease) is predicted; however, the predicted increase is larger than the measured one.
This difference might be caused by a temperature effect. The prediction (see fig.120) was per-
formed with the bridging parameters obtained from a room temperature test, whereas the ther-
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Figure 119. Crack-tip stress intensity factor. K4, during a TS-test (ag=1.75mm) [78].
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Figure 120. Comparison of R-curves. Kpg-curve from controlled bending test compared with predicted
Kir-curves for thermal shock tests with different initial crack sizes; TS-curves predicted with
bridging parameters o and &g obtained at room temperature [78].

mal shock crack extension started at about 350°C with a further increase in temperature during
crack extension. From the results of Mundry [95], shown in fig.159, a temperature effect of the
Kir-curves is obvious. The parameters o, and Kj, evaluated from these tests are presented in
fig.121. The parameter &, is independent of the temperature.

Figure 122 contains the prediction based on the temperature depending parameters shown in
fig.121. For this analysis with temperature dependent material data the Kp-values of fig.121 (sol-
id line) were used. Since no temperature dependent bridging stress parameter oo, was available,
it has been assumed that its relative change with temperature would be identical with that of
material (5) (Table 3) plotted in fig.121.

The theoretical results of fig.122 are in better agreement with the experiments than the results
obtained with temperature independent material parameters (fig.120).

10.2.2 Conclusions

The increase of crack growth resistance with increasing crack length caused by bridging inter-
actions at the crack surface depends on the loading conditions as well as on the crack- and spe-
cimen geometry. Due to this fact the developed methods to determine the material specific
bridging parameters are of high importance.

The investigation of the bridging stresses on the crack propagation under thermal shock condi-
tions shows that the crack development for small crack extensions always proceeds stably. In
case of short initial cracks the initial stable phase is followed by an instabie crack extension
phase in the range of intermediate crack lengths which again changes to stable crack propa-
gation for large crack lengths.

The comparison between theoretically predicted and experimentally obtained T8-Kig-curves
shows that for coarse-grained Al,O;-material the bridging stresses are dependent on temper-
ature. One reason for this effect may be the temperature dependent residual stresses caused by
the anisotropy of the AlLOs-grains.
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Figure 121. Temperature dependency of R-curve parameters. Results taken from [78]; left figure: Tem-
perature dependence of K, dashed line: material (5) (Table 3) evaluated from Kz-curves of
fig. 159, solid line: results for material (4) taken from measured values in figs.5 and 10. figs.158,

118 and 119 right figure: Temperature dependence of og; material (5) (Table 3) evaluated from
Kir-curves of fig.159.
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Figure 122. Experimental and theoretical R-curves. Comparison of experimental and theoretical
TS-Kir-curves predicted for temperature depending bridging parameters with an identically as-
sumed relative decrease of oy according to the data represented in fig.121.
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11. Influence of bridging stresses on Knoop-cracks

Knoop-indentation tests are often performed in order to determine the fracture toughness of ce-
ramic materials. In a number of ceramics the R-curve behaviour affects the development of in-
dentation cracks.

Figure 123. Knoop-indentation. Loading situation during the generation of a Knoop indentation crack.

The cracks generated during Knoop indentation tests (fig.123). are nearly half-penny shaped. In
order to allow a simple analysis to be made, the influence of the free surface is neglected and
the crack is modelled as one half of a circular embedded crack (fig.124). During the indentation
test the Knoop indenter causes wedging stresses o,, which are assumed to be constant over a
circle with the radius d. Figure 124 illustrates the geometric data and the stresses. For a circu-
lar crack, loaded by a stress o(r), the related stress intensity factor is generally given by

a

ro{r)dr

N
B /ra 2 2
b A/ a r

The stress intensity factor caused by the wedging stresses a,, results from eq.(11.0.1) as

K, (11.0.1)
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Figure 124. Stresses. Wedging and bridging stresses for a Knoop indentation crack
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Figure 125. Displacements. COD-field caused by the wedging stresses o, for differently chosen wedging

Ja—(1 —J1-d%a? )
by Sneddon [83]

(11.0.2)
The crack-opening displacements (COD) for a penny-shaped crack loaded by a stress exclusively
dependent on the distance r from the origin can be computed using an integral equation given
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4(1—v) podp
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where x is a dimensionless integration variable.
The total CODs are superimposed by a part 6, due to by the wedging stresses and a part &, due
to the bridging stresses

dx ; p=rla (11.0.3)

Stota = Oy + Opr (11.0.4)
The crack surface displacements due to the constant stresses o, are given by [84]

4(1-+)as

by = — Y« f(r/a,ald) (11.0.5)

where E= Young’s modulus, v=Poisson ratio, and
(4. 2y =/1- e (1= /1 @la)* )
for r<d (11.0.8)
+ 4 LE(r/d) — E(arc sin d/a, r|d)]

and

(42 =y1-af (1-/1-@la))

0.50

Figure 126. Displacements. COD-field caused by the wedging stresses o for identical stress intensity
factors K.
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+— [E(dJr) — E(arc sin rfa, dJr) — (1 — d°JP)(K(d|r) — F(arc sinrja, d]r)] for r>d (11.0.7)

In eqs.(11.0.6) and (11.0.7) F and E are the first and second elliptical integrals and K and E are the
corresponding complete elliptical integrals.
Figure 125 shows the COD-field exclusively caused by the wedging stresses. In this represen-
tation the displacements are normalised by

Ern

§*=6—FT——
41 —vHaoy

(11.0.8)

in fig.125 the stress o, and in fig.126 the wedging stress intensity factor K;, were chosen to be
constant. |t can be seen that the crack-surface profile of the partially loaded crack deviates
strongly from the elliptical profile obtained in case of a crack loaded with constant stress over
the whole crack area (dashed line: dfa=1). Replacing the total crack-surface displacement by
the bridging stresses and use of eq.(11.0.4) yield

p o dp

Op 4(1“\/
50|n< aor> JJ“ — |dx+6,=0 (11.0.9)
x* — p?

where 6, is given by eqs.(11.0.5) and (11.0.6), (11.0.7). The solution of this integral equation
yields the distribution of the bridging stresses o, and by application of eq.(11.0.1) the bridging
stress intensity factor K, results. In order to solve eq.(11.0.9), one can apply the procedure of
successive approximation, which is well known from the numerical treatment of integral
equations. The estimation o,~0, exp( — 8,/d) may be used as a starting solution.

From the resulting bridging stress distribution the bridging stress intensity factor K;,, results ac-
cording to eq.(11.0.1) as

rog.dr
K pr=—2 i (11.0.10)
Jrma 32 _ r2
0
and the total stress intensity factor describing the stress state at the crack tip is
Kitip=Kiw+Kipr + Kipr<0) (11.0.11)

Under conditions of stable crack extension (as occurring during generation of a Knoop-crack) the
crack-tip stress intensity factor is constant and its value is called Kj

Ky up = Kio = const. (11.0.12)

The total wedging force F is proportional to the indentation load P, i.e.
F=aP (11.0.13)
where the factor « is a function of geometrical and frictional parameters.

The size of the zone where the wedging stresses act is proportional to the indentation depth and
can be expressed by the indentation load P and the hardness H of the ceramic as
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Figure 127. Crack size. Final crack size as a function of the applied indentation load (8g=1um).
d = peJPH (11.0.14)

Consequently the wedging stresses are independent of the indentation load P
(11.0.15)

and only dependent on the hardness H of the material.
Expanding the square-root of €q.(11.0.2) into a Taylor series gives an approximation of the wedg-

ing stress intensity factor

0.70-

0.60

d(log a)/d(log P)

-

50 100 150 700
P (N)

Slope of the straight lines in fig.127.

Figure 128. Crack size.
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Figure 129. COD-field. Displacements and bridging stresses for a Knoop indentation crack (a=0.2mm,
&o= 1um, P=100N).
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that is identical with the stress intensity factor for a penny-shaped crack opened by a central pair
of forces. Numerical calculations were performed with the parameters:

E=36:10°MPa, v=02, Ko=3MPa/m

The wedge size d was chosen as the short diagonal of the Knoop impression [85], [86]. The
reference dimensions for Knoop-cracks in AlLO; were taken from [88], [87] as a~250um for
P=100N. The bridging parameters oy, 69 were varied. The computations were carried out for
the case that the heavily damaged zone 0<r < d will not transfer cohesive bridging stresses.
The results are shown in in fig.127 where the final crack size is plotted as a function of the in-
dentation load P. As can be seen, the final crack size becomes lower with increasing maximum
bridging stress oq. The mean slopes - represented in fig.128 - decrease with increasing oq. Figure
129 shows the displacements and bridging stresses for a Knoop-crack of final crack size
a=0.2mm corresponding to an indentation load of P=100 N and bridging parameters o,=100
MPa, 60=1/Lm

The computations were performed under the condition that the damaged wedging zone will not
transfer cohesive bridging stresses.

Conclusion: The presence of bridging stresses has consequences on the generation of cracks
by Knoop indentation tests. The following conclusions can be drawn from the present analysis:

e The slope of the d( log a) vs d(log P) —plot deviates from the theoretical value 2/3.
*  Consequently, the value of “K,.” resulting from measured log(a) vs log(P) —curves must de-
pend on the indentation load.

130




DETERMINATION OF R-CURVES AND BRIDGING
STRESSES
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12. Measurement of R-curves in stable crack growth
tests

121 Definitions of several stress intensity factors

There is much interest in fracture mechanics of ceramics with a view to determining the R-
curves. A number of procedures are possible which yield different K, .y, values. Several applied
stress intensity factors will be defined below:

* Measurements of the true actual crack length a - for instance by use of a travelling micro-
scope - and knowledge of the actual load P or stress ., = P[(BW) yield the stress intensity
factor which is correct in terms of fracture mechanics

Ki appi = G appt Y(@) \/a— (12.1.1)

e Very often, the actual crack length is concluded from the global compliance of the specimen,
€q.(6.5.1), which increases with increasing crack length. This apparent crack length, denoted
by a*, is smaller than the real one (a*<a). The related stress intensity factor, calculated
with a*,

¢ [ %
Kiappi = @ appi Y(a*) a (12.1.2)

is consequently lower than the stress intensity factor calculated with a:

Combined with the Irwin formula, eq.(6.1.1), the energy release rate allows to define further
stress intensity factors. The basis of such evaluations are the load-displacement curves. They
can be measured as well as computed with eqgs.(6.1.4) and (6.1.5). Computed curves are shown
as examples in fig.130 for different crack lengths. The P — ,p —curves (Or o, — 61p —CUrves)
which would result in a controlled fracture test are found from the curves in fig.130 as the stress-
displacement combinations for which the condition K., = Ky is fulfilled. From fig.130 the values
for which K'y;, is equal to K’y were determined. For the following calculations K'x=1 was cho-
sen. By interpolating the computed points o,,, = f(8’) for the considered discrete crack lengths,
the curve of fig.131 resutis.

The real potential energy which leads to the energy release rate is illustrated in fig.131 as
hatched area. The energy release rate resulting from fig.131 is plotted in fig.132. Within the
error band of numerical computations we can conclude that - in agreement with eq.(6.2.26) - the
energy release rate is constant and the related stress intensity factor equais K.

° |f we ignore completely the non-linear load-displacement behaviour, we may interpret the
hatched area in fig.133 as the change of potential energy AU,.
The elastic energy and its increment are
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Figure 130. Opening of a bridged crack by externally applied stresses. Load-displacement curves for a

crack with bridging interactions according to eqs.(4.1.9) and (4.1.13), as/W=0.5 (loading: pure
tension), abscissa 6’ normalised according to eq.(6.5.5).

1 1
Wel=?P6LP = dWeI=-?(P déLP+6LPdP) (1213)

and the work of the external force is

dA =P ds;p (12.1.4)

The change of the potential energy is

U, = dA — aw = (P ds p— 22 ap (12.1.5)
P - ) L= P2 -

Indroducing the global compliance C = 8,5/P it results
dc =—1—daLP—iL§P— dP (12.1.6)
P P

and eq.(12.1.5) can be rewritten as

p2
dUp =5~ dC (12.4.7)

With the apparent crack length a* the corresponding energy release rate é becomes

A
G: o= ———

Bda* 2B ga

dU 2
p__ L (12.1.8)

From the compliance formula eq,(6'.5.2) we find

dC 2 2, % %
—_—— 12.1.9
FTEgY @) (12.1.9)
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Figure 131. Construction of the load-displacement curve under stable crack growth conditions. Load-dis-
placement curve for a controlled fracture test under tension with K’y=1; as/W=0.5; hatched
area: real potential energy dU,; 6*= displacement where K, =Ky is reached for the first time.

and the apparent stress intensity factor resulting from the Irwin formula

A A
Kiappi = E'G = 04pp; Y(@*)./a* (12.1.10)

is identical with K~/app/ defined by eq.{12.1.2).
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Figure 132, Energy release rate. Averaged energy release rate resuiting from the crack increments
(shaded areas) of fig.131, computed with eq.(6.2.1).
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6

Figure 133. Energy in a controlled fracture test. Definition of the apparent potential energy (schematic).

° A second possibility of defining an energy release rate is to use dU,/da, applying the phys-
ical crack depth a. The potential energy can be expressed by

aappl,c

_ 88" p ,
G = =W = d6" appi (12.1.11)

G appl

6

Figure 134. Energy in a controlled fracture test. Increment of apparent potential energy, in case the dis-
placements are shifted until the compliance is in agreement with the compliance of a crack
free of bridging interactions (schematic).
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For the straight lines in fig.133 it holds

08 1p  06p  'appl

P 32 Oupplc (12.1.12)
Evaluation of the integral gives
= Z:jg =%aapp,,c<ﬁ%:i> (12.1.13)
g == const
and the related stress intensity factor
Kappi = JE'G (12.1.14)

Since in the general case da*/da < 1 is fulfilled, one has to expect K < !23,,,,,.

* The slope of the straight lines in fig.134 defines the apparent crack length. If we shift the

displacements at a fixed load (or stress applied) to higher values § ( the arrow symbolises
the shifted displacements) until the slope of the new straight line is in agreement with the
compliance of the unbridged crack, (fig.134), it holds

8.p =P C(a) = 64pp BW C(a) (12.1.15)

The change of the apparent potential energy is

2_
2 /
N .. .-
= L T e el
&
e
‘| -
0 L ] N ] . I " |
40 50 60 .70 .80

a/W (a*/W)

Figure 135. Differently defined R-curves. Comparison of the correct R-curve (K, ,ppr: solid line) with appar-
ent stress intensity factors resulting from the load-displacement curve: a) K . (dashed curve),

b) Ra,,,,, {dash-dotted curve), in addition, the symbols show the apparent stress intensity factor

Ra,,,,/ plotted versus the apparent crack depth.
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Cappl,c

dU 96’ ,p
da” = BW (-—55— do’ appi (12.1.16)
6 = const '
0
and the straight lines provide
36’ 36 '
P LP 9 appl
ek ( e ampic (12.4.17)
G appl,c
From (12.1.15) we conclude
63 ac
( aaLP ) = BW 0ppic 5 (12.1.18)
o = const
Introducing (12.1.17) and (12.1.18) into (12.1.15) yields
du
P 1 2 ac
T =5 O appl e (12.1.19)
and with (6.5.2)
L dU
G = Bd;’ = o opp V(@) a (12.1.20)

The related stress intensity factor is

K = \/ZE’ = K} appl (12.1.24)

It is found to be identical with the applied siress intensity factor K; ., computed directly from
the crack length and load without consideration of the energy.

Finally, the following relation between the differently defined stress intensity factors holds:

— A ~ e d

Figure 135 gives a comparison of these stress intensity factors.
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12.2 Determination of R-curves via compliance

12.2.1 Testing devices

In controlled fracture tests a test arrangement with a very low compliance must be applied. In
order to perform such tests with extremely rigid testing devices Maniette et al. [89] proposed a
compact tension test in which the fracture mechanics CT-specimen is combined with a parallel
spring which allows stable crack propagation. For tension tests with centre- and edge-cracked
specimens a testing device proposed by Markowski [90] seems to be appropriate.

* traverse
(L
load cell — 1
specimen £3 1
O __® 0O

displacement N
pick—up

Figure 136. Testing device for R-curve measurements. Simple testing device for stable crack growth mea-
surements [91].

The author used a simple 3-point-bending test arrangement (fig.136). A specimen with a saw-cut
of ~50um width is loaded with the externally applied load F. If the compliance of the frame is
much lower than the specimen compliance, the fracture test is carried out almost completely
displacement controlled. The effective load P acting on the specimen is measured with the load-
cell and the displacement is recorded by an inductive displacement pick-up. In order to avoid
additional compliances in the inner load circuit, it is recommended to use a load-cell made of
quartz. If a testing machine is not available, the modification represented in fig.137 can be ap-
plied. In this device the load is generated by a simple screw. Figure 138 shows a typical load vs.
displacement curve containing the specimen deformations as well as the roller flattening and
remaining elastical deformations of the testing device. The actual crack length can be deter-
mined from the change of compliance in the controlled fracture test. Since the compliance is
affected by the bridging stresses, an optical crack-length measurement may be of advantage, but
the experimental effort drastically increases. In this investigation the compliance method was ap-
plied since the R-curves taken from the literature were evaluated with the compliance method,
too0.
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Figure 137. Testing device for R-curve measurements. Modified testing device for use without a testing
machine [91].

12.2.2 Evaluation of the load-displacement curve

Figure 138 shows a load-displacement curve obtained for coarse-grained ALO; as measured. The
record was obtained in the loading device represented in fig.136. In order to find the origin for
load and displacements and to exclude the non-linear contribution of the Hertzian contact be-
tween the specimen and supporting rollers, the straight-line behaviour observed at higher loads
has to be extrapolated to zero load (see fig.139). The intersection with the abscissa is the basis
for the further evaluations.

Then the linear contribution of the rollers and the elastic deformation of the testing device to the
dispiacements has to be eliminated. Full compliance of the test device with the specimen results
from the following contributions:

e The compliance of the uncracked specimen C,,
= the compliance C,, caused by the initial crack (or saw-cut) of length ay,

e the contribution of the crack increment Aa =a — a; after the onset of crack extension, de-
noted C,,, and t

¢ the ’parasitic’ compliance C,., summarising additional elastic settling and elastic deforma-
tions of the supporting rollers and the supporting structure, i.e.

Creas = Co+ Cao + Caa+ Cpar (12.2.1)

For the determination of the R-curve only the displacements according to the compliarice

C = Cpeas — Cpar (12.2.2)

are of interest. The parasitic compliance can be determined from the initial straight-line behavi-
our at a =a, as
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Load-displacement curve for coarse-grained A/;O;

Experimental load-displacement curve.
measured with the testing device shown in fig.136; the circle indicates the first deviation from

the straight line.
Cpar = Cmeas— Co— Ca (122.3)
since Co and C,, are known. The compliance of an uncracked bending bar is given by
2
L L 1+ W '
Co= 2BE [ aw T (12.2.4)
P(N)
[
3o P,
\
A
AW sheared by
20| // “‘ 'parasitic’
/ \  compliance
! |‘\
10" ‘l \\
/ \N
4
11
) i L A 2 ]
20 40 60
(pm)

Oip

Load-displacement-curve after excluding ’parasitic’ com-

Figure 139. Corrected load-displacement curve.
pliance.
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Figure 140. Three-point bending test. Geometrical data.

with « = afW. For the geometric data see fig.140. The contribution of the initial crack (or notch)
results as

] 2

2 o
c,=b-L= fFQ o do (12.2.5)
2 w2EB Jo

For the calculation of the crack length increment Aa via compliance we can use

6
5F 08 P
S~ @ 'A:A:AQA‘
L 4 ® 2 st"
'_E e a B
S
O 3 B
s £
< -H---= Kpp
w2t
'
1k
C ] . | 4 ]
40 .60 .80 1.00
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Figure 141. Alumina (batch 1). R-curves measured with the test device (fig.136); coarse-grained A/;O;.
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Figure 142. Alumina (batch 2). R-curves measured with the test device (fig.136); coarse-grained A/,Oj;
each symbol comprises four single tests.

) og +Aa
CA3=% L f F2 o do! (12.2.6)

g

from which A« and Aa may be obtained by a zero routine. The numerical integrations can be
avoided by use of polynomial representations of the compliance [92].

Co="5 WLQ‘ZB (72 )ZZBM (12.2.7)

with the coefficients listed in table 8 in the Appendix. The corrected load-displacement curve is
represented in fig.139 as the solid curve. The actual compliance defined as

C = 6,p/P (12.2.8)

then provides the actual crack length and together with the actual load (or the actual bending
stress) the applied stress intensity factor K., can be computed using eq.(4.3.2). The analysis is
greatly simplified if explicit stress intensity factor solutions are applied. In the case of 3-point
bending it is recommended to use for instance eq.(12.1.2) with the geometric function given by
Srawley and Gross [93].
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Figure 143. Zirconia. R-curve for MgO-doped zirconia; diferent symbols for different specimens.

12.3 Results for some ceramics

A number of ceramics have been tested and several R-curves obtained through compliance eval-
uation are plotted in figs.141 -144. The specimens were bending bars with the dimensions:
W=4.5mm, B=3.5mm and length ~45mm, containing a saw cut of 50um.

The materials tested were:

e Alumina: two batches of 99.6%A/,0;, (Frialit/Degussit, Friedrichsfeld AG, Mannheim) with a
mean grain size of 20um,

&
\ »
> g HPSN: Y
2 7fopen: Y—-doped I%Mé} 86
= 6_sc'lid: MgO—doped %
51
x4
X 3l
9l
1+
— ] . i L | s 1 L |
Yo 20 46 80 .80 1.0

normalised crack length  (a/W)

Figure 144. Hot-pressed silicon nitride. R-curves for two types of HPSN.
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Figure 145. R-curves for CfC. Crack perpendicular to the fiber direction.

J Zirconia ceramics:

— MgO-doped ZrO,, PSZ ZNA40,
— Y.0s-doped ZrO,, PSZ ZN100,

both manufactured by Feldmiihle AG, Plochingen, Germany. A controlled fracture test could
be carried out only for the MgO-doped material. In case of the PSZ ZN100 fracture was
mostly instable and controlled fracture was found only at a relative crack length close to
ajW=1.

e Hot-pressed silicon nitride

—  2.5%-MgO-doped HPSN, NH206, density =3.20 g/cm?, Feldmuhie AG, Plochingen,
Y.0s-doped HPSN, NH208, Annawerk, Rédental.

e Carbon-fiber reinforced carbon (CfC), with a saw cut perpendicular to the fiber direction.

It becomes obvious from the two curves for alumina shown in fig.142 that the R-curve is not a
material property, but depends strongly on the initial crack size.

12.4 An experimental procedure for the determination of Kj,

The stress intensity factor K3 which is characteristic of the onset of crack extension can, in prin-
viple, be determined from the load-displacement curve as the first deviation from the initial
straight line. Unfortunately, this point is not sharply defined and one has to expect a high margin
of uncertainty.

An experimental procedure is proposed which permits a very high resolution of the first devi-
ation from the straight-line behaviour. Figure 146 shows a notched bending bar with two strain
gauges at the surface in the compression zone. One of them is applied directly opposite the
notch (1), the second (2) at a remote point, Each strain gauge is the active arm of a quarter-
bridge circuit. Under bending load the strain gauge (1) will produce a higher signal U, than the
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other sensor U,, and the ratio of both signals U,/U, is dependent only on the geometrical condi-
tions and not on the actual load.

Figure 146. Measurement of the onset of crack extension. A test method for the measurement of Ky
bending specimen with strain gauges.

Both signals are differently amplified in such a way that the output signals become identical. The
output signals of the amplifiers are connected in opposition and, consequently, no signal results.
By application of a small load the degree of amplification can be adjusted very sensitively. In a
fracture test any change of the geometric proportions, for instance of the crack length, is bound
to detune the electric circuit and will cause an electrical signal, which may be strongly amplified.
In transformation-toughened materials also changes in the size of the transformation zone will

affect the signal.
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12.5 Proposal for calculation of the R-curve from measured
load-displacement curves

12.5.1 Basic considerations

According to the literature, different procedures are applied for determination of R-curves from
controlled fracture tests. From a test in which the load is recorded and the crack length is direct-
ly observed with a travelling microscope all information is available which is needed to calculate
the applied stress intensity factor K;., and to plot the K.,y — Aa —curve. In many cases, the
crack length is obtained indirectly from the specimen compliance which increases with increas-
ing crack length. This method is easy to perform but, unfortunately, in cases of strong R-curve
behaviour the results may become wrong, since the reason for the R-curve - for instance the
bridging stresses - will affect the compliance, too. Therefore, a procedure will be described in
this section which allows the correct R-curve to be determined from a measured load-displace-
ment curve,

The following considerations are based on eq.(4.3.2) which is mostly read from right to left: if a
stress distribution along the crack faces is given, a stress intensity factor K, results. These
stresses may be stresses in the uncracked body or real crack surface loadings. But eq.(4.3.2) is
a fundamental relationship between crack-surface stresses and the stress intensity factor and
can be read also in the inverse direction: any stress intensity factor K, must be related to a
stress distribution ¢ along the crack line. If this stress distribution is known, all fracture-mechan-
ical consequences are known, too. The real physical reasons of these stresses are actually not
of interest and, therefore, we will sum up the real stresses (for instance bridging stresses) and
the virtual stresses (for exampie residual stresses due to phase transformations acting along the
crack line after closure of the crack) by the effective stress ogmer(X)

a

Kshiela =f Oshiela N(X,a) dx (12.5.1)
0

We will try to determine in the following section such an effective stress distribution oenie(X)
along the crack faces that vields the same load-displacement curve as measured in a real exper-
iment. The stress intensity factor resulting from eq.{12.5.1) then describes the correct R-curve.

12.5.2 Application of a power series procedure

The R-curve is fully known when the distribution of the shielding stresses along the crack is
known. The distribution of the shielding stresses depends on the actual crack length a and the
location x, and a power-series expansion with respect to a and x provides

e ]
Oopiera (@) = D Ala—x)a” (12.5.2)
wv=0
This most general representation is appropriate for all shielding effects. Considering the numer-
ical effort, it may be of advantage to use set-ups in which the real shielding behaviour (if known)
is modelled. This will be outlined in Section 12.5.3. Introducing the expansion eq.(12.5.2) into

eq.{4.3.5) and taking into account that

0 = Oappl T Oshied (12.5.3)
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Figure 147. Evaluation of R-curves. Comparison of calculated and measured load-displacement data; illus-
tration for the least-squares procedure.

gives the crack opening displacements

0= Sappi+ Er Z f f h(a' x)h(@’, x')(a — x')* a*da’dx’ (12.5.4)
aPP E' ,
wv= max(x,x")
with
% papa o
Gappl = [ f h(a' x)h(@", X’)(1 -2 )da’dx’ (12.5.5)
app E . 0 “max(x,x") w

where o* is the outer fiber bending stress. The displacements of the loading points result as
[47]
3L ¢
bp="5| (1-2% )8 ax (12.5.6)
w? Jg w

and introducing eq.{12.5.5) into (12.5.6) yields

o* x(a) + Z A (@) (12.5.7)

#,v=0

op=

with

m

x(a) = f:<1 —2 X >[ f: faax(x,X’>h(al,X)h(a”X,)(1 —2XW'>da'dx']dx (12.5.8)
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max(x,x’)

A,(@) = J:(1 -2 VXV- )[jafa h(a’ x)h(a’, x")(a — x')" a’da’dx’ | dx (12.5.9)
0

The externally applied load is related to the stresses o,y by

2
p=2 o+ EW (12.5.10)

During stable crack growth the shielding stress intensity factor fulfills the condition

Kitip = Kio = Kyappr + Kshien (12.5.11)

which by use of (12.5.2) in (4.3.2) reads

[e o3
Y A a) - @’ WA = Ky — *Y (12.5.12)
/’4)":0

with

a
x1,0@) = f (a — x) h(x,a) dx (12.5.13)
0
and the geometric function for bending, which is given by

a
Y = — 1—2-=- ) h(x,a) dx (12.5.14)
bend \/a— 0 W

For calculation of the R-curve the coefficients A,, have to be determined. This can be done by
solving a system of linear equations. Therefore, the number of terms in the power series is
restricted to a finite value. If we choose for example as an upper limit 4 = v = n, we first have to
compute the (n + 2)(n + 1)/2 functions for 4,,(a) and y,(a).

A least-squares procedure will be proposed here for determination of the coefficients. With an
arbitrarily given set of (n + 2)(n + 1)/2 coefficients A,, first the bending stress o* is computed with
€q.(12.5.12) and then the loading-point displacements are calculated by eq.(12.5.7). In fig.147 the
resulting loading-point displacement §,» for a given value of crack length is introduced. From
eqs.(12.5.12) and (12.5.10) the corresponding force P at the loading points is obtained and also
entered in fig.147. Both values yield the computed point (P, 6,»). Then the deviation between the
calculated load and the measured load is AP = Ppeas — Peaie.  In a least-squares procedure the
best set of coefficients A,, is determined from the condition

E:(P,,mas —P_aie)? = minimum (12.5.15)
Q)

A computer routine appropriate for such calculations is proposed in the Harwell Subroutine Li-
brary (Subroutine VA02A).
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12.5.3 Special set-ups reducing the costs of computation

With a view to the practical application of the method described before it must be noted that a
great number of terms in eq.(12.5.2) are necessary to approximate the stiress distribution suffi-
ciently if steps or steep gradients in the stress distribution occur relatively far away from the
crack tip. This may require high numerical efforts, for instance in case of materials with R-curve
effects caused by bridging stresses, since in that case a step in the stress distribution occurs at
the notch root of the initial saw-cut, i.e. at x = ay.

if only bridging stresses are responsible for the R-curve, the set-up in eq.(12.5.2) can be modified
as

o0
Z B,(a—xfa" for x>ag
0

Oshield (X.8) = < mv= (12.5.16)
0 for X < ag
In this case, eq.(12.5.9) has to be replaced by
a apsa
Ma) = f (1 —27’\‘/-) f f h(@ x)h@’, x')a — x") a’da’dx’ |dx  (12.5.17)
0 0 “max(x,x’ > ag)
and eq.(12.5.13) by
a
x,08) = J (@ — )" h(x,a) dx (12.5.18)

a

For the most general case of shielding stresses a combination of the two limit cases mentioned
before is recommended:
Sshieid = B Tspistax<a) T (1= B) Oshielaa<x<a) - 0<B<1 (12.5.19)

The parameter § results automatically from the least-squares routine,

12.5.4 Application of step-shaped stress distributions

As described in Section 13.2, the unknown stress distribution may be described by a decompos-
ition into a number of strips with constant siress o;. If the border between two strips coincides
with a step in stresses, no problems will occur. The stress within one sirip may be expanded by

o=y Cha’ (12.5.20)

Then the crack opening displacements caused by these stresses are

N

M
)= 2. Y Cya" 80K X X, 4 1.8) (12.5.21)

i=1v=0
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The further procedure is similar to that in Section 12.5.2.

12.5.5 An example of R-curve determination

12.5.5.1 Some remarks on the fitting procedure

The application of the least-squares procedure described before calls for some experience and
will hardly be successful when used for the first time. Two typical problems should be men-
tioned here. Depending on the arbitrarily chosen starting vatues, it may be that:

¢ the calculated loads fit excellently the measured curve, but the result does not fulfill the sim-
ple requirement

0 < 6y < 8 < ... <8y for a; < ay < a3 < ... <ay (12.5.22)

o the stress distribution in the crack-propagation zone may result, at least partially, as positive
stresses (note that bridging stresses are negative!).

In order to avoid such curious results, it is recommended to use a weight g; in the least-squares
routine according to

N
Z(Pmeas,i_-Pcalc,i)2 g; = minimum (12.5.23)

f=1

The weight g; is for example chosen as g;=1 in the normal case and will be automatically in-
creased to g;=100 if in the actual step positive shielding stresses occur or if the condition in
eq.(12.2.1) is violated.

The effort in numerical computations can be reduced if the controlled fracture test is interrupted
at a certain crack length which, can be measured easily under the light microscope. Since the
related load and displacement are known, a very high weight can be applied in eq.(12.2.2) to
satisfy this additional condition.

12.5.5.2 Results

As an example of the procedure described before the load-displacement curve, fig.148, obtained
for coarse-grained ALO; in a four-point bending test will be analysed. The load-displacement
curve sheared by the initial compliance (and only containing the contribution of the crack exten-
sion Aa) is given in fig.149. In order to allow simple computations to be made, the coefficients
A(@), x(a) and y,(a) were computed for a number of different crack lengths and entered in
Table 9 in the Appendix. If additional crack lengths are necessary - and the direct evaluation of
the integrals seems to be too difficult - these tables may be interpolated with respect to a/W by
cubic splines. For the least-squares procedure the special set-up in eq.(12.5.16) was applied.
The integrals 4,, x,.. ¥ and Y were evaluated for 12 different crack lengths selected, namely for
af{lW=0.505, 0.51,0.52,0.53,0.54,0.55,0.56,0.575,0.60,0.625,0.65,0.675,0.70 and 0.725.

The least-squares procedure ended up with the set of the first 10 coefficients A,, with p +v <3
which were used to calculate the load-displacement curve. In fig.150 the result is shown as open
squares together with the measured curve. The resulting R-curve is shown in fig.151 as the solid
line. An evaluation based on the compliance method, i.e. on eq.(12.5.7) in the simplified form

3L %
b p= Y o” x(a) (12.5.24)
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Figure 148. Measured load-displacement curve. Load-displacement curve for coarse-grained A/,O; (batch
2).

yields the apparent R-curve plotted additionally as circles in fig.151. In the first range of crack
extension, 0.5 < a/W < 0.6, the two resuits are nearly identical. At larger crack extensions the
apparent R-curve is significantly lower as has been expected from the calculations made in Sec-
tion 12.1 and plotted in fig.135. A second specimen of the same coarse-grained Al,O; was tested
in a controlled fracture test and suspended after a certain amount of crack propagation. The
actual physical crack iength was measured after fracture. Therefore, one may put a droplet of
ink into the initial notch after unloading and break the specimen when the ink is dry. The actual
stress intensity factor computed with the load at the moment of unioading for the real crack

c 2 ] . } ) PR | L | 1

0 10 20 3‘0 40 50
displacement (um)

Figure 149. Sheared load-displacement curve. Load-displacement curve after exclusion of the ’parasitic’
compliance, the compliance of the unnotched specimen, and the compliance of the crack with
initial crack fength aq. (chosen for dernonstration of the method proposed in Section 12.5.2).
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Figure 150. Comparison between calculated and measured load-displacement curves, Comparison of the
calculated load-displacement curve obtained with the procedure described in section 12.5.2
(squares) with the measured curve (solid line).

length is entered as a solid square in fig.151. It becomes obvious from the dotted line that this
value is consistent with the general trend of the computed R-curve represented by the solid line.
The apparent R-curve value resulting from an evaluation via compliance is given by the open
square which is in agreement with the circles, taking into account the scatter of several speci-
mens. The shielding stresses, calculated with eq.(12.5.2) are shown in fig.152.
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Figure 151. Comparison of R-curves. Comparison of the R-curve obtained with the procedure of in sec-
tion 12.5.2 (solid line) with the R-curve based on the linear-elastic compliance (circles); solid
square: unloaded specimen with measured crack length, open square: unloaded specimen with
compliance evaluation.
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Figure 152. Stress distribution in the crack propagation zone. Stresses for crack extensions of
Aa/W=0.05,0.1 and 0.15.

In principle, it is possibie to derive the bridging-stress relation by computing the local crack
opening displacements using eq.(12.5.4) and relating it to the stresses obtained by eq.(12.5.2). It
should be mentioned that only a rough estimate of the relation o, =f(§) can be expected ai-
though the global loading-point displacements and, consequently, the R-curve were sufficiently
approximated. The reason is the limited number of coefficients A,, available for the represen-
tation of the x-dependency of the stress distribution. In our case, the stress distribution along the
crack-propagation line is described only by a polynomial of 3rd degree that cannot represent
complicate stress distributions in detail. On the other hand, one should have in mind that for 6,s
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Figure 153. Shielding displacements. Displacements caused by the shielding stresses for different crack
sizes.
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Figure 154. Applied and total displacements. Dashed lines: displacements caused by the applied stress-
es. Solid lines: total displacements as the superposition of applied and shielding stresses.

and Ko only integrated and, hence “smoothed” stresses influence the result. Nevertheless,
the author tried to evaluate o, =f(8). In a first step, the displacements caused by the shielding
stresses were computed with eq.(12.5.5) and represented in fig.153. In addition, the displace-
ments due fo the applied stresses were computed, €q.(12.5.7), and entered as dashed curves in
fig.154. The total displacements obtained by superposition of the “applied displacements” and
the “shielding displacements” are traced as solid lines. Finally, the shielding-stress relation re-
sults by plotting the shielding stresses versus the total displacements, as shown in fig.155.
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Figure 155. Shielding stresses. Shieldihg -(bridging)-stresses as a function of total displacement.
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12.6 Determination of crack resistance by optical crack length
measurement

The procedure described before was developed to determine the R-curve for the case that only
the load-displacement curve has been recorded during a controlled fracture test. The determi-
nation of the bridging-stress relation by the previous analysis needs much numerical effort and
is associated with an unknown margin of uncertainty.

The evaluation of the bridging stresses becomes much easier if the crack length has been meas-
ured simultaneously with a microscope. It will be explained in this section how such information
can be used to derive the bridging-stress relation.
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Figure 156. R-curve for Al,03. R-curves for coarse-grained A/,O3 (batch 1). Open symbols: evaluation via
compliance for one single specimen. Closed symbols: optical crack-length evaluation after sus-
pending four specimens at different crack lengths.

In fig.156 R-curves are shown for five different specimens made from coarse-grained Al,O; (batch
1). Four of the tests were interrupted after different amounts of crack propagation and broken
after introducing a droplet of ink into the crack region. The optically measured crack lengths
yield the Kiz-values represented by the closed symbols, whilst the R-curve data derived via com-
pliance are represented by the open symbols. The insert in fig.156 shows the differences be-
tween crack lengths obtained by optical and by compliance procedures.

The bridging stresses can be obtained also from the crack-resistance curves based on the phys-
ically correct crack length a,:. Before starting the numerical analysis, the R-curve data obtained
by optical crack length measurement may be “smoothed” to reduce the scatter caused by the
different specimens. The mean curve is given by the dashed line. If this curve has been deter-
mined, we can use the same procedure as described in Section 12.5, apart from the special con-
siderations mentioned in Subsection 12.5.5.1. Consequently, the computation becomes much ea-
sier.
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13. Methods for the determination of bridging
stresses

13.1 Determination of bridging stress parameters for a given
relation

A first possibility to determine the bridging relation is to prescribe the type of relation and to
determine its parameters. The procedure will be outlined with R-curves from the literature. The
observed R-curves (or K —curves) have often been described by a relation between the bridg-
ing stress intensity factor K, and the crack extension Aa, i.e. K, =fAa). This would be an
appropriate description if the R-curve were a materia! property. It has been concluded from ex-
perimental results [12] and theoretical considerations [19], [94] that the R-curve is not a mateti-
al property but must depend on the specimen geometry, the initial crack length, the type of load-
ing (tension, bending), the conditions of crack propagation (constant load test, stable crack
growth test), and the initial value of the stress intensity factor in a constant load test. Due to this
fact the increase in crack resistance must be characterised directly by the bridging law o, = (J)
which relates the bridging stresses o,, to the crack surface displacements 4.

In the following considerations the special bridging relation from section 4.1 is used

O’br=0'oexp(—(s/6o) (1311)

In order to make the procedure easier the basic relations - given already in earlier sections - are
here listed once more. The bridging stresses are responsible for the bridging stress intensity
factor K,

a
X a
K; br:fo h(5, W)ab,(x) dx (13.1.2)
The externally applied stresses o, give rise to the applied stress intensity factor K .

a
X a
Klappl=J;) h("é"W)o'appl(x) dx (1313)

The effective stress intensity factor Ky, (describing the stresses at the crack tip) results from the
principle of superposition as

Ky tip=Kiappr = 1Kyl (13.1.4)
A negative sign is used for Kj, because the compressive bridging stresses are used as positive

values. Finally, the crack surface displacements can be calculated by
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5(x) = —E1—- fo h(a' X)h(@', X') Lo appi(X’) — op(8(x’)) Ida’dx’ (13.1.5)

max(x,x’)

The procedure of evaluating the stress intensity factors K;,, and K, contains the following steps:

1. Solution of the integral equation (13.1,5) for the given applied stresses and the bridging
siresses described by eq.(13.1.1). The result is the distribution of the displacements 6(x).

2. Introducing é in eq.(13.1.1) yields the bridging stresses o,,.

3. Inserting the bridging stresses in eq.(13.1.2) gives the bridging stress intensity factor K,
and from the applied stresses the related applied stress intensity factor K, can be ob-
tained using eq.(13.1.3).

4. The crack tip stress intensity factor K, finally results from eq.(13.1.4).

In [18] this procedure was performed for bending load and different a,/W. in order to reduce the
efforts of computation the resulting stress intensity factors were tabulated in the form

K’ appr =K' tip, @]W, 6'0) (13.1.6)

where the stress intensity factors are normalised with respect to the maximum bridging stress o,
and the specimens width W as

K’ =K[(6o /W) (13.1.7)
The values of 6, were scaled by
EI
= 13.1.8
%' oW % ( )

Parabolic interpolation of the tabulated data allows to determine the stress intensity factors for a
range of relevant vaiues of K; ., @/W and 6.

The weight-function based procedure described above is applied to determine the parameters (
oo, &) Of the bridging stress reiation from experimental data measured by the author and from
Kir-curves available in the literature.

13.1.1 Determination of parameters for the bridging stress relation

The bridging stresses can be obtained from a test performed under increasing load on a cracked
specimen. The test results are usually presented as K., versus crack extension Aa. In a stable
crack-growth iest the crack-tip stress intensity factor Ky, fulfills the condition of crack propa-
gation

Kitip =Ko (13.1.9)

where Kp corresponds to the initial value of the Kg-curve measured at Aa =0 (see fig.2). If Kjapps
is known, theoretical Kiz-curves follow as a function of K4,

Kir,catc = K1 appi(K; tip» @l W, 60) IK p (13.1.10)
1tip = Ko

or with the function fin eq.(13.1.6)
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Kir,caic = ooy W (Kol ao/W , a/W, 8¢) (13.1.11)

considering the normalisation (13.1.7) for K, Due to the approximately square-root shaped
Kir-curves for Aa — 0, the value Ky, can hardly be measured in a stable crack growth test. There-
fore, very often the value of K, has also to be considered as an unknown parameter.

In order to determine the unknown parameters oy, 6o, Ko, @ least-squares procedure can be ap-
plied. The procedure is described by the following steps:

1. Starting with a first estimation of the parameters the normalised stress intensity factor K'iy,
is computed by

K') tip = Kiol (o0 (13.1.12)

2. Parabolic interpolation of tables in [18] using bicubic splines for ajW, K’y and cubic splines
for &'q yields the Kijz-curve from eq.(13.1.11) for the actual parameter set oy, d¢, Kpo.

3. The least-squares routine compares the calculated R-curve with the experimental R-curve
and determines the sum of squares according to

2
% = Z(K/R,ca/c — Kig,exp) (13.1.13)

The routine changes the parameter set (oo, 80, Kio) as long as a minimum of 82 is reached. In
this way, the best parameter set in least-squares terms is determined. For practical use the
Harwell-Routine VAO2A may be recommended.

(MPa m'/2)
=

KIR
N

Yo 20 40 60 8O  1.00
normalised crack length  (a/W)

Figure 157. R-curves for alumina. R-curves measured by Steinbrech et al. [12] compared with curves
calculated with the parameters from the least-squares procedure, (solid curve: fitted R-curve,
dashed curves: predicted R-curves).

A series of R-curve data for coarse-grained A,O; has been given by Steinbrech et al. [12]. The
original data expressed by energy release rates were converted with (E=360GPa, v=0.22) into
Kir data. Figure 157 shows the data measured with specimens of W=7mm thickness. As the
result of the fitting-procedure performed with the data for a,/W=0.4 it was found:
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Figure 158. R-curve for alumina. R-curves represented in fig.158, compared with curves calculated with
the parameters from the least-squares procedure, (dashed curve: fitted R-curve).

og=42MPa , 65=0.41um , K;g=2.4MPa./m

The fitting curve corresponding to these parameters is plotted as a solid line in fig.157. By use
of this parameter set also the R-curves for a,/W =0.2 and 0.6 were calculated. The resulis are
introduced in fig.157 as dashed lines. The agreement is excellent for a, = 0.6, and also for
a/W = 0.2 the experimental results can be described well. But for large crack extension devi-
ations are evident,
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Figure 159. R-curves at elevated temperatures. R-curves for A/,O; at different temperatures measured by
Mundry [95].
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Figure 160. Normalised master-curve. R-curves of fig.159 in a normalised representation, compared with
curves calculated with the parameters from the least-squares procedure (solid curve).

R-curve measurements made on coarse grained AlO; at elevated temperaiures were reporied
by Mundry [95]. The material (AF997, Desmarquest) showed a mean grain size of 16um. After
recalculation in terms of stress intensity factors using the Young’s moduli 368GPa for room tem-
perature, 335GPa for 700°C and 278GPa for 1000°C ([95]), the R-curves in fig.159 were obtained.

Grain - Ko
Method size (MPa) 6o (um) (MPaﬁ) n | IgA* | fig.162
{(pm)
Kiappt — Aa [12] [18] 17 42 0.41 2.5 1
dafdt — Ky e [18] 20 46.4 0.95 25 | -2.97 (2)
strength[g;s]tribution 20 120 1
dafdt — K app [18] 3.2 88.8 0.224 25 | -0.7 (3)
K oppt — Aa [72] 44 0.25 25 (4)
Kiappr — Aa [72] [95] 16 60.3 0.53 2,95 (5)

Table 3. Fracture mechanical data. Numbers in the last column refer to fig.162; (/) this material shows
an inhomogeneous grain size distribution with maximum grains of ~25um grain size.

The fitting-procedure was applied under the assumption that &, is independent of temperature.
The room-temperature data were found to be

oo =60.3MPa , 6,=0.53um , K,y =2.95MPa./m

Figure 160 shows the data for all temperatures in a normalised representation. [n addition, the
curve computed with the fitted bridging parameters is shown in fig.160. The agreement is very
good. The temperature dependencies of oy and Kj, are shown in fig.161. Both fracture mechan-
ical parameters decrease with increasing temperature. The nearly linear decrease of the maxi-
mum bridging stresses oy(T) indicates that there is a contribution to ¢, due to temperature de-
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Figure 161. R-curve parameters. Stress intensity factor Ky for the onset of stable crack propagation and
maximum bridging stress o¢ vs. temperature.

pendent internal stresses which are caused by the anisotropy of the thermal expansion coeffi-
cient in ALO,. The reduction of internal stresses between the grains may also be responsible for

the decreasing K.

materials
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Figure 162. Bridging relations. Bridging relations from macrocracks (numbers refer to Table 3)
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13.1.2 Evaluation of bridging parameters from constant load tests

The relationship between crack growth rate and stress intensity factor can be determined by ap-
plying a load to specimens with macrocracks and measuring the crack growth directly or indi-
rectly from the change of the compliance of the specimens. Other methods are using specimens
with natural flaws applying indirect fracture mechanics methods to obtain the da/dt — K-relation.

Assuming a power-law relation between dajdt and K,

da _ pen _ ax( K"
%2 _ Ak = A%( Ko ) (13.1.15)

the parameters A (or A*) and n can be obtained from the experimentally obtained relation be-
tween the fracture stress and the loading rate (dynamic bending test) or from the relation be-
tween lifetime and stress. A modified lifetime method which does not require the assumption of
a power law was developed in [96].

It was shown by several authors [97], [98], [99], [100], that discrepancies between results from
specimens with macrocracks and from specimens with natural flaws can occur. This behaviour
can be related to the increase in crack growth resistance with increasing crack extension.

In this section resuits of crack growth measurements for alumina from specimens with macro-
and microcracks are compared. From the results the crack growth resistance curve is evaluated.
The tests with macrocracks were performed with single-edge-notched specimens of size
3.5%4.5x50mm. The notch in the center of the specimen was prepared with a diamond saw. The
notch depth was 2.2454-0.01mm, the notch width 50um. The specimens were loaded in three-
point bending with a constant load P. The distance of the loading rollers was 45mm. The tests
have been performed at room temperature in normal air environment for material | and in water
for material It.

The time dependent displacement § was measured as shown in fig.163 in the center of the speci-
men. For some tests the crack length was also measured at the surface using a travelling micro-
scope. It was observed that immediately after load application several cracks developed simul-
taneously. After some crack extension only one of them continued to propagate.

The tests with specimens containing natural flaws were obtained from the scatter of the lifetime
of tests with constant load applying the modified lifetime method [96]. The results represent the
initial crack growth rate of natural cracks at the beginning of a constant load test. The details of
the evaluation are published elsewhere [7],[101]. Here only the final results are reported.

3. Experimental results and data evaluation

An example of the change of the displacement Aé with time is shown in in fig.163. The general
trend is first a decrease in the displacement rate dAd/dt and a steep increase before final frac-
ture. In some specimens with low loads crack arrest was observed. From the displacement the
crack length a and from the crack length a the stress intensity factor K, was calculated.

In a first approximation the crack length has been evaluated by linear-elastic analysis from the
compliance neglecting the effect of R-curve.

In fig.163. the change in the crack length Aa..m, obtained from the change of the compliance with
time is plotted versus the optically measured length of the dominating crack Aa,: for a specimen
with a load corresponding to an initial stress intensity factor of K;/Ki.=0.8. For small Aa the com-
pliance method leads to an overestimation and for larger Aa to an underestimation of the op-
tically measured crack length. This behaviour is in agreement with measurements reported by
Hubner and Jillek [2].

The overestimation could result from the development of several small cracks shortly after load
application, The underestimation obviously is related to crack border interactions leading to the
R-curve behaviour as described in section 4.

In the used procedure the two methods were combined. Direct observation of the crack tip lo-
cation in longer time steps together with the continuously recorded displacements in the load
line provide all information necessary to determine v-K-curves.
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Figure 163. Constant load test. Displacement measurements in constant load tests with notched bending
bars.

The fracture toughness obtained from 4-point-bending tests with a saw cut of 50um width (SENB)
is introduced in order to show that the stress intensity factors K, . occuring in the static tests
can be significantly higher than the “fracture toughness”.

In fig.165 da/dt — K, ,p-curves for different applied stresses are plotted with the crack length ob-
tained from acmp. TWo typical types of daj/dt — Ki-curves can be seen. Tests with low initial stress
intensity factors show first a decrease of the crack growth rate with increasing crack length and
therefore increasing K. The crack growth rate drops by several orders of magnitude within a
small amount of crack extension. After a large range with nearly constant crack growth rate the
crack growth rate increases until final fracture. For the lowest K;; crack arrest was observed.
Cracks starting with a high initial siress intensity factor K (caused by a higher load applied)
exhibit an approximatively constant crack growth rate until an increase to final fracture.

Figure 164 also contains the results of tests with natural cracks from [7]. These resulis can be
described by eq.(13.1.15) with A*=5 . 10~*m/s, n=38.6.

Results of crack growth measurements for alumina from specimens with macrocracks are re-
ported in [20]. Two commercially available materials were investigated:

e material | : 99.6%-AL0; K. = 3.3MPa./m , average grain size 20um.
¢«  material ll: 99.6%-AL0; (hipped) K,.=4MPa./m ; this material shows an inhomogeneous
grain size distribution with a mean grain size of 3.2um and maximum grains of ~25um size.

The results reported in [20] were obtained with single-edge notched specimens, 3.5x4.5x50mm in
size, loaded in three-point bending with a constant load. The notch in the center of the speci-
men was prepared with a diamond saw. The notch depth was 2.245+0.01mm, the notch width
50um.

In figs.165 and 166da/df — K;.prcurves are plotted for different stresses applied. Two types of
da/dt — Ki~curves can be seen. First, a decrease of the crack growth rate with increasing crack
length and therefore increasing K., is obvious. The crack growth rate drops by several orders
of magnitude within a small amount of crack extension. After a large range with a nearly con-
stant crack growth rate the crack growth rate increases until final fracture. For the lowest K;; for
both materials crack arrest was observed.
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Figure 164, Natural cracks compared with macro-cracks. v-K-curves for material Il; triangles: specimens
with natural flaw population, other symbols: macro-cracks.

Whilst in case of stable crack extension the value Ky, is known, the crack-tip stress intensity
factor changes during crack propagation in constant load tests.

In order to determine the parameters oy, 6, from constant load tests, also a least-squares proce-
dure is applied. The treatment is outlined for the special case that the subcritical crack growth is
described by a power law relation

v= %";’— = AKI = A*K K" (13.1.16)
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: W
E -]
s
(:]
5 Fda
s __8_ ) ?
= x W
2 ®
g-10t °
(=]
o
_12 I I ]
2 3 4

S
K, appl (MPa m'/?)

Figure 165. v-K-curves for alumina. v — K; —curves for specimens with macrocracks from static bending
tests (material 1) [20]; K;; = 2.72/2.96/3.06/2.82/3.20/3.21/3.25MPa~/m .
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Figure 166. v-K-curves for alumina. v — K; —curves for specimens with macrocracks from static bending
tests (material 1) [207; (K;; = 2.93/3.25/3.32/3.85MPa\/m ).

The procedure starts with an estimated initial combination of parameters (o, 8o, A*, 1), For
any data point (K., a/W) the crack-tip stress intensity factor Ky, is calculated, and using
€q.(13.1.16) the subcritical crack growth rate v, is calculated.

The calculated (v...) and the measured crack growth rates vnme,s are intercompared and the
sum of squares is determined by
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Figure 167. Fit-data. Least-squares results for fixed exponents n; S2/S%;, (solid curve, left hand scale), 6’
(dashed curve, left hand scale), oy (dash-dotted, right hand scale): material Il
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Figure 168. Comparison between measurement and fit. v — K, —curves for material Il calculated with
the fitted parameter set (dashed straight line: v = f(K;4j)).

s?= Z( log(Veare) — lOQ(Vmeas))2 (13.1.17)

¢ Further treatment by a least-squares procedure is similar to that for stable crack propa-
gation apart from the fact that now a set of 4 parameters are determined.

The result of calculation is:
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Figure 169. R-curve. R-curves for material |l calculated with the fitted parameter set and Kj; = 4MPa/m
(lines as in fig.19).
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material |: oy = 46.4MPa, 6,=0.95um, log A¥=—2.97, n=25

material Il : o, = 88.8MPa, 8,=0.224um, log A¥ =—0.7, n=25

in earlier investigations the subcritical crack growth behaviour of natural cracks was determined
for material | [7] and material Il [101] by application of a modified lifetime method [96] ignoring
possible R-curve effects. The result was n = 38 for material | and n = 20 for material Il. The dis-
crepancies in the n-values for the macro-cracks may be caused either by fundamental differ-
ences in the subcritical crack growth behaviour of natural, small cracks compared with artificial
macro-cracks or/and by intolerable influences of the R-curve on the evaluation procedure for the
hatural cracks.

To check the accuracy of the parameters determined (oo, o, A*, n), the least-squares sums S? -
normalised to the minimum value S&;, - are plotted in in fig.167 for a number of power law expo-
nents n. The dashed line represents ¢’y and the dash-dotted curve shows a.

In fig.168 the v — K| .m —curves - calculated with the bridging parameters of material Il - are plot-
ted for several initial stress intensity factors K;. The dashed straight line describes the power
law relation v = AKpy,. Finally, fig.169 shows the R-curve calculated with the fitted material data.
v — K, —curves vor specimens with natural flaw population were obtained with the modified life-
time method. A power law is found with an exponent of n = 19, Obviously the crack growth beha-
viour is - in terms of K, as the abscissa - strongly different from that of the macroscopic
cracks (see fig.164). This is a significant indication for an R-curve influence, at least in case of
the macro-cracks.

13.2 Determination of bridging stresses from crack profiles

In order to determine the relation between bridging stresses o, and the crack opening displace-
ment (COD) &, o, = f(6), one can evaluate the CODs observed during stable crack propagation.
Such evaluations were performed by Rédel et al. [23] on coarse-grained alumina with the
"Round-Compact-Tension” specimen (RCT). In their computations they used a Barenblatt re-
lation between bridging stresses and crack opening displacements. In [102], it has been shown
how the fracture-mechanics weight-function method can be applied to evaluate the bridging-
stress relation from displacement measurements without the restrictions imposed by the Baren-
blatt mode!. As an example of interest the results of Rédel et al. will be considered below.

13.2.1 The weight function method

The determination of bridging stresses from COD-measurements can be done by application of
the weight function method. The basic relations are repeated here once more. For any given
stress distribution o(x) in the uncracked component the stress intensity factor K, for a crack of
depth a resulis in

K = foah(x, a)o(x) dx |, (13.2.1)

where h is the weight function. As shown by Rice [29], the weight function is related to the
CODs of a reference load case (subscript r) and the related reference stress intensity factor

h(x, a) =—£I’7—£—6,(x, a) (13.2.2)
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Figure 170. Profile of a crack in alumina. COD measurements from Rédel et al. [23] for K;appr=4.6MPa
/M (symbols: two data-sets of the same specimen), and least-squares fit according to (13.2.6)
with N=2, (solid line).

where E' = EJ(1 — v?) is the plane strain Youngs modulus (v=Poisson’s ratio). From eqs.(13.2.1)
and (13.2.2) the crack surface displacements can be calculated from the stress distribution by

[19]

f h(a@',x)h(a’, x') o(x') da'dx’ (13.2.3)

max(x,x’)
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Figure 171. Bridging displacements. Bridging-displacements &, in the crack propagation zone.

168




Figure 172, Prescribed type of stress distribution. The strip-loaded crack.

where x is the coordinate where the displacement is computed and x’ is the location where the
stress o acts. If the externally applied stress o, as well as bridging stresses o, act on the
crack surfaces the total crack opening displacements result as

asa
8(X) = Sapp) + Opr = 7517]0 J’ ( )h(a',x)h(a', x')[aapp,(x') + op{(x")1da’dx’
max(x,x’'
(13.2.4)

a ana
= —Eil-f K appi@)h(@’, x) da’ + —El,— f f h(a’ x)h(a’, x"yo p(x")da'dx’
x 0

max(x,x")
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Figure 173. Bridging stresses. Influence function g{x, x;, x; 1, @) for the strip partition given in the insert.
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Figure 174. Displacements caused by strip loads. Distribution of bridging stresses along the crack-propa-
gation line.

This relation is the basis for the evaluation of bridging stresses from crack opening profiles. The
weight function for the RCT-specimen is given in [103] and the stress intensity factor solution
has been derived by Newman [104].
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Figure 175. Bridging stresses. Bridging stresses as a function of the displacements at the centre of the
strips.
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Figure 176. Bridging displacements. Comparison of the result of the power series procedure with the
bridging displacements from fig.171.

13.2.2 Fracture mechanical evaluation of COD-measurements

In fig.170 the crack opening profile measured by Rddel et al. [23] is plotted versus the distance
¢=a —x from the crack tip. The material investigated was a hot-pressed alumina with a grain
size of 11um. The RCT-specimens had a diameter of D=100 mm, a thickness t=1 mm and an
initial starter crack size of a=~20 mm. The elastic constants were E=400 GPa and v=0.25. From
the data of fig.170 one can easily determine the crack-tip fracture toughness Kj, i.e. the crack-tip
stress intensity factor in case of stable crack propagation. Since the near-tip displacements are

square-root-shaped [1]
Knp
Stip = \/ (13.2.5)

we can express the CODs by a least-squares fit according lo

n=0

where the coefficient B, is related to the crack-tip fracture toughness K, by

EI
Kijp=Kp=+/n[8 —=Bg (13.2.7)

Ja
A 3-terms fit (N=2) to the data of fig.170 results in mrom a 3-terms fit (N=2) it results
Spy=0.2884./a — x + 0.11857(a — x)*2 + 0.000297(a — x)*/ (13.2.8)

(dpr in um, a, x in mm) and, consequently, it results from eq.(13.2.7) Ko = 2.4MPa,/m . The fitting
curve is entered in fig.170 as a solid line.
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Figure 177. Bridging stresses. Distribution of bridging stresses along the crack propagation line.

The numerical computation of bridging stresses may be based on eq.(13.2.4) written in the form
1 a
Obr = Omeasured — 'ETJ Klappl (@")h(a’, x) da’ (13.2.9)
X .

where the first term on the right hand side is known from the displacement measurements
(fig.170) and the second can be computed from [103] and [104].

The bridging displacements resulting from (13.2.9) are plotted in fig.171. Using these data one
can now determine the bridging stress distribution in the crack propagation zone by solving the

integral equation
1 fa
E' Jy

13.2.3 Numerical procedures for the evaluation of crack profile
measurements

a
f h(a' X)h(a', X') op(x') da’dx’ = 6, (13.2.10)

max(x,x")

There are several procedures known to evaluate o, from the integral equation (13.2.10). The
most familiar method is to devide the interval as<x<a in N intervals of same width
Ax = (a —ag)/N. Then the integrations are replaced by sums leading to a system of N linear
equations. The solution yields a number of N stress values corresponding to the N intervals.
Since the weight function is singular for x’ — a’, the number of intervals must be very high.
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Figure 178. Bridging stresses. Bridging stresses as a function of crack opening displacement; (squares:
results from fig.

13.2.3.1 Decomposition of the stress distribution by strips of finite width
A simple possibility of solving €q.(13.2.10) will be outlined. We divide the range of crack propa-
gation, a; < x < a, into N (not necessarily identical) strips with constant bridging stress in a strip.

In fig.172 the i-th strip with the bridging stress o, is illustrated. The profile of the bridging dis-
placements caused by the bridging stresses in the i-th strip is given by

a

1
Opri(X) = opp; “E-Tf

max(x,x;)

Amin
h(a',x)[f h(a',x')dx'jl da’ = op.;9(X, X;, X; 1 .8)  (13.2.11)
Xj

Where
amin = Min(a’, x; 4 1) (13.2.12)

After analytical evaluation of the inner integral in (13.2.11) the function g can be expressed as

Spr,(X) 2 14 2 - [ X 8rmin
Spr.i =9(X, Xy X;+1,a)= = —E—,— h(a ,x)\/_a' 2< 1——3—,— — 1—7

max(x,x;)
4 (13.2.13)
. Aw @ Wy’ (1 X >"+3/2_ <1 _ min )"*3’2 da
u+3/2 (- al/W)3/2 a’ a
vwu=0

The total bridging displacement field can be composed by

N
8pX) = Z pr,i 8% Xj, X; 4 1,8) (13.2.14)

j=1
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Figure 179. Bridging stresses. Bridging stresses as a function of crack opening displacement.

The function g, defined by eq.(13.2.11), is an influence function which describes the displace-
ments resuiting from a strip-shaped stress with ¢ = 1MPa. Figure 173 illustrates this infiuence
function for a special choice of strip partition. If now at N locations the crack opening displace-
ments are known and the N functions g(x, x;, x;, 1, a8) have been determined, we obtain a system
of N linear equations from which the unknown N values of o,,, result.

In a fitting-procedure the unknown set of siresses o; was determined. The resulting stress dis-
tribution is shown in fig.174. Figure 175 finally shows the bridging stresses as a function of the
crack surface displacements 8. For the displacements in fig.175 the values in the cenires of the
strips were used. In principle, the number of strips can be increased. But for the present data
the relative high scatter (see representation in fig.171) would not allow the stresses to be deter-
mined with higher accuracy.

13.2.3.2) Power-series expansion of the stress distribution

A second possibility consists in using a power-series representation of the bridging stress dis-
tribution. If we assume that the bridging stress is given by an adequately smooth function of the
displacement, the related Taylor-series reads

el n

1 Oop n

N 2.15

o5,(6) E o |6=05 (13.2.15)
n=20

Since the near-tip COD-field is always square-root shaped, é oc /a — x , the general stress vs.
displacement refation must be of the type

oo
Cpr = Z Dn(‘l -

n=20

nj2
) (13.2.16)

o|x

and cannot contain integer exponents only. Introducing eq.(13.2.16) into (13.2.10) results in an
infinite system of linear equations
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Figure 180. Bridging stresses. Bridging stresses as a function of crack opening displacement.

o0
>’ Donfax) = b (13.2.17)
n=0
where
1 apa v n/2
E(ax) = _f-_l—f f h(a' x)h(a’, x") (1 - —a-) da'dx’ (13.2.18)
0 “max(x,x")

For practical use a truncation of the infinite series (13.2.16) after the term n =N is recommended

o= ZN: D(1-% )nl2 (13.2.19)
n=0

The unknown (N+1) coefficients D, can then be determined from a least-squares fit of the data
in fig.171, represented by the dashed curve. Consequently, the bridging stress distribution is
known from (13.2.19).

This procedure was applied also to the data shown in fig.171. As the result of the least-squares
fit the bridging displacements, according to eq.(13.2.17), are entered as the solid line in fig.176.
The related bridging-stress distribution ¢, = fla — x) is represented in fig.177 and, finally, the
bridging-stress relation oy, = f(8) resulting from combining fig.170 with fig.177 is shown in fig.178.

Sensitivity of the procedure: A short study of sensititvity is given in figs.179 to 184. For the fitting
procedure resulting in figs.176 to 178 all data points had the same weight. In a modified evalu-
ation the data points with a — x >1mm entered the analysis with the weight 1.5 and the other
data points with the weight 1. The resulis of the least-squares procedure are represented as the
dashed curves in figs.179 to 181. In another case the inverse distribution of the weights was
chosen, i.e. weight=1 for the data points with a — x >1mm and weight=1.5 for the data points
closer to the crack tip. These results are indicated by the dash-dotted lines. One can conclude
that a smali deviation in the bridging displacements of fig.179 will have a significant influence on
the bridging stresses.
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Figure 181. Bridging stresses. Bridging stresses as a function of crack opening displacement.

These differences make obvious that a very high experimental accuracy - leading to a low scat-
ter in the function o, = f(a — x) - is necessary for application of the COD-procedures. Such high
accuracies can be reached, for instance, by moire interferometry.

13.2.3.3 Choice of special set-ups

A third procedure with the numerical expenditure significantly reduced is the application of spe-
cially chosen functions for the s, versus (a — x) dependency. In [23] a set-up of type

Sbr = Spr,max(1 — Bl@a— X))’ (13.2.20)

has been chosen, with the two free parameters f and y determined from the measured displace-
ments by a least-squares procedure. A small disadvantage of this method might be that

the number of degrees of freedom is limited,

the unknown dependency o, =f(x/a), which, in principle, should be determined has 1o be
prescribed, and, therefore, the bridging relation o, = f(8) is restricted, as can easily be
shown for the set-up (13.2.20).

The Taylor-expansion of eq.(13.2.20) at x = a yields the leading terms

1 52 2
ObrlObrmax = 1= By(@ =)+ By(y —1)a— %" ... (13.2.21)
and since d oc /a — x for x — a, the resulting relation o,, = f(8) must start with
Sbr = by max(1+6° ....) (13.2.22)
Since the linear term in the expansion is not present, a linear dependency o, = f(8) cannot
result due to the special type of set-up chosen.
In fig.182 the results of fig.175 are compared with the results of Rédel et al. [23] based on

the simplified relation, eq.(13.2.20). This shows that in the specific case the approach of
Rodel et al. is sufficiently accurate.
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Figure 182. Bridging-stress relation. Comparison of the result of fig.175 with the result obtained by Rédel
et al. [23] (curve).

13.2.4 Discussion of results

Several bridging-stress relations o, = f(§) are used in the literature. Mai and Lawn [24] pro-
posed a relation

oo(1 — 8/80)™ for 8/6p<1
, m=012,... (13.2.23)
0 for 6/8g>1

If we assume that the characteristic displacement for which the bridging stresses varish is
I" —distributed [18], it results for m = 0:

opy = 60<1 + 5% ) exp(— 5/5) (13.2.24)
and for m=1:
0’br=0'0 e)(p(— 6/60) (13.2.25)

A fitting procedure was applied in order to be able to describe by these formulas the results of
fig.175. Figure 183 shows the results for eq.(13.2.23) with m =1 (dotted curve: o,=59MPa,
8,=0.69um), for eq.(13.2.24) (solid line: o,=58.6MPa, 8,=0.19um), and, finally, for eq.(13.2.25)
(dashed line: 6,=75MPa, & =0.32um). The best representations seem to be given by
€q.(13.2.23) with m=1 and eq.{13.2,24).

For various Al,Os-ceramics parameters for eq.(13.2.25) were compiled in [78]. These data which
were found in the ranges 40MPa < 6o < 120MPa and 0.22um < 8, < 1um are in good agreement
with the parameters found here.
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Figure 183. Bridging-stress relation. Fitting of several bridging-stress relations to the results of fig.175.
13.2.4.1 Evaluation of displacements obtained by Yu and Kobayashi

As mentioned before a high accuracy is necessary for the evaluation of the bridging-stress re-
lation from displacement measurements, Such high accuracies can be reached, for instance, by
moire interferometry. In [105] Yu and Kobayashi presented displacement measurements per-
formed with specimens machined from SiCy/ALO; and by application of moire interferometry.
The cross-section of the specimen is shown in fig.184. A Chevron notch was prepared to create
a sharp crack. In the bending bars a crack was generated by the single-edge-precrack-beam
(SEPB) method, and the specimen was then loaded in a 3-point bending arrangement. The meas-
ured displacements are entered as squares in fig.185. The displacements of a crack without
bridging effects were computed in [105] using the FE-method and entered as solid line in fig.185.
According to 6,/(x) = 6(x) — dapp, the displacements caused by the bridging stresses were com-
puted and entered in fig.186. The result shows very little scatter, and by application of a smooth-
ing procedure the curve plotted in fig.186 is obtained. Application of the procedure based on the
power-series representation yields the bridging stresses depending on the distance from the
crack tip (fig.187). The power series was truncated after 8 terms (N=7) and after 10 terms
(N=8). As the resuit, the bridging stress (averaged over the whole thickness of the bending bar)
is plotted. Finally, one obtains from figs.186 and 187 the bridging-stress relation plotted in
- fig.188. The characteristic shape of the 5,, — § —curve is in both cases the same. The real re-
lation o,, — 6 is described in the range outside the Chevron notch.

From fig.188 we may conclude that the type of bridging relation is similar to that of eqs.(4.1.9)
and (4.1.13) represented in fig.12.
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Figure 184. Specimen used by Yu and Kobayashi. The shaded area indicates the range of pre-cracking.
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Figure 185. COD-measurements by a moire-technique. Measured displacements (squares) and displace-
ments of the material free of bridging interactions (solid line), given by Yu and Kobayashi

[105].
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Figure 186. Bridging displacements. Displacements §,, caused by the bridging stresses in the crack prop-
agation zone.

Figure 187. Bridging relation. Bridging stress as a function of the location (a — x); shaded areas indicate
the regions where the Chevron notch and the precrack extend.
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Figure 188. Bridging relation. Bridging stress as a function of crack opening displacement.
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14. Different R-curves for macroscopic and
microscopic cracks? |

141 Experimental findings

As shown recently, beside macro-cracks also micro-cracks exhibit a rising crack resistance be-
haviour [115]. Results obtained by Steinbrech and Schmenkel [115] for coarse-grained Al,O; are
plotted in fig.189 (after some re-evaluation [106]) as energy release rates versus crack extension
Aa. For the extensions up to 1mm of the macro-cracks no effect of initial crack length can be
seen.

@
o
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e not. cracks

o macro—cracks

&8 af
; (Steinbrech)

Y26 40 &0 B0 _ T
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energy release rate G (N/m)

00 1.20

Figure 189. Macro- and micro-crack R-curves. R-curves for alumina obtained by Steinbrech [115].

The micro-crack results are strongly different from the macro-crack results obtained with SENB-
specimens. It is amazing that the initially applied energy release rate - necessary to initiate sta-
ble crack extension - is extremely low compared with the macro-crack value Gy and that the
slope of the micro-crack curve is very high. An interpretation of this behaviour has been given in
[106] based on residual stresses due to thermal mismatch. In the following the main features of
this analysis will be explained and in addition the influence of subcritical crack growth will be
considered.

AlLO; shows a significant anisotropy of thermal expansion coefficient. Measurements on single
crystals of Al,O; yield [107]
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Figure 190. Resldual stresses. Distribution of self-balanced residual stresses caused by thermal mis-
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In a polycrystalline material the c-axis is randomly orientated. |t is a simple consequence of
statistics that clusters of grains must exist where the resulting averaged component of the c-axis
is significantly different from the overall mean value of 1/3. Such a cluster is the reason for a
local stress field. Starting from a stress-free state at sintering temperature, local mismatching of
the thermal extension coefficient generates stresses during the cooling phase. Such a localized
stress source will be called a ”“stress nest” here.

Since also the orientations of the clusters are randomiy distributed, the macroscopic mean value
of the thermal stresses must vanish. It is clear that the interaction of ”stress nests” will compli-
cate a theoretical treatment. To simplify the problem only one single stress nest will be consid-
ered in the following.

14.2 Fracture-mechanical model

In order to allow a fracture-mechanical analysis to be made the self-balanced internal stresses
in a stress nest are modelled by

ot = oo 1= (rR)*] exp[ — (r[R)?] , (14.2.1)

Figure 190 illustrates the stress distribution. ¢, is the maximum stress and R represents a char-
acteristic dimension of the stress nest. A circular crack with radius a situated in the sphere of
influence of o(r) then exhibits a stress intensity factor
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Figure 191. Residual stress intensity factor. Stress intensity factor for a crack in a residual stress field

a

o(nr

2
= dr
Jra [2 2
A a’—r

K, (14.2.2)

which reads after integration
g
K,,.m=7ni~n/a [1 + (%-2%)F(e/R)] (14.2.3)

where the subscript “int” means the stress intensity factor caused by internal stresses, and F is
Dawson’s integral

Fo) = e f xexp(tz) dt | (14.2.4)
0

The stress intensity factor K, is plotted in fig.191 as a function of the normalized crack size a/R.
The maximum value

(K indmax = o0r/R 0.5764 (14.2.5)

appears at a/R=0.4273, and for a/R>1.5 the stress intensity factor K, is negative.

After sintering crack nuclei of size a,... may be present. These defects may be pores with annu-
lar cracks or wedge cracks at the triple points of the grains. The following treatment of circular
cracks can also be performed for these crack types and also for surface cracks. The behaviour
will in principle be the same as for circular cracks.

In case that the maximum internal stress intensity factor is higher than the fracture toughness K.
all crack nuclei in the range of

apo < Apycl < ag (1426)
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Figure 192. Total stress intensity factor. Residual stress intensity factor superposed with the applied
stress intensity factor,

will grow during the cooling phase which results in a final crack size a,. The crack size limits ag
and ap are given by the two solutions of

K, =0 Jg[1+<§—~27§—>F(a/R)] (14.2.7)

14.3 Materials without subcritical crack extension

After cooling down from the sintering temperature to .room temperature the thermally induced
micro-cracks with the crack size ag/R are highly stressed, i.e. the micro-crack is in a state with
Ki=K., and it holds

Ko =720 [1 " (a%—z%)nao/m] (143.)

This fact is of high importance to all fracture-mechanics considerations.
By combining eqs.(14.2.3) and (14.3.1) the unknown stress o can be eliminated and it results

R a
_ |2R 1+<?‘2F>F(Q/R) K (14.3.2)
Kiint= T R, % Ic 3.
1+ 22 F(@/R)

a9
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Figure 193. Applied stress intensity factor. K, ., Vs crack size resulting from fig.192.
14.3.1.1 Stable crack growth for K,.=const.

In a test with externally applied stress o, the external stress intensity factor
2
K app1 = Gappin/@ (14.3.3)
I app [ app

is superimposed to the internal stress intensity factor K;;. In order to avoid interactions of the

KI int
6, nppll G,
0.3~
0.50 ’
0.2 _

0.0

Figure 194. Crack development in presence of subcritical crack growth. Influence of subcritical crack
growth before fracture test.
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Figure 195. Applied stress intensity factor. Influence of subcritical crack growth before fracture test.

two stresses the internal stress oy, is assumed to be a remote stress. This simplification leads to
the total stress intensity factor acting at the crack tip

Ki totar = Kyint + K1 appi = K tip (14.3.4)

In fig.192 the total stress intensity factor K, s is represented for several values of the ratio o/
oo. If the external stress o.,y is increased, stable crack growth occurs. The condition for crack
growth is

Ki totar = Kic (14.3.5)
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Figure 196. R-curves. Influence of subcritical crack growth on the R-curve.
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Figure 192 is a graphical representation of the crack extension Aa=a — a,, obtained from the
intersections of the K, wnrcurves with the horizontal line describing Kt =Ki... At the point
marked by an arrow, where K| «:,ra/R exhibits a horizontal tangent, failure occurs.

The stress intensity factor K., can be calculated from eq.(14.3.4), too. Figure 193 shows the
stress intensity factor K., as a function of the crack length a. Failure will occur in a strength
iest at the location indicated by an arrow.

The rough fracture-mechanical model explains the behaviour of small cracks. Extremely low en-
ergy release rates are necessary to initiate stable crack propagation. Also the strong increase in
stress intensity factors K, .., with Aa is in agreement with the experimental results.

14.4 Materials with subcritical crack extension

In the presence of subcritical crack growth - which is strongly pronounced for alumina in normal
air - the crack may extend during and after the cooling-down phase at stress intensity factors
K/ < Kic. This behaviour is illustrated in fig.194. During subcritical crack growth the residual
stress intensity factor decreases along the K, — a/R —curve, starting from point 1. At the mo-
ment when the fracture test is performed, the residual stress intensity factor is assumed to coin-
cide with point 2. Then, in the bending test at first the externally applied load has to be in-
creased to the level K, = K. which is reached at point 3. The further crack development is the
same as for materials without subcritical crack growth provided that the bending test is pe-
formed within a short interval so that additional subcritical crack growth may be neglected. The
development of the applied stress intensity factor K; ., with the crack length is shown in fig.195.
Finally, fig.196 shows the R-curve, namely the applied stress intensity factor K, as a function of
crack extension Aa for both cases.

in conclusion it can be stated:

If a material contains thermally induced microcracks, these cracks are - in the absence of sub-
critical crack growth - in a state with K,=K,. This fact makes plausible that stable crack propa-
gation is possible at the lowest loadings applied externally.

It has been shown that the experimental result of stable crack growth of small cracks - which
occurs at very low external loads - can be explained by internal stresses caused by anisotropy of
the thermal expansion coefficients of alumina.

In the presence of subcritical crack growth the R-curve starts at a higher stress intensity factor,
but the following curve is identical to that obtained in the absence of subcritical crack growth.
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Appendix A. Weight functions

A.1 Weight function for remote tractions

Stress intensity factors for cracks exposed to any loading can be calculated using the weight
functions method. In most cases of practical interest the crack surface weight function is applied.
If a stress distribution o(x) acts on the crack surfaces of a one-dimensional crack of depth a , the
effective stress intensity factor K; is given by [28]

K =o*/na F= fo h(x,a)a(x) dx (A.1.1)

where o* is a characteristic stress value of the stress distribution ¢(x), e.g. the stress acting near
the plate surface. The weight functions h(x,a) used in eq.(A.1.1) are known for most types of
crack.

But the weight function method is not restricted to crack surface loadings. In its more general
formulation it is also possible to apply the procedure to tractions which act at any given contour
in the body (fig.197).

Figure 197. Remote tractions. Symmetrical tractions along a surface (s) at the crack tip.
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Figure 198. Geometrical data. Edge-crack in a plate.

Such weight functions are of special interest in computation of R-curves in ceramics when phase
transformations occur in the crack-tip region [35]. In this more general case one can write

K= jh(s,a)T(s) ds (A.1.2)

where T(s) are tractions over a surface s. As shown by Rice [29][1] the weight function can be
related to the displacements u,7 of a reference loading case (subscript r) which act in the direc-
tion of the tractions T(s) of the actual loading case:

_E 0,7
h(s,a) = K, da u, (s,a) (A.1.3)

For the plane strain module E’ it holds EJ(1 — v?) with E=Young’s modulus and v=Poisson’s ra-
tio. Obviously eq.{(A.1.3) covers also the crack face weight function when the surface s is chosen
to be the crack surface. In order to determine the weight function for a crack/component config-
uration we have to determine the displacement field of the reference load case as well as the
related stress intensity factor. The computation of weight functions can be done by determi-
nation of the displacements around the crack tip, which are fully known if we succeed in the
determination of the Airy stress function as outlined in [38]. After use of the stress function, the
displacements result as

VL +:://22 [(n + 4v — 5/2) cos(n — 1/2)¢ — (n — 1/2) cos(n + 3/2)e ]
) = (A.1.4)
+ 17_;v ZA#rn+1[(n+4v—2)cosn<p —(n+2)cos(n + 2)e]
n=0
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n+3/2 .
v=1 + Y Z A T2 1//2 [(n — 1/2) sin(n + 3/2)@ — (0 — 4v +3/2) sin(n — 1/2)¢]
0o (A.1.5)
17_:"’ A,*,"r"+1[(n+2) sin(n + 2)p — (n — 4v + 4) sinne]]
n=20
The cartesic components of the displacements are
Uu,=ucosgo — vsing
(A.1.6)
u,=using + vcos ¢
and the components of the weight function are given by
_E Ouy
Px K, oa
(A1.7)
r Ou
oo £y
Y K, Oa
The practical evaluation of the derivatives in eq.(5.1.24) can be performed as
duy  Ouy gr  Ouy dp  Bu, dA, = duy dA¥
da ~ or da ' dp da ' 0A, da oA¥* da
(A.1.8)
du, _ ou, ar duy, de N ou, dA, N ou, dA¥
da or da  0p da = 0A, da 6A,*,* da
with
d sin
r P ¢
A — = A19
Ja cose . (A.1.9)

The first coefficients of a 20-terms representation are listed in Table 4 for A, and in Table 5 for
A*,. In order to allow cubic interpolations the tabulated data are normalised according to

An=A,(1—af

o~

A¥ =A% (1-a)f
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n=0 1 2 3 4 5 6 7 8 9
o =15 2.5 3.5 3.5 3.5 35 3.5 3.5 3.5 3.5
0.25{ 0.0829 | 0.0215 [ 0.0533 { 0.0439 | -0.152 | 0.2830 | -0.203 { -0.573 | 4.0130 | 1.7727
0.30[ 0.0850 | 0.0267 | 0.0448 | 0.0229 [ -0.074 | 0.1661 | -0.169 | -0.082 | 1.3618 | 0.5718
0.40| 0.0873 | 0.0329 | 0.0320 | 0.0115 | -0.004 | 0.0422 | -0.046 | 0.1080 | 0.0102 | -0.386
0.50| 0.0882 | 0.0356 | 0.0245 | 0.0149 | 0.0168 | 0.0289 { 0.0175 | 0.0351 | -0.027 | -0.013
0.60[ 0.0884 | 0.0366 | 0.0209 | 0.0227 | 0.0334 | 0.0474 [ 0.0628 | 0.0874 | 0.0912 | 0.0669
0.65 0.0883 | 0.0367 | 0.0200 [ 0.0276 { 0.0453 | 0.0718 | 0.1111 { 0.1600 | 0.1854 | 0.1300
0.70] 0.0883 | 0.0367 | 0.0196 | 0.0338 | 0.0631 | 0.1147 | 0.1972 | 0.2719 | 0.2514 | 0.1229
0.75| 0.0883 | 0.0367 | 0.0195 | 0.0419 | 0.0923 | 0.1910 | 0.3335 | 0.4077 | 0.2831 | 0.0796
0.80; 0.0884 | 0.0367 | 0.0197 | 0.0535 | 0.1386 | 0.3058 | 0.5152 | 0.5868 | 0.3903 | 0.1148
0.85] 0.0897 | 0.0381 { 0.0208 | 0.0694 | 0.1934 | 0.4198 | 0.6598 | 0.6837 | 0.4087 | 0.1052
0.90( 0.0919 | 0.0409 | 0.0206 | 0.0800 | 0.2272 | 0.4622 | 0.6465 | 0.5762 | 0.2837 | 0.0524
Table 4. . Coefficients /-i,, for a 20-terms polynomial representation.
n=0 1 2 3 4 5 6 7 8 9
o p=2 3 4 4 4 4 4 4 4 4
0.25| 0.02300| -0.0370| -0.0822] 0.09128| 0.00272 -0.3372| 0.96039| -1.6678| -4.3971| -0.2444
0.30] 0.00867| -0.0425| -0.0586} 0.05902| -0.0383| -0.0982; 0.35271| -0.6572| -1.3918( -0.0750
0.40| -0.0109 | -0.0423] -0.0248| 0.01192] -0.0262| 0.00452| 0.00300] -0.1321| 0.21273 0.1835
0.50[ -0.0248 { -0.0361| -0.0147| -0.0061| -0.0194| -0.0134| -0.0210| -0.0061| 0.03872; 0.0005
0.60f -0.0333 | -0.0298| -0.0125{ -0.0155| -0.0254; -0.0331{ -0.0483} -0.0589( -0.0507| -0.0181
0.65| -0.0359 | -0.0275| -0.0126] -0.0197{ -0.0336( -0.0529( -0.0823( -0.1087( -0.0989| -0.0306
0.70; -0.0377 | -0.0259| -0.0130| -0.0247| -0.0473| -0.0875| -0.1412{ -0.1648| -0.1159] -0.0297
0.75| -0.0387 | -0.0249| -0.0135} -0.0312| -0.0701| -0.1400| -0.2131| -0.2064| -0.1060| -0.0212
0.80| -0.0395 [ -0.0248| -0.0143| -0.0406| -0.1013| -0.2005; -0.2823| -0.2515| -0.1207| -0.0214
0.85 -0.0436 ( -0.0291( -0.0167| -0.0531( -0.1326] -0.2477| -0.3223| -0.2668] -0.1227} -0.0232
0.90] -0.0556 | -0.0361| -0.0165| -0.0544! -0.1299( -0.2202| -0.2540] -0.1860| -0.0773| -0.0148

Table 5. . Coefficients A~*,, for a 20-terms polynomial representation.

A.2 Weight function for the RCT-specimen

Round-Compact-Tension (RCT) specimens can be used in fracture mechanics of ceramics to de-
termine the bridging stresses between the crack faces from COD-measurements ([23],[102]).
The related procedure needs knowledge of the fracture mechanical weight function.
Weight functions are known for the special case of a disc, which is identical with the RCT-speci-
men with load application holes of negligible diameter. Such a weight function for the edge
cracked circular disc was derived in [108]. As a consequence of Saint-Venant’s theorem the
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differences between the disc and the RCT-specimen have only to be expected to occur near the
load application holes, i.e. for x~0 (fig.199).

In order to take into account the influence of the real geometry the weight function of the
RCT-specimen will be derived. The weight function can be derived from CODs of a reference
load case and the related reference stress intensity factor according to eq.(4.3.3) The crack-o-
pening displacements can be expressed by a power-series representation

[oeed

5= 1 —%)Hm (A2.1)

n=0

with the coefficients C, dependent on the relative geometry.

Figure 199. RCT-specimen. Geometrical data of the Round-CT-specimen (RCT).

For the specially chosen test specimen (RCT-specimen, see (fig.199) Newman [104] determined
stress intensity factors and COD at different locations of the crack surface. The stress intensity
factor solution of Newman [104] can be written as

2 3 4
3 P (2 + @)(0.76 + 4.80 —11.58a° + 11.430" —4.084)
Ki=ooyWF . co=yyr » Fi= TP

(A.2.2)

(t=thickness, P=load applied). This information and some crack mouth conditions allow a num-
ber of coefficients in (A.2.1) to be determined:

1. The cracik-tip field is related to the stress intensity factor by [109]

5\ K

sa—a)=(L) ZJa—x (A.2.3)

2. As could be shown for an edge crack the second and third derivatives must vanish ([54]

[110]):
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Figure 200. RCT-specimen. Weight function for the RCT-specimen.
2 3
a—‘;:o , 6—§—=0 , forx=W-D (A.2.4)
ox ox

3. The COD-field of eq.(A.2.1) must fulfill the special displacements obtained in [104] by
BE-computations ([111]). In [104] the crack opening displacements are given at the load-line
(i.e. x =0) and at the crack mouth {i.e. x=W — D).

This procedure and its modifications are well established in the literature and successfully ap-
plied in numerous investigations ([109]-[113]). The results for the RCT-specimen are repres-
ented in Table 6 and illustrated in fig.200.

Table 6 shows the weight function values in a representation which lends itself easily to interpo-
fation by bicubic splines

2 g(x/a, a/W)

@ [ _xja (1—aw)®?

Using the data from Table 6 the weight function can be expressed within +£1% accuracy by the
approximation formula

h=

(A.2.5)

4
2 1 a_\3/2 u+1, a \’
h= =)+ 2 Aul- 2. A28
" ioxe (1—ay | W) MZ;O wlt =x/a () | (A29)

with coefficients A,, listed in Table 7.
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a/w x/a=0.0 0.2 04 0.6 0.8 09 0.95 1.0

0.2 2.081 1.848 1.603 1.337 1.044 | 0.885 0.801 0.716
0.25 2.305 1.972 1.642 1.314 0.984 0.818 0.734 0.650
0.3 2.501 2.085 1.686 1.303 0.936 0.759 0.672 0.586
0.35 2.873 2.185 1.725 1.294 0.894 0.705 0.614 0.524
04 2.830 2.277 1.761 1.286 0.854 0.654 0.558 0.465
0.45 2.985 2.367 1.797 1.278 0.815 0.604 0.504 0.408
0.5 3.151 2.464 1.837 1.273 0.778 0.557 0.453 0.354
0.55 3.338 2.577 1.886 1.272 0.742 0.510 0.403 0.302
0.60 3.551 2.708 1.943 1.273 0.707 0.465 0.355 0.253
0.7 3.997 2.975 2.055 1.267 0.632 0.376 0.265 0.164
0.8 4.062 2.966 1.995 1.175 0.531 0.283 0.179 0.089

Table 6. Weight function for the RCT-specimen. Normalised representation g(x/a,a/W) accord-

ing to eq.(A.2.5).

v ©=0 1 2 3 4

0 2.826 -5.865 0.8007 -0.2584 0.6856
1 -10.948 48.095 -3.839 1.280 -6.734
2 35.278 -143.789 6.684 -5.248 25.188
3 -41.438 196.012 -4.836 11.435 -40.140
4 15.191 -92.787 -0.7274 -7.328 22.047

Table 7. Weight function for the RCT-specimen. Coefficients A,, for
eq.(A.2.6).

A.3 Averaged bridging stress intensity factors for an embedded
elliptical crack

The averaged stress intensity factors for the elliptical crack loaded by constant crack surface
stresses, i.e. 6 — oo can be calculated with eq.(7.1.2). The crack opening displacements of an
embedded elliptical crack loaded by a constant stress o - for instance the stress o - is used as
the exactly known reference COD-field [1]

g0 2a

v="pg E() (A.3.1)

1—p?r?

where E(k) is the complete elliptical integral of the second kind with the modulus k = /1 — a?/c?
(for p and r see fig.85). It results from eq.(7.1.2) ,

— 460»\/5— i ) 2
Kopr, ellipse, A= oo [ sin“p~/1— ao/r2 +

YAnE(K) J,
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+ —%— < coszq> + 1
Kbr, ellipse, B =

——;— 0082q)+ 2
(cla)” —1

where K(k) is the complete elliptical integral of second kind with the modulus k.

E(k) — K(k)

(cla)* —1

1

dogfa ("

YerE(K) J,

E(K)

E(k) — K(k)

E(k)

)(1 — &) |do
[COSQ(p 1— aé/r2 -

Y- e

stress intensity factors (subscript r) are described by the geometric functions

(A.3.2)

(A.3.3)

The reference

_ E(k) — K(k
- 4 [y, : 1 (k) — K(k) (A3.4
3E(k) c?la®? -1 E(K)
- 4 1 E(® - KK
= - 35
5=/ 3E® <1 2ai_y E® (A3.9)
A.4 Coefficients for the compliance polynomials
By B, B. B, B, Bs
L/W=2 1.7046 -6.251 13.924 | -18.867 | 14073 | -4.3928
4 1.7950 -5.9908 12.452 -16.161 11.609 -3.508
8 1.8787 -5.9556 11.742 | 14669 | 10200 | -2.9972
16 1.8210 -5.9329 . 11.368 -13.894 9.4753 -2.7354
‘32 1.9424 -5,9220 11.185 -13.524 9.1344 -2.6138
©o 1.9638 -5,9091 10.991 -13.128 8.7669 -2.4818

Table 8. Coefficients for the compliance formula.

Coefficients B, for eq.(12.2.7).

A.5 Integrals for the evaluation of load-displacement curves

The integrals used in section 12.5 can be determined numerically in each step of the evaluation.
But since three integrations are required and since the integrals can be used for any specimen
again it makes sense to tabulate them. in the following tables numerical values are entered.

Note, that the crack lengths are normalized on the specimens width W, i.e.

lengths « = a/W are used.
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<

o = 0.51

0.525

0.55

0.575

0.60

0.625

0.65

(=3 I~

2.079E-3

8.721E-3

2.735E-2

5.607E-2

9.705E-2

1.537E-1

2.310E-1

1.248E-5

1.314E-4

8.270E-4

2.554E-3

5.919E-3

1.177E-2

2.133E-2

=07 C

1.060E-3

4.579E-3

1.504E-2

3.224E-2

5.823E-2

9.606E-2

1.502E-1

8.918E-8

2.350E-6

2.965E-5

1.376E-4

4.263E-4

1.062E-3

2.316E-3

= OO -

6.369E-6

6.897E-5

4.548E-4

1.468E-3

3.551E-3

7.356E-3

1.386E-2

5.407E-4

2.404E-3

8.270E-3

1.854E-2

3.494E-2

6.004E-2

9.768E-2

6.932E-10

4.575E-8

1.156E-6

8.060E-6

3.334E-5

1.040E-4

2.724E-4

4.549E-8

1.234E-6

1.631E-5

7.915E-5

2.558E-4

6.639E-4

1.505E-3

Nl=jOolnn]l-a]l O

3.248E-6

3.621E-5

2.502E-4

8.443E-4

2.131E-3

4.598E-3

9.018E-3

Oi=>2IN W] O

2.757E-4

1.262E-3

4.550E-3

9.705E-3

2.096E-2

3.752E-2

6.345E-2

Table 9. Coefficients for the stress distribution in the bridging zone.

eq.(12.5.17).

Coefficients A,,/W?+v+# for

o= 0.675

0.70

0.725

0.75

0.775

0.80

0.825

0.85

<
ol=

3.364E-1

4.805E-1

6.799E-1

9.598E-1

1.362E0

1.955E0

2.867E0

4.342E0

3.641E-2

5.973E-2

9.555E-2

1.506E-1

2.363E-1

3.721E-1

5.941E-1

9.738E-1

~lOf o

2.271E-1

3.364E-1

4.929E-1

7.198E-1

1.065E0

1.564E0

2.365E0

3.690E0

4.623E-3

8.690E-3

1.568E-2

2.753E-2

4.762E-2

8.199E-2

1.422E-1

2.515E-1

== I N O] =

4.181E-2

6.927E-2

1.130E-1

1.831E-1

2.976E-1

4.901E-1

8.277E-1

2.355E-1

3.574E-1

5.399E-1

8.178E-1

1.251E0

1.951E0

3.137E0

6.354E-4

1.367E-3

2.779E-3

5.430E-3

1.034E-2

1.946E-2

3.660E-2

6.984E-2

6.083E-3

1.137E-2

2.065E-2

3.690E-2

6.560E-2

1.173E-1

2.138E-1

N2 1 OENTI 1 O

1.659E-2

2.927E-2

5.022E-2

8.473E-2

1.419E-1

2.381E-1

4.043E-1

7.035E-1

Ol=InNnjwi O

1.035E-1

1.648E-1

2.581E-1

4.049E-1

6.338E-1

1.001E0

1.610E0

2.666E0

Table 10.

Coefficients for the stress distribution in the bridging zone.

eq.(12.5.17).

Coefficients A,,/W?+v+# for

o =051

0.525

0.55

0.575

0.60

0.625

0.65

1.649E-1

2.743E-1

4.240E-1

5.709E-1

7.293E-1

9.081E-1

1.116E0

5.638E-4

2.433E-3

7.076E-3

1.701E-2

3.049E-2

4.974E-2

7.663E-2

3.419E-6

3.745E-5

2.512E-4

8.197E-4

1.993E-3

4.127E-3

7.734E-3

WINI-=2]OT®

2.457E-8

6.783E-7

9,208E-6

4.555E-5

1.490E-4

3.886E-4

8.798E-4

1.918E-10

1.331E-8

3.640E-7

2.718E-6

. 1.192E-5

3.804E-5

1.065E-4

Table 11.

Xul W* 12 for eq.(12.5.18).
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u | «a=0.675 0.70 0.725 0.75 0.775 0.80 0.825 0.85
0 1.363E0 1.663E0 | 2.034E0 | 2.503E0 | 3.111E0 | 3.922E0 | 5.044E0 | 6.670EQ
1 1.137E-1 1.646E-1 | 2.344E-1 | 3.310E-1 | 4.662E-1 | 6.593E-1 | 9.426E-1 | 1.375EOQ
2 1 1.355E-1 2.266E-2 | 3.668E-2 | 5.807E-2 | 9.072E-2 { 1.410E-1 { 2.200E-1 | 3.479E-1
3 | 1.809E-3 | 3.476E-3 | 6.369E-3 | 1.124E-2 | 1.939E-2 | 3.300E-2 | 5.587E-2 { 9.565E-2
4 | 2.564E-4 | 5.649E-4 | 1.166E-3 | 2.295E-3 | 4.367E-3 | 8.128E-3 | 1.469E-2 | 2.760E-2
Table 12. Coefficients for the stress distribution in the bridging zone.  Coefficients x,/Wr*1/2 for
eq.(12.5.18).
0=051 0.525 0.55 0.575 0.60 0.625 0.65
0.6155 0.6748 0.7876 0.9213 1.0813 1.2746 1.5107
o = 0.675 0.70 0.725 0.75 0.775 0.80 0.825 0.85
1.8032 24711 2.6799 3.2607 4.0930 5.2522 6.9360 9.5215
Table 13. Coefficients for the stress distribution in the bridging zone, Coefficients «/W? for
eq.(12.5.8).
a=0.5 0.51 0.525 0.55 0.575 0.60 0.625 0.65
1.5009 1.5332 1.5850 1.6818 1.7938 1.9240 2.0766 2.2572
o =0.675 0.70 0.725 0.75 0.775 0.80 0.825 0.85
2.4733 2.7353 3.0580 3.4630 3.9830 4.6697 5.6088 6.9529

Table 14. Geometric function Y for 4-point bending.
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Appendix B. Strength of uncracked bodies

B.1 Failure of brittle materials under singular stresses

The model of bridging interactions in the wake of a crack is not only applicable to interprete the
R-curve behaviour of ceramics. Also the failure behaviour of brittle materials in the vicinity of
stress singularities may be treated with this model.

B.1.1 Assessment of singular stresses

Singular stresses in components may be caused by geometrical discontinuities (sharp notches)
or material discontinuities (bonded dissimilar materials, corners of grains). Due to these singu-
lar stresses, the component may fail. It is difficult to establish a failure criterion for such compo-
nents. Several possibilities will be listed below

°  Knesl [118][119] proposed to assume that the material fractures if a mean normal stress,
averaged over a certain length, exceeds a critical vaiue (see also [120],[121]). It is self-evi-
dent that this criterion depends on the characteristic length itself.

For brittle materials the failure may be caused by pre-existing cracks near the notch tip. Then
fracture mechanics can be applied

« A small single semi-elliptical surface crack, located in the siress singularity, has been con-
sidered in [122]. Failure was predicted for the case that the stress intensity factor reached
the fracture toughness,

*  Tilscher et al. [123] make use of the fact that natural cracks exist in the neighbourhood of a
stress singularity. By application of muitiaxial Weibull statistics failure can be predicted.

Also, if no real crack exists at the interface, the failure of the highly stressed material near a
stress singularity may be treated in terms of fracture mechanics.

¢ Busch et al. [124] propose a cohesive zone model. A virtual crack of prescribed length
a=20nm at the tip of a sharp V-notch is considered which is bridged by molecular forces. A
critical crack mouth opening is assumed as condition for failure.

Failure in the absence of pre-existing cracks will be described here by use of the weight function
method. In order to simplify the problem, we consider failure of the interface to be caused by
stresses normal to the interface line. The intact material near a stress concentrator responsible
for singular stresses is described by an interface along the prospective crack as a crack which is
bridged by “bridging stresses”. The procedure will be outlined by the example of a sharp notch
at the surface of a component. Therefore, we model the prospective failure line (dashed line in
fig.201) as a crack of length a — co which is (in the absence of an applied stress) completely
bridged.
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0.50
0.40
0.3
0.20

0.10

0.005

Figure 204. . Sharp notch in a semi-infinite body and stress exponent w,

Under symmetrical loading (e.g. load perpendicular to the dashed line in fig.201) by external
forces the normal stresses along the prospective crack line in the uncracked component are giv-
en for small distances from the noich tip x<L (see fig.202) by

A
Cappl = —F—— B.1.19
app /211_ x®
Figure 202. . Sharp notch in a body with a small crack at the tip; singular stresses at the notch tip caused

by an external loading.
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where o is the first solution of [37]
sin 2(w —a + (w—1) sin 26 = 0 (B.1.2)

with a == — /2. The first root is limited by 0 < < 1/2 for n/2> o < =. Figure 201 shows the
dependency w =f(f). A is called the notch stress intensity factor. In the following consider-
ations we will restrict the coordinate x to the vicinity of the notch tip which might be on the order
of a few interatomic distances

x<a<l (B.1.3)

Nevertheless, it is assumed that continuum mechanics is applicable.

B.1.2 Bridging stress model and crack opening displacement

We model the interface as two separated bodies, continuously connected by bonds, which bridge
the gap along the intersection line. Similar to [124]we assume that the material will fail if a
critical displacement is reached. Therefore, we model the bridging stresses as

00% for &<

Gbr = UO for (51 <6S62 (B.14)

0 for d,<é

(see fig.203). 4 is the displacement of the bonding partners which is interpreted as the crack
opening displacement of the apparent crack. It should be noted that for materials with a non-li-
near stress-strain behaviour - as for instance described by eq.(B.1.4) - no real stress singularity
can occur. The maximum stresses must be o,.x < 0o, In this sense, our model is a hybrid model
assuming unlimited linear-elastic material behaviour in the whole material except the prospec-
tive failure line where eq.(B.1.4) is assumed to be valid.

it must be ensured that for the completely bridged “pseudo-crack” no additional stress singulari-
ty by the crack appears. If this were the case also ahead of the virtual crack tip, then the bonds
in this region must also be stretched and have to be considered as part of the bridged crack,
etc.. In order to avoid a stress singularity ahead of the tip of the assumed crack, we have to
ensure that the total stress intensity factor K;, composed of the externally applied stress intensity
factor K ., and the bridging stress intensity factor K,,, must vanish

Kl = Klappl + Kbr = 0 (B15)

For a given stress distribution o(x) in the uncracked component the stress intensity factor results
as [28]

K, = foah(a,x) o(x) dx (B.1.6)

where h(a,x) is the fracture mechanics weight function. The condition given by eq.(B.1.5) reads
in terms of the weight function

fo h(@x) Logppi(¥) + op(X)1dx = 0 (B.1.7)
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Figure 203. . Bridging stress relation.

In our special case the relevant notch stresses are concentrated close to the mouth of the appar-
ent crack, i.e. x<a. Equation (B.1.7) then reads

o0
h(a,O)J‘ LoappiX) + opx)]dx = 0 (B.1.8)
0
which is satisfied only if

fw[aapp,(x) +op(x)]dx =0 (B.1.9)
¢]

i.e. if the normal forces are in equilibrium. The displacements of crack surfaces loaded by
siresses are

o(x) = %f h(a’, x) da'f h(@', X )Logpp) (X') + op(x") ] dx’
g ° (B.1.10)

= = L h(a’, )[Kappi(@) + Kp(@')] da’

in eq.(B.1.10) x is the coordinate with the displacement computed and x’ is the location where
the stress & acts.
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Figure 204. . Stresses along an infinitely long apparent crack.

B.1.3 Numerical treatment

One possibility to determine the stresses and crack opening displacements from the solution of
the integral equation (B.1.10) is the application of successive approximations. Unfortunately, the
procedure will not lead to convergence. As a second possibility we may expand the unknown
bridging stresses in eq.(B.1.10) by appropriate power series expansions with respect to x and
have fo determine the unknown coefficients by solving a system of nonlinear equations.

In order to ensure a priori the asymptotic behaviour of the bridging stresses for x — oo, we ex-
pand the bridging stress distribution for x > x; in an asymptotic series

0&1
Aln
o = B.1.11
br(x) Z ,\/E—(X _ c)n +w ( )
n=0

with the unknown parameters A, ,n >0 and c.
As an example, we consider a situation at a sharp notch as shown in fig.202 with a notch open-
ing angle . For such sharp notches a three-terms weight function is given in [126] that reads

hxa) = /= [—\/-11:+B1«/1 Zp +B,(1 —p)3/2] (B.1.12)

—p

with tabutated coefficients B,, B, for distinct values of § amenable to interpolation. In this case,
the applied stress intensity factor reads

[a o 1 1 By 3 By
Kiapps = A/ @ T _“’)< TG2—w) T2 TG2—w) T 4 T(72— o) ) (B.1.13)
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Figure 205. . Crack-opening displacements of an apparent crack of infinite length under notch-stress load-
ing for w =0.45 (second approximation); 6;/61 = 4.

B.1.3.1 First approximation
As a first approximation we restrict the series extension to the first term with the coefficient

Ao = A, For small applied stresses, leading to §; < é < §, at x =0, the condition ¢ =gy at x = x,
and the equilibrium condition

Al A
———dX = ogXy + (B.1.14)
2n x% 1 V2m (X = x4 + X0)”
yield
A 1lw
X = 1 Xo C=Xq—Xg With x3= — (B.1.15)
T-o 2z op

The resulting bridging stresses are entered in fig.8 for this first approximation. It should be not-
ed that in this first rough estimation no properties of the special bridging stress relation,
eq.(B.1.4), have been entered.

B.1.3.2 Second approximation

In a second approximation we will include the term with n =1 in eq.(B.1.11). From the condition
a(X1) = a, and the condition of equilibrium we obtain a system of two non-linear equations

A An

o (04— 2w (g )" F

= a, (B.1.16)
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Figure 206. . Bridging stresses in first and second approximation; solid line: first approximation, dashed
line: second approximation, computed with w=0.45, §,/8, = 4.

A An

1~w -
——— (X4 —C) — Xy —¢) " = ogXy (B.1.17)
Sr(l—a) 2w °
that provides x; and c. If we introduce the following (normalised) parameters:
A A
A= —L— | k= N (B.1.18)
J2r 6469 Aibs
we find
w
* _~( F * E

with the numerical coefficients Z&, listed in Table 2 for several ratios 8,/81 and different values of
. For the numerical computations a finite crack has to be used. In order to fulfill the restriction
a>x; sufficiently, a = 200x; was chosen. The coefficients for the weight function are listed in Ta-
ble 16.

62/ 64 0=0374 | ©=0425 | w=045 w=0.50
25 0.905 0.87 0.845 0.82
3 {0.985) 0.95 0.937 0.92
4 (1.10) 1.08 1.08
5 1.22 1.21
Table 15. . Parameters A, defined by eq.(B.1.19); values in brack-

ets: extrapolations.
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Figure 207. . Influence of the ratio 6,/6; of the critical notch stress intensity factor A; open square: first
approximation, circles: second approximation, shaded area: scatter-band of experiments car-
ried out by Busch et al. [124] with single-crystaliine silicon (8 = 125.3°).

w B, B,
0.500 0.0 0.0
0.450 0.030 0.080
0.425 0.075 0.088
0.374 0.175 0.093

Table 16. . Parameters B4, B, for the

weight function eq.(B.1.12) interpolated
from data given in [126].

The resulting crack opening displacements are plotted in fig.205 and the bridging stress distrib-
ution is shown in fig.206 together with the first approximation.

B.1.3.3 Failure behaviour

Failure condition

Due to the crack opening displacements, the bonds between the crack faces may exceed the
maximum tolerable distance &, and a real material separation will occur. This state is reached
when the notch stress intensity factor A, reaches a critical value, namely

, (73]
A = A¥fom 606 = Ay(w)/2m ao( %61> (B.1.20)

If the notch opening angle is §=0, we have a crack and the notch stress intensity factor is identi-
cal with the fracture toughness K., i.e.

- g\
Kie = A(1/2)/2n ao<—a—o—61) (B.1.21)
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and by combination of egs.(B.1.20) and (B.1.21) we find a relation between the notch stress inten-
sity factor and the fracture toughness K, which enabies us to predict the critical notch stress
intensity factor on the basis of the fracture toughness

2w
- K
A = Afo)/2x ag-?w(-—-!e—) (B.1.22)

A(1]2)/2n

Practical example

In order to compute the notch intensity factor A, for a real material, we apply the relations de-
rived before to single-crystalline silicon with §=125.26°. This material was examined by Busch
et al [124] using the Boundary Element Method. As result of analytical calculations, taking into
account the anisotropic behaviour, they report an exponent w=0.374. This value deviates slighi-
ly from the value for isotropic material (w=0.366) resulting from eq.(B.1.2). Busch et al. [124]
also report the experimental notch siress intensity factor A.=15.5 MPa m« with a deviation of
+10%, the elastic constants for the (111) planes E=187GPa and v=0.4, and the fracture tough-
ness Ki.=0.9 MPa,/m . The correct value » =0.374 will be used below in the computation of the
stress state, but isotropic material behaviour is assumed in the calculation of failure behaviour.
The coefficients for the weight function can be derived by interpolation from the data reported in
[126]. They are entered in table 1. The parameter o, resuits from the condition that the initial
slope of the bridging relation agrees with the macroscopic elastic behaviour, i.e.

(d=0.312nm lattice distance), and from the condition that the bridging stresses must yield the
correct specific surface energy 2y:

5 1 1—v2
2y = “0‘51<75%_?) = E“ K2 (B.1.24)
Consequently, one obtains
1/2
2 2
oo | Kie(t=v) (B.1.25)
071 d (6,064 —1/2) o

which is necessaryto evaluate eq.(B.1.22). The critical notch stress intensity factors are plotted
in fig.207 with the ratio 6,/8, as the parameter. The open square represents the solution of the
first order approximation with the result A,.=16.1 MPam®¥4, The solid circles give the results of
the second order approximation. The experimental results of Busch et al. [124] are represented
as a shaded band. Good agreement between computations and experiments is obvious. The
numerical results are within the scatter-band of the experiments.
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B.2 Nomenclature

a= crack depth

A prefactor of power law of subcritical crack growth, work done by external forces, area
A= deepest point of a surface crack, series coefficients

b= width of a bridging element

B = surface point of a surface crack, series coefficients, thickness
C= compliance, series coefficients

¢ = half crack width of a surface crack

D = diameter, series coefficients

E= Young’s modulus, incomplete elliptical integral

E'=E|(1 — v})=Youngs modulus in plane strain

E= complete ellipticai integral of second kind

Ei= exponential integral

F= geometric function for stress intensity factors F = Y/Jn_, elliptical integral, failure probability
G = shear modulus

G = energy release rate {in notation of [49])

h= weight function, switch-on function, length of a bridging element
H= hardness

J= J-integral

k= modulus for elliptical integrals

K = stress intensity factor

K= complete elliptical integral of first kind

m= Weibull modulus

n= exponent of power law of subcritical crack growth

n= normal vector on the contour line of the transformation zone

p = pressure

P = force

r= radius, radial coordinate

R = Ratio of minimum and maximum load in cyclic tests, crack resistance
s= contour line of transformation zones

S = crack area, roller distance

T= surface tractions

u= displacement in x-direction

U= elastically stored energy

v = displacement in y-direction, crack growth rate

V= Volume between crack faces

W= thickness of a component, energies

X= coordinate with origin at the surface of a component

Y = geometric function for stress intensity factors Y = F\/n_

Z= Westergaard stress function

a = relative crack depth
x = definite integral
= crack opening displacements
e= length of the phase transformation zone
3= virtual change
x = definite integral
A= definite integral, coefficient in bridging relation
u= coefficient of friction, running index
v= Poisson’s ratio, running index
o= width of the phase transformation zone
¢ = angle, complex stress function
@ = Airy’s stress function
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¥ = complex stress function
p = radial coordinate

o= normal stress

o*= characteristic stress
t= shear stress

Subscripts

0 : initial value

appl : applied

b : bending

br : bridging

¢ : critical, characteristical
f: failure, fracture

i : initial value

int : internal

LP : loading point

meas : measured

p . potential

res : residual

shield : shielding

tip . effective at crack tip
total : total

w : wedge
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