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Contributions to the R-curve behaviour of ceramic materials 

Abstract 

Several ceramic materials show an increase in crack growth resistance with incre?sing 
crack extension. Especially, in case of coarse-grained alumina this "R-curve effect" is 
caused by crack-face interactions in the wake of the advancing crack. Similar effects 
occur for whisker reinforced ceramics. Due to the crack-face interactions so-called 
"bridging stresses" are generated which transfer forces between the two crack surfaces. 
A second reason for an increase of crack-growth resistance are stress-induced phase 
transformations in zirconia ceramies with the tetragonal phase changing to the mono­
clinic phase. These transformations will affect the stress field in the surroundings of 
crack tips. The transformation generates a crack-tip transformation zone and, due to 
the stress balance, also residual stresses in the whole crack region which result in a 
residual stress intensity factor. This additional stress intensity factor is also a reason for 
the R-curve behaviour. ln this report both effects are outlined in detail. 

Beiträge zum R-Kurvenverhalten keramischer Materialien 

Kurzfassung 

Eine Reihe keramischer Werkstoffe zeigt einen "R-Kurveneffekt", d.h. einen Anstieg des 
Rißwiderstands bei Rißverlängerung. ln grobkörnigem Aluminiumoxid ist dieser An­
stieg auf Reibungseffekte und Rißflankenverhakungen im Bereich hinter der Rißspitze 
zurückzuführen. in umwandlungsverstärkten Keramiken treten spannungsinduzierte 
Phasenumwandlungen auf, deren Umwandlungsdehnungen zu einer Reduzierung des 
Spannungsfeldes im Rißspitzenbereich führen. Derartige Effekte treten insbesondere 
bei Zirkonoxid-Keramiken auf, wobei im singulären Spannungsfeld um die Rißspitze die 
tetragonale Phase in die monokline Phase umwandelt. Sowohl die Rißflankenverhakung 
wie auch die Phasenumwandlung führen zur Reduktion der Rißspitzenbelastung und 
damit zu einer Erhöhung der ertragbaren Belastung. Beide Effekte werden im· Detail dis­
kutiert. 
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1. Preface 

ln this report the author will give an overview of his present activities in the field of R-curve 
behaviour resulting either from bridging interactions in the wake of cracks or from phase trans­
formations in the crack-tip region. 
Several aspects were published in the last two years but have been examined in a wider context 
in the last months. The R-curves for growing natural cracks should be mentioned as an example 
(Section 14) which now also include subcritical crack growth. 
Besides, the results of a number of completely new investigations have been incorporated. 
These are for example: 

• 

• 

• 

A derivation of a bridging-stress relation, which combines elastic and frictional contributions 
(Section 4.2); 

the computation of phase-transformation zones for cracks in finite bodies (Section 5.1); 

the computation of shielding stress intensity factors for phase-transformation zones at the 
onset of stable crack propagation and du ring crack growth (Section 5.2); 

the applicability of the well-known lrwin relation between the stress intensity factor K1 and 
the energy release rate G, discussed for materials with R-curve behaviour and outlined in 
detail for the case of bridging interactions (Section 6); 

an experimental procedure for the determination of the stress intensity factor K10, which gov­
erns the onset of stable crack extension, proposed in section 12.4; and 

the possibility of determining the true R-curve from a Ioad vs. displacement curve, discussed 
in Section 12.5, 

Since this publication as a KfK-report will have a limited circulation only, the author is planning 
to publish single topics in international journals, too. 
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2. lntroduction 

Failure of ceramic materials often starts from cracks, which may originate at pores and inclu­
sions or may be generated during surface treatment. Various failure modes are responsible for 
failure and finite lifetimes of ceramic materials. At moderate temperatures the most important of 
them are: 

1. spontaneaus failure, 
2. subcritical crack growth under static Ioad, 
3. cyclic fatigue, 
4. thermal shock and thermal fatigue. 

Spontaneaus fai/ure occurs when the applied stress reaches the strength of the material or, in 
terms of fracture mechanics, when the stress intensity factor K, of the most severe crack in a 
component reaches or exceeds the fracture toughness K1c. Therefore, K,c must be known for the 
spontaneaus failure behaviour to be assessed. 
De/ayed fai/ure at moderate temperatures may be caused either by subcritical crack growth gov­
erned by the actual stress intensity factor K1 or by crack propagation under cyclic Ioad governed 
by the range of stress intensity factors ilK and probably by the R-ratio defined as the quotient of 
minimum and maximum K-values. 
Thermal fatigue features at least a combination of the failure modes mentioned before. Addi­

tional effects, for instance oxidation, may also have an influence. 

The loading quantity in linear-elastic fracture 
mechanics which governs failure is the stress 
intensity factor K. The stress intensity factor 
K, which is called the "mode-1" stress intensi­
ty factor and is caused by stresses normal to 
the crack area is of greatest importance to 
the strength- and failure behaviour. The 
stresses at a crack tip are directly related to 
K, by the Sneddon equations, which are re­
ported in most fracture-mechanics handbooks 
(e.g. [1]). Failure of a component occurs 
when the stress intensity factor of the most 
severe crack reaches a critical value K1c. the 
fracture toughness of the material. ln case of 
ideally brittle materials the fracture toughness 
is independent of the crack extension and, 
consequently, identical with the stress intensi­
ty factor K1o necessary for the onset of stable 
crack growth (fig.1) 
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Figure 1. Flat crack-resistance curve. Crack-re­
sistance for ideally brittle materials. 

(2.0.1) 



lt is a well-known fact that the failure of several ceramies is influenced by an increasing crack­
growth resistance curve. Three effects are responsible for this behaviour. 

• ln coarse-grained alumina the crack-growth resistance increases with increasing crack ex­
tension due to friction-like crack-border interactions in the wake of the advancing crack. 

• ln transformation-toughened ceramies the material undergoes a stress-induced martensitic 
transformation while the tetragonal material changes to the monoclinic phase (t- to m-Zr02). 

This transformation generates a crack-tip transformation zone and, due to the stress bal­
ance, also residual stresses in the whole crack region which result in a residual stress in­
tensity factor. This stress intensity factor has to be added to the externally applied one. 

• Further mechanisms are the generation of a micro-crack zone ahead of the crack tip and 
crack branching. 

The effect of increasing crack resistance has consequences on many properties of ceramic ma­
terials. The following Iist contains only some of them: 

• strength of components with natural cracks, 

• delayed failure caused by subcritical crack growth, 

• cyclic fatigue, 

• thermal-shock resistance, 

• fracture-toughness measurements by indentation tests. 

ln this report the author will rnake some contributions to the topic of R-curve behaviour. 
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3. Stable crack propagation and R-curves 

3.1 Definition of the R-curve 

ln early measurements Hübner and Jillek [2] observed for alumina an increase in crack resist­
ance with increasing crack extension. ln fig.2 a crack-resistance curve is plotted. Crack propa­
gation occurs when the applied stress intensity factor reaches the material property K,o, which is 
responsible for the onset of crack growth. For further crack extension the externally applied Ioad 
has to be increased. From the external Ioad a characteristic stress atppl results and the applied 
stress intensity factor is given by 

(3.1.1) 

Kshield ______________________ Jt _________ _ 
KlO 

a-a0 

figure 2. R-t:t~TVe. Definition of an R-curve. 

This stress intensity factor also increases during crack extension. K1appl is a loading quantity and 
the crack-resistance curve describes a material property. We have to distinguish between these 
quantities. Therefore, the material response to an applied Ioad will be called KIR below. The 
difference between the actual stress intensity factor K1appl and K 10 is called the shielding stress 
intensity factor. 
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I short crack I 

0 
a-a 0 

Figure 3. Failure behaviour. lnfluence of the R-curve on failure of a small crack; solid curve: KfR, dashed 
curves: Kt appt· 

3.2 lnfluence of R-curves on the failure of components with 
macro cracks and natural cracks 

A first - and perhaps the most important - consequence of a rising crack-resistance curve is its 
influence on the strength. The principal strength behaviour in the presence of an R-curve effect 
is explained in figs.3 and 4. ln case of a short crack (fig.3) the applied stress is increased. The 
lower dashed line intersects the R-curve (solid line in fig.3) at ~a = a- ao=O, and also for the 
second dashed curve, which represents a state with increased loading, no crack growth is found. 
The upper curve represents the critical state where the applied stress intensity factor reaches 
the onset-value Kto of stable crack growth. Since for the propagating crack always the condition 
Kt appt>Kto is fulfilled, catastrophic failure must occur at this point. 
ln fig.4 a Ionger crack is considered. Also in this case no crack propagation occurs for the two 
lowest dashed curves. At the moment when the condition K1 appt = K 10 is fulfilled, the crack may 
extend. With increasing crack length a, the crack resistance as weil as the applied stress intensi­
ty factor Kt appt increase. ln the first part of crack propagation the crack extension is stable since 
for all stresses an intersection of the curves for the applied stress intensity factor and the R­
curve is found. This is possible until the failure point is reached which is given by the condition 
that the applied stress intensity factor curve is a tangent to the R-curve: 

Klapp/ = KIR (3.2.1) 

lt becomes obvious that for Ionger cracks failure occurs at a higher applied stress intensity fac­
tor Kt appt· From these two examples we can conclude that R-curve effects may influence the 
strength of components with large cracks, but may have no significant effect on specimens with 
small defects. This is - of course - only a question of the initial steepness of the rising R-curve, 
i.e. for very steep R-curves also the small-crack behaviour must be affected. 
The influence of an R-curve on the strength distribution has been discussed in [3]-[6] and the 
tendency has become evident that the R-curve behaviour will result in a reduced scatter of 
strength. 
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failure 

Dl> - ~ ,- -· 
----· 6 
-------"\:---· 
stable crack growth 

0~--------------~-------------------
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a-a 0 

Figure 4. Fallure behaviour. lnfluence of the R-curve on failure of a large crack; solid curve: K1R, dashed 
curves: K, appl· 

From these schematic considerations it has to be expected that the influence of R-curve behavi­
our on failure is more pronounced for macro-cracks. But in case of a very steep R-curve also 
the strength of small, natural cracks can be affected. 
ln recent papers [7] [8] strength measurements for coarse-grained alumina have been de­
scribed. ln a Weibull-plot of inert bending strength a non-linear behaviour was observed as can 
be seen from fig.5. Such a behaviour can be caused, in principle, by a specific flaw population. 
But a second way of explaining it is provided by the R-curve effect. Since specimens with Ionger 
cracks (i.e. specimens with low strengths) may be more affected by the R-curve behaviour, devi-

2.----------------------------------, 

-1:' 0 
I 

c 
~-2 

-3 

2.60 

Figure 5. Strength of coarse-grained alumina. Four-point-bending strength of two batches of coarse­
grained 99.6%-A/20a. 
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Figure 6. Strength of TZP-zirconia. Bending strength of 12Ce-TZP at room temperature (closed circles) 
and 600°C (open circles) reported by Proß [9]. 

ations from a linear Weibull distribution have to be expected. Details of the fracture-mechanics 
analysis will be outlined in Section 7.1. A very impressive result indicating R-curve effects on 
strength has been reported by ProB [9] for zirconia. Strength measurements (fig.6) performed 
with 12Ce-TZP showed a very high Weibull modulus of m =92 at room temperature and a strong­
ly reduced value of m = 9 at 600°C. Under the assumption of an identical flaw population at both 
temperatures, the difference in strength behaviour should only be the consequence of a strong 
R-cu rve effect: 

• At room temperature, stress-induced martensitic transformation at the crack tips might oc­
cur which yields the shielding effect. 

At 600°C no martensitic transformation is possible and the material exhibits a Weibull modu­
lus as usually found for ceramic materials 
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THEORETICAL CONSIDERATIONS ON R-CURVES 
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4. R-curves caused by crack-face bridging 

4.1 Bridging stresses 

Coarse-grained A/203 shows an R-curve behaviour which is characterised by an increase in 
crack growth resistance with increasing crack extension [2}[21]. lt was demonstrated exper­
imentally [10],[11] that this effect is caused by crack-border interactions in the wake of the ad­
vancing crack. Recently, the crack-surface interactions have been detected in-situ under the 
electron microscope [22],[23]. The bridging interactions were observed mainly on large grains. 

Figure 7. Bridging stress. Crack surface interaction due to friction forces (schematic). 

ln fig.7 such a bridging interaction influenced by a friction stress F is schematically illustrated. 
The crack face interactions localised at single grains can transfer Ioads which can be modelled 
in a more homogeneaus way by so-called bridging stresses Gbr which depend only on the crack 
opening displacement J. The bridging stresses shield the crack tip from the external Ioads as 
illustrated in fig.8 schematically. 
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Figure 8. Bridging stress. Modelling of crack surface interactions by homogeneously distributed bridging 
stresses. 

4.1.1 Bridging relations for fridion induced stresses 

For bridging stresses which are caused by friction effects Mai and Lawn [24] proposed a relation 

_ {uo(1 - r5fr5c)m 
Ubr,grain-

0 

that is shown in fig.9. 

for r5fr5c < 1} ' m = 0,1,2, ... 

for r5fr5c > 1 
(4.1.1) 

lt is assumed that the characteristic displacement for which the bridging stresses vanish is pro­
portional to the grain size. On account of grain size distribution, also the characteristic displace­
ment is distributed. 
lt is assumed that the distribution density of r5c is a 1-distribution, as represented in fig.10. 

(4.1.2) 

Other 1-distributions are considered in [18]. 
The macroscopically averaged bridging stresses result from 

(4.1.3) 

For the most appropriate 1-distribution, eq.{4.1.2), the following averaged bridging stress re­
lations result: 

ubr,aver = uo g(r5fr5o) (4.1.4) 

with 
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g(l5/l50) = (1 + bfl50) exp(- l5/l50) for m = 0 

g(l5/l50) = exp(- l5/l50) for m = 1 

where Ei is the exponential integral defined by 

f
oo -t 

Ei(x)= T dt , x>O 

X 

available in most computer libraries. 

for m = 2 

(4.1.5) 

(4.1.6) 

(4.1.7) 

(4.1.8) 

O.Oim---+------,2k----!3....--~-

Figure 9. Bridging stresses. Stress-displacement 
relations for a single grain. 

These bridging relations are shown in fig.11. 

t\ftlo 

Figure 10. Bridging stresses. Distribution of the 
characteristic COD-value Oe (abscissa 
normalised: 60/bo). 

They ensure a continuously decreasing effect of crack-border interaction with decreasing dis­
placement. Especially the mostly applied case m = 1 is used in the subsequent calculations. 
Equation (4.1.6) describes friction-like bridging stresses in the wake of the propagating crack 
which step-like reach their maximum value directly at l5 > 0. ln order to "smooth" this behaviour 
we propese a rewritten version 

(4.1.9) 

where h(l5/l50) is a "switch-on" function for the bridging stresses which avoids that maximum 
stresses occur in the absence of any displacement. ln eq.(4.1.6) a step function occurs with 

{

0 for l5 = 0 
h( bf l50) = 

1 for l5 > 0 

The maximum bridging stress occurs at i>/i>o=O: 

11 

(4.1.10) 

(4.1.11) 



Figure 11. Bridging stresses. lnfluence of the parameter m in eq.(4.1.1) on the averaged bridging stress. 

and the specific work necessary for dissolving the bridges is given as 

(4.1.12) 

ln this paper a continuous switch-on function is chosen 

h(bfb0) = 1 - exp(- ,.t bfb0) (4.1.13) 

o.ooo---------:!----~2=-----

Figure 12. Bridging stresses. Stress-displacement relations for friction-like crack surface interactions ac­
cording to eqs.(4.1.9) and (4.1.13). 
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This relation, initially only an assumption, will be justified in section 4.2. The relation is illus­
trated in fig.12 for ..i = 20. The maximum bridging stresses are found for b/bo=0.1522 

O"max = 0.8179 a0 (4.1.14) 

and it results 

(4.1.15) 

4.1.2 Springs with limited extensions 

ln case of spring-like stresses the bridging stresses in a single bridge may be expressed by 

{ 

a0bfbc 

a br,spring = 
0 

for bfbc < 1 } 

for bfbc > 1 
(4.1.16) 

with maximum extension bc and maximum stress ao, shown in fig.13. 

Figure 13. local bridging stresses. Stress-dis­
placement relations for a single spring 
abr/ao = f(o/.5 0), eq.(4.1.19). 

o.o~---+----,2~:------=3----! 

f31f3o 

Figure 14. Global bridging stresses. Stress-dis­
placement relations for spring-like 
crack surface interactions. 

Similar to [19] it is assumed that the characteristic displacement bc for which the bridging 
stresses vanish is also 1-distributed 

1 bc,spring 
f(bc,spring) =Ta 

60 
exp(- bc,spring/bo) (4.1.17) 

with a characteristical displacement value <50 characterising the "width" of the distribution. Fig­
ure 10 illustrates eq.(4.1.17). The macroscopically averaged bridging stresses result from 
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o.ooo----!-----±-2 ---3:!:----~4 

Figure 15. Bridging stresses. Intercamparisan of Stress-displacement relations; solid curve: eq.(4.1.19); 
dashed curve: eq.(4.1.22). 

and we obtain by integration 

0.80 

0.60 

... 
' ' \ 

' ' ' ' \ 
' ' ' ' ' \ 

' ' \ 
' ' ' ' ' ... 

" .. 
' .. ............. 

...... 

o.oco---~----=2~---=3-----!4 

(4.1.18) 

(4.1.19) 

Figure 16. Bridging stresses. Intercamparisan of stress-displacement relations; solid curve: eq.(4.1.19); 
dashed curve: eq.(4.1.26). 
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ln this case one obtains at ofo0 =1: 

umax = uofe = 0.3679 O"o (4.1.20) 

and 

(4.1.21) 

ln [25] the authors used a Morse-like bridging relation 

O'br = 0"0 [ exp(- ofo0)- exp( -2ofo0)] (4.1.22) 

with a maximum bridging stress at bfo0 =1n(2): 

(4.1.23) 

and 

(4.1.24) 

The relation eq.(4.1.22) is a special case of eqs.(4.1.9) and (4.1.13) with A.=2. Equation (4.1.22) is 
plotted in fig.15 tagether with eq.(4.1.19) in a normalised representation. There is a quite good 
agreement obvious. From this point of view both relations are appropriate to describe spring-like 
bridging interactions. lf we now assume a rnore narrow distribution of the oc's we can use the 
next higher order I-distribution, namely 

(4.1.25) 

and we obtain for the bridging-relation 

(4.1.26) 

A comparison between the bridging relations for the first and second order I-distributions is 
made in fig.16. 

4.2 A model for bridging-stress relations 

The bridging effect is modelled as a two-dimensional problern for an internal crack in an infinite 
body, which is bridged by a single grain. This grain is assumed to be rigid (E --+ oo). Between 
the bridging grain and the surrounding material a residual stress acts due to mismatch of ther­
mal expansion which creates the force F. This configuration is loaded by a remote stress O"appl· 
lt is the aim of the following considerations to calculate the displacements at a remote location 
y = Yo as a function of the applied stress. Figure 17 illustrates the geometry in the absence of 
externally applied stresses. 
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I X~ ' 

i y ~ 2b -1 
l F 

I 
i free crack surface 

I 
bridging grain 

2a 
.............................................................................................................................................................................. 

Figure 17. Bridged crack. Model of a bridged crack (unloaded). 

For small, externally applied remote stresses aappl (fig.18) the stresses and displacements are 
governed by the mixed boundary problern 

b = 0 for lxl ~ b 
(4.2.1) 

a = 0 for ldl < lxl < Iai 

These conditions are valid until the Ioad carried by the grain reaches the maximum friction force 
11Fo between the bridging grain and its surroundings, i.e. for 

1"""""""""""'""""""""""""'""""""""""""""""""6'~·~·~·, ......................................................................... 1 

I ~ ~ ~ ~ ~ ~ ~ ~ ~ I 

.............................................................................................................................................................................. 

Figure 18. Bridged crack. Stresses and displacements for low remote loadings (schematic). 
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Figure 19. Bridged crack. Stresses and displacements for high remote loadings (schematic). 

d 21 a(x) dx :S ILFo 
0 

(4.2.2) 

lf the Ioad carried by the grain exceeds f.LFo, sliding between the bridging grain and the sur­
roundings, with an amount Llh, occurs (fig.19), the interaction force reduces to 

(4.2.3) 

and the equilibrium condition of forces reads 

b 

I h-Llh 
2 

0 
a(x) dx = f.LFo h (4.2.4) 

ln this case, the boundary problem can be expressed by 

b = Llh for 
(4.2.5) 

a = 0 for ldl < lxl < Iai 
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4.2.1 Calculation of displacements 

Due to the syrnrnetry of the problern with respect to x = 0, the cornputations can be restricted to 
positive values of x. Using the relation between stresses and displacernents, see eq.(4.3.4) in 
section 4.3, the rnixed boundary problern can be written 

1 fafa -, h(a',x)h(a', x')a(x')da'dx' = Ah 
E o max(x,x') 

for x ~ b 
(4.2.6) 

a = 0 for b < x < a 

The weight function for an internal crack in an infinite body under syrnrnetrical Ioad is ([1]) 

hx,a = _1_[( a+x )1/2 +( a-x )1/2] = _2_ a 
( ) r--::- a-x a+x ~ ) 2 2 vna vna a -X 

(4.2.7) 

ln the absence of a bridging interaction the crack opening displacement field is given by 

(4.2.8) 

6oppl 

+ + 

[""""""'""""""""""""""""""""""'6~~~·1"""""""""""""""""""""""""'! 

1 + + + + + + + 1 + + + + 

o~:o 
' + + + + + + + 

! ........................................................... ~~~.~! .................................................. ; 
Figure 20. Partial crack problem. Case 1: Pair of 

collinear cracks. 
Figure 21. Partial crack problem. Case 2: Single 

crack opened by a wedge of constant 
thickness. 

The stresses in the grain have to balance these crack opening displacernents in the range 
lxl ~ b. So we have to solve 

,~. rjiC7 
X (I t a(x) dx ) dt = 

)t2- x2 
0 

There are different possibilities of proceeding: 
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• Equation (4.2.9) can be solved numerically. 

The displacement field can be superimposed by solutions existing for partial problems. 

We will choose the second way here. As a first partial problern we compute the crack opening 
displacements for two neighbouring single cracks, fig.20, ensuring zero displacements within 
lxl :5: b. The crack opening displacements are (see for instance [1]) 

2 a uappt 
b1(x) = E' K(k) [K(k) E(<p, k)- E(k) F(<p, k)] (4.2.10) 

where F(<p, k) and E(<p, k) are the first and second elliptical integrals to the modulus k with 

k = )1- (b/a)2 . JB2-x2 , <p = arc stn 
2 2 a -b 

(4.2.11) 

and K(k), E(k) are the complete elliptical integrals. ln this context, it should be mentioned that in 
[1] the elliptical integral K is missing in the denominator of eq.(4.2.10). Equation (4.2.10) repres­
ents the displacement field for ~h =0. ln order to satisfy the constant displacements ~h > 0 in 
-b < x < b, we have to add the displacement field for a parallel rigid wedge of thickness 2~h 
within -b < x < b. ln order to avoid a separation of the contact surfaces, we assume the wedge 
to be welded with the surrounding material along the interfaces. The displacements are also 
given in handbooks (e.g. [1]). lt holds 

F(<p, k) 
c52(x) = K(k) ~h 

and, finally, the total solution for the displacements is given by 

2 a uappl F(<p, k) 
c5(x) = E'K(k) [K(k) E(<p, k)- E(k) F(<p, k)] + K(k) ~h 

The crack opening displacement field resulting from eq.(4.2.13) is shown in fig.22. 

4.2.2 Calculation of stresses in the bridging element 

(4.2.12) 

(4.2.13) 

The corresponding stresses a(x) in the grain can be calculated numerically with eq.(4.2.9). ln ar­
der to solve eq.(4.2.9) we will first calculate as a partial problern the stress distribution for a 
crack of length 2a which is opened by a parallel wedge of length 2b and thickness ~h (see 
fig.21). The Westergaard stress function for this problern is given in [1] as 

E' ha 
Z(z)--- -r===-r====-

- 2K(k) I 2 2 I 2 b2 -yz -a -yz -
(4.2.14) 

from which the normal stress uy results by 

ay = Re{Z(z)} - y /m{Z'(z)} (4.2.15) 

For y = 0 one obtains 
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Figure 22. Bridged crack. Displacements calculated with eq.(4.2.13), b/a=0.2 and O"app1=constant, 
11h' = E'l1h/(2uappla). 

(4.2.16) ay = Re{Z(z)} E' L'lh a 1 

2K(k) .J 8 2 _ x2 .J b2 _ x2 

For the pair of collinear cracks - which result for L'lh =0 - the stresses in the range -b:::;; x:::;; b 
caused by the remote applied stress O"appl are (see [26]) 

Superposition of the two partial crack problems yields 

1 
K(k) 

a appl[ a
2E(k) - x

2K(k) J - aL'lhE' /2 

.j(a2- x2)(b2- x2) 

The total force P carried by the bridging element is then 

b 

P = 2 J ay dx = 2a app1a[2E(k') - K(k')] - E' L'lh 
0 

k' = .J 1 - k
2 

= bfa 
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Figure 23. Stresses in the bridging grain. Stresses calculated with eq.(4.2.9), b/a = 0.2, <Tapp/= const., 
11h' = E'l1h/(2aappla). 

4.2.3 Load-displacement curve 

The total volume V resulting from the local crack opening displacements 

V = 4bAh + 4fx=a6(x) dx 
X=b 

(4.2.21) 

is a measure of the externally recorded loading-point displacements. From eqs.(4.2.2) and 
(4.2.19) we find the applied stress at which the maximum friction force F0 is reached 

a appi,O = 2a[2E(k') - K(k')] (4.2.22) 

The volume at aappl = aappl,o is 

Baa appi,O [ Ja Ja l 
V0 = E'K(k) K(k) b E(<p, k) dx - E(k) b F(<p, k) dx (4.2.23) 

For stresses below this Iimit the volume is 

V = V aappl 
0 aapp/,0 

(4.2.24) 

and for higher stresses applied one obtains 

a 4Ah Ja V = V0 a appl + 4b Ah + F( k) dx 
L1 K(k) b <p, app/,0 

(4.2.25) 
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Figure 24. Volume of the opened crack. Volume of the opened crack as a measure of the Nloading-point 
displacementsH. Geometrical data: specimen thickness = 1 (i.e. crack-opening area = crack-o­
pening volume), bja = 0.2, different values of h' as defined by eq.(4.2.27). 

with Ah given as 

2E(k') - K(k') ( (J appl 
1
) 

ßh = h h' - [2E(k')- K(k')] (Jappl,o 

h' = hE' 
2aqappi,O 

(4.2.26) 

(4.2.27) 

The volume - standing for the remote displacement at a given point- as a function of the applied 
remote stress is shown in fig.24. We can identify three regions: 

1. For (Jappl ::;;; (Jappl,o the displacements are proportional to the applied Ioad as expressed by 
eq.(4.2.24). 

2. At qappl,o the applied stress overcomes the friction forces f.l.Fo. For qappl,o < qappl :5: qappl,max the 
increase in displacements is steeper than in the range aappl < aappi,O· 

3. At aappl,max the bridging element is completely pulled out, equivalent to ßh = h, 

aappl,max 

aapp/,0 
= 

and the subsequent curve follows according to 

h' 
2E(k') - K(k') 

V 
= aappl 

-=----'--'--- V appl,max 
aappl,max 

(4.2.28) 

(4.2.29) 

Dauskardt [27] reports load-COD-curves which are very similar to those represented in fig.24. A 
typical P-COD-curve is schematically shown in fig.25 for one cycle of a cyclic test. Dauskardt 
calls the first steep part (corresponding to the initial nat parts of fig.24) "elastic bridging" and the 
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Figure 25. COD-behaviour. Applied Ioad, P, versus crack opening displacement curves for A/20 3, as ob­
tained by Dauskardt [27] (schematic). 

following phase "frictional bridging". Having in mind the COD-calculations made in this section, 
we can interpret the displacements during e/astic bridging as the displacements occurring in the 
crack regions outside the actual bridging element (no elastic strain of the bridging element it­
self). Obviously, the displacements in [27] were not large enough (K1 = K,c may be reached be­
fore) to exhibit the third part of the curve, i.e. the unbridged state. 
The bridging stresses result from the difference between the curve plotted in fig.24 and that 
curve which is obtained by prolongation of the line for aappl 2':: aappl,max to the origin (representing 
the completely unbridged state) as symbolised by the insert in fig.26. The result Iooks like the 
bridging relations proposed in fig.12. Considering the statistical distribution of the bridging-ele­
ment lengths h, one obtains a smoother curve. lf t5c1 is the displacement corresponding to aappl,o 

and t5c is the displacement at aappl,max. we can write the local bridging stresses as 

t5ft5c1 for t5 < t5c1 

a t5c- t5 
for bc1 < t5 < t5c (4.2.30) ao t5c- t5c1 

0 for t5 > t5c 

ln the most general case one may consider the two typical displacements to be distributed inde­
pendent of each other. But since the maximum friction force F0 characterising the onset of slid­
ing, t5 = t5c1. is proportional to the length h of the bridging element and also the characteristic 
displacement of complete pull-aut is identical to h, it is sufficient to consider the distribution of t5c 
by introducing the ratio 

Ä = t5cft5c1 = constant (4.2.31) 

Replacing t5c1 in eq.(4.2.30) by Ä and t5c and introducing this local bridging relation into eq.(4.1.3) 
yields for a 1-distributed t5c according to eq.(4.1.2) the averaged bridging relation 

abr = Ä ~ 
1 

[ exp(- t5ft50) - exp(- Ä tS/<50)] (4.2.32) 
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Figure 26. Bridging stress relation. Bridging stress resulting from fig.24. 
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which is identical with the estimated relation described by eqs.(4.1.9) and (4.1.13). 
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4.3 Calculation of the bridging stress intensity factor for 
one-dimensional cracks 

A test specimen with a crack may be loaded by an external Ioad, which Ieads to a stress distrib­
ution aappl(x) at the location of the crack in the uncracked component. The geometrical quantities 
of such a crack are explained in fig.27. ln case the material exhibits a bridging zone with crack­
surface interactions, the total stress is the sum of the applied stress and the bridging stress ab,, 
i.e. 

(4.3.1) 

1---0 ~ 

X + 

--------------------------~ 

Figure 27. Weight function method. Crack with arbitrary crack face loading cr(x). 

These stresses are responsible for the stress intensity factor, which is given in the represen­
tation of the weight function [28] 

J
a 

x a 
K1 = 

0 
h( a , W )a(x) dx (4.3.2) 

The total displacements of the crack surface can be easily derived by the relation existing be­
tween crack surface displacements, weight function and stress intensity factor as proposed by 
Rice [29] 

E' 8b(x,a) 
h(x,a) = K, aa (4.3.3) 

with E' = E/(1 - v2) for plane strain. 
Integration of this formula yields the crack-surface displacements b caused by the stress a [30] 
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Figure 28. Stress intensity factors during crack extension. Normalised stress intensity factor K'tip as a 
function of the applied stress intensity factor K'appl for bending (0'0 =1, ao/W=0.5); dashed curve: 
stable crack growth, solid curve: subcritical crack growth. 

b(x) = ~, Ja Ja h(a',x)h(a', x')a(x')da'dx' 
o max(x,x') 

(4.3.4) 

where x is the coordinate with the displacement computed and x' is the location where the 
stress a acts. Equation (4.3.4) can also be derived from the procedure of Paris [31] based on 
Castiglianos Theorem. A detailed description is given in the Appendix of Tadas' Handbook [1]. 
The stress intensity factors describing the R-curve behaviour can be obtained in the following 
way: 

1. The total crack surface displacements according to the total stress, eq.(4.3.1), result as the 
solution of the integral equation 

6= ~, Jafa h(a',x)h(a',x')(aappl+ab,.(b))da'dx' 
o max(x,x') 

(4.3.5) 

The solution of the integral equation (4.3.5) provides the distribution of the bridging stresses 
as a function of the stresses applied. 

2. The related bridging stress intensity factor K1br results from eq.(4.3.2) as 

(4.3.6) 

3. and the applied stress intensity factor K1 appl as 

(4.3.7) 

4. Finally, the crack tip stress intensity factor KJt;p is given by [32] 
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Figure 29. Subcritical crack extension. Development of the crack-tip stress intensity factor during subcrit­
ical crack growth with different initial stress intensity factors. 

(4.3.8) 

The solution of the integral equation (4.3.5) can be determined by several methods. The simplest 
one is the iterative approximation. ln the first step, the applied stress aappt is introduced in the 
integrand of eq.(4.3.5) yielding the crack surface displacement field bappt· A first approximation of 
the bridging stresses is obtained by introducing bappt in the bridging stress law. The bridging 
stresses obtained are then introduced once more in eq.(4.3.5) and the procedure is repeated as 
lang as the bridging displacements are constant. 

4.3.1 General results 

ln fig.28 results of calculations for a crack with an initial relative crack size (e.g. a saw notch) of 
ao/W=0.5 (m = 1, b'o = 1) under bending are represented as Kttip vs. Klappt for several actual crack 
lengths afW using the weight function proposed in [33]. ln this figure, the stress intensity factors 
are normalised with respect to the maximum bridging stress a0 and the specimens width W as 

(4.3.9) 

The displacements can be normalised by 

(4.3.10) 
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Figure 30. R-curves. Development of the bridging stress intensity factor during crack extension; dashed 
curve: stable crack growth, solid curves: subcritical crack growth for different Ioads. 

4.3.2 Constant Ioad tests 

The representation of the stress intensity factor, fig.28, allows to describe crack extension tests 
under different loading conditions. ln fig.28 crack propagation in a constant Ioad test under sub­
critical crack growth conditions is illustrated by the solid line for afao=0.4 and c5'o=1. The curve 
starts at point A corresponding to K1app1=K111p=aja;Y. With increasing crack length, first the 
crack-tip stress intensity factor K~t;p decreases and after reaching a minimum value, K,tip in­
creases monotonically. The resulting R-curve is plotted in fig.30. The curve first starts with a 
square-root shape, passes a maximum and decreases for large crack extension. 
Constant Ioad tests for several initial stress intensity factors Kli are shown in fig.29. The influ­
ence of the initial stress intensity factor on the R-curve can be seen from fig.30. lt is evident that 
the R-curve is more pronounced for low values of applied stress. 

4.3.3 Contralied fracture test 

ln this section tests with constant stress intensity factor K~t;p are considered. Suchtests are diffi­
cult to perform under subcritical crack growth conditions. One possibility would be to perform 
tests with constant crack growth rate. A much simpler possibility is to consider stable crack pro­
pagation, i.e. crack growth at K~t1p=K10 in a controlled fracture test. This type of test is repres­
ented in fig.28 by the dashed horizontal line. The related K,apprvs. Lla-curve is also entered in 
fig.30 as dashed line. At the beginning of crack extension, also this curve is approximately 
square-root shaped. For small crack extension this curve deviates hardly from the curve ob­
tained under constant Ioad conditions. Significant differences in the shapes of the R-curves be­
come obvious for large crack extensions. 
From the curves in fig.30 it becomes obvious that the R-curve depends 

on the special type of crack propagation (stable crack propagation or subcritical crack 
growth) 

and in case of subcritical crack growth on the Ievei of applied stress. 
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Figure 31. lnfluence of the bridging stress relation. Camparisan of the R-curves (K1 br = f(L1a) for different 
bridging stress relations; solid line: ((4.1.9) and (4.1.10)), dashed line: ((4.1.9) and (4.1.13)), dot­
ted line: (4.1.19)). 

4.3.4 lnfluence of bridging relations on the shape of the R-curve 

From the solution of eq.(4.3.5) the bridging stresses along the crack can be computed for a given 
applied stress aappt. and eq.(4.3.2) provides the related stress intensity factors Ktappt and Ktbr· 

Since in a controlled frature test the crack-tip stress intensity factor Kttip = Ktotat is constant, 
namely Kttip=Kto, the R-curve Ktappt = f(a- ao) results from eq.(4.3.8) as 

(4.3.11) 

This correctly derived applied stress intensity factor K1appt will be denoted below as the real one. 
ln fig.32 the entire R-curve is plotted for the bridging relation eqs.(4.1.9) and (4.1.13). Since K10 is 
constant, Ktbr reflects allfurther information on the R-curve behaviour. 
ln order to allow a comparison tobe made with the influence of the shape of the bridging-stress 
relation, we will choose the parameters a 0 and bo in such a way that the maximum bridging 
stresses as weil as the separation energies are identical in all cases. Figure 31 shows the 
bridging stress intensity factor K1 br as a function of the crack extension t1a in a normalised repre­
sentation for the bridging relation eqs.(4.1.9) and (4.1.10) as solid curve, for relation (4.1.9) and 
(4.1.13) as dashed curve, and for eq.(4.1.19) as dotted line. 
lt is obvious that the dependency of (4.1.9) and (4.1.10) is square-root shaped at the beginning of 
crack extension. Also (4.1.9) and (4.1.13) shows a strong increase at Aa=O. The initial slope for 
spring-like bridging stresses eq.(4.1.19) is much less steep. 
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Figure 32. lnfluence of loading case on the R-curve. R-curve for a crack of initial crack depth ao/W=0.5 
computed with eqs.(4.3.5) to (4.3.8) for the bridging stress relation ((4.1.9) and (4.1.10)); Loading 
cases: bending (dashed curve), tension (solid curve). 

4.4 Calculation of the bridging stress intensity factor for 
embedded circular cracks 

Very often the R-curves are determined from specimens with macro-cracks, especially from 
through-the-wall cracks in plates. Sometimes these R-curves have to be transformed into small 
natural cracks. ln this section simplified relations are derived for real cracks. 
The R-curve behaviour has consequences on the strengths and lifetimes of ceramics. 
ln order to allow a simple analysis to be made, the natural cracks in ceramies are modelled by 
one half of a circular embedded crack (fig.33). For such a crack, loaded by a stress a(r), the 
related stress intensity factor is given by 

(4.4.1) 

where a is the crack size and r is the distance from the origin. 

The COD-field exposed to combined loading by externally applied stresses and internal bridging 
stresses can be expressed in a power series representation with respect to J1- (r/a)2 as 

(4.4.2) 

ln order to describe the characteristic features of the stress intensity factor solution only the do­
minating term of eq.(4.4.2) is considered. For an arbitrary bridging stress relation 

30 



5/q, 

______ ßl~l _[[L_ ___ _ 

Figure 33. Semi-circular crack. A semi-circular crack with the total crack size a and the initially inter­
action free region 0 < r < a0• 

the bridging stress intensity factor Ktbr results from eq.(4.4.1) 
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Figure 34. Bridging stress intensity factors for embedded circular cracks. Bridging stress intensity factor 
normalised on the maximum value for the bridging stress relations eq.(4.4.6) (solid curve), 
(4.4.10) (dash-dotted lines), and (4.4.14) (dashed line); relation (4.4.10) is plotted for ). = 2 (Morse 
law) and ). = 20 (this curve is very closed to the solid line). 
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(4.4.4) 

or after substituting 

(4.4.5) 

This relation can be integrated analytically for all bridging relations considered in section 4.1. 
we find for: 

• 

(4.4.6) 

E'aooo [ ( 2 Kt tip ja .J 2 )] Kt br ~ K . 1 - exp - C E' o 1 - (aofa) 
lttp yn 0 

(4.4.7) 

lf we consider (formally) the Iimit case a ~ oo, we obtain from eq.(4.4.7) a maximum stress 
intensity factor 

(4.4.8) 

and eq.(4.4.7) can be expressed by 

Kt br ~ Kt br,max[1 - exp(- ~ ;o ja ) 1 - (a0/a)
2 
)] 

yn I br,max 
(4.4.9) 

ln this context it should be mentioned once more that the displacement field described by 
eq.(4.4.2) is an approximation, which is valid especially for small crack opening displace­
ments. Nevertheless, numerical computations using the correct crack opening displacement 
field result in a similar relation [34]. 

abr = a 0 [1- exp(- A.ofo0)] exp(- ojo0) (4.4.10) 
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• 

E' ao!5o [ ,.t ( 2 K1 tip Ji -J 2 ) 
K1 brc:: K . ~+ ,.t - exp - r E'!5 1- (a0 ja) 

I~ ~n o 

(4.4.11) 

1 ( 2 KltipJi -J 2 )] + Tt1" exp - (..t +1) j:; E'!5o 1- (a0/a) 

(For Morse-like bridging stresses we have to introduce ,.t = 1). Or, with the maximum value 

E'ao!5o 
K1 br,max = K 

ltip 

[ 
1 + ,.t ( 2 aoJi ,.t -J 2 ) K1 br c:: K1 br,max 1 - -,.t- exp - r K ~+ ,.t 1 - (ao/8 ) 

~n I br,max 

1 ( 2 ao Ji -J 2 )] +Texp - c K ,.t 1-(aofa) 
~n I br,max 

( 
2 KltipJi -J 2)] · exp - -- , 1 - (a0/a) j:; E !5o 

and with the same maximum value as given by eq.(4.4.8) 

[ ( 
2 ao Ji -J 2 ) Kl br c:: Kl br,max 1 - 1 + C K 1 - (ao/a) 

~rc I br,max 

( 
2 aoJi J 2 )] · exp - -- 1 - (a0/a) $ Klbr,max 

(4.4.12) 

(4.4.13) 

(4.4.14) 

(4.4.15) 

(4.4.16) 

ln fig.34 the bridging stress intensity factors normalised to the maximum values are plotted for 
the bridging relations considered before. Whilst for eq.(4.4.6) the increase in the bridging stress 
intensity factor is square-root shaped, the initial part is linear for the other bridging relations. ln 
the case of eq.(4.4.10) with ..t=20, the bridging stress intensity factor is very close to that for 
eq.(4.4.6). This becomes obvious from fig.34 where only for small displacements a deviation from 
the exponential behaviour can be detected. The other relations which exhibit a more pronounced 
linear initial part in the ab,- b -curve yield rather linear R-curves. 
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5. R .. curves caused by phase transformations 

5.1 Phase-transformation zone at the crack tip 

Due to the singular stress field near the crack tip in transformation-toughened ceramics, the ma­
terial undergoes a stress-induced martensitic transformation and the tetragonal material chang­
es to the monoclinic phase (t- to m-Zr02). This transformation occurs when the local stresses 
reach a critical value and the result is a crack-tip transformation zone. ln the following consider­
ations it is assumed according to the analysis of McMeeking and Evans [35] that the transforma­
tion is initiated when the hydrostatic tensile stress reaches a characteristic value agyd· For the 
special case of a crack in an infinite body McMeeking and Evans [35] and Budiansky et al. [36] 
computed the transformation zone ahead of a crack tip under conditions of small-scale phase 
transformation (zone size ~ crack size) neglecting the pertubation of the stress field due to the 
transformation. 

5.1.1 Weak phase transformations 

ln the next sections it is assumed that the influence of the dilatation stresses on the shape and 
the size of the zone is negligible, i.e. we will restriet the considerations to the Iimit case 
pfagyd--+ 0, i.e. the case of weak transformation. The quantity p is given by 

/ fE p= 
3(1 - 2v) 

(5.1.1) 

where r/ is the Volumetrie phase transformation strain, f the volume fracture of transformed ma­
terial, E Young's modulus and v Poisson's ratio. 

5.1.1.1 Small-scale transformation zones 

For the special case of a crack in an infinite body McMeeking and Evans [35] computed the 
transformation zone ahead of a crack tip under conditions of small-scale phase transformation 
(zone size ~ crack size). ln this Iimit case the stresses ahead of a crack tip are given in polar 
coordinates with the origin at the tip by 

K1 ( 2 ) ar= r;:;-.: cos(cp/2) 1 + sin (cp/2) 
-y2n:r 

K1 2 
a = r;;--:: cos(cp/2) cos (cp/2) 

<p v t:.n:r 
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where K, is the mode-1 crack-tip stress intensity factor. From the sum of stress components, 
eq.(5.1.2), the hydrostatic stress ahyd results for plane strain conditions 

(5.1.3) 

yielding 

2(1 + v) Kt 
a hyd = 3 .j2;( cos( q> /2) (5.1.4) 

ln the special case of phase transformation activated by hydrostatic stress the size and shape of 
the zone results from the condition 

(5.1.5) 

when the hydrostatic stress reaches the characteristic value agyd· Combination of eqs.(5.1.4) and 
(5.1.5) gives the transformation zone as 

2 2( c )2 2 r = 91!' (1 + v) K!fahyd cos (cp/2) (5.1.6) 

lf we introduce the width of the transformation zone w, which is obtained for q> = n/3, we can 
write 

2 
(1 + v) ( c )2 

w = ;;;- K!fahYd , 
4.y3 1t' 

8 2 
r = ;;;- w cos (cp/2) 

3.y3 
(5.1.7) 

This formula has been derived at an early stage by McMeeking and Evans [35]. Figure 35 shows 
the geometrical data occurring in eq.(5.1.7). lt should be mentioned once more that this relation 
is only valid if the boundaries of the body are far away from the crack tip. 

Figure 35. Transformation zone ahead of a crack tip. Geometrical data. 
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Figure 36. Transformation zone in front of an internal crack. Geometrical data. 

5.1.1.2 Transformation zones for internal cracks in infinite bodies 

To show the effect of the crack length on the phase transformation zone, we will consider an 
infinite body containing an internal "through-the-thickness" crack of total length 2a under remote 
tension loading. Figure 36 shows the relevant geometrical data. 
The stresses acting on this type of crack are exactly known (see e.g. [26]), and we obtain the 
surn ax + ay as 

(5.1.8) 

with the radii 

(5.1.9) 

and the angles 

( 
rAsin(JA) 

() 0 = arctan () 
a + rA cos A 

(5.1.10) 

( 
rAsin(JA) 

()8 = arctan 
2 

() 
a + rA cos A 

Also in this case, the size and shape of the transformation zone result frorn the condition 

36 



a=oo 

25um 

-.020 .000 .020 .040 .060 
x (mm) 

Figure 37. Transformation zone in front of an internal crack. Change of the transformation zone with the 
initial crack length a for a hydrostatic stress crhyd=200 MPa and a crack-tip stress intensity 
factor Ktip=4 MPa .jm). 

The influence of this characteristic stress and the influence of the initial crack size on the phase­
transformation zone are shown in fig.37. Other than for the Iimit case of small-scale transforma­
tion zones, we conclude that the zone size is dependent on the crack length. For large cracks 
the size of the zone increases monotonically with increasing initial crack length. ln case of a 
small crack the applied tensile stress has to be increased considerably to reach the same K10 as 
obtained for a long crack under lower stress. lf the crack is very small (or the critical phase­
transformation stress is low), a large transformation zone will result. 
From eqs.(5.1.8)-(5.1.10) we can conclude that the hydrostatic stress can be written as 

(5.1.11) 

where the stress intensity factor is given by 

(5.1.12) 

The size and shape of the transformation zone result from eq.(5.1.5) and the zone contour re­
presented implicitly by 

(5.1.13) 

from which we conclude that a normalised representation 

(5.1.14) 

is possible. Figure 38 shows the results of fig.37 in this representation. lf we now consider a 
very long crack with a~w. it results for the quantities of eqs.(5.1.8)-(5.1.10): 
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Figure 38. Transformation zone in front of an internal crack. Change of the transformation zone in a nor­
malised representation. 

and after introducing these Iimit values in eq.(5.1.8) we get 

(5.1.15) 

( 

c )2 3 O'hyd 1+--J;a--
1 +V Kl 

ln case of an infinite crack length the term 1 in the denominator can be neglected and eq.(5.1.7) 
results as a first-order approximation. 

5.1.1.3 Transformation zones for finite cracks in finite bodies 

No exact stress solution is known for finite bodies. The transformation zone can be calculated 
from the Airy stress function <1>, which satisfies the bi-potential equation 

~~<I>= 0 (5.1.16) 

lf this function is known for a given crack in a component, the stresses result as 

(5.1.17) 
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Figure 39. Hydrostatic stresses ahead of an edge-crack in a bending bar. Camparisan between the total 
stresses (solid curve) and the singular stress term (dashed curve). 

The symmetric part of the stress function - the only part of interest here - reads [37] 

00 

\' n + 3/2 [ n + 3/2 ] <l>s = L r An cos(n + 3f2)cp - n _ 
112 

cos(n- 1/2)cp (5.1.18) 

n=O 

00 

+ I rn + 2 At[ cos(n + 2)cp - cos ncp] 

n=O 

For practical application of eq.(5.1.18), theinfinite series must be truncated after the Nth term for 
which an adequate value must be chosen. 
The still unknown coefficients in eq.(5.1.18) can be determined using the Boundary Collocation 
Method (BCM). For the special case of an edge crack in a bending bar the coefficients for 
(5.1.18) were determined and tabulated in [38]. 
The series representation of the stress function Ieads to the hydrostatic stress 

00 

1+v \'[ n-1/2 (n+3/2)(n+1/2) 
a hyd = -4 - 3- /._; Anr n _ 

112 
cos(n - 1/2)cp 

n=O 
(5.1.19) 
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Figure 40. Transformation zone. lnfluence of the initial crack size on the size of the transformation zone; 
W=4.5mm, a=2.25mm, K,=4MPa rm. a) CThyd=200MPa, b) CThy~100MPa, c) CThyd=50MPa (for 8 

and w see fig.35), d) Shape of zones for W=4.5mm, K1=4MPa ym , CThyd=50MPa. 

ln fig.39 the hydrostatic stress ahead of a crack in a bending bar with afW = 0.5 is plotted for the 
situation K,=4 MPa .jm with v = 0.2 and W = 4.5mm. Whereas the solid curve represents the 
complete stress solution, the dashed curve only represents the first (singular) term of the series. 
lt becomes obvious that for ahyd > 300 MPa the hydrostatic stresses are sufficiently represented 
by the singular stress term. Forstresses ahyd < 100 MPa the deviations from the correct solution 
are strong. 
Figure 40 shows the influence of the transformation stress, a~yd. on the width co and the length e 
of the transformation zone for the Iimit case pfa~yd ~ 0. The influence of transformation on the 
shape of the zone is neglected. With increasing a the width co of the transformation zone at K, = 
Kto increases and, after passing a maximum at about afW=0.6, co decreases again. The same 
dependency can be observed for the "length" of the transformation zone, i.e. for the distance 
ahead of the crack where the material changes from the transformed to the original state. Part 
d) gives an impression of the changes in size and shape for a low critical transformation stress. 
Figure 41 illustrates the change of size of the transformation zone as a function of the critical 
hydrostatic stress in a normalised representation 

(5.1.20) 
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Figure 41. Transformation zone. Change of size of transformation zone with critical hydrostatic stress in a 
normalised representation; afW=0.5, upper scale valid for W = 4.5mm and K1=4 MPa,jm'; solid 
curve: complete stress solution, dotted lines: singular stress term eq.(5.1.7); (for E* and co* see 
eq.(5.1.20)). 

a~ydJW/K V a/W=0.25 0.4 0.5 0.6 0.7 0.85 

0.5 0.2 0.478 0.457 0.434 0.39.9 0.348 0.232 

0.3 0.448 0.423 0.400 0.365 0.317 0.209 

1.0 0.2 0.728 0.748 0.744 0.719 0.666 0.510 

0.3 0.703 0.718 0.710 0.683 0.628 0.472 

1.5 0.2 0.832 0.872 0.881 0.873 0.839 0.708 

0.3 0.815 0.852 0.859 0.847 0.809 0.669 

2.0 0.2 0.884 0.928 0.943 0.945 0.926 0.832 

0.3 0.871 0.915 0.929 0.928 0.905 0.800 

3.0 0.2 0.931 0.972 0.990 0.999 0.996 0.955 

0.3 0.923 0.966 0.984 0.992 0.987 0.936 

5.0 0.2 0.964 0.995 1.010 1.020 1.024 1.022 

0.3 0.960 0.993 1.008 1.018 1.023 1.016 

10. 0.2 0.984 1.002 1.011 1.018 1.023 1.032 

0.3 0.982 1.002 1.011 1.018 1.024 1.033 

15. 0.2 0.990 1.002 1.009 1.014 1.018 1.026 

0.3 0.989 1.002 1.009 1.014 1.019 1.028 

Table 1. Phase-transformation zone. Normalised zone width co* according to eq.(5.1.20). 

For very high transformation stresses the curves tend towards 1 for w* and towards 8/.J27 for 
e*. We can conclude from this plot that small-scale transformation conditions are fulfilled for 
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a~ydJVV jK, > 5. The zone width has been computed for a field of parameters and the normalised 
data have been entered in Table 1. 

5.1.2 Phase transformation zones for strong transformations 

Under conditions of small-scale transformation, the influence of the dilatation stresses on the 
zone size and zone shape was studied by Stump and Budiansky [40] and Amazigo and Budian­
sky [41] using Hutchinson's [42] analytical solution for a stress field of pairs of small circular 
spots of dilatation. Their procedure Ieads to an integral equation that has to be solved numer­
ically. The result is a relation which contains eq.(5.1.3) as the principal term and provides an 
additional term representing the influence of the phase-transformation stresses on the total hyd­
rostatic stress 

2(1+v) K1 
a hyd = 3 ,j2;f cos( q> /2) + 

+ p(1 - 2v) ~ J Re{ 1 + 1 }ds 
6n 1- v s jii;(JZ + JZ;)2 ~(JZ + JZo/ 0 

(5.1.21) 

where 

z = r exp(icp) z = r exp(- icp) (5.1.22) 

z describes the location where the stresses are evaluated and z0 are the locations of the dilata­
tion spots. 
A different approach to determine the initial phase transformation zone is the use of the fracture 
mechanics weight function. 

5.1.2.1 Calculation of crack-tip stress fields with the weight function 

A crack of length a in a body may be loaded by tractions T(s) acting normal to a curve r (fig.42). 
The tractions are responsible for a stress field at the crack tip which can be characterised by a 
stress intensity factor KT where the supscript "T" refers to the loading system. One can write 

(5.1.23) 

where h is the vector of the weight function h = (hy, hx)T and T = (Ty, Tx)r. ln the following consid­
erations only loading cases symmetrical to the x-axis will be taken into account, i.e. only mode-1 
stress intensity factors will occur. 
Rice [29] has shown that the weight function is related to the displacement field u = (uy, Ux)T by 

E' ou h= -­
Kr oa (5.1.24) 

where K, is the stress intensity factor for an arbitrary reference loading case. Subsequently, this 
reference loding case is identified with the loadings by the tractions T, i.e. K, =Kr. Equations 
(5.1.24) then enable the displacements to be determined at an arbitrary location characterised by 
the coordinates x,y. ln order to avoid confusions, the location where the tractlons act may be 
described by x, y. The weight functions are distinguished in the same way (h = h(x, y)). The 
displacements result from eq.(5.1.24) as 
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Figure 42. Crack loaded by tractions. Geometrical data. 

(5.1.25) 

(5.1.26) 

where uyQ and u,o are the displacements in the absence of a crack. The strains are obtained 
from 

(5.1.27) 

(5.1.28) 

Finally, the stresses result from Hooke's law 

1 - V Ja [ f ~ ] ( Ohy(a') Ohx(a') ) 
CTy = 1 - 2v 0 J/ 0 T dS (1 - v) oy +V ox da' + crya (5.1.29) 

1 - V Ja [ f ~ ] ( Ohy(a') Ohx(a') ) 
Gx = 1 - 2v 0 J/. T dS V oy + (1 - v) ox da' + crxa (5.1.30) 

The hydrostatic stresses in a phase transformation zone at a crack tip will be considered as a 
practical example. ln order to be able to compute the size of the transformation zone, we are 
interested in the hydrostatic tension stress ([35]). For plane strain conditions it holds 
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Figure 43. Stress intensity factor caused by the transformation zone. Value of the integral KT(a') in 
eq.(5.1.33) (first approximation). 

1+v E 
ahyd = -3- (ax + ay) = 3(1 - 2v) (ex + ey) (5.1.31) 

(5.1.32) 

written in the short form as 

a 

"hYd ~ 3(~-::_ v2:) 1 K T(a') V • h(a') da' + "hyd,O (5.1.33) 

where ahyd,o is the hydrostatic stress in the absence of the crack. lt can be concluded from gener­
al principles that for an inclusion (and also for a phase transformation zone) in an infinite body 
the hydrostatic stress is ([39],[ 43]) 

{

- ~ 1
1 

-=_2vv p for x,y eS 
CThyd,O = 

o for x,yeS 
(5.1.34) 

For the numerical evaluation of eq.(5.1.33) in the Iimit case of small-scale transformation zones 
we will use the weight function for a long crack in an infinite body as given by Tada et al. [1] 

hx = J8;r 1 
[2v -1 + sin( ~ ) sin( ~ cp)] cos( ~ cp) 

Bnr (1 - v) 
(5.1.35) 
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Figure 44. Hydrostatic stress around the transformation zone. uhyd caused by the first-order transforma­
tion zone. 

hy= jä;(1 
[2-2v-cos( ~) cos( ~ <p)]sin(f<p) 

Bnr (1 - v) 
(5.1.36) 

where r and <p are polar coordinates with the origin at the crack tip. We will use the result of 
McMeeking and Evans [35] as a first approximation. Starting with the transformation zone given 
by eq.(5.1.7). the second approximation of the transformation zone was determined. For the nu­
merical evaluation v = 0.2 was chosen. Since the value K(a') at a' = a disappears, we see that 
the transformation zone in the first approximation does not create a shielding stress intensity 
factor. Figure 43 represents the stress intensity factor K(a') which is necessary to evaluate 
eq.(5.1.33). As a result of eq.(5.1.33), fig.44 shows the hydrostatic stress component outside the 
first estimation transformation zone as a function of the distance from the crack tip. An arbitrary 
hydrostatic stress ahyd caused by the externally applied Ioad is reached at the distance r 

( 

O'~yd )2 
r-r --

- c O'hyd 
(5.1.37) 

lntroducing eq.(5.1.7) yields 

(5.1.38) 

The size of the phase tansformation zone in the second approximation results from the condition 

leading to the relation 

c 
O'hyd = ahYd,appl + O'hyd,transfzone = ahYd 
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Figure 45. Phase transformation zone. Change of the transformation zone by the hydrostatic stress por­
tion caused by the transformation zone itself, outer solid line: final zone size (pjugyd = 15). 

4 cos(tp/2) ahyd(r/w) 
~ + p 

-vrfw 
= 1 (5.1.40) 

from which the radius of the zone can be obtained using a zero routine. The phase transforma­
tion zone resulting as the second approximation was chosen as the input to determine the zone 
in a third approximation. The change in size of the zone with the number of iterations is given in 
fig.45. Whereas the zone for <p < 0.7 reaches its Iimit of saturation early, the minimum dimension 
attains it later. The shape of the transformation zone tends more and more to become a circle 
with the crack tip inside. The shielding stress intensity factor is also plotted as a function of the 
number of iterations (fig.46). With increasing number of iterations, K(a') first increases and hav­
ing passed a maximum this stress intensity factor decreases continuously towards zero. 
ln order to avoid a great number of additional iteration steps demanding much expenditure in 
computer time, we will use an accelerated procedure for the further computations. The final 
shape ofthe zone can be estimated from a plot r(<p) versus 1/N and from extrapolating to 1/N=O. 
ln this way, the contour of the final zone can be determined with sufficient accuracy in the range 
0 ~ <p ~ 0.6n. This estimated zone contour is now considered as a first approximation to the pro­
cedure described before. The change of zone size from the first approximation to the second is 
very small. A comparison of the second approximation with the third showed that no further 
change in zone size had occurred, i.e. the final zone was determined with sufficient accuracy. 
The final contour is plotted as the outer solid line in fig.45. The shielding stress intensity factor 
corre~nding to the last iteration was found to be (for pfagyd = 15) Kf(pj;;;) = 0.00055 and 
Kf(p-Jw) = 0.0025 in the step before. These results (entered in fig.46 as circles) ensure that the 
final snielding stress intensity factor is zero within the accuracy of the numerical analysis. This is 
in good agreement with the general proof by Budiansky et al. [36]. They showed by application 
of the J-integral that in case of small-scale transformation zones the shielding stress intensity 
factor vanishes for a non-extending crack. The influence of the ratio pfagyd is shown in fig.47. An 
agreement with the results of Stump and Budiansky [40] is evident. 
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Figure 46. Convergence of the computations. Shielding stress intensity factor K(a' = a) for (p/u~yd = 15); 
circles: results for the additional iterations using the accelerated procedure. 

5.2 Calculation of R-curves 

5.2.1 Stress intensity factor 

ln this section a stress intensity factor analysis will be made similar to the investigation of 
McMeeking and Evans [35] who used an Eshelby technique [39]. Therefore, we assume the 
transformation zone ahead of the crack tip (see Section 5.1) to be removed from the original 
material. The transformed material which under unconstrained transformation exhibits a strain er 
is assumed to be restored to the original shape of the non-transformed material by applying sur­
face tractions T to the transformation zone. The zone now fits again into the body and equilib­
rium can be obtained by nullifying the surface tractions with a layer of body forces. The surface 
tractions then result in a residual stress intensity factor I(T, Since this stress intensity factor is 
caused by the residual stresses caused by the phase transformations it may be denoted in the 
following as K,, •• 

(5.2.1) 

where Sr is the line describing the contour of the transformation zone and h is the vector of the 
weight function h = (hy, hx)T. Also for calculating stress intensity factors it is assumed that the 
change of shape of the zone by the transformation is negligible. 
ln the special case of a dilatational transformation the surface tractions are given by the normal 
pressure p defined by eq.(5.1.1), and the residual stress intensity factor K,, •• results 

Klres = P J n • h dS 
sP 
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Figure 47. Final phase transformation zone. Shape of zone for several values of p/crfwd· 

where n is the outward surface normal along the contour of the transormation zone. For numer­
ical computations we rewrite eq.(5.2.2) 

(5.2.3) 

where the x-axis corresponds to the axis of the crack. The components hx and hy of the weight 
function are given by eqs.(5.1.35) and (5.1.36) for infinite bodies and by the relations in Section 
A.1 for reetangular plates and bars of finite dimensions. 

5.2.2 Stress intensity factor at the onset of crack extension 

lf a cracked body undergoes growing external loading, the transformation zone increases simul­
taneously and at the onset of crack extension it reaches its charcteristic size. A first question is 
whether this zone with its stress field Ieads to a shielding stress intensity factor before crack 
growth starts. Therefore, it is necessary to calculate the stress intensity factor which is caused 
by the tractions needed to restore the initial shape of the zone. 
The weight function procedure is appropriate to solve the problem. This will be outlined in two 
steps: 

1. First, the transformation zone is assumed to be small compared with the crack length and 
with the specimen width, i.e. ro~a,W. ln this Iimit case the exact weight function is known. 

2. Then, the transformation zone and the crack size are assumed to be small compared with 
the specimen size, but may be of the same order of magnitude, i.e. ro~a~W. This special 
case will be considered for an internal crack for which the exact weight function is known, 
too. 

48 



5.2.2.1 Small-scale transformation zones 

The weight function method was used by McMeeking and Evans [35] at an early stage already. 
For transformation activated by hydrostatic stress the shape of the zone has been computed an­
alytically (see eq.(5.1.7)). 

8 2 
r = r;;- w cos (<p/2) 

3.y 3 

ln [35] the dominating term of the weight function was used as described by eqs.(5.1.35) and 
(5.1.36). lt was shown that the resulting stress intensity factor is Ktres=O. 
This important result could also be confirmed by an analysis on the basis of the J-integral as has 
been shown by Budiansky et al. [36]. On the other hand, it is not self-evident that 

also the higher terms of the correct weight function will not make a contribution to the stress 
intensity factor K1res. and 
Ktres=O, especially for shapes of zones deviating from that in infinite bodies (eq.(5.1.7)). 

5.2.2.2 lnternal crack with transformation zones at both ends 

The weight function for an internal crack in an infinite body loaded with symmetrical remote trac­
tions (symmetrical with respect to x = 0 and y = 0) is given by [45] 

(5.2.4) 

(5.2.5) 

2 frA . [ r A 38 B - 8 A r B 38 A - 8 B a 38 B + 8 A a 38 A + 8 B ] 
+ K +1 V r; Sln 8A r;cos 2 ---;:;cos 2 + r;cos 2 + r;cos --2--

with 

(5.2.6) 

and the angle 

( 
2a +r A COS 8 A ) 

88 = arccos ra (5.2.7) 

where the subscript A refers to the crack tip A (see fig.36). The quantity K is defined as 

K = {(3- v)/(1 + v) for plane stress} 

3 - 4v for plane stress 
(5.2.8) 
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Figure 48. Residual stress intensity factor. lnfluence of ratio Hcrack length/zone sizeN, solid curve: 
K, •• Jp.;;;;, dashed curve: KresiP,.;;;; · (ajco). 

lntroducing the contour of the phase-transformation zone into eq.(5.2.2) and applying the weight 
function, eq.(5.2.4) and (5.2.5), allows the residual stress intensity factor Kres to be determined. 
The result of such computations has been entered in fig.48. lt is obvious that the residual or 
shielding stress intensity factor does not vanish at the onset of crack extension. 

5.2.3 The crack-extension phase 

5.2.3.1 Repetition of the analysis made by McMeeking and Evans 

ln [35] McMeeking and Evans considered the stress intensity factor of a transformation zone af­
ter a crack propagation ila (see fig.49). ln their analysis it was assumed that the transformation 
zone is negligible compared with the crack length and the Iigament, i.e. w ~ a, W- a. ln this 
special case, the leading term of the crack-tip stress field governs the transformation zone, and 
the crack-tip displacement field is sufficient for the derivation of the weight function. First, the 
analysis of McMeeking and Evans will be repeated here. 
After a crack extension of ila (fig.49) the transformation zone is described by 

and 

8 2 r = r;:;- w cos ( <p /2) 
3y 3 

Q) 
r = 

sin cp 
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for <p =::;; n/3 

for n /3 =::;; q> =::;; <p L 

(5.2.9) 

(5.2.10) 



Figure 49. Phase-transformation zone during crack propagation. Shape of zone after a crack extension 
~a. Definition of the Iimit angle lfJL and the polar angle ~p 1 . 

with 

0.30 

K"' 

r1 sin cp 1 cp = arc ta n ---'---'---,--­
r1 cos cp 1 - .1a 

for cp > lf>L 

fG5 K:, 

I e McMeeking/Evans I 

O.Oßt--.!---.J:---'--...~,-_.__-±-6--'--.,.,____._._,.~ 
t:::.a/oo 

(5.2.11) 

Figure 50. Normalised shielding stress intensity factor. K* = K(1 - v)/3p (1 - 2v); results cornpared with 
data tabulated in [35]. 
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w tan(n/3) 
<f>L = n - arc tan w - Lla tan(n/3) (5.2.12) 

The coordinates (r1, q>1) describe points at the boundary of the transformation zone for q> > <f>L· 

These coordinates are the polar coordinates with the origin at the initial location of the crack tip 
before crack extension occurred. 
The result of the calculations is shown in fig.50. ln addition to the own results the data tabulated 
in [35] are entered. A saturation behaviour of the stress intensity factor is obvious. 

5.2.3.2 Relation between shielding and applied stress intensity factor 

For small-scale transformation zones a simple expression between the shielding and the applied 
stress intensity factors can be derived for steady-state conditions, i.e. after a sufficiently lang 
crack extension phase. From the width w of the phase transformation zone provided by 
eq.(5.2.15) 

2 
(1 + v) ( c )2 

w = ;;;- K1 tip/ahyd 
4.y 3 11: 

and the steady-state value of the shielding stress intensity factor 

we obtain 

r 1-2v 
Ksh steady- state = 0.66p.y w --'1,-.=..:.... ' -v 

Ksh,steady- state = 
0.44 (1 + v)(1 - 2v) 

31/4.{; 1 -V 

5.2.3.3 Calculation of stresses along the crack line 

(5.2.13) 

(5.2.14) 

The phase-transformation zone generates tensile stresses in the surrounding non-transformed 
material. These stresses act in the body when the externally applied surface tractions T are 
removed. Of special interest for weight function applications is the stress distribution along the 
crack-propagation line in the uncracked body. 
We imagine that a virtual crack is introduced into the body with the tip embedded in the transfor­
mation zone. lts length a' is assumed to be different from the real crack of length a that has 
produced the transformation zone, i.e. a' =t= a. This virtual crack is used as a sensor for the resi­
dual stress field (fig.51). 
The residual stress field a, •• (x) gives rise to the residual stress intensity factor K, •• 

a' 

Kres(a') = 1 ares(x) h(x,a) dx (5.2.15) 

where h(x, a') is the crack-surface weight function, i.e. the weight function for q> = n. Since the 
stress intensity factor IK, •• I can be computed with the weight function procedure of Sections 
5.2.2.1 and 5.2.3.1, the left-hand side of eq.(5.2.15) is known. ln this case one has to solve 
eq.(5.2.15), which is a Valterra integral equation of the first kind. 
ln order to demonstrate the procedure, the near-tip weight function (eqs.(5.1.35) and (5.1.36)) is 
used. For q> = n one obtains the simple expression 
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'test crack' 

a 

Figure 51. Determination of the stresses near a transformation zone. A fracture mechanical approach for 
the determination of stresses at the crack propagation line by computation of stress intensity 
factors for virtual 'test cracks'. 

h(x, a') = .J ( ,2 
) n: a - x (5.2.16) 

lntroducing eq.(5.2.16) into (5.2.15) yields the Abel integral equation 

0.50 K I M 
Ft!B p 

-6 -5 

Figure 52. Stress intensity factors for test cracks. lnfluence of crack length on the stress intensity factor 
K, •. , caused by the residual stresses on the crack propagation line of a real physical crack. 
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Figure 53. Stresses caused by the transformation zone. Stress distribution in the uncracked component 
along the crack and in the transformation zone. 

la' u(x) dx = ~2 K(a') 
Ja'-x \12 

0 

(5.2.17) 

with the well-known solution 

l X l 1 d K(a') 
u(x) = ---l da' ji; dx .;x:::a' 

0 

(5.2.18) 

As an example, the procedure is now applied to the initial transformation zone at the onset of 
crack propagation, i.e. at K1 = K10 • The stress intensity factor K(a') has been determined for differ­
ently chosen virtual crack lengths a'. The values - normalised to the pressure p - are plotted in 
fig.52. The stress distribution resulting from eq.(5.2.18) is shown in fig.53. 

5.3 Crack opening displacements 

Knowledge of the stresses in the uncracked body containing the phase-transformation zone al­
low~t~ the corresponding crack opening displacements to be determined by evaluation of 
eq.(4.3.4), which reads in case of the residual stress field ures(x) 

a a 

Ores(x) = ~' J J h(a',x)h(a', x')ures(x')da'dx' 
0 max(x,x') 

(5.3.1) 
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Figure 54. Crack-opening displacements caused by the transformation zone. Normalised displacements 
for a large crack a~co; (note the absence of a square-root shaped crack opening displacement at 
the crack tip). 

lt should be noted that the notation b is used for the crack-face displacements (x:::;; a, y = 0) as a 
special case of the displacement component Uy. The displacements can, in principle, be com­
puted by evaluating this double integral using the stresses a,... The numerical evaluation be­
comes much simpler if eq.(5.3.1) is rewritten 

(5.3.2) 

where the inner integral is identical with K(a') represented in fig.52. Consequently, one obtains 

J
a , 

bres(X) = i• x h( ;, , ~ ) Kres(a') da' (5.3.3) 

The evaluation of eq.(5.3.3) needs the evaluation of cracks with a' :::;; a. The numerical effort may 
be drastically reduced by introducing the Green's function which reduces the evaluation to a 
fixed crack length a and one single integration. With the Green's function the displacements at 
any location of a body can be determined. ln the following we will compute this function for crack 
opening displacements in case of loadings acting on the crack faces. The Green's function 
G(x,x') describes the displacement at a point x for a pair of single forces acting at the point x'. 
Consequently, the crack opening displacement for a distributed stress results as 

b(x) = i' Joa G(x,x') a(x') dx' (5.3.4) 

Comparing eqs.(5.3.2) and (5.3.4) gives 

G(x,x') = Ja h(a',x)h(a', x') da' 
max(x,x') 

(5.3.5) 
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Figure 55. Area or volume caused by crack opening due to the transformation zone. The ordinate repres­
ents the integral explained by eq.(5.3.15). 

The main advantage of the Green's function becomes obvious for the case that eq.(5.3.5) can be 
integrated analytically. lf we are interested in the near-tip crack opening displacement field we 
have to introduce the singular term of the weight function resulting in 

2 ia da' 4 Ji=X +Ja-x' 
G(x,x') = n = n ln -'--r=====---

Ja'-x Ja'-x' Jix-x'l 
max(x,x') 

(5.3.6) 

lf the displacements at any other location has to be computed this can be done by application of 
eqs.(5.1.25) and (5.1.26). Greens functions for crack opening displacements can be derived for 
tractions at any location of a component. lf we write eqs.(5.1.25) and (5.1.26) in the form 

1 f[ ~~ ~~] 
Uy = p J, Ty Gyy(x,y, X, y) + Tx Gyx(x,y, X, y) dS + Uya 

r 
(5.3.7) 

1 f[ ~~ --] Ux = p J, Ty Gxy(x,y, X, y) + Tx Gxx(x,y, X, y) dS + Uxa 
r 

(5.3.8) 

we obtain the Green's functions (notation see fig.42) as 

a Ia 
Gyy(x,y, X, YJ ~ I h,(a') hy(a') da' , Gxy(x,y, X. YJ ~ h,(a') hx(a') da' 

0 0 

(5.3.9) 
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Ia a 

Gyx(x,y, X. Y) ~ J hx(a') hy(a') da' , Gxx(x,y, ii, Y) ~ [ hx(a') hx(a') da' 

o Ja 

ln matrix representation we can abbreviate the last relations 

u = J QTdS + u0 
r 

with u = (uy, u.)T, Uo = (uye, uxe)T, T = (Ty, T.)T, and 

(5.3.10) 

(5.3.11) 

(5.3.12) 

(5.3.13) 

ln the same way we can derive Green's functions for the stress components uy, u. (eqs.(5.1.29) 
and (5.1.30)) and for the hydrostatic stress ((5.1.32)). 

5.3.1 Crack opening displacements for nonpropagated cracks 

5.3.1.1 Small-scale transformations 

The resulting crack opening displacements for a crack with a~w resulting from application of the 
near-tip weight function, eqs.(5.1.35) and (5.1.36), are plotted in fig.54. lt can be seen that no 
square-root shaped displacements occur directly at the crack tip (x ~ a). This confirms the fact, 
Kres = 0, resulting from the stress intensity factor calculations. The volume (or the area) due to 
the crack opening is given by 

(5.3.14) 

with 

(5.3.15) 

The integral has been evaluated numerically and the result is plotted in fig.55. For afw>1 we 
can approximate the function F by 

2 

F(a/"') = 1.22y [ 1 52( w )0.63] 
<.U ~ exp - . y a (5.3.16) 

with 
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Figure 56. Crack opening displacements caused by phase transformation zones. 

(5.3.17) 

lt should be noted that the quantity y can approximatively be described by the height of the 
phase-transformation zone 

F(a/W) 
1.50 

o.ocn--~---.:2!:----:!:3:-----':-4-~:!:------:! 

a/w 

Figure 57. Area or volume caused by crack opening due to the transformation zone. The ordinate repres­
ents the integral explained by eq.(5.3.15). 
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-0.50 

a 

Figure 58. Stress intensity factor for propagated cracks caused by the phase-transformation zone. 
extensions: a) t'!.a/w = 1, b) t'!.a/w = 2, c) t'!.a/w = 4, d) t'!.a/w = 6, dashed curve: t'!.a == 0. 

zone height for pja~yd 
')'~ 

zone height for pja~yd = 0 

5.3.1.2 Finite internal crack 

Crack 

(5.3.18) 

The crack opening displacements resulting frorn application of the weight function eq.(5.2.5), 
which reads for q; = n and symmetric loading 

(5.3.1 9) 

are plotted in fig.56 for v =0.2. 
The volume (or the area) of the crack can be determined from the displacements as 

2 p 
Vres = 4w E' F(afw) (5.3.20) 

with F defined by eq.(5.3.15). The integral F(ajw) is shown in fig.57. For 1 < ajw < 6 the function 
F(afw) may be approximated by the straight line 

a 
F(afw) ~ 0.12 + 0.2 w (5.3.21) 

which is represented in fig.57 by the dotted line. The residual crack opening displacements may 
be important in investigations of components compliances since total crack closure of present 
micro-cracks only takes place under external compressive stresses. 
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Figure 59. Crack opening displacements caused by phase transformation zones. Near-tip behaviour; 
crack extensions as fig.58. 

5.3.2 Crack opening displacements for propagated cracks 

For the numerical evaluation of crack opening for propagated cracks we will restriet the compu­
tations again to the Iimit case of small-scale transformations. The stress intensity factor K, •• (a') 
for a crack length a' s a - but fixed location of the phase transformation zones - can be com­
puted with eq.(5. 1 .23). Now we are interested in the crack opening displacement field for a dis­
appearing crack-tip stress intensity factor. ln order to compensate the negative residual stress 
intensity factor K, •• of the propagated cracks and to get K1ttp =0 we have to apply an external 

3 

B~ 
pW 

1 

----------------------
_91 0 

x-o 
w 

0 

Figure 60. Crack opening displacements at K1 ttp = 0. Combination of loading by residual stresses and 
external Ioad. 
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Ioad which causes a stress uappl along the crack line. ln case of pure tensile loading this stress 
must be 

Uappl = (5.3.22) 

and the corresponding crack opening displacement field results as 

a a' 
OappJ(x) = u~pl J h(x, a')[f h(x', a')dx']da' 

X 0 
(5.3.23) 

The residual stress intensity factors K,.s(a') are plotted in fig.58 for several grown cracks. The 
related crack opening displacements o, •• resulting by application of the near-tip weight function, 
eq.(5.1.36), which reads for cp = n and symmetric loading 

h- J 2 - n(a- x) 
(5.3.24) 

are plotted in fig.59 for v =0.2. lt can be seen that in case of ßa = 0 no square-root shaped dis­
placements occur directly at the crack tip (x ~ a). This confirms the fact, K, •• = 0, resulting from 
the stress intensity factor calculations. 
lntroducing eq.(5.3.19) into eqs.(5.3.22) and eq.(5.3.23) yields for a constant applied stress and for 
K~t;p = 0 

2Kres (.) JX ) Ototal = ~ a(a- x) + x ln r:;- r::--:: + Ores 
E'.y2na .ya + .ya- x 

(5.3.25) 

Figure 60 shows the total displacements for K~t;p = 0. lt can be seen that in the case of small­
scale transformation at all locations along the crack the condition Ototal > 0 is fulfilled, i.e. a crack 
opens exactly at K,tip = 0. The equivalence 

Ototal 2 0 V x < a <=> K1 tip 2 0 (5.3.26) 

- self-evident for the near-tip crack opening displacements - can consequently be used also for 
the far-tip crack opening displacements which reduces considerations of crack closure to the 
consideration of residual stress intensity factors. 
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6. Energy release rate, stress intensity factors and 
compliance 

6.1 Basic relations 

The bridging stresses in ceramies are extremely non-linear and their range of extension is not 
negligible compared with the crack length. The consequences of the bridging interactions an 
fracture-mechanical considerations may become very serious. 
Same special questions are: 

1. R-curves are often expressed in terms of energy release rates instead of stress intensity 
factors using the well-known lrwin-relation 

(6.1.1) 

with E' = E/(1- v2), E=Youngs modulus and v = Poisson ratio. This relation was proposed 
for linear-elastic material behaviour. Now the question arises whether or not this relation 
can be also applied in presence of R-curve behaviour for the applied stress intensity factors 
Klapp/· 

2. What is the meaning of the compliance in presence of non-linear bridging interactions and is 
the crack-length measurement via compliance correct? 

These two questionswill be considered here, following the analysis given in [47]. 
Let us consider a specimen (fig.61) of width W, thickness B, and length 2L which contains a crack 
of depth ao with completely separated crack surfaces (produced, e.g., by a very narrow saw-cut 
with negligible notch-root radius). Starting from this initial crack size, a crack may propagate 
under increasing external Ioads, and in case of coarse-grained materials bridging interactions 
occur which result in bridging stresses depending an the actual crack opening displacements b. 
The externally applied Ioad P is related to uappl by 

P= Gapp1WB (6.1.2) 

where B is the thickness of the plate. 
For the description of crack opening and crack propagation in terms of energy we consider a 
crack of total length a with crack surface interactions in the range ao < x < a in the unloaded 
state (b = 0). 
The specimen is exposed to increasing externally applied stresses uappl at the free ends of the 
specimen. For reasons of simplicity, this stress is assumed to be constant, i.e. independent of 
the coordinate x. ln eq.(4.3.4) x is the coordinate where the displacement is computed and x' is 
the location where the stress (J' acts. lf the applied stress uappl as weil as bridging stresses ub, 

act an the crack surfaces, the total stress is 

(6.1.3) 
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Figure 61. Edge-cracked plate. Geometrical data of an edge-cracked plate under tensile Ioad. 

and the total crack opening displacements result as 

a a 

c5total(x)=c5appl+c5br= ~, J J. h(a',x)h(a',x')[aappl(x')+abr(x')]da'dx' 
0 max(x,x') 

(6.1.4) 

where bappl is the displacement caused by the applied stress. O'app1(x') is the stress in the un­
cracked component at the location of the crack. For the plate under uniform tension aappl(x) is 
identical with the externally applied stress. Note that btotal is the crack opening displacement of 
one crack border, whereas c5LP is the total Ioad point displacement (see fig.61). 
Far away from the crack, the crack opening displacements btotal Iead to displacements c5LP which 
will be called the "loading point displacements". lt holds for tensile loading 

a 
O'appl 2 I 

c5LP = -E-- 2L + W o btotat(X) dx (6.1.5) 

A similar relation for bending is given by eq.(12.5.6). The first term in (6.1.5) represents the dis­
placements of the uncracked structure in pure tension and the second term is the contribution of 
the crack. lf a minimum length of L > W is ensured the stress intensity factor and btotal are inde­
pendent of L. ln all further equations the first term in (6.1.5) is omitted. 
Under loading conditions different from pure tension (aappl =1= constant) (6.1.5) has to be replaced 
by 

a 

p dc5 LP = + 281 a appl dbtotat(X) dx (6.1.6) 
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6.2 Energy considerations 

6.2.1 Definition of the crack driving force 

6.2.1.1 Linear-elastic material behaviour 

ln case of linear-elastic fracture mechanics the energy release rate G - called the crack driving 
force - is defined as the virtual change of potential energy öUP available for a virtual crack-area 
increment B öa and is directly related to the stress intensity factor by 

öUP 
--- = 

Böa 

K/ 
E' (6.2.1) 

ln order to separate loading quantities which are related to virtua/ crack extensions from energy 
consumptions during real crack extensions we will use in this section as a special notation for 
the virtual crack changes the symbol ö. 
The potential energy consists on the virtual work öA done by the external Ioad and the virtual 
change of the elastically stored energy in the component öU: 

ÖUP = ÖU- ÖA , ÖA = P öOLP (6.2.2) 

ln the sense of eq.(6.2.1) G is a loading quantity (not a material property) and up to now not 
related to real crack extensions da. ln case of a real crack extension the energy dWcrack is nec­
essary to create the new crack increment Bda. The energy per crack area increment defines the 
material property called "crack resistance" R 

1 dWcrack 
R = -B ---=d.:..:a::..:.:.:... 

The condition for maintaining crack propagation is expressed by 

G=R 

(6.2.3) 

(6.2.4) 

where Go is a characteristical value of G that governs onset of stable crack growth. The left­
hand side describes the available energy and the right-hand side the necessary energy. 

6.2.1.2 Nonlinear-elastic material behaviour 

lf nonlinear material behaviour plays a role - this is the case in the presence of strongly nonline­
ar bridging stresses - the relations of linear-elastic fracture mechanics have to be replaced by 
the J-integral concept. ln order to apply J-integral we have to consider that the energy storaged 
in the bridges Wb, is elastically stored energy and therefore completely reversible. ln this state it 
is not of importance what the real material response during unloading as long as no real dis­
placement reversals occur. Here it should be emphasized once more that the J-integral is a 
loading quantity and not influenced by real material behaviour. Under these circumstances the 
virtual change of potential energy is 

(6.2.5) 
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Figure 62. Change of energies. Energy portions for specimens with crack lengths a and a + da: a) elas­
tically stored energy for a crack of length a; b) elastically stored energy for a crack of length 
a +da; c) work increment done by the external Ioad; d) increment of potential energy. 

The virtual energy contributions are illustrated in fig.62. Because of the Iack of the special differ­
ential sign for virtual increments in the computer chart program the symbol d is used in fig.62. 
For nonlinear elastic material behaviour the loading quantity is 

J= 
Böa 

and by definition G = J = Kf!E' for the linear elastic case. 
From eq.(6.2.1) and (6.2.5) it results for the J-integral [48] 
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a+~a 

Figure 63. Integration increments. Energy increments according to eqs.(6.2.9) and (6.2.1 0). 

(6.2.8) 

and by using eq.(6.1.5) 

i
ötotal 

a öa' appl 

J = - 2 Ia dx ( öa ) I d<5' total 

O 0 total 

(6.2.9) 

i
(Jappl 

8 ö<5' total 
J = 2 Ia dx ( öa ) 

1 

da' appl 

O (J appl 

(6.2.10) 

Figure 63 shows the related potential energy dUp. 

6.2.1.3 Stress intensity factors, J-integral and energy release rate 

lf we introduce <5totat = <5appt + <5b, in eq.(6.2.10) 

(6.2.11) 
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and applying eq.(4.3.3) in the form 

OOappl Kapp/ h(x,a) 
= 

öa EI (6.2.12) 

we obtain 

a Iaappl h(x a) aappl a öc51 
J ~ 2 I ---f,- dx J, K' •ppl da' •ppl + 2 I, dx ( o:' ) ' da' •pp/ 

0 O Cl appl 

(6.2.13) 

Since 

Klapp/ I 

K' I appl = a app/ a appl (6.2.14) 

the first term in (6.2.13) can be evaluated 

a Iaappl 
h(x,a) a öc5 1 br 

1 

J ~I -E-1-aapp/Kiapp/dx+ 2f
0 

dx ( ~) ' da appl 

0 (1-0 

(6.2.15) 

and after introduction of eq.(4.3.2) into the first term 

I

Clapp/ 

1 2 a öc51 
br 1 

J = f'Klappl+ 2{ dx ( ~) ' da appl 

O a appl 

(6.2.16) 

Since the second term in eq.(6.2.16) will vanish only in the case of cracks without bridging 
stresses we can conclude that the lrwin formula - written in terms of the applied stress intensity 
factor K1 appl- is not generally valid 

J=i= 

2 
Klapp/ 

EI (6.2.17) 

This inequality holds for the general case without special assumptions made on the bridging 
stresses. 

6.2.1.4 Special assumption on bridging stresses 

Now a special assumption is made on the bridging stresses. lt is physically meaningful to as­
sume that the bridging stresses are only dependent on the actual crack opening diplacements 
( btotal) 

(6.2.18) 

and, for instance, not explicitly on the x-coordinate. Furthermore, it is assumed that this stress 
vs. displacement relation is a unique law for monotonically increasing displacements. The ques-
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tion whether or not the bridging-stress relation may change in unloading situations, i.e. in situ­
ations where the displacements can decrease, is without importance to the present consider­
ations, since in controlled fracture tests the crack opening displacements increase monotonocal­
ly during crack extension. 
This fact can easily be concluded from the weight function relation (4.3.3). ln controlled fracture 
tests crack propagation occurs at Ktota1=K1tlp=Kto. From (4.3.3) we conclude that for any given 
value of x- since h(x,a) >0 - for all 0 s; x < a 

Öc5total I Kto = -, h(x,a) > 0 
öa Ktotal = Klo E 

i.e. a monotonic increase in COD with increasing crack length. 
lntroducing eq.(6.1.3) into (6.2.9) gives 

J= _ 2fadxi

6

totai[(Öa'total) -(~) Jdb' 
öa öa total 

0 61 total 6
1 

total 
0 

(6.2.19) 

(6.2.20) 

lf a'br is a unique function of b'tota1, one can write for the second term in brackets (since b'total is 
kept constant) 

and (6.2.20) reduces to 

( ö~:r) I = 0 
6 total 

l
6total 

a öa' total 
J = -2Jo dx ( öa ) I db'total 

6 total 
0 

After integration by parts (see fig.63 and replace the vertical axis by Gtotal) this reads 

and with eq.(4.3.3), written in the form 

Mtotal Ktotal h(x,a) 
öa E' 

we obtain 

a I (ftotal K' 
total , 

J = 2 J dx -E-'- h(x,a) da total 
0 0 
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Figure 64. Energy balance. Global energies for a cracked component under tesion; Load and loading-
point displacement normalised on the values at the onset of stable crack extension ('). 

Changing the order of integration results in 

J 2 K' dK' total = G J
Ktotal K2 

= f' 
0 

total total= E' (6.2.26) 

Since during crack propagation the crack-tip stress intensity factor equals K10, we finally can 
write 

energy/A"'" 

,.,·'' 
", .... 

",. 

".."' u 

.... .... ",·"" 

.70 

Figure 65. Energy balance. Energy contributions during stable crack propagation; A* = P*o*/2, loading 
case: tension. 
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(6.2.27) 

6.2.2 The crack resistance 

6.2.2.1 Energy balance during crack propagation 

During stable crack propagation the externally applied force P performs the mechanical work A, 
which is identical with the area under the Ioad-dispiacement curve 

J
{)LP 

A = P' di5' LP 
0 

(6.2.29) 

This energy equals the sum of 

• the elastically stored energy in the specimen U, 

• the energy necessary to create a new fracture surface Wcrack. and 

the energy deposit in the bridges Wb,, 

i.e. 

A = U + W crack + W br (6.2.30) 

The energy necessary to create a new crack surface is 

(6.2.31) 

and the energy consumed in the bridges is given by 

J
a I {)total,c 

W br = - 28 dx a' br di5' total 
0 0 

(6.2.32) 

ln the special case of the exponential relation, eqs.(4.1.9) and (4.1.10), the inner integral can be 
evaluated and it results 

(6.2.33) 

The elastically stored energy U in the specimen is given by (see fig.64) 

(6.2.34) 

in a simple way from the applied Ioad and the loading point displacement. The different energy 
contributions are plotted in fig.65 versus the crack extension .1a=a- ao for tension as the load­
ing case. Whilst the "bridging energy" Wb, and the crack surface energy Wcrack increase monoton­
ically with crack extension, the elastic energy seem to reach a saturation. The incremental ener-
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Figure 66. Energy rates. Energy rates according to fig.65. 

gies dAfda, dWbr/da, dWcrack/da, and dUfda are plotted in fig.66. dU/da may change its sign at 
afW>0.7. 
ln the linear-elastic case with unloaded crack faces the crack resistance was defined by the en­
ergy that has to be provided to create new crack surface. ln the presence of bridging stresses an 
additional energy has to be provided to overcome the attracting bridging stresses. Consequently, 
the crack growth resistance now reads 

2 

8.4 0.5 0.6 0.7 0.8 
a/W 

Figure 67. Applied stress intensity factor and crack resistance. Applied stress intensity factor K1appt and 
crack resistance R (expressed in terms of stress intensity factor) for the tensile loading case, 
computed with the bridging stress relation CTbr = a0 exp( - 6fo0). 
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R = _1 ( dWcrack dWbr ) 
B da + ~ 

(6.2.35) 

6.2.2.2 The crack resistance and the applled stress intensity factor 

lt can easily be shown that the applied stress intensity factor K1 appt and the crack resistance R 
are not identical in the general case. For the further conclusions we consider the tensile loading 
case. We express the term K1app,fE' by definition of the weight function in the form 

as 

E' a 
h(x,a) = K a ~>appJ(x,a) 

lappl a 

1 2 K, appl Ja Ja 8c5appl 
pKiappl = E' o h(x,a)aappldx = o aappt aa dx 

lntroducing eq.(6.1.5) yields 

1 2 1 8c5LP,appl 
pKiappl = 28 p 8a 

The loading point displacements c5LP,appt can be written 

c5LP,app/ = c5LP,total - c5LP,br = c5LP,tota/ + ic5LP,bri 

and consequently 

1 2 _1_ P 8c5LP,total 
P K, appl =I= 28 8a 

2 
E' K, appl =I= R 

(6.2.36) 

(6.2.37) 

(6.2.38) 

(6.2.39) 

(6.2.40) 

ln cases where the bridging zone increases with increasing crack length (before a saturation in 
R is reched) we will find 

1 2 
pKiappl > R (6.2.41) 

As an example the applied stress intensity factor K1 appt and the crack resistance R have been 
computed numerically for a component under tensile loading containing a crack of initial length 
afW=0.5 using the bridging stress relation O'br = ao exp(- c5fc5o) with ao = Kto!JW and 
c5o = 5/6 · (aoW/E'). The results of R are formally expressed in terms of stress intensity factors 
and plotted in fig.67. The disagreement of the two quantities is clearly obvious. 
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6.3 Application of a Dugdale model by Evans and McMeeking 

ln a simple model Evans and McMeeking [49] considered the conversion of energy release rates 
in stress intensity factors in a special model. They studied a small scale bridging zone in a brit­
tle material reinforced by fibers (see fig.68). ln the following the nomenclature of [ 49] will be 
used. The crack surface stresses transferred by the fibres are considered to be homogeneously 
distributed in the bridged crack area. The maximum size of the bridging zone is Dc where the 
subscript refers to the critical situation at the crack tip, i.e. KJt;p=K10• 

From the J-integral araund the traction zone the critical value of the change in energy release 
rate ~G is derived as 

(6.3.1) 

with the tractions in the fibers a, the area fraction of reinforcements on the crack plane and Uc 

the critical crack opening at the end of the bridging zone, given by 

_ 4(1 - v) ( faDe K1oJ[i; ) 
Uc- G rc + ~ 

G-y2rc 
(6.3.2) 

where G is the shear modulus and K10 is the critical crack-tip stress intensity factor. 
The contribution of the bridging zone to the stress intensity factor results with the near-tip weight 
function as 

i
Dc 

2 a(x) ~K1 =- /2 f -- dx v-fr JX 
0 

(6.3.3) 

where x is the distance from the crack tip. The "change in fracture toughness" ~Kc results from 
eq.(6.3.3) as 

(6.3.4) 

The following definitions are introduced 

2GGc 2 
1- v = Kc (6.3.5) 

(6.3.6) 

(6.3.7) 

ln the opinion of the author eqs.(6.3.6) and (6.3.7) are definitions of the quantities Kc and Ge. On 
the other hand there is no additional freedom to define a relation between the two quantities of 
type eq.(6.3.5). The validity of eq.(6.3.5) has to be proved. 
lf we assume eq.(6.3.5) would be correct, it results by combining eqs.(6.3.5) to (6.3.7) yielding 

(6.3.8) 
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Figure 68. Bridging zone in reinforced materials. Bridging zone for slipping fibers according to Evans and 
McMeeking [49]. 

lntroducing of eq.(6.3.1) and eq.(6.3.2) at the left side of (6.3.8) and eq.(6.3.4) at the right hand 
side it results that the left-hand side is twice the right-hand side. 
The reason is a typing error in eq.(6.3.1) since 

(6.3.9) 

The analysis of Evans and McMeeking confirms the correctness of relation (6.3.5) for a special 
case, namely the steady-state behaviour of a growing crack in an infinite body with a small bridg­
ing zone of constant length behind the crack tip. 
ln this special case it holds (in notation of the previous sections) 

J Obr(x) dx = const. 
(crack) 

(6.3.10) 

~ ! J Oappt(x) dx = d~ J Ototat(x) dx 
(crack) (crack) 

and from the considerations made in section 6.2.2.2 we can conclude 

( ~' Klappt) = Rsteady- state 
steady - state 

(6.3.11) 

74 



Dappl 

+ + + + + + + + + + + 

2ac ___ __,.. 

2a 
+ + + + + + + + + + + 

Figure 69. Griffith crack with bridging zone. Griffith crack with constant bridging stresses; loading situ­
ation and geometry. 

Figure 70. Bridging COD field. Griffith crack with constant bridging stresses; displacemet field caused by 
the strip Ioad. 
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6br=-6appl 
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Figure 71. Total COD field. Griffith crack with constant bridging stresses; total displacemet field. 

6.4 R-curve for a Griffith crack with constant bridging stresses 

A restriction of the model used by Evans and McMeeking is that an approximate weight function 
has to be used which becomes correct only in the Iimit case of an infinitely !arge crack com­
pared with the dimension of the bridging zone. ln order to investigate the relation between 
crack resistance and applied stress intensity factor it is useful to apply an analytically exact sol­
ution. 

0 3 
':::Z 
.......... 

0. 
0.. 
0 

~ 2 

~.0 1.5 2.0 

Figure 72. Applied stress intensity factor. R-curve for a Griffith crack with bridging stresses a = constant. 

76 



a 
0 

+-' 
0 

n:: 

1.00 -·-·-·-·-·-·-·-·~ 

0.801!----'---2,!,-----'----:!::3---'------l4' 

a/a0 

Figure 73. . Ratio of crack resistance and stress intensity factors according to eq.(6.4.1 0). 

Let us consider a Griffith crack (a straight through-the-thickness crack) of size 2a in an infinite 
body which is symmetrically loaded in the range ac < 1x1 < a by a constant stress t:J. Figure 69 
illustrates geometry and loading conditions. The displacements under this strip Ioad are given by 
eq.(4.3.4) and the weight function reads 

---­...... ---
0·~~o=-=o=---___.---,-1.~2-=-o _ __.__......,1,.-~.4-:-:o=---...__._-~1 . so 

a/a0 

(6.3.12) 

Figure 74. . Ratio of crack resistance and stress intensity factors according to eqs.(6.4.1 0) and (6.4.12) for 
the first phase of crack extension a ::::; ac. 
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We find for the crack opening displacement field according to [80] 

[ 
sin

2
(8- cp) sin 8 + sin cp l 

o(x,a) = E~~ 48 sin cp - cos cp • ln -2 cos 8 · ln . 
8 

. 
" sin2(8 + cp) sm - sm cp 

(6.4.1) 

8 = arccos(a0fa) cp = arccos(xfa) (6.4.2) 

as plotted in fig.70. The related bridging stress intensity factor results as 

(6.4.3) 

The crack opening displacement field caused by the applied stresses aappt is 

aappl .J 2 2 
o(x,a) = 2 ----p- a -X (6.4.4) 

and the applied stress intensity factor K1appt is given as 

Klapp/= aapp~ (6.4.5) 

The total crack opening displacement field follows from the superposition of eqs.(6.4.1) and 
(6.4.4). and the total stress intensity factor from superposition of eqs.(6.4.3) and (6.4.5). Figure 71 
shows the total crack opening displacement field for Jal/aappt= 1. 

P=pA 

p 

Figure 75. Crack surface loading. A crack loaded by a crack surface pressure p and by bridging stresses 
modelled by a system of non-linear springs. 
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For the calculation of the R-curve it is assumed that a critical crack opening displacement Dc 
exists at which the bridging interactions become abruptly dissolved, i.e. ubr = 0 for <5 > bo. Now 
we can determine the R-curve numerically from the two conditions: 

1. The total stress intensity factor must coincide with Kto 

uappi.J;a - lubr12.Jf;[ ~ - Brcsin(Bc/B)] = K10 (6.4.6) 

2. At the end of the bridging zone the critical crack opening displacement must be reached 

(6.4.7) 

The solution of these two relations results in uappt and Be for a given crack length B. From uappt the 
stress intensity factor Ktappt can be calculated. An R-curve resulting for a crack of initial crack 
length Bo is represented in fig.72. The calculation of the R-curve was performed in the following 
way. A crack of initially unbridged length a = a0 is considered. The applied stress is increased up 
to a certain value that satisfies the condition for the onset of stable crack extension, namely 

(6.4.8) 

Then a is increased as long as b(x = Bo) < Dc. The applied stress intensity factor results from 
eq.(6.4.6) as 

(6.4.9) 

Du ring further crack extension it results Be> Bo and the solution of eqs.(6.4.6) and (6.4.7) can be 
found with a zero routine. The R-curve, resulting for bcE'/(IubriBo)=1.5 is plotted in fig.72. The R 
curve starts very steep like Kbr = ~ and after Dc is reached (in the plotted example at 
a = 1.47Bc) the applied stress intensity factor decreases slightly against the asymptotic value of 
Ktappt/Kto = 2. The crack resistance obtained with eq.(6.3.1) has been plotted in fig.73 in a normal­
ised representation according to eq.(6.3.8) as the ratio 

(6.4.10) 

This ratio should be Q = 1 if the lrwin equation would be valid in the presence of an R-curve 
behaviour. From fig.73 we find that at the onset of crack extension the ratio is Q = 1. ln this situ­
ation the bridging zone is negligible in size compared with the initial crack length Bo. Then we 
detect a significant deviation from the value Q = 1 and after very long crack propagation, when 
the bridging zone of finite length is again small compared with the crack length, the ratio Q 
tends asymptotically against Q = 1. 
lf we consider the work done by the external Ioad against the constant bridging stresses we can 
write for B < Be 

(6.4.11) 

that allows to define the ratio 

(6.4.12) 
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Figure fig.74 illustrates the two ratios Q, Q1 for a::::;; ac. This ratio also deviates from the value 
Q=1. 

6.4.1 A simple model for the crack surface loadings 

The main topic of this section was to prove the validity of the lrwin relation eq.(6.1.1) in presence 
of bridging stresses. lf this is really a general relation it must be correct for any conceivable 
loading case. ln the previous considerations the crack surface loading was a virtual pressure of 
same value as the tensile stresses aappl which are caused in uncracked body by the externally 
applied Ioad. This Ioad has been assumed to be a remote stress in a lang tensile specimen. The 
loading situation becomes more clear when the principle of superposition - yielding the virtual 
crack surface loadings - is dropped and the virtual pressure is substituted by a real crack sur­
face Ioad. 
ln the simple model illustrated by fig.75 a crack is opened by an incompressible liquid with the 
directly applied pressure p and the bridging interactions are represented by non-linear springs. 
The externally applied Ioad P results as the product of the actual pressure and the area A of the 
piston 

p = pA (6.4.13) 

which squeezes the liquid into the crack. The volume caused by the crack surface displacements 
o(x) is then given by the "loading-point displacement" OLP as 

V= 2BJ
8

o(x)dx = AoLP 
0 

a 
28 J OLP = A 0 o(x)dx 

(6.4.14) 

in agreement with eq.(6.1.5). The fracture mechanical treatment is then identical tothat done be­
fore with the virtual stresses. 
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6.5 Compliance in presence of R-curve effects 

in presence of bridging stresses at the crack faces also deviations in the compliance have to be 
expected [50]. 
Due to the bridging stresses, the specimens' stiffness is greater than that obtained for speci­
mens with completely free crack surfaces, i.e. the crack length resulting from compliance meas­
urements will be lower than the real physical crack length. Two special questions are: 

• What is the meaning of the compliance in presence of non-linear bridging interactions? 

• ls the crack-length measurement via compliance correct? 

ln fig.76 measurements of crack length based on compliance and on microscopic observations 
are compared [20]. For larger crack extension it is obvious that the compliance method underes­
timates the real crack length. These differences give rise for a detailed analysis of compliance 
behaviour. 

6.5.1 loading-point compliance 

The compliance of a cracked specimen is defined as the relative displacement of the loading 
points bLP divided by the Ioad applied 

bLP 
C=­p 

The compliance is applied in fracture mechanics 

• for the determination of the actual crack depth, and 

(6.5.1) 

for the computation of energy release rates from Ioad vs. displacement curves resulting in 
controlled fracture tests. 

ln case of a crack in a component with crack faces completely free of stresses the compliance is 
directly related to the crack depth. Under pure tensile loading it holds 

2 2 

I
IX 

C =Co+ BE' o y (o:') o:' da' a=afW (6.5.2) 

where Y is the geometric function for the stress intensity factor calculation, defined by 

K = aappl Y J8 (6.5.3) 

which can be taken from handbooks. 
Oue 1o tne bridging stresses, the specimens' stiffness is greater than that obtained for speci­
mens with completely free crack surfaces, i.e. the crack length resulting from compliance meas­
urements will be lower than the real physical crack length. 
Equations (6.1.4) and (6.1.5) provide the possibility of computing a differential compliance Cdiff 

which gives the increment of displacement for a given increment of Ioad (or stress applied) 

(6.5.4) 
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Figure 76. Crack-length measurements. Crack length measurements for a crack of initial depth 
a0 =2.25mm in a bending bar of W=4.5mm thickness; material 99.6% A/20 3 (mean grain size 
ce20,um). 

whilst the global compliance C91ob is defined by eq.(6.5.1). 
For numerical calculations the bridging stress relations given in section 4.1 are used in the fol­
lowing. ln order to allow dimensionless computations to be made, the numerical results for the 
stress intensity factors and displacements are normalised by the characteristic bridging stress ao 
and the specimen width W according to 

K'= K 
aoJW 

(6.5.5) 

ln fig.77 the loading-point displacements are plotted as a function of the stress applied. The 
displacements are normalised on that value that is reached at K'tip = 1. As can be seen from 
fig.77, most of the deviations between the loading-point displacements in the presence of bridg­
ing stresses and the displacements calculated ignoring these additional stresses (dash-dotted 
straight line) occur at lower Ioads. The higher the Ioad, the smaller is the remaining bridging 
zone, and the influence of bridging stresses decreases. A lower Iimit of the displacements can 
be calculated by considering only the initial crack size a = a0• This Iimit case is introduced in 
fig.77 as a dotted straight line. 
ln fig.78 the total compliance is shown for a crack of ajW=0.7 and ao/W=0.5. As expected from 
the non-linear bridging stress, the comliance is not constant. Under low Ioads the compliance in 
the presence of bridging stresses tends towards the compliance of a crack of length aofW without 
bridging stresses. At high Ioads the compliance tends asymptotically to the compliance of a 
crack of depth ajW withoJJt bridging stresses. 
The differential compliance resulting from the results given in fig.78 is shown in fig.79. Signif­
icant deviations between differential compliance and global compliance are evident. 
The total compliance of the whole crack-containing component is then given by 

2L 
Ctotal = Cglob + C0 , C0 = EWB for tension (6.5.6) 

where Co is the compliance of the uncracked component. ln fig.80 the compliance of the speci­
men in the presence of bridging stresses is represented tagether with the compliance in the ab-
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Figure 77. Loading-polnt displacements. Loading point displacements as a function of Ioad, calculated 
with eq.(4.1.9) and (4.1.13) for afW = 0.7; dash-dotted straight line: displacements for the elastic 
case with interaction free crack surfaces, dotted straight line: Iimit case for afW=0.5. 

sence of bridging interactions versus the actual crack size. lt is obvious that the specimens with 
bridging interactions react more rigidly than the ideal fracture-mechanics specimens with com­
pletely free crack faces. Two types of crack depth can be concluded from fig.81, namely the real 
physical crack depth aphys and the apparent crack depth acompt which can be concluded from the 
compliance by application of pure linear-elastic relations. ln the representation fig.80 one can 
also see that the real crack size is larger than that obtained from the compliance. 

Celast (a/W=0.7) 
. -.-.-.-.-.-.-. -_:_:· -;;.:.· ;;;;;:.-;";;;· -...,_.--.-.-.-

Celast (a/W=0.5) 

~0 .50 1.00 

Figure 78. Global compliance. Global loading point compliance, calculated with eq.(4.1.9) and (4.1.13) for 
a/W = 0.7; dash-dotted straight line: Iimit case for interaction free crack with afW=0.7; dotted 
straight line: compliance of an interaction free crack with afW=0.5. 
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Figure 79. Differential compliance. Differential compliance according to eq.(6.5.4) derived from the data of 
fig.77. 

6.5.2 Crack-mouth compliance 

A very popular possibility of indirect determination of the crack depth is the measurement of 
crack-mouth opening. The related crack-mouth compliance CcM can be derived from the dis­
placements bcM at the location x = 0 and the actual Ioad P as 

~~0----~----.~60~-~--~--~.70 
a W 

Figure 80. Global compliance. Global compliance as a function of crack length for K'to = 1. 
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Figure 81. Crack length. Deviations between the physical crack depth aphys and the apparent crack depth 
acompt as resulting from the compliance. 

where the crack-mouth displacements may be determined from eq.(6.1.4) as 

(6.5.8) 

Figure 82 shows the crack profiles under different Ioads for cracks with and without bridging in­
teractions in the region a0 < x < a for a crack with a0/W=0.5, a/W=O.?. ln fig.83 the crack-mouth 
displacements resulting from (6.5.8) are plotted for ao/W=0.5, afW=0.7 and the bridging stress 
relations given by eqs.(4.1.9) and (4.1.13). A curve is obtained which is qualitatively identical to 
that for the loading-point displacements. Figure 84 represents the crack-mouth displacements 
for the three bridging relations used. ln all cases the crack-mouth displacement underestimates 
the actual crack length, i.e. the curves run below the upper straight line. 
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Figure 82. Crack profile. Crack profile for a crack (in a bent plate) with bridging stresses in the range 
ao/W < x/W < a/W; dashed curves: crack profiles in the absence of bridging stresses (loaded by 
the same applied stress intensity factor K' app1). 
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Figure 83. Crack-mouth displacement. Crack-mouth displacements as a function of Ioad calculated with 
eqs.(4.1.9) and (4.1.13) for a/W = 0.7; straight line: displacements for the elastic case with inter­
action free crack surfaces. 
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Figure 84. lnfluence of bridging relation. Crack-mouth openings for a crack with a0/W=0.5, a/W=0.7, cal­
culated with different bridging stress relations; solid line: eqs.(4.1.9) and (4.1.13), dashed line: 
eqs.(4.1.9) and (4.1.10), dotted line: eq.(4.1.19). 

87 



INFLUENCE OF R-CURVE EFFECTS ON MECHANICAL 
PROPERliES 
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7. lnfluence of R-curve effects on the inert strength 

7.1 R-curves due to bridging interactions 

ln the past R-curve effects were investigated mainly with specimens containing artificial macro­
cracks. From section 3.2 it can be concluded that for very strongly rising R-curves also small 
natural cracks can be affected. An analysis of this topic is given in [51] 
Due to the crack-surface interactions, the stress intensity factor acting at the crack tip Kttip devi­
ates from the externally applied stress intensity factor K 1appl according to eq.(4.3.8). This relation 
is the basis for understanding R-curve influences on the strength behaviour. To be able to evalu­
ate it we need the applied stress intensity factor as weil as the bridging stress intensity factor. ln 
this section first relations are presented for K 1appt and Ktbr for circular and elliptical cracks. Then 
the development of cracks in the presence of R-curve effects and their influence on bending 
strength is discussed and finally a procedure is described which allows the bridging stresses to 
be estimated. 
The cracks in the surface region of ceramic materials caused by surface grinding which propa­
gate under increasing Ioad are assumed to be semi-elliptical in shape. The stress intensity fac­
tor caused by the externally applied stress a results as 

K1 appl = Y(afc,afW)a ja , (7.1.1) 

where Y is the so-called geometric function, depending on the aspect ratio afc and the relative 
crack depth afW. The geometrical quantities are explained in fig.85. Different types of stress 
intensity factors are available to solve two-dimensional crack problems. One possibility is to use 
local stress intensity factors which vary along the crack front. Such stress intensity factors are 
available for simple Ioad cases. Newman and Raju provided solutions for semi-elliptical surface 
cracks under tension and bending [52]. 
Beside the local stress intensity factors also averaged stress intensity factors are currently used 
in fracture mechanics. These stress intensity factors are defined in terms of the 2-dimensional 
weight function as 

- E' I OVr 
1<1 = -=-- a o(ilS) dS 

Kir (S) 

(7.1.2) 

where E' = E/(1 - v2). ov, is the virtual change of the crack opening displacements of a reference 
loading case (mostly tension) for a virtual extension o(ilS) of the crack surface S, a is the arbi­
trarily distributed normal stress in the uncracked structure, and K1, is the reference stress inten­
sity factor defined by 
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Figure 85. Geometry of a surface crack. Semi-elliptical surface crack in a ceramic specimen (not truely 
scaled). 

(7.1.3) 

The main advantage of averaged stress intensity factors is their availability for arbitrary stress 
distributions. ln order to reduce the infinite number of possible virtual crack extensions Cruse 
and Besuner [53] suggested for semi-elliptical surface cracks that a virtual crack extension 
should Iead again to a semi-ellipse. Cruse and Besuner's proposal is expressed by 

1 
L\S A = 2 nct\a (7.1.4) 

describing a crack extension in direction of the semi-axis a and leading to the stress intensity 
factor KA, and 

1 2 d(L\S8 ) = 2 at\c cos cp dcp 1 L\S8 = 2 nat\c (7.1.5) 

describing a virtual crack extension in c-axis direction resulting in the stress intensity factor Ks. 
The practical application of averaged stress intensity factors has been described in more detail 
in [54]. The reference crack opening displacement field for semi-elliptical surface cracks neces­
sary for the evaluation of eq.(7.1.2) has been derived in [55]. 
EspeciaUy fur the bending Ioad case one obtains averaged stress intensity factors directly from 
eq.(7.1.3) by inserting the local bending solution in eq.(7.1.3). The resulting averaged stress in­
tensity factors can be computed by 

(7.1.6) 

with 
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Figure 86. Virtual crack increments. Virtual crack extensions for weight function applications as proposed 
by Cruse and Besuner [53] (illustration restricted to one half of the embedded crack). 

- 4 2 2 

[ 

n/2 ]1/2 
YA= n Ia Y (q>)sin q>dq> (7.1.7) 

- 4 2 2 

[ 

n/2 ]1/2 
Y8 = n fo Y (q>)cos q>dq> (7.1.8) 

For the numerical calculations the bending solution of Newman and Raju [52] is recommended. 

7.1.1 The bridging stress intensity factor 

Bridging stress intensity factors are available only for a few types of crack, namely edge cracks 
and embedded circular cracks [18]. lt will be shown in this section how the bridging stress in­
tensity factor for an embedded elliptical crack can be estimated from the bridging stress intensi­
ty factor of an embedded circular crack by application of the weight function procedure for aver­
aged stress intensity factors 
ln the subsequent considerations the additional assumption is made that bridging stress intensity 
factors for semi-elliptical surface cracks can be approximated by the bridging stress intensity 
factors of embedded elliptical cracks with the same aspect ratio. 

Circular cracks: 
The friction induced bridging stresses ab, as a function of the crack opening displacement b may 
be described by a number of relations. Here we use the exponential description 

(7.1.9) 
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with a maximum stress Go and a characteristic range <So. 
The bridging stress intensity factor K1b, for a penny-shaped embedded crackwas calculated ap­
plying the weight function method [18]. According to [34] the results can be approximated by 

GoYFo { ( )} K, brcircle = C 1- exp - C .Jafao- aofa 

with the abbreviation 

For bridging stresses with a large range of action (<50 ~ oo) eq.(7.1.3) reduces to become 

K, br circte(bo ~ oo) =Go Y J8 .J 1 - (aofa)
2 

(7.1.10) 

(7.1.11) 

(7.1.12) 

For numerical calculations the following parameters - characteristic of coarse-grained A/20a -
were maintained constant: 

E = 3.6 · 105 MPa, v = 0.2, K10 = 3 MPa.jril 

and the bridging parameters were considered to be variable. 

Elliptical cracks: 
ln order to take into account the influence of the elliptical crack shape we apply an estimative 
relation which is often used in fracture mechanics. Since the bridging stress intensity factors in 
elliptical cracks can be computed (at least in terms of averaged stress intensity factors) for the 
case of (bo ~ oo) one can approximate 

- - Kbr, ellipse( bo ~ oo) 
K · (b ) "'K (b ) --'-----br, ei/Jpse 0 - br, circle 0 K ( ~ ) 

br, circ/e uo ~ 00 

(7.1.13) 

ln this context it should be mentioned that in case of a radial symmetrically loaded circular crack 
the local stress intensity factor and any averaged stress intensity factor are identical. The great­
er the parameter <5 0 is the better will be the approximation. 
The averaged stress intensity factors for the elliptical crack with bo ~ oo, needed in eq.(7.1.13), 
are given in the Appendix. ln the subsequent considerations the bars over the averaged stress 
intensity factors and related geometric functions will be dropped. 

7.1.2 Crack development in bending strength tests 

ln the subsequent considerations two assumptions will be made: 

• lt is assumed that eq.(7.1.13) will also describe surface cracks. 
• The width of bending bars is assumed to be large so that a finite width correction is neither 

necessary for the bridging stress intensity factor nor for the externally applied stress intensi­
ty factor. 

• lt is assumed that the initial cracks are semi-circular. 

With increasing applied bending stress Gb a semi-circular shaped surface crack (ao = co) starts to 
propagate at point 8 - where the geometric function Y(a0fW, a0jc0) reaches its maximum value - if 
the condition 
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Figure 87. Stress and aspect ratio. Development of the aspect ratio under increasing applied stress in a 
strength test (<50 = 1 J.l.m a0 = 1 00 M Pa.). 

(7.1.14) 

is fulfilled. Crackpropagation at point A occurs at a higher stress Ievei where the two conditions 

1.00 

0.90 

() 0.80 

'-.... 
0 

0.70 

0.60 
CD failure 

0 ·5q)---'---=2o~o:-------'---::4-=-oo=-_..___s;;-:!oo 

a (~Jm) 

(7.1.15) 

Figure 88. Crack shape. Development of the aspect ratio afc as a function of the initial crack size a0• 
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Figure 89. Strength. Strength uc for a material with <5 0 = 1 ttm (dash-dotted line: bending strength in the 
absence of bridging stresses). 

are simultaneously fulfilled. The further crack development is then described by the equations 

(7.1.16) 

After stepwise increased external bending stress ab failure can be observed at that stress value 
where for the firsttime no solution of eq.(7.1.16) is found. ln eqs.(7.1.15) and eq.(7.1.16) the bridg­
ing term is introduced with a minus sign since the bridging stresses are acting against the 
stresses applied. 
For numerical calculations the equations (7.1.16) were solved by use of two coupled zero-rout­
ines resulting in the crack data a, c for a given stress a. 
ln fig.87 the applied stress for a crack of initial crack size a0 = 200/Lm is plotted as a function of 
the crack length. The calculations were carried out with a0 =100MPa and b0 =1flm. Failure oc­
curs at about a = 240fLm. Additionally the aspect ratio afc is shown. With increasing crack size 
the aspect ratio decreases and the initially semi-circular shaped crack becomes a semi-ellipse 
but the maximum deviations from the semi-circular shape are relatively small. 
The development of the aspect ratio with crack extension is illustrated in fig.88 for three cracks 
of different initial crack sizes ao. lt is obvious that the strongest change of the aspect ratio occurs 
at the beginning of crack propagation. 
figure 89 shows the bending strength influenced by the bridging stresses (solid lines) as weil as 
the bending strength in the absence of an R-curve effect (dash-dotted line) as a function of the 
initial crack size ao in a representation where the abscissa is scaled according to log(1/.Jao\ lt 
can be seen that the bending strength deviates from the linear dependency, especially for rela­
tively large cracks, i.e. for relatively low strength values. This behaviour is a consequence of the 
R-curve effect and the significantly deviating stress intensity factors in bending compared to pure 
tension. 
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Figure 90. Strength calculation. Strength data of fig.5 compared with calculations using data-set (7.1.18); 
dash-dotted curve: bending strength in the absence of bridging stresses; dashed curve: tensile 
strength in the absence of bridging stresses. 

7.1.3 Estimation of bridging parameters from strength measurements 

Now the question arises whether strength data can provide information on the bridging parame­
ters Öo and ao. For a determination of these parameters the bending strength data of fig.5 are 
used. The bending strength measurements were carried out on 3.5x4.5x50mm specimens made 
of coarse-grained 99.6% A/20 3 (Frialit/Degussit, Friedrichsfeld AG, Mannheim, FRG) with a mean 
grain size of 20J.Lm. A strong R-curve behaviour has been found for this material by measure­
ments performed with macro-cracks [18]. The bending bars were only roughly ground which 
resulted in a relatively low strength. Such a surface state can ensure that all specimens will fail 
due to only one flaw population, namely surface cracks. Before testing the specimens were ann­
ealed in the vacuum for 5 hours at 1200°C. The typical effect illustrated in fig.89 seems to be 
present. Under the assumption that the initial crack size distribution is given by a two-parame­
tric Weibull distribution 

(7.1.17) 

with the Weibull-parameters m, a00 one can determine the unknown parameters. 
With a Ieast-squares procedure the parameters ao, o0, aoo, m were determined in the following 
way: 
For the parameter tleld <>o=(0/0.5/1/2/4J.Lm), m=(1.5/2/2.5/3), a 0 ={0/50/100/150/200MPa), and 
aoo = {50/100/200/4,00/700J.Lm) a field of related strength values has been determined. Application 
of cubic splines then allowed the data to be interpolated. A Ieast-squares routine (the author 
used the Harwell Subroutine VA02A) yielded the best parameter set. ln each step of the Ieast­
squares routine the strength distribution is calculated for the actual parameter set. The subrou­
tine compares the calculated distribution with the measured one and changes the actual param­
eters systematically as long as the best parameter set is obtained. The resulting parameters for 
the data of fig.5 are: 

a0 = 120MPa, o0 = 1J.Lm, a00 = 200J.Lm, m = 2 (7.1.18) 
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Figure 91. R-curves. a) R-curve for a semi-circular surface crack with initial crack size a0 =400.um calcu­
lated with data set (7.1.18) based on bending strength results; 
b) R-curve calculated for the same crack with bridging stress parameters derived from macro­
cracks [18]; 
c) macro-crack R-curve obtained in [18] from subcritical crack growth tests with notched bend­
ing specimens. 

Figure 90 shows the fitting curve together with the strength data of fig.5. Additionally the bend­
ing strength in the absence of any bridging effect is plotted as a dashed line. ln a previous study 
[18] the "macro-crack behaviour" of the same material has been investigated in static bending 
tests with notched specimens yielding the parameters a 0 =45 MPa, Cio=1f.Lm. For the natural 
cracks the maximum friction stresses are distinctly higher. Whilst in macro-crack tests an aver­
age value of ao along the macroscopic specimen width of 3.5mm was determined the averaging 
length for the natural cracks is by a factor of about 10 shorter and more local effects may influ­
ence the result. 
Figure 91 shows the R-curve (at point A) from strength evaluation as a solid line compared with 
the R-curve for identical cracks calculated with the bridging parameters derived in [18] (dashed 
curve) and the "macro-crack R-curve" obtained in [18] (dotted curve). The significant influence of 
the different values for a0 is evident. 

ln conclusion: As a consequence of bridging interactions it can be concluded that there are 
deviations from the expected straight line in the Weibull-plot. Such an effect may become pro­
nounced, especially in case of a !arge scatter of the initial crack size distribution. 
lt has been shown how the bridging stresses for coarse-grained A/20 3 can be estimated from 
bending strength data. The main intent was to explain a procedure for evaluating the bridging 
parameters for natural cracks. The absolute results should not be overrated since a number of 
assumpt;ons (e.g. the initial shape of cracks, the infinite specimen width, the Weibull distributed 
initial crack sizes) had to be made. Calculations in terms of averaged stress intensity factors 
show the development of surface cracks until failure providing the strength. ln this context two 
important points must be taken into account: 

1. The change of crack shape during crack extension in bending strength tests, i.e. the aspect 
ratio ajc is not constant! 

2. The stress intensity factors at the two points A and B of the crack are responsible for crack 
development and strength. 
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8. lnfluence of R-curve effects on subcritical crack 
growth 

8.1 General influence of R-curve effects on lifetimes in static 
tests 

ln materials without R-curve behaviour the crack-tip stress intensity factor K11;p - responsible for 
crack growth - is identical with the externally applied stress intensity factor K 1 appt· ln ceramies 
with R-curve behaviour the crack tip is shielded by the shielding stress intensity factor. There­
fore, the crack tip stress intensity factor results as given by 

K1 tip = K1 appl + K1 shield (8.1.1) 

This relation is the basis for understanding R-curve influences on the lifetime behaviour. 

K 

Figure 92. Development of K-values. Development of the stress intensity factors of eq.(8.1.1) in a stable 
crack growth test. 

Whilst stable crack propagation occurs with a constant crack tip stress intensity factor, namely 
Ktttp=Kto. during subcritical crack growth in a lifetime test under static Ioad, the value of Ktttp 

must change with K, appt and Kshietd according to eq.(8.1.1). This behaviour is explained in fig.92. 
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Figure 93. Lifetime. lnfluence of R-curve effects an lifetimes in static tests [56]. 

At the beginning of crack extension the crack-tip stress intensity factor decreases significantly 
with increasing crack length, passes a minimum value and increases again. The applied stress 
intensity factor K 1appt (dashed curve) increases monotonically and the difference between these 
two curves is the shielding stress intensity factor Kshietd· 

ln the presence of crack-tip shielding the lifetime t, results for a given stress a as 

(8.1.2) 

ln (8.1.2) a; isthat crack size where slow crack growth starts and ae is the critical crack size. At 
the point of failure (a = ae) the crack tip stress intensity factor Kttip reaches Kto and, consequently, 
the subcritical crack growth rate becomes extremely high. Therefore, the integral in eq.(8.1.2) 
may be extended to infinity without loss of accuracy worth mentioning. Only in case of negligible 
crack extensions, i.e. aefa0 ~ 1, this approximation will fail. With this assumption made one ob­
tains 

1 ioo da 
t,~ A n 

[aY J8 + Ksh/e/d] 
a; 

(8.1.3) 

The influence of R-curve effects on lifetimes has been computed in [56]. Figure 93 shows the 
lifetimes for a material without R-curve and a material with streng R-curve behaviour but identi­
cal initial crack size distribution and identical subcritical crack growth parameters. As shown in 
fig. 93, the lifetime curve including shielding effects is flatter than the curve obtained in the ab­
sence of crack-tip shielding, i.e. the apparent power law exponent n', defined by lifetimes ob­
tained at different stress Ieveis 

d logt, 
n' =- > n 

d log a 
(8.1.4) 
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Figure 94. Weibull distribution of lifetimes. Lifetimes measured in a static bending test at 20°C in air for 
coarse-grained A/20a. 

This effect can also be shown analytically. The lifetime in the absence of a shielding effect 
(Ksnield = 0) results as 

t = -1-loo __ d_a __ = const • u -n 
f(Kshield = 0) A [uY .ja]n 

a; 

From eq.(8.1.3) differentiation with respect to the stress u yields 

dtr = _ nloo Y.ja da 
du -----'----n-+-:-:-1 

[uY J8 + Kshield] 
a; 

This can be written by use of the mean value theorem for integrals as 

dt, y~ 
--= -n t, 
du uY~ + K'sh/eld 

where the primes indicate a certain crack size in the range a; < a' < ac( = oo). 
lntroducing logarithmic derivatives yields 

d log(tr) uY~ 
-----'-'- = - n -----------
d log(u) uY~ + K'shleld 

From eq.(8.1.4) it results for the n-value in presence of an R-curve effect 
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Figure 95. Stress intensity factors. Change of stress intensity factors during crack extension under con­
stant Ioad. 

uYji' 
n' =n >n 

uY Ji' + K' shield 

(8.1.9) 

Finally we can conclude 

n' > n (8.1.10) 

8.2 A detailled analysis of the influence of bridging interactions 

ln this section it is illustrated how the brldging interactions in coarse-grained A/203 will influence 
the subcritical crack growth and lifetime behaviour of specimens with natural crack populations 
[57]. Calculations using averaged stress intensity factors - as used for the strength in section 
7.1 - show the development of surface cracks until failure. Since spontaneaus failure in strength 
tests is affected by bridging stresses [51],[58], it must be expected that delayed failure due to 
subcritical crack growth will be influenced, too. This must be the case for alumina [56] [4] as 
weil as for zirconia [9]. 
ln a recent paper [7] lifetime results obtained under constant Ioad have been presented for 
coarse-grained alumina. ln a Weibull-plot a non-linear behaviour was observed which can be 
seen from fig. 94. As mentioned for the strength behaviour such a behaviour can be also 
caused, in principle, by a specific flaw population. 
ln coarse-grained alumina the crack growth resistance increases with increasing crack extension 
due to friction-like crack-border interactions in the wake of the advancing crack. As a result of 
these crack surface interactions, the stress intensity factor acting at the crack tip Kttip deviates 
from the externally applied K 1 appt according to eq.(8.1.1) 

K, tip = Kt appt + Ktbr = K, appt- iKtbri 

where Ktbr is the bridging stress intensity factor. This relation is the basis for understanding R­
curve influences on lifetime behaviour. For its evaluation one needs the applied stress intensity 
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Figure 96. Initial crack size. Definition of initial crack size for a constant-load test. 

factor caused by an externally applied Ioad as weil as the bridging stress intensity factor. ln 
cantrast to the strength computations the abbreviation C is now defined as 

C= 
4 · 1.141(1 - i)Ku;pJ[i; 

' y = 2/.J; (8.2.1) 

The occurrence of K,tip in the quantity C makes iterative solutions necessary. 

8.2.1 Crack propagation under constant Ioad 

Surface cracks in ceramic materials caused by surface grinding are commonly assumed to be 
semi-circular shaped. During crack extension in bending a change of the crack shape must be 
expected. Therefore, also bridging stress intensity factors for semi-elliptical surface cracks are 
necessary. ln the subsequent considerations the assumption will be made that bridging stress 
intensity factors for surface cracks can be approximated by the bridging stress intensity factors 
of embedded cracks with the same aspect ratio. 
For numerical computations the same material parameters were chosen as already used in 7.1. 
All calculations are performed for a specimen thickness W = 3.5mm that has been used also in 
the experimental lifetime tests. The specimen width is assumed to be large so that finite width 
correction is neither necessary for the bridging stress intensity factor nor for the externally ap­
plied stress intensity factor. 
Whilst in strength tests crack propagation occurs with a constant crack tip stress intensity factor, 
namely K~t;p=K,o, the value of Klt;p must change with K,appl and K,b, according to eq.(8.1.1) during 
subcritical crack growth in a test performed under static Ioad. This behaviour is schematically 
explained in fig. 92. The applied stress intensity factor K1appl (dashed curve) increases monotoni­
cally with crack extension. The bridging stress intensity factor is negative and also increases 
with crack extension. The sum of these two curves is the crack-tip stress intensity factor Kltip. 
which first decreases significantly with increasing crack length, passes a minimum value and 
increases again. 
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Figure 97. Crack shape. Development of the aspect ratio afc as a function of the initial crack size a0 ( 

N =30). 

Unfortunately, subcritical crack growth does not start in all cases at the initial crack size. This 
has to be considered especially for relatively high Ioads applied. Figure 96 illustrates the prob­
lern. 

ln case of a low applied stress a1 it holds 

K1 appl,A • K1 appl,B < KlO 

and, consequently, the crack can propagate only by subcritical crack growth, starting from 
ao, Co. 
ln case of a higher stress, a2 > a 1, the crackwill extend at the moment of Ioad application up 
to a crack of dimensions a' :2: ao, c' :2: c0 which are given by the solution of the equations 

(8.2.2) 

ln this case in eq.(8.2.1) the crack-tip stress intensity factor Kttip must be Kto. 

The crack-growth relation describing subcritical crack growth is assumed to be a power law 

0 for K1 tip < Klth 

da N 
v = dt = A(K1 tip) for Klth < K1 tip < K10 (8.2.3) 

-+ oo for K1 tlp :2: K10 

where K,th is the threshold stress intensity factor below which subcritical crack growth does not 
occur. From theoretical considerations a threshold stress intensity factor for thermally activated 
bond breaking must occur [59] [60]. 
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Figure 98. Crack resistance curve. R-curves for the two points A, B computed with a0 = 200,um, 
O'bend =185MPa, N-30. 

Numerical procedure 
Some details of the numerical evaluation of a static lifetime test will subsequently be explained 
for the special case of K1th =0. lmmediately after Ioad application the crack may have the dimen­
sions ao, Co= ao ( case a=a1 in fig. 96). 
Step 1: The stress intensity factors for this situation are 

Kt appl A,B,O K, br A,B,O = 0 Kt tip A,B,O = Kt appf A,B,O 

A cracl< size increment da= Aa0, A<{1 is chosen. The related crack increment dco results from 
eq.(8.2.3) as 

N 
dco = (K, tip B,o/Kt tip A,o) da 

and the time increment needed for the crack extension da is 

dto = ~a 
A KttipA,o 

and the new crack dimensions are a1 = ao +da; c1 =Co+ dco. 
Step 2: The stress intensity factors for the extended crack are 

Kt appl A,B,1 ' Kt br A,B,1 = f(Kt tip) ' Kt tip A,B,1 = Kt appl A,B,1 - Kt br A,B,1 

The next crack increments are 

and the time increment becomes 
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Figure 99. lifetimes in static tests. Lifetimes in a normalised representation for N=30, calculated for a 
crack of initial size a0 = 200,um; solid curve: with R-curve behaviour, dashed curve: without R­
curve effect. 

lt should be noted that Ktbr depends on the crack-tip stress intensity factor Kttip· There are se­
veral possibilities to determine Ktbr and Kttip· The simplest ones are: 

Replacing the unknown value K1t;p in eq.(8.2.1) by the value obtained in the preceding step, 
i.e. 

Kt br A,B,n = f(Kttip A,B,n -1) 

This is recommended above all for very small values of-t. 
The stress intensity factors Ktbr. Kttip can be obtained from the Solution of the implicit 
equation 

Kt appt- K, tip- K1 br(KI tip) = 0 

which can be found for each step by a zero-routine. 

These steps are repeated until Kttip =K1o and dKttip > 0 is fulfilled. The lifetime is given as the sum 
of all time increments. 
ln case of a = 112 the initially stable crack development is described by the equations (8.2.2). This 
system of equations yietds the crack dimensions a,c from which subcritical crack growth starts. 
The further computation is identical with that for 11 = 111• 

Numerical results 
ln fig.97 the development of the crack shape during a static bending test with 185M Pa bending 
stress is shown for initial crack sizes of a0 =50, 100 and 200ftm. The principal shape of the curves 
is identical with that of stable crack extension occurring in bending strength tests. The related 
R-curves are shown in fig.98 for the crack with a0 = 200ftm. The R-curve for point A is plotted as a 
solid line and the R-curve for the surface point B as a dashed line. Both curves are nearly identi-
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Figure 100. Initial crack size. lnfluence of the initial crack size a0 an the applied and crack-tip stress in­
tensity factors. 

cal. Figure 99 represents the lifetime t, as a function of the externally applied bending stress 
ubend for a crack of ao = 200,um and a subcritical crack growth-exponent N = 30. Whilst for a materi­
al without an R-curve effect a straight line with slope -1/N has to be expected (dashed line) the 
curve (solid line) deviates from a straight line in case of an R-curve effect due to bridging stress­
es and the steepness of the curve is significantly lower. This is in agreement with earlier results 
obtained by the author [18], [4]. The existence of a threshold stress intensity factor Krth affects 
the Iimit stress value below which crack arrest occurs. The development of the crack-tip stress 
intensity factor K11;p is illustrated in fig.100 for several initial crack sizes. For lifetimes especially 
the regionsaraund the minimum values of K11;p (named Krtip,min) are of at most importance since 
crack extension here takes the main part of the whole lifetime. The interdependency of minimum 
crack-tip stress intensity factor and initial crack size is plotted in fig.101. lf a threshold stress 
intensity factor Krth > 0 exists, all lifetime tests with Krt;p ,min ~ Krth will result in an infinite lifetime 
since crack arrest must occur. 
Finally, the distribution of the lifetimes is shown in fig.102 for the cracl< size distribution de­
scribed by eq.(7.1.17) and different K1lh-values selected. Figure 102 represents the results for 
N = 20 and fig.103 for N = 30. The solid lines, which describe the lifetime behaviour in the ab­
sence of a threshold stress intensity factor, have the same shape as the fitted strength curve in 
[51]. The influence of a ihreshold value Krth Ieads to a stronger non-linearity of the lifetime dis­
tribution. A sufficient description of the measured lifetime by the calculations can be found for 

N = 20 , K1 th/K10 = 0.5 , /gA =- 10.8 (A in: MPa,s,m) (8.2.5) 

With these data the computed lifetime distribution is plotted in fig.104 tagether with the meas­
ured data of fig.93. The only deviation worth mentioning is that the ihreshold effect does not 
begin as abruptly as calculated. Also this effect can be understood from the v- K -behaviour 
plotted in fig.105. The solid lines represent eq.(8.2.3). lt can be shown theoretically [59] [60] 
that the threshold effect is asymptotically reached and the transition from v > 0 to v---+ 0 is 
smoother than given by eq.(8.2.3). This more realistic behaviour is illustrated by the dashed 
curve. Having this in mind, the deviations in fig.104 are self-explanatory. 
The bridging parameters and the parameters of subcritical crack extension are compared in Ta­
ble 1 (at the end of this section) with parameters obtained from static tests with specimens con­
taining macrocracks. The bridging stresses obtained from the tests with macrocracks are lower 
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Figure 101. Minimum stress intensity factor. Minimum crack-tip stress intensity factors during crack ex­
tension in a constant Ioad test (u =185M Pa), (crack arrest situation for K,th = OAK10 indicated 
by solid circle). 

than those obtained in the tests with microcracks. The parameter N is similar; however, the 
parameter A is considerably lower for the macrocracks. 
ln fig.106 the v-Krcurve obtained from macro-crack measurements [18] is plotted as a dashed 
line tagether with the micro-crack relation proposed in this investigation (solid curve). The sub­
critical crack growth rates for the micro-cracks are significantly lower than the crack velocities 
obtained with macro-cracks. 

8.2.2 Discussion 

The evaluation of the lifetime results shows that it is possible to explain the non-linear Weibull­
plot by the R-curve effect. The curve in fig.104 of the lifetime distribution and in fig.106 of the 
dafdt- K, -relation have been obtained from the bridging stress parameters uo and <So evaluated 
from the strength distribution. The freely selected parameters are N, A and K10. 
The large discrepancy in the crack-growth rate between micro-cracks and macro-cracks can be 
reduced if lower values of u0 are applied. From fig.107 it can be seen that a reduction in uo from 
120 MPa to 100 MPa still Ieads to a reasonably good description of scatter in lifetime. The corre­
sponding threshold value is 1.75 MPaji1l. The corresponding growth-rate parameters are 
N=20, lgA =-12.8 leading to a better agreement with the macro-crack behaviour as can be seen 
from fig.108. However, the crack growth rate is still higher. Therefore, under the assumption 
made it continues to apply that the bridging stresses for micro-cracks are larger than for macro­
cracks and that the crack-growth rate for the same crack-tip stress intensity factor K,tlp is higher 
for the micro-cracks. A further decrease in u 0 for the micro-cracks would yield a lifetime distrib­
ution not agreeing with the experimental results. 
lt cannot be excluded that the assumptions made influence the result. These assumptions are: 
Weibull distribution without R-curve effects, application of averaged instead of local stress inten­
sity factors, approximation of R-curves of surface cracks by R-curves of embedded cracks. 

Considering all these assumptions, nevertheless the cautious conclusion may be drawn that the 
dafdt- K,tlp relation of micro-cracks and macro-cracks deviate from each other. There may be 
different reasons for this effect. Generally, the linear-elastic relations are not fully correct for 
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Figure 102. Weibull distribution with threshold. Weibull-distributian af lifetimes under O'bend= 185MPa, 
camputed far N = 20 (dash-datted lines: influence af a threshald stress intensity factar). 

small cracks as can be seen from strength tests. lt is also possible that the stress intensity factor 
of a real flaw/crack-configuration, e.g. a pore with a circumferential crack, deviates from that of a 
flat crack. 
Also the experimental finding of Steinbrech [115] that in stable crack-growth tests small cracks 
can grow under significantly lower applied stress intensity factors than necessary for macro­
cracks may be valid for subcritical crack growth, too. 

Test Crack type Ref. N 
/g(A), 

a0 (MPa) bo (tLm) 
(A in MPa,m,s) 

Static tests micro-cracks [57] 20 -10.8 120 1 

Static tests macro-cracks [18] 25 -15.9 46.4 0.95 

Table 2. . Camparisan af subcritical crack grawth with bridging parameters. 
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9. lnfluence of R-curve effects on cyclic fatigue 

9.1 Experimental facts 

Several ceramic materials show the effect of cyclic fatigue. ln this section it will be shown that 
strong R-curve effects can be responsible for this behaviour. ln order to prove an effect of cyclic 
fatigue in a ceramic material, three different types of test are recommended: 

1. The comparison of cyclic lifetimes from experiments with predictions from static tests on the 
basis of Krgoverned subcritical crack growth [61]. 

2. A second method is the measurement of cyclic lifetimes with very different frequencies but 
identical upper and lower stresses and identical shape of the amplitude. 
ln case of a real fatigue effect the lifetime must decrease with increasing frequency. 

3. ln the absence of a real cycle effect lifetimes in tests with step-shaped waves should be 
identical for R=O and R=-1 and should differ only by a factor of 1/2 for R=1. 

Results of tests with specimens containing natural flaws are given in fig.109 [62]. Lifetimes ob­
tained in tests with constant stress are shown in this diagram as open circles. From a Ieast­
squares fit ns =40 was obtained according tot, oc a-n. The results of the cyclic tests obtained for 
a frequency of 50Hz and an R-ratio of R = - 1 are given as solid circles. The slope of the dotted 
straight line gives an exponent of nc = 28 for a power-law description of cyclic crack growth sig­
nificantly lower than the value for the static tests. lt is obvious that the scatter of the cyclic 
lifetimes is reduced compared with the static lifetimes. Based on the lifetimes in the constant 
Ioad tests the cyclic lifetimes were predicted and entered in fig.109 as solid line. The predicted 
and measured lifetimes are significantly different. 

lnfluence of fr~uency on cyclfc Ufetimes: From the lifetime prediction on the basis of subcritical 
crack growth no influence of the frequency has to be expected. ln order to check such an influ­
ence cyclic tests were carried out with different frequencies. ln fig.110 lifetime results are shown, 
obtained for a maximum stress of amax= 175M Pa and frequencies of 0.2, 2, and 20Hz [63J ln addi­
tion also static tests are introduced which can be interpreted by a frequency of zero. All static 
tests yield survival, i.e. lifetimes of more than 200h. The lifetimes in the cyclic tests decrease 
with increasing frequency. Also this fact is an indication that not only subcritical crack growth 
may be the reason for failure in cyclic tests. 

lnfluence of the R-ratio: Figure 111 shows cyclic lifetimes of Knoop-damaged specimens ob­
tained with material II. The size of the Knoop-cracks could be measured under the light micro­
scope, and the maximum initial stress intensity factor was calculated. 
The tests were carried out with step-shaped pulsating and alternating Ioads. Since no crack 
growth under compressive stress intensity factors is possible one should expect identical life­
times for the R-ratios R = - 1 and R = 0. This is obviously not the case, since the lifetimes un­
der R = - 1 are significantly lower than under R = 0. Static tests should exhibit lifetimes reduced 
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Figure 109. l.ifetime measurements and lifetime predictions. Static and cyclic lifetime tests performed on 
specimens with natural cracks made of coarse-grained A/20 3 (material I); solid line: prediction 
of cyclic lifetimes based on static results. 

by a factor of 2 compared with the cyclic ones. ln contrast we find significantly higher static 
lifetimes. These disagreements are a further indication for a real fatigue effect. 
ln cyclic tests performed with small natural and artificial cracks the following main results were 
obtained: 

1. Lifetimes in cyclic tests are significantly lower than the predictions based on static lifetime 
tests [64],[65}[68]. 

2 
R=-1 6max =175MPa 
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Figure 110. lnfluence of frequency. l.ifetime measurements with specimens containing natural flaws made 
of material II. 
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Figure 111. R-ratio. lnfluence of the R-ratio on the lifetime, Knoop-damaged specimens (material II); open 
symbols: fracture toughness. 

2. ln a power law description the exponents ncyclic are obviously lower than the exponents nstatic 

resulting in static lifetime tests [62],[64],[65],[66]. 
3. The scatter of cyclic lifetimes is reduced compared with the scatter in static tests. 
4. The influence of cyclic loading mentioned before appears for natural cracks as weil as for 

small artificial Knoop-cracks [64],[62]. 
5. Materials exhibiting a significant cycle effect also exhibit a pronounced R-curve effect [69]. 
6. Only a moderate influence of frequency on lifetime can be stated [63]. 

A model for explanation of cyclic fatigue effects in specimens with small cracks should take 
these findings into account. 

9.2 Theoretical considerations 

With the following three assumptions all experimental findings mentioned under items 1.-6. can 
be explained. 

• The mechanisms of crack growth under cyclic Ioad and static loading are identical. 
lt is assumed that the fatique behaviour in A/20s is a direct consequence of the R-curve ef­
fect, which is caused by crack surface interactions distributed over the crack. 

• These crack surface interactions are assumed to become more and more dissolved with in-
creasing number of cycles [70],[71]. 

ln materials with R-curve the crack tip is shielded by the shielding stress intensity factor K,. and 
the real stress intensity factor at the crack tip Kltip deviates from the applied stress intensity fac­
tor K, •PP' as 

(9.2.1) 

Without any detailed calculation we come to the obvious consequences: 
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A lifetime prediction for cyclically loaded ceramies becomes complicated in the presence of R­
curve effects due to crack bridging interactions. ln cyclic tests these crack interactions are as­
sumed to become more and more reduced with increasing number of cycles [22] [23] as has 
been shown experimentally by in-situ microscopic examinations [22], [23]. ln this case the 
crack tip is exposed to higher loading in cyclic tests than in static tests. 
Since for small cracks in coarse-grained A/20 3 with a < 100flm the maximum crack opening is 
small compared with <50 one can approximate [72] 

(9.2.2) 

ln case of cyclic loading the surface interactions may be reduced by the cycles. The number of 
bridging events will be reduced and in terms of bridging stresses the stress parameter uo will 
decrease. ln order to be able to model the fundamental behaviour we will assume that the de­
crease of the maximum value of bridging stresses is proportional to the number of cycles (N) 
and to the actual value of u 0 which in the integrated form reads 

u0 = u00 exp(- rxN) (9.2.3) 

Now we will consider two Iimit cases. 

Case 1: The bridging interactions remain unaffected by the cycles, i.e. rx ~ 0. This case 
describes also the bridging stress intensity factor for static Ioad. The corresponding Iimit 
values for the bridging stress intensity factors results with with Y = 2/$ 

(9.2.4) 2uoo J 2 2 
K1 br,1 = c-::- a - ao 

..yrca 

• Case 2: Only a few cycles are necessary to dissolve the crack surface interactions newly 
created during crack propagation, i.e. rx ~ oo. This yields 

K1 br,2 = 0 (9.2.5) 

Lifetimes: 
The influence of cycles on lifetirnes becornes obvious by consideration of the Iimit cases, narnely 
crack surface interactions for static tesis and toially vanished crack surface interactions for cy­
clic tests. For the following considerations a step-shaped load-time history may be chosen 

for 0 < t < T /2 } 

for T/2 < t < T 
(9.2.6) 

resulting in step-shaped stress intensity factors. Thereby the cyclic problern can be reduced to a 
static problem. The subcritical crack growth law is given by a power law 

v = : = {AK1 tlp n for K1 tlp > 0} 
0 e/se 

(9.2.7) 

The lifetime t, in a static test performed with stress u results to be 
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(9.2.8) 

where a1 is the initial value of the crack length a and ac is the crack length at failure. Since the 
main part of the lifetime results at that state where the denominator of the integrand has its min­
imum value, the upper integration boundary is without much relevance for the lifetime and can 
be replaced for instance by infinity. 

frstatic = 1 i~ ;.a J" 
[aY a - K15 a; 

(9.2.9) 

The lifetime for the cyclic Iimit case of a completely dissolved crack surface interactions (K,.--+ 0) 
then results as 

i
oo 

2 da -n 
trcycl, lim = A [aY ..ji]n = const • a 

a; 

(9.2.10) 

The factor 2 enters eq.(9.2.10) due to the special step-shaped loading profile. 
lf a time-dependend K1.-value is taken into account a differential equation has to be used instead 
of eq.(9.2.10) Nevertheless the main result can be obtained by considering eq.(9.2.7) directly. 
Since K,. is positive the crack growth rate is always 

0'1 
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Figure 112. Cyclic lifetimes. Change of lifetime in cyclic tests with frequency (schematically) 
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and therefore the lifetime in a cyclic test must be lower than predicted from static tests. Due to 
the high exponents n this effect can become very strong. 

n-values: 
The n-values of a power law for crack growth can be derived by 

d log tr 
n = - --:--:----'-

d log a 
(9.2.12) 

Especially for the cyclic Iimit case it results that in this case the n-value becomes trivially identi­
cal with the exponent for subcritical crack growth used in eq.(9.2.7). On the other hand the n-va­
lue resulting from lifetime measurements in static tests must deviate from the "true value" 
(nstatic > n) as shown in [4],[56]. 
From eq.(9.2.9) differentiation with respect to the stress a yields 

d tr = _ ni

00 

__ Y__:ja__:a_da __ 
da n+1 

[aY ja- K1sJ 
a; 

This can be written by use of the mean value theorem for integrals as 

dtr Yjä' 
--= -n tr 
da aY Jä'- K15' 

where the primes indicate a certain crack size in the range a; < a' < ac( = oo). 
lntroducing logarithmic derivatives yields 

d log(tr) aY Jä' 
-.,..--.;",;",- = - n ----===---
d log(a) aYJä' -K,s' 

From eq.(9.2.12) it results for the static tests 

Finally we can conclude 

nstatic > ncyc/ic 

Scatter behaviour 

(9.2.13) 

(9.2.14) 

(9.2.15) 

(9.2.16) 

(9.2.17) 

l~ muc be the Weibull-modulus of the inert strength ac and m* the Weibull-modulus obtained in 
lifetime tests then it holds 

m * Uc m =--
n-2 

(9.2.18) 

For the static and cyclic lifetime tests it holds 
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Figure 113. Lifetime prediction. Lifetime predictions for static (dashed line) and cyclic (hatched area) 
tests calculated with n = 20, O"o = 1 OOMPa and a median value of crack distribution of a0 = 1 OOJ.lm; 

* mcyc/ic nstatic -2 
= 

m:;atlc ncycl/c -2 
(9.2.19) 

As a consequence of eq.(9.2.17) it results 

* * mcycl/c > mstatic (9.2.20) 

i.e. the scatter of cyclic lifetimes is less than the scatter of static lifetimes. 

lnfluence of frequency 
The influence of frequency can easily be understood by a rough estimation. The span of possi­
ble lifetimes in cyclic lifetime tests is limited by 

t, cyc/,1/m ~ t, cyc/ ~ t, static (9.2.21) 

For a frequency f--+ 0 the static lifetime (apart from the factor 2) will result and for f--+ = the 
crack surfaces are instantly free of interactions and the resulting lifetime will be identical with 
the Iimit case ftcycl,lim· The influence of frequency on cyclic lifetime is schematically shown in 
fig.112. Let "' be that frequency where log t,- log ftcycl,nm = 0.5( log ftstatic- log ftcyc!Jim). This fre­
quency should result a significantly reduced value of K1• during the lifetime test. We can conclude 
twm eqs.(9.2.3) and {9.2.4) as a tendency: 

(9.2.22) 

lf for the frequency"' the value of K1• is significantly changed from K1sa during the lifetime it be­
comes evident - at least for the exponential dependency based on eq.(9.2.3) - that the frequency 
~ = 10"' approximatively yields the Iimit case K1.e:::O and for f3 = 0.1"' no change of K,. due to fre­
quency influences has to be expected (K1.e:::K1•0). With other words: There must be a relative 
small "window of frequencies" where a significant decrease in lifetime (from ftstatic to t,cycl,iim) can 
occure. Outside of this range of frequencies the influence of frequency on lifetime must become 
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moderate. From previous results we conclude that the coarse-grained 99.6%-A/20a exhibits a 
cyclic effect that exceeds the effect expected from subcritical crack growth in static tests. The 
conspicuous disagreement between predictions based on static lifetimes and the experiments as 
weil as the influence of frequency on the number of cycles to failure are significant indications of 
this fact. 
Figure 113 shows the median values of static lifetimes (dashed line) as predicted by using the 
data-set 

n = 20 , m = 10 , a00 = 100MPa , a0 = 100~tm 

and the two Iimit cases of cyclic fatigue (solid lines) computed with eq.(9.2.4) and (9.2.5). 
The range where the real cyclic lifetimes have to be expected is hatched. As can be seen from 
fig.113, the n-value (i.e. the negative reciprocal slope of the curves) is lower for the Iimit case 2 
than for the Iimit case 1. 
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10. lnfluence of R-curve effects on thermal shock 
behaviour 

1 0.1 General remarks 

During thermal shock of ceramic materials crack propagation of initial cracks Ieads to an in­
crease in crack length. Therefore, the strength afterthermal shock is reduced from ac to a,. This 
reduction in strength can be described by application of fracture mechanics methods [73]-[77]. 
The final crack length and thus the strength after the thermal shock depend on 

• 
• 

• 

• 

the size and geometry of the component, 
the thermal shock conditions (temperature of component, temperature of shock medium, 
heat transfer), 
physical properties of the material which influence the temperature and stress distribution 
(thermal conductivity, thermal expansion coefficient, heat capacity, density, elastic con­
stants), 
mechanical properties of the material. 
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Figure 114. Crack propagation under TS-conditions. Crack propagation under thermal shock conditions 
for a material without R-curve behaviour; (dash-dotted curve: KIR, solid curves: K, app!), [78]. 
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Figure 115. Crack propagation under TS-conditions. Crack propagation under thermal shock conditions 
for a material with a strong R-curve behaviour; (dash-dotted curve: KIR, solid curves: K, appJ), 
[78]. 

One relevant mechanical property is the crack growth resistance. For some materials the crack 
growth resistance can sufficiently be characterised by the fracture toughness K,c. For materials 
whose crack growth resistance increases with crack extension (rising R-curve) the situation is 
more complicated. A first evaluation can be made under the assumption that crack growth resist­
ance can be described by a unique curve - the relation between KIR and the crack extension 
ila = a- ao. A more realistic description takes into account that the crack growth resistance 
curve depends on the actual loading situation and the initial crack length. This has been done in 
[78]. For the numerical calculations the relation 

(10.1.1) 

was used. 
The crack extension during thermal shock can be described by a diagram, in which the stress 
intensity factor is plotted versus the relative crack length afW, fig.114. At any time after the ther­
mal shock gets effective, the stress intensity factor first increases with the crack length and then 
decreases again. All curves have an envelope which also has a maximum in K,appl· First the situ­
ation will be considered of a material with a flat crack growth resistance. A crack of initial 
length ao extends in an unstable mode at time t0 (black arrow fig.114), when the condition K,appl= 
K10 is fulfilled for the first time. Due to dynamic effects the crack can be driven to a crack length 
a1 where K,appl is below K10• Then the crack stops for a moment until K1appl reaches K,o again. Aft­
erwards, under the condition K1app1=K10 , the crack extends in a stable mode (open arrow) until its 
finallengtn a = a,, wnen the envelope of K1 appl is reached. 
For a rising crack growth resistance curve (see fig.115) the crack follows the points of inter­
section between the time-dependent stress intensity factors applied, K1app1(a,t) and the K1R-curve. 
Depending on the initial crack length a0, the shape of the K1R-curve and K1app,(a,t), stable crack 
extension may take place until complete crack arrest or it first may be stable, then unstable and 
then stable again, as shown in fig.115. A comparison of fig.114 with fig.115 shows that the final 
crack length a1 is reduced due to the rising crack growth resistance. 
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10.2 Experimental results 

1 0.2.1 Experimental and theoretical K1R-curves for thermal shock 

Schneider et al. [79],[80],[81] measured crack extensions in A/203 disks under thermal shock 
loading conditions. The disks were heated in the central part by halogen lamps where the valt­
age of the lamps increased linearly with time. The details of the experimental set-up are given in 
[79]. 

2 3 4 
crack length 

8 

Figure 116. Measured R-curve. Crack growth re­
sistance in a thermal shock test 
(ao=0.7mm);(curves: KlappJ). 

2 3 4 
crack length 

8 

Figure 117. Measured R-curve. Crack growth re­
sistance in a thermal shock test 
(ao = 1.75mm);(curves: K, appJ). 

The applied stress intensity factor as a function of time and the crack length, K1appl (a,t), has been 
calculated from the corresponding stress distribution. The results have been plotted in fig.116 
and fig.117, where instead of the time the valtage of the lamps is entered as a parameter. The 
KJR(a) -curve (squares) is obtained from K1 app1(a,t) and the relation t(a) taken from the exper­
iment: 

KIR(a) = K1 app1[a, t(a)] (10.2.1) 

lt can be seen that for a large initial crack length the crack extension is stable, whereas for 
small initial crack length the extension is first stable, then unstable and then stable again. The 
crack growth resistance curve of the material applied obtained in a three-point bendingtest with 
a crack of initial length a0/W=0.5, is shown in fig.158. Frorn these results ao=44 MPa, bo=0.25 
J-lm, K10=2.S MPa.jin was obtained. ln addition to the experimental thermal shock K1R(a) -curve 
a theoretical K,R(a) -curve can be obtained by inserting a theoretical t(a) in eq.(10.2.1). A theore­
tical t(a) is given by 

K1 up(a,t) = K10 (10.2.2) 

The results of Kltip in fig.118 and fig.119 were calculated by means of the boundary element pro­
gram ATHENE [82] as an alternative procedure to the weight function method ([78]). lt can be 
seen in fig.118 and fig.119 that in agreement with the experimental results complete stable crack 
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Figure 118. Crack-tip stress intensity factor. K1 tip du ring a TS-test (a0 = 0.7mm) [78]. 

extension is predicted for the Ionger initial crack length and stable-unstable-stable extension for 
the small initial crack length. ln fig.120 a comparison is shown between the measured and the 
predicted K,R-curves. This figure also shows the K1R-curve for the bending tests from which the 
bridging parameters were obtained. 
Comparing this curve with that predicted for the thermal shock test the effect of specimen geom­
etry and type of loading can be seen again. Comparison of the predicted with the measured 
curves makes evident that for both initial crack lengths the trend of the curves (increase - maxi­
mum - decrease) is predicted; however, the predicted increase is !arger than the measured one. 
This difference might be caused by a temperature effect. The prediction (see fig.120) was per­
formed with the bridging parameters obtained from a room temperature test, whereas the ther-
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Figure 119. Crack-tip stress intensity factor. K1 tip du ring a TS-test (a0 = 1. 75mm) [78]. 
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Figure 120. Comparison of R-curves. K1R-curve from controlled bending test compared with predicted 
K1R·curves for thermal shock tests with different initial crack sizes; TS-curves predicted with 
bridging parameters a0 and o0 obtained at room temperature [78]. 

mal shock crack extension started at about 350°C with a further increase in temperature during 
crack extension. From the results of Mundry [95], shown in fig.159, a temperature effect of the 
K1R-curves is obvious. The parameters a 0 and K10 evaluated from these tests are presented in 
fig.121. The parameter !5o is independent of the temperature. 
Figure 122 contains the prediction based on the temperature depending parameters shown in 
fig.121. Forthisanalysis with temperature dependent material data the K1o-values of fig.121 (sol­
id line) were used. Since no temperature dependent bridging stress parameter ao was available, 
it has been assumed that its relative change with temperature would be identical with that of 
material (5) (Table 3) plotted in fig.121. 
The theoretical results of fig.122 are in better agreement with the experiments than the results 
obtained with temperature independent material parameters (fig.120). 

10.2.2 Conclusions 

The increase of crack growth resistance with increasing crack length caused by bridging inter­
actions at the crack surface depends on the loading conditions as weil as on the crack- and spe­
cimen geometry. Due to this fact the developed methods to determine the material specific 
bridging parameters are of high importance. 
The investigation of the bridging stresses on the crack propagation under thermal shock condi­
tions shows that the crack development for small crack extensions always proceeds stably. ln 
ca~ of short initial cracks the initial stable phase is followed by an instable crack extension 
phase in the range of intermediate crack lengths which again changes to stable crack propa­
gation for large crack lengths. 
The comparison between theoretically predicted and experimentally obtained TS-K,R-curves 
shows that for coarse-grained A/20 3-material the bridging stresses are dependent on temper­
ature. One reason for this effect may be the temperature dependent residual stresses caused by 
the anisotropy of the A/203-grains. 
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Figure 121. Temperature dependency of R-curve parameters. Results taken from [78]; left figure: Tam­
perature dependence of K10; dashed line: material (5) (Table 3) evaluated from K1wcurves of 
fig.159, solid line: results for material (4) taken from measured values in figs.5 and 10. figs.158, 
118 and 119 right figure: Tamperature dependence of a0; material (5) (Table 3) evaluated from 
K1R"curves of fig.159. 
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Figure 122. Experimental and theoretical R-curves. Camparisan of experimental and theoretical 
TS-K1R-curves predicted for temperature depending bridging parameters with an identically as­
sumed relative decrease of a 0 according to the data represented in fig.121. 
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11. lnfluence of bridging stresses on Knoop-cracks 

Knoop-indentation tests are often performed in order to determine the fracture toughness of ce­
ramic materials. ln a number of ceramies the R-curve behaviour affects the development of in­
dentation cracks. 

F 

a 

___ _j 
1----------------------------------

Figure 123. Knoop-indentation. Loading situation during the generation of a Knoop indentation crack. 

The cracks generated during Knoop indentation tests (fig.123). are nearly half-penny shaped. ln 
order to allow a simple analysis to be made, the influence of the free surface is neglected and 
the crack is modelled as one half of a circular embedded crack (fig.124). During the indentation 
test the Knoop indenter causes wedging stresses crw, which are assumed to be constant over a 
circle with the radius d. Figure 124 illustrates the geometric data and the stresses. Fora circu­
lar crack, loaded by a stress cr(r), the related stress intensity factor is generally given by 

(11.0.1) 

The stress intensity factor caused by the wedging stresses crw results from eq.(11.0.1) as 
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Figure 124. Stresses. Wedging and bridging stresses for a Knoop indentation crack. 

Figure 125. Displacements. COD-field caused by the wedging stresses O'w for differently chosen wedging 
areas (d/a = 0.2/0.3/0.4/0.5/1.0). 

(11.0.2) 

The crack-opening displacements (COD) for a penny-shaped crack loaded by a stress exclusively 
dependent on the distance r from the origin can be computed using an integral equation given 
by Sneddon [83] 
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c5 r - 4(1 - i) a f1 1 
( ) - nE I 2 2 -vx - P 

p 

where x is a dimensionless integration variable. 

[I x P a dp ] dx 

)x2- / 
0 

p =rfa (11.0.3) 

The total CODs are superimposed by a part c5w due to by the wedging stresses and a part 8b, due 
to the bridging stresses 

The crack surface displacements due to the constant stresses aw are given by [84] 

2 4(1-v )aaw 
8w = nE • f(rfa,afd) 

where E= Young's modulus, v = Poisson ratio, and 

for r< d 

+ ~ [E(r/d)- E(arc sin dfa, rfd)] 

and 

-------------------------
0 ·0~-=-o --.2:-:::D:-----,.41=0--.-::L60=-----::!-::::--___;:~ 

r/a 

(11.0.4) 

(11.0.5) 

(11.0.6) 

Figure 126. Displacements. COD-field caused by the wedging stresses aw for identical stress intensity 
factors K1 w· 

127 



+ ~ [E(d/r)-E(arcsinrfa,dfr)-(1-d2/?)(K(d/r)-F(arcsinrfa,dfr))] for r>d (11.0.7) 

ln eqs.(11.0.6) and (11.0.7) Fand E are the first and second elliptical integrals and K and E are the 
corresponding complete elliptical integrals. 
Figure 125 shows the COD-field exclusively caused by the wedging stresses. ln this represen­
tation the displacements are normalised by 

J* = J En 
2 4(1- v ) a aw 

(11.0.8) 

ln fig.125 the stress aw and in fig.126 the wedging stress intensity factor Ktw were chosen to be 
constant. lt can be seen that the crack-surface profile of the partially loaded crack deviates 
strongly from the elliptical profile obtained in case of a crack loaded with constant stress over 
the whole crack area (dashed line: d/a = 1). Replacing the total crack-surface displacement by 
the bridging stresses and use of eq.(11.0.4) yield 

2 

( 
abr ) 4(1 - v ) 

Ja ln --a-- + E 0 1r fi x P abr dp 1 dx + J = o c:;--2 w 
yX -p 

0 

(11.0.9) 

where bw is given by eqs.(11.0.5) and (11.0.6), (11.0.7). The solution of this integral equation 
yields the distribution of the bridging stresses ab, and by application of eq.(11.0.1) the bridging 
stress intensity factor Ktbr results. ln order to solve eq.(11.0.9), one can apply the procedure of 
successive approximation, which is weil known from the numerical treatment of integral 
equations. The estimation ab,-::::::a0 exp(- bw/bo) may be used as a starting solution. 
From the resulting bridging stress distribution the bridging stress intensity factor Ktbr results ac­
cording to eq.(11.0.1) as 

K __ 2_Ia rabrdr 
lbr- ~ .J 2 2 vna a -r 

0 

(11.0.10) 

and the total stress intensity factor describing the stress state at the crack tip is 

(K, br< 0) (11.0.11) 

Under conditions of stable crack extension (as occurring during generation of a Knoop-crack) the 
crack-tip stress intensity factor is constant and its value is called K1o 

K1 tlp = K10 = const. (11.0.12) 

The total wedging force F is proportional to the indentation Ioad P, i.e. 

F=aP (11.0.13) 

where the factor a is a function of geometrical and frictional parameters. 
The size of the zone where the wedging stresses act is proportional to the indentation depth and 
can be expressed by the indentation Ioad P and the hardness H of the ceramic as 
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Figure 127. Crack size. Finalcrack size as a function ofthe applied indentation Ioad (60 =1,um). 

d=ß·JP!H 

Consequently the wedging stresses are independent of the indentation Ioad P 

and only dependent on the hardness Hof the material. 

(11.0.14) 

(11.0.15) 

Expanding the square-root of eq.(11.0.2) into a Taylor series gives an approximation of the wedg­
ing stress intensity factor 
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Figure 128. Crack size. Slope of the straight lines in fig.127. 
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r/a 

Figure 129. COD-field. Displacements and bridging stresses for a Knoop indentation crack (a = 0.2mm, 
bo= 1,um, P= 100N). 

2 F =---- for (d/a)2<{1 (11.0.16) 

that is identical with the stress intensity factor for a penny-shaped crack opened by a central pair 
of forces. Numerical calculations were performed with the parameters: 

E = 3.6 · 105 MPa, v = 0.2, K10 = 3 MPa.jm 

The wedge size d was chosen as the short diagonal of the Knoop impression [85], [86]. The 
reference dimensions for Knoop-cracks in A/20 3 were taken from [88], [87] as a~250,um for 
P = 100N. The bridging parameters u0, <50 were varied. The computations were carried out for 
the case that the heavily damaged zone 0 < r < d will not transfer cohesive bridging stresses. 
The results are shown in in fig.127 where the final crack size is plotted as a function of the in­
dentation Ioad P. As can be seen, the final crack size becomes lower with increasing maximum 
bridging stress uo. The mean slopes- represented in fig.128- decrease with increasing uo. Figure 
129 shows the displacements and bridging stresses for a Knoop-crack of final crack size 
a = 0.2mm corresponding to an indentation Ioad of P = 100 N and bridging parameters uo = 100 
MPa, <5o=1,um. 
The computations were performed under the condition that the damaged wedging zone will not 
transfer cohesive bridging stresses. 

~~ The r>resence of bridging stresses has consequences on the generation of cracks 
by Knoop indentation tests. The following conclusions can be drawn from the present analysis: 

• 
• 

The slope of the d( log a) vs d( log P) -plot deviates from the theoretical value 2/3 . 
Consequently, the value of "K1c" resulting from measured log(a) vs log(P) -curves must de­
pend on the indentation Ioad. 
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12. Measurement of R-curves in stable crack growth 
tests 

12.1 Definitions of several stress intensity factors 

There is much interest in fracture mechanics of ceramies with a view to determining the R­
curves. A number of procedures are possible which yield different K1appt values. Several applied 
stress intensity factors will be defined below: 

ivleasurements of the true actual crack length a - for instance by use of a travelling micro­
scope - and knowledge of the actual Ioad P or stress aappt = P/(BW) yield the stress intensity 
factor which is correct in terms of fracture mechanics 

K1 appl = aappl Y(a) .ja (12.1.1) 

Very often, the actual crack length is concluded from the global compliance of the specimen, 
eq.(6.5.1), which increases with increasing crack length. This apparent crack length, denoted 
by a*, is smaller than the real one (a* < a). The related stress intensity factor, calculated 
with a*, 

~ * c:ii' 
Klapp/= aappl Y(a ) -y a 

is consequently lower than the stress intensity factor calculated with a: 

(12.1.2) 

Combined with the lrwin formula, eq.(6.1.1), the energy release rate allows to define further 
stress intensity factors. The basis of such evaluations are the Ioad-dispiacement curves. They 
can be measured as weil as computed with eqs.(6.1.4) and (6.1.5). Computed curves are shown 
as examples in fig.130 for different crack lengths. The P- fJLP -curves (or aappt- fJLP -curves) 
which would result in a controlled fracture test are found from the curves in fig.130 as the Stress­
displacement combinations for which the condition K11;p = K10 is fulfilled. From fig.130 the values 
for which K'tip is equal to K'to were determined. For the following calculations K',o=1 was cho­
sen. By interpolating the computed points aappt = f(fJ') for the considered discrete crack lengths, 
1he curve offig.131 resutts. 
The real potential energy which Ieads to the energy release rate is illustrated in fig.131 as 
hatched area. The energy release rate resulting from fig.131 is plotted in fig.132. Within the 
error band of numerical computations we can conclude that - in agreement with eq.(6.2.26) - the 
energy release rate is constant and the related stress intensity factor equals Kto. 

• lf we ignore completely the non-linear Ioad-dispiacement behaviour, we may interpret the 
hatched area in fig.133 as the change of potential energy llUp. 
The elastic energy and its increment are 
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a/W=0.5 
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01 

Figure 130. Opening of a bridged crack by externally applied stresses. Load-displacement curves for a 
crack with bridging interactions according to eqs.(4.1.9) and (4.1.13), ao/W = 0.5 (loading: pure 
tension), abscissa o' normalised according to eq.(6.5.5). 

=> (12.1.3) 

and the work of the external force is 

(12.1.4) 

The change of the potential energy is 

1 ( bLP ) dUP =dA- dW =2 Pdc5LP -7 dP (12.1.5) 

lndroducing the global compliance C = oLP/P it results 

(12.1.6) 

and eq.(12.1.5) can be rewritten as 

(12.1.7) 

A 

With the apparent crack length a* the corresponding energy release rate G becomes 

(12.1.8) 

From the compliance formula eq.(6.5.2) we find 

dC 2 2 * * ---=-Y (a )a 
da* E'B 

(12.1.9) 
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Figure 131. Construction of the Ioad-dispiacement curve under stable crack growth conditions. Load-dis­
placement curve for a controlled fracture test under tension with K'10 = 1; a0/W= 0.5; hatched 
area: real potential energy dUp; o*= displacement where K1t;p=K10 is reached for the first time. 

and the apparent stress intensity factor resulting from the lrwin formula 

A r::z;- * c:ii" 
Klapp/= '\j E"G = Gappl Y(a ) -y a (12.1.10) 

is identical with K1appl defined by eq.(12.1.2). 
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Figure 132. Energy release rate. Averaged energy release rate resulting from the crack increments 
(shaded areas) of fig.131, computed with eq.(6.2.1 ). 

134 



6 

I 
I 

I 
I 

I 
I 

I 

I 
I 

I 
I 

I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

I 
I 

I 

, ..... -.......... 
I ' , ... 

I \ 
I ', 

Figure 133. Energy in a controlled fracture test. Definition of the apparent potential energy (schematic). 

A secend possibility of defining an energy release rate is to use dUpfda, applying the phys­
ical crack depth a. The potential energy can be expressed by 

I
O'appl,c 

- dUP o6' LP , 
G = B da = W ( -a;-) da appl 

0 a app/ 

(12.1.11) 

6 

Figure 134. Energy in a controlled fracture test. lncrement of apparent potential energy, in case the dis­
placements are shifted until the compliance is in agreement with the compliance of a crack 
free of bridging interactions (schematic). 
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For the straight lines in fig.133 it holds 

I 
0 appt 

0 appt,c 
(12.1.12) 

Evaluation of the integral gives 

- dUP W ( oliLP,c ) 
G = Bda = 2 ° appt,c oa 

a = const 

(12.1.13) 

and the related stress intensity factor 

Kappt=J?G (12.1.14) 

Since in the general case da*fda < 1 is fulfilled, one has to expect Kappt< Kappt· 

The slope of the straight lines in fig.134 defines the apparent crack length. lf we shift the 
--+ 

displacements at a fixed Ioad (or stress applied) to higher values t5 ( the arrow symbolises 
the shifted displacements) until the slope of the new straight line is in agreement with the 
compliance of the unbridged crack, (fig. 134), it holds 

..... 
t5 LP = P C(a) = a appt BW C(a) 

The change of the apparent potential energy is 

2 

?4o .50 .60 

a/W 
.70 

(a*/W) 

(12. 1 '15) 

.80 

Figure 135. Differently defined R-curves. Comparison of the correct R-curve (Ktapp1: s~id line) with appar­
ent stress intensity factors resulting from the Ioad-dispiacement curve: a) Kappt (dashed curve), 

b) Kappt (dash-dotted curve), in addition, the symbols show the apparent stress intensity factor 
A 

Kappt plotted versus the apparent crack depth. 
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and the straight lines provide 

I 
G appl 

Gappl,c 

From (12.1.15) we conclude 

( 
abLP) ac ---aa- = B w G app/,c aa 

a = const 

lntroducing (12.1.17) and (12.1.18) into (12.1.15) yields 

and with (6.5.2) 

-+ 

dU P 1 2 ac 
---cra- = 2 G app/ 88 

-+ 

__,. dU P 2 2 
G = Bda = a appt y (a) a 

The related stress intensity factor is 

__" E 
K = \j G E' = Kt appt 

(12.1.16) 

(12.1.17) 

(12.1.18) 

(12.1.19) 

(12.1.20) 

(12.1.21) 

lt is found tobe identical with the applied stress intensity factor K1appl computed directly from 
the crack length and Ioad without consideration of the energy. 

Finally, the following relation between the differently defined stress intensity factors holds: 

- 1\ ,-..J -+ 

K appl (<)Kapp/= Kapp/< K appl = Kt app/ (12.1.22) 

Figure 135 gives a comparison of these stress intensity factors. 
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12.2 Determination of R-curves via compliance 

12.2.1 Testing devices 

ln controlled fracture tests a test arrangement with a very low compliance must be applied. ln 
order to perform such tests with extremely rigid testing devices Maniette et al. [89] proposed a 
compact tension test in which the fracture mechanics CT-specimen is combined with a parallel 
spring which allows stable crack propagation. For tension tests with centre- and edge-cracked 
specimens a testing device proposed by Markowski [90] seems to be appropriate. 

Ioad cell 

specimen ___;H~c:=;:=:::;J 

displacemen...;.;t'+-___ .....,. 
pick-up 

Figure 136. Testing device for R-curve measurements. Simple testing device for stable crack growth mea· 
surements [91]. 

The author used a simple 3-point-bending test arrangement (fig.136). A specimen with a saw-cut 
of ~so.um width is loaded with the externally applied Ioad F. lf the compliance of the frame is 
much lower than the specimen compliance, the fracture test is carried out almest completely 
displacement controlled. The effective Ioad P acting on the specimen is measured with the load­
cell and the displacement is recorded by an inductive displacement pick-up. ln order to avoid 
additional compliances in the inner Ioad circuit, it is recommended to use a load-cell made of 
quartz. lf a testing machine is not available, the modification represented in fig.137 can be ap­
plied. ln this device the Ioad is generated by a simple screw. Figure 138 shows a typical Ioad vs. 
displacement curve containing the specimen deformations as weil as the roller flattening and 
remaining elastical deformations of the testing device. The actual crack length can be deter­
mined from the change of compliance in the controlled fracture test. Since the compliance is 
affected by the bridging stresses, an optical crack-length measurement may be of advantage, but 
the experimental effort drastically increases. ln this investigation the compliance method was ap­
plied since the R-curves taken from the Iiterature were evaluated with the compliance method, 
too. 
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Figure 137. Testing device for R-curve measurements. Modified testing device for use without a testing 
machine [91]. 

12.2.2 Evaluation of the Ioad-dispiacement curve 

Figure 138 shows a Ioad-dispiacement curve obtained for coarse-grained A/203 as measured. The 
record was obtained in the loading device represented in fig.136. ln order to find the origin for 
Ioad and displacements and to exclude the non-linear contribution of the Hertzian contact be­
tween the specimen and supporting rollers, the straight-line behaviour observed at higher Ioads 
has to be extrapolated to zero Ioad (see fig.139). The intersection with the abscissa is the basis 
for the further evaluations. 
Then the linear contribution of the rollers and the elastic deformation of the testing device to the 
displacements has to be eliminated. Full compliance of the test device with the specimen results 
from the following contributions: 

• 

• 

The compliance of the uncracked specimen C0, 

the compliance C.0 caused by the initial crack (or saw-cut) of length a0, 

the contribution of the crack increment ila = a- a0 after the onset of crack extension, de­
noted c,.,., and 

the 'parasitic' compliance Cpar summarising additional elastic settling and elastic deforma­
tions of the supporting rollers and the supporting structure, i.e. 

(12.2.1) 

For the determination of the R-curve only the displacements according to the compliance 

C = Cmeas- Cpar (12.2.2) 

are of interest. The parasitic compliance can be determined from the initial straight-line behavi­
ou r at a = ao as 
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Figure 138. Experimental Ioad-dispiacement curve. Load-displacement curve for coarse-grained A/203 
measured with the testing device shown in fig.136; the circle indicates the first deviation from 
the straight line. 

since Co and C.0 are known. The compliance of an uncracked bending bar is given by 

P(N) 

.'50 

20 

1 

_ L 2 [ ___b_ (1 + v)W ] 
Co- 2 4W + 2L 

W BE 

20 

sheared by 
1parasitic1 

compliance 

40 
(fJm) 

60 

(12.2.3) 

(12.2.4) 

Figure 139. Corrected Ioad-dispiacement curve. Load-displacement-curve after excluding 'parasitic' com­
pliance. 
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Figure 140. Three-point bending test. Geometrical data. 

with a = afW. For the geometric data see fig.140. The contribution of the initial crack (or notch) 
results as 

(12.2.5) 

For the calculation of the crack length increment L\a via compliance we can use 

6 

5 
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Figure 141. Alumina (batch 1 ). R-curves measured with the test device (fig.136); coarse-grained A/20s. 
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Figure 142. Alumina (batch 2). R-curves measured with the test device (fig.136); coarse-grained A/20s; 
each symbol comprises four single tests. 

(12.2.6) 

from which ßcx and ßa may be obtained by a zero routine. The numerical integrations can be 
avoided by use of polynomial representations of the compliance [92]. 

2 2 5 

C - _! L ( _cx_) ~ B o:Jl. 
ao - 2 W2EB 1 - cx /;;o J1. 

(12.2. 7) 

with the coefficients listed in table 8 in the Appendix. The corrected Ioad-dispiacement curve is 
represented in fig.139 as the solid curve. The actual compliance defined as 

(12.2.8) 

then provides the actual crack length and tagether with the actual Ioad (or the actual bending 
stress) the applied stress intensity factor K1appl can be computed using eq.(4.3.2). The analysis is 
greatly simplified if explicit stress intensity factor solutions are applied. ln the case of 3-point 
bending it is recommended to use for instance eq.(12.1.2) with the geometric function given by 
Srawley and Gross [93]. 
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Figure 143. Zirconia. R-curve for MgO-doped zirconia; diferent symbols for different specimens. 

12.3 Results for some ceramies 

A number of ceramies have been tested and several R-curves obtained through compliance eval­
uation are plotted in figs.141 -144. The specimens were bending bars with the dimensions: 
W=4.5mm, B=3.5mm and length ~45mm, containing a saw cut of 50JLm. 
The materials tested were: 

Alumina: two batches of 99.6%A/203, (Frialit/Degussit, Friedrichsfeld AG, Mannheim) with a 
mean grain size of 20JLm. 

-.. 9 
~ HPSN: -. ... ,, - 8 E 
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Figure 144. Hot-pressed silicon nitride. R-curves for two types of HPSN. 
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Figure 145. R-curves for CfC. Crack perpendicular to the fiber direction. 

Zirconia ceramics: 

- MgO-doped Zr02, PSZ ZN40, 
Y203-doped Zr02, PSZ ZN100, 

both manufactured by Feldmühle AG, Plochingen, Germany. A controlled fracture test could 
be carried out only for the MgO-doped material. ln case of the PSZ ZN100 fracture was 
mostly instable and controlled fracture was found only at a relative crack length close to 
a/W = 1. 

• Hot-pressed silicon nitride 

- 2.5%-MgO-doped HPSN, NH206, density = 3.20 g/cm3, Feldmühle AG, Plochingen, 
- Y203-doped HPSN, NH209, Annawerk, Rödental. 

• Carbon-fiber reinforced carbon (CfC), with a saw cut perpendicular to the fiber direction. 

lt becomes obvious from the two curves for alumina shown in fig.142 that the R-curve is not a 
material property, but depends strongly on the initial crack size. 

12.4 An experimental procedure for the determination of K10 

The stress intensity factor K1o which is characteristic of the onset of crack extension can, in prin­
ciple, be determined from the Ioad-dispiacement curve as the first deviation from the initial 
straight line. Unfortunately, this point is not sharply defined and one has to expect a high margin 
of uncertainty. 
An experimental procedure is proposed which permits a very high resolution of the first devi­
ation from the straight-line behaviour. Figure 146 shows a notched bending bar with two strain 
gauges at the surface in the compression zone. One of them is applied directly opposite the 
notch (1), the second (2) at a remote point. Each strain gauge is the active arm of a quarter­
bridge circuit. Under bending Ioad the strain gauge (1) will produce a higher signal U1 than the 

144 



other sensor U2, and the ratio of both signals U1/U2 is dependent only on the geometrical condi­
tions and not on the actual Ioad. 

2 1 

Figure 146. Measurement of the onset of crack extension. A test method for the measurement of K10; 

bending specimen with strain gauges. 

Both signals are differently amplified in such a way that the output signals become identical. The 
output signals of the amplifiers are connected in opposition and, consequently, no signal results. 
By application of a small Ioad the degree of amplification can be adjusted very sensitively. ln a 
fracture test any change of the geometric proportions, for instance of the crack length, is bound 
todetune the electric circuit and will cause an electrical signal, which may be strongly amplified. 
ln transformation-toughened materials also changes in the size of the transformation zone will 
affect the signal. 
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12.5 Proposal for calculation of the R-curve from measured 
Ioad-dispiacement curves 

12.5.1 Basic considerations 

According to the literature, different procedures are applied for determination of R-curves from 
controlled fracture tests. From a test in which the Ioad is recorded and the crack length is direct­
ly observed with a travelling microscope all information is available which is needed to calculate 
the applied stress intensity factor K1 appt and to plot the K, appt- ßa -curve. ln many cases, the 
crack length is obtained indirectly from the specimen compliance which increases with increas­
ing crack length. This method is easy to perform but, unfortunately, in cases of streng R-curve 
behaviour the results may become wrong, since the reason for the R-curve - for instance the 
bridging stresses - will affect the compliance, too. Therefore, a procedure will be described in 
this section which allows the correct R-curve to be determined from a measured Ioad-dispiace­
ment curve. 
The following considerations are based on eq.(4.3.2) which is mostly read from right to left: if a 
stress distribution along the crack faces is given, a stress intensity factor K, results. These 
stresses may be stresses in the uncracked body or real crack surface loadings. But eq.(4.3.2) is 
a fundamental relationship between crack-surface stresses and the stress intensity factor and 
can be read also in the inverse direction: any stress intensity factor K, must be related to a 
stress distribution u along the crack line. lf this stress distribution is known, all fracture-mechan­
ical consequences are known, too. The real physical reasons of these stresses are actually not 
of interest and, therefore, we will sum up the real stresses (for instance bridging stresses) and 
the virtual stresses (for example residual stresses due to phase transformations acting along the 
crack line after closure of the crack) by the effective stress ashietd(x) 

a 

Kshield = 1 ushield h(x,a) dx (12.5.1) 

We will try to determine in the following section such an effective stress distribution ashietd(x) 
along the crack faces that yields the same Ioad-dispiacement curve as measured in a real exper­
iment. The stress intensity factor resulting from eq.(12.5.1) then describes the correct R-curve. 

12.5.2 AppHcation of a power series procedure 

The R-curve is fully known when the distribution of the shielding stresses along the crack is 
known. The distribution of the shielding stresses depends on the actual crack length a and the 
location x, and a power-series expansion with respect to a and x provides 

00 

ushield (x,a) = I A;tv(a - x)lla v 
Jl, V= 0 

(12.5.2) 

This most general representation is appropriate for all shielding effects. Considering the numer­
ical effort, it may be of advantage to use set-ups in which the real shielding behaviour (if known) 
is modelled. This will be outlined in Section 12.5.3. lntroducing the expansion eq.(12.5.2) into 
eq.(4.3.5) and taking into account that 

u = u app/ + u sh/eld (12.5.3) 
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Figure 147. Evaluation of R-curves. Comparison of calculated and measured Ioad-dispiacement data; illus­
tration for the Ieast-squares procedure. 

gives the crack opening displacements 

00 a a 

b=bappl+ ~, L AJLvJ J h(a',x)h(a',x')(a-x')llavda'dx' 
Jl, v = 0 0 max(x,x') 

(12.5.4) 

with 

bappl = ~7 CJa h(a',x)h(a', x')(1- 2 ~ )da'dx' 
• o max(x,x') 

(12.5.5) 

where a* is the outer fiber bending stress. The displacements of the loading points result as 
[47] 

(12.5.6) 

and introducing eq.(12.5.5) into (12.5.6) yields 

(12.5. 7) 

with 

(12.5.8) 
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(12.5.9) 

The externally applied Ioad is related to the stresses uappl by 

(12.5.10) 

During stable crack growth the shielding stress intensity factor fulfills the condition 

K, tip = K10 = K, appl + Kshield (12.5.11) 

which by use of (12.5.2) in (4.3.2) reads 

00 L ApvX,u(a)·a"w.u+1/2 =KlO- u*YbendJB (12.5.12) 
,U 1 V= Ü 

with 

(12.5.13) 

and the geometric function for bending, which is given by 

Ybend = )a J
0

8 

( 1- 2 ~ ) h(x,a) dx (12.5.14) 

For calculation of the R-curve the coefficients A11• have to be determined. This can be done by 
solving a system of linear equations. Therefore, the number of terms in the power series is 
restricted to a finite value. lf we choose for example as an upper Iimit Jl = v = n, we first have to 
compute the (n + 2)(n + 1)/2 functions for 211.(a) and xia). 
A Ieast-squares procedure will be proposed here for determination of the coefficients. With an 
arbitrarily given set of (n + 2)(n + 1)/2 coefficients A11• first the bending stress u* is computed with 
eq.(12.5.12) and then the loading-point displacements are calculated by eq.(12.5.7). ln fig.147 the 
resulting loading-point displacement t5LP for a given value of crack length is introduced. From 
eqs.(12.5.12) and (12.5.10) the corresponding force P at the loading points is obtained and also 
entered in fig.147. 8oth values yield the computed point (P, t5LP)· Then the deviation between the 
calculated Ioad and the measured Ioad is ~p = Pmeas- Pcalc· ln a Ieast-squares procedure the 
best set of coefficients A11 • is determined from the condition 

I (P meas - p calcl = minimum 

(N) 

(12.5.15) 

A computer routine appropriate for such calculations is proposed in the Harwell Subroutine Li­
brary (Subroutine VA02A). 
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12.5.3 Special set-ups reducing the costs of computation 

With a view to the practical application of the method described before it must be noted that a 
great number of terms in eq.(12.5.2) are necessary to approximate the stress distribution suffi­
ciently if steps or steep gradients in the stress distribution occur relatively far away from the 
crack tip. This may require high numerical efforts, for instance in case of materials with R-curve 
effects caused by bridging stresses, since in that case a step in the stress distribution occurs at 
the notch root of the initial saw-cut, i.e. at x = a0• 

lf only bridging stresses are responsible for the R-curve, the set-up in eq.(12.5.2) can be modified 
as 

00 

I B ftV(a - x)fla v for x > a0 
a shleld (x,a) = ft, v = 0 (12.5.16) 

0 for x< a0 

ln this case, eq.(12.5.9) has tobe replaced by 

a [ a a l ..t(a) = I ( 1- 2 ~ ) I J h(a',x)h(a', x')(a- x')fl a vda'dx' dx 
0 0 max(x,x' > a0) 

(12.5.17) 

and eq.(12.5.13) by 

xft(a) = fa(a- x)fl h(x,a) dx 
ao 

(12.5.18) 

For the most general case of shielding stresses a combination of the two Iimit cases mentioned 
before is recommended: 

a shield = ß a shield,(x::; a) + ( 1 - ß) a shield,(a0 ::; x::; a) • 0 < ß < 1 (12.5.19) 

The parameter ß results automatically from the Ieast-squares routine. 

12.5.4 Application of step-shaped stress distributions 

As described in Section 13.2, the unknown stress distribution may be described by a decompos­
ition into a number of strips with constant stress a1• lf the border between two strips coincides 
with a step in stresses, no problems will occur. The stress within one strip may be expanded by 

00 

a, = I c,vav 
v=O 

Then the crack opening displacements caused by these stresses are 

N M 

c5(x) = I I C1 va v g(x, x1, x1 + 1 ,a) 
I= 1v = 0 
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The further procedure is similar tothat in Section 12.5.2. 

12.5.5 An example of Rmcurve determination 

12.5.5.1 Some remarks on the fitting procedure 

The application of the Ieast-squares procedure described before calls for some experience and 
will hardly be successful when used for the first time. Two typical problems should be men­
tioned here. Depending on the arbitrarily chosen starting values, it may be that: 

e the calculated Ioads fit excellently the measured curve, but the result does not fulfill the sim­
ple requirement 

(12.5.22) 

the stress distribution in the crack-propagation zone may result, at least partially, as positive 
stresses (note that bridging stresses are negative!). 

ln order to avoid such curious results, it is recommended to use a weight gi in the Ieast-squares 
routine according to 

N I (P meas,l- p catc)2 g, = minimum 

i= 1 

(12.5.23) 

The weight gi is for example chosen as gi= 1 in the normal case and will be automatically in­
creased to gi= 100 if in the actual step positive shielding stresses occur or if the condition in 
eq.(12.2.1) is violated. 
The effort in numerical computations can be reduced if the controlled fracture test is interrupted 
at a certain crack length which, can be measured easily under the light microscope. Since the 
related Ioad and displacement are known, a very high weight can be applied in eq.(12.2.2) to 
satisfy this additional condition. 

12.5.5.2 Results 

As an example of the procedure described before the Ioad-dispiacement curve, fig.148, obtained 
for coarse-grained A/203 in a four-point bending test will be analysed. The Ioad-dispiacement 
curve sheared by the initial compliance (and only containing the contribution of the crack exten­
sion L\a) is given in fig.149. ln order to allow simple computations to be made, the coefficients 
A11v(a), K(a) and x11(a) were computed for a number of different crack lengths and entered in 
Table 9 in the Appendix. lf additional crack lengths are necessary - and the direct evaluation of 
the integrals seems to be too difficult - these tables may be interpolated with respect to afW by 
cubic splines. For the Ieast-squares procedure the special set-up in eq.(12.5.16) was applied. 
The integrals A11., x'"' K and Y were evaluated for 12 different crack lengths selected, namely for 
afW=0.505, 0.51 ,0.52,0.53,0.54,0.55,0.56,0.575,0.60,0.625,0.65,0.675,0. 70 and 0. 725. 
The Ieast-squares procedure ended up with the set of the first 10 coefficients A11• with JL + v ~ 3 
which were used to calculate the Ioad-dispiacement curve. ln fig.150 the result is shown as open 
squarestagether with the measured curve. The resulting R-curve is shown in fig.151 as the solid 
line. An evaluation based on the compliance method, i.e. on eq.(12.5.7) in the simplified form 

3L * lhp = --2 a K(a) 
E'W 

(12.5.24) 
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Figure 148. Measured Ioad-dispiacement curve. Load-displacement curve for coarse-grained A/203 (batch 
2). 

yields the apparent R-curve plotted additionally as circles in fig.151. ln the first range of crack 
extension, 0.5 ~ afW ~ 0.6, the two results are nearly identical. At larger crack extensions the 
apparent R-curve is significantly lower as has been expected from the calculations made in Sec­
tion 12.1 and plotted in fig.135. A secend specimen of the same coarse-grained A/203 was tested 
in a controlled fracture test and suspended after a certain amount of crack propagation. The 
actual physical crack length was measured after fracture. Therefore, one may put a droplet of 
ink into the initial notch after unloading and break the specimen when the ink is dry. The actual 
stress intensity factor computed with the Ioad at the moment of unloading for the real crack 
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Figure 149. Sheared Ioad-dispiacement curve. Load-displacement curve after exclusion of the 'parasitic' 
compliance, the compliance of the unnotched specimen, and the compliance of the cracl< with 
initial crack length a0. (chosen for demonstration of the method proposed in Section 12.5.2). 
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Figure 150. Comparison between calculated and measured Ioad-dispiacement curves. Camparisan af the 
calculated Ioad-dispiacement curve obtained with the procedure described in section 12.5.2 
(squares) with the measured curve (solid line). 

length is entered as a solid square in fig.151. lt becomes obvious from the dotted line that this 
value is consistent with the general trend of the computed R-curve represented by the solid line. 
The apparent R-curve value resulting from an evaluation via compliance is given by the open 
square which is in agreement with the circles, taking into account the scatter of several speci­
mens. The shielding stresses, calculated with eq.(12.5.2) are shown in fig.152. 
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Figure 151. Comparison of R-curves. Camparisan of the R-curve obtained with the procedure of in sec­
tion 12.5.2 (solid line) with the R-curve based an the linear-elastic compliance (circles); solid 
square: unloaded specimen with measured crack length, open square: unloaded specimen with 
compliance evaluation. 
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Figure 152. Stress distribution in the crack propagation zone. Stresses for crack extensions of 
~a/W=0.05,0.1 and 0.15. 

in principle, it is possible to derive the bridging-stress relation by computing the local crack 
opening displacements using eq.(12.5.4) and relating it to the stresses obtained by eq.(12.5.2). lt 
should be mentioned that only a rough estimate of the relation ab,= f(t5) can be expected al­
though the global loading-point displacements and, consequently, the R-curve were sufficiently 
approximated. The reason is the limited number of coefficients A~v available for the represen­
tation of the x-dependency of the stress distribution. ln our case, the stress distribution along the 
crack-propagation line is described only by a polynomial of 3rd degree that cannot represent 
complicate stress distributions in detail. On the other hand, one should have in mind that for t5LP 
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Figure 153. Shielding displacements. Displacements caused by the shielding stresses for different crack 
sizes. 
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Figure 154. Applied and total displacements. Dashed lines: displacements caused by the applied stress­
es. Solid lines: total displacements as the superposition of applied and shielding stresses. 

and Kshield only integrated and, hence "smoothed" stresses influence the result. Nevertheless, 
the author tried to evaluate ub, = f(c5). ln a first step, the displacements caused by the shielding 
stresses were computed with eq.(12.5.5) and represented in fig.153. ln addition, the displace­
ments due to the applied stresses were computed, eq.(12.5.7), and entered as dashed curves in 
fig.154. The total displacements obtained by superposition of the "applied displacements" and 
the "shielding displacements" are traced as solid lines. Finally, the shielding-stress relation re­
sults by plotting the shielding stresses versus the total displacements, as shown in fig.155. 
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Figure 155. Shielding stresses. Shielding -(bridging)-stresses as a function of total displacement. 
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12.6 Determination of crack resistance by optical crack length 
measurement 

The procedure described before was developed to determine the R-curve for the case that only 
the Ioad-dispiacement curve has been recorded during a controlled fracture test. The determi­
nation of the bridging-stress relation by the previous analysis needs much numerical effort and 
is associated with an unknown margin of uncertainty. 
The evaluation of the bridging stresses becomes much easier if the crack length has been meas­
ured simultaneously with a microscope. lt will be explained in this section how such information 
can be used to derive the bridging-stress relation. 
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Figure 156. R-curve for A/20 3 • R-curves for coarse-grained A/20 3 (batch 1 ). Open symbols: evaluation via 
compliance for one single specimen. Closed symbols: optical crack-length evaluation after sus­
pending four specimens at different crack lengths. 

ln fig.156 R-curves are shown for five different specimens made from coarse-grained A/203 (batch 
1). Four of the tests were interrupted after different amounts of crack propagation and broken 
after introducing a droplet of ink into the crack region. The optically measured crack lengths 
yield the K,R-values represented by the closed symbols, whilst the R-curve data derived via com­
pliance are represented by the open symbols. The insert in fig.156 shows the differences be­
tween crack lengths obtained by optical and by compliance procedures. 
The bridging stresses can be obtained also from the crack-resistance curves based on the phys­
ically correct crack length aopt· Before starting the numerical analysis, the R-curve data obtained 
by optical crack length measurement may be "smoothed" to reduce the scatter caused by the 
different specimens. The mean curve is given by the dashed line. lf this curve has been deter­
mined, we can use the same procedure as described in Section 12.5, apart from the special con­
siderations mentioned in Subsection 12.5.5.1. Consequently, the computation becomes much ea­
sier. 
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13. Methods for the determination of bridging 
stresses 

13.1 Determination of bridging stress parameters for a given 
relation 

A first possibility to determine the bridging relation is to prescribe the type of relation and to 
determine its parameters. The procedure will be outlined with R-curves from the literature. The 
observed R-curves (or K1R -curves) have often been described by a relation between the bridg­
ing stress intensity factor Ktbr and the crack extension .!la, i.e. Ktbr = f(.!la). This would be an 
appropriate description if the R-curve were a material property. lt has been concluded from ex­
perimental results [12] and theoretical considerations [19], [94] that the R-curve is not a materi­
al property but must depend on the specimen geometry, the initial crack length, the type of load­
ing (tension, bending), the conditions of crack propagation (constant Ioad test, stable crack 
growth test), and the initial value of the stress intensity factor in a constant Ioad test. Due to this 
fact the increase in crack resistance must be characterised directly by the bridging law ab,= f(<5) 
which relates the bridging stresses ab, to the crack surface displacements <5. 
ln the following considerations the special bridging relation from section 4.1 is used 

(13.1.1) 

ln order to make the procedure easier the basic relations - given already in earlier sections - are 
here listed once more. The bridging stresses are responsible for the bridging stress intensity 
factor Ktbr 

J
a x a 

K, br = 
0 

h( a, W )abr(X) dx 

The externally applied stresses aappt give rise to the applied stress intensity factor K, appt 

J
a x a 

K, appl = h( a , W )a appl(x) dx 
0 

(13.1.2) 

(13.1.3) 

The effective stress intensity factor K111p (describing the stresses at the crack tip) results from the 
principle of superposition as 

(13.1.4) 

A negative sign is used for Ktbr because the compressive bridging stresses are used as positive 
values. Finally, the crack surface displacements can be calculated by 
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1 fafa 
c5(x) = E' h(a',x)h(a', x')[aapp/(x')- ab,.(c5(x'))]da'dx' 

0 max(x,x') 
(13.1.5) 

The procedure of evaluating the stress intensity factors K 1br and Kltip contains the following steps: 

1. Solution of the integral equation (13.1.5) for the given applied stresses and the bridging 
stresses described by eq.(13.1.1). The result is the distribution of the displacements c5(x). 

2. lntroducing c5 in eq.(13.1.1) yields the bridging stresses <1br· 

3. lnserting the bridging stresses in eq.(13.1.2) gives the bridging stress intensity factor K,b,, 
and from the applied stresses the related applied stress intensity factor K,appl can be ob­
tained using eq.(13.1.3). 

4. The crack tip stress intensity factor KJt;p finally results from eq.(13.1.4). 

ln [18] this procedure was performed for bending Ioad and different ao/W. ln order to reduce the 
efforts of computation the resulting stress intensity factors were tabulated in the form 

K'1appl = f(K'Itip• aJW, c5'0) (13.1.6) 

where the stress intensity factors are normalised with respect to the maximum bridging stress ao 
and the specimens width Was 

The values of c50 were scaled by 

E' 
c5'o=-w c5o ao 

(13.1.7) 

(13.1.8) 

Parabolic interpolation of the tabulated data allows to determine the stress intensity factors for a 
range of relevant values of Klapp!. a/W and c5o. 
The weight-function based procedure described above is applied to determine the parameters ( 
ao, c5o) of the bridging stress relation from experimental data measured by the author and from 
K,R-curves available in the literature. 

13.1.1 Determination of parameters for the bridging stress relation 

The bridging stresses can be obtained from a test performed under increasing Ioad on a cracked 
specimen. The test results are usually presented as K 1 appl versus crack extension ~a. ln a stable 
crack-growth test the crack-tip stress intensity factor KJt;p fulfills the condition of crack propa­
gation 

K, tip = K10 (13.1.9) 

where Kro corresponds to tne initial value of the K 1R-curve measured at ~a = 0 (see fig.2). lf K1 appl 

is known, theoretical K1R-curves follow as a function of K,ttp 

KIR,ca/c = K, appi(K, tip• afW, c5o) I 
Kttip = K10 

(13.1.10) 

or with the function f in eq.(13.1.6) 
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(13.1.11) 

considering the normalisation (13.1.7) for K1• Due to the approximately square-root shaped 
K1R-curves for .1a--+ 0, the value K10 can hardly be measured in a stable crack growth test. There­
fore, very often the value of K10 has also to be considered as an unknown parameter. 
ln order to determine the unknown parameters O"o, o0, K10 , a Ieast-squares procedure can be ap­
plied. The procedure is described by the following steps: 

1. Starting with a first estimation of the parameters the normalised stress intensity factor K'ltlp 

is computed by 

K'1 tip = K/0/(GofW) (13.1.12) 

2. Parabolic interpolation of tables in [18] using bicubic splines for afW, K'1t1p and cubic splines 
for b' o yields the K1R-curve from eq.(13.1.11) for the actual parameter set Go, Oo, K10. 

3. The Ieast-squares routine compares the calculated R-curve with the experimental R-curve 
and determines the sum of squares according to 

2 \' 2 
S = L (KIR,calc- K/R,exp) (13.1.13) 

The routine changes the parameter set (Go, o0 , K10) as lang as a minimum of S2 is reached. ln 
this way, the best parameter set in Ieast-squares terms is determined. For practical use the 
Harweii-Routine VA02A may be recommended. 
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Figure 1'57. 'R-curves for alumina. R-curves measured by Steinbrech et al. [12] compared with curves 
calculated with the parameters from the Ieast-squares procedure, (solid curve: fitted R-curve, 
dashed curves: predicted R-curves). 

A series of R-curve data for coarse-grained A/20 3 has been given by Steinbrech et al. [12]. The 
original data expressed by energy release rates were converted with (E = 360GPa, v =0.22) into 
K,R data. Figure 157 shows the data measured with specimens of W= 7mm thickness. As the 
result of the fitting-procedure performed with the data for a0/W =0.4 it was found: 
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Figure 158. R-curve for alumina. R-curves represented in fig.158, compared with curves calculated with 
the parameters from the Ieast-squares procedure, (dashed curve: fitted R-curve). 

a0 = 42MPa , <50 = 0.41!-lm , K10 = 2.4MPajm 

The fitting curve corresponding to these parameters is plotted as a solid line in fig.157. By use 
of this parameter set also the R-curves for a0/W = 0.2 and 0.6 were calculated. The results are 
introduced in fig.157 as dashed lines. The agreement is excellent for a0 = 0.6, and also for 
aofW = 0.2 the experimental results can be described weil. But for large crack extension devi­
ations are evident. 
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Figure 159. R-curves at elevated temperatures. R-curves for A/20 3 at different temperatures measured by 
Mundry [95]. 
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Figure 160. Normalised master-curve. R-curves of fig.159 in a normalised representation, compared with 
curves calculated with the parameters from the Ieast-squares procedure (solid curve). 

R-curve measurements made on coarse grained A/20 3 at elevated temperatures were reported 
by Mundry [95]. The material (AF997, Desmarquest) showed a mean grain size of 16,um. After 
recalculation in terms of stress intensity factors using the Young's moduli 368GPa for room tem­
perature, 335GPa for 700°C and 278GPa for 1000°C ([95]), the R-curves in fig.159 were obtained. 

Grain 
Kto Method size cro 

bo (,um) n lgA* fig.162 
(MPa) (MPajm) 

(,um) 

Klapp/- ßa [12] [18] 17 42 0.41 2.5 (1) 

dafdt- Klapp/ [18] 20 46.4 0.95 25 -2.97 (2) 

strength distribution 
20 120 1 [51] 

dafdt- K, appf [18] 3.2Ul 88.8 0.224 25 -0.7 (3) 

K, appf - ßa [72] 44 0.25 2.5 (4) 

K, appf - ßa [72] [95] 16 60.3 0.53 2.95 (5) 

Table 3. Fracture mechanical data. Numbers in the last column refer to fig.162; ( i) this material shows 
an inhomogeneaus grain size distribution with maximum grains of ~25J.tm grain size. 

The fitting-procedure was applied under the assumption that <50 is independent of temperature. 
The room-1empera1:ure data were found to be 

cr0 = 60.3MPa , <50 = 0.53,um , K10 = 2.95MPajm 

Figure 160 shows the data for all temperatures in a normalised representation. ln addition, the 
curve computed with the fitted bridging parameters is shown in fig.160. The agreement is very 
good. The temperature dependencies of cr0 and K10 are shown in fig.161. 8oth fracture mechan­
ical parameters decrease with increasing temperature. The nearly linear decrease of the maxi­
mum bridging stresses a 0(T) indicates that there is a contribution to cr0 due to temperature de-
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Figure 161. R-curve parameters. Stress intensity factor K10 for the onset of stable crack propagation and 
maximum bridging stress u 0 vs. temperature. 

pendent internal stresses which are caused by the anisotropy of the thermal expansion coeffi­
cient in A/203. The reduction of internal stresses between the grains may also be responsible for 
the decreasing K10. 
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Figure 162. Bridging relations. Bridging relations from macrocracks (numbers refer to Table 3) 
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13.1.2 Evaluation of bridging parameters from constant Ioad tests 

The relationship between crack growth rate and stress intensity factor can be determined by ap­
plying a Ioad to specimens with macrocracks and measuring the crack growth directly or indi­
rectly from the change of the compliance of the specimens. Other methods are using specimens 
with natural flaws applying indirect fracture mechanics methods to obtain the dafdt- K,-relation. 
Assuming a power-law relation between dafdt and K1 

da =AKt=A*(_s_)n 
dt Ktc 

(13.1.15) 

the parameters A (or A*) and n can be obtained from the experimentally obtained relation be­
tween the fracture stress and the loading rate (dynamic bending test) or from the relation be­
tween lifetime and stress. A modified lifetime method which does not require the assumption of 
a power law was developed in [96]. 
lt was shown by several authors [97], [98], [99], [100], that discrepancies between results from 
specimens with macrocracks and from specimens with natural flaws can occur. This behaviour 
can be related to the increase in crack growth resistance with increasing crack extension. 
ln this section results of crack growth measurements for alumina from specimens with macro­
and microcracks are compared. From the results the crack growth resistance curve is evaluated. 
The tests with macrocracks were performed with single-edge-notched specimens of size 
3.5x4.5x50mm. The notch in the center of the specimen was prepared with a diamond saw. The 
notch depth was 2.245±0.01mm, the notch width 50flm. The specimens were loaded in three­
point bending with a constant Ioad P. The distance of the loading rollers was 45mm. The tests 
have been performed at room temperature in normal air environment for material I and in water 
for material II. 
The time dependent displacement c5 was measured as shown in fig.163 in the center of the speci­
men. For some tests the crack length was also measured at the surface using a travelling micro­
scope. lt was observed that immediately after Ioad application several cracks developed simul­
taneously. After some crack extension only one of them continued to propagate. 
The tests with specimens containing natural flaws were obtained from the scatter of the lifetime 
of tests with constant Ioad applying the modified lifetime method [96]. The results represent the 
initial crack growth rate of natural cracks at the beginning of a constant Ioad test. The details of 
the evaluation are published elsewhere [7],[101]. Here only the final results are reported. 

3. Experimental results and data evaluation 
An example of the change of the displacement Lic5 with time is shown in in fig.163. The general 
trend is first a decrease in the displacement rate dLiofdt and a steep increase before final frac­
ture. ln some specimens with low Ioads crack arrest was observed. From the displacement the 
crack length a and from the crack length a the stress intensity factor K, was calculated. 
ln a first approximation the crack length has been evaluated by linear-elastic analysis from the 
compliance neglecting the effect of R-curve. 
ln fig.163. the change in the crack length Liacomp obtained from the change of the compliance with 
time is plotted versus the optically measured length of the dominating crack Liaopt for a specimen 
with a Ioad corresponding to an initial stress intensity factor of Kfi!Ktc=O.B. For small Lia the com­
pliance method Ieads to an overestimation and for larger Lia to an underestimation of the op­
tically measured crack length. This behaviour is in agreement with measurements reported by 
Hübner and Jillek [2]. 
The overestimation could result from the development of several small cracks shortly after Ioad 
application. The underestimation obviously is related to crack border interactions leading to the 
R-curve behaviour as described in section 4. 
ln the used procedure the two methods were combined. Direct observation of the crack tip lo­
cation in Ionger time steps tagether with the continuously recorded displacements in the Ioad 
line provide all information necessary to determine v-K-curves. 
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Figure 163. Constant Ioad test. Displacement measurements in constant Ioad tests with notched bending 
bars. 

The fracture toughness obtained from 4-point-bending tests with a saw cut of 50/lm width (SENB) 
is introduced in order to show that the stress intensity factors K1appl occuring in the static tests 
can be significantly higher than the "fracture toughness". 
ln fig.165 dafdt- K,apprcurves for different applied stresses are plotted with the crack length ob­
tained from acomp· Two typical types of dafdt- K1-curves can be seen. Tests with low Initial stress 
intensity factors show first a decrease of the crack growth rate with increasing crack length and 
therefore increasing K,appl· The crack growth rate drops by several orders of magnitude within a 
small amount of crack extension. After a large range with nearly constant crack growth rate the 
crack growth rate increases until final fracture. For the lowest Kli crack arrest was observed. 
Cracks starting with a high Initial stress intensity factor Kli (caused by a higher Ioad applied) 
exhibit an approximatively constant crack growth rate until an increase to final fracture. 
Figure 164 also contains the results of tests with natural cracks from [7]. These results can be 
described by eq.(13.1.15) with A* = 5 · 10-4m/s, n =38.6. 
Results of crack growth measurements for alumina from specimens with macrocracks are re­
ported in [20]. Two commercially available materials were investigated: 

material I : 99.6%-A/203 K1c = 3.3MPajiil, average grain size 20/lm. 
material II: 99.6%-A/20 3 (hipped) K1c = 4MPajiil; this material shows an inhomogeneaus 
grain size distribution with a mean grain size of 3.2/lm and maximum grains of ~25/lm size. 

The results reported in [20] were obtained with single-edge notched specimens, 3.5x4.5x50mm in 
size, loaded in tnree-point bending with a constant Ioad. The notch in the center of the speci­
men was prepared with a diamond saw. The notch depth was 2.245±0.01mm, the notch width 
50/lm. 
ln figs.165 and 166dafdt- K,apprcurves are plotted for different stresses applied. Two types of 
da/dt- K,-curves can be seen. First, a decrease of the crack growth rate with increasing crack 
length and therefore increasing K1appl is obvious. The crack growth rate drops by several orders 
of magnitude within a small amount of crack extension. After a large range with a nearly con­
stant crack growth rate the crack growth rate increases until final fracture. For the lowest Kli for 
both materials crack arrest was observed. 
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Figure 164. Natural cracks compared with macro-cracks. v-K-curves for material II; triangles: specimens 
with natural flaw population, other symbols: macro-cracks. 

Whilst in case of stable crack extension the value K~t;p is known, the crack-tip stress intensity 
factor changes during crack propagation in constant Ioad tests. 
ln order to determine the parameters u 0, o0 from constant Ioad tests, also a Ieast-squares proce­
dure is applied. The treatment is outlined for the special case that the subcritical crack growth is 
described by a power law relation 

• 
0 

3 4 5 
K 1 appl (MPa m 1/2) 

(13.1.16) 

Figure 165. v-K-curves for alumina. v- K1 -curves for specimens with macrocracks from static bending 
tests (material I) [20]; Kli = 2.72/2.96/3.06/2.82/3.20/3.21/3.25MParm. 
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Figure 166. v-K-curves for alumina. v- K1 -curves for specimens with macrocracks from static bending 
tests (material II) [20]; (Kii == 2.93/3.25/3.32/3.85MPa{m). 

• 

The procedure starts with an estimated initial combination of parameters (ao, <5o, A*, n). For 
any data point (Ktappt. afW) the crack-tip stress intensity factor Kttip is calculated, and using 
eq.(13.1.16) the subcritical crack growth rate Vcatc is calculated. 

The calculated (Vcatc) and the measured crack growth rates Vmeas are intercompared and the 
sum of squares is determined by 

2.00-r-----------------, 
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Figure 167. Fit-data. Least-squares results for fixed exponents n; S 2/S~1 n (solid curve, left hand scale), 6'0 

(dashed curve, left hand scale), u0 (dash-dotted, right hand scale): material II. 
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Figure 168. Comparison between measurement and fit. v- K1 appt -curves for material II calculated with 
the fitted parameter set (dashed straight line: v = f(K1 tip)). 

2 '\' 2 
S = L ( log(vca/c)- log(Vmeas)) (13.1.17) 

• Further treatment by a Ieast-squares procedure is similar to that for stable crack propa­
gation apart from the fact that now a set of 4 parameters are determined. 

The result of calculation is: 

3 
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1 

~=o------.~2o~-----.+4o~----~.6~o~­
a-a0 (mm) 

Figure 169. R-curve. R-curves for material II calculated with the fitted parameter set and Ku= 4MPa-[m 
(lines as in fig.19). 
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material I : Go= 46.4MPa, <50 = 0.95/lm, log A * = -2.97, n = 25 

material II: Go= 88.8MPa, o0 = 0.224/lm, log A* = -0.7, n = 25 

ln earlier investigations the subcritical crack growth behaviour of natural cracks was determined 
for material I [7] and material II [101] by application of a modified lifetime method [96] ignoring 
possible R-curve effects. The result was n = 38 for material I and n = 20 for material II. The dis­
crepancies in the n-values for the macro-cracks may be caused either by fundamental differ­
ences in the subcritical crack growth behaviour of natural, small cracks compared with artificial 
macro-cracks or/and by intolerable influences of the R-curve on the evaluation procedure for the 
natural cracks. 

To check the accuracy of the parameters determined (Go, o0, A*, n), the Ieast-squares sums S 2 -
normalised to the minimum value S~;n- are plotted in in fig.167 for a number of power law expo­
nents n. The dashed line represents o'0 and the dash-dotted curve shows Go. 

ln fig.168 the v- Ktappt-curves- calculated with the bridging parameters of material II- are plot­
ted for several initial stress intensity factors Ku. The dashed straight line describes the power 
law relation v = AKPtip· Finally, fig.169 shows the R-curve calculated with the fitted material data. 
v- Kt -curves vor specimens with natural flaw population were obtained with the modified life­
time method. A power law is found with an exponent of n = 19. Obviously the crack growth beha­
viour is - in terms of K1 appt as the abscissa - strongly different from that of the macroscopic 
cracks (see fig.164). This is a significant indication for an R-curve influence, at least in case of 
the macro-cracks. 

13.2 Determination of bridging stresses from crack profiles 

ln order to determine the relation between bridging stresses Gbr and the crack opening displace­
ment (COD) o, Gbr = f(o), one can evaluate the CODs observed during stable crack propagation. 
Such evaluations were performed by Rödel et al. [23] on coarse-grained alumina with the 
"Round-Compact-Tension" specimen (RCT). ln their computations they used a Barenblatt re­
lation between bridging stresses and crack opening displacements. ln [102], it has been shown 
how the fracture-mechanics weight-function method can be applied to evaluate the bridging­
stress relation from displacement measurements without the restrictions imposed by the Baren­
blatt model. As an example of interest the results of Rödel et al. will be considered below. 

13,2.1 The weight function method 

The determination of bridging stresses from COD-measurements can be done by application of 
the weight function method. The basic relations are repeated here once more. For any given 
stress distribution G(X) in the uncracked component the stress intensity factor K1 for a crack of 
depth a results in 

K1 = Jah(x, a)G(x) dx , 
0 

(13.2.1) 

where h is the weight function. As shown by Rice [29], the weight function is related to the 
CODs of a reference Ioad case (subscript r) and the related reference stress intensity factor 

E' o 
h(x, a) = -K -;- o,.(x, a) 

Ir ua 
(13.2.2) 
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Figure 170. Profile of a crack in alumina. COD measurements from Rödel et al. [23] for K1 app1=4.6MPa 
jm (symbols: two data-sets of the same specimen), and Ieast-squares fit according to (13.2.6) 
with N=2, (solid line). 

where E' = E/(1- v2) is the plane strain Youngs modulus (v = Poisson's ratio). From eqs.(13.2.1) 
and (13.2.2) the crack surface displacements can be calculated from the stress distribution by 
[19] 

b(x) = i' JaJ.a h(a',x)h(a', x') a(x') da'dx' 
0 max(x,x') 

(13.2.3) 
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Figure 171. Bridging displacements. Bridging-displacements Obr in the crack propagation zone. 
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Figure 172. Prescribed type of stress distribution. The strip-loaded crack. 

where x is the coordinate where the displacement is computed and x' is the location where the 
stress u acts. lf the externally applied stress uappl as weil as bridging stresses ub, act on the 
crack surfaces the total crack opening displacements result as 

af.a 
b(x) = bappl + bbr = ~' I h(a',x)h(a', x')[aapp1(x') + abr(x')]da'dx' 

0 max(x,x') 

f
a af.a 

= ~' K1app1(a')h(a',x)da' +~'I h(a',x)h(a',x')abr(x')da'dx' 
x o max(x,x') 
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Figure 173. Bridging stresses. lnfluence function g(x, X;, X;+ 1, a) for the strip partition given in the insert. 
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Figure 174. Displacements caused by strip Ioads. Distribution of bridging stresses along the crack-propa­
gation line. 

This relation is the basis for the evaluation of bridging stresses from crack opening profiles. The 
weight function for the RCT-specimen is given in [103] and the stress intensity factor solution 
has been derived by Newman [104]. 
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Figure 175. Bridging stresses. Bridging stresses as a function of the displacements at the centre of the 
strips. 
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Figure 176. Bridging displacements. Comparison of the result of the power series procedure with the 
bridging displacements from fig.171. 

13.2.2 Fracture mechanical evaluation of COD-measurements 

ln fig.170 the crack opening profile measured by Rödel et al. [23] is plotted versus the distance 
.; =a- x from the crack tip. The material investigated was a hot-pressed alumina with a grain 
size of 11f.Lm. The RCT-specimens had a diameter of D = 100 mm, a thickness t= 1 mm and an 
initial starter crack size of ao~20 mm. The elastic constants were E=400 GPa and v =0.25. From 
the data of fig.170 one can easily determine the crack-tip fracture toughness K10, i.e. the crack-tip 
stress intensity factor in case of stable crack propagation. Since the near-tip displacements are 
square-root-shaped [1] 

(13.2.5) 

we can express the CODs by a Ieast-squares fit according to 

N 
"\' ( x)n+1/2 

b = i...J Bn 1-a (13.2.6) 
n=O 

where the coefficient 8 0 is related to the crack-tip fracture toughness Kto by 

(13.2.7) 

A 3-terms fit {N=2) to the data of fig.170 results in mrom a 3-terms fit {N=2) it results 

bbr = 0.2884ja=X + 0.11857(a - x)3
/
2 + 0.000297(a - x)5

/
2 (13.2.8) 

{bb, in fLm, a, x in mm) and, consequently, it results from eq.{13.2.7) Kto = 2.4MPa.jrn. The fitting 
curve is entered in fig.170 as a solid line. 
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Figure 177. Bridging stresses. Distribution of bridging stresses along the crack propagation line. 

The numerical computation of bridging stresses may be based on eq.(13.2.4) written in the form 

(13.2.9) 

where the first term on the right hand side is known from the displacement measurements 
(fig.170) and the second can be computed from [103] and [104]. 
The bridging displacements resulting from (13.2.9) are plotted in fig.171. Using these data one 
can now determine the bridging stress distribution in the crack propagation zone by solving the 
integral equation 

a a 

~' J J h(a',x)h(a', x') abr(x') da'dx' = t5br 
0 max(x,x') 

13.2.3 Numerical procedures for the evaluation of crack profile 
measurements 

(13.2.10) 

There are several procedures known to evaluate ab, from the integral equation (13.2.10). The 
most familiar method is to devide the interval a0 ~ x ~ a in N intervals of same width 
Llx = (a- ao)/N. Then the integrations are replaced by sums leading to a system of N linear 
equations. Tlle solution yields a number of N stress values corresponding to the N intervals. 
Since the weight function is singular for x' ~ a', the number of intervals must be very high. 
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Figure 178. Bridging stresses. Bridging stresses as a function of crack opening displacement; (squares: 
results from fig. 

13.2.3.1 Decomposition of the stress distribution by strips of finite width 

A simple possibility of solving eq.(13.2.10) will be outlined. We divide the range of crack propa­
gation, ao::;; x::;; a, into N (not necessarily identical) strips with constant bridging stress in a strip. 
ln fig.172 the i-th strip with the bridging stress ub,,; is illustrated. The profile of the bridging dis­
placements caused by the bridging stresses in the i-th strip is given by 

1 Ja [Iamln J 8br,;(X)= "br,i E' h(a',x) h(a',x')dx' da'= "br,1g(x,x1,x1+1,a) 
max(x,x;) X; 

(13.2.11) 

where 

amin = min(a', x1 + 1) (13.2.12) 

After analytical evaluation of the inner integral in (13.2.11) the function g can be expressedas 

bbr,t(X) {2 1 Ja , '-'{ (Mi .J amin ) u . = g(x, x1, x1+ 1,a) = v fr -E, h(a ,x).ya 2 1--, - 1--,-
br,l max(x,x;) a a 

+ ~ Avfl (a'/W)v [(1---+)f1.+3/2- (1- am;n )f1.+3/2J}da' 
~ J.L +3/2 (1 _ a' /W)3/2 a a 

v, fl = 0 

The total bridging displacement field can be composed by 

N 

8br(x) = L "br,i g(x, x1, x1 + 1 ,a) 
i= 1 
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Figure 179. Bridging stresses. Bridging stresses as a function of crack opening displacement. 

The function g, defined by eq.(13.2.11), is an influence function which describes the displace­
ments resulting from a strip-shaped stress with u = 1MPa. Figure 173 illustrates this influence 
function for a special choice of strip partition. lf now at N locations the crack opening displace­
ments are known and the N functions g(x, x1, x1+ 1, a) have been determined, we obtain a system 
of N linear equations from which the unknown N values of O'br,i result. 
ln a fitting-procedure the unknown set of stresses u 1 was determined. The resulting stress dis­
tribution is shown in fig.174. Figure 175 finally shows the bridging stresses as a function of the 
crack surface displacements b. For the displacements in fig.175 the values in the centres of the 
strips were used. ln principle, the number of strips can be increased. But for the present data 
the relative high scatter (see representation in fig.171) would not allow the stressestobe deter­
mined with higher accuracy. 

13.2.3.2 Power-series expansion of the stress distribution 

A secend possibility consists in using a power-series representation of the bridging stress dis­
trlbutioo. lf we assume that the bridging stress is given by an adequately smooth function of the 
displacement, the related Taylor-series reads 

oo n 

I 1 0 ubr I n 
0' b- --- b 

br( ) - n! obn 0=0 
(13.2.15) 

n=O 

Since the near-tip COD-field is always square-root shaped, b oc .;a:::x, the generat stress vs. 
displacement relation must be of the type 

(13.2.16) 

and cannot contain integer exponents only. lntroducing eq.(13.2.16) into (13.2.10) results in an 
infinite system of linear equations 
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Figure 180. Bridging stresses. Bridging stresses as a function of crack opening displacement. 

00 

I DnEn(a,x) = {Jbr 

n=O 

where 

J
afa , ~ 

En(a,x) = ~ h(a',x)h(a', x') (1- ~ ) da'dx' 
o max(x,x') 

(13.2.17) 

(13.2.18) 

For practical use a truncation of the infinite series (13.2.16) after the term n = N is recommended 

(13.2.19) 

The unknown (N + 1) coefficients Dn can then be determined from a Ieast-squares fit of the data 
in fig.171, represented by the dashed curve. Consequently, the bridging stress distribution is 
known from (13.2.19). 
This procedure was applied also to the data shown in fig.171. As the result of the Ieast-squares 
fit the bridging displacements, according to eq.(13.2.17), are entered as the solid line in fig.176. 
The related bridging-stress distribution ab,= f(a- x) is represented in fig.177 and, finally, the 
bridging-stress relation ab,= f(c5) resulting from combining fig.170 with fig.177 is shown in fig.178. 

Sensitivity of the procedure: A short study of sensititvity is given in figs.179 to 181. For the fitting 
procedure resulting in figs.176 to 178 all data points had the same weight. ln a modified evalu­
ation the data points with a - x >1 mm entered the analysis with the weight 1.5 and the other 
data points with the weight 1. The results of the Ieast-squares procedure are represented as the 
dashed curves in figs.179 to 181. ln another case the inverse distribution of the weights was 
chosen, i.e. weight = 1 for the data points with a- x >1 mm and weight = 1.5 for the data points 
closer to the crack tip. These results are indicated by the dash-dotted lines. One can conclude 
that a small deviation in the bridging displacements of fig.179 will have a significant influence on 
the bridging stresses. 
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Figure 181. Brldging stresses. Bridging stresses as a function of crack opening displacement. 

These differences make obvious that a very high experimental accuracy - leading to a low scat­
ter in the function ab,= f(a- x) - is necessary for application of the COD-procedures. Such high 
accuracies can be reached, for instance, by moire interferometry. 

13.2.3.3 Choice of special set-ups 

A third procedure with the numerical expenditure significantly reduced is the application of spe­
cially chosen functions for the ab, versus (a- x) dependency. ln [23] a set-up of type 

abr = abr,max(1 - ß(a- x))Y (13.2.20) 

has been chosen, with the two free parameters ß and y determined from the measured displace­
ments by a Ieast-squares procedure. A small disadvantage of this method might be that 

• 

• 

the number of degrees of freedom is limited, 

the unknown dependency ab,=f(xfa), which, in principle, should be determined has to be 
prescribed, and, therefore, the bridging relation ab,= f(o) is restricted, as can easily be 
shown for the set-up (13.2.20). 
The Taylor-expansion of eq.(13.2.20) at x = a yields the leading terms 

1 2 2 
abrfabr,max = 1- ßy(a- x) + 2 ß y(y -1)(a- x) ..... (13.2.21) 

and sim::e o = ~ for x-+ a, the resulting relation ab,= f(o) must start with 

(13.2.22) 

Since the linear term in the expansion is not present, a linear dependency ab,= f(o) cannot 
result due to the special type of set-up chosen. 
ln fig.182 the results of fig.175 are compared with the results of Rödel et al. [23] based on 
the simplified relation, eq.(13.2.20). This shows that in the specific case the approach of 
Rödel et al. is sufficiently accurate. 
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Figure 182. Bridging-stress relation. Comparison of the result of fig.175 with the result obtained by Rödel 
et al. [23] (curve). 

13.2.4 Discussion of results 

Several bridging-stress relations ab,= f(b) are used in the literature. Mai and Lawn [24] pro­
posed a relation 

for b/15
0
<1}, m=0,1,2•··· 

for b/!50 > 1 
(13.2.23) 

lf we assume that the characteristic displacement for which the bridging stresses vanish is 
r -distribu1ed [18], it results form= 0: 

abr = a 0 ( 1 + :
0 

) exp(- b/150) (13.2.24) 

andform=1: 

(13.2.25) 

A fitting procedure was applied in order to be able to describe by these formulas the results of 
ftg.175. Figure 183 shows the results for eq.(13.2.23) with m = 1 (dotted curve: ao=59MPa, 
liu=0.69JLm), for eq.(13.2.24) (solid line: a0 =58.6MPa, b0 =0.19JLm), and, finally, for eq.(13.2.25) 
(dashed line: ao=75MPa, b0 =0.32JLm). The best representations seem to be given by 
eq.(13.2.23) with m = 1 and eq.(13.2.24). 
For various A/203-ceramics parameters for eq.(13.2.25) were compiled in [78]. These data which 
were found in the ranges 40MPa < a0 <120M Pa and 0.22JLm < bo::::; 1JLm are in good agreement 
with the parameters found here. 
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Figure 183. Bridging-stress relation. Fittingof several bridging-stress relations to the results of fig.175. 

13.2.4.1 Evaluation of displacements obtained by Yu and Kobayashi 

As mentioned before a high accuracy is necessary for the evaluation of the bridging-stress re­
lation from displacement measurements. Such high accuracies can be reached, for instance, by 
moire interferometry. ln [105] Yu and Kobayashi presented displacement measurements per­
formed with specimens machined from SiCwfA/20 3 and by application of moire interferometry. 
The cross-section of the specimen is shown in fig.184. A Chevron notch was prepared to create 
a sharp crack. ln the bending bars a crack was generated by the single-edge-precrack-beam 
(SEPB) method, and the specimen was then loaded in a 3-point bending arrangement. The meas­
ured displacements are entered as squares in fig.185. The displacements of a crack without 
bridging effects were computed in [105] using the FE-method and entered as solid line in fig.185. 
According to ob,(x) = o(x)- Oappt. the displacements caused by the bridging stresses were com­
puted and entered in fig.186. The result shows very little scatter, and by application of a smooth­
ing procedure the curve plotted in fig.186 is obtained. Application of the procedure based on the 
power-series representation yields the bridging stresses depending on the distance from the 
crack tip (fig.187). The power series was truncated after 8 terms (N = 7) and after 10 terms 
(N = 9). As the result, the bridging stress (averaged over the whole thickness of the bending bar) 
is plotted. Finally, one obtains from figs.186 and 187 the bridging-stress relation plotted in 
fig.188. The characteristic shape of the 7'h,- o -curve is in both cases the same. The real re­
lation ab,- o is described in the range outside the Chevron notch. 
From fig.188 we may conclude that the type of bridging relation is similar tothat of eqs.(4.1.9) 
and (4.1.13) represented in fig.12. 
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14. Different R-curves for macroscopic and 
microscopic cracks? 

14.1 Experimental findings 

As shown recently, beside macro-cracks also micro-cracks exhibit a rising crack resistance be­
haviour [115]. Results obtained by Steinbrech and Schmenkel [115] for coarse-grained A/20s are 
plotted in fig.189 (after some re-evaluation [106]) as energy release rates versus crack extension 
L\a. For the extensions up to 1mm of the macro-cracks no effect of initial crack length can be 
seen. 
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Figure 189. Macro- and micro-crack R-curves. R-curves for alumina obtained by Steinbrech [115]. 

The micro-crack results are strongly different from the macro-crack results obtained with SENB­
specimens. lt is amazing that the initially applied energy release rate - necessary to initiate sta­
ble crack extension - is extremely low compared with the macro-crack value G,o and that the 
slope of the micro-crack curve is very high. An interpretation of this behaviour has been given in 
[106] based on residual stresses due to thermal mismatch. ln the following the main features of 
this analysis will be explained and in addition the influence of subcritical crack growth will be 
considered. 
A/20s shows a significant anisotropy ofthermal expansion coefficient. Measurements on single 
crystals of AlPs yield [107] 
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Figure 190. Residual stresses. 
match. 

Distribution of self-balanced residual stresses caused by thermal mis-

-6/ -6/ dC aparallel to c- axls ~ 6.6 · 10 gradC • aorthogonal to c- axls ~ 5.4 · 10 gra 

ln a polycrystalline material the c-axis is randomly orientated. lt is a simple consequence of 
statistics that clusters of grains must exist where the resulting averaged component of the c-axis 
is significantly different from the overall mean value of 1/3. Such a cluster is the reason for a 
local stress field. Starting from a stress-free state at sintering temperature, local mismatching of 
the thermal extension coefficient generates stresses during the cooling phase. Such a localized 
stress source will be called a "stress nest" here. 
Since also the orientations of the clusters are randomly distributed, the macroscopic mean value 
of the thermal stresses must vanish. lt is clear that the interaction of "stress nests" will compli­
cate a theoretical treatment. To simplify the problem only one single stress nest will be consid­
ered in the following. 

14.2 Fracture-mechanical model 

ln order to allow a fracture-mechanical analysis to be made the self-balanced internal stresses 
in a stress nest are modelled by 

(14.2.1) 

Figure 190 illustrates the stress distribution. u 0 is the maximum stress and R represents a char­
acteristic dimension of the stress nest. A circular crack with radius a situated in the sphere of 
influence of u(r) then exhibits a stress intensity factor 
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Figure 191. Residual stress intensity factor. Stress intensity factor for a crack in a residual stress field 

(14.2.2) 

which reads after integration 

K1 int = ;. Ja[ 1 + ( : - 2 ~ )F(a/R)] (14.2.3) 

where the subscript "int" means the stress intensity factor caused by internal stresses, and F is 
Dawson's integral 

2IX F(x) = e -x 
0 

exp(t2
) dt (14.2.4) 

The stress intensity factor Kunt is plotted in fig.191 as a function of the normalized crack size ajR. 
The maximum value 

(KI indmax = aoJR 0.5764 (14.2.5) 

appearn at afR=0.4273, and for a/R>1.5 the stress intensity factor Knnt is negative. 
After sintering crack nuclei of size Bnucl may be present. These defects may be pores with annu­
lar cracks or wedge cracks at the triple points of the grains. The following treatment of circular 
cracks can also be performed for these crack types and also for surface cracks. The behaviour 
will in principle be the same as for circular cracks. 
ln case that the maximum internal stress intensity factor is higher than the fracture toughness K,c 
all crack nuclei in the range of 

Boo < Bnucl < 8o (14.2.6) 
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Figure 192. Total stress intensity factor. Residual stress intensity factor superposed with the applied 
stress intensity factor. 

will grow during the cooling phase which results in a final crack size ao. The crack size Iimits aoo 
and ao are given by the two solutions of 

Ktc = ; JB[ 1 + ( : - 2 ~ )F(a/R)] (14.2.7) 

14.3 Materials without subcritical crack extension 

After cooling down from the sintering temperature to room temperature the thermally induced 
micro-cracks with the crack size a0/R are highly stressed, i.e. the micro-crack is in a state with 
K, = K,c, and it holds 

(14.3.1) 

This fact is of high importance to all fracture-mechanics considerations. 
By combining eqs.(14.2.3) and (14.3.1) the unknown stress a0 can be eliminated and it results 

/ajR 1 + (-}- 2 t )F(a/R) 

Kt int = .J 8JR 1 + ( _B_- 2 !!Q_ )F(ao/R) Ktc 
ao R 

(14.3.2) 
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Figure 193. Applied stress intensity factor. K1 appl vs crack size resulting from fig.192. 

14.3.1.1 Stable crack growth for K1c = const. 

ln a test with externally applied stress aappl the external stress intensity factor 

(14.3.3) 

is superimposed to the internal stress intensity factor Kunt· ln order to avoid interactions of the 
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Figure 194. Crack development in presence of subcritical crack growth. lnfluence of subcritical crack 
growth before fracture test. 
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Figure 195. Applied stress intensity factor. lnfluence of subcritical crack growth before fracture test. 

two stresses the internal stress a;nt is assumed to be a remote stress. This simplification Ieads to 
the total stress intensity factor acting at the crack tip 

K, total= K, int + K, appl = K, tip (14.3.4) 

ln fig.192 the total stress intensity factor Kltotal is represented for several values of the ratio aapp,! 
ao. lf the external stress O'appl is increased, stable crack growth occurs. The condition for crack 
growth is 

Kappi/Kic 
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Figure 196. R-curves. lnfluence of subcritical cracl< growth on the R-curve. 
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Figure 192 is a graphical representation of the crack extension t\a = a- a0, obtained from the 
intersections of the Kltotarcurves with the horizontal line describing Kltotai=K,c. At the point 
marked by an arrow, where K, totarafR exhibits a horizontal tangent, failure occurs. 
The stress intensity factor K 1appl can be calculated from eq.(14.3.4), too. Figure 193 shows the 
stress intensity factor K,appl as a function of the crack length a. Failure will occur in a strength 
test at the location indicated by an arrow. 
The rough fracture-mechanical model explains the behaviour of small cracks. Extremely low en­
ergy release rates are necessary to initiate stable crack propagation. Also the strong increase in 
stress intensity factors K,appl with t1a is in agreement with the experimental results. 

14.4 Materials with subcritical crack e.xtension 

ln the presence of subcritical crack growth - which is strongly pronounced for alumina in normal 
air - the crack may extend during and after the cooling-down phase at stress intensity factors 
K, < K,c. This behaviour is illustrated in fig.194. During subcritical crack growth the residual 
stress intensity factor decreases along the Kunt- aJR -curve, starting from point 1. At the mo­
ment when the fracture test is performed, the residual stress intensity factor is assumed to coin­
cide with point 2. Then, in the bending test at first the externally applied Ioad has to be in­
creased to the Ievei K1 = K1c which is reached at point 3. The further crack development is the 
same as for materials without subcritical crack growth provided that the bending test is pe­
formed within a short interval so that additional subcritical crack growth may be neglected. The 
development of the applied stress intensity factor K 1appl with the crack length is shown in fig.195. 
Finally, fig.196 shows the R-curve, namely the applied stress intensity factor K 1appl as a function of 
crack extension t\a for both cases. 
ln conclusion it can be stated: 
lf a material contains thermally induced microcracks, these cracks are - in the absence of sub­
critical crack growth - in a state with K1 =K1c. This fact makes plausible that stable crack propa­
gation is possible at the lowest loadings applied externally. 
lt has been shown that the experimental result of stable crack growth of small cracks - which 
occurs at very low external Ioads - can be explained by internal stresses caused by anisotropy of 
the thermal expansion coefficients of alumina. 
ln the presence of subcritical crack growth the R-curve starts at a higher stress intensity factor, 
but the following curve is identical tothat obtained in the absence of subcritical crack growth. 
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Appendix A. Weight functions 

A.1 Weight function for remote tractions 

Stress intensity factors for cracks exposed to any loading can be calculated using the weight 
functions method. ln most cases of practical interest the crack surface weight function is applied. 
lf a stress distribution a(x) acts on the crack surfaces of a one-dimensional crack of depth a , the 
effective stress intensity factor K1 is given by [28] 

(A.1.1) 

where a* is a characteristic stress value of the stress distribution a(x), e.g. the stress acting near 
the plate surface. The weight functions h(x,a) used in eq.(A.1.1) are known for most types of 
crack. 
But the weight function method is not restricted to crack surface loadings. ln its more general 
formulation it is also possible to apply the procedure to tractions which act at any given contour 
in the body (fig.197). 

T(s) 

Figure 197. Remote tractions. Symmetrical tractions along a surface (s) at the crack tip. 
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Figure 198. Geometrical data. Edge-crack in a plate. 

Such weight functions are of special interest in computation of R-curves in ceramies when phase 
transformations occur in the crack-tip region [35]. ln this more generat case one can write 

K1 = J h(s,a)T(s) ds (A.1.2) 

where T(s) are tractions over a surface s. As shown by Rice [29][1] the weight function can be 
related to the displacements u,r of a reference loading case (subscript r) which act in the direc­
tion of the tractions T(s) of the actual loading case: 

e a r 
h(s,a) = -K -0 u, (s,a) 

Ir a 
(A.1.3) 

For the plane strain module E' it holds E/(1- v2) with E=Young's modulus and v = Poisson's ra­
tio. Obviously eq.(A.1.3) covers also the crack face weight function when the surface s is chosen 
to be the crack surface. ln order to determine the weight function for a crack/component config­
uration we have to determine the displacement field of the reference Ioad case as weil as the 
related stress intensity factor. The computation of weight functions can be done by determi­
nation of the displacements around the crack tip, which are fully known if we succeed in the 
determination of the Airy stress function as outlined in [38]. After use of the stress function, the 
displacements result as 

00 

1 + v '\' + 112 n +3/2 
U=-E- L.JAnrn n-i/

2 
[(n+4v-5/2)cos(n-1/2)cp-(n-1/2)cos(n+3/2)cp] 

n=O 
00 

(A.1.4) 

+ 
1 ~ v LA:rn+ 1[(n + 4v- 2) cos ncp- (n + 2) cos(n + 2)cp] 

n=O 
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00 

v = 
1 ~ v L Anrn + 11

2 ~ ~~j~ [(n- 1/2) sin(n + 3/2)<p- (n- 4v +3/2) sin(n -1/2)<p] 
n=O 

00 

+ 
1 ~ v L A%rn + 1[(n + 2) sin(n + 2)<p- (n- 4v + 4) sin n<p] 

n=O 

The cartesic components of the displacements are 

Ux = u cos <p - v sin <p 

uy = u sin <p + v cos <p 

and the components of the weight function are given by 

E' 8ux 
h---x- K 8a r 

E' 8uy 
h=--

y Kr 8a 

The practical evaluation of the derivatives in eq.(5.1.24) can be performed as 

with 

dux 8ux dr 8ux d<p 8ux dAn 8ux dA% 
--=--+--+----+----
da 8r da 8<p da 8An da 8A * da n 

duy 8uy dr 8uy d<p 8uy dAn 8uy dA% 
-=--+--+----+----
da 8r da 8<p da 8An da 8A * da 

dr 
-= -COS<p 
da 

n 

d<p sin <p 
da =-r-

(A.1.5) 

(A.1.6) 

(A.1.7) 

(A.1.8) 

(A.1.9) 

The first coefficients of a 20-terms representation are listed in Table 4 for An and in Table 5 for 
A*n· ln order to allow cubic interpolations the tabulated data are normalised according to 

a=afW (A.1.10) 

(A.1.11) 
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n=O 1 2 3 4 5 6 7 8 9 

(X ß=1.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 

0.25 0.0829 0.0215 0.0533 0.0439 -0.152 0.2830 -0.203 -0.573 4.0130 1.7727 

0.30 0.0850 0.0267 0.0448 0.0229 -0.074 0.1661 -0.169 -0.092 1.3618 0.5719 

0.40 0.0873 0.0329 0.0320 0.0115 -0.004 0.0422 -0.046 0.1080 0.0102 -0.386 

0.50 0.0882 0.0356 0.0245 0.0149 0.0168 0.0289 0.0175 0.0351 -0.027 -0.013 

0.60 0.0884 0.0366 0.0209 0.0227 0.0334 0.0474 0.0628 0.0874 0.0912 0.0669 

0.65 0.0883 0.0367 0.0200 0.0276 0.0453 0.0718 0.1111 0.1600 0.1854 0.1300 

0.70 0.0883 0.0367 0.0196 0.0338 0.0631 0.1147 0.1972 0.2719 0.2514 0.1229 

0.75 0.0883 0.0367 0.0195 0.0419 0.0923 0.1910 0.3335 0.4077 0.2831 0.0796 

0.80 0.0884 0.0367 0.0197 0.0535 0.1386 0.3058 0.5152 0.5868 0.3903 0.1148 

0.85 0.0897 0.0381 0.0208 0.0694 0.1R34 0.4198 0.6598 0.6837 0.4087 0.1052 

0.90 0.0919 0.0409 0.0206 0.0800 0.2272 0.4622 0.6465 0.5762 0.2837 0.0524 

-
Table 4. . Coefficients An for a 20-terms polynomial representation. 

n=O 1 2 3 4 5 6 7 8 9 

(X ß=2 3 4 4 4 4 4 4 4 4 

0.25 0.02300 -0.0370 -0.0922 0.09128 0.00272 -0.3372 0.96039 -1.6678 -4.3971 -0.2444 

0.30 0.00967 -0.0425 -0.0586 0.05902 -0.0383 -0.0982 0.35271 -0.6572 -1.3918 -0.0750 

0.40 -0.0109 -0.0423 -0.0248 0.01192 -0.0262 0.00452 0.00300 -0.1321 0.21273 0.1835 

0.50 -0.0248 -0.0361 -0.0147 -0.0061 -0.0194 -0.0134 -0.0210 -0.0061 0.03872 0.0005 

0.60 -0.0333 -0.0298 -0.0125 -0.0155 -0.0254 -0.0331 -0.0483 -0.0589 -0.0507 -0.0181 

0.65 -0.0359 -0.0275 -0.0126 -0.0197 -0.0336 -0.0529 -0.0823 -0.1087 -0.0989 -0.0306 

0.70 -0.0377 -0.0259 -0.0130 -0.0247 -0.0473 -0.0875 -0.1412 -0.1648 -0.1159 -0.0297 

0.75 -0.0387 -0.0249 -0.0135 -0.0312 -0.0701 -0.1400 -0.2131 -0.2064 -0.1060 -0.0212 

0.80 -0.0395 -0.0248 -0.0143 -0.0406 -0.1013 -0.2005 -0.2823 -0.2515 -0.1207 -0.0214 

0.85 -0.0436 -0.0291 -0.0167 -0.0531 -0.1326 -0.2477 -0.3223 -0.2668 -0.1227 -0.0232 

0.90 -0.0556 -0.0361 -0.0165 -0.0544 -0.1299 -0.2202 -0.2540 -0.1860 -0.0773 -0.0149 

-
Table 5. . Coefficients A*n for a 20-terms polynomial representation. 

A.2 Weight fundion for the RCT -specimen 

Round-Compact-Tension (RCT) specimens can be used in fracture mechanics of ceramies to de­
termine the bridging stresses between the crack faces from COD-measurements ([23],[102]). 
The related procedure needs knowledge of the fracture mechanical weight function. 
Weight functions are known for the special case of a disc, which is identical with the RCT-speci­
men with Ioad application holes of negligible diameter. Such a weight function for the edge 
cracked circular disc was derived in [108]. As a consequence of Saint-Venant's theorem the 
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differences between the disc and the RCT-specimen have only to be expected to occur near the 
Ioad application holesl i.e. for x~o (fig.199). 
ln order to take into account the inOuence of the real geometry the weight function of the 
RCT-specimen will be derived. The weight function can be derived from CODs of a reference 
Ioad case and the related reference stress intensity factor according to eq.(4.3.3) The crack-o­
pening displacements can be expressed by a power-series representation 

~ ( X )n+ 1/2 
b = i..J Cn 1-a (A.2.1) 

n=O 

with the coefficients Cn dependent on the relative geometry. 

Figure 199. RCT·specimen. Geometrical data of the Round-CT-specimen (RCT). 

For the specially chosen test specimen (RCT-specimenl see (fig.199) Newman [104] determined 
stress intensity factors and COD at different locations of the crack surface. The stress intensity 
factor solution of Newman [104] can be written as 

p (2 + a)(0.76 + 4.8a -11.58i + 11.43a3 -4.08a4
) 

K1 = a0jWF1 I a0 = Wt I F1 = (
1 

_ a)312 (A.2.2) 

(t =thicknessl P = Ioad applied). This information and some crack mouth conditions allow a num­
ber of coefficients in (A.2.1) tobe determined: 

1. The crack-tip field is related to the stress intensity factor by [109] 

(A.2.3) 

2. As could be shown for an edge crack the second and third derivatives must vanish ([54] 
[110]): 
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Figure 200. RCT-specimen. Weight function for the RCT-specimen. 

rPtJ -- - 0 for x = W - D ax3 - ' 
(A.2.4) 

3. The COD-field of eq.(A.2.1) must fulfill the special displacements obtained in [104] by 
BE-computations ([111]). ln [104] the crack opening displacements are given at the load-line 
(i.e. x = 0) and at the crack mouth (i.e. x = W- D). 

This procedure and its modifications are weil established in the Iiterature and successfully ap­
plied in numerous investigations ([109]-[113]). The results for the RCT-specimen are repres­
ented in Table 6 and illustrated in fig.200. 
Table 6 shows the weight function values in a representation which lends itself easily to interpo­
lation by bicubic splines 

jJ; g(xfa, a/W) 
h = na .}1- xfa (1- a/W)S/2 

(A.2.5) 

Using the data from Table 6 the weight function can be expressed within ±1% accuracy by the 
approximation formula 

(A.2.6) 

with coefficients Av~ listed in Table 7. 
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a/W x/a=O.O 0.2 0.4 0.6 0.8 0.9 0.95 1.0 

0.2 2.081 1.848 1.603 1.337 1.044 0.885 0.801 0.716 

0.25 2.305 1.972 1.642 1.314 0.984 0.818 0.734 0.650 

0.3 2.501 2.085 1.686 1.303 0.936 0.759 0.672 0.586 

0.35 2.673 2.185 1.725 1.294 0.894 0.705 0.614 0.524 

0.4 2.830 2.277 1.761 1.286 0.854 0.654 0.558 0.465 

0.45 2.985 2.367 1.797 1.279 0.815 0.604 0.504 0.408 

0.5 3.151 2.464 1.837 1.273 0.778 0.557 0.453 0.354 

0.55 3.338 2.577 1.886 1.272 0.742 0.510 0.403 0.302 

0.60 3.551 2.708 1.943 1.273 0.707 0.465 0.355 0.253 

0.7 3.997 2.975 2.055 1.267 0.632 0.376 0.265 0.164 

0.8 4.062 2.966 1.995 1.175 0.531 0.283 0.179 0.089 

Table 6. Weight function for the RCT-specimen. Normalised representation g(x/a,a/W) accord­
ing to eq.(A.2.5). 

V J.L=O 1 2 3 4 

0 2.826 -5.865 0.8007 -0.2584 0.6856 

1 -10.948 48.095 -3.839 1.280 -6.734 

2 35.278 -143.789 6.684 -5.248 25.188 

3 -41.438 196.012 -4.836 11.435 -40.140 

4 15.191 -92.787 -0.7274 -7.328 22.047 

Table 7. Weight function for the RCT-specimen. Coefficients Av11 for 
eq.(A.2.6). 

A.3 Averaged bridging stress intensity factors for an embedded 
elliptical· crack 

The averaged stress intensity factors for the elliptical crack loaded by constant crack surface 
stresses, i.e. bo---+ oo can be calculated with eq.(7.1.2). The crack opening displacements of an 
embedded elliptical crack loaded by a constant stress u - for instance the stress uo - is used as 
the exactly known reference COD-field [1] 

uo 2a .j 2 2 
V= p E(k) 1 - p fr (A.3.1) 

where E(k) is the complete elliptical integral of the second kind with the modulus k = .}1 - a2/C2 

(for p and r see fig.85). lt results from eq.(7.1.2) 

- 4uo.JB f n[ . 2 I 2 2 
Kbr ellipse A = sm {{>'\J 1 - aofr + 

' ' YAnE(k) 0 
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1 ( 2 1 E(k)- K(k) )( 2 2)3/2] + 3 cos q> + 2 E(k) 1 - a0 jr dcp 
(cja) -1 

(A.3.2) 

- 4uoJä f11

[ 2 ) 2 2 
Kbr e/1/pse B = cos q> 1 - a0 jr -

' ' Y8nE(k) 0 

1 ( 2 1 E(k)- K(k) )( 2 2)3/2] - 3 cos q> + 2 E(k) 1 - a0 jr dcp 
(cja) -1 

(A.3.3) 

where K(k) is the complete elliptical integral of second kind with the modulus k. The reference 
stress intensity factors (subscript r) are described by the geometric functions 

_4 _ ( 2 + 1 E(k) - K(k) ) 
3E(k) c2/82 _1 E(k) 

(A.3.4) 

4 ( 1 E(k) - K(k) ) 
3E(k) 

1 
- c2/82 _1 E(k) 

(A.3.5) 

A.4 Coefficients for the compliance polynomials 

8o 81 82 8s 84 8s 

LIW=2 1.7046 -6.251 13.924 -18.867 14.073 -4.3928 

4 1.7950 -5.9908 12.452 -16.161 11.609 -3.508 

8 1.8787 -5.9556 11.742 -14.669 10.200 -2.9972 

16 1.9210 -5.9329 11.368 -13.894 9.4753 -2.7354 

32 1.9424 -5.9220 11.185 -13.524 9.1344 -2.6138 

00 1.9638 -5.9091 10.991 -13.128 8.7669 -2.4818 

Table 8. Coefficients for the compliance formula. Coefficients B~ for eq.(12.2.7). 

A.5 Integrals for the evaluation of Ioad-dispiacement curves 

The integrals used in section 12.5 can be determined numerically in each step of the evaluation. 
But since three integrations are required and since the integrals can be used for any specimen 
again it makes sense to tabulate them. ln the following tables numerical values are entered. 
Note, that the crack lengths are normalized on the specimens width W, i.e. relative crack 
lengths a = ajW are used. 
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V 

0 

0 

1 

0 

1 

2 

0 

1 

2 

3 

V IL (1, = 0.51 0.525 0.55 0.575 0.60 0.625 0.65 

0 0 2.079E-3 8.721E-3 2. 735E-2 5.607E-2 9.705E-2 1.537E-1 2.310E-1 

0 1 1.249E-5 1.314E-4 8.270E-4 2.554E-3 5.919E-3 1.177E-2 2.133E-2 

1 0 1.060E-3 4.579E-3 1.504E-2 3.224E-2 5.823E-2 9.606E-2 1.502E-1 

0 2 8.919E-8 2.350E-6 2.965E-5 1.376E-4 4.263E-4 1.062E-3 2.316E-3 

1 1 6.369E-6 6.897E-5 4.548E-4 1.468E-3 3.551E-3 7.356E-3 1.386E-2 

2 0 5.407E-4 2.404E-3 8.270E-3 1.854E-2 3.494E-2 6.004E-2 9.768E-2 

0 3 6.932E-10 4.575E-8 1.156E-6 8.060E-6 3.334E-5 1.040E-4 2.724E-4 

1 2 4.549E-8 1.234E-6 1.631E-5 7.915E-5 2.558E-4 6.639E-4 1.505E-3 

2 1 3.248E-6 3.621E-5 2.502E-4 8.443E-4 2.131E-3 4.598E-3 9.018E-3 

3 0 2.757E-4 1.262E-3 4.550E-3 9.705E-3 2.096E-2 3.752E-2 6.345E-2 

Table 9. Coefficients for the stress distribution in the bridging zone. Coefficients ).~v!W2 +v+ ~ for 
eq.(12.5.17). 

IL (1, = 0.675 0.70 0.725 0.75 0.775 0.80 0.825 0.85 

0 3.364E-1 4.805E-1 6.799E-1 9.598E-1 1.362EO 1.955EO 2.867EO 4.342EO 

1 3.641E-2 5.973E-2 9.555E-2 1.506E-1 2.363E-1 3.721E-1 5.941E-1 9.738E-1 

0 2.271 E-1 3.364E-1 4.929E-1 7.198E-1 1.055EO 1.564EO 2.365EO 3.690EO 

2 4.623E-3 8.690E-3 1.568E-2 2.753E-2 4.762E-2 8.199E-2 1.422E-1 2.515E-1 

1 4.181E-2 6.927E-2 1.130E-1 1.831 E-1 2.976E-1 4.901E-1 8.277E-1 

0 2.355E-1 3.574E-1 5.399E-1 8.178E-1 1.251EO 1.951EO 3.137EO 

3 6.354E-4 1.367E-3 2.779E-3 5.430E-3 1.034E-2 1.946E-2 3.660E-2 6.984E-2 

2 6.083E-3 1.137E-2 2.065E-2 3.690E-2 6.560E-2 1.173E-1 2.138E-1 

1 1.659E-2 2.927E-2 5.022E-2 8.473E-2 1.419E-1 2.381E-1 4.043E-1 7.035E-1 

0 1.035E-1 1.648E-1 2.591 E-1 4.049E-1 6.338E-1 1.001EO 1.610EO 2.666EO 

Table 10. Coefficients for the stress distribution in the bridging zone. Coefficients ).~vfW2+v+~ for 
eq.(12.5.17). 

IL (1, = 0.51 0.525 0.55 0.575 0.60 0.625 0.65 

0 1.649E-1 2.743E-1 4.240E-1 5.709E-1 7.293E-1 9.081E-1 1.116EO 

1 5.638E-4 2.433E-3 7.076E-3 1.701E-2 3.049E-2 4.974E-2 7.663E-2 

2 3.419E-6 3.745E-5 2.512E-4 8.197E-4 1.993E-3 4.127E-3 7.734E-3 

3 2.457E-8 6.783E-7 9.208E-6 4.555E-5 1.490E-4 3.886E-4 8.798E-4 

4 1.918E-10 1.331 E-8 3.640E-7 2.718E-6 . 1.192E-5 3.904E-5 1.065E-4 

Table 11. Coefficients for the stress distribution in the bridging zone. Coefficients 
x~Jw~+1 12 for eq.(12.5.18). 
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JL (J. = 0.675 0.70 0.725 0.75 0.775 0.80 0.825 0.85 

0 1.363EO 1.663EO 2.034EO 2.503EO 3.111EO 3.922EO 5.044EO 6.670EO 

1 1.137E-1 1.646E-1 2.344E-1 3.310E-1 4.662E-1 6.593E-1 9.426E-1 1.375EO 

2 1.355E-1 2.266E-2 3.668E-2 5.807E-2 9.072E-2 1.410E-1 2.200E-1 3.479E-1 

3 1.809E-3 3.476E-3 6.369E-3 1.124E-2 1.939E-2 3.300E-2 5.597E-2 9.565E-2 

4 2.564E-4 5.649E-4 1.166E-3 2.295E-3 4.367E-3 8.128E-3 1.469E-2 2.760E-2 

Table 12. Coefficients for the stress distribution in the bridging zone. Coefficients x~tw~+1 12 for 
eq.(12.5.18). 

(J. = 0.51 0.525 0.55 0.575 0.60 0.625 0.65 

0.6155 0.6748 0.7876 0.9213 1.0813 1.2746 1.5107 

(J. = 0.675 0.70 0.725 0.75 0.775 0.80 0.825 0.85 

1.8032 2.1711 2.6799 3.2607 4.0930 5.2522 6.9360 9.5215 

Table 13. Coefficients for the stress distribution in the bridging zone. Coefficients K/W2 for 
eq.(12.5.8). 

a=0.5 0.51 0.525 0.55 0.575 0.60 0.625 0.65 

1.5009 1.5332 1.5850 1.6818 1.7938 1.9240 2.0766 2.2572 

(J. = 0.675 0.70 0.725 0.75 0.775 0.80 0.825 0.85 

2.4733 2.7353 3.0580 3.4630 3.9830 4.6697 5.6088 6.9529 

Table 14. Geometrie function V for 4-point bending. V computed with eq.(12.5.14). 
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Appendix B. Strength of uncracked bodies 

8.1 Failure of brittle materials under singular stresses 

The model of bridging interactions in the wake of a crack is not only applicable to interprete the 
R-curve behaviour of ceramics. Also the failure behaviour of brittle materials in the vicinity of 
stress singularities may be treated with this model. 

8.1.1 Assessment of singa.dar stresses 

Singular stresses in components may be caused by geometrical discontinuities (sharp notches) 
or material discontinuities (bonded dissimilar materials, corners of grains). Due to these singu­
lar stresses, the component may fail. lt is difficult to establish a failure criterion for such compo­
nents. Several possibilities will be listed below 

• Knesl [118][119] proposed to assume that the material fractures if a mean normal stress, 
averaged over a certain length, exceeds a critical value (see also [120],[121]). lt is self-evi­
dent that this criterion depends on the characteristic length itself. 

For brittle materials the failure may be caused by pre-existing cracks near the notch tip. Then 
fracture mechanics can be applied 

• 

A small single semi-elliptical surface crack, located in the stress singularity, has been con­
sidered in [122]. Failure was predicted for the case that the stress intensity factor reached 
the fracture toughness. 
THscher et al. [123] make use of the fact that natural cracks exist in the neighbourhood of a 
stress singularity. By application of multiaxial Weibull statistics failure can be predicted. 

Also, if no real crack exists at the interface, the failure of the highly stressed material near a 
stress singularity may be treated in terms of fracture mechanics. 

• Busch et al. [124] propese a cohesive zone model. A virtual crack of prescribed length 
a = 20nm at the tip of a sharp V-notch is considered which is bridged by molecular forces. A 
criticat crack mouth opening is assumed as condition for failure. 

Failure in the absence of pre-existing cracks will be described here by use of the weight function 
method. ln order to simplify the problem, we consider failure of the interface to be caused by 
stresses normal to the interface line. The intact material near a stress concentrator responsible 
for singular stresses is described by an interface along the prospective crack as a crack which is 
bridged by "bridging stresses". The procedure will be outlined by the example of a sharp notch 
at the surface of a component. Therefore, we model the prospective failure line (dashed line in 
fig.201) as a crack of length a-+ oo which is (in the absence of an applied stress) completely 
bridged. 
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Figure 201. . Sharp notch in a semi-infinite body and stress exponent w. 

Under symmetrical loading (e.g. Ioad perpendicular to the dashed line in fig.201) by external 
forces the normal stresses along the prospective crack line in the uncracked component are giv­
en for small distances from the notch tip x~L (see fig.202) by 

aappl = (8.1.1) 

................................................................................................................................ \ 

6~ I 

I 
............................. ~ .................... ~ .................................................................... ..! 

Figure 202. . Sharp notch in a body with a small crack at the tip; singular stresses at the notch tip caused 
by an external loading. 
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where w is the first solution of [37] 

sin 2(w - 1)o: + (w -1) sin 2o: = 0 (8.1.2) 

with o: = rr- ß/2. The first root is limited by 0 < w s 1/2 for rr/2 > o: s rr. Figure 201 shows the 
dependency w = f(ß). A, is called the notch stress intensity factor. ln the following consider­
ations we will restriet the coordinate x to the vicinity of the notch tip which might be on the order 
of a few interatomic distances 

(8.1.3) 

Nevertheless, it is assumed that continuum mechanics is applicable. 

8.1.2 Bridging stress model and crack opening displacement 

We model the interface as two separated bodies, continuously connected by bonds, which bridge 
the gap along the intersection line. Similar to [124]we assume that the material will fail if a 
critical displacement is reached. Therefore, we model the bridging stresses as 

0 for 0 < 01 ao-
01 

abr = ao for 01 < 0 s 02 
(8.1.4) 

0 for 02 < 0 

(see fig.203). o is the displacement of the bonding partners which is interpreted as the crack 
opening displacement of the apparent crack. lt should be noted that for materials with a non-li­
near stress-strain behaviour- as for instance described by eq.(B.1.4) - no real stress singularity 
can occur. The maximum stresses must be O"max s a0• ln this sense, our model is a hybrid model 
assuming unlimited linear-elastic material behaviour in the whole material except the prospec­
tive failure line where eq.(B.1.4) is assumed to be valid. 
lt must be ensured that for the completely bridged "pseudo-crack" no additional stress singulari­
ty by the crack appears. lf this were the case also ahead of the virtual crack tip, then the bonds 
in this region must also be stretched and have to be considered as part of the bridged crack, 
etc.. ln order to avoid a stress singularity ahead of the tip of the assumed crack, we have to 
ensure that the total stress intensity factor K1, composed of the externally applied stress intensity 
factor K, appt and the bridging stress intensity factor Kb,, must vanish 

(8.1.5) 

For a given stress distribution a(x) in the uncracked component the stress intensity factor results 
as [28] 

(8.1.6) 

where h(a,x) is the fracture mechanics weight function. The condition given by eq.(B.1.5) reads 
in terms of the weight function 

(8.1.7) 
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o, 
Figure 203. . Bridging stress relation. 

ln our special case the relevant notch stresses are concentrated close to the mouth of the appar­
ent crack, i.e. x~a. Equation (8.1.7) then reads 

which is satisfied only if 

h(a,O) Joo [uappl(x) + ub,.(x)] dx = 0 
0 

{oo [ u appl(x) + u b,.(x)] dx = 0 

(8.1.8) 

(8.1.9) 

i.e. if the normal forces are in equilibrium. The displacements of crack surfaces loaded by 
stresses are 

a a' 

b(x) = ~~ I h(a', x) da'fo h(a', x')[aappl (x') + ubr(x')] dx' 

(8.1.10) 

= ~~ J\(a', x)[Kapp1(a') + Kb,.(a')] da' 
X 

ln eq.(B.1.10) x is the coordinate with the displacement computed and x' is the location where 
the stress a acts. 
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Figure 204. . Stresses along an infinitely long apparent crack. 

8.1.3 Numerical treatment 

One possibility to determine the stresses and crack opening displacements from the solution of 
the integral equation (8.1.10) is the application of successive approximations. Unfortunately, the 
procedure will not Iead to convergence. As a second possibility we may expand the unknown 
bridging stresses in eq.(B.1.10) by appropriate power series expansions with respect to x and 
have to determine the unknown coefficients by solving a system of nonlinear equations. 
ln order to ensure a priori the asymptotic behaviour of the bridging stresses for x-+ oo, we ex­
pand the bridging stress distribution for x :2: x1 in an asymptotic series 

(8.1.11) 

with the unknown parameters A1n, n > 0 and c. 
As an example, we consider a situation at a sharp notch as shown in fig.202 with a notch open­
ing angle ß. For such sharp notches a three-terms weight function is given in [126] that reads 

(8.1.12) 

with tabulated coefficients B1, 8 2 for distinct values of ß amenable to interpolation. ln this case, 
the applied stress intensity factor reads 

fa -CO ( 1 1 81 3 82 ) 
Krapp!= Aryn a r(1-w) r(3/2-w) +2 r(S/2-w) +4 r(7/2-w) (8.1.13) 
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Figure 205. . Crack-opening displacements of an apparent crack of infinite length under notch-stress load­
ing for co = 0.45 (second approximation); .5 2/.51 = 4. 

8.1.3.1 First approximation 

As a first approximation we restriet the series extension to the first term with the coefficient 
Ato = A,. For small applied stresses, leading to <51 < b <<52 at x = 0, the condition G =Go at x = X1 

and the equilibrium condition 

(8.1.14) 

yield 

1 --x0 c = x1 - x0 with 
1-m ( )

1/co 

Xo= ~Go (8.1.15) 

The resulting bridging stresses are entered in fig.8 for this first approximation. lt should be not­
ed that in this first rough estimation no properties of the special bridging stress relation, 
eq.(B.1.4), have been entered . 

.8.1.3.2 Second approadmation 

ln a second approximation we will include the term with n = 1 in eq.(8.1.11). From the condition 
G(X1) =Go and the condition of equilibrium we obtain a system of two non-linear equations 

(8.1.16) 
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Figure 206. . Bridging stresses in first and second approximation; solid line: first approximation, dashed 
line: second approximation, computed with co = 0.45, o2fo 1 = 4. 

(8.1.17) 

that provides X1 and c. lf we introduce the following (normalised) parameters: 

Af = 
A, * A/1 (8.1.18) 

$ uoof 
A/1 = ):1;5 

I 1 

we find 

* - E' A, = A,( UD )CO * E' A/1 oc UD (8.1.19) 

with the numerical coefficients A1 listed in Table 2 for several ratios 02/01 and different values of 
w. For the numerical computations a finite crack has tobe used. ln order to fulfill the restriction 
a}>x1 sufficiently, a = 200x1 was chosen. The coefficients for the weight function are listed in Ta­
ble 16. 

02/01 (}) =0.374 (}) =0.425 w=0.45 (}) =0.50 

2.5 0.905 0.87 0.845 0.82 

3 (0.985) 0.95 0.937 0.92 

4 (1.10) 1.09 1.08 

5 1.22 1.21 
-

Table 15. . Parameters A1 defined by eq.(B.1.19); values in brack­
ets: extrapol ations. 
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Figure 207. . lnfluence of the ratio o2fo1 of the critical notch stress intensity factor At; open square: first 
approximation, circles: second approximation, shaded area: scatter-band of experiments car­
ried out by Busch et al. [124] with single-crystalline silicon (ß = 125.3°). 

()) 81 82 

0.500 0.0 0.0 

0.450 0.030 0.080 

0.425 0.075 0.088 

0.374 0.175 0.093 

Table 16. . Parameters 8 1, 8 2 for the 
weight function eq.(B.1.12) interpolated 
from data given in [126]. 

The resulting crack opening displacements are plotted in fig.205 and the bridging stress distrib­
ution is shown in fig.206 tagether with the first approximation. 

8.1.3.3 Failure behaviour 

Failure condition 
Due to the crack opening displacements, the bonds between the crack faces may exceed the 
maximum tolerable distance b2 and a real material separation will occur. This state is reached 
when the notch stress intensity factor At reaches a critical value, namely 

(8.1.20) 

lf the notch opening angle is ß =0, we have a crack and the notch stress intensity factor is identi­
cal with the fracture toughness Ktc. i.e. 

(8.1.21) 
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and by combination of eqs.(B.1.20) and (B.1.21) we find a relation between the notch stress inten­
sity factor and the fracture toughness K1c which enables us to predict the critical notch stress 
intensity factor on the basis of the fracture toughness 

(8.1.22) 

Practical example 
ln order to compute the notch intensity factor A1 for a real material, we apply the relations de­
rived before to single-crystalline silicon with ß = 125.26°. This material was examined by Busch 
et al [124] using the Boundary Element Method. As result of analytical calculations, taking into 
account the anisotropic behaviour, they report an exponent w =0.374. This value deviates slight­
ly from the value for isotropic material (w=0.366) resulting from eq.(B.1.2). Busch et al. [124] 
also report the experimental notch stress intensity factor A1c = 15.5 MPa m"' with a deviation of 
±10%, the elastic constants for the (111) planes E = 187GPa and v = 0.4, and the fracture tough­
ness K,c =0.9 MPaJill. The correct value w =0.374 will be used below in the computation of the 
stress state, but isotropic material behaviour is assumed in the calculation of failure behaviour. 
The coefficients for the weight function can be derived by interpolation from the data reported in 
[126]. They are entered in table 1. The parameter uo results from the condition that the initial 
slope of the bridging relation agrees with the macroscopic elastic behaviour, i.e. 

(8.1.23) 

(d=0.312nm lattice distance), and from the condition that the bridging stresses must yield the 
correct specific surface energy 2y: 

(8.1.24) 

Consequently, one obtains 

(8.1.25) 

which is necessaryto evaluate eq.(B.1.22). The critical notch stress intensity factors are plotted 
in fig.207 with the ratio r52/t51 as the parameter. The open square represents the solution of the 
first order approximation with the result Ac=16.1 MPam0·374. The solid circles give the results of 
the second order approximation. The experimental results of Busch et al. [124] are represented 
as a shaded band. Good agreement between computations and experiments is obvious. The 
numerical results are within the scatter-band of the experiments. 
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8.2 Nomenclature 

a = crack depth 
A prefactor of power law of subcritical crack growth, work done by external forces, area 
A = deepest point of a surface crack, series coefficients 
b = width of a bridging element 
B = surface point of a surface crack, series coefficients, thickness 
C = compliance, series coefficients 
c = half crack width of a surface crack 
D = diameter, series coefficients 
E= Young's modulus, incomplete elliptical integral 
E' =E/(1- v2) =Youngs modulus in plane strain 
E = complete elliptical integral of secend kind 
Ei= exponential integral 
F= geometric function for stress intensity factors F = Yf;:;, elliptical integral, failure probability 
G = shear modulus 
G = energy release rate (in notation of [ 49]) 
h = weight function, switch-on function, length of a bridging element 
H= hardness 
J = J-integral 
k = modulus for elliptical integrals 
K = stress intensity factor 
K = complete elliptical integral of first kind 
m = Weibull modulus 
n = exponent of power law of subcritical crack growth 
n = normal vector on the contour line of the transformation zone 
p = pressure 
P= force 
r= radius, radial coordinate 
R = Ratio of minimum and maximum Ioad in cyclic tests, crack resistance 
s = contour line of transformation zones 
S = crack area, roll er distance 
T= surface tractions 
u = displacement in x-direction 
U = elastically stored energy 
v = displacement in y-direction, crack growth rate 
V= Volume between crack faces 
W= thic'kness of a component, energies 
x = coordinate with origin at the surface of a component 
Y = geometric function for stress intensity factors Y = F;:; 
Z = Westergaard stress function 

a = relative crack depth 
x = definite integral 
t5 = crack opening displacements 
e= tength of1he phase 1ransformation zone 
ö = virtual change 
K = definite integral 
.-t = definite integral, coefficient in bridging relation 
1-L = coefficient of friction, running index 
v = Poisson's ratio, running index 
ro = width of the phase transformation zone 
cp = angle, complex stress function 
<I>= Airy's stress function 
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1/t = complex stress function 
p = radial coordinate 
a = normal stress 
a* = characteristic stress 
-r = shear stress 

Subscripts 
0 : initial value 
app/ : applied 
b: bending 
br : bridging 
c : critical, characteristical 
f: failure, fracture 
i : initial value 
int : internal 
LP : loading point 
meas : measured 
p : potential 
res : residual 
shie/d : shielding 
tip : effective at crack tip 
total : total 
w: wedge 
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