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Stress intensity factors and weight functions for one-dimensional cracks
Abstract

Stress intensity factors and weight functions are technical tools for all scientists and
engineers concerned with problems in linear-elastic fracture mechanics. Solutions for a
wide field of applications are provided in a number of handbooks. In recent years the
authors have developed several solutions to special fracture-mechanical problems. This
report is a compilation containing mainly solutions which are not available world-wide.
First methods will be described which allow to determine stress intensity factors and
weight functions for one-dimensional cracks. The second part contains solutions to
cracks exposed to mode-| loadings as well as to mode-Il and mixed-mode loadings.

Spannungsintensititsfaktoren und Gewichtsfunktionen fiir eindimensionale Risse
Kurzfassung

Spannungsintensitatsfaktoren und Gewichtsfunktionen sind wichtige bruchmechanische
GroBen, die die Behandlung des Versagens von Komponenten im Bereich der linear-
elastischen Bruchmechanik ermoglichen. In einer Reihe von Handbichern sind
Spannungsintensitatsfaktoren fur einen breiten Anwendungsbereich angegeben. In den
letzten Jahren haben die Autoren zusatzlich Lésungen fir Gewichtsfunktionen zu spez-
iellen bruchmechanischen Problemen erarbeitet. Sie sind in diesem Bericht zusammen-
gestellt. Im ersten Teil werden Methoden zur Ermittlung der Gewichtsfunktion fur eindi-
mensionale Risse beschrieben. Der zweite Teil enthdit Losungen fur Mode-i, Mode-ll
sowie "Mixed-Mode”-Belastungen.
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1. Stress intensity factors and weight functions

1.1 Stress intensity factors

Iin fig.1 a simple geometry, plate of width W and thickness B with an external crack of length a, is
considered. Three characteristic loading modes lead to high stresses near the crack tip:

Mode I: Tensile stress perpendicular to the crack face.
Mode II: Shear stress in direction of the crack.
Mode IiI: Out of plane shear stress.

Figure 1. Plate with a through-the-thickness crack. Definition of geometric data.

The stresses near the crack tip for all loading modes can be described as

— — f,(o) (1.1.1)

where r and ¢ are polar coordinates (see fig.2) and f is the angular function. K is the stress
intensity factor. For the different loading modes the designations K;, Ky, and Ky are used. The
stress intensity factor can be written as
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Figure 2. Stresses in front of a crack. Geometric data.
Ki = oy JaY@W) , Ky = wfa YyalW) , Ky = ti/a Yy(a/w) (1.1.2)

o}, 1% and t% are characteristical stresses in the component, e.g. the outer fiber stress in a
bending bar or the notch root stress in a notched component. Y, Y, and Yj, are functions of the
ratio of the crack length to the specimens width. The functions Y(a/W) depend on the geometry
of the component, on the geometry and location of the crack, and on the stress distribution in the
uncracked component.

In some cases it is useful to apply the load F instead of a characteristic stress. Then K, can be
written as

F
Ki=— i Y*(a/W) (1.1.9)
The crack-size dependence is fully described by the function Y*. For through-the-thickness
cracks in plates of thickness B the stress intensity factor can be written as

F

BJW

In the following sections the index | for Y or Y* and the index | for o* are omitted for mode-I
loading.

Y*(a/w) (1.1.4)

I=

A great number of methods have been developed for the determination of stress intensity fac-
tors:

* method of complex stress function [1],

* method of conform mapping [2],

»  extrapolation of stress concentration factors of notched components to vanishing radius [3],
* method of asymptotic interpolation [4], ‘

= integral transformation method [5],

¢ weight function method [6] [7],

* finite element method (FEM) [8],




* boundary element method (BEM),
*  boundary collocation method (BCM) [9], [10].

This list is not complete. The weight function method will be described in detail. The references
given above are in most cases the first publications of the method.

1.2 Mode-l weight functions

Most of the methods mentioned before require separate calculation of the stress intensity factor
for each stress distribution and each crack length. The weight function method developed by
Bueckner [6] simplifies the determination of stress intensity factors considerably. A weight func-
tion exists for any crack problem specified by the geometry of the component and a crack type. If
this function is known, the stress intensity factor can be obtained by simply multiplying this func-
tion by the stress distribution and integrating it along the crack length.

In this section plane problems will be treated, with the crack size characterised by one parame-
ter a. These problems are applicable to all components with through-the-thickness cracks.

An external crack in a component is considered. The distribution of the stress perpendicular to
the crack area in the uncracked component along the location of the crack is oy(x). The stress
intensity factor for this stress distribution is given by

K= j oy(x)h(x.a) dx (1.2.1)
0

The integration has to be performed along the crack length from x =0 at the surface until x=a.
The weight function h(x,a) depends only on the geometry of the component.

For internal cracks {s. Fig.3) the origin of the x-axis is located at the center of the crack. The
crack length is usually specified as 2a and the integration has to be performed between
—a < X< a. For an internal crack in an infinite body - in reality a small crack in a large plate - an
analytical form of the weight function exists (for point A)

h(x,8) = / =5 ( atx )1/2 (1.2.2)

This function is shown in Fig.4. The dimension of the weight function is (length)-"2 Therefore, it
is convenient to plot weight functions in a dimensionless form as h\/a— or h/W versus xfa. It
can be seen that if x approaches the crack tip, h increases to infinity. Therefore, stresses near
the crack tip strongly influence the stress intensity factor.

Rice [7] has shown that the weight function can be obtained from the crack opening displace-
ment v,(x,a) of any arbitrarily chosen loading and the corresponding stress intensity factor K;(a)
according to

h(x.a) = K—f@— —693— v,(x,8) (1.2.3)

with E' = E for plane stress and E’' = E[(1 — v?) for plane strain. The chosen load case - the refer-
ence load case - is denoted by an index r. K, is the stress intensity factor for the reference
stress distribution o,(x) and dependent on the crack length. v, is the corresponding displacement
of the crack borders in y-direction. It is convenient to use o, = o¢ = const. as a reference stress
distribution. For the determination of the weight function according to eq.(1.2.3) it is necessary to
know for one load case K,(a) and v/x,a). In many cases K,{(a) is known and v.(x,a) is unknown. In
the reverse situation K;, can be obtained from crack opening displacement. Combining eqgs.(1.2.1)
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Figure 3. Internal crack in a plate under tensile loading.

and (1.2.3) and replacing the arbitrary stress distribution o(x) by the reference stress distribution
- and therefore K; by K;, - leads to

a

ov,(x,a

K,2,-_—.E’j ar—%——)dx (1.2.4)
0

For constant reference stress ¢, = gy €q.(1.2.4) is simplified to read

Figure 4. Weight function for an internal crack in an infinite body. A’ = h\/a_.
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KE=FE aoj -——’a(;—)dx (1.2.5)
0

Equation (1.2.1) or (1.2.5) is only correct if the external load leading to the stress distribution o(x)
in the uncracked component does not change due to the presence of the crack. If the total dis-
placement of the component is restricted, the external forces applied may be reduced.

The weight function h(x’,a) can be interpreted as the Green’s function for a stress intensity factor
problem. This means that the weight function is identical to the stress intensity factor caused by
a pair of normal forces with P = 1 acting at the point x’.

If we express the single forces P in terms of the Dirac delta function by a stress distribution
{(thickness of specimen B = 1)

o(x) = Po(x—x") (1.2.6)

and introduce this in eq.(1.2.1), we obtain
a
K,=Pj h(x,a) 6(x — x"ydx = P h(x’, a) (1.2.7)
0

and for the unit force

K, = h(x', a) (1.2.8)




2. Approximate methods for the determination of
weight functions for one-dimensional cracks

2.1 Approximate weight functions for a component with an
external crack

2.1.1 Crack opening displacements

The determination of the reference crack opening displacement is based on a method first devel-
oped by Petroski and Achenbach [17]. The displacement is calculated from the reference stress
intensity factor and several geometric conditions. The procedure is shown for the external crack
in a plate of finite width.
Dimensionless quantities

X
a=r . P=7 (2.1.1)

are used. The crack opening displacement near the crack tip is given by the relation [18]

*
vy = /87 %’,—aY(a)«h —, 2.1.2)
The complete crack opening displacement is related to vy and expressed as
Y o0
r v
o= > (1= p) (2.1.3)
v=0
or
o0 o0
vixa)= Y A=) =20 ) 1 — o) 2 with €, =A,/4 (2.1.4)
v=0 v=0
and
o*
Ay =./8/n —E’,—ay,(a) . Co=1 (2.1.5)




2.1.2 Weight functions based on single reference loading cases

The weight function follows from eqs.(1.2.3) and (2.1.4)

ac
o=y Srel (15 G G Jo- e

(2.1.6)
+ p(v +%)(1 - p)”'”2]
or if we replace the factors p by the identity p =1 — (1 — p)
a dY
h(x,a) = na (3 29)C, 4+ @v+1)C, + 2 Cv .+
(2.1.7)

dcv —1

+ 20 da

—1/2
](1—,))” 2 c,=0forv<o

The coefficients C, can be determined applying different conditions. One condition foliows from
the integration of eq.(1.2.4)

a
a
f Kida' = E J o, v/(x,a)dx (2.1.8)
0
0

This equation can be called the energy balance condition or the condition of self-consistence.
Taking into account eqs.{2.1.4) and (2.1.5) leads to

4
Yc = /nf8 —g—y L «'Y2 de’ = Q(a) 2.19)
¢4
with
/v=—1—f s o)1 — p)"* 2 dp 2.1.10)
Gr

For the special case of a,(p) = 0o = const. there is

__2
l,= 5713 (2.1.11)
For three terms eq.(2.1.9) is
0, 5 ~0,5 0 _5 5
C§ )+——7 Cé )+_~g Cg )= o Qu(a) -3 (2.1.12)

The upper index at the coefficients refers to the loading case for which the crack opening dis-
placement field is determined.
As a second reference load a linear stress distribution may be used




o(x) = a*%

Then

| = . - S
v (2v +3)(2v +5)

and for three terms

3
S

35
99

()_ 35

7
i+ 5 cf) +-5- 2o @) ==

where Qq(a) is calculated according to eq.(2.1.9) with Y =Y,.
If the linear stress distribution is caused by bending of a plate the stress distribution is

o(x) = a*(1 - 27xv-)

Then

L, = 2 __ 20 4
v 2v +3 (2v +3)(2v + 5)

and for three terms
2 8« 2 8o \Ab) £_8a>(b) (g_&«)(b)=
3 15+(5 35)C1 +<7 65 )2 T\ 999 )5 = Q@

where Qu(a) is calculated according to eq.(2.1.9) with Y =Y,.
For a quadratic stress distribution

ot = o (5)

there is

2
| = 16a
v (2v +3)(2v + B)(2v +7)

and for three terms

S

35 @ _ 315
11 €=

@ @ AL _
G+ C2 + 143 160:2 QQ(a) 3

(2.1.13)

(2.1.14)

(2.1.15)

(2.1.16)

(2.1.17)

(2.1.18)

(2.1.19)

(2.1.20)

(2.1.21)

For components with an external crack a further condition [19] is the vanishing curvature of the

crack-opening profile at the surface:

d?v,

leading to

(2.1.22)




> 6 +1/2)v —1/2C, =0 (2.1.23)
v=0

For three terms there is

C+5C+2 Co=1 (2.1.24)

More conditions, leading to more coefficients are given in [20]. The simplest one is the require-
ment that also the third derivative of the crack opening profile must vanish at the surface, i.e.

3
d’v
- =0 (2.1.25)
dp” 'p=0
This relation leads to
- .
Y v +112)v —1/2)(v ~3/2)C, =0 (2.1.26)
v=0
and for three terms:
Cy —5C, —35C; = 1 (2.1.27)

If one available reference load case is combined with the condition leading to eq.(2.1.24), the
coefficients can be obtained from the following relations:

= a) Reference load: constant stress and eq.(2.1.24).

©_35 o O_7 _ 7
CU="yQ-2 . C' =775 (2.1.28)
ac{® 35 2 Y Yo
o =-1—2— Qo -—T———(;— + /n/8 e (2.1.29)
dcf” 7 2 Y Yo
= -1 Qo Y, + /8 — (2.1.30)
e b) Reference load: linear stress - €q.(2.1.12) - and eq.(2.1.24)
M_315 QA 8 M__863C 38
Cii=Z = ~3 + G2 =—3p @+ (2.1.31)
dcf) g5 3 Y Ys
g =30 Qq —?—71; ++/m/8 ';2— (2.1.32)
acf" 63 3 Y4 Y
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Figure 5. Geometry of a crack in a strip of finite width.

The weight function for two coefficients reads by use of eq.{2.1.7)

- dyY
hix.a) =/ {1 = )72+ (1 = o)1+ 3C, +2 % 2L |

dc

+(1- o[ ¢ +5C2+2-—$—%C1+2a | (2.1.34)
N5 o day dc,

+(-p -3c+2 5L ¢, =2 |

with coefficients C{® or C{" depending on the chosen reference load case. For Y the value Y, or
Y respectively has to be applied.

2.1.3 Weight functions based on multiple reference loading cases

In Section 2.1.2 the approximate weight functions were based on single reference cases and the
crack opening displacement fields were determined either for tension or for other special stress
distributions. It is possible to improve the procedure furthermore by simuitaneous application of
different reference solutions. The treatment will be explained in this section for the example of
the crack opening displacement field under pure tension. In order to simplify the notation the
upper index - in this section (0) - will be dropped. It will be shown how the reference stress
intensity factor solutions for an arbitrary load will improve the crack opening displacement field
for constant stress. The crack opening displacements for an edge crack loaded with constant
stress oy is given by eqs.(2.1.4)-(2.1.5) as

00
e v+ 1/2
vO=E Dav ) c(1-%) (2.1.35)
v=0

If a number of P loading cases is available eq.{1.2.3) provides the relations

10




a
J “”dx-—-—f KpKoda' , p=12..P (2.1.36)
Q

We define

Qop =+ /1 T%(—(;—f Yo(a')Yp(a') o' da’ (2.1.37)

and
1 " 12
P = [ oot -+ 2 p (2.1.38)
O’p 0

If we use a number of P independent reference loading cases and the two conditions for the
second and third derivative we obtain P +2 linear equations

Ye, P =Qp . p=12..P (2.1.39)
®
Z(v +1/2)(v =1/2)C, = 0 (2.1.40)
)
> v+ ~1/2)(v — 3/2)C, =0 (2.1.41)
®

which allow up to P + 2 coefficients C, = C{" to be determined. For the two reference cases
o =0y and o = op*alx and the first of the geometric conditions we obtain the system of linear
equations

5 5 5

5
Cit5Ct+gC=5Qp~3 (2.1.42)
5 35 35 7
Cy+o Cp+ 5o Ca=r Qo1 — % (2.1.43)
Ci+5C+3Cy=+ (2.1.44)
with the solution
3465 105 17
Cy =S Qg —— g Qoo — o (2.1.45)
3465 63 13
Co= =334 Qo+ Qoo+ (2.1.46)

1




18711

Cy= 893 Roo— (2.1.47)

2482 201~ 755 R0~ 35

The derivatives read

dc, 3465 1, o dY T Y1
T e |\t ety T )TV B

(2.1.48)
105 o* dYo = Yo
+ 8 [Qo,0<2a+ Yo da ) 8 az
dC, 3465 1, a 9Yq 7 Y1
da = a2 |22ttty G )TV B
(2.1.49)
2 gy Y,
63 o 0 7 10
- [Qo,0<2a+70- da >— 8 a2 }
dC, 18711 1, « 9 7 Y4
do =" ass | NPTtV G ) TVE
(2.1.50)

693 o2 dYo 7z Yo
*+ 56 [Q°-°<2°‘+ Yo da )' g 2

2.2 Approximate procedure for components with internal cracks

2.21 Weight functions based on single reference loading cases

The eccentric crack For the treatment of internal cracks an extension of the procedure originally
developed for edge cracks is given in [15]. This procedure allows internal eccentric cracks, load-
ed by non-symmetric stress distributions to be treated. In case of an internal crack it is of ad-
vantage to express the weight function in terms of the total crack length ¢ = 2a.
The stress intensity factors at the points x4 and x5 (see Fig.5) can be written as

Xa
Kia =f a(X)h4(x, £) dx
Xg

(2.2.1)

X8
KIB = J. G(X)hB(X, Z) ax
Xa

where the subscripts A and B refer to the crack tips at the locations x, and xs, respectively, and
ha(x, £), hs(x, ¢) are the weight functions which have to be determined for a given crack and spe-
cimen geometry. The formula of Rice [7] then reads

12




E OvUx, ¢) E' Ovi(x.?)

MO Ky ety O Ry Tty

(2.2.2)

considering a virtually infinitesimal crack extension 8¢, whilst the crack tip at xg remains fixed
and vice versa, The crack-opening displacement field can be expressed by a power series

) v+1/2
- Av(1—7(x—xm)) for Xy <X<Xy+1/2¢

vix, £)= ) (2.2.3)

= v+1/2
1+ E - xm) for Xy —1/26 <X <Xy

or

0 v+1)2
o | AC,(1 —7(x—xm)) for Xy <X<Xy+1/2¢

vix, £)= ) (2.2.4)

v=0 ~ 2 v+1/2

Bva(1 t7 (x - xm)> for xy—1/2¢ < x <Xy

with A JA,=C, and B,/B,=C,

The coefficients A, and B, can be determined by application of the following conditions [15]:
*  For x — xs and x — xz, the asymptotic displacement field is known from the reference stress

intensity factors, leading to

—L v, (2.2.5)

with the geometric functions defined by

Kar YAl LIW, xy/W)
=ot [t (2.2.6)
Kgr YA€IW, Xy W)
* Energy relations between a number of y different reference solutions available can be ob-

tained [15]. If only one reference load-case is available, the condition - equivalent to
eq.(2.1.9) - reads

'4
Xg
J & LOV(X) dx=—£,—J K2 (£")de" 2.2.7)
Xa o
Introducing the abbreviations
1 [ 1 [°
Lv=—:f orn) (1= )" +'/% iy Mv=—;f o) (A +n)ay  (228)
or *0 Or Y1
X — Xm

13




and

\/— W
Q= 27[_;,—J YA/’ as’ *=—§—=———n—2— Yi,é”/Wdf’/W (2.2.9)
VarkeW? ),
the final result
oo o0
Y LA+ Y MB,=Q (2.2.10)
v=0 v=0
(2.2.11)
is obtained. The reduced coefficients for eq.(2.2.11) are
C,=A,/A; , C,=B,]|Bq (2.2.12)
For a reference load with oy=const.
2
L,=M, = 57 43 (2.2.13)
for a linear stress 6 =op* 7
Ly=—s 4 M, (2.2.14)
4v° 4+ 16v + 15
for a quadratic stress o = o9 * n?
L=M,= 16 (2.2.15)

8v> + 60v2 + 142v + 105

e The condition for continuity of the displacements and their derivatives at the point x = xy
provide the relations
o0
Ye-a

> +1D(A,+B,) =0 (2.2.16)
v=0

Y. (v +1/20 ~1/2)(4, ~B,) =0

ve=(0

In order to obtain an inhomogeneous system of linear equations with a unique solution, it is suffi-
cient to use the stress intensity factor solution for one reference loading case. For the reference
solution (¢ = const) and three relations of eq.(2.2.16) one obtains

A1 +A2"‘B1 '—BQ=BO—'A0 (2217)
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3A1 + 5A2 + 3B1 + 582 - Bo - AO (2218)

3A, + 154, — 38, — 15B, = — By + Ag (2.2.19)
La+ta+28+28,=0-24-25 (2.2.20)

The solution of these equations is

35 2

_ 21 13 8
Ay=—35 Qo+ Ao+ 75 Bo (2.2.22)

35 2

21 8 13

B, = 1—6‘QO+—1-5—A 155 (2.2.24)
or
35 % 2 21 %, 13 8
=45 Q@ —2—5 (YalYa) » Co=—=5 Q0 +7z + 75 Varl¥ar) (2.2.25)
~ 35 x Yar 2 Yar ~ x« Yar 8 Yar 13

C= ¥y, 37, "2 C=- Ha

= (2.2.26)

The weight function results as

N
(+)__ 2 9(C,f Yap) 1+ e
Rl = Z{ Voor TG T [1 n] (2.2.27)
v=0
for x — xy>0 (n > 0) and
N
- (C,£Yp) ~ V12
(—)_ 2 v¢’'B _
= { voor ot 1/2)CVYB/YA}[1+’1] (2.2.28)
v=0

for x — xy<0, i.e. n<0. The expression for hs can be simply obtained from eqgs.(2.2.27) and
(2.2.28) by changing the subscripts A and B and replacing x — xy by x4y —x. Note that C, = A,[A,
and C, = B, /B,.
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The central crack As a special case of the previous analysis a central crack in a symmetric
structure is considered. in this case it holds for pure tension as reference load (o¥ = o)

~

XM=0 , A =B CV=CV N YAI'= YBI' s hA=hB (2229)

v v !

From reasons of symmetry it is more convenient to use a=+¢/2 and the redefined geometric
function

K=op/a Y(aW) , Y(a/Ww)=.2Y(¢W) (2.2.30)

with Y(¢/W) defined by eq.(2.2.6). Equations (2.2.5) and (2.2.21)-(2.2.24) reduce to

Ap= \/ aY(a/W) (2.2.31)

35 8

21 7
Ay =55 Qo+ Ao (2.2.33)

with
a
2
Qo = a::, Y2(a'/W) a’ da’ (2.2.34)
[¢]

The weight function then reads

[ 2 § oCayY 1+ v +1/2
(+) _ Ar p
hy —a AAr + (v +1/2)C, T p }(1 - p) p>0 (2.2.35)

h) - /'—”a Z a(C,a YA,) ACAYa) _ +1/2)Cv}(1 +p)v+1/2 <0 2239)

2.2.2 Weight functions based on multiple reference loading cases

2.2.21 The eccentric crack

The application of more than one reference solution - described in Section 2.1.3 for edge-cracked
components - can also be used for internal cracks. The procedure is illustrated by an example.
For three reference solutions (¢ = 6o = const, a = 6y *n and ¢ = o4 * #? With n = (x — xy)/a) and the
first three relations of €q.(2.2.16) one obtains

A1 + A2 - B1 - 82 = BO - AO (2237)
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3A; + 5A, + 3B, + 5B, = — By — Ag (2.2.38)

Za+2a+28+28,=Q0- 2 A -5 B (2.2.40)
4 4 4 4 4 4

35 A1t 53 A2~ 35 B1— 55 B2= Qo1 — 45 Ao+ 75 Bo (2.2.41)

16 16 16 % . ~ _ 16 18
315 "1 a3 A2+ 395 B1 ¥ Ga3 B2= Qo2 ~ 305 Ao~ g5 Bo (2.2.42)

with
0'0 ¢

Qop=27zr fo Yoll') Yo(£') &' de' (2.2.43)

For a total number of 4 conditions the solution of these equations is:

* 3 conditions of continuity (2.2.17)-(2.2.19) and one reference load case (2.2.20)

Ay=32 Qo0 24— 2 B, (2.2.44)
Ay=—2L Qoo+ 13 Ag+ - B, (2.2.45)
By =32 Qoo — = Ao — 28, (2.2.46)
By = — 2 Qoo + 75 Ao+ 12 Bo (2.2.47)

e 2 conditions of continuity (2.2.17),(2.2.18) and two reference load cases (2.2.20) and (2.2.41)

Ar=220p + 32 quo— 2 Ag+ 2By (2.2.48)
Ay = —%5—00,1 Qoo+ 151 -5 5 Bo (2.2.49)
By = -2 oy + 32 Qpo+ 24— By (2.2.50)

52=%1§5‘Qo,1 —"12‘%'00,0—';‘/‘0““!51_50 (2.2.51)

* 1 condition of continuity (2.2.17), and three reference load cases (2.2.20)-(2.2.42)

3465
128

315 35 14 2
35~ Q01 — 45 Qo0 =3~ Ao— 5 Bo (2.2.52)

A1= 3

Qoo+ %5
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Ay = — 4182581 Qo,z— 315 Qo1 + Qoo+ 61 Ao+ :g B, (2.2.53)
By=-— 3142685 Qo2 — 3;25 Qo1 — —:132— Qoo — % Ao— % By (2.2.54)
By=— 22 Qop + 32 Qo + T Qoo+ A% Ao+ 05 By (2.2.55)
2.2.2.2 The central crack
In case of a central crack (xy =0, n = p) it holds for the integrals Qo,
Qop=0 (2.2.56)
if the stress distribution is antisymmetric, i.e. if
o(X)=—o(—x) (2.2.57)
This is for instance the case for all stresses of type
o(x) oc x2"H1 (2.2.58)
especially for
o(X) cc X , =, Qpq=0 (2.2.59)

Taking into consideration A, = B, and Q4 = 0 reduces the relations egs.(2.2.52)-(2.2.55):
¢ remaining condition of continuity and reference load case o = 69 — €qs.(2.2.32) and (2.2.33).

* reference joad cases ¢ = gy and o = g * (p)?

3465 35 16
Ar="8 Q02— 75 Qo—3 4o (2.2.60)
_ 4851 77
A2 - 108 QO,2 + Q00 +o 15 A (2-2-61)

2.3 Modification of the extended Petroski-Achenbach procedure

In all examples of sections 2.1 and 2.2 the energy balance condition - the fundamental idea of
Petroski and Achenbach [17] - has been applied for the determination of unknown coefficients of
the crack opening displacement relation. Unfortunately, in some special applications this condi-
tion cannot be used. This is the case for instance for compact tension (CT) specimens. The eval-
uation of the integral Q(a) needs the geometric function Y for the whole range 0 <o’ <a. But
stress intensity factor solutions are only available for « > 0.2, On the other hand also the stress
distribution along the crack line - necessary for the determination of the integrals /, - is not suffi-
ciently known.

Fortunately, for fracture mechanics standard test specimens displacements at certain locations
are known. This allows the determination of the needed number of coefficients. This modified
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Figure 6. CT-specimen. Geometric data of a Compact-Tension specimen.

procedure has been applied in [23] to the Round-CT-specimen. Here the general procedure will
be illustrated for the normal CT-specimen which is shown in fig.6. The information of the refer-
ence stress intensity factor solution and some crack opening conditions allow a number of coeffi-
cients in eq.{2.1.4) to be determined. As an example the following conditions may be used:

1. The crack-tip field is related to the stress intensity factor by eq.(2.1.2).

2. In addition we may use for instance the condition of vanishing curvature at x = x;.

3. At the same location we demand that the crack opening displacement set-up must yield the
known displacement &,.

4. In the load line the displacement should equal 6.

One obtains a set of linear equations

8C4(1 — X4/a) +15C,(1 — X4/a)? + 35C4(1 — x4/a)° = 1

Ci+ G+ C3=FR, (2.2.62)
Ci(1 = x4/a)*2 + C(1 — x4/2)°% +C4(1 — x4/a) 2 = R,
with

61 64 1)2
Ri= gac= . Ra= g —(-x/a 2.3.1)

from which the coefficients C, to C; can be found as
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Figure 7. Weight function for a Compact-Tension specimen.

20R,UM/2 18R, L% + UTI? — U512 _35R,U°
20U"12 _320°2 4 12072

1

c —320°%2 —U1? _35R,U° + U®2 —3R,U 232)
9= s N
20U™2 3202 + 120712

Ca - R1—C1 "'C2
U= 1'—X1/a

In case of the standard specimen (ASTM Standard E-399-72) it holds x; = — W/4 and the geomet-
ric function and displacements are ([14])

2 3 4
— P (2 + «)(0.886 + 4.640 —13.320° + 14.726° —5.64")
(B =thickness, P=load applied).
P
o ="frg V(o)
) (2.3.4)
V(o) = ( : a . > (2163 + 12,219« — 20.0654° — 0.9925> + 20.609a" — 9.93144°)
P
o1=%g Va(®)
(2.3.5)

2
Vo) = (1+228 ) (122 ) (16137 + 12.678x —14.2316% — 16.61° + 35.054° — 14.4944°)
1 o 1—a
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The resulting weight function is shown in fig.7. A description by a fitting formula will be given in
section 3.1.7.

2.4 Extension of approximate weight functions to
rotationally-symmetric problems

2.4.1 The internal crack

Due to the rotational symmetry, tube problems with circumferential cracks - in principle two-di-
mensional cracks - can be treated in the same way as shown before for the merely pure one-di-
mensional cracks. The general approach will be explained for a tube of inside radius r and out-
side radius R containing an inner circumferential crack of depth a. Figure 8 illustrates the situ-
ation.

In contrast to eq.(1.2.3), the weight function is given by

h=K_,,- r+a oa

' ov
E' r+x 9 (2.4.1)

In the special case of a thin-walled tube (r<R) eq.(2.4.1) becomes identical with {(1.2.3). The
crack opening displacement field is also described by a power series, and the unknown coeffi-
cients Cy, Cy, C; result from the near-tip displacement field and the curvature at the free surface
in the same manner as outlined for the edge-cracks. Only the energy condition has to be modi-
fied which results in

a

j Kr+a')da’ = E' f e (VAT + x)dx (2.4.2)
0

0

For ¢ = o* = const the condition for the coefficients follows as

a
C, a 1 af 2., a’
a = Z.\da' = 243
Zv+3/2 <1+r v+5/2) Fag | Yra'(1+7)da’=Qo (243)
0
(A, from eq.(2.1.5)). The first three coefficients are
1 3057~ %
Co=1 . C1=—3———502 , Cp= 12__*_32_1 (2.4.4)
7 63 r
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Figure 8. Geometry of a circumferential crack in a tube

2.4.2 The external crack

For the external crack the weight function is given by

E R—x 9
L 2.4.5
h Ky R—a da ( )
where now the origin of the x-coordinate has the origin at the outer surface. The energy condi-
tion reads

a

a
j KR — a')da’ = E' o¥ f VAR — X)dx (2.4.6)
0
0

and the condition for the coefficients are

a
C, a 1 59 2., a’
_a _ — 2 g = 2.4.7
Zv+3/2(1 Rv+5/2> Fag | Tré(—g)da=Q (24.7)
0
yielding
4_32 8 o
05 R
Co=1 . c1=—;-—5c2, C2= 5121 32 a 248)
7 63 R
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2.5 Direct adjustment of the weight function to reference stress
intensity factors and geometric conditions

2.51 General relations

A disadvantage of the usual procedure treated before is that numerical integrations are neces-
sary to evaluate the right-hand integrals in eq.(2.1.9), eq.{2.2.9) and eq.{2.4.3). A more direct de-
termination of the weight function is possible that does not require the compiete COD-field but
only the near-tip crack opening displacement field to be known [24], [25]. As becomes obvious
from introducing eq.(2.1.4) in eq.(1.2.3), a set-up for the weight function is given by

hxa) =/ [——1—”—+ Zovm—p)”““} . p=xa (2.5.1)

na
- P v=0

or if we replace the factor p again by the identity p =1 —(1—p)

h(x.a) = + /ﬂ—za \/——1%_[)— + ZEV (1—p) /2 (2.5.2)
v=0

where 50 =Dy —1 and 5V= D, for v>1. The tilde is dropped in the following sections. The coeffi-
cients D, are different from those used in eq.(2.1.4), which represent the crack opening displace-
ments.

A number of conditions can be derived for the determination of the coefficients D,. If a number
of u reference ioading cases are known, the weight function must fulfill a number of u conditions

a .
fh(x,a)a,,,(x)dx=o;‘j,ﬁy,,, Ci=t.p (2.5.3)
0

The integrals on the left-hand side of eq.(2.5.3) can be determined easily. especially for power-
shaped and thus polynomial stress distributions. For constant stress (tension loading, Y = Y))

a
f h(x,a)dx = ./a Y, (2.5.4)
0

S 2 __ [my _A

ZDV 2v+3 V2 Yo 3 (255

v=0

For four terms this leads to

3 3 1~

D + gDy + 5 Dy + 5 Dy =Ry (2.5.6)

with
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=3 [Ty _
Ry = 5 5 Yo—2 (2.5.7)

For linear stress distribution (Y =Y,)

O’=O'*

X
Ca (2.5.8)

f h(x, a)——— dx = \fa Y, (2.5.9)

or

E 4
2.0, @ +3)(2v 5 N2z TS (2:5.10)

For four terms this leads to

3 5 5
with
15 [
=3 [Ty _ 2.5.12
R1 4o, 2 Y1 4 ( )

If the linear stress distribution is caused by bending of a plate (Y =Y,)

g= o*<1 - —2v—:/(—>
1 da 16 2
_ _2 [ 2.5.13
ZDV( 2v+3  (2v +3)2v + 5) ) ER ) 2 Yb (2.5.13)

where Y, is the geometric function for bending. For four terms this leads to

1 4 1 4 1 4
Do(s 5 )+D1<5‘35 )+D2<7—63 °‘>+
1_4 \_1 2 1 &
03(9 99) e ARl

If the stress intensity factors for tension and bending loading are known then eq.(2.5.11) can be
applied with

(2.5.14)

15 7/

For quadratic stress distribution

o=a*(3) (2.5.16)
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Lah(x,a)<—xw->2 dx = Ja Y,

1 _ 6 1 3
ZDV @132 15)@v +7) 105 T 152 V2 Y2

For four terms this leads to

1 5 35
Dy +— Dy +—3§-D2+—5§§‘

3 D3=R2

with

R2='—6+

105 I
— Y2
1602 V 2

(2.5.17)

(2.5.18)

(2.5.19)

(2.5.20)

Since for edge-cracks normal to the component surface the conditions (2.4.22) and (2.1.25) must

hold, one obtains due to

2 3
*h _E 9 Ov #h E 8 0V

ox®  Kir 0a g

ax? Ky 0a g2

the conditions

2 2
o°h . d°h

— lx=0=0 ie. —|,_0=0
a2 X apz p=0

and

2°h . 8°h

— lx=0=0 ie. —F],.0=0
(3X3 x=0 apg p=0

Equation (2.5.21) leads to
o0
Y Dy #1200 —1[2) = —1
v=0

and for four terms

Dy —3D4 —15D, —35D, = 4

Equation (2.5.22) leads to
¥ Dy(v +112)(v ~1/2)(v ~3/2) =
v=0

and for four terms

DO ’—D1 +5D2 +35D3 = 6

25

(2.5.21)

(2.5.22)

(2.5.23)

(2.5.24)

(2.5.25)

(2.5.26)




If u equations of type (2.5.3) and k geometric conditions are used, the resulting (u +K)x(n +k)
system of linear equations allows (u +k) coefficients to be determined. In this procedure the
same conditions are applied as for approximating the crack opening displacement field. There-
fore, the same accuracy can be expected from both methods.

2.5.2 Calculation of weight functions

The different relations for the coefficients D are summarised:

constant stress:

3 1
D0+—§—D1+—7‘D2+—3"D3=R0 (I)
linear stress distribution:
3 5 5
Do+7D1+'ﬁD2+‘§§‘D3=R1 (”)
quadratic stress distribution:
1 5 35
DO+_§—D1+¥D2+_4_§—Q_D3=R2 (ll/)
second derivative:
Dy~ 3Dy — 15D, — 35D =4 v
third derivative:
Dy— Dy + 5D, + 35D; =6 W)

Weight functions with two three or four coefficients can be obtained from these relations. If only
one reference load case is available equation |, Il or Il should be combined with equation IV.
Using in addition eq.V and thus obtaining three coefficients leads to a larger deviation from the
correct weight function than using only eq.lV and then only two coefficients.

The coefficients are:

a. Constant stress

2 5 5 T
DO=—:§—+“6‘RO= 1+T 2 Yo
-_10 5, __5, 5 [m
Di=-—7g tqgfo=—3+1zV2 Vo
b. Linear stress distribution
1 7
DO—-—2—+?R1
7 7
Dr=—%+25 R

c. Quadratic stress distribution
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2,9 . 189 /=

Do=-¢+75Ra=—5+ iV 2 Y,
__6_ 3 5 _ 63 /=
Dy=——5+55Re= 3+32m2 5 V2

If two reference load cases are avaliable these can be combined with eq.lV leading to three coef-
ficients or with egs.IV and V leading to four coefficients.

a. Constant and linear stress distribution and eq.lV:

Dp=—2Ry+ Bor - %
Dy=T2Ry - B R 1L
D=~ Ro+ o Ry — o=
b. Constant and quadratic stress distribution and eq.lV:
Do=——t— 32 Ry + o2 R,
Dy =2+ Ry~ 53Ry
Dy = - e — L Ry + 2L R,
c. Constant and linear stress distribution and eqs.lV and V:
Dy=— 35— 52 Ro + o> R,
D, = 18%1 + 38125 Ry — 1166107 R,
Dy =~ 3(213) - 1327 Ro+ 38%207 Ry
D=2l B Hlp,

If the boundary condition h’’ =0 and h’"’ = 0 are not applicable (thus will be the case if the crack
is not perpendicular to the contour of the component) two coefficients can be obtained from ref-
erence solutions for constant and linear stress:

5 7
DO=_'2_R0+-Q_R1
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35
Dy=-5"(Ro—Ry)

In these relations R, is obtained from eq.(2.5.22), R, from eq.(2.5.18) and R, from eq.{2.5.12) or
eq.(2.5.15).

2.5.3 Adjusting of coefficients to COD-results

The COD-data reported in the literature for specific fracture mechanics test specimens can, in
principle, also be used for the direct adjusting of weight functions to stress intensity factor sol-
utions. Starting from eq.(1.2.3) we can compute the displacement at any location x of the crack
as

5(x) = —E1— f aK,(a') h(x.a") da’ (2.5.27)

X

Using the set-up for the weight function

N
h= /-2 Z D,(1—xfa)’ " | Dpy=1 (2.5.28)
v=0

€q.(2.5.28) can be written

N
*
5 = - /-2 ZOD” 1,(x.a) (2.5.29)

with
1,(x.a) = f aY,(a’)\/a_' (1 —xja’)’ "% da’ (2.5.30)

Equation (2.5.29) allows an additional coefficient D, to be determined. This should be recom-
mended for special problems where the geometric function Y, is independent of the crack size,
e.g. cracks in infinite and semi-infinite bodies. In this case eq.(2.5.30) can be integrated analyt-
ically. If Y depends on the crack length the integration has to be performed numerically. There-
fore, the main advantage of the direct adjustment method, i.e. the purely analytical treatment,
may be lost.

2.5.4 Stress intensity factor for power-shaped stress distributions

Very often it is possible to describe the stress-distribution in the uncracked component by
N N
o(x) = Z a,,( X ) (2.5.31)
n=0

The stress intensity factor of each term can be obtained by applying the weight function in the
form of eq.(2.5.1). Then the integration leads to
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N

K=Y onfa, (2.5.32)

n=0

with

v - /—‘%a,, [(EINEE Z _nT(v+3/2) (25.33)

F(n + 5/2) YI(v+n+ T(v +n+5/2)

2.6 Direct adjustment procedure for internal cracks

2.61 Basic relations

The method described in the previous section for edge cracks can also be applied for internal
cracks. As suggested by eqs.(2.2.27) and (2.2.28) we will make a set-up for the most general case

P a) =/ 2. 0,(1—n" " | n=(=-xyla for y>0 (2.6.1)
v=0

S xa) = /= Zﬁvm +n)’' T2 for y<o (2.6.2)
v=0 .

with

~ Y Y
Do=1 , DO=%78—+362< B) (2.6.3)

The unknown coefficients Dy, D, and 5‘, 52 can be determined from reference solutions and con-
ditions of continuity at y = 0. If we restrict the series to N terms the unknown coefficients may be
obtained for instance by a number of N — y conditions of continuity

2 2
(=) _pl+) 0 (=) _ <+> 0 (=)0 () 26.4
hA hA . 6;1 hA 6r; h anQ hA anz hA etc. ( .0, )

and the conditions for y reference stress intensity factors

0 a

J h™ o (x) dx + f h$He,(x) dx = ogY anfa (2.6.5)

—a 0
This leads for the three first conditions of continuity h(+)0) = h(~)0), dh*)[dn(0) = dh(-[dy(0),

d*htH)[dy(0) = d2h‘~)|dn?(0) and the three loading cases o = oo, 0 = a0 *  and 6 = oo * 1? to the lin-
ear system of equations
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Dy +Dy + Dy — Dy — Dy — Dg = Dy 1 (2.6.6)

Dy +3D, + 5D + 3D + 5D, + 7Dy = — Dy + 1 26.7)
Dy —3D, — 15D, + 3D, + 15D, + 35D, = D + 3 (2.6.8)
3 = ~ 3
Di+SD,+ 3 %+5m+7%+ %_ X Yo=Dp—3 (2.6.9)
3 5 3~ 5~ 5= 15 ~
Dy + Dy + 5 Dy~ 5 Dy — 5 Dy — 5Dy =—- /% Y, +Dg—5 (2.6.10)
1 5 15 5 ~ 105 _
Dy + 5Dy + 55Dy + 5Dy + 55 Dy + o 429 /2 Y, —Do—7 2.6.11)

For practical use knowledge of a reduced number of coefficients may be sufficient. If we restrict
the series expansion for the weight function to v < N = 2 we obtain by use of:

» three conditions of continuity (in increasing order) and the constant siress o, = og as refer-
ence solution

D=3 [Z v, - b - (2.6.12)
Dy=— o> 2 Yo+ BB+ 3 (2.6.13)
by=28 [Zv,-22p5,- 2 (2.6.14)

D=2 [T v+ LDy + e (2.6.15)

¢ two conditions of continuity (in increasing order) combined with constant stress reference
case o = op and the linear stress o, = oy * 4 as a second reference solution

Dy = 1(732 \/_Y°+ 1355725 \/_Y1 41D % (26.16)
D=2 [Ty~ A8 [Ty DD+ 2.6.17)
b= ‘1‘3(55 Yo 2:;15125 \/— Y- D°+ 13136 (2.6.18)
Dy=-30 [ v+ 2B [Ty, + 2D -2 (2.6.19)

* and finally for one conditions of continuity combined with constant stress reference case
o = oy, the linear stress o, = o9 * 5 and a quadratic stress distribution ¢, = a9 * #?
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__M55 /@, | 4725 72765 /@ 16 ~ 642
Dy = 976 tie52 V2 7 V1 7808 \ 2 Y2 - D° 61 (2.6.20)

3255 [m, _ 2835 128205 34 ~ 739

Dr="g76 V2 Yo~ 1952 Vi- 705 V3 Y2t Dot g (2621
~ 1365 /7, _ 22365 162855 274 ~ 304

Di==-g75 2 Yo~ o5 2 Y1+ 708 V3 Y2~ 51 Do~ gy (2622

~ _ 3465 24255 /@, 218295 /m 231 s, 462
Dy=g76 7 Yot Tese T V'~ Twos V7 Y2t er Dotgy (2629)
In case of the central crack it holds in accordance to eq.(2.2.29) D, = 5v and 5o=1/2.

2.6.2 Internal crack in an infinite body

The internal crack in an infinite body (y = p), the so-called Griffith-crack, is analytically solved.
The weight function, here noted as hewo, is given by

! a—x (2.6.24)

hexact =
ct
/,”a a+x

and therefrom a number of reference stress intensity factors can be derived. For ¢ = o, we ob-
tain

Yo=+n (2.6.25)
for the linear stress s = oy *n
Vi=g e (2.6.26)
and for the quadratic stress ¢ = a9 * n?
Y, = %— Jr (2.6.27)

The approximate weight function resulting from eqgs.(2.6.6)-(2.6.11) has been calculated and is
compared with the exact solution in fig.9. In this representation the relative deviations from the
exact solution are plotted. It can be seen that the maximum deviations are less than 0.4%. A
more detailed analysis with respect to convergence and accuracy will be given in 2.8,

2.7 Approximative procedure for weight functions in mode-li
loading

The method of determining stress intensity factors using an approximative crack-opening dis-
placement field, well-known for mode-| loaded cracks, can be extended to include mode-l} loaded
cracks.

31




hr—hct

OEE (-3 {4]
hexuct
+1% i
P I
/ \\ —
\ / S T vrvvarrees
\\\ /'/'
____________ i ]
~1.00 -.50" .00 50 1.00

Figure 9. Weight function for an internal crack in an infinite body. Deviations between an approximation
based on 6 coefficients and the exact weight function.

The weight function method for the determination of stress intensity factors for complicated
stress distributions is applicable to mode-ll loadings, too. For any given shear-stress distribution
7(x) in the uncracked component the stress intensity factor K, results as

K” = .[) h”(x,a)‘t'(X) dx (271)

where h; is the mode-ll weight function. According to the mode-I case, the weight function can
be derived from crack opening displacements u (in x-direction, see fig.10) of a reference load
case (subscript r) and the related reference stress intensity factor

!

E' 0
hy(x.a) = Ky, oa uy(x.a) (2.7.2)

The crack-opening displacements can be expressed again by power-series representations [31],

[32]
u = c’OD 1% v 2.7.3
=2.0(1-%) 273)
v=0

with the coefficients D, dependent on the relative crack length a/W.
A number of conditions can be applied to determine the unknown coefficients of eq.(2.7.3):

1. The crack-tip field is related to the stress intensity factor by [17]

1/2
uix—a)= (<) —'é’f—ﬂ/a—x 2.7.4)

2. The energy balance condition requires
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Figure 10. The edge crack in a plate under shear stresseg

J K,2da' = E' f TAX)U(x,a)dx (2.7.5)
0

0

If stress intensity factors for a number of p loading cases (subscript p) are known, eq.(2.7.5)
provides p relations

3. For symmetrically loaded central internal cracks it follows from the condition of symmetry
that odd derivatives must vanish

u@*V=0 (=012.) forx=0 (2.7.6)
4. As has been shown in [31] for mode-ll loadings for an edge crack, the second derivative
must vanish:
2 2
v o, ZU_o 2.7.7)
ox ax

5. and also the third derivatives must disappear at the crack mouth
3 3
v_o, Lo (2.7.8)
ox ox

as has been proved in [32].
6. For simple crack/component geometries {(e.g. an edge crack in a rectangular plate or a disc)
relations of equilibrium can be derived ([32]).

The further procedure to determine approximative weight functions is identical with the mode-I
case outlined in detail before.
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Figure 11. Internal crack in an infinite body. Approximate weight functions based on the improved Petro-
ski-Achenbach procedure compared with the exact weight function; solid curve: computed for a
single reference stress intensity factor solution (¢ = ay), dashed curve: computed for two simul-
taneously applied reference solutions (¢ = o and o = ag * (x/a)?).
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Figure 12. Internal crack in an infinite body. Direct adjusting method; relative deviations between approx-
imate and exact weight function; solid curve: single reference case o = oy, dashed curve: single
reference case ¢ = g * x/a.
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Figure 13. Internal crack in an infinite body. Direct adjusting method; relative deviations between approx-
imate and exact weight function; dotted curve: 3 conditions of continuity and ¢ = g, as reference
load case; dashed curve: 2 conditions of continuity, ¢ = oy and o = a¢* x/a as reference cases;
dash-dotted curve: 1 condition of continuity, o = ag, ¢ = 0¢* x/a and ¢ = g¢* (x/a)? as reference
cases; solid line: eq.(2.6.24).

2.8 Convergence and accuracy of approximate procedures

In order to allow the quality of the previously described procedures to be judged it is necessary
to use exact reference solutions for the stress intensity factors. Exact stress intensity factor sol-
utions were determined for internal cracks in infinite bodies (see e.q. [12]) and for edge-cracked
discs [33]. A weight function of high accuracy can be derived for the edge-cracked semi-infinite
body on the basis of crack opening displacement calculations given by Wigglesworth [34]. This
solution is of very high quality but not exact. The accuracy of the results can be checked in
cases where exact analytical solutions of the weight function are available. Such a solution is
known for internal cracks in infinite bodies.

2.8.1 The internal crack in an infinite body

Improved Petroski-Achenbach procedure
The integrals Qo and Q,, necessary for the determination of approximate weight functions by

egs.(2.2.32), (2.2.33), (2.2.60) and (2.2.61) are

%0 1 %
QO,O = ?,—na ' QO,2 = T—E,—na (281)
leading to
_ 3% = 8 __ 2 = 7
C=m T G et (2.8.2)
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for constant stress as the single reference load, and

c, =35 7 8 - 3819 7 77 (2.8.3)

512 \/2_ 15

for combined linear and quadratic stresses. It should be mentioned, that the first and the third of
the conditions of displacement continuity are automatically fulfilled for central crack and there-
fore, in reality, only one geometric condition provides information on the needed coefficients.

The approximate weight functions computed with the coefficients of Section 2.2.2.2 are repres-
ented in fig.11. From the constant stress load case, egs.(2.2.32) and (2.2.33), the dashed curve
results and from the combination of constant and linear stress, eqs.(2.2.60) and (2.2.61), one ob-
tains the solid curve. | can be seen that already for one single reference load case (o = o) the
maximum deviations from the exact solution are at most 1.05%.

total number maximum
procedure of conditions n=0|n=1|n=2 deviation
improved Petroski-Achen- 4 X 1.05%
bach
4 X 1.42%
4 X X 2.85%
direct adjustment 4 X 5.8%
4 b ¢ X 0.76%
4 X b ¢ X 0.50%
6 X X X 0.35%

Table 1. Accuracy of approximate weight functions. Internal crack in an infinite body; refer-
ence cases: ¢ = go(x/a)".

Direct adjustment procedure

First the influence of the choice of the single reference loading case is shown. The 3 first condi-
tions of continuity, eqgs.(2.6.6)-(2.6.8), were combined with the reference case of constant stress,
eq.(2.6.9). The resulting weight function is entered in fig.12 as the solid curve. Considering the
linear stress as the reference case, i.e. replacing eq.(2.6.9) by eq.(2.6.10), leads to the dashed
curve and finally if we consider the quadratic stress distribution as the reference case,
eq.(2.6.10), the dotted curve is obtained. From fig.12 we can conclude that the approximation
becomes more and more poor if the reference stress distribution is concentrated more and more
at the crack tips. This has to be expected since for stresses strongly concentrated at x = a the
stress intensity factor is only governed by the first term in the series expansion 1/,/1 — x/a and
a decreasing amount of information on the other series terms is the consequence.

The approximate weight functions computed with an increasing number of reference loading cas-
es {and consequently reduced number of conditions of continuity} are shown in fig.13. The ap-
proximation computed with only one reference stress intensity factor shows small deviations
from the exact solution whilst the deviations of the higher approximations can hardly be identi-
fied. Therefore, the relative deviations from the correct solution are plotted in fig.13.
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2.8.2 The edge crack in a semi-infinite body

Weight function and stress intensity factors
A high-accurate asymptotic expansion for the crack opening displacement field for an edge-
cracked semi-infinite body was determined by Wigglesworth [34]

12

v+1/2
v=J8j a 1.1215% Ye(t-%) (2.8.4)

v=0
with the coefficients
C, = 1.00000 Cy=—0.143719  C, = 0.019965
C, = 0.019665 C4=10.011856 Cs = 0.006254
Cg = 0.002993 C;=0.001256  Cg=0.000390 (2.8.5)
Cyg=—0.00001 C49=—0.000172 C4q = —0.000213

Cyp = — 0.000212

Based on these displacements we can compute the a high-accurate weight function according to

eq.(2.1.7)
13
h(x,a) = « /—"Ea— va(‘l — xJa)® 12 (2.8.6)

v=1
with the coefficients
Co = 1
C,= —(v-3)C,_,+(@v+1C, , for O<v<12 (2.8.7)
Cis = —23Cyy
If we select for the reference cases
o=agep" (2.8.8)

we obtain the high-accurate geometric functions
13
Z n/F(v+1/2) (2.8.9)
YT + v +3[2) o

This relation is not restricted to integer exponents n. The first values are

Yo=11216\/r , Y,=06829/r , Y,=05255/n
Yy =04410/7 , Y,=03868/r , Ys=0.3485/r

(2.8.10)
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Figure 14. Edge crack in a semi-infinite body.

Approximate weight functions computed with the improved

Petroski-Achenbach procedure; dotted curve: A" =0 and ¢ = gy, dashed curve: h"’ =0, ¢ =o0¢
and o = oy * x/a; dash-dotted curve: h"’ =0, ¢ = g¢, 0 = 0p* x/a and ¢ = ¢ * (x/3)2.
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Figure 15. Edge crack in

Petroski-Achenbach procedure; dotted curve: i’ =0, A"’ =0 and ¢ = o¢; dashed curve: h"’

a semi-infinite body.

Approximate weight functions computed with the improved

h""'=0, ¢ =09 and o =gy *x/a; dash-dotted curve: "’ =0, h'"' =0, ¢ =0ay, 0 =09°x/a and

g =ag°* (x/a)
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Figure 16. Edge crack in a semi-infinite body. Approximate weight functions computed with the direct
adjusting method; dotted curve: b’ = 0 and ¢ = g¢; dashed curve: h'' =0, ¢ = gg and o = g¢ * x/a;
dash-dotted curve: h”’ =0, ¢ = ¢, 0 = gg ° X/a and ¢ = g¢* (x/a)2

a
a
1 I ’ 13 1 12 ’ !
Qop= /—’g— ?Lyp(a)a da’' = /% ;Q—Yp(a)f (a'/a)’ a’ da
0
(2.8.11)

Yp

p+2

= [
8

Improved Petroski-Achenbach procedure

From the considerations of Section 2.1.3 we can derive a system of linear equations which is
based on the two vanishing derivatives and the first three reference loading cases o = oy,
o=o0p°alx and o = oy * (a/x)?

Cy+5C, + 2> Cy+ 210, +33Cs = (2.8.12)

C, — 5C, — 35C; — 105C, — 231C5 = 1 (2.8.13)
C1+-§—C2+—S-C3+%C4+%Cs=%00,o—-—g— (2.8.14)
Crt o Cot o ot 2 Gt o Cs = o Qo — = (2.8.15)
Cit 2 Cyt 2 Cyt 2k Cy b 2 Cs = 13;;2 Qo -3 (2.8.16)
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Figure 17. Edge crack in a semi-infinite body. Approximate weight functions computed with the direct
adjusting method; deviations from the weight function given by eq.(2.8.6), notation as in fig.16.

with the integrals Qy,, identical to those of eq.(2.8.6). Different combinations of these relations
were used to calculate approximate weight functions. As an example in fig.14 the influence of the
number of reference loading cases is represented for the condition v’ =0. Figure 15 shows the
results for the two conditions v’ = v’’’ =0,

Also for the edge crack the tendency of an increased accuracy with increased number of refer-
ence cases becomes obvious, In Table 2 the maximum deviations from eq.(2.8.6) are entered.

Direct adjusting procedure
The direct adjusting precedure was also applied to the edge-cracked semi-infinite body. The co-
efficients for the weight function can be determined from the system if linear equations

3 3 1 3
DO+FD1 +—7—D2+?D3+71—D4=R0
5 5 15
Do+7D1+21D §D3+143 =R,
35 7
D0+ D1 + DQ+ 429 D3+ 143 D =R2

Dy — 3D, — 15D, — 35D, — 63D, = 4

DO —_ D1 + 5D2 + 35D3 + 105D4 = 6

The results obtained are shown in fig.16 for use of the condition h’’ = 0. The maximum deviations
from eq.(2.8,6) are entered in Table 2.
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procedure v'’'=0 v'"'=0 n=0| n=1| n=2 ?:\):ii::il;:‘
T eherbach x 30%
X X 0.81%
X X X 0.52%
X X X X 0.42%
X X X 3.16%
X X X X 0.45%
X X X X X 0.225%
direct adjustment X 5.3%
X X 19.0%
X X X 1.2%
X X X X 0.12%
X X X 36%
X X X X 3.2%
X X X X X 0.53%

Table 2. Accuracy of approximate weight functions. Edge crack in a semi-infinite body; refer-
ence cases: o = ggp".

2.8.3 Edge crack in a disc

The edge crack in a circular disc was chosen to demonstrate the direct adjustment procedure in
case of a crack in a finite body. In case of the edge-cracked circular disc no exact weight func-
tion is available. For this problem exact stress intensity factors were determined by Gregory
[33] for constant and quadratically distributed crack surface loadings. The geometrical data are
defined in fig.37 (Section 3.7). For constant surface loading we can fit the data given in [33] by

11216 /7
YO - ‘——‘—JQ— (2817)
(1—a)
and for a quadratic stress distribution
2y \2
o(x) = 00(1 ——5‘—) (2.8.18)

the results provided by Gregory [33] are fitted as

_ 11218/n

2 - o()3/2

(1—2.4431a + 3.24272% — 1.8106° + 0.344044") (2.8.19)

The coefficients for the weight function are given by the system of linear equations
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Figure 18. Approximate weight functions for an edge crack in a circular disc. Normalized weight function
h' = hA/D ; dash-dotted: h4, wide dashed: h,, dotted: h;, solid: hs, narrow dashed: hs.

Do —3D1 - 15D2 - 35D3 = 4
DO—D1 +5D2+3503=6

2
3

2 2
Do+_5‘D1+7D2+

9 (2.8.20)
?D?’:R»‘

¢, + cp, + c®p, + c®p, =R,

normalised weight function h'

Figure 19. Approximate weight functions for the edge-crack in a circular disc.  Application of the direct
adjustment procedure for a/D = 0.9 and 0.95, (dotted: hs, solid: hy, dashed: hs).
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with

©_2_16 64 2
=315 * 705 ¢
m_2 _16 ., 64 2
Cl=% -3t 35 ¢
(2.8.21)
@_2_16 64 2
=753 % 5e3 ¢
@_2_16 . 64 o2
C =g 59 %t 287 ¢
and
R1 = Yo-\/ﬂ/2 —'—g'
(2.8.22)

v g (44, 384
Ry = Yo/ m/[2 <3 15a+105a>

The approximate weight function has been calculated for an increasing number of conditions in
the following way:

hy: only one reference loading case (¢ = const.) used.

h.: use of reference loading case (¢ = const.) and geometrical condition h'’|,_,=0.

hy: use of reference loading case (o = const.) and reference loading case ¢ oc (1 — 2x/D)2

hs: use of reference loading case (o = const.), reference loading case o oc (1 —2x/D)? and
geometrical condition h'’'|,_,=0.

5.  hs: conditions used for hy and h'’'|,.,=0.

el

In fig.18 the weight functions h, — hs are plotted for relative crack depths of a/D = 0.6 and 0.8. As
can be seen, only the very roughly approximated weight function h, deviates by more than 10%
from the higher order solutions, The weight functions h;, hs and hs can hardly be distinguished.
The insert in fig.18 illustrates the convergence for a fixed value of x/a=0.8.

Figure 19 illustrates the weight functions h; —hs for a/D=0.9 and a/D=0.95. Especially for
a/D=0.95, the solutions differ little more, but above all the solutions hy and hs agree also for this
extremely high value of relative crack depth with maximum deviations of less than 3%.

2.9 Weight function for remote tractions

In most cases of practical interest the crack-surface weight function considered in the sections
before is applied. But the weight-function method is not restricted to crack-surface loadings. In
its more general formulation the procedure can be applied also to tractions which act at any
given contour in the body (fig.20). Such weight functions are of special interest in computation of
R-curves in ceramics when phase transformations occur in the crack-tip region [35]. In this
more general case one can write

K, = f h(s,a)T(s) ds (2.9.1)
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T(s)

Figure 20. . Tractions along a surface at the crack tip.

where T(s) are tractions over a surface s. As shown by Rice [7][12], the weight function can be
related to the displacements u,” of a reference loading case (subscript r) which act in the direc-
tion of the tractions T(s) in the actual loading case:

h(s.a) = Ki,r % u,¥(s,a) (2.9.2)

Obviously, e€q.(2.9.2) covers also the crack-face weight function when the surface s is chosen to
be the crack surface. In order to determine the weight function for a crack/component configura-
tion, we have to determine the displacement field of the reference load case as well as the re-
lated stress intensity factor. The weight functions can be calculated by determination of the dis-
placements around the crack tip, which is fully known if we succeed in the determination of the
Airy stress-function @.

The stress components in a cracked body can be represented in polar coordinates - with the
pole in the crack tip (fig.21) - as

100 1 & FR) 1 00 1 &0

T, ==
2 op: ¢ o Y 2 op T rde

The Airy stress-function results as a solution of the bipotential equation
AAD =0 (2.8.49)

Due 1o the linearity of eq.{2.9.4), the stress function ® can be divided into a fraction ®; which is
symmetric with respect to ¢ =0, and an antisymmetric fraction ®@,.

=0, +0, (2.9.5)

The general treatment of the crack problem wili be explained here in more detail by the example
of the symmetric fraction of the stress function.
The solution of eq.(2.9.4) has been given by Williams [569] as
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Figure 21. Edge-crack in a plate. Geometric data.

O = rn +3/2A COS(n + 3/2)(P — ._Qi_sﬁ cos(n — 1/2)(p
s n n—1/2
n=0

o

+ Zr" +2A%[ cos(n + 2)¢ — cos ng] (2.9.6)

n=0

The displacements u and v (u=radial and v=angular component) can be calculated from the
radial strains ¢, and tangentiai strains ¢,. The following relation holds:

ou u , 1 ov
5r=_57 ) S<P=T+—I’—Ep_ (2.9.7)
From the Hook law in plane strain
1
b= B o= By (2.9.8)
g = g v (2.9.9)

P e T Ed

and the stress components given by eq.(2.9.3) we obtain the following system of equations de-
scribing the displacements

P v o

, ou 1 od
B =7 2 1 2
O -V or

or — r or

+ iz (2.9.10)
r
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u . 1 dv FR) v 1 00 1 8D
7 AR\ - X LA 4 2.9.11
E<r+r5¢> or? 1“"<r6'+r26¢2> ( )

After introducing the stress function, the integration of this system of differential equations leads
to

OO

3/2
u=2 2:- v A"t 112 :j—1//2 [(n + 4v —5/2) cos(n — 1/2)¢ — (n — 1/2) cos(n + 3/2)¢ ]
n=0
00 (2.8.12)
+ 1 Z M ZA,’,“r"Jr 1[(n + 4v — 2) cos np — (n + 2) cos(n + 2)¢ ]
n=0

y=Jtv Z A" T2 482 [(n — 1/2) sin(n + 3/2)¢ — (n — 4v +3/2) sin(n — 1/2)¢ ]

E n—1/2
n=20
00 (2.9.13)
+ —1—-;—" ZA,Tr" 100 + 2) sin(n + 2)¢ — (0 — 4v + 4) sin ng]
n=0

The Cartesian components of the displacements are
Ug=ucose —vsing , U,=uUsing + vCcosgp (2.9.14)

and the components of the weight function result as

E’ 6ux E' auy

=Lt = 2.9.15
hix K, oOa By K, oOa ( )

The weight function is, in principle, known provided that a set of coefficients A, A¥ is known,
too. One possibility to obtain these coefficients is the application of the Boundary Collocation
Method (BCM) [9], [48].
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3. Mode-l stress intensity factors and weight
functions for one-dimensional cracks

In this chapter the stress intensity factors for simple load cases such as constant stress, linear
stress distributions or in some cases parabolic distributions are given for different components
with one-dimensional cracks. From these resuits the weight functions can be obtained applying
the relations given in the previous chapter. For some cases the weight functions are presented
in form of equations, tables or figures. As in the previous chapter the notation « =afW and
p = X/a are used.

3.1 The edge-cracked plate

3.1.1 Loading conditions

A plate (or a bar) of width W, thickness B and length 2L, containing a crack of depth a, is consid-
ered (see fig.22). In fig.22a no restrictions on free deformation are made, Due to the homogene-
ous stresses at the specimen ends bending of the cracked specimen is possible. In the arrange-
ment of fig.22b bending is completely prevented. Besides the externally applied tensile stresses,
the reaction of the roller bearing has to be taken into account. If the cracked plate with an edge
crack is an element of a larger structure, the real loading conditions will be between the two
limit cases illustrated in fig.22.

3.1.2 Crack in a eemi-infinite body

A crack in a semi-infinite body is equivalent to a crack with small a/W in a finite component. in
this case the weight function can be easily obtained. A high-accurate asymptotic expansion for
the crack opening displacement field for an edge-cracked semi-infinite body under tension load-
ing by o, was determined by Wigglesworth [34]

12

V=\/8—/”—3Y03E;(ll ch<1—p

v=0

n+1/2
) (3.1.1)

with the coefficients
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Figure 22. Geometric data and loading conditions for a plate. a) freely deformable, b) plate prevented
from bending.

Co=100000 C,=-0.143719  C, = 0.019965

C,=0019665  C,=0011856  Cg=0.006254

Ce=0002993  C,=0001256 C, = 0.000330 (3.1.2)
Co=—000001 Cuo=—0.000172 Cy; = —0.000213

Cyp = — 0.000212

Based on these displacements we can compute the a high-accurate weight function according to
eq.(2.1.7)

13
h(x,a) = 4 /;25- ZEv(1 —p)y 2 (3.1.3)

v=1
with the coefficients
Co=1
C,= —(2v=3)C,_,+(@v+1)C, , for O0<v<12 (3.1.4)
Cig = —23Cqy
For power-shaped siresses
o=ag°(x/a)" (3.1.5)

one obtains high-accurate geometric functions

48




2.00¢ .
> . -~
! 7
L i
5 1.90F\, 8
c v e
>
e VY i
O rd
E1.80F N P
) ‘& g
8 \n.!,’ '
©'1.70}
1 L 1 I
.00 .20 40 .60 .80 1.00
o

Figure 23. Comparison of the BCM-results with literature data.

Dash-dotted line: eq.(3.1.9); dotted line:

eq.(3.1.10); circles: Boundary Collocation Method [27]; squares: Table in [14], Y’ = Y(1 — «)%2,

Y.

D +1/2)
S Tr+y32)

(3.1.6)

for integer exponents n. For real exponents n! has to be replaced by I'(n + 1)

Ny

T(n+ )T+ 1/2)

'(n + v +3/2)

(3.1.7)

We repeated Wigglesworth’s analysis and extended the series expansion up to N =20 with the

following coefficients

Co = 1.00000
C, = 0.0196651
Ce = 0.0029935
Cg = — 0.0000087
Cyp = — 0.0002149
Cy5 = — 0.0001338

Cyg = — 0.0000728

Cy = —0.1437181
C4 = 0.0118558
C; = 0.0012562

Cyo = —0.0001718

Cy3 = —0.0001908

C16 = —0.0001095

C19 = —0.0000595

C, = 0.0199656

Cs = 0.0062537
Cs = 0.0003899
Cy1 = — 0.0002189 (3.1.8)
Cy4 = — 0.0001618
C47 = — 0.0000893

Cyo = — 0.0000487

This solution gives the possibility to check the condition v/’ =0 for x =0 for the special case of

in fig.24 the second derivative is plotted as a function of
the number of coefficients used in eq.(3.1.1). It can be seen that the second derivative of the
displacements tends asymptotically to v'’(x = 0) =0 for N — co.

an edge crack in a semi-infinite body.
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Figure 24. Second derivative for an edge crack in a semi-infinite body. Influence of the number of terms
used in eq.(3.1.1) with coefficients given by eq.(3.1.8).

3.1.3 The plate under tensile loading

First the special case of a totally freely deformable plate is treated. The geometric function ob-
tained with the Boundary Collocation Method (BCM) is given in Table 3 for several L/W-ratios
[27]. Other values can be obtained by parabolic interpolation. For L/W=>1 the geometric function
is independent of L/W and can be represented by the relation

0.026778 (0.427103 + «)~2738%5 | 0.26514 « +0.72475
Y = 1.988 ( ) b s (3.1.9)

(- a)3/2

The results are plotted in fig.23 together with results from the literature [12], [14]. The squares
represent the geometric function tabulated in [14]. A relation given by Tada [12]

4 , 1.519 4+ 0.470a

Y =0.470(1 — o)* + - (3.1.10)

is entered as dotted line. Equation (3.1.10) does not exhibit the correct derivative at a/jW =0,

Lw =020 0.30 0.40 0.50 0.60 0.70

0.350 3.089 4.013 5.055 6.347 8.215 11.836
0.500 2.636 3.275 4.119 5.333 7.354 11.331
0.750 2.448 2.978 3.781 5.036 7.161 11.264
1.000 2.432 2.946 3.745 5.007 7.148 11.262
1.250 2.428 2.946 3.745 5.007 7.148 11.262
1.500 2.428 2.946 3.743 5.007 7.148 11.262
2.000 2.428 2.948 3.743 5.007 7.148 11.262

Table 3. Geometric function for the edge-cracked plate under tension. Influence of the length L
of the plate on the geometric function for tensile loading, Y’ = Y(1 — «)%2,
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The geometric function of an edge-cracked plate loaded with a bolt at the ends is described by
Brown and Srawley [36] for « <0.6 as

Y =1.99 — 0.410 + 18.706> —38.484° +53.854" (3.1.11)
it has to be expected from Saint Venant’s principle, that a comparison between egs.(3.1.9) and

{3.1.11) must yield similar values.
The edge-cracked plate prevented from bending is described by the geometric function

5
Y= Jr (3.1.12)
[20 —13« —-70(2]1/2

3.1.4 The plate in bending

The characteristic stress is the stress at the tensile surface which is related to the bending mo-
ment by o* = 6M/(BW?). In case of pure bending Nisitani und Mori [37] (quoted in [14]) obtained
with the “Body Force Doublet Method”

Y = 1.988 — 1.987a + 6.6295° +6.8654° — 33.7654" + 39.974° (3.1.13)

with an error margin of +1% for a <0.7. This solution is by about 2% higher than the result in
[14] based on caiculations of Gross und Srawley ([10]), but in excellent agreement with
BCM-calculations ([27]). :

For 0 < a < 1 Srawley and Gross [38] proposed

1._
y=—2 119887 — 1.3264 —f—(———‘%

TR (3.49 - 0.684 +1.35a2)] (3.1.14)
(1—a) (1+a)

Equations {3.1.13) and (3.1.14) are only valid for the case of “pure bending” which results when a
bending moment is applied at the ends of the bar (fig.25a). If bending is caused by single forces
(fig.25b), deviations have to be expected. In the special case of a 4-point-bending test with an
inner roller distance d also pure bending is asymptotically reached for d/W — co. For shorter
roller distances the stress intensity factor can be written as

K= Kilgjw o0 * f@IW.dIW.LIW) (3.1.15)

where Ki|qw - is to be computed according to eq.(3.1.13) or (3.1.14). In [14] and [37] results of
the function fla/W,d/W,L/W) are published.

3.1.5 Three-point bending

The case of a three-point bending arrangement is covered by fig.25b with d=0. If the reference
stress for 3-point bending is written

=3 L (3.1.16)
2 wB

the geometric function derived in [27] reads for L|W > 2
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Figure 25. Geometrical data and loading of bending bars. a) upper figure: pure bending, b) lower figure:
4-point bending

4
Jr
Y= 03738 + (1= o) Y AWty | . a=aW (3.1.17)
(1 - a) Iu, v= 0
The coefficients are given as:
Ay Ay Ay A A
©p=0 1.1200 -0.2387 0.4317 -1.7351 2.4145
p=1 -1.8288 -0.2573 -4,9847 16.9047 -18.2883
nu=2 2.9741 0.2706 18.6767 -60.4912 59.8239
pw=3 -2.4280 0.5627 -27.3447 87.7078 -85.2405
n=4 0.6712 -0.5184 13.5837 -43.5421 42,3503

Table 4. Coefficients. A, eq.(3.1.17).

3.1.6 The weight function for a plate with L/W >1

Based on boundary collocation computations a weight function was derived [27] that can be ex-
pressed for 0 < o < 0.85 by a fit relation

h=+/-% —1 114 —"h‘i--m—x/a)er1 (3.1.18)
m@ [1=xa (- a)*?

v, u)
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Figure 26. Weight function for an edge crack in a rectangular plate. Comparison of approximative weight
function obtained by direct adjusting to the tension and the bending reference loading cases
with h”’ = 0 at x = 0 as the geometric condition with results from a Boundary Coliocation analy-

sis (circles) represented by eq.(3.1.18).

with the coefficients

v ©w=0 1 2 3 4

0 0.4880 2.4463 0.0700 1.3187 -3.067
1 0.5416 -5.0806 24.3447 -32.7208 18.1214
2 -0.19277 2.55863 -12.6415 18.7630 -10.986

Table 5. Coefficients for the weight function. Eq.(3.1.18)

With this weight function the approximative weight function resuiting by application of the direct
adjusting method were compared. Using pure tension, eq.(3.1.9), and bending, eq.(3.1.14), as the

reference loading case and h”’ =0 at x=0 as the geometric

condition one obtains the weight

function entered in fig.26 as lines. The weight function computed with eq.(3.1.18) is given by the
circles. A good agreement between approximative weight function and results of the Boundary

Collocation analysis can be concluded.

3.1.7 Compact tension specimen

The weight function for the CT-specimen is plotted in fig.7. These results were fitted according to

eq.(3.1.18) with the coefficients
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v p=0 1 2 3 4

0 2.673 -8.604 20.621 -14.635 0.477

1 -3.557 24.9726 -53.398 50.707 -11.837
2 1.230 -8.411 16.957 -12.157 -0.940
3 -0.157 0.954 -1.284 -0.393 1.655

Table 6. Coefficients for the weight function (CT specimen). Eq.(3.1.18)

3.2 Double edge-cracked plate

3.21 Geometric function

Geometric functions for the double edge-cracked plate (or the double edge-cracked bar) - fig.27 -
were derived by Bentham and Koiter [4] using the so-called asymptotic interpolation procedure.
In a representation modified by Tada [12] the relation reads:

e for tension

1989 — 0.994« — 0.3634° +0.8354° —0.337"

Y (3.2.1)
J1—a
° for bending [4]
0.7523 + 0.37618 + 0.28214° + 0.23518° — 0.833p* +1.1758°
Y= T (3.2.2)
g
with f=1—ua

The stress intensity factor for the crack at the tension side is given by eq.(3.2.2), the stress inten-
sity factor for the opposite crack is negative. Since a negative stress intensity factor does not
exist, eq.(3.2.2) in case of bending is only applicable when tension is superimposed so that the
total stress intensity factor at the compression side of the bar remains positive.

3.2.2 Weight function

If there is an arbitrary stress distribution in the plate, this distribution has to be divided into a
symmetric part o¢}(x) and an antisymmetric part ®(x) according to:

o(x) = e9(x) + 6Dx) (3.2.3)
The symmetric part is given by

o) =+ Lo(x’ =X) + o(x' = 2W = )] (3.2.4)

and the antisymmetric part results as
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Figure 27. Double edge-cracked plate. Geometrical data and loading situation
o @) = % [o(X' = X) — o(x' = 2W — x)] (3.2.5)

For the lower crack in fig.27 the stress intensity factor results

a

a
K = J ah(x.a) dx + f D (x)h@(x,a) dx (3.2.6)
0 o]

and for the upper crack one obtains

2w

K, = J s xhS(x,a) dx + f P x)h(x.a) dx (3.2.7)
2W—a 2W—a
Because of the symmetry relations
hOx.a)=hOew —x,a) , h®x.a)=hPW - x, a) (3.2.8)

the knowledge of one weight function, i.e. for the lower crack is sufficient. Therefore, the sub-
script will be dropped.

From the relations given in section 2.1.2 the weight functions for symmetric loading are listed in
Table 7 for discrete values of a/W and x/a in the normalised representation

@_ [2 __gklaa 3.2.9
! "8 Jt—xja1-« ¢29)
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a x/a=0. 0.20 0.40 0.60 0.80 0.90 1.00

0.0 1.838 1.626 1.440 1.276 1.131 1.064 1.000
0.2 1.635 1.459 1.292 1.139 1.005 0.946 0.894
04 1.470 1.314 1.163 1.019 0.889 0.829 0.775
0.6 1.360 1.219 1.075 0.928 0.780 0.706 0.633
0.8 1.336 1.196 1.045 0.877 0.684 0.573 0.447
0.9 1.360 1.217 1.057 0.872 0.643 0.499 0.316
1.0 1.414 1.265 1.095 0.894 0.632 0.447 0.000

Table 7. Normalised weight function for the double edge-cracked plate. Function g(x,a) for symmetric
load, €q.(3.2.9).

The weight function for antisymmetric loadings is described by the normalised representation

gix/a, a)
h@_ [/ 2 (3.2.10)
ma 1= xfa (1— oc)3/2
and given in Table 8.
o x/a=0, 0.20 0.40 0.60 0.80 0.90 1.00
0.0 1.838 1.626 1.440 1.276 1.131 1.064 1.000
0.2 1.629 1.425 1.222 1.030 0.858 0.782 0.715
0.4 1.838 1.527 1.228 0.948 0.692 0.575 0.465
0.6 2.208 1.744 1.312 0.917 0.562 0.401 0.253
0.8 2.532 1.902 1.333 0.834 0.414 0.239 0.0894

Table 8. Normalised weight function for the double edge-cracked plate. Function g(x,a) for antisymmet-
ric load, eq.(3.2.10).

in [39] approximate analytical relations for h® and h® are given.

3.3 Internal through-the-thickness crack in a plate

3.3.1 Central internal crack

Figure 28 illustrates the geometry of a finite plate with a central internal crack. In case of tensiie
loading the geometric function is given by [4], [12]

2 3
1 — 0.5¢ +0.37¢° —0.044«
Ytension = /7 (3.3.9)

Ny

For pure bending with an applied bending moment M the stress intensity factor can be written in
the form

Kbend = "* «/;Ybend (3'3'2)

with the outer fibre bending stress o*
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N = M (3.3.3)

2w?B
and the related geometric function [4]
1—
Ypong = @ —————“1;—‘1:"— (1+ 0.50 + 3842 —11/160> +0.4640*) (3.3.4)
—a

For internal cracks under bending load it should also be mentioned that the solution eq.(3.3.4) is
only applicable if it is ensured by a superimposed tensile loading that no crack closure occurs at
the compression side.

3.3.2 The eccentric internal crack

For fracture mechanical test specimens the central crack is often used. He represents an ideal
case. In real tests - i.e. fatigue tests - it is possible that the crack will propagate at its two ends
differently and, therefore, eccentricities may result. Figure 29 shows the geometric data. The
solution proposed by Isida [40] reads

Ka=o0.a Ya(e, 4) , Kg=o./a Yg(s A) (3.3.5)
with
e=Xy-—-WIW , A=al(W-xy) (3.3.6)

and
19 19
Y u(e, 2) = /7 (1 +> c,,x") L Ye(e ) =T (1 + (- 1)"c,,,1"> (3.3.7)
ne=2 n=2

with the coefficients C, listed in Table 9.

& C. Cy Cs Cs Cs G Cs Cs Cu

0 0.5948 0 0.4812 0 0.3963 0 0.3367 0 0.2972
0.02 0.5726 | 0.0339 | 0.4462 | 0.0315 | 0.3548 | 0.0433 | 0.2817 | 0.0464 | 0.2498
0.04 0.5535 | 0.0639 | 0.4173 | 0.0574 | 0.3234 | 0.0759 { 0.2608 | 0.0788 | 0.2208
0.06 0.5371 | 0.0803 | 0.3936 | 0.0785 | 0.2998 § 0.1003 | 0.2400 | 0.1014 | 0.2035
0.08 0.5231 | 0.1134 | 0.3743 | 0.0958 | 0.2823 | 0.,1185 | 0.2263 | 0.1172 | 0.1939
0.10 0.5112 | 0.1335 | 0.35685 | 0.1099 | 0.2694 | 0.1319 | 0.2175 | 0.1281 | 0.1890
0.20 0.4761 | 0.1975 | 0.3155 | 0.1485 | 0.2428 | 0.1576 { 0.2073 | 0.1467 | 0.1904
0.30 0.4635 { 0.2179 | 0.3016 | 0.1571 | 0.2374 | 0.1538 | 0.2083 | 0.1428 | 0.1936
0.40 0.4555 [ 0.2126 | 0.2922 [ 0.1507 | 0.2282 | 0.1405 | 0.2012 | 0.1310 | 0.1860
0.50 0.4404 | 0.1939 | 0.2754 | 0.1364 | 0.2113 | 0.1236 | 0.1832 | 0.1154 | 0.1677
0.60 0.4123 | 0.1707 | 0.2473 | 0.1182 | 0.1841 | 0.1061 | 0.1574 | 0.0989 | 0.1428
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0.70 0.3704 | 0.1495 | 0.2108 | 0.1029 | 0.1529 | 0.0905 | 0.1288 | 0.0841 | 0.1175
0.80 0.3197 | 0.1341 | 0.1735 | 0.0899 | 0.1246 | 0.0783 | 0.1063 | 0.0727 | 0.0969
0.90 0.2729 | 0.1264 | 0.1449 | 0.0814 | 0.1051 [ 0.0706 | 0.0810 | 0.0656 { 0.0837
1 0.25 0.125 | 0.1328 | 0.0781 | 0.0967 | 0.0671 | 0.0836 | 0.0618 | 0.0766
£ Cn Ce Cis Cu Cis Ci Cn Cu Cis
0 0 0.2713 0 0.2535 0 0.2404 0 0.2300 0
0.02 0.0533 | 0.2219 | 0.0576 | 0.2021 | 0.0627 | 0.1873 | 0.0669 | 0.1756 | 0.0711
0.04 0.0878 | 0.1948 | 0.0920 | 0.1774 | 0.0974 | 0.1650 | 0.1011 | 0.1558 | 0.1048
0.06 0.1099 | 0.1810 | 0.1127 | 0.1668 | 0.1167 | 0.1575 | 0.1189 | 0.1512 | 0.1212
0.08 0.1241 | 0.1749 | 0.1251 | 0.1638 | 0.1275 | 0.1570 | 0.1284 | 0.1528 | 0.1294
0.10 0.1331 | 0.1731 | 0.1325 | 0.1644 | 0.1336 { 0.1594 | 0.1334 | 0.1567 | 0.1337
0.20 0.1447 | 0.1817 | 0.1413 | 01772 | 0.1396 | 0.1748 | 0.1383 | 0.1735 | 0.1376
0.30 0.1387 | 0.1854 | 0.1355 | 0.1806 | 0.1336 | 0.1776 | 0.1324 | 0.1757 | 0.1318
0.40 0.1266 | 0.1771 | 0.1236 [ 0.1715 | 0.1218 | 0.1679 | 0.1205 | 0.1654 | 0.1197
0.50 0.1111 | 0.1585 | 0.1082 | 0.1526 | 0.1063 | 0.1487 | 0.1049 [ 0.1459 | 0.1040
0.60 0.0949 | 0.1343 | 0.0921 | 0.1289 | 0.0902 | 0.1252 | 0.0888 [ 0.1225 | 0.0877
0.70 0.0804 | 0.1104 | 0.0779 | 0.1060 | 0.0761 | 0.1030 | 0.0747 { 0.1007 | 0.0736
0.80 0.0694 | 0.0915 | 0.0672 | 0.0881 | 0.0655 | 0.0858 | 0.0643 | 0.0840 | 0.0632
0.90 0.0626 | 0.0796 | 0.0606 | 0.0770 | 0.0591 | 0.0752 | 0.0579 | 0.0737 | 0.0570
1 0.0585 | 0.0724 | 0.0562 | 0.0697 | 0.0544 | 0.0678 | 0.0529 | 0.0662 | 0.0517
Table 9. . Coefficients for eq.(3.3.7).

In case of the slight eccentric crack under tension the geometric function can be calculated for
a/W < 0.8 as proposed in [15]. With the relative eccentricity xy/W (see fig.29) it holds (3 = X — Xy)

and

with
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Figure 28. Geometric data of a plate with a central internal through-the-thickness crack

3.3.3 Weight function for the central internal crack

In section 2.2 the general case of an eccentric internal through-the-thickness crack has been
considered. Approximate weight functions were determined by use of continuity conditions for
the crack opening displacement field. In the special case of a central crack with x, =0 exposed
to a symmetric load, the crack opening displacement field must be symmetric with respect to the
center-line, too. Therefore, all conditions of continuity can be satisfied already by a properly
chosen set-up for the displacements. This fact suggests a series expansion of type:

o0
V= Aa? —x) (3.3.11)
v=0

Introducing eq.(3.3.11) into (2.2.2) one finds that the weight function corresponding to the crack
tip A of fig.28 has the form

OO
B
ha= Z( a _vx +Dv>(a2 _Xz)v+1/2 » Bo= ;——:a (3.3.12)

At point B it holds

B
o= ) (gt 0, ) - (8319

v=0

The first unknown coefficients can be determined by an adjustment of eqs.(3.3.12) and (3.3.13) to
known reference stress intensity factor solutions. Appropriate reference solutions are given by
eq.(3.3.1) for tension and by eq.(3.3.2) for bending.
The conditions yielding the coefficients then read:
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a
f ha(x.a)dx = /a Yiension (3.3.14)
a

and

a
f ha(x:8) = dx = \/a Ypeng (3.3.15)
~a
The two conditions allow the coefficients By, D, of the expansion (3.3.12), (3.3.13) to be deter-
mined.

In this context, it should be mentioned once more that in the representation of the crack opening
displacement field according to (3.3.11) - only appropriate for central cracks - the geometric con-
ditions have already been introduced and will therefore not provide additional coefficients. A sol-
ution of high accuracy has to be expected with only a few coefficients known.

Introducing eq.(3.3.12) and (3.3.13) into eq.(3.3.14) and eq.(3.3.15) yields, after analytical inte-
gration, the two coefficients

4 (2 1
B, = 5 <?ybe,,d— > (3.3.16)

N

2 1 4 1
D0=a_3/2—<—1r—ytension _Tybend+_ﬁ_> (3.3.17)

The weight function for an internal crack in an infinite body is

h(x,.a) = .__1_( atx )”2 (3.3.18)

/n_a a—Xx

The weight function for an internal crack in an infinite body under symmetric load is ([12])

h(x.a) = (3.3.19)

1 a+x \"? a—x\'? 2 a
ﬁ[(a-x) +(45%) ]=ng

3.3.4 Weight function for the plate with eccentric internal crack

For eccentric cracks under tension Isida [40] provided the stress intensity factors at the points A
and B. Taking these solutions as the reference case the weight function can be determined by
direct adjustment [25]. In order to fulfill a priori the well-known limit case of an internal crack in
an infinite body, a set-up is suggested that reads for the right-hand crack tip

1/2
hy= J% [( : f:ﬁ: ) + A= nja)(1 + nfa) } (3.3.20)
and for the left-hand crack tip
1 1—nla "
hey= \/n—a— < 1+ n/a ) + A, \/(1 - nja)(1 + n/a) (8.3.21)
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Figure 29. Eccentric crack in a plate. Geometric data

The relations for the determination of the coefficients then read

n=a
Ky =op/ma Fr=‘70_[ h,dn =ma (1+ A,f2)

n=—a
n=a
Ko = ogyma Fp= oof hydn = Jma (14 A[2)
n=—a
and the coefficients result as
A =2(F.—1) , Ap=2(Fp—1)

Finally, the weight function is represented by

[1+nla | 1 1
h, = Fr—1J1—
r na ] [——_—‘1_"/3 + ( ) ﬂ/as

1—y/a 1 ]
hy= + (Fo=DV1+nja
¢ "8 | J1+na ]
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Figure 30. Geometric data of a tube with internal circumferential crack.

3.4 Tube with an internal circumferential crack

Stress intensity factors for a tube with a circumferential crack (fig.30) are given graphically in
[12] for axial tension. These data are based on calculations performed by Erdogan [41]. For
application of the weight-function method to arbitrary axis-symmetric stress distributions know-
ledge of an analytical expression for the weight function is advantageous. If we fit the curves
given in [12] with respect to the relative crack depth « as well as to the ratio of the inner and
outer radii r/R, we find for the ranges 0<a<1 and 0.1<r/R<0.9 the representation

P a
K1=:(’R—2:—r‘2*)‘«/a_y(ﬁ,a) . e=p (3.4.1)

with

[ )
(1+ B) + 1.989(1 — &) + a(1 — &) A, (3.4.2)
\/1‘-(1 \/”2_4 v=0/z=0 g

B=riR (3.4.3)

The coefficients A,, are

Ao A A A
u=0 -13.779 56.546 -83.814 41.688
p=1 79.931 -397.34 656.81 -339.45
p=2 -211.20 1112.23 -1927.36 1047.50

62




p=3 247.79 -1325.67 2322.80 -1267.64
p=4 -105.96 565.64 -990.34 ' 537.86
Table 10. . Coefficients for eq.(3.4.2).

Il

The weight function has been computed with this reference solution according to eq.(2.4.1).

_E r+x 9
" Ky, r+a oa

The results for the range 0.5<f<0.9 are represented in the form

h(xa) = /2 —1_1———

xja

2

3
143 Y Cpalp( XY (3.44)

n=0 m=0

where the coefficients C,,, were determined with a fiting procedure. The coefficients have been
entered in Table 11.

| m n=0 1 2

0 0 0.80137 -1.1649 0.33825
0 1 -0.11388 1.44533 -1.29982
0 2 0.84485 -3.3088 2.38357
0 3 -0.77471 2.11490 -1.29124
1 0 -8.85424 11.9009 -3.11618
1 1 23.9875 -42.8237 18.2163
1 2 -30.5091 58.3554 -26.2457
1 3 18.3067 -30.3985 11.1994
2 0 8.67902 -8.27454 -0.39735
2 1 -22.1278 39.9879 -16.0307
2 2 25.6029 -46.4916 16.8626
2 3 -3.67007 2.11845 3.67886

Table 11. . Coefficients for eq.(3.4.4),

In fig.31 the weight function eq.(3.4.4) is compared with data scarcely available in the literature.
Labbens et al. [43] reported a weight function especially for r/R = 5/6 and 10/11. FE-calcula-
tions were performed by Mattheck et al. [42]. These data have been entered as circles in fig.31.
Good agreement between all data has been found.

For rough estimations a much simpler weight function can be provided using the direct adjusting
method (section 2.5) taking into consideration the reference loading case for tension (eq.(3.6.2))
and the surface condition for the second derivative. It results from eqs.(2.5.5) and (2.5.21)

/2 (5 - S ey 5 Y- )32
h= ”a[m+<4«/ﬂ/2Y—1)«/1 p+(12 Jr2Y 3)(1 e) ] (3.4.5)

with Y taken from eq.(3.4.2).
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Figure 32. Weight function for the circumferential internal crack. Solid lines: weight functions according to
eq.(3.4.4), dashed lines: weight functions computed with eq.(3.4.5).
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Figure 31. Weight function for the circumferential internal crack. h'=h/R —r , r|[R=5/6; solid line:
eq.(3.4.4), dashed line: Labbens et al. [43], circles: Mattheck et al. [42].
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Figure 33. Geometric data of the tube with an external circumferential crack

3.5 Tube with an external circumferential crack

By fitting the stress intensity factors computed by Erdogan [41] for tension - represented graph-
ically in [12] - one obtains, as in case of the internal circumferential crack, the geometric func-

tion for the ranges 0<«<1 and 0.1<$<0.9 (8 =r/R)

_A+1B | 1988 afm _ 3.0 & gy
Y= = | T 1/p ( oc)+————\/;2__;+a(1 a)VZO#ZOAM B (3.5.1)

The coefficients A,, are

Ay A A A
u=0 -1.1186 3.2374 -4.6826 2.8760
p=1 51738 -23.471 46.896 -30.835
p=2 -27.767 130.08 -255.84 179.32
u=3 47.959 -233.06 455.44 -316.32
p=4 -31.866 162.15 -317.09 216.91

Table 12, . Coefficients for eq.(3.5.1).

The weight function has been computed with eq.(2.4.6)

h____E_'_R—x_air_
=X, R—a da

The results are given for 0.5<£<0.9 in the form
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Figure 34. Weight function for the circumferential external crack. Solid lines: weight functions according to
eq.(3.5.2), dashed lines: weight functions computed with eq.(3.5.3).
2

3
h(xa) =/ == —i——— 1+ 0 B alp™( L) (3.5.2)

x/a ,n=0 m=0

where the coefficients B;,, were determined with a fitting procedure. The coefficients are en-
tered in Table 13.

| m n=0 1 2

0 0 1.2865 -1.7366 0.4050

0 1 -1.0099 2.1553 -1.0853

0 2 0.7656 -2.2599 1.4614

0 3 -0.1689 0.7548 -0.5844
1 0 -8.8095 12,2236 -2.9570
1 1 22.3252 -44.2390 20.6794
1 2 -15.1687 45.4140 -29.4765
1 3 1.6107 -12.1872 10.6199
2 0] 26.6098 -33.6693 6.2652

2 1 -50.1784 88.0529 -35.8013
2 2 21.2610 -72.4823 50.4406
2 3 16.7369 -2.7446 -14.5721

Table 13. . Coefficients for eq.(3.5.2).

A simpler weight function results from direct adjusting method (section 2.5)
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h= ;25-[—7”——+(—3—Jn/2 ) B +(—%\/n/2 v——g—)a—p)s’z} (3.5.3)
vi—p

with Y taken from eq.(3.5.1).

3.6 Tube with an axial crack

3.6.1 Tube with an internal axial crack

Geometric functions for the axial internal crack in tubes exposed to power-shaped stress distrib-
utions were reported by Andrasic und Parker [44] for R/r=1.25. In order to include also thin-
walled tubes, the stress intensity factor soiutions for the flat plate - constituting the limit case r/R
—1 - were additionally taken into consideration and, together with the data from [44] plotted in
fig.36. It holds

Ki=opfa Yp(rlR, &) a(x)=a,,(ﬁ"77) , a= R‘f’_f (3.6.1)

The geometric function in the ranges 0 < a < 0.6 and 1 < R/r < 1.75 can be described by

Y, = F:L)_s—’? Y A+ IR)” (3.6.2)

with the coefficients given in Table 14 to Table 17.

A An A A A
p=0 2.2069 16.933 -126.67 293.43 | -123.665
p=1 -0.4700 | -38.366 | 276.042 | -604.97 239.28
p=2 0.3293 24.729 -184.51 389.60 -142.3
p=3 -0.0765 -5.431 40.716 -83.399 28.584

Table 14. Tube with internal axial crack. Coefficients for eq.(3.6.2), (n=0).

An A A Au Aus
u=0 1.1802 8.7853 -65.067 145.041 -70.304
p=1 0.0426 -20.829 140.291 -298.00 138.24
n=2 -0.0296 13.643 -93.90 183.80 -84.69
pu=3 0.0065 -3.0148 20.716 -44.575 17.312

Table 15. Tube with internal axial crack. Coefficients for eq.(3.6.2), (n=1).

Auo An1 Au2 Au3 Au-t
= 0.8513 6.0221 -45.145 99.645 -52.883
u=1 0.1672 -14.70 96.872 -206.284 106.042
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Figure 35. Geometric data of tubes with internal and external axial cracks.

p=2 -0.1142 8.6891 -65.079 135.261 -67.146
u=3 0.0256 -2.1446 14.410 -29.335 14.164

Table 16. Tube with internal axial crack. Coefficients for eq.(3.6.2), (n=2).

A A A Ay A
pu=0 0.7118 4.0775 -32.106 71.523 -39.756
u=1 0.1442 -10.419 68.863 -148.31 80.262
w=2 -0.0974 6.879 -46.324 87.670 -51.381
u=3 0.0216 -1.5248 10.280 -21.289 10.964

Table 17. Tube with internal axial crack. Coefficients for eq.(3.6.2), (n=3).

Since a number of 4 reference ioading cases is given before, it is very easy to provide a weight
function for this crack probiem. Consideration of the loading cases with n =0 and n = 1 gives for
instance by application of the adjusting method (section 2.5)

- j2 1P _ — )32
h= na[ s +Do\/1—p +D4(1—p) ] (386.3)
with the coefficients
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Figure 36. Geometric function for the axial internal crack exposed to power-shaped stress distributions.

Y =Y(1 — a)¥?fan
D, = 35 /= _5 4 35
1 4 2 (YO 20 Y1) 3

The geometric functions are given by eq.(3.6.2). The accuracy may be increased strongly by use
of an additional loading case.

(3.6.5)

3.6.2 Tube with an external axial crack

Also for the tube with an external axial crack the relations (3.6.1) and (3.6.2) are applicable. In
this case the origin of the x-axis is at the outer surface. A fitting procedure similar to that ap-
plied to the internal crack yields the coefficients entered in Table 18 to Table 21.

A A A An A
pu=0 2.156 14.028 -89.22 210.0 -71.963
u=1 -0.3670 -34.229 206.438 -451.72 147.00
u=2 0.2622 23.183 -143.86 302.26 -81.835
p=3 -0.0610 -5.119 32.229 -65.877 18.694
Table 18. Tube with external axial crack. Coefficients for eq.(3.6.2), (n=0).
Ao A A Au A
uw=0 1.1936 7.3065 -47.627 105.31 -44.803
u=1 0.0249 -18.337 106.37 -222.57 90.209
p=2 -0.0085 12.331 -72.862 147.35 -56.315
u=3 0.0008 -2.715 16.15 -31.827 11.465
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Table 19. Tube with external axial crack.

Coefficients for eq.(3.6.2), (n=1).

A A A A A
p=0 0.8571 5.247 -35.34 77.25 -38.68
p=1 01487 | -13.418 | 77769 | -163.22 | 79.501
p=2 -0.0969 9.035 -53.20 109.13 -51.68
p=3 0.0210 -1.996 11.832 | -23.871 11.031

Table 20. Tube with external axial crack.

Coefficients for eq.{3.6.2), (n=2).

A A A A A
u=0 0.7208 3.365 -24.151 52707 | -27.074
p=1 0.1194 -9.114 52999 | -111.17 55.65
p=2 -0.0760 6.108 -36.18 74.36 -36.29
p=3 0.0161 -1.345 8.049 -16.31 7.802

Table 21. Tube with external axial crack.

Also for the external axial crack the weight function is given by eqs.(3.6.3) to (3.6.5).

Coefficients for eq.(3.6.2), (n=3).
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3.7 Circular disc with a crack

3.7.1 Disc with an edge crack

Circular discs and cylinders are of special interest in case of rotating components. A disc of
diameter D with an edge crack of length a is shown in fig.37.

Figure 37. Edge-cracked disc. Geometric data.

The circular disc is one of the rare fracture-mechanical problems for which exact solutions for
the reference stress intensity factors are available. Furthermore, the disc is the only finite com-
ponent, for which an exact solution exists [33]. In case of a homogeneous stress over the crack
the geometric function is given by Gregory [33] as

yo=_ﬂ§§é_2_ , a=alD (3.7.1)
(1- o)
For a quadratic stress distribution,
9 2
o(x) = ao<1 - —b’i ) (3.7.2)

one obtains from [33] the geometric function plotted in fig.38. These data are compared with
results of Rooke and Tweed [45] for a/D < 0.5 (extrapolated by Tada [12] up to a/D =1). For
more convenient use the results provided by Gregory [33] are fitted as

V= —1988 (4244314 + 3.24276% — 1.81060> + 0.344044*) (3.7.3)
(1 - a)®?

71




2.0

e Gregory
— Rooke

---Tada

tn
o

-~ g™
- -
e e ammo—-——-T

geometric function Y'
@) —
tn Q
g9

i 1 " | N ] i 1 2 ]
0095 20 40 0 80 7,00

Figure 38. Geometric function for an edge-cracked disc under quadratic stress distribution.
presentation Y’ = Y(1 — )32,

Normalised re-

with maximum deviations of +1%. The weight function has been determined using the two ref-
erence loading cases and the two geometric conditions given by eqs.(2.5.21) and (2.5.22) in [25],

resulting with p = x/a in

h(x,a) = /= [—T\/i_: + D /T—p +Dy(1 = p)*2 + Dy(1 = p)°% + Dy(1 —

-Pp
with the coefficients D,...D; obtained from the system of linear equations
Dy —3D4 — 15D, — 35D; = 4
Dy — D4 + 5D, + 35Dy =6

2 2 2 2
?Do'*"?D‘] +7D2+?D3=R1

cOpy +cMp, +c®p, + c®p, =R,

with
CO_Z 16, 84
L 1, B
c® —g———;—g—a+—1—gg—7a2
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and

Ry=Yo/a2 —5

(3.7.7)
_ 384 o2
Ro=Yoym2 — 15 ~ 705 *
The weight function resulting from eqs.(3.7.5), (3.7.6) and (3.7.7) is represented in Table 22 [25]
h= 9. *) 3.7.8
32 (3.7.8)
™ fi=p (1-a)
o p=0 0.2 0.4 0.6 0.8 0.9 10
0.2 2.440 2.058 1.683 1.325 0.996 0.848 0.7155
0.3 2.769 2.265 1.785 1.337 0.932 0.750 0.5857
0.4 3.0982 2.466 1.881 1.345 0.868 0.656 0.4648
0.5 3.410 2.661 1.970 1.347 0.804 0.567 0.3536
0.6 3.726 2.850 2.052 1.344 0.740 0.481 0.2530
0.7 4,041 3.033 2.126 1.334 0.674 0.399 0.1643
0.8 4.356 3.211 2.192 1.315 0.606 0.322 0.0894
0.9 4.650 3.373 2.245 1.291 0.541 0.254 0.0316
1.0 4,978 3.562 2.314 1.259 0.445 0.157 0.0000
Table 22. Weight function. Normalised representation g(p,x) according to eq.(3.7.8).
If only the two reference solutions are applied, one obtains
/ 2 P 3/2
h(x,a) = ——[———~+D,/1—p +Dy(1—p) ] (3.7.9)
na /"—““1 — o 0
with the two coefficients Dy and D,
6615 4 64 128 2
Dy = Yo |2 =+ ma——a" —
179262 — 20164 . 37157 35
(3.7.10)
4 8 32 2
(Yox/u/2 —-3 )(1 ——7—a+ 63 ¢ )]
and
Dy =2 a2 Yo — 2~ 20, (3.7.11)

Taking into consideration also the next term of the expansion, namely
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Figure 39. Weight function for the edge-cracked circular disc. Normalised representation h’ = h\/D

h(x.a) = /2 [ ——\/1—”;— + D1 =p +Dy(1 = p)*? +Dy(1 = p)5/2] (3.7.12)

-p
we obtain with the condition - h'' =0 for p=0 -

Do ""3D1 - 15D2 = 4

2 2 2. 4
g Do+ g Dr1+5 D =Yovn/2 —3 (3.7.13)
cOpy+ cMp, + P, = v, /z2 - (? e 2)
with
c® - 2 16 o+ 64 o2
3715 *T 05 ¢
W_2 _16 64 2
=% —rat g (3.7.14)
@_2 16 64 2
C =553 %" 593 *
The coefficients Dy, Dy, D, yield
180R, — ¢()(525R, + 40) + c®(105R, + 56)
Do = ©) ) 2
180c@ — 360c™ 4 84c®
—360R, + cO(525R, + 40) + c®(35R, — 280/3
D, = 2 (525R4 + 40) (35R, 13) (3.7.15)

180c@ — 360c™ + 84c®@
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84R, — CO(105R, + 56) — CV(35R, — 280/3)
180c® — 360c + 84c®@

2

or fitted to simpler expressions:
Doc(1.5721 + 2.41096 — 0.89680° — 1.4311a%)/(1 — )*/?
D=(0.4612 + 0.5872¢ + 0.74664 + 2.2131a°)/(1 — o)/ (3.7.16)
Dye( — 0.2537 + 0.4353x — 0.28514° — 0.58534°%)/(1 — a)°/2

The weight function resulting from eqs.(3.7.12)-(3.7.15) is illustrated in fig.39.

3.7.2 A circular dise with a central erack

For the circular disc with central crack two reference solutions are known. Rooke and Tweed
[46], [47] derived stress intensity factors for constant crack-surface loads and quadratically dis-
tributed stresses. For o = const. one can fit the geometric function Y, as

Jr 1 —0.50 + 1687302 —2.671«° + 3.2027a" — 1.893504°

Ji—o |

In case of a stress distribution described by

a=alR  (3.7.17)

Yo=

2
X
o=oo( %) (3.7.18)
the geometric function can be approximated as

2 3 4 5
\/;; 0.5 —0.25a + 0.44210° —1.1091a~ +1.5591a " —0.8674« (3.7.19)

N

It is evident that with these two solutions for symmetric stresses only a symmetric weight func-
tion can be derived. An appropriate set-up for the symmetric weight function is given by

2 L D 1—p2 + D, (1= D4 (3.7.20)

h =
symm \/’1;]* r——'—1 _ p2

Because of the symmetry, the weight functions correspond to the crack tips A and B of fig.40.
Adjusting the weight function to the two reference load cases, €q.(3.7.17) and (3.7.19), vields the
coefficients

Y2=

4 24

Dy=——=Yo+—2Y,—8
0 \/1:_ 0 \/11'_ 2
(3.7.21)
8 32
D,= Yo — Y,+8
1 \/;r— 0 \/1—[- 2

75




Figure 40. Centrally cracked circular disc. Geometric data.

_ 8~ 40 +3.86124° —15.9344a> +24.6076«* —13.2345"

D -8
0 Ji—a
b 8 — 4o +0.64884° —14.12324° +24.26964* —12.5964°
1= +8
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(3.7.22)

(3.7.23)

Figure 41. Symmetric weight function for a central crack in the circular disc. Normalized representation

(h* = hafzaf2 ).
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3.8 Round-CT-specimen

Weight functions are known for the special case of a disc, which is identical with the RCT-speci-
men if the load application holes are neglected. As a consequence of Saint Venant’s theorem,
the differences between the disc and the RCT-specimen have to be expected to occur only near
the load application holes, i.e. for x~0 (fig.42).

In order to take into account the influence of the real geometry, the weight function of the
RCT-specimen will be derived additionally.

Figure 42, Round-CT-specimen (RCT). Geometric data.

For the specially chosen test specimen (RCT-specimen, see fig.42) Newman [48] determined
stress intensity factors and CODs at different locations of the crack surface. The stress intensity
factor solution of Newman [48] can be written as

2 3 4

p (2 + 2)(0.76 + 4.82 —11.584% + 11.436° —4.084)

K,=UO,\[W FI s GO=—WT s F’= (1 )3/2 (3.8.1)
i 4

(t=thickness, P=applied load). The results for the RCT-specimen obtained with the procedure
described in Section 2 are illustrated in fig.43.

Table 23 shows the weight-function values in a representation which lends itself easily to in-
terpolation by bicubic splines

/ g(x/a, a)
h= 3.8.2
J1=xja (1—a)*? (382

Using the data from Table 23, the weight function can be expressed within £1% accuracy by the
approximation formula

= _2_ 1 o N3)2 _ +1 o)
h=/-% N [(1 02+ D,,(1 — xja)* +'(@) ] (3.8.3)
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Figure 43. Weight function for the RCT-specimen. Influence of the crack depth.

o x/a=0.0 0.2 04 0.6 038 08 0.95 1.0
0.2 2.081 1.848 1.603 1.337 1.044 0.885 0.801 0.716
0.25 2.305 1.872 1.642 1.314 0.984 0.818 0.734 0.650
0.3 2.501 2.085 1.686 1.303 0.936 0.759 0.672 0.586
0.35 2,673 2.185 1.725 1.294 0.894 0.705 0.614 0.524
04 2.830 2.277 1.761 1.286 0.854 0.654 0.558 0.465
0.45 2.985 2.367 1.797 1.279 0.815 0.604 0.504 0.408
0.5 3.151 2.464 1.837 1.273 0.778 0.557 | 0.453 0.354
0.55 3.338 2.577 1.886 1.272 0.742 0.510 | 0.403 0.302
0.60 3.551 2.708 1.943 1.273 0.707 0.465 0.355 0.253
0.7 3.997 2.975 2.055 1.267 0.632 0.376 0.265 0.164
0.8 4.062 2.966 1.995 1.475 0.531 0.283 0.179 0.089

Table 23. Weight function for the Round-CT specimen.
cording to eq.(3.8.3).

Normalised representation g(x/a, «) ac-

v p=0 1 2 3 4
0 2.826 -5.865 0.8007 -0.2584 0.6856
1 -10.948 48.095 -3.839 1.280 -6.734
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2 35.278 -143.789 6.684 -5.248 25.188
3 -41.438 186.012 -4.836 11.435 -40.140
4 15.191 -02.787 -0.7274 -7.328 22.047

Table 24. . Coefficients for eq.(3.8.3).

3.9 Stress intensity factors and weight functions for cracks in
front of notches

Under externally applied loads, notches are acting as stress concentrators. Therefore, cracks
emanating from the notch root are of special interest in general fracture mechanics. Stress in-
tensity factor solutions are available in the literature for externally applied tensile and bending
loads [48]-[53]. In many cases the stress in front of a notch is not caused by external forces.
Such cases are for example:

»  Crack surfaces directly loaded by internal pressure (pipes, vessels),
e cracks influenced by thermal stresses near the notch root,
e cracks in coarse-grained ceramics with crack-surface interaction.

The weight-function method is an appropriate procedure for the computation of related stress
intensity factors under such special loadings.

3.9.1 Internal elliptical notches

The stresses in front of internal notches are available only in cases involving simple geometry
and mechanics. This is true for elliptical notches in infinite bodies, for which the problem has
been solved by Muskelishvili ([1]) and other authors. The stress distribution at an elliptical
notch in an infinite body under uniaxial remote tensile stress o, results as ([54],[55])

2
o a b(a—b
(@a—b)Y—~=b’+ Ld a—2b+————— ( - )2 (3.9.1)
° x2 —a? +b? k" —a +b
2 Ox 2 alx| b%(a —b)
@-b)y-s=—-a"+———la (3.9.2)
o 2 2 2
0 % —a’ +b? x"—a"+b

with ¥ = x + a. o, is the stress component perpendicular to the half-axis a and o, is the compo-
nent in direction of the half-axis a, (fig.44). The radius of the notch root is given by

The maximum stress at x =a is

oy,max/o0=2-/alp +1 (3.9.4)

A notch in an infinite body is shown in fig.45a. Its length is 2a and the notch radius is p. A small
one-dimensional crack of length ¢ is placed at the notch root. The infinite body is loaded by a
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Figure 44, Elliptical notch in an infinite body. Notch under remote tensile stresses oy,

tensile stress aq. In order to allow analytical calculations to be made, the notch is replaced by a
slender ellipse of the same length and the same radius p (fig.45b).
The stress intensity factor of the crack/notch-configuration may be written as

Ki=oo(1+2alp ) Fofnt (3.9.5)

The geometric function F can be concluded from results of Newman [48] obtained with the Boun-
dary Collocation Method. In [48] stress intensity factors for cracks at the root of elliptical notches
in an infinite body are given for values a/p =1/16,1/4,1,4, and 16. These data were also used in
Schijve’s [51] analysis.

a) < -

|+ za e
) >

Figure 45. A small crack in front of an internal notch. a) slot-shaped-notch, b) elliptical notch.
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Figure 46. EMliptical notch. Stress intensity factors for small cracks at a notch root (Newman [48]).

The resulting geometric function is plotted in fig.46. It should be noted that for small values of
¢|p the geometric function F is only dependent on ¢/p and nearly independent of the ratio a/p.
In fig.47 the resulis of Newman for the narrowest ellipse (a/p =16) are compared with results
calculated by Nisitani and Isida [58] which were obtained for the same value a/p by parabolic
interpolation of tabuiated data (represented in [14]). The agreement is excellent. The solid line
describes the solution for ajp — oo given in (Nisitani and Isida [58]). There is obviously no signif-
icant deviation from the data resulting for ajp = 16. The additionally drawn dashed curve repres-
ents the approximation of Lukas and Klesnil [57] which does not contain a/p:

F
1.
o0 o= gfp=16
- —q/o = aD
0.50+

] " 1 ——

—

o.oeo 3
I/

Figure 47. Elliptical notch, Comparison of stress intensity factors for a/p>1; symbols: a/p =16 (squares:
Newman [48]; circles: Nisitani and Isida, [58]); curves: solid line a/p — oo, dashed line eq.(3.9.6)
(Lukas and Klesnil, [57]).
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Figure 48. Elliptical notch. Stress intensity factors for small cracks in front of elliptical notches normalised
to the “long-crack” solution K*

1 d 1
0'09)0 40 .BlO

Fo_ 14215 (3.9.6)

J1+45¢]p

Their formula is in good agreement with the solution for a/p — oo of Nisitani and Isida.

If we normalise the stress intensity factors described by eq.(3.9.5) on the stress intensity factors
for long cracs K* = oo/m(ay + ¢) , we observe the well-known behaviour of an “overshooting” of
short-crack stress intensity factors over the long-crack values (fig.48).

5.0
h '
4.0
3.0+
edge-crack A )
e 3
e 1/10
- . l 1/3
internal crack 1
1 ' | l '
095 20 40 60 - -~

Figure 49. Weight function for an elliptical notch. Normalised weight function for cracks in front of an
internal elliptical notch: h’ = h+/nf|2 for a/p=186; solid lines: limit cases for edge-crack in a
plate and internal crack in an infinite body.
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In order to determine the weight function for the crack/notch-problem the numerical results of
Newman [48] and Nisitani and Isida [58] for a/p < 1 were chosen as the reference stress intensi-
ty factor and the stress distribution, eq.(3.9.1), as the reference stress o,, The weight function
data resulting with the procedure described before are shown in fig.49 for the case a/p =16 and
for several ratios ¢/p. In addition, the two limit cases of an edge-crack in a plate (¢/p —0) -
using the solution derived in [27] - and an internal crack through the thickness of an infinite body
{£f]p — o) are entered in fig.49. In case of a symmetric crack/notch-configuration (cracks at both
sides of the notch) which has been considered in [48] and [58], the well-known formula for the
weight function of a symmetrically loaded crack can be rewritten as

_ 1 2a + ¢ +x ¢ —X
hint crack = \/77(?—4'5)_ < 7 —x + %8 1+ 7 +x ) (3.8.7)

£lp x/£=01 02 0.4 0.6 0.8 0.9 1.0
0.0 1.835 1.630 | 1.442 | 1.271 | 1.122 | 1.060 | 1.000
0.1 1.630 | 1.478 | 1324 | 1.188 | 1.082 | 1.038 | 1.000
0.2 1.506 1.383 | 1.255 | 1.144 | 1,060 | 1.028 | 1.000
0.3 1.418 1.319 | 1.212 | 1119 | 1.048 | 1.022 | 1.000
04 1.359 1.276 | 1.187 | 1.106 | 1.041 | 1.020 { 1.000
0.6 1.294 1.227 | 1.159 | 1.090 | 1.034 | 1.015 | 1.000
0.8 1.252 4.200 | 1141 | 1.080 | 1.029 | 1.015 | 1.000
1.0 1.228 1.180 | 1.128 | 1.072 | 1.026 | 1.013 | 1.000
Table 25. Normalised weight function. g(x/#, #[p) for ajp = 1.

¢lp x/¢=0] 0.2 0.4 0.6 0.8 0.9 1.0
0.0 1.835 1.630 | 1.442 | 1.271 | 1.122 | 1.060 | 1.000
0.1 1.622 1.473 | 1.319 | 1.185 | 1.080 | 1.037 | 1.000
0.2 1.492 1.374 | 1.247 | 1.137 | 1.056 | 1.026 | 1.000
0.3 1.406 1.304 | 1.198 | 1.107 | 1.042 | 1.018 § 1.000
0.4 1.345 1.254 | 1165 | 1.089 | 1.034 | 1.014 | 1.000
0.6 1.270 1.195 | 41.128 [ 1.069 [ 1.026 [ 1.011 | 1.000
0.8 1.217 1.165 | 1.108 | 1.057 | 1.020 | 1.008 | 1.000
1.0 1.177 1.147 | 1.094 | 1.050 | 1.017 | 1.007 | 1.000
Table 26. Normalised weight function. g(x/Z, £[p) for ajp = 4.

£lp x{£=01 0.2 0.4 0.6 0.8 09 1.0

0.0 1.835 | 1.630 | 1.442 | 1.271 | 1.122 | 1.060 | 1.000
0.1 1.593 | 1.449 | 1.302 | 1.173 | 1.075 | 1.034 | 1.000
0.2 1.470 | 1.351 | 1.229 | 1.125 | 1.050 | 1.022 | 1.000
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0.3 1.393 1.290 | 1.184 | 1.096 | 1.035 | 1.015 | 1.000
0.4 1.338 1247 | 1453 | 1076 | 1.026 | 1.010 | 1.000
0.6 1.259 1.186 | 1.111 { 1.051 | 1.014 | 1.005 | 1.000
0.8 1.202 | 1147 | 1.083 | 1.036 | 1.008 | 1.002 | 1.000
1.0 1.161 1122 | 1.065 | 1.028 | 1.005 | 1.000 | 1.000
Table 27. Normalised weight function. g(x/¢, #/p) for ajp = 16.

In Table 25-Table 27 the weight function is given in the representation

2 g(x/¢.a/p)
_ [ 2 8Wic.alp) 9.8
h wf  [1—x)¢ (382)

which lends itself easily to interpolation. From a practical point of view it is recommended to
perform the interpolation with respect to the inverse parameter p/a or \/p/a .
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Figure 50. Limit cases. Definition of the limit cases for stress intensity factors for a crack in front of an
internal elliptical notch: KM < K < K@,

3.9.1.1 Limit cases for stress intensity factors
Two limit cases for the stress intensity factor of small cracks in front of an elliptical notch can be
identified (fig.50). The lower limit is given by an internal crack of total length 2(¢ +a) which is

loaded by the stress distribution ¢ (eq.(3.9.1)) over the length ¢. The limit stress intensity factor
K" is

¢
KD = '[) hint crack & dx (3.8.9)

where himenc IS given by eq.(3.8.7). For small cracks (¢<p) the situation of an edge crack is
approached which yields the stress intensity factor K@
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Figure 51. Limit cases. Comparison of limit-case solutions with numerical data of Newman [48] for
alp =1

1
K® = J.o heage crack o dX (3.9.10)

with the weight function hedge crack fOr an edge crack in a semi-infinite plate.

Figure 51 shows the limit cases K" and K® together with Newman’s resuits for ajp =1, and in
fig.52 an intercomparison is made for a/p = 16. The agreement between numerical data and the
limit case K™ is very good for ¢/p > 1.5. Therefore, the limit case K is appropriate to represent

F
1,00 a/o =16
0.50F

KU)
00— ey

Figure 52. Limit cases. Comparison of limit-case solutions with numerical data of Newman [48] for
alp =16
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Figure 53. Interpolation of limit cases. Interpolation factor « as a function of the “view angle” w.

the stress intensity factors for ¢/p > 1.5. This asymptotic agreement leads to an interpolation
formula

K=aK®+ (1 -ak® (3.9.11)

In order to characterise the notch-crack-configuration, we introduce a “view angle” o as illus-
trated in fig.53. The crack-tip “sees” the notch under the total angle 2w. The angle w resuits
from simple geometry-related considerations and is given as the solution of the implicit equation

2
a a £ a
—b—tanw[z-tanw—o+?>\/1+<Ftanw) }-{—1:0 (3.8.12)

In fig.53 the interpolation factor a is plotted versus w. The resulting dependency can be approxi-
mated by the simple expression

o~ sin’w (3.9.13)

which is plotted as solid line in fig.53.

3.9.1.2 Limit cases for the weight function

The comparison of the weight function data of fig.49 with the two limit cases leads to an interpo-
lation factor p defined by

h= ﬂh(2) +(1- ﬁ)h(1) (3.9.14)

where h® is the weight function for an edge crack and h® is the value for an internal crack ac-
cording to eq.(3.9.7). It becomes obvious from fig.49 that - in contrast to the interpolation factor «
for stress intensity factors - § must also depend on x/¢. If we ignore this fact and substitute « for
B. we obtain the predicted weight functions represented in fig.54. The comparison between the
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Figure 54. Interpolation of limit cases. Normalised weight function for cracks in front of an internal ellip-
tical notch: h’ = h/nf|2 for a/p=16; solid lines: limit cases h®, h®; broken lines: interpolated
with eq.(3.9.14) (f = a).

weight function of fig.49 and the interpolations of fig.54 shows that the maximum deviations are
of about 3%. This accuracy is sufficient in most practical cases.

Figure 55. Edge notch. A notch in a specimen with a small crack at the notch tip.
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Figure 56. Rectangular edge notch. Stress intensity factor for cracks at the tip of a rectangular notch
under tensile load (ag/W = 0.5).

3.9.2 External notches

An external notch in a body is shown in fig.55. Its length is a, and the notch width is 2d. A small
one-dimensional crack of length ¢ is placed at the notch root. Such notch-crack configurations
are often used in fracture-toughness testing of ceramic materials to approximate naturally sharp
cracks. During the saw procedure small cracks are generated at the notch root. The real geom-
etry of a saw-cut can be approximated by the two iimit cases of a rectangular notch profile and a
circular notch. Notches prepared with thick saw blades tend to adopt a more rectangular shape

3— °
— bending -

N
~
o 2
5 -a- d/W=0.05
Q e 0.1
X -8 0.2

1+

0

Figure 57. Rectangular edge notch. Stress intensity factor for cracks at the tip of a rectangular notch
under bending load (ag/W = 0.5).
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Figure 58. Rectangular edge notch. Normalised stress intensity factors for cracks in front of a rectangu-

lar notch under tensile ioad (open symbols) and bending load (solid symbols) {ao/W = 0.5).

and thin saw blades a more circular shape. The two limit cases will be considered below. Cal-
culations with the BCM were carried out with the geometric data a,/W=0.5 and H/W =1. Figure
56 is a normalised representation of the resulting stress intensity factors for the rectangular
notch under tensile load for different values of the relative total crack length a/W and relative
notch width d/W. The solid line is the result for a crack of length a, + ¢ without notch obtained
by application of the same Boundary Collocation procedure. In fig.57 shows the stress intensity
factors for the bending-load case. Finally, fig.58 shows the ratio of the stress intensity factor for

K/K* circular notch
1‘00_. ....... Bf_'.k.._o._..‘_._ ..... B — e
1£ s & d/W=0.05
J.i e o 0.1
0.50, .0 0.2
—— | 1 n
0.000 1 ]

|/d

Figure 59. Semi-circular edge notch. Normalised stress intensity factors for cracks in front of a semi-cir-
cular notch under tensile load (open symbols) and bending load (solid symbols) (ai)/W = 0.5).
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the notch/crack- configuration to the stress intensity factor K* - representing a crack of the same
total length under the same load

K¥=onaF (3.9.15)

(F= geometric function) - as a function of the ratio #/d. The ratio of stress intensity factors at-
tains the value K,/K*=1 at about ¢/d=1. This is independent of the load case chosen.

The results for the circular notch are plotted in normalised representation in fig.59. The follow-
ing consequences are obvious:

e The stress intensity factor of the crack/notch-configuration increases monotonically with
crack extension.

¢ The stress intensity factor for the crack of length a, + ¢ is an upper limit for the crack at the
notch root. It is obvious that an “overshooting effect” as observed for cracks in front of inter-
nal elliptical notches (fig.48) can hardly be detected for the geometries investigated.

*  For cracks with a length greater than the notch radius (¢ > d) the crack/notch-configuration
can be replaced by a crack of total length a; + ¢.

*  For a semi-circular notch the short-crack solution equals the long-crack solution earlier than
for a rectangular notch.

The stress intensity factors for the circular notch (fig.59) can be expressed by
KIK* ~ tanh(3./¢/d ) (3.9.16)

for ap/W=0.5 and 0.05 < d/W < 0.2. This dependency is entered in fig.60 as a solid curve.

Similar calculations as shown for a,/W=0.5 were performed also for a,/W=0.30 and 0.70. The
final results are represented in fig.61. The results obtained for the relatively wide notches inves-
tigated by BCM can be fitted as in eq.{(3.9.16) by

KIK* =tanh(y\/¢/d ) (3.9.17)
with
3.7 for  ag/W=0.3

y~d 30  for ayW=05 (3.9.18)

2.3 for  ag/W=07

i.e. the value of y decreases with the relative width d/a, of the notch. A theoretical lower limit of
y for dfa, — 0 is y =2.243 as will be shown below,

3.9.21 Stress intensity factors for slender external notches

In case of very small cracks in front of a notch (¢/d — O) the stress intensity factor is given by
K = opax1.1215/nf (3.9.19)

where o, is the maximum stress at the root of the notch. This maximum stress is available
only for special notch problems. One of them is the slender notch with dfa,<1.
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Figure 60. Semi-circular edge notch. Normalised stress intensity factors for cracks in front of a semi-cir-
cular notch (R = d).

Stresses in front of a slender edge notch A simple means of to determining the stresses in front
of a slender notch is given by the procedure of Creager and Paris [61] according to which the
stresses in front of a slender notch of length a, with radius R can be derived from the stress
intensity factor of a crack with the same length. They calculated the stress distribution for arbi-
trarily loaded notches using the corresponding crack solution K(ap).

_ _Kag) 1 _
ay|y=o———ﬁ_§-<1+z> . z=1+2xR (3.9.20)

This relation describes fairly well the near notch-tip behaviour of slender notches (R/a — 0).
Equation (3.9.20) is a good approximation of the stress field for £/d < 1. Additional terms for a
higher order representation (which describes also the far stress field

K(ao) C1 C2 11— C1 - C2
o = (1 e e (3.9.21)

y=0 . /nRz 2

z z
can be obtained from the equilibrium conditions

w oW  for tension
f oy dx = (3.9.22)

ay 0 for bending

and

w W 0 for tension
j ay(x - ) dx = . (3.9.23)
a, M,  for bending

where M, denotes the externally applied bending moment. For ¢ < d we can restrict the stress
analysis to eq.(3.9.20). The maximum stress (x = 0) then results

91




%
KK
, _._._._._._.U_o ..........................
¥ §,°
S0 E w
of %/
© 6o = 0.3
o g;c o 05
g o 0.7
L | N I N 1
9)0 50 1.00 1.50

(1/d)'/

Figure 61. Semi-circular edge notch. Normalised stress intensity factors for cracks in front of a semi-cir-
cular notch (R = d); solid line: eq.(3.9.27), dotted line: eq.(3.9.29).

2K(ap)

Orax = —— (3.9.29)
max \/ﬁ
Stress intensity factors: The stress intensity factor for #<R reads
K = 1.1215\/¢|R 2K(ap) (3.9.25)
Consequently, we obtain
KIK* =2.243./¢|R (3.9.26)

It is important that eq.(3.9.26) is independent of the type of the external load and is valid for ten-
sion as well as for bending. Taking into consideration the long-crack behaviour (K/K* — 1 for
large £/W) one may assume for the total dependency

KIK* = tanh(2.243./¢/R ) (3.9.27)

Equation (3.9.27) is additionally plotted as a solid line in fig.61. Since in the special case of slen-
der notches the two limit stress intensity factors are known, namely K®/K* =1 and K@/K*, one
can check the applicability of the interpolation formula, eq.(3.9.11), for external notches with cy-
lindrical notch roots.

A simple consideration of geometry gives the “view angle”

. d
= —_— .9.28
@ arcsm( F ) (3.9.28)

The prediction resulting from eqs.(3.9.11) and (3.9.13)
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is plotted in fig.61 as a dotted line. The "overshooting effect” predicted by the interpolation pro-
cedure is in reality much less pronounced or completely absent.

In this context, one should keep in mind that the stress distribution given by eq.{3.8.20) is only an
approximative one.

3.9.2.2 Limit cases for stress intensity factors of cracks in front of external notches

Similar to the treatment for internal notches, two limit stress intensity factors can be identified
also for external notches as illustrated in fig.62. In fig.62 K™ corresponds to the partially loaded
edge-crack of length a, + ¢, and K® is the stress intensity factor of an edge-crack of length £ in a
body of reduced thickness W' (W' = W — a;). Both limit cases are shown in fig.63 in terms of the
geometric function F defined by

F=—K (3.9.30)

o/nf

For first rough estimations it may be recommended to describe the stress intensity factor by the
mean value of the limit-case solutions resulting in deviations less than 10% for
£ =a—ag>0.02W.

On the basis of fig.63 an interpolation function « can be introduced for edge notches, too. In
order to decide whether or not the interpolation factor o determined for internal notches,
eq.(3.9.11), is also appropriate for strongly deviating conditions, BCM-computations were per-
formed for

¢ external notches with
* rectangular notch roots exposed to
¢« constant crack surface loading.
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Figure 63. Limit cases for edge notches. Limit stress intensity factors K™ and K@ for different notch
depths.

Figure 66 shows the geometric function F, defined by eq.(3.9.30), for a rectangular edge notch
with a,/W=0.5 and d/W=0.2. The circies represent results obtained with the Boundary Colloca-
tion Method. The solid lines correspond to the limit cases KM, K®, and the dotted line is calcu-
lated with the interpolation factor « according to eqs.(3.9.11) and (3.9.13). - For elliptical notches
the "view angle” w was defined by the tangents running from the crack tip to the ellipse of the
notch. Since in the present case no ellipse is considered but a rectangular notch, we can intro-
duce two extremal estimates for w. In fig.64 the angle between the corners of the notch root is
the maximum possible value expressed as

Dmax = arctan( % ) (3.9.31)

A minimum view angle is defined by the radius R = d of the root of an elliptical notch of width d,
and its value is given by

: d
wm,n=arcsm( T+ 7 ) (3.8.32)

The effective view angle is limited by

Dmin < @ < Omax (3.9.33)

The results for the limit values wmi, and wmsx are also entered in fig.65. The agreement between
predicted and numerically computed data is sufficient. The deviations between predicted and nu-
merically determined stress intensity factors is less than 2%.
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Figure 64. Limit cases. Limit cases for the "view angle” w and a rectangular edge notch.

3.9.2.3 Weight function for cracks in front of external notches

Limit cases: Similar to the treatment of cracks in front of internal notches the limit cases of the
weight functions were also determined for cracks in front of external notches. The lower limit
case of the weight function h® is identical with that of an edge crack of total length a=a, + ¢

X+tay ¢+a
h(1)=hedge< 7 +az W 0 ) (3.9.34)

The upper limit case corresponds to an edge-crack of length ¢ in a body of reduced width
W=w-— dy

@ _ hedge( X ) (3.9.35)

These two limit cases are plofted in fig.66 for a,/W=0.5 and £/W=0.1 and 0.2. In fig.66 also the
interpolated weight functions determined by

h=ah®+ (1 —ah® | «=sin"?() (3.9.36)
and o determined by eq.{3.9.28), are entered.

Weight function for slender notches: In order to be able to check the accuracy of the interpo-
lation formula and of the procedure of determination of the weight function from stress intensity
factors described in Section 1.2, the stress distribution in front of the notch root must be known.
Also in this analysis the stresses given by eq.(3.9.20) were used.

Numerically obtained weight functions for ¢/R=0.25 and 0.5 are entered as symbols in fig.67.
The comparison between the numerical data and the interpolations of the limit cases (broken
lines) shows maximum deviations of about 5%. These deviations should not be overrated since
the stress distribution applied is only an approximation.
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Figure 65. Limit cases. Geometric function for cracks in front of external rectangular notches; symbols:
determined with the Boundary Collocation Method, solid lines: limit cases; dotted and dash-dot-
ted lines: interpolation of the limit stress intensity factors using eq.(3.9.13) for two extremal view

angles.
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Figure 66. Limit cases. Limit cases of weight functions (h’ = ha/n#[2 ) for small cracks in front of an ex-
ternal notch with ag/W = 0.5 (upper curves: h®, lower curves: h(h).
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Figure 67. Limit cases. Limit cases, interpolations and numerical weight functions of weight functions for
small cracks in front of an external notch (a/W = 0.5, #/|W = 0.0025).

3.10 Weight function for remote tractions

The weight function for tractions, acting at an arbitrary location of the body, is given by
eqs.(2.9.12) to (2.9.15). The cefficients were determined for a rectangular plate. Pure bending
was considered as the reference loading case. BCM-computations were made with 180 colloca-
tion points at the outer boundary [27]. The geometry was chosen as L/W=1.5 and a total num-
ber of 90 coefficients A, A* were used. In order to allow cubic interpolations to be made, the
data were normalised according to

A=A, (1—a)Plopeng . a=alW (3.10.1)

~

A*n = A*n (1- a)ﬂlabend (3.10.2)
The coefficient A; can be expressed by the geometric function F
Ag=F /_19‘8_ Obend (3.10.3)
and the geometric function results from the BCM-computations as

_ 1.1215 — 2.36520 + 3.51294% —2.7504° + 0.8554*
- a)3/2

a<1 (3.10.4)

F

An approximation by polynomials
Although the 90-coefficient solution of the stress function - and consequently of stresses, dis-
placements and weight function - is very accurate, an approximative representation with a
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Figure 68. Crack-face weight function. Weight function approximation by a 20-terms polynomial for ¢ ==
compared with the crack-face weight function given in [27].

strongly reduced number of terms is desirable from the point of view of practical application. A
polynomial was derived which describes the stress function in the surroundings of the crack. By
a least-squares procedure in the region 0<x< W, 0 <y < 0.4 W it was found

9
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Figure 69. y-component. Weight function h, for several angles ¢.
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Figure 70. x-component. Weight function h, for several angles ¢ (curves as in fig.5).

2]
+ Zr"* 2A¥[ cos(n + 2)p — cos ne] (3.10.5)

n=20

with the coefficients A,, A,* listed in Table 28 and Table 29. The coefficients are normalised
according to eqs.(3.10.1) and (3.10.2). Figure 68 shows the component h, for a crack of normal-
ised depth « =0.6 along the crack surface, i.e. ¢ == together with the crack face weight function.

--- near—tip solution

hy/—W_ — total solution

20i

a/W=0.7
10 =T
‘\
T 10 0 30 40

Figure 71. Comparison with the near-tip solution. Weight function h, compared with the near-tip solution

[121,[35].
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The agreement is very good. The two components h, and h, are plotted in fig.69 and fig.70 along
different straight lines, namely ¢ =0, #/2, and =.

Comparison with the near-tip weight function
From the near-tip displacement field - related to the first term in eq.(2.9.6) - Tada et al. [12] de-
rived a near-tip weight function, which for symmetrical loads reads

hX=—2\/_Tr—:T—_v)_[2v -1 +sin<%—) Sin(-g—(p)] COS<-;—(p) (3.10.6)

hy=—\/£_;_;%—_—;)—[2 —2 —cos(—Z-) cos(—g—q))]sin(%qo) (3.10.7)

A comparison of this limit case with the total weight function is shown in fig.71 for a/W=0.7. In
this case the deviations become obvious (>10% for r/W > 0.006).

n=0 1 2 3 4 5 6 7 8 9

o p=15| 25 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
0.25| 0.0829 | 0.0215]| 0.0533| 0.0439 | -0.152 | 0.2830 { -0.203 | -0.573 | 4.0130 | 1.7727
0.30[ 0.0850 [ 0.0267} 0.0448| 0.0229 | -0.074 | 0.1661 | -0.169 | -0.092 | 1.3618 | 0.5719
0.40| 0.0873 | 0.0329] 0.0320| 0.0115 | -0.004 | 0.0422 | -0.046 | 0.1080 | 0.0102 { -0.386
0.50( 0.0882 { 0.0356] 0.0245| 0.0149 | 0.0168 | 0.0289 [ 0.0175 | 0.0351 | -0.027 | -0.013
0.60] 0.0884 | 0.0366| 0.0209| 0.0227 | 0.0334 | 0.0474 | 0.0628 | 0.0874 | 0.0912 | 0.0669
0.65| 0.0883 | 0.0367| 0.0200]| 0.0276 | 0.0453 | 0.0718 | 0.1111 | 0.1600 | 0.1854 | 0.1300
0.70] 0.0883 | 0.0367] 0.0196] 0.0338 | 0.0631 | 0.1147 | 0.1972 | 0.2719 | 0.2514 | 0.1229
0.75; 0.0883 | 0.0367; 0.0195| 0.0419 | 0.0923 | 0.1910 | 0.3335 | 0.4077 | 0.2831 | 0.0796
0.80] 0.0884 | 0.0367| 0.0197| 0.0535 | 0.1386 | 0.3058 | 0.5152 | 0.5868 | 0.3903 | 0.1148
0.85| 0.0897 | 0.0381] 0.0208| 0.0694 | 0.1934 | 0.4198 | 0.6598 | 0.6837 | 0.4087 | 0.1052
0.90] 0.0819 | 0.0409| 0.0206| 0.0800 | 0.2272 | 0.4622 | 0.6465 | 0.5762 | 0.2837 | 0.0524

Table 28. . Coefficients B, for a 20-terms polynomial representation.
n=0 1 2 3 4 5 6 7 8 9
o p=2 3 4 4 4 4 4 4 4 4

0.25| 0.02300; -0.037G -0.0822 0.09128) 0.00272 -0.3372} 0.96039] -1.6678| -4.3971] -0.2444
0.30] 0.00867| -0.0425 -0.058f 0.05802] -0.0383 -0.0982| 0.35271] -0.6572| -1.3918| -0.0750
0.40; -0.0109| -0.0423 -0.0248 0.01192[ -0.0262| 0.00452] 0.00300] -0.1321| 0.21273] 0.1835
0.50| -0.0248| -0.0364 -0.0147 -0.0061| -0.0194| -0.0134] -0.0210{ -0.0061]| 0.03872 0.0005
0.60| -0.0333( -0.0298 -0.0128 -0.0155| -0.0254| -0.0331| -0.0483| -0.0589| -0.0507| -0.0181
0.65; -0.0359] -0.0274 -0.012f -0.0197| -0.0336| -0.0529; -0.0823| -0.1087| -0.0989| -0.0306
0.70] -0.0377( -0.0259 -0.013q -0.0247| -0.0473| -0.0875| -0.1412{ -0.1648]| -0.11538| -0.0297
0.75( -0.0387| -0.0249 -0.0135 -0.0312| -0.0701| -0.1400( -0.2131| -0.2064| -0.1060| -0.0212
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0.80 -0.0395 -0.024d -0.0143 -0.0406§ -0.1013] -0.2005; -0.2823{ -0.2515( -0.1207| -0.0214

0.85[ -0.0436( -0.0291 -0.0167 -0.0531( -0.1326{ -0.2477] -0.3223| -0.2668; -0.1227} -0.0232

0.90} -0.0556] -0.0361 -0.016§ -0.0544| -0.1299]| -0.2202] -0.2540| -0.1860] -0.0773| -0.0148
Table 29. . Coefficients B!*; for a 20-terms polynomial representation.

Whereas an exact solution for the weight function in the near-tip limit exists for finite cracks in
finite bodies only numerical solutions are generally available. Most of them are crack-face
weight functions which are restricted to ¢ = 0. For cracks in finite plates and bars a weight func-
tion is

h, = m [2 2y — cos(%—) cos(—g— (p)] sin(—;- (0) + g a/W, o, rIW) (3.10.8)

hy = :/Ez__r_z:v—) [2v 1+ sin( - ) sin< —g— (p)] cos( —;— (p) +g,aW, p.rlW) (3.10.9)

with the functions g,, g, entered in the following tables.

riw p[n=0 0.2 04 0.6 0.8 1.0
0.0001 -0.0944 -0.0966 -0.1004 -0.0883 -0.0893 -0.0722
0.001 -0.1425 -0.1495 -0.1613 -0.1577 -0.1257 -0.0716

0.01 -0.2975 -0.3203 -0.3580 -0.3456 -0.2408 -0.0652

0.1 -0.7812 -0.8900 -1.0805 -1.0702 -0.6800 0.0002

Table 30. Weight function. g,(aW, ¢,a/W) /W according to eq.(3.1

0.8) for a/W=0.3, v=0.2.

riw @ln=0 0.2 0.4 0.6 0.8 1.0
0.0001 0.0603 0.0577 0.0534 0.0546 0.0661 0.0858
0.001 0.0051 -0.0030 | -00167 | -0.0128 0.0239 0.0862

0.01 -0.1707 01975 | -0.2426 | -0.2304 | -0.1113 0.0908

0.1 -0.7007 -0.8345 | -1.0718 | -1.0762 | -0.6410 0.1322

Table 31. Weight function. g,(a/W,r|W, @)+ /W according to eq.(3.10.8) for a/W=0.4, v=0.2.

riw @/n=0 0.2 04 0.6 0.8 1.0
0.0001 0.1814 0.1783 0.1731 0.1745 0.1883 0.2119
0.001 0.1153 0.1055 0.0891 0.0937 0.1377 0.2124

0.01 -0.0943 -0.1270 -0.1821 -0.1683 -0.0257 0.2173

0.1 -0.7119 -0.8874 -1.1899 -1.2209 -0.6928 0.2591

Table 32. Weight function. g,(a/W, o,a/W) + /W according to eq.(3.10.8) for a/W=0.5, v=0.2.
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riw @lm=0 0.2 0.4 0.6 0.8 1.0
0.0001 0.2792 0.2754 0.2688 0.2706 0.2879 0.3174
0.001 0.1966 0.1843 0.1637 0.1695 0.2245 0.3181

0.01 -0.0654 01069 | -0.1774 | -0.1608 0.0185 0.3247

0.1 -0.8167 -1.0654 | -1.5075 | -1.5544 | -0.8689 0.3778

Table 33. Weight function,

gx(a/W, ¢,a/W) ¢ /W according to eq.(3.10.8) for a/W=0.6, v=0.2

riw ofr=0 0.2 0.4 0.6 0.8 1.0
0.0001 0.3633 0.3581 0.3494 0.3518 0.3748 0.4143
0.001 0.2527 0.2363 0.2087 0.2165 0.2901 0.4153
0.01 -0.0969 -0.1539 -0.2510 -0.2303 0.0115 0.4256
0.1 -1.0568 -1.4584 -2.1640 -2.2657 -1.2890 0.5024
Table 34. Weight function. g.(a/W, ¢,a/W)* ﬁ according to eq.(3.10.8) for a/W=0.7, v=0.2,
riw @/n=0 0.2 0.4 0.6 0.8 1.0
0.0001 0.5621 0.5514 0.5334 0.5385 0.5866 0.6683
0.001 0.3311 0.2970 0.2401 0.2572 0.4116 0.6730
0.01 -0.4012 -0.5299 -0.7510 -0.7133 -0.1879 0.7167
0.1 -2.3063 -3.5897 -5.8873 -6.3491 -3.7863 0.9456

Table 35. Weight function.

gx{alW, ¢,alW) * /W according to eq.(3.1

0.8) for a/W=0.85, v=0.2.

riw @/n=0 0.2 0.4 0.6 0.8 1.0

0.0001 0.0000 -0.0091 -0.0235 | -00429 | -0.0604 | -0.0676

0.001 0.0000 -0.0286 | -0.0741 -0.1355 | -0.1912 | -0.2139
0.01 0.0000 -0.0883 | -0.2321 -0.4287 | -0.6080 | -0.6816
0.1 0.0000 -0.2214 | -0.6835 | -1.3815 | -2.0407 | -2.3164

Table 36. Weight function.

gy(alW, p,a|W) /W according to eq.(3.1

0.9) for ajW=0.4, v=0.2.

riw @/n=0 0.2 0.4 0.6 0.8 1.0
0.0001 0.0000 -0.0109 -0.0281 00513 | -00724 | -0.0810
0.001 0.0000 -0.0342 -0.0887 | -0.1623 | -0.2291 -0.2563

0.01 0.0000 -0.1055 -0.2779 | -0.5140 | -0.7295 -0.8178

0.1 0.0000 -0.2507 | -0.8083 | -1.6644 | -2.4735 -2.8104

Table 37. Weight function.

gy(a/W, p,alW) /W according to eq.(3.1

0.9) for a/W=0.5, v=0.2.

riw elm=0 0.2 0.4 0.6 0.8 1.0
0.0001 0.0000 -0.0136 -0.0352 -0.0642 -0.0906 -0.1013
0.001 0.0000 -0.0428 -0.1110 -0.2031 -0.2866 -0.3207
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0.01

0.0000

-0.1312

-0.3469

-0.6434

-0.9145

-1.0257

0.1

0.0000

-0.2823

-0.9862

-2.0961

-3.1500

-3.5885

Table 38. Weight function.

S L

gy(alW, ¢,a|W)++/W according to eq.(3.10.9) for a/W=0.6, v=0.2,

riw elm=0 0.2 04 0.6 0.8 1.0
0.0001 0.0000 -0.0182 -0.0470 -0.0858 -0.1210 -0.1354
0.001 0.0000 -0.0571 -0.1482 -0.2713 -0.3831 -0.4287

0.01 0.0000 -0.1732 -0.4618 -0.8606 -1.2261 -1.3763

0.1 0.0000 -0.2990 -1.2571 -2.8306 -4.3318 -4.9561

Table 39. Weight function.

g,(alW, ¢,a/W)+./W according to eq.(3.10.9) for a|W=0.7, v=0.2.

riw @ln=0 0.2 0.4 0.6 0.8 1.0
0.0001 0.0000 -0.0376 | -00973 | -01778 | -0.2508 | -0.2805
0.001 0.0000 -0.1174 | -0.3060 | -0.5620 | -0.7948 | -0.8901

0.01 0.0000 -0.3376 | -0.9365 | -1.7885 | -2.5779 | -2.9056

0.1 0.0000 03378 | -1.9803 | -6.1359 | -10.0379 | -11.6461

Table 40. Weight function.

R

gy(alW, ¢,alW) /W according to eq.(3.1

0.9) for a/W=0.85, v=0.2.

riw @/n=0 0.2 0.4 0.6 0.8 1.0
0.0001 0.0000 -0.0079 | -00203 | -0.0372 | -0.0524 | -0.0586
0.001 0.0000 -0.0248 | -00642 | -01175 | -0.1658 | -0.1856

0.01 0.0000 00763 | -0.2009 | -0.3713 | -0.5270 | -0.5912

0.1 0.0000 -0.1942 | -05915 | -1.1919 | -1.7636 | -2.0074

Table 41. Weight function. gy (a/W, ¢.a/W) /W according to eq.(3.10.9) for a/W=0.3, v=0.2.

3.11 Weight function for internal cracks under remote tractions

The influence of remote tractions is taken into account for edge cracks in finite bodies in section
2.9. Here we consider the internal crack in an infinite body loaded with remote tractions. The
most general loading case has been investigated by Isida [71] is illustrated in fig.72a. The
stress intensity factor solution is given by

Ky, -+ iKya= [(Q — P = 1+ Jralrg (64 0902 — ke~ Ca=002)] 1(3.41.9)

1
2(x +1)/ma
N 2y(P —iQ) {e—i(oA+eB)/2_%e—/(ao,,-oﬂ)/z_l__ra_e- i(30A+05)/2}

where the subscript A refers to crack tip A. The quantity « is defined as
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Figure 72. Internal crack. a) Internal crack in an infinite body loaded with remote tractions.
b) Internal crack loaded symmetrically with remote tractions.
(8 —v)/(1 +v) for plane stress
K= (3.11.2)
3—4v for plane strain

Based on this general result one can derive the weight function. For the case of symmetric load-
ing (see fig.72b) we obtain the weight function for point A after some complex analysis as

h=(hy, h,, 0)

with the components

o Jx=tf [ra [\  8a=0s
hx—-2 — {x+1< o T4 OS2 +

2 r_A . _I'_B; . 3BA—0B Lé_ . 303_6A _a 30A+08
+ paTER / 5 sin HA[ A sin——5— T sin ———— A sin——%—

104

(3.11.3)

(3.11.4)




hy, =

2 [Ta f4—8
+K_+_1 5 snnBA[ g Cos

h,=

2 /Ta ra
+ -y 5 snnHA[—r—‘-B-cos

with

and the angle

1
2./ma

i [Ta \ . 04— 0pg
{( Fa + 5 >sm 2 +

rg= \ﬂAz + 4a® +4ar, cos 6,

Og = arccos(

2a+rycos b, )
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5 - Ta cos 2
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4. Mode-ll and mixed-mode stress intensity factors
and weight functions

4.1 Edge cracked plate under mode Il loading

To be able to evaluate fracture-toughness measurements knowledge is required of the stress
intensity factor solution applicable to the load case chosen. Besides in mode-| loading which had
been studied thoroughly, the interest is growing in mode-ll and mixed-mode loadings. Here, the
continuous surface crack under constant shear loading 7, will be examined as the reference-load
case for weight-function applications (s. fig.73)

i 3
—X—
+ -;E-r
J— 2L
PR

Figure 73. The edge crack in a plate under shear stresses
The geometric functions F, obtained for the edge crack with constant shear stress loading on the

crack faces were calculated with the Boundary Collocation Method [27]). For shear loading the
geometric function is defined as

K,,='w1ra F” (411)

The geometric functions F, determined in [27] can be represented analytically by the relation
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1.422 — 0.561a/W —0.20(a/W)? +0.89115(a/w)* —0.42609(a/w)*

J1—aw

Fiy= @12)

Determination of the mode-ll weight function The computation of stress intensity factors for
cracks loaded by shear stresses can be performed using the weight function for mode-ll load-
ings. If the stress distribution (x) acts on the crack surfaces of the one-dimensional crack, the
mode-li stress intensity factor is expressed by

Ky=*Jna F= J; hy(x.a)7(x) dx (4.1.3)

where t* is a characteristic stress value of the stress distribution 7(x). The weight function hy
can be calculated by

E' 3
hy(x.a) = —K—’;r— Y u/x,a) 41.9)

from the crack opening displacements determined with the BC-method. Very accurate solutions
are available for the limit cases a/W — 0 and a/W — 1 [12]. Together with these limit cases, the
values of the weight function for discrete values of a/W and x/a (s. fig.73) have been entered in
Table 42 in the normalised representation

2 __oilaaw) w1

h=./—
ma  [A=xla Jt—aw

An analytical approximative representation for a/W<0.9 can be described by

2 1 a 12 v+, a #
h=y/—= PRI [(1——W—) +ZAW(1—x/a)+(W)] (4.1.6)

1—x/a

The related coefficients A,, are entered in Table 42.

a/W x/a=0.0 0.2 0.4 0.6 0.8 0.9 1.0

0.0 1.834 1.624 1.440 1.273 1.128 1.061 1.000
0.2 1.662 1.488 1.311 1.146 1.007 0.947 0.894
04 1.543 1.382 1.209 1.048 0.902 0.834 0.775
0.6 1.556 1.382 1.198 1.009 0.813 0.728 0.632
0.8 1.690 1.502 1.288 1.048 0.778 0.615 0.447
0.9 1.766 1.570 1.356 1.096 0.791 0.573 0.316
1.0 1.834 1.641 1.421 1.160 0.820 0.580 0.000

Table 42. Mode-Il weight function. Normalised representation g(x/a,a/W) according to
eq.(4.1.5).
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u=0 1 2 3
v=0 0.59250 | 0.08077 | -2.93912 | 6.06686
1 0.15745 | -1.83168 | 11.7816 | -14.589
2 0.21108 2.8108 -14.701 15.329
3 -0.12416 | -1.6465 | 6.69787 | -6.15696

Table 43. Mode-lI weight function.
function eq.(4.1.6).

Coefficients of the weight

Stress intensity factors for short plates The influence of the height H on the geometric function Fy
is represented in Table 44. For small values of H/W (H/W<0.4) and a/W<0.8 a simple relation
becomes obvious when the F,-data are plotted versus a/H. A unique relation is obtained which
can be described by the simple relation

Fye [1.684(ajH)? + 1.1215“]1/4 @.1.7)

HW | aw=01] 02 0.3 0.4 0.5 0.7 0.9
0025 | 2369 | 3272 | 3977 | 4582 | 5092 | 6022 | 6.826

0.05 1762 | 2.373 | 2.858 | 3.272 | 3644 | 4292 | 4845

0.1 1366 | 1763 | 2080 | 2.375 | 2629 | 3075 | 3.479

0.2 1172 | 1.366 | 1.575 | 1.763 | 1.934 | 2237 | 2772

0.4 1122 | 1174 | 1.261 | 1366 | 1.474 | 1.707 | 2,611

0.5 1205 | 1.282 | 1.371 | 1615

0.6 1474 | 1.232 | 1.309 | 1567

0.75 1152 | 1194 | 1.262 | 1536

Table 44. Geometric function for the short plate

4.2 Mixed-mode stress intensity factors in 3-point bending

The mode-Il fracture toughness of brittie materials as well as considerations of failure under
mixed-mode loading are of increasing interest. In [62] and [63] stress intensity factors were
determined by the Boundary Coliocations Method and by FE-calculations.

The weight-function method can be successfully applied to determine the geometric functions
F,, Fy defined by

Ki=oofn/ra . Ky=oofin/ma , oo=——5 @4.2.1)

The symmetrically supported 3-point bending bar, fig.74, was studied by Filon [66] who derived
an analytical solution for the stress state. This solution takes into consideration the stress mag-
nification due to the line contacts of the roliers.

The mode-} and mode-|i stress intensity factors were calculated by use of the mode-I and mode-Il
weight functions given in [27]. The results are expressed by the normalised geometric functions
F'i=F(1— «)*? and F'y = Fy(1 — «)"* and compiled in Table 45 to Table 50.
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.

Figure 74. Geometric data of the asymmetrically notched bending bar.

2d/L=0. 0.2 04 0.6 0.7 0.8 0.9
a=0 1.0426 0.9757 0.8171 0.6462 0.5747 0.5348 0.5692
0.1 0.8067 0.7560 0.6282 0.4663 0.3647 0.2089 -0.1222
0.2 0.6583 0.6145 0.5032 0.3521 0.2564 0.1345 | -0.0011
03 0.5655 0.5240 0.4210 0.2864 0.2094 0.1274 0.0497
0.4 0.5065 0.4648 0.3664 0.2468 0.1837 0.1206 0.0601
0.5 0.4674 0.4235 0.3276 0.2194 0.1648 0.1106 0.0584
0.6 0.4390 0.3911 0.2972 0.1982 0.1490 0.1005 0.0521
0.7 0.4164 0.3627 0.2719 0.1809 0.1359 0.0911 0.0467
0.8 0.3977 0.3362 0.2510 0.1672 0.1254 0.0837 0.0421
Table 45. Normalised geometric function for mode-1 at LIW=2
2d/L=0.2 0.4 0.6 0.8

a=0.1 0.0320 0.0481 0.0529 0.0642 0.1164 0.3687

0.2 0.0557 0.0868 0.1069 0.1359 0.2146 0.3893

0.3 0.0743 0.1167 0.1453 0.1750 0.2315 0.3093

0.4 0.0899 0.1378 0.1649 0.1858 0.2172 0.2522

0.5 0.1041 0.1513 0.1709 0.1825 0.1979 0.2116

0.6 0.1183 0.1585 0.1689 0.1740 0.1802 0.1841

0.7 0.1333 0.1598 0.1628 0.1641 0.1660 0.1662

0.8 0.1462 0.1551 0.1545 0.1546 0.1549 0.1534

Table 46. Normalised geometric function for mode-ll at L/IW=2
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2d/L=0.2 0.4 0.6 0.7 0.8 0.9
a=0 0.9450 0.7187 0.5058 0.4223 0.3586 0.3466
0.1 0.7480 0.5750 0.3998 0.3188 0.2267 0.0397
0.2 0.6179 0.4755 0.3252 0.2496 0.1604 0.0344
0.3 0.5315 0.4067 0.2745 0.2070 0.1331 0.0533
04 0.4720 0.3581 0.2398 0.1801 0.1187 0.0571
0.5 0.4280 0.3220 0.2148 0.1615 0.1079 0.0547
0.6 0.3924 0.2935 0.1856 0.1470 0.0986 0.0504
0.7 0.3615 0.2700 0.1799 0.1351 0.0904 0.0458
0.8 0.3348 0.2506 0.1670 0.1253 0.0836 0.0419

Table 47. Normalised geometric function for mode-| at L/W=3

2d/L=0.2 04 0.6 0.7 0.8 0.9
a=0.1 0.0328 0.0406 0.0348 0.0324 0.0402 0.1282
0.2 0.0553 0.0686 0.0638 0.0649 0.0871 0.1912
0.3 0.0712 0.0885 0.0856 0.0895 0.1131 0.1779
0.4 0.0827 0.1018 0.0895 0.1036 0.1206 0.1550
0.5 0.0815 0.1081 0.1063 0.1091 0.1189 0.1358
0.6 0.0983 0.1097 0.1080 0.1093 0.1139 0.1208
0.7 0.1028 0.1076 0.1061 0.1065 0.1081 0.1107
0.8 0.1030 0.1030 0.1022 0.1022 0.1025 0.1030

Table 48. Normalised geometric function for mode-ll at L/IW=3

2d/L=0.2 0.4 0.6 0.7 0.8 0.9
oa=0 0.9324 0.6859 0.4640 0.3712 0.2961 0.2648
0.1 0.7450 0.5540 0.3741 0.2938 0.2158 0.0445
0.2 0.6187 0.4625 0.3111 0.2399 0.1651 0.0607
0.3 0.5330 0.3989 0.2673 0.2034 0.1364 0.0597
0.4 0.4729 0.3536 0.2362 0.1785 0.1194 0.0583
05 0.4278 0.3186 0.2132 0.1605 0.1075 0.0545
0.6 0.3914 0.2924 0.1949 0.1465 0.0981 0.0502
0.7 0.3604 0.2697 0.1798 0.1349 0.0802 0.0458
0.8 0.3343 0.2505 0.1670 0.1253 0.0836 0.0422

Table 48. Normalised geometric function for mode-| at L/IW=4

110




2d/L=0.2 0.4 0.6 0.7 0.8 0.9
a=0.1 0.0295 0.0316 0.0272 0.0244 0.0238 0.0567
0.2 0.0497 0.0543 0.0481 0.0454 0.0498 0.1049
0.3 0.0633 0.0683 0.0632 0.0616 0.0682 0.11314
04 0.0722 0.0781 0.0730 0.0723 0.0793 0.1062
05 0.0777 0.0820 0.0783 0.0779 0.0827 0.0971
0.6 0.0805 0.0824 0.0800 0.0798 0.0822 0.0888
0.7 0.0805 0.0804 0.0792 0.0790 0.0799 0.0823
0.8 0.0778 0.0770 0.0765 0.0764 0.0766 0.0772

Table 50. Normalised geometric function for mode-li at LIW=4

2d/L=0.2 0.4 0.6 0.7 0.8 0.9
a=0. 0.9014 0.6711 0.4474 0.3363 0.2311 0.1480
0.1 0.7289 0.5432 0.3621 0.2723 0.1864 0.1079
0.2 0.6101 0.4553 0.3035 0.2282 0.1551 0.0825
03 0.5278 0.3945 0.2630 0.1976 0.1333 0.0682
04 0.4692 0.3511 0.2341 0.1757 0.1180 0.0597
0.5 0.4250 0.3184 0.2123 0.1593 0.1085 0.0537
0.6 0.3885 0.2920 0.1946 0.1460 0.0974 0.0480
0.7 0.3585 0.2696 0.1793 0.1348 0.0899 0.0451
0.8 0.3340 0.2505 0.1670 0.1253 0.0835 0.0418

Table $1. Normalised geometric function for mode-| at L/W=8

2d/L=0.2 04 06 0.7 0.8 09
a=0.1 0.0161 0.0149 0.0149 0.0146 0.0133 0.0119
0.2 0.0276 0.0259 0.0258 0.0253 0.0236 0.0249
0.3 0.0352 0.0333 0.0332 0.0328 0.0311 0.0345
0.4 0.0395 0.0378 0.0377 0.0373 0.0361 0.0386
0.5 0.0413 0.0400 0.0400 0.0397 0.0388 0.0413
0.6 0.0414 0.0405 0.0405 0.0403 0.0398 0.0411
0.7 0.0403 0.0398 0.0398 0.0397 0.0395 0.0389
0.8 0.0385 0.0384 0.0384 0.0383 0.0382 0.0383

Table 52. Normalised geometric function for mode-Il at L/IW=8
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4.3 The asymmetric 4-point bending test

For the determination of the fracture toughness Ky with edge-notched (or precracked) beams
asymmetric bending arrangements (fig.75) are recommended.
Otsuka et al [65] have compiled values of the geometric functions F, and F, defined by

P d\ = P d\ /ma
K,=-WT(1——L—) 7taF, ) K/[='W—t'(1_'z_"> "aFII (4-3-1)

for UW=25 and d = W/2, obtained by FE-calculations.

The application of the weight functions given in Sections 3.1.1 and 4.1 and use of Filon’s [66]
analytical solution for the stress state yield the stress intensity factors [67] (expressed by the
geometric functions) listed in Table 53 and Table 54 for L/W=5 and various a/W- and
d/W-values.

d/W=0.25 0.300 0.375 0.500 0.625

=01 0.3746 0.3428 0.3318 0.3450 0.3589
0.2 0.7881 0.7180 0.6719 0.6633 0.6741
0.3 1.0374 0.9933 0.9560 0.9399 0.9431
0.4 1.1858 1.1818 1.1753 1.1702 1.1695
05 1.3120 1.3380 1.3578 1.3661 1.3641
0.6 1.4674 1.5079 1.5387 1.5507 1.5472
0.7 1.6948 1.7318 1.7553 1.7600 1.7547
0.8 2.053 2.0687 2.073 2.0684 2.0635
0.8 2.7563 2.7545 2.7505 2.7467 2.7452

Table 53. Geometric function for mode-l

d/W=0.25 0.300 0.375 0.500 0.625
a=0.1 0.2615 0.3695 0.4241 0.3841 0.2918
0.2 -0.0038 0.1129 0.2110 0.2448 0.2060
0.3 -0.0307 0.0447 0.1184 0.1580 0.1410
04 0.0024 0.0483 0.0904 0.1098 0.09534
0.5 0.0407 0.0672 0.0842 0.0806 0.06268
0.6 0.0716 0.0808 0.0771 0.0566 0.03706
07 0.0855 0.0769 0.0581 0.03198 0.0164
0.8 0.0641 0.0460 0.0271 0.0106 0.00359
09 -0.0048 -0.0002 0.0077 0.01406 0.0138

Table 54. Geometric function for mode-]
As can be seen from Table 53 and Table 54 the geometric function F; in the range

0.375<d/W<625. is approximately independent of the value of d/W. An analytical approximation
can be given by
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Figure 75. Geometric data of the asymmetrically notched bending bar

F, = 3.92040 — 5.12954% + 14.45664° — 26.29164" +17.073«° , a=a/W (4.3.2)

4.4 Geometric functions for oblique edge-cracks

Bending specimens with edge cracks or narrow saw cuts are often used to determine the frac-
ture toughness of ceramic materials. Whilst cracks orthogonal to the specimens surface are ap-
plied in the determination of K., oblique edge-cracks are appropriate for mixed-mode fracture.
Figure 76 illustrates the geometric data of a specimen loaded by a tensile stress ¢ and a bend-
ing moment M, respectively. Several investigations described in the literature deal with oblique
edge-cracks (see [72]). Freese [73] solved the tensile case with a mapping technique for
0<w<90° and 0.1 <a/W<0.7. Wiison [75] applied the Boundary Collocation Method (BCM)
and Aliabadi et al. [76] applied the Boundary Element Analysis (BEM) to pure tension and pure
bending for v =0/22.5/45° and 0.3 <a/W < 0.6. Since the results of Wilson and Aliabadi agree
excellently within about 1-2% deviation, the results of Freese and Wilson are intercompared in
fig.77 only in terms of the geometric function defined by

K/=O'Flalﬂa , K”=0'F”\/1!a (441)

Whilst the agreement between the two solutions is sufficient for F,, Freese’s solution for F, devi-
ates significantly from the others for w =22.5°, as can be seen from fig.78. In figs.79 and 80 the
geometric functions from the literature are plotted as a function of the angle w. The literature
results are entered as symbols whilst the curves give the fitted dependency.

In order to allow interpolations to be made for arbitrary angles o in the range
0 < w <90°Table 55 and Table 56 provide a field of data for F, and F, under tension loading.
Bicubic splines are recommended for the interpolations.

The mode-|l geometric function for tension can be approximated by

Fy=A sin[o(1 - 5-B) + ] 4.4.2)
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Figure 76. The oblique edge-crack under tension and bending loads.

A = 0.3515 +0.2851a/W +0.1723(a/W)? +1.212(a/w)° (4.4.3)

B = 0.04362 — 0.0883a/W —0.8302(a/W)? +0.19617(a/W)° (4.4.4)

Only a few data are available for oblique cracks in bending. Wilson [75] and Aliabadi et al. [76]
considered the angles @ =22.5 and 45° and Sha and Yang [77] investigated the case w =22.5°

Extension of the data base to bending with approximate weight functions

In order to extend this data base averaged weight functions were applied. A very simple proce-
dure results from application of the direct adjustment of the weight function to the reference
loading stress intensity factor {[25]) for which the tensile data can be used.

If n denotes the depth coordinate perpendicular to the free edge, n = x cos w, the bending stress
o, is given by

op= o'0<1 ~2-% cos w> (4.4.5)

where o, is the outer fibre bending stress. The normal and shear stresses (o,, 7) in the plane of
the crack are

ep(X) = a(X) cos?w ( )
4.4.6
7(X) = o(X) cos @ sinw

The stress intensity factors are then given as
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Figure 77. Geometric function (mode-l) for tension. F, given by Freese [73] and Wilson [75].

K,=J on(x) hy(x.a) dx + .[ 7(x) hp(x,a) dx
0 0
4.47)

Ku=j oy(X) hyy(x,a) dx +J 7(X) hyp(x,a) dx
0 0

For a rough estimate we neglect the components hy, and hy, (as done in [72])

0.80~ 30°
) =45°
o  Wilson 4,,
F 22.5
Il 0.60F Freese
0.40-
0.20}

0006 20 30 40 B0 B0 .70
a/W

Figure 78. Geometric function (mode-Il) for tension. F, given by Freese [73] and Wilson [75].
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Figure 79. Geometric function (mode-l) for tension. F, as a function of the angle w from the literature

(symbols, [73][75][76] [77],[36]) and continuous representation (lines) after application of a fit-
procedure.

a

a
Ky~ J on(X) hix.a) dx . Ky~ f (%) hy(x,a) dx (4.4.8)
0 0

(setting hyy = h; and hy, = hy). For the weight functions we use set-ups with one unknown parame-
ter

1.00r ¥ Wilson
O Aliobadi et al.
Fu a/W=0.6 cpadi et e
0.80} / ® Sha and Yang

A Freese

1 | 1 | ] 1
30 40 50 60 70 80

w ©

| 1
10 20

Figure 80. Geometric function (mode-Il) for tension. F; as a function of the angle w from the literature
(symbols) and approximative representation by eq.(4.4.2) (lines).
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2 1
=)= + AJ1
h, p— < T AJ1—x|a )

2 1
hy= 75—-(——1—\/__—'—7_7:4-5«/1—”8)

Introducing into eqs.(4.4.8) these set-ups and the stress distribution for pure tension yields the
geometric functions in terms of eq.(4.4.1) as

2
Fl,t = _{t; (2 + ’%‘ A) 00520)

(4.4.9)

(4.4.10)
2 .
Fit=—% (2 + §B> cosw sinw
(subscript t for tension) and therefrom the unknown parameters as
3n
A = -——"T F’,t -3
\/B_COS w
(4.4.11)
3

B Fug—=3

- T
/8 cosw sinw

With these coefficients the stress intensity factors for the bending case can be determined using
eqs.(4.4.5) to (4.4.9) and (4.4.11), and it results

a 16 J2 a 3
Fl,b=FI,t<1 —?—W-COSw) —35 ® y cose
(4.4.12)
2
Fup= F,,,t<1 - —‘;—Tav- cos w) - —P— \/ﬂ_ —‘%- cos?w sin

(subscript b for bending). The geometric functions for bending computed from the tensile data
are shown as solid lines together with literature data in figs.81 and 82. These approximative
solutions are suitable to compute the general shape of the F,, F; vs. w curves and to allow the
literature data for @ =0, 22.5 and 45° to be interpoiated.

o(®) a/W=0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 1.18 1.370 1.66 2.1 2.83 4.03 6.35

15 1.12 1.29 1.55 1.94 2.53 3.50 5.25
22.5 1.06 1.21 1.45 1.78 2.28 3.03 4.45

30 0.97 1.18 1.26 1.53 1.91 2.45 3.41

45 0.72 0.79 0.88 1.00 1.19 1.44 1.82

60 0.48 0.52 0.58 0.63 0.74 0.85 1.04

80 0. 0. 0. 0. 0. 0. 0.

Table 55. Geometric function for the edge-cracked plate under tension. Influence of the crack length L

and the angle o on F,.




F © Nisitani and Mori
| X © Sha and Yang
S O Aliabadi et al.

" a/W=0.7 — predicted from F,

o0 20 30 40 50 80 70 B0
w ©

Figure 81. Geometric function (mode-l) for bending. F;, as a function of the angle w; symbols: data from
the literature; solid curves eq.(4.4.12), dashed curves: interpolation of literature results in con-

formity with the general trend, obtained from (4.4.12).

O Alinbadi et al.
® Shao ond Yong

0.20

0.0
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Figure 82. Geometric function (mode-ll) for bending. F; for bending as a function of the angle w (lines:

(4.4.12), symbols: data from the literature).
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o(® | a/W=01 0.2 0.3 0.4 0.5 0.6
0 0. 0. 0. 0. 0. 0.
225 0.26 0.285 0.335 0.400 0.490 0.620
30 0.33 0.365 0.420 0.480 0.580 0.695
45 0.385 0.410 0.450 0.510 0.577 0.680
60 0.330 0.355 0.380 0.415 0.460 0.500
90 0. 0. 0. 0. 0. 0.

Table 56. Geometric function for the edge-cracked plate under tension.
length L and the angle w on Fy.

In case of F, the agreement between the approximated geometric functions and the literature
data is good for a/W<0.5. For larger cracks deviations become obvious which are caused by the
use of the two-terms weight functions. In case of F;, the agreement with the literature data is
sufficient up to a/W=0.6. Extended data-sets resulting from the literature data as well as from

Influence of the crack

the data generated with the weight function method are entered in Table 57 and Table 58.

o) | a/W=0.1 0.2 0.3 0.4 05 0.6 0.7
0 1.049 1.058 1.126 1.26 1.495 1.915 2.71
15 0.980 1.02 1.058 1.185 1.365 1.698 2.30

22.5 +0.935 0.96 0.985 1.080 1.26 1.53 2.04
30 0.874 0.883 0.91 0.985 1.12 1.32 1.74
45 0.699 0.68 0.695 0.710 0.794 0.89 1.09
60 0.450 0.446 0.451 0.467 0.510 0.56 0.64
90 0. 0. 0. 0. 0. 0. 0.

Table 57. Geometric function for the edge-cracked plate in bending.
the angle w on F,.

Influence of the crack length L and

(®) a/W=0.1 0.2 0.3 04 05 0.6
0 0. 0. 0. 0. 0. 0.
22,5 0.23 0.216 0.215 0.220 0.235 0.265
30 0.286 0.278 0.274 0.275 0.286 0.302
45 0.344 0.329 0.316 0.321 0.326 0.349
60 0.306 0.304 0.302 0.306 0.315 0.318

90 0. 0. 0. 0. 0. 0.

Table 58. Geometric function for the edge-cracked plate in bending.
length L and the angle w on Fy.
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5. Subinterface cracks

5.1 Weight functions for edge cracks

Edge cracks parallel to an interface between dissimilar elastic materials, fig.83, show mixed-
mode stress intensity factors even under pure normal stress or pure shear loading. If the crack
faces are loaded with the normal stress o,, the siress intensity factors read

a

a
K = f hxa) oy ax Kff"=j i (x.2) oy(x) dx AR
0 0

and define the weight functions h?, h,®. For shear stresses t acting at the crack faces one can
write

a

a
Kft)zf h(x.a) 2(x) dx Kff):f hiP(x.a) =(x) dx (5.1.2)
0 [

defining the weight functions h®, h,®, Under combined crack-face loading the stress intensity
factors from eqs.(5.1.1) and (5.1.2) can be superimposed which results in

K= J (hl(a)(x,a) oy (X) + h/(")(X,a) 7(X) ) dx (5.1.3)
0

Ky =J (h(x.a) o)) + hiP(x.a) 7(x) ) dx (5.1.4)
0

The weight functions can be obtained from the stress intensity factors and the displacements of
the crack borders in x- and y-direction of a specific load - the reference load [7]. In case of
homogeneous materials the mode-! weight function is related only to the displacements v normal
to the crack face and the mode-ll weight function to the displacements u in the crack face line.
For cracks near the interface we have to expect also an interrelation to exist between the dis-
pltacements which may be written in a general form

5u(") au(ﬂ)
—aa—- + my oa (5.1.5)

h? = m,
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Figure 83. External subinterface crack. Geometric data; left: edge crack, right: internal crack.

awv® av @

h = m, ga + m, ;a (5.1.6)
d (o) d ()

hi? = ms—o— + me-= (5.1.7)
o (o) av(")

h = m, ga + my 2L (5.1.8)

where the coefficients my,...,ms will depend on the ratio of the Young’s moduli E;/E; and Poisson
ratios vy, v, as well as on the geometric data and the applied load. The indices (t) and (o) de-
scribe the loadings which are responsible for the crack opening displacements.

5.1.1 Set-ups for the weight functions

For this type of mixed-mode problem the direct adjusting method described in [25] is an appro-
priate tool to generate analytical expressions for the four weight function components. Therefore,
we will use the following set-ups

ho = ,/”a 20@ — x/a)* ~'2 (5.1.9)

hi?

V= ZD,(,")V —xja)’ "2 (5.1.10)
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h = «/na ZD") — xja)* "1/ (5.1.11)

A = «/7ra Z D (1 — x/a)’ ~'2 (5.1.12)

with
D =D} =1, DY =0 =0 (5.1.13)

Let us assume the loading cases for constant pressure o=const and constant shear r=const.
directly on the crack faces to be known. Then a sufficient number of conditions is known to com-
pute all coefficients for the approximated representation. Here we will restrict ourself on a two-
terms weight function of the form

W) = -2

h? = /& (DST—xla + Dyt - xja)*") (5.1.15)

+ D1 =xja + D1 x/a)3/2> (5.1.14)

e = /2 = (DFWT=xa + D1 — x/a)°?) (5.1.16)

5 (s

In [19] and [31] it has been shown that the second derivative of the displacements must vanish
for the two reference loading cases (o, = const., T = const.). This may be repeated here for the
case of the displacements v normally to the crack surface. It has been shown in [25] that

hP = /- +DPT—xja + D1 — x/a)3/2> (5.1.17)

(5.1.18)

In the chosen reference cases: o, = const and T = const along the crack faces we obtain for free
surface conditions along the line x=0

O o P _o v x<a (5.1.19)
ox ' 5X2 o
F;] 2
X _ . 97 _0 for x=0, vy (5.1.20)
6y ay2
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Figure 84. Geometric function for edge cracks, Geometric data: a/L<0.1, Hy= H, = 2L, material data:
E1/Ez= 100, Vi = 0.2, Vy = 0.4.

and consequently

2 3
Yo, Z¥_0 forx=0 (5.1.21)

ax? ox

The same can be shown for the displacements u in x-direction. Introducing this into eqs.(5.1.5)
to (5.1.8) leads to

Py _ *h® _ &hfp

ax? x> x> x>

=0 for x=0 (5.1.22)
Equation (5.1.22) leads to four relations between the coefficients D,:

> D,(v ~1/2)(v =3/2) =0 (5.1.23)

If the reference stress distributions o,(x) and z(x) are constant, eqs.(5.1.1) and (5.1.2) lead to four
additional equations:

2 _
ZDvTJFT = Y./n)2 (5.1.24)
where the geometric functions Y are defined as
KO = a Y, K=o, fa ¥y

K =2 fa v, K =<Jfa Y]

(5.1.25)

From the eqs.(5.1.23) and (5.1.24) the coefficients are obtained as
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weight function h'
FS o

N

Figure 85, Weight function for edge cracks. Geometric data: a/L<0.1, Hy = H, = 2L, E4JE;=100, v = 0.2,
= 0.4; dja = 1, weight function normalised: A’ = hi/a

@ _ / (@) _ p@ / @_35
DI,1 Y , I 2 = 12 Y 3
5 5
D} = 75V . o= 55 5

S [ @ @) _ / Q)
R R 12 i

5
off = S JEvi—2 . Dy = & SV~

(5.1.26)

5.1.2 Example of application

Finite Element computations were used to determine the weight functions for edge cracks near
an interface. The data were obtained for a Young’s modulus ratio Ei/E, =100 and v;=0.2,
vo=0.4. The crack was located in material 1. The resuiting geometric functions are plotted in
fig.84 as a function of the distance from the interface normalised on the crack length. As could
be expected from Saint Venant’s principle the influence of the different material 1 on the stress
intensity factors can be neglected for d/a>3. For constant pressure at the crack faces the mode-|
stress intensity factor K, tends against the value of the homogeneous material and K, vanishes.
In case of constant shear stresses at the crack the the mode-Il stress intensity factor K, ap-
proaches the value of the homogeneous material and K; vanishes.

The resulting weight functions are plotted in fig.85 for a crack with d/a=1. Note that the resuits
in fig.84 and fig.85 are for a semi-infinite plate or for a finite plate with a/L <0.1.

dja v, 7 Yo v/
0.0025 10.71 7.290 -4.514 8.6845
0.010 10.93 6.786 -2.838 5.891
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0.100 8.952 4.768 -0.898 2.811
0.333 6.682 2.491 0.2165 2.65

1.000 3.437 0.5514 0.2195 2.185
2.000 2.536 0.1384 0.0769 2.0116
3.000 2.273 0.052 0.031 1.986
10.00 2.004 0.002 0.0013 1.974

Table 59. Geometric function for subinterface edge-cracks. Geometric data:
alL<0.1, Hy=H, =2L, E1JE;=100, v =0.2, v, = 0.4.

5.2 Weight functions for internal cracks

The geometry of an internal subinterface crack is illustrated in fig.83. The representation of the
stress intensity factors by the weight functions are the same as in case of the subinterface edge
crack. In the special case of a symmetrically loaded crack we use the set-ups

ho = 2 ( L +D,(“)«/1—-(x/a)2) (5.2.1)
Jra \ J1- (xja)?

h = —2—p. /1 — (x/a)? (5.2.2)

Jra
W = —2_ p./1— (x/a)’ (5.2.3)
Jra

ho = 2 ( 1 +D{\/1 —(x/a)2> (5.2.4)
] Ny ,—————-1 ~ ey 0]

Here only one energy condition is necessary since the set-up fulfills all symmetry conditions a
priori. We obtain the coefficients

D=2 vy _5  p@__2 y© (5.2.5)

] \/-1: [} ) \/;‘ i

pf=—2-vf | D=2y 2 (5.2.6)
n 1
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6. Special problems

6.1 Thermal-shock problems

6.1.1 Weight functions for strips with periodical edge cracks

In thermal-shock experiments often an array of periodical cracks is observed [78]. Weight func-
tions for such crack arrangements are necessary for the computation of stress intensity factors
under nonhomogeneous thermal stresses. The geometry of endless strips with an infinite num-
ber of equidistant edge cracks at one side is shown in fig.86 as well as for cracks at both sides.

!
o

— L

ea

S rg

.
.
|

Figure 86. Arrays of edge cracks. Geometrical data.

The stress intensity factors for pure tension load were computed by Isida and Tsuru [79] with the
Boundary Collocation Method. Applying the weight function procedure described in section 2
and using the conditions of self-consistency and disappearing second derivative of crack opening
displacements at the crack mouth we obtain the weight function according to eq.{2.5.2)

h= n_2a'<"_1_‘+Bo\/1-—p +s1<1-p>3’2+82<1—p>5’2> p=xla (611

N
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with the coefficients listed in Table 60 for the case of cracks at one side and in Table 61 for
cracks at both sides.

Lw ajW=0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.50 B, 0.4498 | -0.2665] -0.7658 | -0.8416 | -0.8860 | -0.6393 | 0.0057 | 1.0751
B, 0.7001 0.8273 | 0.6791 | 0.4678 | 0.5825 | 0.3613 | -0.3651 | -1.4542
B; | -0.3100 | -0.3832 | -0.3869 | -0.3497 { -0.3756 | -0.3149 | -0.1266 | 0.1625
0.75 B, 0.4498 | 0.0781 | -0.3124 | -0.4226 | -0.3203 | -0.0305 | 0.6241 | 1.3978
B, 0.7001 0.7536 | 0.7895 [ 0.4915 | 0.2220 | -0.0984 | -0.7271 | -1.0760
B, | -0.3100 | -0.3455 | -0.3787 | -0.3265 | -0.2658 [ -0.1824 { -0.0130 | 0.1084
1.00 B, 0.4498 | 0.2444 | 0.0035 | -0.0983 | 0.0291 | 0.3208 | 0.9107 | 1.8269
B, 0.7001 0.7255 | 0.7407 | 0.5686 | 0.2426 | -0.0626 | -0.5682 [ -1.1437
B, | -0.3100 | -0.3288 | -0.3479 | -0.3203 | -0.2466 | -0.1661 | -0.0257 | 0.1505
1.50 By 0.4498 | 0.3700 | 0.3372 { 0.3182 | 0.4778 | 0.7812 { 1.3410 | 2.3871
B, 0.7001 0.7075 | 0.7213 | 0.7442 | 0.4854 | 0.2221 | -0.2238 | -0.9941
B, | -0.3100 | -0.3168 [ -0.3218 | -0.3276 | -0.2652 | -0.1923 | -0.0658 | 0.1580
2.00 B, 0.4498 | 0.4228 | 0.5048 | 05969 | 0.7560 | 1.1493 | 1.6665 | 2.1878
B, 0.7001 0.6991 { 0.6972 { 0.7915 | 0.7519 | 0.4058 | 0.1750 | 0.3309
B, | -0.3100 | -0.3116 | -0.3058 | -0.3185 | -0.3000 | -0.2045 | -0.1239 | -0.1203
2.50 By 0.4498 | 0.4759 | 0.6144 | 0.8159 | 1.0107 | 1.3983 | 1.8675 | 2.2013
B, 0.7001 0.6801 | 0.6333 | 0.7034 | 0.8709 | 0.7243 | 0.6929 | 1.1397
Bs -0.3100 | -0.3063 | -0.2857 | -0.2863 | -0.3068 | -0.2516 | -0.2141 | -0.2812
3.00 B, 0.4498 | 0.4941 | 0.6832 | 09495 | 1.2331 | 1.6311 | 2.0157 | 2.2706
B, 0.7001 0.6860 | 0.6123 | 07243 | 0.9187 | 0.9843 | 1.2258 | 1.7463
B; | -0.3100 | -0.3043 | -0.2769 | -0.2810§ -0.3015 | -0.2881 { -0.3108 | -0.3979
3.50 B, 0.4498 | 0.5353 |} 0.7319 | 1.1121 | 1.4248 | 17739 | 2.1588 | 2.3557
B, 0.7001 0.6815 | 0.5798 | 0.5320 | 0.9756 | 1.3467 | 1.6784 | 2.2564
B, | -0.3100 | -0.3006 | -0.2672 | -0.2323 | -0.3001 | -0.3511 | -0.3918 | -0.4942

Table 60. Strip with crack array. Coefficients for the weight function eq.(6.1.1) for strips with edge
cracks at one side.

Lw ajw=0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.50 By 0.4498 | -0.2628 | -0.7624 | -0.8371 | -0.8855 | -0.6351 | -0.0062 | 1.0091
B, 0.7001 0.8263 | 0.6721 | 0.4587 | 0.5815 | 0.3527 | -0.3413 | -1.3418
B, -0.3100 | -0.3828 | -0.3853 | -0.3476 | -0.3753 | -0.3129 | -0.1322 | 0.1356
0.75 B, 0.4498 | 0.0666 | -0.2906 | -0.4018 | -0.4354 | -0.0776 | 0.5521 | 0.9531
B, 0.7001 0.7507 | 0.6810 | 0.5082 | 0.5171 | -0.0042 | -0.6156 | -0.3809
B, | -0.3100 | -0.3457 | -0.3556 | -0.3284 | -0.3324 | -0.2043 | -0.0401 | -0.0603
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1.00 B, 0.4498 | 0.2446 | 00021 | -0.1050 y -0.0025 | 0.2521 | 0.7219 | 1.4138
B, 0.7001 0.7250 | 0.7307 | 0.5689 | 0.2798 | 0.0103 | -0.3462 | -0.7062
B; | -0.3100 | -0.3287 { -0.3460 | -0.3208 | -0.2561} -0.1853 | -0.0826 | 0.0355
1.50 B, 0.4498 | 0.3289 | 0.2633 | 0.0352 | 0.4983 | 0.7066 | 0.5574 | 1.9769
B, 0.7001 0.7100 | 0.6942 | 1.0207 | -0.1192 | 0.0473 | 0.7992 | -1.1974
B; | -0.3100 | -0.3200 | -0.3213 | -0.4018 | -0.1429 | -0.1623 | -0.3227 | 0.1713
2.00 B, 0.4498 | 0.3573 | 0.3491 | 0.3586 | 0.4306 | 0.6407 | 1.0219 | 1.6240
B, 0.7001 0.7070 | 0.7103 | 0.7692 | 0.7223 | 0.5159 | 0.1812 | -0.2455
B, | -0.3100 | -0.3176 | -0.3188 | -0.3299 | -0.3158 | -0.2605 | -0.1681 | -0.0426
2.50 B, 0.4498 | 0.3866 | 0.3719 | 0.4028 | 0.5106 | 0.6817 | 1.0086 | 1.5520
B, 0.7001 0.7067 | 0.7361 | 0.7002 | 0.6077 | 0.5181 | 0.2921 | -0.0691
B, | -0.3100 | -0.3156 | -0.3224 { -0.3132 | -0.2875 | -0.2582 | -0.1912 | -0.0827

Table 61. Strip with crack array. Coefficients for the weight function eq.(6.1.1) for strips with edge
cracks at both sides.

6.1.2 Stress intensity factors for axial edge cracks in thermally shocked
cylinders

The procedure of predicting failure under thermal fatigue conditions includes the following steps:

1. First, the temperatures in the whole component have to be calculated as a function of ther-
mal material properties and thermal boundary conditions.

2. Then the stress distribution has to be calculated as a function of the thermo-mechanical ma-
terial parameters (thermal expansion coefficient «, Young’s modulus E, Poisson ratio pu).

3. The stress intensity factors for the cracks have to be calculated for the given thermal stress
distribution.

In this section axial edge cracks are considered (see fig.87).

Calculation of temperatures and stresses in a thermally shocked cylinder The temperature dis-
tribution in a circular cylinder with an initial temperature T,, cooled by transfer into a cooling
medium of temperature T=0, is given by

2
exp( — )y J
T=T,20 P o) oltns) (6.1.2)
/1R a%_*_hzll Jo(a,,R)

n=1

where R is the radius of the cylinder, p is the radial coordinate, and « is defined by the thermal
conductivity 4, the specific heat capacity C,, and the density d as

A
=2 (6.1.3)
Cpd

The a, values are roots of

128




Figure 87. Edge-cracked cylinder. Geometrical data.
h
apdy(Rap) — T Jo(Ra,) =0 (6.1.4)

with the heat transfer coefficient h and the Bessel functions Jo, J: of the first kind. The thermal
stresses result as

I t/R?
0.401 — 0.2
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>-0.30 TR RS - 0.05
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Figure 88. Stress intensity factors in thermally shocked cylinders. Stress intensity factors with envelope
for a Biot-number B =10,
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20Eh E exp(— “n"t) Ji(apR)  Jylapp) ]
o,=T - A5
0 /{R(" - V) (0(,, +h2//{2)J a R) [ anR anp (6 )

2uEh § exp( — ahxt) [ 24, (a,R) ]
=T —J, 6.1.6
0 R(1 =) (@ +12] ) o(aR) « R o(%no) (6.1.6)
n=1

24Eh E : exp( — anxt) [ J1(0aR)  J1(anp) ]
% = — Jg(a A7
To AR(1—v) (a% +h2//12)J0(acnR) R + %P Jo(enp) (6.1.7)

n=1

The highest tensile stresses occur at the cylinder surface. Intercomparison of eqs.(6.1.5) to (6.1.7)
makes obvious that for the cylinder surface (p = R) the circumferential and axial stresses are
identical and produce an equibiaxial stress state. The radial stress component vanishes at the
free surface. In the center of the specimen the radial and circumferential stresses are identical.
The axial stress is twice the circumferential stress,

Stress intensity factors For edge cracks the stress component ¢, is responsibie for the stress
intensity factor. Using eq.(6.1.7) and the weight function for the edge-notched circular disc one
can calculate the stress intensity factors. This was done for differently chosen Biot numbers B.
The results are given in the representation

. B=IR (6.1.8)

K= 1

with the geometric function Y entered in the following tables

kt/R? | alR=0} 0.1 0.2 0.3 04 0.5 0.6 0.8 1.0

0.02 0.0256 | 0.0181| 0.0128] 0.0093} 0.0071| 0.0057| 0.0048| 0.0037| 0.0030
0.05 0.0352 | 0.0286{ 0.0231{ 0.0187| 0.0152| 0.0125| 0.0104( 0.0077| 0.0058
0.10 0.0418 | 0.0362| 0.0311| 0.0266f 0.0227} 0.0193| 0.0164{ 0.0117] 0.0082
0.20 0.0456 | 0.0406| 0.0359] 0.0316| 0.0275| 0.0238| 0.0204| 0.0145| 0.0097
0.50 0.0443 | 0.0397} 0.0354| 0.0313} 0.0274} 0.0238| 0.0205( 0.0146| 0.0096
1.00 0.0402 | 0.0360] 0.0321| 0.0284] 0.0249| 0.0216| 0.0186{ 0.0132| 0.0087
2.00 0.0331 | 0.0287| 0.0264| 0.0234| 0.0205| 0.0178| 0.0153| 0.0109| 0.0072
5.00 0.0184 | 0.0165| 0.0147| 0.0130| 0.0114| 0.0089| 0.0085| 0.0061{ 0.0040
10.0 0.0069 | 0.0062( 0.0055| 0.0049} 0.0043| 0.0037| 0.0032| 0.0023| 0.0015

Table 62. Stress intensity factors for axially edge-cracked cylinders. Geometric function Y ac-
cording to eq.(6.1.8), Biot-number B = 0.1.
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kt/R*| a/R=0] 0.05 0.1 0.2 0.3 04 0.5 0.6 0.8 10

0.005 | 0.1350 | 0.0942| 0.0654| 0.0351| 0.0234| 0.0179| 0.0147| 0.0126| 0.0101} 0.0086
0.01 | 0.1781 | 0.1396| 0.1084| 0.0669( 0.0453| 0.0341( 0.0278| 0.0237] 0.0187| 0.0157
0.02 | 0.2275 | 0.1932] 0.1631| 0.1157| 0.0840{ 0.0640| 0.0514| 0.0432{ 0.0334| 0.0273
0.10 | 0.3155 | 0.2957| 0.2764| 0.2399| 0.2067( 0.1770f 0.1510| 0.1284| 0.0919( 0.0638
0.20 | 0.2948 | 0.2803| 0.2659| 0.2378| 0.2108( 0.1851| 0.1609( 0.1383| 0.0981| 0.0648
0.50 | 0.1881 | 0.1785] 0.1708| 0.1539| 0.1373| 0.1213] 0.1059| 0.0912| 0.0646] 0.0422
1.00 | 0.0855 [ 0.0816{ 0.0777| 0.0700| 0.0625| 0.0552| 0.0481] 0.0415| 0.0294] 0.0192
2.00 | 0.0177 | 0.0169| 0.0160{ 0.0145| 0.0129| 0.0114| 0.0089{ 0.0086| 0.0061| 0.0040

Table 63. Stress intensity factors for axially edge-cracked cylinders. Geometric function Y according
to eq.(6.1.8), Biot-number B = 1.0,

kt/R* | a/R=0| 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0

0.005 | 0.8423 | 0.6104| 0.4333| 0.2358| 0.1567| 0.1197( 0.0983| 0.0842| 0.0671| 0.0572
0.01 0.9519 | 0.7738| 0.6177{ 0.3916{ 0.2661] 0.2001} 0.1625| 0.1383| 0.1088} 0.0913
0.02 1.0043 | 0.8827| 0.7661} 0.5648] 0.4171| 0.3188| 0.2557} 0.2143| 0.1643| 0.1337
0.05 0.9347 | 0.8750| 0.8137| 0.6917| 0.5786| 0.4803| 0.3991| 0.3341| 0.2418| 0.1787
0.10 | 0.7522 | 0.7224| 0.6907| 0.6235| 0.5541| 0.4857| 0.4204| 0.3598| 0.2548( 0.1699
0.20 | 0.4708 | 0.4568| 0.4415| 0.4080| 0.3714| 0.3327| 0.2932| 0.2538| 0.1788| 0.1136
0.50 | 0.1133 | 0.1101} 0.1066| 0.0988| 0.0902} 0.0841] 0.0716{ 0.0621] 0.0437| 0.0276
1.00 | 0.0105 | 0.0102| 0.0099| 0.0092| 0.0084| 0.0075| 0.0067| 0.0058| 0.0041| 0.0026

Table 64. Stress intensity factors for axially edge-cracked cylinders. Geometric function Y according to
eq.(6.1.8), Biot-number B = 10,

kt/R? | alR=0| 0.05 0.1 0.2 03 0.4 0.5 06 08 1.0

0.0005] 1.4622 | 0.5283| 0.2562| 0.1300§ 0.0892| 0.0691| 0.0572| 0.0484( 0.0399| 0.0348
0.001 | 1.5476 | 0.7758| 0.4056{ 0.2008( 0.1374| 0.1063| 0.0878| 0.0757| 0.0610| 0.0529
0.002 | 1.5873 | 1.0087{ 0.6150| 0.3030| 0.2054| 0.1583| 0.1305| 0.1123| 0.0801| 0.0777
0.005 | 15663 | 1.2180| 0.9074| 0.5097| 0.3374| 0.2569( 0.2105| 0.1803] 0.1432] 0.1218
0.01 1.4907 | 1.2726| 1.0568| 0.7017| 0.4818( 0.3611| 0.2821{ 0.24807 0.1943{ 0.1621
0.02 1.3573 | 1.2316| 1.0997; 0.8463| 0.6399| 0.4924| 0.3943| 0.3281| 0.2504| 0.2019
0.05 1.0785 | 1.0270| 0.9705| 0.8486] 0.7256| 0.6116] 0.5124] 0.4300| 0.3083| 0.2230
010 | 0.7842 | 0.7610] 0.7347| 0.6751| 0.6080| 0.5400| 0.4712| 0.4050| 0.2856| 0.1863
0.20 0.4390 | 0.4287| 0.4170| 0.3895] 0.3577| 0.3227| 0.2857| 0.2479| 0.1743| 0.1093
0.50 0.0800 | 0.0782| 0.0761| 0.0712| 0.0655| 0.0592| 0.0525| 0.0546| 0.0320} 0.0200

Table 65. Stress intensity factors for axially edge-cracked cylinders. Geometric function Y according to
eq.(6.1.8), Biot-number B = 100,

The development of stress intensity factors during a thermal shock is plotted in fig.88.
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