Forschungszentrum Karlsruhe Technik und Umwelt

Wissenschaftliche Berichte FZKA 5557

Experimentelle Bestimmung der Wärmeleitfähigkeit von flüssigem Edelstahl

M. Bober, J. Singer

Institut für Neutronenphysik und Reaktortechnik Projekt Nukleare Sicherheitsforschung

Februar 1995

Forschungszentrum Karlsruhe Technik und Umwelt Wissenschaftliche Berichte FZKA 5557

Experimentelle Bestimmung der Wärmeleitfähigkeit von flüssigem Edelstahl

M. Bober, J. Singer Institut für Neutronenphysik und Reaktortechnik Projekt Nukleare Sicherheitsforschung

Forschungszentrum Karlsruhe GmbH, Karlsruhe 1995

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

> Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

ISSN 0947-8620

Kurzfassung

Die Größe der Wärmeleitfähigkeit von flüssigem Edelstahl wurde an lokal aufgeschmolzenen Proben aus Messungen der Schmelzschichtdicke, der Oberflächentemperatur und der an der Probenoberfläche absorbierten Heizleistung bestimmt.

Mit einem 3 ms langen Nd:YAG-Laserpuls uniformer, räumlich und zeitlich flacher Leistungsverteilung wurden die Probenoberflächen quasistationär aufgeschmolzen. Die Oberflächentemperatur wurde pyrometrisch gemessen und die Dicke der wiedererstarrten Schmelzschicht metallografisch bestimmt. Für die Wärmeleitfähigkeit des Edelstahls X10 NiCrMoTiB 15 15 (DIN-Nr. 1.4970) ergab sich im Temperaturbereich von 1700 bis 2500 K ein Mittelwert von 31 ± 9 Wm⁻¹K⁻¹.

Experimental Determination of the Thermal Conductivity of Liquid Stainless Steel.

Abstract

The thermal conductivity of liquid stainless steel was obtained from measurements of the melting depth, surface temperature and heat absorption on locally molten specimens.

A Nd:YAG-laser pulse of 3 ms in length and of a uniformly flat power distribution in respect of space and time yielded a quasi-stationary surface melting of the specimen. The surface temperature was measured pyrometrically and the thickness of the refrozen molten layer was found out metallographically. The evaluation of the thermal conductivity of the stainless steel X10 NiCrMoTiB 15 15 (DIN-Nr. 1.4970) resulted in a mean value of 31 ± 9 Wm⁻¹K⁻¹ in the temperature range of 1700 – 2500 K.

1. Einleitung

Die Wärmeleitfähigkeit von flüssigem Edelstahl wird zusammen mit den thermophysikalischen Daten der übrigen Reaktorkernmaterialien für die Unfallanalyse von Reaktoren benötigt [1,2]. Ihre Größe konnte bisher nur theoretischen Extrapolationen entnommen werden [3]. Es lagen keine Messungen vor, da die Wärmeleitfähigkeit flüssiger Materialien bei hohen Temperaturen experimentell schwer zugänglich ist. Deshalb wurde, basierend auf den Erfahrungen mit Laserheiztechniken [4,5], ein Kurzzeitmeßverfahren entwickelt. Das Verfahren gestattet es, die Wärmeleitfähigkeit von flüssigem Stahl, unter quasistationären Bedingungen, aus Messungen der eingestrahlten Laserleistungsdichte und der Dicke der Schmelzschicht der aufgeheizten Probenoberflächen zu bestimmen.

Da austenitische Edelstähle in ihrem Wärmeleitverhalten ähnlich sind, war die Wahl des Probenmaterials relativ frei. Es wurde der Stahl X10 NiCrMoTiB 15 15 (DIN-Nr. 1.4970) ausgewählt, der als Hüllmaterial für die Brennstäbe eines natriumgekühlten schnellen Reaktors (SNR 300) vorgesehen war und für den weitreichende materialtechnische Untersuchungen vorlagen [6]. Bei diesem Stahl handelt es sich um einen korrosionsbeständigen, hochwarmfesten, titanstabilisierten CrNi-Stahl mit außerordentlich hohem Rekristallisationswiderstand [7]. Er wurde deshalb auch von dem Arbeitskreis Thermophysik der Deutschen Keramischen Gesellschaft als Standardreferenzmaterial für Wärmeleitfähigkeitsmessungen vorgeschlagen. Seine Leitfähigkeit wurde im festen Zustand zwischen 300 und 1200 K sehr genau gemessen [8].

2. Meßverfahren

Die Oberfläche einer Stahlprobe wird mit einem Nd:YAG-Laserstrahl aufgeschmolzen. Dabei wird der Aufheizvorgang so geführt, daß sich in dem Schmelzfleck quasistationäre Bedingungen einstellen. Aus der Dicke der wiedererstarrten Schmelzschicht, die in Nachuntersuchungen gemessen wird, der Oberflächentemperatur und der in der Oberfläche absorbierten Laserleistung läßt sich die Wärmeleitfähigkeit des flüssigen Stahls bestimmen. Die Auswertung wird sehr einfach, wenn lineare Wärmeausbreitung zugrunde gelegt werden kann. Eine Abschätzung zeigt, daß dies möglich ist. Die charakteristische Größe für die Wegstrecke, die eine Wärmewelle in der Zeit τ bei nichtstationärer Wärmeausbreitung in einem Material zurücklegt, ist $l = 2(\tau \kappa)^{\frac{1}{2}}$ [9]. Setzt man für die Temperaturleitzahl κ des erhitzten Edelstahles Werte zwischen 5,5 und $6 \cdot 10^{-6} \text{ m}^2 \text{s}^{-1}$ ein [3,8,10], erhält man bei einer angenommenen Laserpulsdauer von 3 ms Größen für l von 0,24 bis 0,26 mm. Wählt man die Größe des Heizflecks, in die homogen, mit gleicher Leistungsdichte eingestrahlt wird, im Durchmesser etwa 5 bis 6 mal größer als l, kann man den Wärmefluß im Zentrum des Heizflecks in erster Näherung eindimensional annehmen. Wenn am Ende des Aufheizvorganges an der Oberfläche quasistationäre Temperaturbedingungen erreicht werden, kann man die Wärmeleitfähigkeit, *K*, aus der stationären Wärmeleitungsgleichung,

$$K = I_a / \nabla T \qquad [Wm^{-1}K^{-1}], \tag{1}$$

ermitteln. Der Temperaturgradient, ∇T , ist dann durch die Oberflächentemperatur der Schmelze, T_{max} , die Schmelztemperatur, T_{melt} , und die Dicke der Schmelzschicht, d, bestimmt,

$$\nabla T = (T_{max} - T_{melv}) / d \qquad [Km^{-1}]. \tag{2}$$

Die absorbierte Leistungsdichte, I_{α} , erhält man aus dem Produkt der eingestrahlten Laserleistungsdichte, I, mit dem Absorptionskoeffizienten, α , unter Abzug der Abstrahlungsverluste $\epsilon \sigma T^4$, (σ = Stefan-Boltzmann Konstante). Da die Abstrahlungsverluste nur eine kleine Korrektur darstellen, kann die Größe des Gesamtemissionskoeffizienten, ϵ , ohne einen erheblichen Fehler zu machen, gleich dem spektralen Absorptionskoeffizienten α gesetzt werden. Es folgt somit

$$I_a = \alpha (I - \sigma T^4_{max}) \qquad [Wm^{-2}]. \tag{3}$$

3. Experimentelle Durchführung

Die Stahlproben wurden aus kaltverformtem Stangenmaterial des Stahles X10 NiCrMoTiB 15 15 (DIN-Nr. 1.4970) gefertigt. Das Material war bei der Firma Röchling (Völklingen-Saar) hergestellt worden und stammte aus Restbeständen früherer SNR-Entwicklungsarbeiten im KfK¹. Die Probescheiben mit ebenen, gut polierten Oberflächen, hatten einen Durchmesser von 6 mm und eine Dicke von 1 mm. Sie wurden in einen Druckrezipienten eingesetzt und unter einer Atmosphäre von 2 MPa Reinst-Argon durch ein Quarzglasfenster mit einem Laserstrahl senkrechter Inzidenz aufgeheizt. Durch ein zweites Fenster wurde die Oberflächentemperatur im Zentrum des Heizflecks, unter einem Winkel von 35° zum einfallenden Heizlaserstrahl, mit einem schnellen Spektralpyrometer gemessen.

Das Pyrometer arbeitete mit einem Si-Detektor (EG&G, Type YAG 444) und einem Interferenzbandpaßfilter (Oriel) der Wellenlänge 940 nm mit einer Bandbreite von 43 nm. Die Temperaturauflösung des Instruments betrug ± 2 K bei 2500 K bei einer Signalanstiegszeit von 2 μ s (90%). Der mit einer Einstelloptik exakt justierbare Meß-

¹Kernforschungszentrum Karlsruhe

fleck hatte einen Durchmesser von 0,28 mm bei einem Arbeitsabstand von 200 mm. Die Meßgenauigkeit des Pyrometers wurde wiederholt an einer von der PTB (Physikalisch-Technische Bundesanstalt, Berlin) kalibrierten Wolframbandlampe (GEC, Type 10/G) überprüft. Die Gesamtgenauigkeit des Pyrometers betrug ±8 K bei einer Strahlungstemperatur von 2200 K. Ein zusätzlicher Fehler von ±15 bis ±20 K war, je nach Größe von T_{max} , bei der Bestimmung der Oberflächentemperatur in Rechnung zu stellen, der von der Unsicherheit des spektralen Emissionsgrades von ±5 % herrührt [4,11].

Der Nd:YAG-Laser (LASAG, Modell LAK 400/LV 480) wurde im Multimode betrieben. Der Strahl lieferte im Brennfleck, nach Fokussierung mit einer Bestformlinse (Odelga) der Brennweite 1000 mm, eine flache, angenähert gleichförmige räumliche Leistungsverteilung, 1,5 mm im Durchmesser. Der zeitliche Pulsverlauf war gleichmäßig, nahezu rechteckig, mit leicht fallender Tendenz. Über die Länge des Pulses von 3 ms fiel die Leistung um etwa 10 % ab. Dadurch wurden in der Mitte des Heizflecks für einige 100 µs quasistationäre Bedingungen erreicht. Der zeitliche Leistungsverlauf wurde in jedem Experiment gemessen, indem ein kleiner Teil des Laserstrahls über einen teildurchlässigen Spiegel ausgeblendet und einem Leistungsmonitor (EG&G, Type YAG 444) zugeführt wurde. Die Signale des Leistungsmonitors und des Pyrometers wurden während des Heizvorgangs digital mit 11 Bit Auflösung über der Zeit aufgezeichnet (Tektronix, Modell TDS 520, High Resolution Mode).

Abb. 1 Temperaturverlauf im Zentrum des Heizflecks in zwei Experimenten (Nr. 141 u. 134) mit maximalen Oberflächentemperaturen (T_{max}) der Stahlschmelze von 1920 und 2033 K.

In jedem Experiment wurden die Proben zweimal mit dem Laser aufgeheizt. Zunächst wurde die Probenoberfläche zum Einrichten des Pyrometers mit einem schwächeren Vorpuls angeschmolzen und danach mit dem vollen Puls vordefinierter Leistungsverteilung in den quasistationären Zustand gebracht. Abbildung 1 zeigt zwei Beispiele für solche Aufheizkurven (vgl. Tab. I). Das Erreichen des quasistationären Zustandes bei T_{max} im Zentrum des Heizflecks ist deutlich zu sehen. Geht man davon aus, daß die Temperaturdiffusionszeit durch die Schmelzschicht je nach deren Dicke 20 bis 100 µs beträgt, erhält man für diese Zeitspanne eine Abweichung von der stationären Temperaturbedingung ($T_{max} = const.$), die weniger als 20 K beträgt. Im Temperaturabfall nach dem Ende des Heizvorgangs markiert sich das Erstarrungsplateau der Schmelze. Insgesamt wurden 36 Experimente bei vier verschiedenen Laserleistungseinstellungen durchgeführt und ausgewertet.

Abb. 2. Räumliche Leistungsprofile des Nd:YAG-Laserstrahles im Brennfleck, links im Grundmode- (TEM00) und rechts im Multimode-Betrieb.

Abbildung 2 zeigt die räumliche Leistungsverteilung des Laserstrahls im Brennfleck, die mit einem Silizium-Detektor (EG&G, YAG 100) durch Abrastern der Fokusebene mit 0,1 mm Auflösung in einer Pulsfolge gemessen wurde. Das linke Bild zeigt zur Illustration das Strahlprofil, welches man im Grundmode-Betrieb des Lasers erhält. Dieses ist ersichtlich für eine gleichmäßige flächenhafte Heizung ungeeignet. Deshalb wurde die rechts dargestellte Multimode-Einstellung gewählt, die eine annähernd gleichmäßige Heizung in einem Brennfleck mit ca. 1,5 mm Durchmesser erlaubt. Die verbleibende Welligkeit in der Leistungsverteilung ist im entsprechenden Temperaturprofil tolerierbar.

Die räumliche Leistungsverteilung wurde für alle vier in den Schmelzversuchen verwendeten Leistungseinstellungen aufgezeichnet. Mit Hilfe eines absolut geeichten Thermopiles (Scientech 362 mit Meßkopf 360001) wurde die Anzeige des Leistungsmonitors in Watt kalibriert. Aus der gemessenen räumlichen Leistungsverteilung und dem Monitorsignal beim Erreichen des quasistationären Zustandes am Ende des Heizpulses konnte so die in jedem Experiment pro Flächeneinheit im Zentrum des Heizflecks eingestrahlte Laserleistung in Wm⁻² ermittelt werden.

Nach Durchführung der Schmelzversuche wurden die Stahlproben durchtrennt und jeweils eine exakt durch die Mitte des erstarrten Schmelzflecks verlaufende Querschnittsfläche metallografisch präpariert. Dabei wurde besonders darauf geachtet, die Kanten nicht zu verschmieren und eine Gratbildung zu vermeiden, um ein späteres exaktes Ausmessen der Schichtdicke zu ermöglichen. Durch Ätzen (ca. 1 min in 100 ml H_2O dest. + 30 $ml HCl conc. + 15 ml HNO_3 conc. + 10 g$ AlCl₃) wurden die Schichten schließlich sichtbar gemacht und ihre Dicke mit einem Meßmikroskop bestimmt.² Abbildung 3 zeigt Schnitte durch die Mitte des Schmelzflecks zweier Stahlproben von Experimenten mit unterschiedlichen Heizleistungen (vgl. Tab. I).

Exp. No. 141

Exp. No. 159

Abb. 3. Schnitt durch die Mitte des Heizflecks zweier Proben. Die Schmelzschichtdicken sind durch Ätzen sichtbar gemacht.

4. Ergebnisse

Die Ergebnisse der Messungen sind in Tabelle I zusammengefaßt. Spalte 2 enthält die im quasistationären Zustand erreichten Oberflächentemperaturen der Schmelzschichten, T_{max} , nach denen die Egebnisse hier sortiert sind. Spalte 3 zeigt die Temperaturspannen in der Schicht zwischen T_{max} und und dem Schmelzpunkt, T_{melt} , Spalte 4 die Abstrahlungsverluste und Spalte 5 und 6 die eingestrahlte, *I*, beziehungsweise absorbierte Leistungsdichte, I_a . Die Spalten 7 und 9 enthalten die gemessenen Schichtdikken d, die Temperaturgradienten in der Schicht, ∇T , und die aus Gl. (1) resultierenden Wärmeleitfähigkeitswerte

²Die Präparation und das Ätzen der Proben wurden von Rolf Huber durchgeführt.

Exp Nr.	T _{max} [K]	T _{max} -T _{meli} [K]	$\sigma \cdot T^4_{max}$ [MWm ⁻²]	<i>I</i> [MWm ⁻²]	I_a [MWm ⁻²]	<i>d</i> [μm]	∇ <i>T</i> [Kµs ⁻¹]	<i>K</i> [Wm ⁻¹ K ⁻¹]
140	1876	191	0,70	977	351	20	9,6	37
128	1888	203	0,72	977	351	20	10,2	35
130	1902	217	0,74	977	351	22	9,9	36
141	1918	233	0,77	977	351	21	11,1	32
125	1923	238	0,76	977	351	23	10,4	34
126	1925	240	0,78	977	351	22	10,9	32
129	1928	243	0,78	977	351	23	10,6	33
127	1935	250	0,80	977	351	23	10,9	32
142	1948	263	0,82	977	351	20	13,2	27
137	1984	299	0,88	993	357	28	10,7	34
135	2016	331	0,94	993	357	31	10,7	33
139	2029	344	0,96	993	357	33	10,4	34
132	2033	348	0,97	993	357	31	11,2	32
134	2033	348	0,97	993	357	28	12,4	29
133	2041	356	0,98	993	357	38	9,4	38
138	2065	380	1,03	993	357	36	10,6	34
131	2072	387	1,05	993	357	32	12,1	30
144	2152	467	1,22	1081	388	39	13,8	28
143	2222	537	1,38	1081	388	39	13,8	28
151	2225	540	1,39	1081	388	48	11,3	34
145	2231	546	1,41	1081	388	44	12,4	31
150	2238	553	1,42	1081	388	39	14,2	27
147	2256	571	1,47	1081	388	41	13,9	28
146	2262	577	1,48	1081	388	39	14,8	26
149	2266	581	1,50	1081	388	45	12,9	30
148	2307	622	1,61	1081	388	48	13,0	30
155	2389	704	1,85	1096	394	49	14,4	27
154	2427	742	1,97	1096	394	55	13,5	29
159	2446	761	2,03	1096	394	58	13,1	30
153	2463	778	2,09	1096	394	66	11,8	33
156	2463	778	2,09	1096	394	62	12,6	31
152	2472	787	2,12	1096	394	58	13,6	29
157	2475	790	2,13	1096	394	57	13,9	28
158	2483	798	2,16	1096	394	56	14,3	28
160	2518	833	2,28	1096	394	57	14,6	27

Tab. I. Experimentelle Ergebnisse der Wärmeleitfähigkeitsmessungen an flüssigem Edelstahl.

vom Schmelzpunkt bis 2500 K ist

$$K = 31 \pm 9 \quad \text{Wm}^{-1}\text{K}^{-1}.$$
 (4)

Der angegebene Fehler errechnet sich aus dem Temperaturfehler, dem Fehler in der Bestimmung der absorbierten Laserleistungsdichte und dem der Schmelzschichtdikkenbestimmung. Der Fehler in der Temperaturdifferenz $T_{max} - T_{melt}$ beträgt $\leq \pm 10$ %. Er setzt sich zusammen aus dem Temperaturmeßfehler und dem Fehler, der aus der Abweichung vom angestrebten stationären Zustand resultiert. Der Fehler der absorbierten Laserleistungsdichte beträgt $\leq \pm 16$ %. Darin sind die Fehler enthalten, die durch die räumliche Leistungsschwankung, die Monitormessung, deren Eichung und die Absorptionskonstantenbestimmung entstehen. Der Fehler der Schmelzschichtdickenbestimmung beträgt $\leq \pm 20$ %. Neben dem Meßfehler sind darin die Fehler der Dickenschwankungen enthalten, die von Flüssigkeitsbewegungen beim Erstarren der Schmelze und von der metallografischen Präparation herrühren. Alle drei Fehler können als unabhängig voneinander angesehen werden. Somit ist eine geometrische Addition erlaubt, die zu dem Gesamtfehler von $\leq \pm 28$ % für die Wärmeleitfähigkeit der Stahlschmelze führt.

Abb. 4. Ergebnisse der Wärmeleitfähigkeitsmessungen an flüssigem Edelstahl, DIN-Nr.1.4970, im Temperaturbereich 1800 - 2500 K.

Die Meßwerte für die Wärmeleitfähigkeit zeigen in Abb. 4 eine fallende Tendenz mit steigender Temperatur. Da jeder Meßwert für sich der jeweiligen gesamtenTemperaturdifferenz T_{max} - T_{melt} zuzuordnen ist, ist das Auswerten einer Temperaturabhängig-

Abb. 5. Wärmeleitfähigkeit des Edelstahls, DIN 1.4970, im festen und im flüssigen Zustand.

keit schwierig und im Anbetracht der großen Fehlerbreite auch nicht sinnvoll. Es wird deshalb nur ein Mittelwert für den Gesamttemperaturbereich angegeben.

In Abb. 5 ist die Wärmeleitfähigkeit des Edelstahls Nr. 1.4970 für den festen und flüssigen Zustand dargestellt. Für den festen Zustand wurde das von Binkele /8/ für 300 < T < 1200 K angegebene Fit-Polynom verwendet,

$$K = 9,133 + 1,603 \cdot 10^{-2} \cdot T - 0,82 \cdot 10^{-6} \cdot T^{2} \qquad [Wm^{-1}K^{-1}].$$
(5)

Extrapoliert man die Wärmeleitfähigkeit nach Gl. (5) bis zum Schmelzpunkt ($T_{melt} = 1685 K$), erhält man dort einen Wert von 34 Wm⁻¹K⁻¹. Nach einer früheren Abschätzung /3/ auf Grund von Analogieschlüssen zu anderen Metallen (*Al, Cd, Cs, Cu, In, Li, Pb und Sn*), deren Wärmeleitfähigkeit im schmelzflüssigen Zustand gemessen war, ergibt sich für flüssigen Edelstahl ein Schätzwert von etwa 20 Wm⁻¹K⁻¹. Im Vergleich dazu erscheint der gemessene Wert von 31 ± 9 Wm⁻¹K⁻¹ (Gl. (4)) relativ hoch.

Referenzen

- W. Maschek, D. Thiem, Energetics Potentials of CDA's in Fast Reactors with Transmutation/Burning Capabilities, ARS '94, April 17-21, 1994, Pittsburgh, USA (1994).
- M.G. Stevenson et al., An Overview Assessment of Energetic Core Disruptive Accidents, Proc. Int. Meeting on Fast Reactor Safety Technology, Vol. 3, Seattle, Wash., USA (1979) pp. 1406-1414.
- C.S. Kim, Thermophysical Properties of Stainless Steels, Report ANL-75-55, Argonne, Illinois, USA (1975).
- 4. M. Bober, J. Singer, High Temperature Vapor Pressures of Metals from Laser Evaporation, *High Temperature Science*, <u>19</u>, (1985) pp. 329-345.
- M. Bober, J. Singer,
 Experimental Determination of the Spontaneous Nucleation Temperature of Sodium, Proc. 12-th Symp. on Thermophysical Properties, June 19-24, 1994, Boulder Co. USA, Int J. of Thermophysics (1995), im Druck.
- A.F. Padilha,
 Auscheidungsverhalten des titanstabilisierten austenitischen rostfreien 15% Cr-15%Ni-1,2%Mo-Stahles (DIN 1.4970), Report KfK-3151, Kernforschungszentrum Karlsruhe (1981).
- C.W. Wegst (Herausgeber), <u>Stahlschlüssel</u>, Verlag Stahlschlüssel Wegst GmbH u. Co. (1980).
- L. Binkele,
 Austenitischer Chromnickelstahl als Standardreferenzmaterial bei Messungen der Wärme- und Temperaturleitfähigkeit, DKG Fachbericht Nr. 28, ISBN-Nr. 3-925543-05-8, Deutsche Keramische Gesellschaft e.V., Köln (1980).
- H.S. Carslav, J.C. Jaeger, <u>Conduction of Heat in Solids</u>, Oxford University Press, London (1973), p. 50.
- 10. K. Thurnay,Unveröffentlichter Bericht, Kernforschungszentrum Karlsruhe (1992).

11. A. Cezairliyan, A.P. Miller,

Thermophysical Measurements on Low Carbon 304 Stainless Steel Above 1400 K by a Transient (Subsecond) Technique, *Int. J. of Thermophysics*, <u>1</u>, (1980), pp. 93-95.