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ABSTRACT

For a better understanding of transport mechanisms in soil for
a system with two phases of immiscible liquids the physics
of porous media gives again important contributions. In this
report, the considerations mainly concentrate on horizontal
transport. Our approach is based on the similarity solution of
the transport equation which reduces a given nonlinear partial
differential equation (PDE) to an ordinary differential equation
(ODE). It can be seen, how dimensionless similarity solutions
of the ODE depend, in addition to the similarity variable, on
two parameters:
- the capillary number Nc, giving the ratio of capillary forces
and viscous forces,. and
- the ratio of the viscosities of the two liquid phases.
It is shown, under which conditions different mechanisms of
transport are to be expected, such as
- a completely stable displacement or
- an unstable displacement, related to viscous fingering (DLA,
Diffusion Limited Aggregation) or to capillary fingering
{IP, Invasion Percolation).
These mechanisms are also strongly dependent on certain critical
exponents (charcteristic for DLA or IP ). These relations are
discussed in our report. Again, for some regions cf saturation,
mechanisms of displacement are either clearly dominated
-~ by imbibition (e.g. water pushing oil) or
- by drain (e.g. o0il pushing water).
Some of the results are also transformed again from the
gimilarity solution of the ODE to a solution of the PDE (with
space- and time coordinates). It is seen, that even with this
somewhat simplifed approach, we obtain a considerable spectrum
of mechanisms.




KURZFASSUNG

Zu einem besseren Verstédndnis der Transportmechanismen im Boden

fiir ein System aus zwel Phasen mit nichtmischbaren Fliissigkeiten

ist die Physik Portser Medien auch hier von groffer Bedeutung. Im

vorliegenden Bericht wird insbesondere horizontaler Transport

untersucht. Unser Vorgehen basiert auf einer Ahnlichkeitsl8sung

der Transportgleichung, wobei eine nichtlineare partielle Diffe-

rentialgleichung (PDG) zu einer gewdhnlichen Differential-

gleichung (DGL) reduziert wird. Es zeigt sich dabei, wie eine

dimensionslose Ahnlichkeitsldsung der gewdhnlichen DGL, neben der

Ahnlichkeitsvariablen von zwei Parametern abhingt:

- der Kapillarzahl Nc, die das Verhdltnis von kapillaren Krédften
und viskosen Kraften angibt, und

- dem Verhdltnis der Viskositdten der beiden fliissigen Phasen.

Es wird gezeigt, unter welchen Bedingungen verschiedene Transport-

mechanismen zu erwarten sind, namlich

-~ eine v&llig stabile Verdradngung oder

- eine instabile Verdrdngung, die zum viskosen Fingern gehdrt,
(DLA, Diffusion Limited Aggregation) oder die zum kapillaren
Fingern gehort (IP, Invasions-Perkolation).

Diese Mechanismen hédngen eng mit bestimmten kritischen Exponenten

zusammen {die fiir DLA oder IP und Perkolation charakteristisch

sind). Diese Beziehungen werden in unserem Bericht diskutiert

Weiterhin gibt es in verschiedenen Bereichen der Sdttigung

bestimmte Verdrdngungsmechanismen, die entweder klar mit

- Imbibition {e.g. Wasser verdrdngt Ol) oder

~ Drainage {e.g. 01 verdringt Wasser) zusammenh&ngen.

Einige unserer Resultate werden auch wieder von der Ahnlichkeits-

16sung der gewdhnlichen DGL zu einer normalen LOsung der PDG

zurificktransformiert (mit Raum- und Zeitkoordinaten). Man sieht

hier, daf bereits mit vereinfachten Modellen ein reiches Spektrum

von Mechanismen auftritt. ‘




MECHANISMS FOR TWO PHASE FLOW IN POROUS MEDIA

CONTENTS

1. Transport of two phases in a porous medium

1.1 Introduction

1.2 Modelling by physics of porous media

1.3 Basic steps for a l-dimensional displacement
1.4 Interpretation of the solution

1.5 Structure of the report

1.6 A few remarks on application

-,

2. 2=-dimensional Flow

2.1 A model of the Hele~Shaw-Cell
2.2 Dimensionless guantities
2.3 Steady state soluticns and fingers

2.4 Capillary number

3 Different types of transport

3.1 Criteria for different mechanisms
3.2 Formation of viscous fingers

3.3 A phase diagram showing different mechanisms

4. Evaluation of two phase flow in a porous medium

4.1 Basic equations
4.2 Continuity equations
4.3 Continuity and Darcy-law

4.4 Dimensionless considerations

=1

22

25

30




4.5 Similarity variables 39
4.6 Analytic solution . 41
4.7 Further results related to simliarity

transform 42
5. A first characteristics for transport 43
5.1 Introducticn 43
5.2 Figures and tables 43
5.3 Interpretation af the results 44
5.4 Some 3-dimensional representations for f(ci,Nc) 45
6. A further characteristic for transport 60
6.1 Continuity equaticns and f£lux &0
6.2 Interpretation of flux curve J(S:t,Nec) 62
6.3 Some details of Js-flux curve 65
6.4 Interpretation of various conditions of flow 66
6.5 Figures and tables 73
6.6 Interpretation of the results 73
7. Change from similarity solution to saturation 86
7.1 Introduction 86
7.2 The transformation of the similarity solution 86
7.3 Figures and tables for saturation S{x, t) 87
7.4 Limits of similarity solution

{short time behavior) 88
8. Solutions for different parameters 106
8.1 Introduction 106

8.2 Exponents m, n larger thanm 1 106




8.3 Exponents m, n smaller than 1 107
8.4 Considerations for parameters 108
CONCLUSIONS 123

APPENDICES

Al Similarity methods for partial differential equations 125

Al.1 Introduction 125
Al.2 Similarity method 125
21.3 Steps for similarity solution 125
A2 From continuity equation to similarity solution 128
AZ.1 Introduction 128
A2.2 A generalized interpretation of fracticnal flow 128
A2.3 Transformation of the continuity equation i2¢
A3 Transitions between different mechanisms i31
A3.1 Basic considerations for transitions 131
A3.2 A classification of transitions 131
A3.3 Critical exponents for percolation 133
A3.4 Introduction of correlation length 133
A3.5 Calculation of corrélation length 135
A2.6 A line which encludes the cluster: the hull 136
A3.7 Some cconsiderations of porous media 136
A3.8 Boundaries for mechanisms 142

A3.9 Generalization and some limits of the model 144




A4 Relations of permeability and saturation

A4.1 Introduction

A4.2 A few concepts from percolation
A4.3 Mass and fractal diwmension Df
A4.4 Saturation and polynomial laws

A4.5 Relation to permeability

A5 Remarks on programs for analvtic solutions

A5.1 Introduction

A5.2 Similarity solution and flux curve

A6 Check of the behavior of the similarity solution

A6.1 Analytic form of the similarity solution
A6.2 Partial derivative with regard to x

A6.3 Partial derivative with regard to nc

REFERENCES




The main topic of this report is a better understanding of
the behavior of a system of two phases in a porous medium.
Since the knowledge of the behavior of such systems (e.g. of
oil and water in soil) is of importance for the ecology in a
country with fast increasing industry, this type of research
gives an important insight.

For the understanding of such a 2-phase system in soil, the
physics of porous media will give important contributions.
An important step to the understanding of such systems is the
scientific research on mechanisms of transport which will

be detailed now.

1.2 Modelling by Physics of Porous Media

By means of some basic concepts of the physics of porous media
a transport equation is obtained (nonlinear partial differential
equation (PDE)), with coefficients which are in general not
constant).

This equation describes the displacement of a liquid (defender)
by another ligquid {invader) in a porous medium. It is known,
that frequently modelling by porous media is successful for
analyzing the transport of contaminants in soil.

For our purpose, it is useful, to divide the problem into two
subproblems:

(a) Simple porous media with a l1-dimensional displacement.

(b) More complex porous media (which are closer to reality but
require a PDE with nonconstant coefficients and boundary
conditions related to a 2- or 3-dimensional displacement.

We mainly concentrate on subproblrm (a) in this report.

1.3 Basic steps for a l-dimensional displacement

g g v S

Using the transport equation mentioned for (a) (which is a PDE),
we describe a l-dimensional transport. It will occur in this
case that the flow is directed in only one direction, without
significant contributions to transport in directions which are
orthogonal to the abszissa x.

(2) Method of solution

Now, the mathematical model (the PDE) will be tranformed to a
nondimensional representation. From this, a suitable similarity
transformation reduces the PDE to an ODE (ordinary differential
equation). As can be seen, this "similarity solution” will show
the main physical properties of the l-dimensional displacement.
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Having this similarity solution, already certain criteria can be

obtained, which closely can be related to regions of parameters

where certain mechanisms occur, i.e. mechanisms of displacement

in the porous medium. In our similarity solution, we have still

two parameters:

- the (reduced) ratio of viscosities

- the (reduced) ratio of viscous forces and capillary forces:
the capillary number.

Criteria

Certain criteria regarding these parameters show, whether we

have

f2a) a completely stable displacemant,

(2b) a displacement which can be characterized as Invasion
Percolation,

(2¢) a displacement which can be characterized as Diffusion
Limited Aggregation (DLA).

o s o b D Ao P g e

Case (2a) produces a stable type of behavior.

Case (2b) produces an instable type of behavior, Invasion
Percolation, (having relations to percolation, but differences
from usual percolation).

Case (2c¢) will have a different type of istabilityv (DLA) (also
having relations to fingering).

It has to be noted, that case (2a) is completely stable, but
cases (2b), (2c¢) are also related to some methods known from

the field of phase transitions (critical states, renormalization,
fixed scale transformation).

1.5 Structure of the report

We start in sect. 2 with some considerations of a Hele-Shaw Cell,
also introducing the capillary number Nc (i.e. ratio of the
capillary forces to viscous forces). Then different mechanismg for
transport are considered in sect. 3. In sect. 4 a PDE (based

on continuity equation and Darcy-law) is considered, using a .
nondimensional representation and a similarity solution ({reduced
saturation is obtained. Then in sect. 5 and 6 different characte-
ristics for transport are given. In sect. 7 from the similarity
solution a transformation from a similarity solution to a usual
solution (saturation) is obtained. Finally, in sect. 8, some
different versions of an ODE (also with the same type of similarity
solution) are discussed. In the Appendices, some problems are
discussed, such as more details on the similarity solution, and a
discussion of transitions between different mechanisms, with a
representation of parameters (such as permeability) by power laws,
and discussion of some computer programs used for this research.
Note that the main steps of this research are shown in Fig. 1-1.




Displacement of a liquid (defender)
by a different liquid (invader)

|

Porous Medium
oS ( 4.2-4.3 )
Model of the displacement by a
Partial Differential Equation
dimensionless
representation (4.4)
of PDE
I
similarity
transformation {4-5)
PDE ---> ODE
|
| (4.6)
similarity u1/u2 and
solution <= = = = Nc
(ODE, formula) as parameters
| different exponents m,n
i {power laws)
i | |
m=n=2 m=n > 1 m=n < 1
Riccati-
equation sect. sect.
sect.4,5,6 8.2 8.3

inversion from
similarity
aolution to
normal

solution (S(x.,t)
sect. 7

Fig. 1-1 Main issues of the method for two phase svystems

—_— i ——
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1.6 A few remarks on application

It seems quite clear from the various considerations in this
report, that the method can be applied for various systems of
two phases. Let us note two things: From experiments and from
the physics of porous media it follows, that for mechanisms
of displacement (such as for oil and water) capillary forces
and viscosities are resgsponsible. Related to some experiments
in the physics of porous media and for different types of soils
a study is possible which can describe the behavior of some
liguids which are likelv to give a two phase system in soil.
This understanding of mechanisms will contribute to planning
of ecology and also as a decision help for ecological
engineering.
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2. 2-dimensional Flow

e o o e ot e ot St W A e et it et

It may be noted, that a considerable number of phenomena, also
for two phases can be seen already by a significantly simplified
approach: The consideration of a 2-dimensional flow. For this

- experiments,

- simulations, and

- analytic evaluations

are possible for modelling.

2.1 A Model of the Hele-Shaw-Cell

For modelling a flow in 2 dimensions frequently a Hele-Shaw-Cell
can be used (see Fig. 2-1). It can be seen that this type of cell
is a pair of plain and parallel glass plates, with a narrow gap
between the plates, (e.g. of gap thickness of more or less 1 mm),
which has a considerable width and length (say, e.g. 10 cm), and
an input or output for liquids, which may according to different
requirements be at one end of the cell or in the middle of the
cell. ‘

We assume, that along the top and bottom plate (Fig. 2-~2) the
flow velocity v vanishes. With these boundary conditions, we
obtain

2
3 4%z
vE ==Xl - eme= )X v (X,Y) (2-1)
2 2 H
b
with v denoting the mean velocity having only components in

the x—f'plane. We assume, that
v =0 for z = + b/2,

i.e. at the top and bottom plate.
For a flow which has only negligible changes of |v] in time,
(d|v|/dt) = 0, the general Navier-Stokes equation reduces to
the following expressions (2-2):

2 .
we /' v = gradp (2-2)

iy

Substituting equ. (2-2) into (2-1) we obtain [Lamb]

v = = e *grad p (2-3a)
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It should be noted, that (2-3a) is for the case of the Hele-Shaw
model equivalent to Darcy’s law In this case, Darcy’s law is

not only a phenomenological law, but could be derived from the
basic equation of hydromechanics (2-2a) and a few assumptions
which are reasonable. When we replace (b"2/12) by the permeability
K we obtain the usual form of Darcy’s law, which is definitely
valid for a porous medium:

v = = —-——- *grad p (2-3Db)

Now it i1s useful to introduce a dimensionless formalism, which
will be closely related to a number of characteristic quantities
as used for transport phenomena with two phases in porous media
and for transport in soils.

2.2 Dimensionless guantities

We consider the two phase flow in a Hele-Shaw cell with a constant
average velocity. We have a displacement of a viscous fluid by

a non-viscous fluid (or a fluid with low viscosity). e.g. air.
Inside the viscous fluid clearly Darcy’s law holds. Thus the flow
will be uniform, at least when sufficiently distant from the
interface (between displacing fluid and displaced fluid). If the
viscous fluild is incompressible, the simply have

2

Py

V p=20 (2-4)

In the x-direction we have

D ——ed = —mmeme Voo *x (for x ---> 9 (2-5)

However, at the interface, conservation of fluids means that
the phase boundary moves according to

where vn 1is the normal velocity of the interface. Moreover
at the impermeable sidewalls of the cell,
dp
vy = 1 a we have ———— = 0 .
Ay
It is also important to note, that the pressure p is related
to the surface tension and to the curvature as follows:
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Hele-Shaw-cell (schematic)

(a) inlet (left), outlet (right)
(b) inlet (center) outlet (outside)
(c¢) fingering in a Hele-Shaw-cell




b =D D AR (2-7)

The following variables are dimensionless:

d> is called reduced pressure p,

¥ is called reduced surface tension XL.

We introduce these DIMENSIONLESS VARIABLES as follows:

2
b
¢ T e e *D (2-8a)
12*u*v_, *a
- 2
Y= cmmmmmeemen *(bla) (2-8b)
12% 1% v g
Here
a represents the half-channel width of the Hele-
Shaw cell
b gives the gap between top and bottom plate.
¥ is the surface tension
Voo is the velocity at a place sufficiently distant

from the interface.
It will be interesting to note the relation of the dimension-
less variable of (2-8b) to the capillary nunber Nc as shown
in section (2.3). Next we introduce a system of equations,

analogous to (2-4), (2-5), (2-6), referring to the uniform
flow (on the basis of the Saffman-Taylor model):

Vo

n*V 43 = vn (2-10)

4.7 (xint)

Here we have as boundary conditions

il
o

(2-9)

1!

J * K (2-11)

Cb ~N X for large x
¢ (2-12)
and D
————— = 0 at y =+ 1
dvY

This system the evolution equations for the Saffman-Taylor
model. Now it can be seen, that the pattern generation in
this model is due to morphological instabilities (which are
also of a certain similarity to instabilities as encountered
. for sclidification which occurs in dendritic growth (see
[Kessler]).
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2.3 Steady state solutions and fingers

e

We note here that for the Suffman-Taylor model (equ. (2.9),
(2-10). (2-11)) some analytic solutions of a stationary type
exist. They describe the shape of the interface of a displacing
ligquid and a displaced liquid (e.g. air and water, or a liquid
with low viscosity and a liquid with high viscosity). This is
not the place to discuss the methods related to these solutions
in detail (but see, e.g. [Kessler]). But let us note that from

nrv = U (2-13)

which is equivalent to (2-10) of the Suffman-Taylor model we
can introduce a new parameter A, where 1/A is equal to the
speed. Thus we obtain (in a suitable coordinate system)

y*n 1 Y
o = e K o oo e (2"14)
A A d s

where s is the arc length (which is measured in the direction
of the flow). Using a second function J (which has properties
gimilar to ¢ ) we can, using some formalism, cbtain a solution
which consists of a Fourier series:

2 (-1)
K = mmmmmmmmem ) e * cos (n*Tr*y/ A ) (2-15a)

S L B QU (2-15b)

A graphic representation of (2-15b) shows the interface between

two liquids, which is a "Saffman-Taylor-finger" (See Fig. 2-2).

It is important to note that comparing the shape of (2-15b)

with an experimental finger (as shown in Fig. 2-3 ) produced by

air displacing water (see [Kessler]) it can be seen that the two
interfaces correspond quite closely.

Note: In some different cases solutions are only available by
simulation or by rather involved analytical methods. The Saffman-
Taylor model will be sufficient to give some insight to our
problems.
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Fig. 2-3 Finger: Air displacing water
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2.4 Capillary Number

Now the capillary number Nc will be introduced, which is one of
the most interesting characteristics for physics of porous media.
The capillary number is also widely used to describe the transport
of fluids 1n soils.

We consider here a disordered porous medium containing two viscous,
immiscible, incompressible Newtonian liguids which are in contact.
For instance, when a liquid with lower viscosity displaces a liquid
with higher viscosity (such as water displacing oil) it may be very
interesting to know which of two types of forces

- capillary forces or

- viscous forces

is stronger. As will be seen in this section, also for Hele-Shaw
cells a capillary number can be defined.

We assume, that the porous medium under consideration is two -
dimensional, and can be schematically modeled as shown in Fig. 2-5.
A porous medium can e.g. be characterized by two quantities;

R pore radius and
r typical radius of a throat,

where usually r << R holds (throats are usually smaller than

pores). Now we introduce on the basis of this model and a few
formulas from hydrodynamics these chararcteristics:

e o i e S s s S W T e e s ey P 0 s e

\ Y
AR , (2-16)

where

¥ surface tension,
r throat radius.

Based on the law of Hagen-Poiseuill for stationary flow we
obtain as viscous pressure drop A pvisc

Lpvise ~ I (2-17)

where

u viscosity
0 flow rate
R radius of pore
r throat radius.
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It is possible to obtain the ratio Pcap/Pvisc to replace one
of the quantities, Q (flow rate) by introducing

nl = average number of pores/throat combinations per unit
area

(e.g. nl = 2).
We can write for the average velocity (Darcy-velocity)

v A nl*Q

and for the porosity e related to R:

2

Thus we can write for the ratio of viscous pressure and
capillary pressure:

—— (2-18)

We can define the CAPILLARY NUMBER Ne¢  which is clearly
related to the ratio of viscous pressure and capillary pressure:

NG = ————- (2-19)

We call also cg the geometry related constant:

' 3
(r}
Cg: * ——

| -
l
N J

Fo
Thus we can write for Nc
Pvisc
Ne ~ g ——wme—e— (2-20)
A Pecap

-—

We can compare the capillary number Nc with the constant 1/ Y
as introduced in equ.(2-8b) for Hele-Shaw model. If we
separate from 1/ ¥ the factors due to Hele-Shaw geometry we
immediately see that

2
- X- {(b/a)
X. = o . S
v 12
R et * CHS {2-21)
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where CHS refers to Hele-Shaw geometry.

Thus we can relate

CHS
Ne = —-ze- (2-22)
¥
This means (while g and v are constant):

g

iSurface tension X‘l Capillary Number Nc¢ | § - factor

INCREASING l DECREASING INCREASING
| DECREASING ! INCREASING DECREASING
Examples

In Fig.2-4 a number of simulations are shown for a Hele-Shaw
cell,which are related to stepwise decreasing surface tensions.
It can be seen that instability and ramification increases with
decreasing surface tension.

Relation to critical exponents

It is also possible to explain the behavior of the capillary
number as related to Fractal Dimensions and critical exponents,
as useful for percolation, invasion percolation and diffusion
limited aggregation (DLA, as dicsussed in Appendix A3 and A4).
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(ramification of fingers for
decreasing surface tension)
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3. Different types of transport

Now this is the place to ask for different mechanisms. These
mechanisms will again be part of the considerations related

to the representation of different types of displacement in

section 4 (Differential equation).

3.1 Criteria for different mechanisms

It is frequently useful to obtain for 2-phase systems (e.g. of
of water and oil in porous media) a classification which relates
to

~ viscous forces and to

- surface tension.

We obtain this way the following types of systems:

(1) Systems where usually viscous forces are LARGE compared
to surface tensions. In those systems a viscous displacement
occurs.

(2) Systems where usually viscous forces are SMALL compared
to surface tensions. Here different mechanism may occur.
One of them is Invasion percolation [Weber].

It is also important to know, wheter 2 phases are miscible or
immiscible. (See for more details [Sahimi]).

Viscous displacement

For viscous displacement two types occur.

(la) Displacement of fluid B by injection of the more viscous
fluid A.

This displacement is stable. Here no strong deviations from
a flat surface will occure. Clearly, deviations due to an
inhomogeneous structure of poresg still are possible.

(1b) Displacement of fluid B’ by injection of the less viscous
fluid A’.

Instabilities largely depend on

- viscous forces

- the type of the porous medium

-~ the gquestion, how far the liquids are miscible or not.

Here mechanisms, similar to DLA, but also certain mechanisms
of fingering and the occurrence of strongly splitted fingers
are possible.

It has to be noted, that here we are in a situation with an
clear analogy to the Hele-Shaw cell (sect. 2).
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We assume that fluids can be characterized as

-~ NON WETTING (NW)
- WETTING (W).

Note: Each fluid has a contact angle with the wall.

A fluid for which the contact angle is smallter than 90 degr.,
is called NON WETTING (NW, eg. o0il is non-wetting).

A fluid for which the contact angle is larger thant 90 degr.,
is called WETTING. (W, eg. water is wetting).

Several types of Displacement

In this relation we consider several types of displacement:
Drainage, Imbibition.

DRAINAGE:

A displacement where a Non Wetting fluid is pushing the
wetting fluid, is called DRAINAGE.
NW ——> W

IMBIBITION:

A displacement where a Wetting fluid is pushing the
Non Wetting fluid, is called IMBIBITION.
W —> NW

A table of essential flow mechanisms

Now a table of flow mechanisms is shown. We follow [Lenormand].
[Lenormand] . This table also refers to different types of
porous media, but also types of pores (which allow flow by
film etc.) Some of these types are characterized in figures.
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| Type of flow | Large pores | Small pores
DRAINAGE flow in invasion percolation
ducts
IMBIBITION no flow invasion compact
by film percolation growth
flow by bond compact
film percolation cluster
growth
VISCOoUS stable flat interface
FLOW between fluids
unstable gradient governed growth
(DLA, fingering)

Table 3-~1 Basic mechanisms

it b b e e e R i (G G e e P e S M K AR W A WG G i) bk s s R e b e b R RS Dt o e S e e b By e O R SR G o S R K e N N o

Recently, it has been shown by Koza, that modelling of a
diffusion limited agregation (DLA) by an algorithm and modelling
of the process of pushing an incompressible Newtonian fluid by
an inviscid fluid through a porous medium by an algorithm
leads to two equivalent models [Kozal]. Here quantitative rela-
tions could be shown between

- hydrodynamics in random porous media and
- fractal theory of stochastic DLA-aggegrates.

Thus in a field which is close to our considerations of invasion
pecolation an equivalence has been established. This makes it
easier to relate the considerations for DLA, and for Invasion
Percolation. '

Next we consider in more detail the conditions how for viscous
flow fingering arises.




3.2 Formation of viscous fingers
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Now, a model for the formation of viscous fingers is described,
which is useful for our consideration of mechanisms. It shows,
under which conditions a viscous finger is likely to grow.

We assume that in a linear Hele-Shaw-cell the Darcy-law holds,
gee also [Lamb] and [Kessler].

K
v.= - ---*grad(p + g*g*x) = grad ¢ (3-1)

H
Note that

(b = p + $*g*x

is called velocity potential.

For the Hele-Shaw-cell we have for permeability

K= -————- (3-2)

which will also be written as KH (referring to Hele-Shaw-cell).
Now we assume that a small perturbation exists giving a wavelike
form to the plane interface between the two liquids (eg. for the
oil-water interface). This can in our cell be represented as

x = a*exp( i*n*y + é*t ) (3-3)
with

a = amplitude

i = imaginary unity

n = wave number

§ = constant.

Note, that the wavelength for this wavelike interface is
A = e (3-4)
Now we assume to have two

~ immiscible and
~ incompressible liquids.
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Thus the following equation (Laplace-equation) holds for velocity
V and velocity-potential respectively.
—2
div v = V4>=o (3-5)

For two liquids (1), (2) we obtain, due to continuity of pressure
————— = em——— (3-6)

or, explicitly introducing the periodic perturbation of the
interface

c—ee =V + a* S*exp(i*n*y + §*t) (3-7)

where
the first term of the r.h.s. refers to velocity of the interface,
and the second term of the r.h.s. refers to the perturbation.

Due to the fact that one liquid is on one side of the perturbed
interface while the other liquid is on the other side of the
interface, we can write as follows:

d>1 = V*x -~ (a% 6/n)*exp(i*n*y - n*x + g*t) (3-8a)

432 = Vkx + (a* d/n)*exp(i*n*y + n*x + 6*t) (3-8Db)
These are solutions of (3-6) for ¢31, 4>z.
Now we note, that the pressure in liquid 1 is

pl = - (yl/KH)*¢1 - Qixgrx (3-9a)
This formula also holds for liquid 2:

p2 = - (yZ/KH)*(bZ - yz*g*x (3-9b)
Now we assume for the moment to be in a region where surface

tension can be neglected. Thus we can relate the parameters
(from (3-8), as follows:

H /
~fhm (mmmmmn )= (91 - Q2)%g + ( —mmmmmmme )XV (3-10)

It can be seen, that if the r.h.s. of (3-10) 1s positive, then
also the 1.h.s. 1is positive. From (3-3) we know, that only

for 4> 0 a small perturbation can increase, but for &< 0 it will
vanish,This leads to some conditions for increasing perturbations,
that is for growing fingers.
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First we note this:

(a) We regard, for simplicity, to have a Hele-Shaw-cell which
allows only horizontal movements, i.e. the ( g1 - §2)*g term
vanishes.

(b) We assume, that for a horizontal movement viscous growth
always appears when the less viscous fluid (2) is injected to
displace the more viscous fluid (2, defender), i.e. when ul > u2.
(c) In addition to the pressure (3-9) we also add a term for
capillary pressure pc.

Capillary pressure
We obtain the total pressure pt with
pt = p + Y*K (3-11)
with
¥ = surface tension at interface,
K = curvature of interface
From (3-3) we obtain an upper limit for the curvature
as follows:
X7 > e = K (3-12)
( 1+ (x7)2)

For X'’ we can write

X’/ = = emm—eie (3-13)

2
é *) ul + u2 ul - u2 4% T
----- ( —mmmmmm ) = mmmmmmem )XY = ameem x YT (3-14)
2%1r KH KH )\2
Now we can state that 5> 0 only if
2
ul - u2 4% TF
0 < ( —====—- V¥V 4 e * Y' (3-15)
KH AZ

Solving for 'k, we obtain a critical value of “, which is
useful as a criterion. We recall, that KH = 12/b2.

A Y 1/2

= 2%k TVADK [ cmmmm e ) (3-16)
12%(ul = u2)*v
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The inequality

N > Ac (3-17)

is a necessary condition for instability within the horizontal
Hele-Shaw-cell. For N < Ac¢, no instability will occur. It can
be seen, that the following quantities can contribute to an
instability (i.e. growth of fingers):

(a) decreasing of b (thickness of cell),

(b) decreasing of Y¥(surface tension) at interface between liquids,

(c) increasing of (ul - u2) > 0, (difference of viscosities
ul, p2)

(d) increasing of velocity V.

Note also this:

If we have a cell which is not horizontal, a more complicated
version of (3-16) would apply. These considerations referring to
instability can only a represent a limited range of phenomena,
see for more details, [Kessler] and for the distinction between
miscible and immiscible liquids [Sahimi].

Gemeral formulation of criteria for growth
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m the definition of X' {which had been used for dimension-
s variables for Hele-Shaw-cells, in sect. 2.1) we recall that

Fr

n O

= e *(b/a) : (3-18)

Moreover, alsc the relation

P

¥ o=1/c
holds, where C is the capillary number.

Thus with (3-16) it can be said, that‘xcis a monotonus function

of ¥ and of /.

This gives the following rules [R1}, [R2] :

[R1]

~

For DECREASING ¥ , we have DECREASING A ¢, thus an
INCREASING INSTABILITY, an increasing tendency for
fingers to grow.

And also,
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[RZ]

For INCREASING C (CAPILLARY NUMBER) we have DECREASING '}C,
thus an INCREASING INSTABILITY, an increasing tendency for
fingers to grow.

It will be seen in sect. 3.2 that these rules are are equivalent
to a part of the considerations for 2D-porous media, and that
they are alsc useful for interpretation of the parameters of

the ODE in section 4.
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3.3 A phase diagram showing different mechanisms
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As can be seen in Table 3-1, we have for 2 phase flow basically
3 mechanisms {(sect. 3.1):

- stable flow (also called anti-DLA)
- DLA (also related to fingering)
- Invasion Percolation

There are usually some considerations for different mechanisms:

(1)

(2)

(5)

Experimental techniques, especially in 2 dimensions
(Hele-Shaw-Cell, sect. 2, see [Lenormand]).

Results from simulation or statistics
(see [Lenormandl]).

Results related to statistical mechanics or renormalization,
with critical states, percolation, invasion percolation,
fractals, fractal dimensions ([Lenormand], [Pietronerol],
[Weber]). Some conditions related to invasion percolation in
2- and 3-dimensions have been discussed applying fractal
dimensions [Weber].

Some considerations closely related to physical properties,
such as viscosities and capillary numbers (see sect. 3.2).

Finally also the analytic evaluation of two phase flow in a
porous medium are shown in sects. 4 and 5 of this report.
This gives rather interesting relations of flow to certain
mechanisms.

Now in Fig. 3-1 (Phase Diagram) conditions for the different
mechanisms of flow are shown. Thus we obtain criteria, under
which conditions for

- capillary number C (given as 1n C) and

- relation of viscosity (#2) of injected fluid and
viscosity (ul) if displaced fiuid

one of the three mechanisms occurs, and also where transition
from one of the mechanisms to an other mechanisms is to be
expected.

It can also be seen more exactly, where the transitions are
to be expected (see [Lenormand]}). Also the discussion from
sect. 3.2 gives some details for transitions, i.e. for

stable ---> unstable.




In C
H2%v >3f
DL A anti-DLA
(STABLE DISPLACEMENT)
QUADRANT II QUADRANT I
In M
\ >
M2 < ul “ u2 > pl
QUADRANT III QUADRANT IV
DLA
INVASION PERCOLATION
e
P uz2*v <
” /1 l X

For Fig. 3-1 the following notations are used:

c = e capillary number

12 i 2 injected fluid
M= - pi viscosity with

Ml i

1}

1 displaced fluid

Note: It can be seen that the following MECHANISMS are in

————

QUADRANTS I, II, III, and IV:

~ DLA is in QUADRANT II and III
- anti-DLA is in QUADRANT I and partly in QUADRANT IV
~ INVASION PERCOLATION is in QUADRANT III and IV




&
3,
—10.7

log Nc=z=-3.
vy

s
log Neo

(a) From viscous to capillary fingering (invasion percolation)

log M = -4.7

log Nc = -8.1 -6.7 ~5.7 (viscous fingering)
l

log Nc = -10.7 -9.7 -8.7 (capillary fingering)

(b) From stable displacement to capillary fingering

log M = 1.9

log Ne¢ = -3.9 -1.9 -0.9 (stable displacement)
|

log Nc¢ = -6.9 -5.9 ~-4.9 (capillary fingering)

(c) From viscous fingering to stable displacement

transition
log M =-4 -2 -1 0 2

( viscosity ratio M = u2/ul, capillary number Nc)

~
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4. Evaluation of two phase flow in a porous medium
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Following some considerations mainly referring to multiphase
flow phenomena, we now come to an analytical description of
multiphase flow phenomena in a porous medium. We frequently will
also make comparisons with the concepts of sections 2 and 3, which
will be most helpful for an understandig of the mechanisms, eg. to
decide where are
- stable flows (comparable to anti-~DLA)
- fingering instabilities due to prevalent viscous forces
{related to DLA)
- instabilities due to capillary forces (related to invasion
percolation)
to be expected.
It is to be noted, that the following analytical solution bases
on the similarity transformations of independent and dependent
variables of a partial differential equation, which is discussed
in Appendix Al. In this section, we are closely following the
line of [Pistiner].

Darcy Egquaticns
We first note the generalized Darcy-Equations, relating the
flows of two phases, such as water (w) and a fuel (f), eg. oil,
which are nonmiscible, gqw, gf and the respective pressures,
Pw, Pf:

QW & =~ e e (4-1)
uw /b X
K*Krf(Sf) DPf

qf = = =—mm———eee * e (4-2)
uf 0%

where

- k permeability of porous medium

- Krw(Sw), Krf(Sf) relative permeabilities

- 8w, Sf are the degrees of saturation of fluids, water and fuel
(which can vary between 0 and 1),

- uw, puf is the viscosity of water (w) and a different fuel (f),
eg. oil,

- Pw, Pf is the pressure, for the water and the fuel.

It has to be noted, that permeabilities Krw(Sw) and Krf(Sf)

in the simplest cases are power-law dependent on Sw, Sf. This

will be discussed in more detail in Appendix A4. Here we only

note, that for this section, the power law can be approximated
by some integer exponents.




Saturation

——— e — e e

We note, that when water and liquid completely saturate the
porous medium, the fluid saturations satisfy the following
relations:

Sw + Sf = 1. . (4-3)

Capillary pressure

e o om et s o W D

For surfaces between water and fuel the following pressure arises,
due to the difference of Pw, Pf:

Pc(Sf) = Pf - Pw (4-4)
For Pc the following relation exists:

d Pc
———— > 0 (4-5)
d Sf

This means, that Pc is always a nondecreasing function of Sf.

4.2 Continuity equations
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We can write conservation laws for each phase (having no chemical
reaction or adsorption and any other mechanism which would require
a different form of conservation laws).

We note, that the guantities gw, gf and the quantities Sw, Sf
enter these conservation equations (conservation of gqw and Sw):

2 aw ? sw

—————— + O% e 4+ quL = 0 (4-6)
2 x 2t
2 gt o Sf

—————— + Ok —ceee 4+ gfL = 0 (4-7)
d x t

where
-0 is the porosity of the porous medium

- qwl, qflL are contributions from a level of the soil, which is
clearly a "less permeable part", having significantly lower
permeability than the main section. These contributions can
be neglected here.

This way, we have for the simplified consideration of the
water-phase.
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(4-8)

And similarly also for gf, the fuel-phase.

4.3 Continuity and Darcy-Law

On the basis of saturation and fractional flow we can now
relate continuity and Darcy-Law in an a way guite analogous
to the convection equation for single phase problems.

We first introduce the fractional flow F(Sf), which is the
relation of

flow of fuel flow of fuel
————————————————————————————— T e e (4-9)
flow of fuel + flow of water total flow
With the generalized Darcy-law (4-1), (4-2) we obtain
K*Kr £ 2 p
______ b S
ME 7 x
F(sf) = e e et e e e e o o ot o e (4-10)
K*Krf 2 p K*Krw 2P
_____ K - o v o K i
uf 9 x Uw J x
which is equivalent to
1
F(Sf) = e e (4-11)

+ (uw*Rrf) [/ (uf*Krw)

In Appendix A4, equ. (A4-15) it is shown how Krf and Krw depend
on the saturation Sf by a power law. This power law is related
to the normal percolation, as is discussed in the Appendix

A3 and A4.

A quantity similar to the fractional flow F(Sf) is related to
the capillary forces, it is denocted by G(Sf). We have for the
capillary pressure, Pc, and its derivative Pc’:

'd Po(Sf)
Pc’(Sf) = ——mmmemee (4-12)
d St
(See also equ. (4-5), stating that Pc’ is positive). G(Sf)
is defined
k* (Krw/uw)*Pc’ (SE)
G(Sf) = e (4-13)
1 + (Rrw*uf)/(Rrf*uw)




as can be seen in Appendix A2.
This guantity is required to complete the convection equation
for two phases.

Convection equation
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If we introduce a further quantity, the total flow

g(t) = gw + gf, (4-14)

we can write the following convection eqguation:

o 2 Sf 3 9 Sf OF
e G LS E L B e [ o) R el (4-15)
0t 0x ? % Jd x

Here we have

- € Porosity

- 8f BSaturation

- F fractional flow (see equ. (4-11))

- G a quantity related to capillary forces, and fractional
flow (see (A2-~5) and (4-13)),

- g(t) specific flow.

The specific flow can also be written as a product:

q(t) = go*ge(t) (4-15)

Note: The factor go will be used for our dimensionless
approach.

Assumptions for Saturation
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The fuel saturation consists of two contributions:

- continuous (or flowing) part Sfc
- discontinuous (or stagnant) part Sfd
(due to pores or paths where no output is possible)

Sf = Sfc + Sfd (4-16)
We assume that saturations Sfc and Sfd are in equilibrium,
thus it is possible to say that Sfd and Sfc are related by

a time-independent factor:

Sfd = ck*sfc (4-17)
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As a further simplification we assume here that the factor
ck is of the order of 1.

Representation of fractional flow F

We already noted, that Krw, Krf depend on power laws (see
Appendix A4). This way it will also be possible to approximate
F(Sf) by a power law, writing

n
F{S8Sfc) = Fo*Sfc (4~18)

where

- n is an exponent

- Fo 1is a factor which depends on the ration (uf/uw) but is
independent of Sf (see also section 2 and [Lenormand]).

Representation for Derivative of Pc(Sfc)

Also the derivative of Pc(Sfc) (capillary pressure, eg. (4-12),
can be represented by a power law, if we multiply this quantity
by the factor Krw(Sfc) :

i
Pc’/(S)*Krw(Sfe) = ‘yfw*Pco*Kro*Sfc (4-19)

where

- Xfw fuel-water surface tension

- Pco, Kro are constants (>0), related to the geometry
of the porous medium,
- m is an exponent.

Representation of G-function

"t i G T o o (o e A ot St et Y A Mt e e

With (4-11), (4-12) as well as (4-18), (4-19) we also obtain

R#Kro . n-m
G(8fc) = —=m—m- * FoxPco* Y fuxsfc (4-20)
uw
We note, that all the terms used here, are already defined in
equations (4-18), (4-19).

Note: Now the subscript fc will be dropped for the respective
quantities, we will write S instead of Sfc, since no confusion
is possible.

4.4 Dimensionless considerations

For some considerations, e.g. for statistical physics of sedi-
mentary rocks (see [Po-zen Wongl), it is convenient to use
quantities as "charcteristic throat size'" and "characteristic
length". This is not to obtain precision; but note, that some
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approaches considerably simplify, if it can be assumed that
one is in a region, where all lengths are large compared to
the characteristic length. Similarly, we also introduce two
characteristic quantities here, to see that we are in an
asymptotic region.

Characteristic length

o o e o o S e T S e e S e e Mt e

L = k*Kro*Pco (4-21)

where
- k permeability
- Kro, Pco factors which have been used for (4-19)

Characteristic time

T = e e (4-22)
go*Fo
where
- L (see (4-21), characteristic length)
- € porosity

- ck proportionality factor between Sfd, Sfc
-  go proportionality factor (see (4-15a))
- Fo factor dependent on (uf/uw) (see (4-18)).

Using (4-21), (4-22) we introduce the following dimensionless
quantities.

Dimensionless length

B e R R el e

A
x = x/L (4-23a)

A
t = t/T (4-23b)
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Now we can write a dimensionless continuity equation. But

first note the following: We assume that the less permeable
part (above and below the considered porous medium) is now
of a permeability which may be neglected. Thus we can write

2 s dIs
————— t ———m= =0 (4-24)
24 3 x
with A n n-m ¢ 8
Is = ge(t)*S - (1/Nec)*s * ?5—; (4-25)
X




Here, 1Is has been called fuel flux. It is a function of ge
(flow) and of 8 (saturation), as well as of Nc (capillary
number). In sect. 6, a thorough discussion of the concept of
fuel flux is given.

Capillary number Nc

UW*qo
Ng = ——mp——- . (4-26)
affw
where
- uw viscosity of water
- fw surface tension
- go a factor related to g

Note: For more details on the capillary number see sect. 2, 3.

With this continuity equation a relation between transport
of fuel and water in a porous medium and limits of fractal
patterns ({Lenormand], [Kessler]) can be established.

Relations of properties to bondary conditions
_____________________________________________ n

Solution of (4-24), (4-25) (in the region - < x < +& ) gives
Is (fuel flux in a porous medium). We note here that

A A A
Is((x, t) ---> 0 for |x]| ---> 090 (4-27)

For S(%, %) we obtain a dimensionless fuel mass for the porous
medium as follows:

400
A .
M(t) = / sk, §) at (4-28)
- 00

We note, that with some changes of the equations (4-27)-(4-28)
used here, also finite but small permeability of the lower
medium can be included in the calculation. We consider only
one level without interaction with upper or lower medium.

4.5 Similarity variables

Now we come to a representation, with transformed variables and
functions. It is possible, by this type of transform to obtain
from a partial differential equation an ordinary differential
equation. This is called "similarity method" and is discussed
in Appendix Al. We note here, that equivalent to equations
(Al-la) and (Al-7b) we obtain the following transformations;

A A"l/z
§ - 3t (4-29)
A-1/2

Se f(?)*t (4-30)

Il




Q=

As can be seen in Appendix Al and in the literature (see e.g.
[Bluman], [Dresner]) this transformation for the independent
variables (x, t), and the dependent variable (Se), which come
from the continuity equation (4-24) and (A2-8). We obtain this
way f and the following intermediate quantity, g, which are
closely related to the continuityequation, but now on the
"level" of ordinary differential equations.

The corresponding ordinary differential equation
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Now, due to a transformation of the continuity equation
the following intermediate quantity g(§) (related to fuel
flux) is obtained:

n 1
g(§) =1 - —=-¥f (4-31)
Nc

Thus we come to the ordinary differential equation which
corresponds to our continuity equation (24).

[ g - b*E*f]’ = 0 (4-32)
To this differential equation we introduce boudary conditions
which are clearly related to an asymptotic behavior of g and
flux Is. We have

g ---> 0 for | f | =—-> 00 (4-33a)
and also with (27)

£ --=> 0 for || ---> ©0 (4-33Db)

wWith these conditions the fuel flux Is can be rewritten as
in relation to g

A=l
Is = g{ F )y ¥t (4-34)
An integration of (4-32) gives this:
g - bx¥*f = C1 (4-35)

Note that €1 is an integration constant. Due to the
boundary conditions (4-33), (4-34) this will be

cl =0 ' (4-36)

with (4-31) and (4-32) we will have the following ordinary
differential equation for the transformed variable f, related
to saturation.
n
£r = No*(f - (L1/2)*fx 5 ) (4-37)
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It may be noted, that for
n = 2 this is the Riccati-equation (see e.g. [Davisl).

But also for other values of n, some analytical solutions

have been obtained (see e.g. [Pistiner]).

We see that in (4-37)

- the function f is defined, the transformed and nondimen-
sioneal saturation of the fuel

- and that its variable is § , the transformed nondimen-
sional coordinate, related to location.

We alsc note that Nc, the capillary number enters (4-37) as a
parameter.

4.6 Analytic solution
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For the analytic solution we introduce first a dimensionless
reduced mass of the fuel Me

100
Me = | £} ) d¥ (4-38)
=9
We could have two ranges of parameter n
n > 1
(4-39)
n<gx=1
We deal here mainly with n > 1, and obtain the following
analytic solution:
2
exp( -(1/4)*Nc* § )
F( ) = mmmm e (4-40)
-1 1/2 1/2
[ £ (0) - (W *Nc*(n-1)) - erf((1/2)*(Nc) * £) )
Note that f(0) depends on the reduced mass Me. Now, for
n = 2, we have a Riccati-equation and the solution is
2
4 exp( -(1/4)*Ne* ¥ )
() = e e o (4-41)
-1/2 : 1/2

(¢f*ﬁc) *(1/(tanh((1/2)*Nce)-erf((1/2)*(Nc) * 3 )
Note that the effective capillary number is
Nce = Me*Nc (4-42)
with the reduced fuel mass
1 + tanh((1/2)*Nce)

Me = (1/Ne)*In( ———————em—mm e mm e ) (4-43)
1 - tanh((1/2)*Nce)
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Evaluation of (4-41)

In the following calculations it is possible to work with Mc = 1.
Now equation (4-41) has been used for a GAUSS-computer program
[GAUSS]. It is shown in Appendix A5. All results available from
this similarity solution are given in sect. 5.

4.7 Further results related to similarity transform
Until now, we discussed the following ODE, due to the similarity
transform:
n >
fr = Ne*( £ - (1/2%f* } ) (4-37)

In the previous sections (4.5) and (4.6) we specialized on the
case n = 2, thus obtaining a Riccati-equation. In can be seen,
that this equation was obtained by using for (4-25)

A n n-m 0 s
Is = qge(t)*s - (1/Ne)*S  * —ocn (4-25)
0 %

the following assumptions:

n-m =0
(4-44)
n =2
By a suitable generalization, now assuming
n-m <20
or {4-45)
m+m >0
we obtain the following differential equation:
n § (1-m+n)
f' = Nc{ £ =~ b*) *f ) (4-46)

Equation (4-46) gives, due to different values for the exponents
m, n, further similarity solutions. The most interesting of
these solutions are discussed in sect. 8.
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. A first characteristic for transport
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It is now possible, following sect. 4, to show characteristics
for the transport in porous media, based on equation (4-41):

2
expl( —(1/4)*Nc* 3 )

a function of the similarity variable,

A A“1/2
? = XX (4-29)

and of the two parameters

Nc capillary number (see (4-28)),
Me the dimensionless reduced mass (see (4-42)).

We set in this section again Me = 1, thus we have only Nc as a
parameter. If some other values of Me are of interest, this will
be explicitly mentioned.
For the maximum of £{ ¥ )} we can state with (4-37) the following
relation

\ n ‘
E/(}) = Ne*(f - (1/2))*£x§

0 {5-1)

Thus, this maximum is clearly related with Nc. We have only the
parameter Nc left, and get a family of f-curves {(similarity
solutions?}.

5.2 Figures and Tables

The similarity solution {reduced saturation) f is shown as a
function of the similarity variable (see Fig. 5-1, to 5-6).

All maxima of the f-curves could be identified by a procedure,
giving the coordinates for fmax: (_F,f Ymax. These are listed
in tables: Table 5-1 to 5-4.




Y

LIST OF RESULTS

ranges Figures Tables
for Ne

Table 5-1

Table

(&
I
[N}

Table 5-3

10.0 to -
100.0
Table 5-4

100.0 to -
1000.0

[®2]

.3 Interpretation of results

The results given in evaluations of f(xi;Nc) are shown in

the LIST OF RESULTS. We have here regions showing a different
behavior related to the Nc-value used for the reduced
saturation.

Region A:

We have for capillary numbers Nc, where
0 < No < 23.44
the following behavior:
The maximum of f(xi;Nc) (similarity solution, red. saturation)
is INCREASING WITH Ne¢, and the xim -coordinate for the

maximum is slightly shifting to the right with increasing Nc.
{See Figs. 5-1 to 5-6, Tables 5-1 and 5-2).
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Region B:

We have for capillary numbers Nc, where
Nc > 23.44
the following behavior:

The maximum of f{xi;Nc) (similarity solution, red. saturation)
is DECREASING WITH Nc¢, and the xim-coordinate for the maximum
is shifting to the left with increasing Nc.

(See Fig. 5-6 , Table 5-3 and 5-4).

Location of the highest value for f(xi;Nc) :

In Table 5-3 it can be seen, that for Nc = 23.44 + 0.02 the
location for the highest value for f(xim;Nc) occurs. This

is important to note for the interpretation of the similarity
solution ( red. saturation) in relation to possible mechanisms.

5.4 Some 3-dimensional representations for f(xi;Nc)
In Figs. 5-6, 5-7, 5-8, 5-9 the following behavior of f(xi,Nc)
is shown with 3-dimensional representations.

Values for f(xi,Nc):

In Fig. £5-6, 5-7 the evaluation of f(xi,Nc) is shown:

Fig. 5-6, 5-7a with 3-dimensional representation of f(xi,Nc),
Fig. 5-7b Lines of constant £({xi,Nc), projected on xi,Nc-plane.

Partial derivative of f(xi,Nc) with regard to xi

In Fig. 5-8 the partial derivative ¥ f(xi,Nc) / 9 xi

is shown, giving the slope of f{xi,Nc). Note that the partial
derivative of f(xi,Nc) with regard to xi has been evaluated
by symbolic calcuation using the MAPLE-system, as is given

in Appendix A6.

Partial derivative of f(xi,Nc) with regard to Nc

In Fig. 5-9 the partial derivative 3 f{xi,Nc)/ 2 Ne

is shown. It 1s interesting to note these results to obtain
further insights for the interpretation of the behavior of the
reduced saturation in relation to Nc-values. This partial
derivative is also obtained using the MAPLE-systen (see also
Appendix A6).

Also note the following: For the curves of section 5, a GAUSS
computer program has been used, which is given in Appendix A5.
For information on the program see [GAUSS].
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Fig. 5-9 Partial derivative f (xi,Ng) = ———m===—====
""""""" Nc ?d Nc




RESULTS (range Nc =

COORDINATES OF MAXTIMUM (xim,

Nc

RESULTS (range Nc =

COORDINATES OF MAXIMUM (xim,

Nc

Table 5-1

~-56-~-

xim

0.20000000 0
0.30000000 0
0.35000000 0]
0.40000000 0
0.45000000 0
0.50000000 0
0.50000000 0
0.55000000 0
0.55000000 0
0.60000000 0

1.00 to

xim

0.6000000
0.8500000
1.0000000
1.1000000
1.2C00000
1.3000000
1.3500000
1.4000000
1.4500000
1.5000000

Maxima of f(xi;Ncg)

jeNeoReoReoRleReRoNeReNe]

0.10 to 1.00)

f{xim))

fm

.08920210
.12613731
.15445750
.17830521
.19928119
.21819741
.23558067
.25170955
. 26677945
.28104848

10.00)
fixim))

fm

.28104848
.39313070
.47370813
.53578587
.58514608
.62515881
.65815782
.685550944
.70892873
.72896388
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RESULTS (range Nc =

11 to 20)

COORDINATES OF MAXIMUM (xim, f(xim))

Nc¢ xim fm
11.00 1.5500000 0.74555946
12.00 1.5500000 0.76094193
13.00 1.6000000 0.77425242
14.00 1.6000000 0.78591824
15.00 1.6500000 0.79602475
16.00 1.6500000 0.80631099
17.00 1.6500000 0.81364963
18.00 1.7000000 0.82180120
19.00 1.7000000 0.82970929
20.00 1.7000000 0.83545798

RESULTS (range Nc = 20 to 29)

COORDINATES OF MAXIMUM (xim, f£(xim))

Nc xim fim
20.00 1.7000000 0.83545798
21.00 1.7000000 0.83977318
22.00 1.7500000 0.84572892
23.00 1.7500000 0.84957135
24.00 1.7500000 0.84756914
25.00 1.7000000 0.84366005
26.00 1.7000000 0.83791725
27.00 1.6500000 0.81735071
28.00 1.6500000 0.80594792
29.00 1.6000000 0.78805031

Table 5-2

Maxima of f(xi;Nc)




-58 -

RESULTS (range Nc = 22 to 24)

COORDINATES OF MAXIMUM (xim, f(xim))
N¢ xim fm
22.20 1.7500000 0.84646251
22.40 1.7500000 0.84678552
22.60 1.7500000 0.84651433
22.80 1.7500000 0.84967250
23.00 1.7500000 0.84957135
23.20 1.7500000 0.84875620
23.40 1.7500000 0.84688471
23.60 1.7500000 0.85169245
23.80 1.7500000 0.85027077
24.00 1.7500000 0.84756914

RESULTS (range Nc = 23.4 to 23.6)
COORDINATES OF MAXIMUM (xim, f(xim))
Nc xim fm
23.40 1.7500000 0.84688471
23.42 1.7500000 0.84662161
23.44 1.7500000 0.85219411 (*)
23.46 1.7500000 0.85215596
23.48 1.7500000 0.85211132
23.50 1.7500000 0.85205996
23.52 1.7500000 0.85200160
23.54 1.7500000 0.85193597
23.56 1.7500000 0.85186279
23.58 1.7500000 0.85178176
Table 5-3 Maxima of f(xi;Nc)

(*#) Note that Nc = 23.44 + 0.02 is the location
which gives the highest value for f(xim, Nc).
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RESULTS (range Nc = 10 to 100)

COORDINATES OF MAXIMUM (xim, f{xim))
Nc xim fm

10.00 1.5000000 0.72896388
20.00 1.7000000 0.83545798
30.00 1.6000000 0.77455142
40.00 1.3500000 0.67056218
50.00 1.2000000 0.59391256
60.00 1.1000000 0.54244269
70.00 1.0500000 0.51324423
80.00 0.9500000 0.46536509
90.00 0.9000000 0.44119881
100.00 0.8500000 0.41523894

RESULTS ( range Nc = 100 to 1000)

COORDINATES OF MAXIMUM (xim, f({xim))

Nc xim fm
100.00 0.85000000 0.415238%94
200.00 0.60000000 0.28810317
300.00 0.50000000 0.23635741
400.00 0.45000000 0.20994640
500.00 0.40000000 0.18491138
600.00 0.35000000 0.16002300
700.00 0.35000000 0.15872386
800.00 0.30000000 0.13448896
900, 00 0.30000000 0.13392032

1000.00 0.30000000 0.13295212

Maxima of f(xi;Nc)
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Now, a further characteristic for the transport in porous
media will be shown. We start from

- continuity equations and

- the reduced flow.

We recall, that in

- sect. 4.3 (Continuity and Darcy law) and

- sect. 4.4 (Dimensionless considerations)

the following dimensionless continuity equation was used:

s ? Js
______ § ommmeeot =0 (4-24)
Dt 0 x
with
A n n-m 2 S
Js = qge(t)*s - (1/Nc)*S O (4-25)

where Js has been called fuel flux. It has been noted that
(4-24) is a simplified and dimensionless version of the
continuity eguations (4-6), (4-7) for flow and saturation S
(of water and fluid). Using the concept of fractional flow
(4-9)-(4-11) the two equations (4-6) and (4-7) for flow and
saturation (of water and fluid) have been reduced to one
equation.
Relations of fractional flow to a power law (see (4-18) to
(4-20)), contribute to the explicit version of (4-25), as
discussed in further detail in Appendix A4. However

2 S
2%

can be calculated with the analytic solution for saturation

by means of similarity variables (sect. 4.6), see especially
equs. (4-37)-(4-45) and Appendix Al.

Note that solution (4-43) applies only to a transport which

is horizontal.

Non-horizontal flow
If we have to consider also gravity and some other influences,
some further analytic solutions are available ([Pistinerl]).
This leads to the following formula for Saturation fiux (6-1)
which is given here:

A n n-m 28 1
J =g ()*8 ~ (1/Ne)*§ * ——=—=e - (NB/NC)*S (6-1)
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where
J fuel saturation flow
S A Saturation
X, t reduced coordinates
n,m exponents related to fractional flow (cf.(4-18)-(4-20))
1 a further exponent
Ne capillary number
a (t) a time dependent funtion
X

We note that

NB = sign(qg) —==-=——m—ommmm e o (6-2a)

with
a factor related to ?Mf(density of water), fﬁf
(density of fluid), and gravity force g.

Considering a horizontal flow only, we evidently set

NB = 0 (6-2b)

Assumptions

Assuming a horizontal flow and a relation to analytic sclution
of sect. 4.6 we obtain:

NB = O.
m=n=1
Moreover, we have for

Q= cmmmmmmme e = 1/2 (6-3)

and for g(t) we obtain

A 1/2
q (t) =% (6-4)
*
With these assumptions. the saturation flux J introduced in
(6-1) can be rewritten

A-1/2 28
J =t *S$ - (1/Ne)¥ —--mm- (6-5)
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6.2 Interpretation of flux curve J(8;t,Nc)
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For a detailed evaluation and interpretation of the J-curves
some considerations for the dimensionless continuity equation
(4-24) are useful. We recall the continuity equation:

ds T
——— + e =0 (4-24)
2t dx

----- R o G (6-6)

The term JJ/ 98 1is of special interest for the interpretation
of the J-curve given in sect 6.3:

2 J
W= ———- (6-7)
2 s
With (6-7) equ. (6-6) can be written:
25 38
mmes= W* ——— =0 (6-8)
d % 7 x

Interpretation of W

{a) It is to be noted that W is also called "group velocity".
[Pistiner2]. The concept of group velocity can evidently
be related to electromagnetic waves.

(b) Note that W especially describes the propagation of
"iso-saturation lines" (lines in space where saturation
remains constant). An example for iso-saturation lined
is shown in Fig. 6-1: Lines for constant S on x,t-plane.

(c) There is also a relation to the dimensionless guantities
used for the Hele-Shaw cell (sect.2.2). In (2-8a) we
introduced the reduced pressure, ¢ . Here (e.g. in case
of an air/water interface) in the Hele-Shaw cell the
condition for constant ¢ on the interface can be
written:




-H3-

_.__é__ + vk V¢ = 0 (6“9)
t

These are three relations useful for the discussion of W.
This way it can be said that iso-saturation lines

Different behavior of flow of two phases

It can be stated that, in this model the following types of
movements of two phases occur. We say that fuel has

{1) a movement against the water flow, if W > 0,
(2) a movement along the water flow, if w < 0.

Now from (6-8) we have

D8
J £ %
37 | 2t
W= ————m i T m e - (6-10)
3 s t 2 S
_5";" A

. . , . A A
Note that the partial derivatives are for fixed values of €,x
respectively. As will be seen in sect, 6.3, this relation
gives interesting information on the J-curves.

Relation of J to functions £, g (4-35), (4-37)

J = emmeee (6-11)

can be shown using eqs(4-29),(4-39) (see also Appendix Al):

“ Al/2
X = *L (4-29)
,'\"1-/2
S = f*t (4-30)
Multiplying we obtain
s*x = Exf (6-12)

or evidently (6-11).
With (4-25) we also have

g = b*§ *f (4-35)
and with b = 1/2, we are at (4-34):
e}
J = ———— (_4"'34)
A
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These are important relations used for the GAUSS-program (see
Appendix A5) for evaluation of the J(S;t,Nc)-curve.

Additional relations for W (group velocity)

L second expression for W can be obtained, differentiating
formula (6-11), which gives

2Us |
W=Us + 8 * —~—wew- R (6-13)
25 t
Here we introduce .
e
Us = ——— (6-14)
2%t

Note that the partial derivative is for a fixed value of %,
and that Us is called "phase velocity" (or wave velocity
([Pistinerill).

It is also to be noted that (6-13) has interesting connections
to electromagnetic waves. Egq. (6-13) 1is formally the same
expression als the equation showing the "group velocity" as a
function of "phase velocity".
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6.3 Some details of Js-flux curve

A few details of interpretation of flux curevs are given here.
It is to be noted, that some of statements, such as properties
of group velocity W are based on sects. 6.1 and 6.2.

Description of curve

In Fig. 6-2 we can see that this curve can be divided in the
following sections:

We start with A, then divide the curve in 4 sections:

A-B, B-C, D-C, A-C.

It can also be seen that for the points

B, C and D there is a horizontal and vertical tangent.

This will be related to the derivative 93/ 2S which is
equivalent to W.

Group velocity W

s
2 J | 2 £ %
W o= ————e | o = mmmmeee (6-10)
2811 23S
) % 2

With the r.h.s. of (6-10) the following statements can be
made:

(a) The J-curve has a horizontal tangent (W = 0) if

Qs
——=-z=l , =0 (6-15a)
9 t X
(b) The J-curve has a vertical tangent (W very large) if
2 S
______ = (0
2% 1% (6-15Db)

{c) Sign of W ,
it can be seen from the definition of W (6-10) that we have
W > 0 if the conditions

9 8 3 S
=== >0 and -=-= <0 : (6-16a)
Jt J %

or if the conditions
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98 28
~=== < 0 and m—m= > 0 (6-16Db)
2t d x
hold. Similarly, we have W < 0 if the conditions (6-16c)
J s 2 s
-=-x > 0 and —m== >0 (6-16¢C)
J t X

or if the conditions (6-164)

) S 4 s
---= < 0 and === < 0 (6-16d)
Jt d x

hold. As will be confirmed in sect. 7, by some 3-dimensional
representations, there exist pairs of (9 S/2% and 2s/9d %),
which cause in various ways W > 0 or W < 0.

6.4 Interpretation of various conditions of flow

-

In (6-10) to {(6-16) we see that W
on the quantities

23S 2 S
——— d  ———-
e YT

Assume now a saturation curve S which presents the injection
of a fuel at a permanent point source at xo with a water flow
in the porous medium in the x-direction only (from left to
right, at a fixed time tl. A

Then we have, under the condition 0 S/B t < 0, as is shown
in Fig. 6-3, the following two cases:

group velocity) depends

~—~

(a) For the fuel which is flowing against the water flow, i.e.
on the left of the point-source, xo, we have

) s

i > 0 4 (6-17a)
? %

t1

(b) For the fuel which is flowing in the same direction as the
water flow, i.e. on the right of the point source, xo,
we have

3 S

< <0 (6=17b)
d %

A
tl
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This evidently leads to a increasing and decreasing W-curve.
Note:

Similar considerations can also be pade for gther conditions,
leading to various pairs of (2 8/t 08/ 3x), with the
3-dimensional representation of S(x,é) in sect. 7.

Relations to drainage and to imbibition
As can be seen from the literature [Pristinerl}, the sections
of of the J - curve are related with

- drainage (oil pushes water)

- imbibition (water pushes o0il),

see sect. 3.1. It is also interesting to make the following
consideration. It has to be noted, that the following is only
an illustration, but not a derivation of this type of an
interpretation.
As can be seen in Fig. 6-4, there is a relation betwseen
saturation S and capillary pressure, also based on experiments
[Sahimi]. Similar considerations apply to relations of the
gsaturation and relative permeability Kr (see Appendix A4). It
can be seen, that for different values of saturation 8 various
mechanisms occur, such as drainage and imbibition. In Fig. 6-4
we also note, that different mechanisms, such as

- drainage

- spontaneocus imbibition

- forced imbibiton
occur in sequence.
Since also flux J is again related to the relative permeability
Kr, this gives us a plausible interpretation of the mechanism
related to various parts of our J-curve.

Different entries of Table 6-1

e 0 e o o M Ty i s e o T R e Y (b Sd g Rl )

Now the collums of Table 6-1 will be listed, to be considered
with the curve in Fig.6-2. All this is required for the
interpretation of the results given in Figs. 6-5.

(1) collumn 1: parts of J-scurve are indicated (see Fig. 6-2)

(2) collumn 2: describes curve (increasing, decreasing, tangents)
(3) collumn 3: gives group velocity W, defined in (6-10)

(4) collumn 4: describes iso;saturation lines (6-9a), (6-9b)

(5) collumn 5: gives 28/ 0%t (6-10); (6-~15), (6-16)

(6) collumn 6: gives 28/ 2% (6-10); (6-15), (6-16)

(7) collumn 7: states if water/oil is in same direction or not
(8) collumn 8: states if o0il pushes water (drainage) or

if water pushes o0il (imbibition).




to JIs-flux curve

it e — " it B o g o iy A A RS s o e Eama e i A e Bm R O S e G m Bk

(1) | (2) | (3) 4y | (5 | (&) | () | (8)
move of
parts Js W iso- d S 0 8 | water/|imbib.
of Js flux- group~| satur.| -=-< ———— oil or
curve curve vel. lines € 0 x drain
incr. >0
A and and - not O not 0O - -
decr. < 0
against —> Joil
A-B iner. > 0 Jwater- <0 >0 < pushes
flow - = = 0r - - - water
>0 < 0 (drain)
B horiz. =0 - = 0 not 0 - -
along > |water
B~-C decr. <0 water- <0 <0 > |pushes
flow - = - 0or - - - oil
> 0 >0 (imbib)
c vert. = & - not O =0 - -
(*)
against water
D-C incr. > 0 water- <0 >0 > lpushes
flow ~ = = Q0r = - =} < oil
> 0 < 0 (imbib)
D horiz. =0 - = 0 not O - -
along oil
A-D decr. <0 water- <0 <0 > {pushes
flow - = = Qr = = > |water
>0 >0 (drain)
l
(*) Note:

W 0 just is
in (6-10).

due to the vanishing of the denominator
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Fig. 6-4 An example for the following relations

(a) water saturation S (in percent) and
(b) capillary pressure D¢




Here results for the fuel saturation flux J are shown. This
gives some examples for the function (6-5):

d
J ="t * 8§ = (1/NC)* ————mm (6-5)

For a number of different values of Nc and t we show results in
Figures and Tables. Note also that in Fig. 6-5 a series of f(E )=
curves ist presented.

RESULTS

1 Fig. 6-7 Table 6-2

6 Fig. 6-10 Table 6-3

10 Fig. 6-12

20 Fig. 6-13 Table 6-4

30 Fig. 6-14

6.6 Interpretation of the results

We note from the figures and tables the following:

(1) If Nc is constant, and t increases, the dimensions of the
curve decrease, including the maxima, see Figs. 6-6 to 6-14.

{2) If t is constant, and Nc increases, the dimensicns of the
curve increase, including the maxima. This is closely
related to the results of sect. 5, see Figs. 6~6 to 6-14.

(3) At the same time also the shapes of the curve change (all
Figures of sect. 6).
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(4) For horizontal/vertical tangents
we have a change in the mechanisms
(a) from drain to imbibition (see Fig. 6-2 point B)
(b) from imbibition to drain (see Fig. 6-2 point D)
(c) there are also changes of the direction of the
movement for iso-saturation lines (see Fig.6-2,
and Table 6-1).

{5) It can be seen (Figs. 6-6 to 6-14), that with increasing Nc,
close, i.e. points B- and D become increasingly close (i.e.
the coordinates for change in the mechanisms).

Note: For the curves shown in sect. 6 and the coordinates given
in Tables of sect. 6, a GAUSS computer program was used, which

is given in Appendix A5. For information on the program see
[GAUSS].
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EXTREMA OF Is-CURVE

Nc = 0.500

time t max(Se) Is(Se)
1.00 0.199 0.0397
2.00 0.141 0.0199
3.00 0.115 0.0132
4.00 0.010 0.0099
5.00 0.089 0.0079
6.00 0.081 0.0066
EXTREMA OF Is~CURVE

N¢ = 1.00

time t max{Se) Is(Se)
1.00 0.281 0.0790
2.00 0.199 0.0395
3.00 0.162 0.0263
4.00 0.141 0.0197
5.00 0.126 0.0158
6.00 0.115 0.0132
EXTREMA OF Is-~CURVE

Ne = 2.00

time t max{Se) Is(Se)
1.00 0.393 0.155

2.00 0.278 0.0773
3.00 0.227 0.0515
4.00 0.197 0.0387
5.00 0.176 0.0309
6.00 0.161 0.0258

Table 6-2 Extrema of Is-curves
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EXTREMA OF Is-CURVE

Ne = 4,00

time t max(Se) Is(Se)
1.00 0.536 0.287

2.00 0.379 0.143

3.00 0.309 0.0956
4.00 0.268 0.0717
5.00 0.240 0.0574
6.00 0.219 0.0478

No = 6.00

time t max(Se) Is(Se)
1.00 0.625 0.391

2.00 0.442 0.195

3.00 0.361 0.130

4.00 0.313 0.0977
5.00 0.280 0.0782
£.00 0.255 0.0652

Ne = 8.00

time t max(se) Is(Se)
1.00 0.685 0.469

2.00 0.484 0.235

3.00 0.396 0.156

4.00 0.343 0.117

5.00 0.306 0.0939
6.00 0.280 0.0782

Table 6~3 Extrema of Is-curves




EXTREMA OF
Ne = 10.0
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Is-CURVE

e S i e e S e ey M Amm TEr et W A Ay g e Wt M S RO M S e b R e B

max(Se)

0.729
0.515
0.421
0.364
0.326

o o e e Bt st e e e e S i R o o A T e i e o sy

Ne = 20.0

max(Se)

0.834
0.590
0.482
0.417
0.373

Is(Se)

0.696
0.348
0.232
0.174
0.139

Ne = 30.0

e i o e e ey o o s Rt e i o o e i oy e s i S oy oy Pt e Mo S it e

max(Se)

0.782
0.553
0.451
0.391
0.350

Is(Se)

0.611
0.306
0.204
0.153
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~

/. Change from similarity solution to saturation

We have seen a number of physical properties for two phase
flow in porous media by means of the similarity solution

(see sect. 4, 5, 6). Here we show explicitly the saturation S.
On the basis of £( ¥), the similiarity solution (sect. 4.6),
we obtain by a suitable transformation S(%, f), a function of
¢, t. We note that we use, for simplicity (if not otherwise

P . . .
stated) ¥, t, the dimensionless coordinates.

7,2 The transformation of the similarity solution

Based on the similarity transformations as given in equations
{4-29), (4-30) and the similiarity solution, as given in
equations (4-37)-(4-41) the saturation can be evaluated as
follows.
. A-L/2
= ¥*t (7-1)

with
? similarity variable
A A
X, t dimensionless coordinates.
And also
A A A=1/2
S(%, )y = t KE(CE ) (7-2)
with
A A .
S(x, t) saturation
£( ? } similarity solution.
. . . \ VAR
Now we substitute the dimensionlessgs variables %, t into the
similarity solution obtained from (4-41) and obtain with (7-2)
(7-3)
2
exp (- (1/4)*Nc* § )

] t 1/2
(T *Ne) * {(l/(tanh((l/Z)*Nce) ~erf((Nc/2) § y |

' A
Using (7-1) and (7-2) we obtain S(x, %).
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Sk, £) =
-1
A=1/2 exp (-~ (1/4)*Nc* x *(t ))
£ K e e e = (7-4)
1/2] /2 , -1/2
(" *Nc) *|(1/tanh((1/2)*Nce) - erf((Nc/2) *x*t )

L y

As can be seen in Appendix A5, this transform is 1ntroduced i
the GAUSS- -program, whlch glves explicitly the values for S(x t).
For saturation S(x t) various diagrams are given in sect. 7. 3.

7.3 Figures and Tables for saturation S(x, t)

We present the following diagrams, also noting the parameters.
Here two things should be noted;

(1) All coordinates x £ are dlmen81on1ess coordinates. Thus
S-values differ by a constant factor from calculations which
could be made with dimensioned variables such as x, t.

(2) As can be seen, also parameters like Nc have been changed.
Clearly, here variations, similar to the variations shown in
sect. 4, 5, 6 will occur. See also sect. 7.4 regarding the
short time behavior of the similarity solution.

We have the following types of figures:
A N . N .
{a) Here S(x, t) is shown in 3-D diagrams.

{(b) Here the Drowgctnon of lines for constant S(x, t) are
shown in the % t -plane (isosaturation lines)

A
(c) S(x) for varying % and fixed t
A . /\ . A
S(t) for varying T and fixed x
Here (i,3) = (1,1) denotes & low, 4 low,
and (i,3) = (25,25) denotes ¥ hlGh % hlah
Note:

It can he seen, that the curves S(x) S(t) are obtained
from the 3-D diagrams, fixing £ and fixing X respectively.

Now the Figures, showing the results are listed in more
detail.




(a) {b) (c)
Nc 3D proj. %-axis t-axis
0.5
Fig.7-1 Fig.7-2 Fig.7-3 Fig.7-4
Fig.7-5 Fig.7-6
1.0 :
Fig.7-7 Fig.7-8 Fig.9-9 Fig.7-10
Fig.7-11 Fig.7-12
2.0
Fig.7-13 Fig.7-14 Fig.7-15 Fig.7-16
Fig.7-17 Fig.7-18
4.0
Fig.7-19 Fig.7-20 Fig.7-21 Fig.7-22
Fig.7-23 Fig.7-24

Note:

In Appendix A5 the program used for the calculations is
shown in detail, see also [GAUSS] for information on the
pragram system.

7.4 Limits of similarity solution (short time behavior)

It has to be noted as can be seen from (7-4), that for

t ---> 0 the solution S({x, t) has a singularity. It can be
seen solution (7-4) does not generally represent the behavior
of the two-phase system (see also [Pistinerl]). For longer
times the solution (7-4) approaches the real solution of the
problem. It may be noted, that for some exponents, m, n,
(introduced in (4-18) and (4-20), if not m = n holds, this
singularity does not exist. It is out of the scope of this
research to discuss the type of convergence of the usual
similarity solution.

In figures of section 7 the singularity is not graphically
shown, which would give a serious distorsion of the long-
time behavior.
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0.10 0.250000 0.0892738165
0.20 0.350000 0.1265386591
0.30 0.425000 0.1555608087

0.40 0.500000 0.1805685617

O

0.50 0.550000 .2032302626
0.60 0.600000 0.2244267202
0.70 0.650000 0.2446936341
0.80 0.675000 0.2643973328
0.90 0.725000 0.2837949587
1.00 0.750000 0.3031003858
2.00 0.950000 0.5162286029
3.00 1.025000 0.8200895435
4.00 1.100000 1.2917354470
5.00 1.150000 2.0387377665
6.00 1.175000 3.2371430294
7.00 1.200000 5.1612333725
8.00 1.225000 8.2536617260
9.00 1.225000 13.2579576751

10.0 1.250000 21.3586296377

INPUT VALUES

Initial value xo . =
initial value to = 1.000
length of steps =

Number of steps n =
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8. Solutions for different parameters

-t — o ot i o Sk Gt o G WA A W G bt o v Mt R o o it i cha my o e S

As has been shown in sect. 4.7 an ODE is the final step of the
similarity solution, based on the transport equation (convection
equation) introduced in sect. 4.3. We recall this ODE here:

£’ = Ne*( £ -b*

n (1+m-n)
Ef *g ) (4-46)

This equation gives, due to different values for exponents m, n,
different solutions. The most interesting of them will be given
in the following sections.

8.2 Exponents m, n larger than 1
Here we have the conditions

m = n and m, n>1 (8-1)
It may be noted that the case

m = n and m=2, n=2 (8-2)
which is related to the Riccatti-equation has been discussed in

detail in sects. 4 to 7.
For conditions (8-1) we have the following similarity solution:

2
exp( - (Nc/4)*x § )

(1-n)

. 1/(n-1)
(£ (0) —\km’*Nc*(n—l))*erf((l/Z)* (NC*(H-l))*§ ]

Examples of (8-3) are shown in the following Tables and Figures:

In Tables 8-1, 8-2, 8-3

we show :

- the maximum of f( & ) (similarity solution for saturation)
for various exponents n

~ the coordinates of horizontal and vertical tangent for
the flux Js, (see also "group velocity", sect. 6.2, inter-
pretation of flux curve)

o o i o A A o O e gt i e

we show
- the similarity solution f(§ ) (transformed saturation)
. — the shape of the flux Js.
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Results
n = 2 4 6 8
N¢ =
1 Fig. 8-1 8-2 - -
2 Fig. 8-3 8-4 8-5 8-6
Interpretation

(a) f{ § ): For increasing Nc there is for the curves shown
here, an increase of the maximum of f(?’), gimilar to the
property of the solutions shown for the case n = 2.

(b)Y £( ¥ ): For increasing exponent n there is a decrease
of the maximum of f(? ).

(c) Js: For increasing n there is a considerable change in
the shape of Js (flux).

(d) Js: For increasing n there is a considerable increase
in the maximum of Js.

It has to be noted, that for some regions of Nc where

Nc << 1, the same relation clearly holds (increasing max.
with increasing Nc). But there are also regions, where
Nc >> 4, where the relation becomes more complicated,
where no monotonicity exists.

8.3 Exponents m, n smaller than 1

Here we have for (4-46) also the following conditions

m=n and m< 1, n<1 (8~-4)

It can be shown that the results for region (8-4) are different
from the results of sect. 8.2:

2

f(§ ) = (£(0)*exp(-1 ) + 2*{ (1 - n) * D( VL ))  (8-5)
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We note the following conventions:
R (8-6)
2
where again f is the similarity variable. We also note,

that D( ), which is usually called Dawsons Integral
(see[Abramowitz]). '
1

) ) -
D( M) = exp(-1] ) *[exp(q’ )xdn ! (8-7)

0

D('l ) is closely related to the error function, multiplied
with an term which will cause that D(PZ) ---> 0 for % ———> 00,

In Table 8-4 and Figs. 8-7 ff.

we show some properties of the similarity solution f(_f).

Results
n = =4 -1 0 0.5
Nc =
1,2,3,4,| Fig. 8-7 8-8 8-9 8-10
5,6,7,8
Interpretation

(a) £( ¥ ): The maximum of f(f’) remains almost constant with
changing Nc.

(b) f(§ ): For increasing Nc the abszissa of the maximum is
is shifting to the left.

(c) F(§ ): For increasing n the Maximum of f(f ) is decreasing.

8.4 Considerations for parameters

We do not discuss here other possibilities for the parameters,
e.g. cases where m > n, or m < n holds.

For more details on the relations between exponents and the
type of percolation, see Appendix A4.
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EXPONENT RESULTS
n = 2.0 Nc = 1.0
m=n
EXTREME VALUE
(A) for f(xi) (reduced saturation)
max of f(xi) = 3.0895
(B) for Is(Se) (saturation flux)
max of Is(Se) = 15.3427
max of Se = 3.0895
{same number as for (A))
n=4.0 Nc = 1.0
m = n
EXTREME VALUE
(A) for f(xi) (reduced saturation)
max of f{xi) = 2.6137
(B) for Is(Se) (saturation flux)
max of Is(Se) = 60.1139

max of Se = 2.6137
(same number as for (A))

Table 8-1 Solution (8-3): Reduced saturation and

saturation flux for different parameters n

{See also Figs.

8-

1 and 8-2)




EXPONENT RESULTS
n= 2.0 Ne = 2.0
m = n
EXTREME VALUE
(A) for f(xi) (reduced saturation)
max of f{xi) = 4.4033
(B) for Is(Se) (saturation flux)
max of Is(Se) = 50.7146
max of Se = 4.,4033
(same number as for (A))
n = 4.0 Nc = 2.0
m = n
EXTREME VALUE
(A) for f(xi) {reduced saturation)
max of f(xi) = 2.6202
{B) for Is(Se) {saturation flux)
max of Is(Se) = 69.9632
max of Se = 2.6202

{same number as for (A))

Table 8-2

Sclution (8-3

): Reduced saturation and

saturation flux for different parameters n
(See also Figs. 8-3 and 8-4)
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EXPONENT RESULTS
n= 6.0 Ne = 2.0
m = n
EXTREME VALUE
(A) for f(xi) (reduced saturation)
max of f(xi) = 2.6072
(B)Y for Is(S8e) (saturation flux)
max of Is(Se) = 425.9975H
max of Se = 2.6072
{same number as for (A))
n= 8.0 Ne = 2.0
m=n
EXTREME VALUE
{A) for f(xi) (reduced saturation)
max of f(xi) = 2.6072
(B) for Is(Se) (saturation flux)
max of Is(Se) = 2749.1319

max of Se = 2.6072
(same number as for (A))

Table B--3 Solution (8-3): Reduced saturation and

saturation flux for different parameters n

(See also Figs.

8-5 and 8-6 )
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EXPONENT RESULTS

n=- 4.0 Nc Max. for f(xi;Nc)

m=mn<1
1.0 1.1353
2.0 1.1353
3.0 1.1348
4.0 1.1336
5.0 1.1335
6.0 1.1335
7.0 1.1350
8.0 1.1333

first, last xm value
0.575C 0.1000

s
i

AR

o

1.0922
1.08106
1.0921
1.0888

loNeoNoNGRGNO NG NG
2
(@]
[So]
'_.1
“J

e

Q0 ~J Y Ul d> o DN b=

first, last xm value
0.9000 0.1250

(D

Table 8-4 Solutions from {8-5)

xponents n < 1)
Similarity solution (¢

red.saturation for
different n, Nc (see Fi

g. 8-7 and 8-8).

-
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CONCLUSTON

The main topic of the research presented here, was a better
understanding of the behavior of a system of two immiscible
phases in a porous medium. A model, based on Darcy’s law as
used for two phases and on the corresponding continuity
equation, leading to a transport equation (PDE) has been used
for this study. Applying a sgimilarity transformation reducing
the nonlinear PDE to an ODE was the main step in our analytic
approach. It is important to recall some of our results which
are closely related to mechanisms of displacement and flow
(see Table 1 of this conclusion). It can be seen, that the
following conditions are of importance to these mechanisms:

(a) Different regions of the saturation, a quantity defining
the percentage of one phase in relation to another phase.

(b) Ratio of viscosities of two phases.

(c¢) Nc, the capillary number, characterizing the ratio of
capillary forces and viscous forces.

(d) Different types of power laws, describing mechanisms which
are typical for different types of percolation.

Now these influences are shown in Table 1:

similarity
solution

(ODE , formula)

different
conditions
different Nc (capillary no.) m = n
regions of #2/pul (ratio of power laws for
saturation S viscosities) permeabilities
| |
different different different
mechanisms: mechanisms: types of simil.
~ imbibition - stable solutions:
-~ drain ~ unstable different
- isosaturation displacement types of
lines (fingers) flow

Table Different conditions for similarity solution
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As can be seen, these conditions are relevant for different

levels (such as large scale/small scale behavior).

It alsoshould be noted, that these influences are not always

independent. But it seems to be out of the scope of this

research, to study this type of dependencies in more detail.

We also note, that a more general approach such as

- & discussion of more combinations of the parameters m, n
relating different power laws to permeabilities,

- a generalization to a movement which is no longer horizontal,

- or the use of a 2~ or 3-dimensional model

will be of considerable interest. Clearly, as a first step,

the approach taken here is unavoidable.




It is possible to obtain for partial differential equations

(PDE), by some methods a solution, or simplification:

- It is possible, to apply Fourier- or Laplace- transforms

- it is possible to simplify PDE by Badcklund-transforms
[Rogers].

- it is useful, to apply a transform of a PDE into a
ODE, while still holding certain invariant properties,
as 1is done with the "similarity solutions" (see [Blumanl],
[Dresner], {Barenblatt]).

Using similarity methods it is either possible

- to find for ODE an integrating factor,

- to reduce a PDE of 2nd order (or of higher order) by one
variable. This is our problem here.

Al.2 Similarity method
We assume a partial differential equation (PDE), e.g. with
two independent variables x, t, and one dependent variable, u.

m n
u = (x * u * u) (Al-1)
T hid his

For a given PDE. Now transformations for (Al-1) are applied,
where a group of transformations with group invariants is
obtained which reduces PDE (Al-1l) to an ODE. This type of a
solution is also called "similarity solution", because here
the following property exists: The profiles of u (dependent
variable) versus z (independent variable) at various values
of t (independent variable) are geometrically similar, and
can be obtained by suitably stretching the abszissa and the
ordinate. This similarity allows, to answer some physical
questions already on the level of the similarity solution,
as is shown in detail in sects. 4, 5, 6.

Boundary conditions

Boundary conditions must also be invariant to the group
introduced for similarity solutions, which is discussed
in more detail in sect. 4.

Al1.3 Steps for similarity solution

s o e (i ot s T P o it et e e et e o ) o ot ot ot bkt A i

We consider now a linear diffusion egquation to make the steps
for similarity solution evident.

u - U = 0 (A1-2)
t ZZ

It can be shown that (Al-2) is invariant under the following
group of transformations:
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il = }*u
* 2
t o= A\t (A1-3)
*
Z = % *z
where 0 < < .
and is any real number.

Now, any solution for (Al-2), u = f(z,t), is also a solution
of the PDE which has been transformed by (A1-3). If this
solution is the same, then the solution is called invariant
with regard to (Al-3). To obtain this, for the parameters in
(Al-3) the following requirements are necessary:

N 2
Nowr(z, ) = £( *z, % *t) ' (A1-4)

Note:;

Equ.(Al-4) is equivalent to saying that in a point (z,t,u)
for an integral surface S, i.e. where u = f(z,t) holds, there
also exists an image (z’,t’,u’), which also lies on the
integral surface 8, i.e. where u’ = f(z’,t’) holds. Then from
(A1-3} we have

o 2
N *u = Nz, Axt).

Now replacing z by f(z,t) we obtain (Al-4). Differentiating
(A1-4) with respect to 7\, and also setting X= 1, we obtain
the auxiliary equation:

Zxf  2%t*f = O(*f (A1-5)
Z t

Here the following characteristic equations associated to
(Al-5) can be obtained (see e.g. [Bluman]):

dz dt af
———— = e = e (A1-6)
z 2%t Kx £
From (A1-6) two independent integrals are obtained,
-1/2
I1 = z*t (Al-T7a)
- /2
I2 = f*t {A1-7b)

From this, the most general form, f can take under the
invariance conditionsg is (based on (Al-7a,b), if
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: -1/2
; = zZ*t

X /2
=t *y(§) (A1-8)

Since this function is invariant, from {(A1-8) we obtain,
especially using the function vy from (Al1-8) the following
substitutions

u =f =
t t
(X /2)~1 o 1 -1/2 dy
t X (mmmky = e dzkg omem) (Al-9a)
2 2 dx
(%/2-1)/2 dy
u =t X memm (A1-9b)
z dx
(K/2)-1  d2y
u = £ K e {Al1-9c)
zZ d x2
-1/2
and with the assumption that x = z*t = ; . we can re-

write the differential equation (Al-2):

d2y dy
————— = (X[2)xy - (1/2)*y*--=- (A1-10)
dx2 dx

This 1s the basic way to obtain the similarity solution.
Note: This method is to a large extent also typical for many
cases of nonlinear PDEs. It also is useful for the diffusion
equation (with nonlinearity) as shown in AZ.
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A2 From continuity equation to similarity solution

Based on some results of Al (Methods for nonlinear partial
differential equations) we discuss here in more detail the
steps from a generalized interpretation of fractional flow
(A2.2) over a continuity equation (A2.3) to an ordinary
differential equation (A2.4), which is part of the similarity
solution (4.5).

A2.2 A generalized interpretation of fractional flow

We recall, the concept of fractional flow which is used for
2-phase flow (sect. 4.3):

flow of fuel
fractional flow of fuel =  —ccemerememee—- (A2-1)
total flow

We write (using the generalized Darcy-law (4-10), (4-11):
F(Sf) = ——mmmm——me [P (A2-2)

Here Sf is the saturation of fuel. This formula is without
capillary pressure. But in the presence of capillary pressure,
Pc we obtain

Pc = Pf + Pw (A2-3)
where
Pf pressure of fuel

Pw pressure of water.

For pressures Pf, Pw, we can write (analogous to the Darcy
formulas) for the velocities Uw, Uf of the water phase, and
fuel phase:

kK*Krw J Pw

UW = = ——ee——— L S (A2—4a)
UW d x
K*Krf JPf

Uf = = ccmmem X (A2-4b)
uE 2%

It can be shown, that a type of fractional flow G(Sf) is also
obtained dependent on capillary pressures alone:
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k*Krf*Kro ? Pc
G(SE) = —pmmmmmmmmmm e A mmee (A2-5)
@*(Krw*yf + Krf*uw) 9 Sf

With (A2-1)-(A2-5) we define the fractional flow Fm, which

applies for vicsous and capillary forces :

Fm(Sf) = F(SEf) + (A*Q‘)/Q)*G(Sf)* ————— (A2-6)

Now Fm(Sf) can be expressed using the following concepts:

- dimensionless variables, such as introduced for x, t (4-23),
- definition of F(Sf), G(Sf) by polynomial expressions
(4-18), (4-20).

This way we obtain the following guantity, also called in the
following "Saturation Flux Is":

n n-m 3 s
Is = qe(t)*S  + (1/NC)*S % ——ce- (A2-7)

Note that the saturation flux Is a fractional flow (based on
viscous and capillary forces, taking into account dimension-
less variables, and explicit use of polynomial expressions (24).

A2.3 Transformation of the continuity equation

3 8 d Is
_,__K + __.__..'.\..._. = O (A2~8)
d %t ) %

where Is has been defined as a polynomial (4-25) and (A2-7).

Using a new variable, , (A2-8) may be rewritten:

2 s - D Is ? §

———— * XA T m———— * TR =0 (AZ—Q)

dE 0% ) E. Jd X
From Al we see how the similarity variable and similarity
solution f( ) can be related to x and t

A A _1/2
E = x*t {A2-10a)
A-1/2
S = f{( ?)*t (A2-10b)

Noting, in addition to (A2-10a,b) also the definition of
saturation flux Is:
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A"‘l
Is = qf §3)*t (A2-11)

where f{( E) and g(E‘) are functions of §, to be determined
in the following differential equation:

(g(§) - pxFxe(Fy) =0 (A2-12)

Here ’ denotes differentiation with regard to variable ?.
On the basis of (A2-7), the polynomial representation of
Fg and G (see (4~18), (4-20)) we rewrite (A2-12):
, n 1
gl §) =1 - —— » £ (A2-13)
Ne
This leads us to the following differential equation for f:

n
£/ = Nex( £ - (1/2)%f% ¥ ) (A2-14)

From continuity equation (AZ-8) we obtained a differential
equation for f which clearly is equivalent to the similarity
solution (4-32), (4-37) and (4-41).
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A3 Transitions between different mechanisms

o o B R e 0 e A M o o i m m fmit ot e Mo by ot Pt D A K B e W e nn e

For different mechanisms it was important to define the re-
spective models and parameters. In relation to a phase diagram
{sect.3.3) different mechanisms have been located:

- DLA (diffusion limited aggregation)

- IP (invasion percolation)

- anti-DLA (stable displacement).

It may be also interesting to see how these transitions can

be characterized gquantitatively. Let us first introduce some
concepts from percolation. It is known (e.g. from (Wilkinson],
[Pietronero], [Weber]) that invasion percolation is at least to
some extent related to classical percolation. We first introduce
notations used for our phase diagram (sect. 3.3). Then we recall
a few concepts from percolation theory and then make some con-
siderations regarding the transitions between mechanismns.

A3.2 A classification of transitions

As is shown in Fig. A3-1, there are the following boundaries:

Boundaries for invasion percolation domain

(al) injecting the more viscous fluid (u2 > ul),
boundary characterized by Cax*

(a2) injecting the less viscous fluid (w2 < wl),
boundary characterized by Ca¥*

Boundaries for DLA domain

(bl) viscous limit, boundary characterized by M*
(b2) capillary limit, boundary characterized by Ca*

Boundaries for anti-DLA domain

e e o S M e B i b e s o e o

(cl) capillary limit, boundary characterized by Ca*
{cZ2) viscous limit, boundary characterized by M*
A1l these transitions are shown in Fig. A3-1. But quantitative

descriptions of the transitions will be given in sects. A3.3
to A3-5.
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In C
n2xv >aﬁ
DLA anti-DLA
(S''TABLE DISPLACEMENT)
(bl) (c2)
In M
>
n2 < pl pn2 >l
(cl)
DL A - (al)
INVASION PERCOLATION
(b2) / —————————————————————
(a2) p2*xv < JP

Fig.A3-1 Phase-Diagram, showing 3 different mechanisus

For Fig. 3-1 the following notations are used:

C caplllary number

2 2 1injected fludd
M= - where
ul 1 dilsplaced fluid
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A3.3 Critical exponents for percolation

o e s e i A et e Y et S e Ek y t ASn o - i s By ok e ot i MO ommt o W o e ot

We note that the following considerations are related to some
concepts and properties of invasion percolation as well as
conventional percolation [Wilkinson], [Lenormand].

The occupation probability p (of sites or bonds) in percolation
theory has a role comparable to temperature in thermal critical
phenomena. For percolation there exists a critical concentration
pc such that

(a) for p < pc only finite clusters exist, with "size" (i.e.
number of sites), whereas

(b) for p > pc an infinite cluster exists, but also finite
clusters.

Here we define ns(p) as the average number of finite sites with
size s. We note, that usually ns(p) is related to random physical
quantities. Here we have a scaling theory (see e.g. [Nakavamal)
which states that there exist parameters, characteristic for this
gsystem, which diverge at p = pc. This means that we can make for
neg(p) the following Ansatz, with a parameter s(p):

-T
s F( s/s{p) ) (A3-1)

Il

ns(p)

We note that F(x) is an unknow function. But we will come to
certain regions where this function is greatly simplified, if s{p)
is close to pc. Here we can write as is well known the following
relation:

- (1/ )
s(p) | p - pc | (R3-2)
This is usually called a power law. We will have, for p ---> pc,
the limit s ---> ©© (s is diverging). Close to this critical point,
we can write:
-T n
na(p) = s F( (p - pc)*s © ) (A3-3)
where s(p) is replaced by sq' . This is also called a scaling form,

where guantities like this can be obtained for various physical
gquantities in regions close to the critical value, pc.

This will be applied to several guantities of interest, such as
the correlation length..

A3.4 Introduction of correlation length

We now illustrate the concept of correlation length as used for
a percolation network (Fig. A3-2a, b). Here two types of a network
are shown:

{a) Case of p < pc
Here only finite clusters exist. In Fig. A3-2a the following
things are shown:
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(b)
‘;ﬂob
lipk
dead end
¢ 00
Fig A3f2 (a) Network with nodes

(b) Network with links

( § finite)

(§~—>c>o)




- nodes (shown as heavy circles),

- links (if a link is cut, no flow between two nodes is possible),

- blobs (a blob contains several parallel paths for flow),

- dead ends (dead ends can be cut without any consequence for flow).

Note that the distance between thwo nodes is of the order of § (the
basic elements of correlation length). but the type of evaluation
is discussed in A3.5.

{b) Case of p > pc
Here an infinite cluster (leading from input to output) is available
( £~--> ). Then correlation length diverges.

A3.5 Calculation of correlation length

The diameter of finite clusters below pc 1s characterized by (p)
and called correlation length. (p) is defined as the root mean
square distance between two sites 1 and j (nodes) in the same
cluster, averaged over all finite clusters. Thus we can at first
for a given cluster of size s write the average distance between
two sites i and j:

2 1 2
RS =  =~——= ; | ri ~ ri | (A3-4)

2 L

2*%s i3

Now the number of ways connecting two sites in a given cluster of
size s is s2, thus s2*ns becomes the number of ways connecting
two sites 1in clusters of the same size s. Thus the correlation
length (p) is Rs, averaged by the probability

This means

(p) e (A3-5)

Now we can assume that the same scaling function is possible as
already mentioned in (A3-3), and aobtain

Rs = s "H( (p - pc)ts 1 ) (A3-6)

N A

and we can write

Y
§<p) Xo*| p - pc | (A3-7)
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where Xo is a constant factor which can be evaluated only in some
cases, mostly approximately. We have y = M?/Q . We note here,
that the correlation length represents

-~ the characteristic size of the clusters (for p < pc) and
- the characteristic size of the voids (for p > pc).

A3.6 A line which includes the cluster, the hull

Next an exponent is introduced which will be very useful for some
of the following considerations for the transition between some
mechanisms. Assume a finite cluster of percolation as shown in

Fig. A3-3a. In Fig. A3-3b the cluster is shown with a "hull" (heavy
curve). As can be seen, the following empty sites are connected

by a line which follow these conditions:

(a) they are adjacent to cluster sites and
{b) can be connected to infinity via a chain of empty sites,
using next neighbors and nearest to next neighbors only.

This type of line encloses the cluster (see Fig. A3-3b). There
exlists a measure for the "length" of this hull, Lh:
dh
Lh ~n  a {A3-8)

where a is the average size of the cluster, and dh the hull
exponent ( see [Isichenko] ).
It could be shown, that for dh the following holds:
Y+ 1

dh = B = 7/4 (A3-9)
if = 4/3 and d = 2 (2-dimensional model of percolation).
This could be estimated using simulation (see [Sapoval]l and could
be demonstrated using rigorous results of statistical mechanics
[Saleur]. We also note, that the percolation hull exponents could
be used for different purposes, especially for modelling the
fronts of diffusion limited aggregation (DLA) as has been shown
by Meakin and Family (see [Meakin]).
It is important to note, that (A3-8), (A3-9) also hold for many
finite systems (see [Isichenkol]l).

A3.7 Some considerations of porous media
We need a few concepts for an easy formulation of boundaries
to certain mechanisms.

Saturation as a function of M and Ca

Assume we have the fraction of invading fluid (saturation S) at
breakthrough as a function of M (shown in network simulations

of the three processes (see [Lenormand]). This function is shown
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in Fig. A3-4. In this process S can reach a maximum (called also
plateau). Already at a somwhat lower value of M, called M* ,
the limit of M will be reached, characterizing the change of
mechanisms. The distance

| S(M*) ~ S(plateau) | = € (A3-10)
will be called & . This quantity can be estimated from Simulation
[Lenormand].
A similar consideration also applies for S as function of Ca (where
Ca* is the 1limit value of the capillary number Ca). This will not
be derived in detail, but see [Lenormand].

Geometrical properties of a porous medium

L L E o Ty e

The porous medium is a two dimensional network, interconnected
with capillaries (Fig. A3-5). The capillaries have a radius R,
which varies in the following interval:

[ (1 -&)*Ro, (1 + & )*Ro ] (A3-11)

We note that the size of the network is L x L, the mesh size is a.

Relaticn to Darcys law

s ot o i i b b

For a flow where only one phase is present, we use the following
version of Darcys law:

————— = m———— K e (A3-12)
2 i X
q flow
> area for flow
k permeability
M viscosity
AP
-——— approximation for pressure gradient (A3-13)

~7
£

We also note that for two phases a more general form for Darcys
law is required.

For resistance to flow we. can write the mean conductance go of a
single channel, based on Poiseuilles law):

4
Ro
go = (1/8)* M *x (A3-14)
a*u
and also, using = a2, x = a we can write again
2
__ RO
ko= (1/8)* Tl % —coen (A3-15)
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S(plateaun)
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Fig A3-4 Function characterizing invading
(saturation), with variable M

fluid
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This can be used to formulate the limits for the mechanisms.

A3.8 Boundaries for mechanisms

With a few considerations, relating a number of considerations due
to percolation theory and due to some formulas of A3.7 we can write
the following formulas.

Boundaries for invasion percolation domain

o o e o e e S A ) s e e e B et ek Vi e e om etk ik oy A Mt e o s bt Al (e o e o o ok

i o et i o e e o ik S e o Sn iy Mk i poh iyt R

As can be seen, the this boundary is a horizontal line, which is
given as follows:

T 3
ca* = A* g *K (L/a) *(Ro/a) (A3-16)
where
A a constant (empirical factor due to simulations),
I3 difference of S(M*) and S(plateau, (see (A3-10))
which is also due to simulations,
g is a variation parameter due to pore geometry,
see (A3-11).
a mesh size of percolation network
L size of percolation network
To= (t+ 1+ V)YV
thlS exponent is related to the following exponents:
v xponent for correlation length (A3- 7)
t e\ponent for conductivity.
Since t = 1.3 and = 4/3 holds, we can approximately write
t ¥ vV = 4/3
and also

T = -2.75 = 11/4
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Here also seems to be a certain relation to the "hull exponent"
(A3-9). Of course, such a statement has to be taken with care.
It seems to us, that for the exponent assumptions, similar

to A3.6 apply (we have also a finite system with a network where
L >> a applies. We have L = 100, a = 1.

(a2) injecting the less viscous fluid

As can be seen, this is anyway a monotonously increasing function
of M, in a certain range, it is a linear function of M.

We can write for this limit:
‘ . ah
cax = Bx &x €% (L/a) *(Ro/a)*M (A3-17)
Here most variables used remain the same as for (A3-16) unless

explicitly stated:

B is an empirical numerical factor, obtained by simulation,
but of a different value.

ah = (V + 1)/Y = 7/4 is the exponent clearly used as hull
exponent (see A3.6). This means, that (L/a) scales with the
ah exponent (defining the hull).

It has to be noted., that the exponent ah, used in (A2-17) applies
for all networks where L >> a, (see [Isichenko]), we have L = 100
a= 1.
Boundary for DLA domain
(bl) viscous limit M*

M* =& *(L/a) (A3-18)
Je note that in (bl) as well as in (b2), and in (cl), (c2)
we have no critical exponent for this evaluation.
(b2) Capillary limit Ca* .
_________________ ‘_______ ,

cax = cx £x 6 *(a/L)*(Ro/a) *M (B3-19)

C is also a constant, but of a different value. Here we also
have a linear fuction of M, as has been discussed for (a2).
This is parallel to the transition show in (A3-17).
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Boundaries of anti-DLA domain

3
ca* = Dx€ x & ¥(Ro/a) (A3-20)

We have here D = 80, a constant due to simulation.
Here we also have a horizontal line.

{c2) viscous limit Mx

M* = Ex£ (A3-21)

We have here E = 1000, a constant due to simulation.
tlere we have again a vertical line.

A3.9 Evaluation
We give a graphic representation, showing all the boundaries
of these mechanisms (Fig. A3-5):

- invasion percolation (IP), (al). (a2)
- diffusion limited aggregation (DLA), (bl), (b2)
- anti-DLA, (cl), (c2).

In Table A3-1 all parameters used in this model are listed.
Now Fig. (A3-1) is quantified, giving Fig. A3-5. Here all
the coefficients and parameters, mentioned in the model of
A3 and shown in Table A3-1 have been used.

For a generalization of this model, and some of its limits.
see sect. A3.10.

A3.9 Generalization and some limits of the model

We assume, that only L (size of the network) is changed.

all other parameters are kept fixed (Table A3-1). Then
obtain for increasing (decreasing) values of L the following
changes for the boundaries.

A few exampleg of these changes are given in Tables A3-1a,b:
A3-l1la : 1increasing L

53-1b : decreasing L.

We assume that always L >»> a (network dimension >> mesh size)
holds.

We obtain (compare Fig. A3-1 and Fig. A3-5) the following
changes for boundaries (in (log M, log Ca)-plot):




~145-

IF L IS INCREASING (Table A3-2a),

(al), (cl)

- both boundaries remain horizontal

~ digstance between boundaries increases
- ¢l stays fixed, al moves downward

(b1}, (c2)

- both boundaries remain vertical

- distance between boundaries increases
- ¢2 stays fixed, bl moves to the left

(az), (b2}

- both boundaries keep the direction (45¢ to 1ln M-axis)
- distance between boundaries increases

- a2 moves downwards. b2 moves downwards

We also note, that for DECREASING L (Table A3-2b),
distances are decreasing, the movents indicated in
the case of increasing L have tc be reversed.

Limitations of this model

Having no results from other simulated grids, the model
used here for L > 100 (L < 100) is only of a limited
precision, but stays at least qualitatively the same.

In addition to the mechanisms which relate to capillary
number Ca and to viscosity ratio M (as discussed here in
detail), there are also some considerations referring

to a parameter called "crossover length", which means this:
Sometimes the types of mechanisms also strongly depend on
the scale of observation, i.e. whether mechanisms are
observed 1n a scale significantly larger than a certain
length scale (crossover length) or below this length
scale [Fernandez].

This way, mechanisms sometimes may depend (in addition

to Ca and M) also on a third physical quantity. It is

out of the scope of this report to include also these
considerations in detail.
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log Cax = f(log M)
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Fig. A3-6 Quantitative representation
of the phase diagram introduced in Fig.
using parameters given in Table A3-1

A3-1




-147-

Parameters for the model

(1) General parameters (2) Exponents
€ =o0.01 ah = 7/4

s - 0.56 T = 2.75

L = 100

a = 1.0

Ro = 0.23

(3) Special coefficients for boundaries

A = 5000 (al)

B = 800 (a2)

- {(bl) (no special coefficient)
C = 1300 (b2)

D = 80 (cl)

E = 1000 (c2)

TABLE A3-1 Listing of all coefficients for model

T Ty yepe—
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varying L and coordinates for boundary
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(1)log Ca*-values, (2) log M*-values,(3) typical log Ca*-values

T o 350 e s i o e (it (ot S e et e ey e S G e S ke Ve b i S e S o Py e Ry bk e b g Pt R i ot e e o e A O R Gy e e bt BRSO

(3)

100.00000
200.00000
300.00000
400.00000
500.00000
L

100.00000
200.00000
300.00000
400.00000
500.00000
L:

100.00000
200.00000
300.00000
400.00000
500.00000

RESULTS

varying L and coordinates for boundary

dist.(al),(cl):
3.7041200
4.5319525
5.0162034
5.3597850
5.6262875
dist.(bl),(c2):
.0000000
.3010300
4771213
.6020600
.6989700
dist.(a2),(b2):
1.7108534
2.2376559
2.5458156
2.7644584
2.9340509

ottt o

coo. (cl):

-2.2635385
-2.2635385
-2.2635385
-2.2635385
~2.2635385
coo. (c2):

1.0000000

1.0000000

1.0000000

1.0000000

1.0000000
coo. (b2):
-8.0526851
-8.3537151
-8.5298064
-8.6547451
-8.7516551

coo.(al):

~5.9676585
~6.7954909
-7.2797419
-7.6233234
-7.8898260

coo. (bl):

-4.0000000
-4.3010300
-4.,4771213
-4.6020600
-4.6989700

coo.(az2):

-9.7635385
-10.290341
~10.598501
~10.817143
-10.986736

(1)log Ca*-values,(2) log M*-values,(3) typical log Ca*-values

(3)

L:

100.00000
90.000000
80.000000
70.000000
60.000000
L:

100.00000
90.000000
80.000000
70.000000
60.000000
L:

100.00000
90.000000
80.000000
70.000000
60.000000

Table A3-2

dist.(al),(cl):
3.7041200
3.5782869
3.4376174
3.2781396
3.0940359

dist.(bl),(c2):
5.0000000
4.9542425
4.9030900
4.8450980
4.7781513

dist.(a2),(b2):
1.7108534
1.6307778
1.5412608
1.4397749
1.3226181

coo. (cl):

-2.2635385
-2.2635385
~-2.2635385
-2.2635385
-2.2635385
coo. (c2):

1.0000000

1.0000000

1.0000000

1.0000000

1.0000000
coo. (b2):
-8.0526851
-8.3537151
-8.5298064
-8.6547451
-8.7516551

coo.(al):

-5.9676585
-5.8418254
~-5.7011559
-5.5416781
~5.3575744

coo.(bl):

-4.0000000
~3.9542425
-3.9030900
-3.8450980
-3.7781513

coo.(a2):

-9.7635385
-9.6834629
~9.5939460
-9.4924600
~9.3753032

Dependence of diferent characteristics

(capillary number, ratio of viscosities)
on the total length of the 2D-network
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A4 Relations of permeability and saturation

Now in relation to section 4 (Evaluation of phase flow in a
porous medium, 4.1 - 4.3) relations of permeability to
saturation will be discussed. For this reason, first we
recall some of the concepts used in A3 and introduce some
more concepts.

Ad.2 A few concepts from percolation

In a percolation network, some of the relevant quantities are
percolation probability p and critical probability pc (also
called critical concentration) as well as correlation length
{csee A3.4).

Also other quantities are needed for our considerations:

(1) Accessible fraction XA.
That is the fraction of occupied bonds, belonging to an
(infinite) cluster.
(2) Backbone fraction XB.
That 1s the fraction of occupied bonds, belonging to an
(infinite) cluster, which actually carry flow (or current),
excluding the dead ends, which do not effectively contribute
to flow.
It is to be noted, that the fractions (1), (2) are very
relevant for various transport properties, giving measures
for all transport paths. Here it will be interesting to ask if
there exist some relations between permeability K and the
guantities (1) and (2).
It has been shown (by theoretical considerations, simulations
and by experiments) that quantities like ;XA ,XB follow
polynomial laws (see [Sahimi2]. [Nakayvamal). For illustration,
see Fig. A3-1. It has been noted in section A3.4, that for the
correlation length, a polynomial law exists.
-V
S(p) ~ |p - pcf (A3-7)

We also state, that XA, XB follow polynomial laws.
XA(p) ~ (p - pc) (RA4-1)

ZB(p) «~ (p - pc) (Ad~2)

Here we recall the concept of critical point (see also (A3-1)).
At some well defined value of p, there must be a transition for
the structure of the network., where the network obtains at least
one connected cluster which spans the whole network. This
transition probability is called "bond percolation threshold pc".
Below pc there exists no sample spanning cluster. Now, fp is a
critical exponent related to the percolation probability P as
follows:
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Bp

Iy

P~  (p- pc) (R4-3)

Similarly, /SB is related to the backbone fractal dimension.
Thus we have for 2 dimensions:

Bp
/313

A4.3 Mass and fractal dimension Df

From (A3-6) we note, that

Rs ~ g (A4-5)

5/26 (Ad-4a)

1l

0.48 (BA4-4b)

holds, which is useful if we are sufficiently close to pc, the
critical point where percolation starts. Tis can be written,
since s is the cluster size as

1/w
s ~ Rs (Ad-6a)

Using for 1/w the notation Df, fractal dimension (or Hausdorff
dimension) we can write also
Df
s(Rs) ~V Rs (A4-6b)

As is well known, for Df the following relation holds
Df = d - f3/y (R4-7)

Df is usuall smaller than the Euclidean dimension d. It can be
seen that M, (number of all bonds of the sample spanning cluster)
can be given as a power law of Rs (rel. to correlation length),
where the exponent is Df. The gquantity Df is important for
percolation and also inversion percolation (see e.g. [Pietronerol],
[Weber]). It has to be noted that the so-called "mass" M(R) of the
cluster scales as

DE
M(R) vV Rs (Ad-8)

Also note, that {p), the correlation length (sect. A3.4) is a
threshold, up to which the cluster can be regarded as fractal.
For p > pc and for length scales L > ¥ the percolation network
can be regarded as homogeneous.

We thus can write as follows (for a quantity analogous to M(R)):
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L for L << §

M(L) n {Ad4-9)

L for L >> E
where d = 2.

This change in polynomial behavior depending on the question, if
L is small or large compared tc a gquantity, such as correlation
length ¥ , is called "cross over'.

We also can relate to M(L) - especially for two-phase fluid flow -
quantities like saturation 8. This will be discussed in detail.

A4.4 Saturation and polynomial laws
We consider a porous medium with volume Vv = ¢> ¢c ((bporosity,
¢ critical porosity, below dc the original fluid is separated
in different parts. Assume that the entire pore space of this
medium is at the begining filled with a non-wetting (nw) fluid
(see [Larson]). Now the nw-fluid ig removed beginning with some
pores and is now replaced by a second phase, the wetting fluid.
We usually assume, that the wetting fluid {(w-fluid) remains
still randomly distributed, but anyway will prefer smaller pores
due to capillary forces. (see 3.2 criteria for different
mechanisms). Let Vnw be the volume of the nw-fluid, being
distributed over the porous medium. For the nw-fluid, still
randomly distributed, the fraction of accessible pores occupied
by the nw-fluid, is called saturation Snw. Until now, we have
pores which are separated, i.e. do not belong to a backbone,
(a cluster of pores which span the wmedium).
Note that here for Snw the eqguivalence to XA, accessible
fraction, is evident. We also have

Vnow = (#*Snw {(Ad4-10)

If random replacement of the nw-fluid causes vnw = *Snw to
drop below ¢, then the nw-fluid is no longer continuous across
the medium. Then the residual nw-saturation is called Srnw,
defined by

43' srnw = e | (A4-11)
Now since Snw is closely related to XA (A4-1) we can write for
fa) drainage (a procedure, analogous to the procedure discussed
above, where the non wetting fluid replaces the wetting
fluid).

(b) imbibition (exactly the procedure discussed above)

the following relations (similarly to (A4-1), (A4-2)):
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(a) drainage

Snw ~ (p - pc) (Ad~12)

{(b) imbibition

Snw - Srnw v  (p - pC) (A4-13)

A4.5 Relation to permeability

It is also known from experiments, simulation and theoretical
considerations ([Larson], [Sahimi]) that for permeability K
the following power law holds (similar to conductivity):

7
K ~ (p - po) ‘ (A4-14)

We take into account, that for some quantities a cross over is
taking place (as stated in relation to (A4-9)). This means, that
we can use equations referring to (A4-4)-(A4-6) for a suitable

scaling. Thus we obtain, for the relative permeability kr the
following equations (assuming £ >> L):

(a) during drainage

u/ fp
krnw ™~ (Snw) (A4-15)
(b) during imbibition
u/(1+ pp)
krow ™ (Snw - Srnw) (A4-16)

We see, that the two formulas are based on

~ two variables, Snw and (Snw - Srnw) and

- two exponents, u/pp and pu/(1+ Pp).

It can be seen that for (b) we have an increasing function, and
for (a) a decreasing function. The respective angles of the two
curves in relation to the abszissa are considerably different
(as can be seen from (AR4-15) and {(A4-16)). This leads us to the
statements of sects. 4.2 and 4.3.
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A5. Remarks on Programs for analytic solution

U G W VO S e

In relation to the discussions in sections 4 to 8 a number
of programs were required. Some of these programs are here
shown in detail. They belong to the GAUSS-program system
(see [GAUSS] for more details. We prefer two types for

an illustration of the programs used in our research.

Similarity Solution
It is interesting to note, that for an analytic solution,
i.e. for a similarity solution of the Riccati equation
was used. We recall this differential equation, discussed
in sect. 4.5:
n 1
£/ = Ne*Ne(f - (1/2)*f* & ) (4-36)

H

2, we have a Riccatl-equation. As solution we have
2
exp( -0.25*Nc* ? )

For n
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£0%)

0.5 0.5
(Y *Nc)Y * (1/tanh((0.5%*Nce) - erf(0.5*Nc *5)

This is shown in sect A5.2.

Interpretation of a flux-curve
It may be noted, that an interesting criterions, do see if there
are some mechanisms available (such as drain, imbibition, for
different directions of the two liquids) (see Fig. 6-2) it is
required, to evaluate the flux-curve as is given in sect. 6:

A =1/2 28

J =t k8 - (1/Nc) * ———< (6-4)
bid

This is shown in sect. A5.2.

it may be also noted, that it was possible, to use most programs
in a version which was either suited to

- a guick representation or to
- a representation for publication quality.
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A5.2 Similarity Solution and Flux Curve

Wwith the equ. (4-41) and (6~4) a program for the GAUSS
solution is given. For more information on this program
see [GAUSSI.

JF B LUR A = e o e e e e o e e e e e e e e e e e e e e e e - * /
/*Analytical solution for global fuel migration */
/*FLUX of a phase, function of Saturation, Nc, t */
/* Js(Se;Nc,t) */
/*February 2, 1995 */
] K e e e e e * /

"fa(Se.Nc), as dimensionless function";
anf2:
/ *gqgraph-commands* /
library ggraph:;
graphset:;
setgmode(16);
_gmajor = 3;

_qminor = 3;

beggraph;

r = 1;

c = 1;
setgmode{16};

_gnum = 1;

_gbox = 1;

_adfmode = 0;
window(r,c);
"INPUT :";print;
"no. of curves ml
"No = "::Nc

"times t
"END of Input DATA":

H;;ml = (Jon(l,-]-).:
con(1l,1):;
"::t = con(ml,1);

o

/*"fixed parameters";*/

let inc 0.05;
let nl1 = 80;

1l




/*Evaluation*/

declare x ?
declare yma ? 1;

o

ni = sega{0,1,nl);

®¥x = ni*inc + 0.001;

[*E{xiy~-*/

nl = exp(-0.25*x"2.%nc);

dll = 1/tanh(0.5*nc) -~ erf(0.5*%(nc"0.5)"*x);

d12 = (pi*nc)~0.5;

dl = dl12.*d11;

f = nl./d1; /*similarity solution f£(xi)*/
[*diff(f(xi), x) = £'*/ /*see appendix A6.2%/

nz = =0.5%(nc"0.5)*x.%*exp(-0.25%nc*x"2);

d21 = 1/tanh(0.5*nc) -~ erf(0.5*(nc”0.5)*x);

d2 = pi~0.5*d21;

diffa = n2./4z2;

n3 = (exp(-0.25%nc*x"2))."2;
d31 = 1/tanh(0.5*nc) - erf(0.5*nc~0.5*%x);
d3 = pi*d31~2;
diffb = n3./d3;
diff = (diffa + diffb);
g = f*2 - (1/Nc).*diff;
f2 = £72;
Is = g./t’; /*flux Is(Se)*/
Se = f.*¥(t~(-1/2))"; /*saturation Se(xi)*/
Isl = maxc(Is); : Sel = maxc({se);
xml = maxindc{is}; f3 = (8el)"2;
Xm = xml*inc;

wait:cls;
print;

anfl:

con{l,2 );:

"xmin, xmax = ";;vil
= con{l,2);

"yvmin, ymax "iiv2

i

scale(vl,v2):;
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/*l::::::::::::::::: */
/*| GRAPHIC OUTPUT |*/;
/* ======::=:=====:=!*/

format 3,3;

title("£(x)");
xyv(x,£);

title("diffa and diffb");
xv(x,diffa~diffb);

title("diff");
xy(x,diff);

title("Is(Se)");
xlabel("Se");
viabel("Is");
xy(Se,Is);

wait;cls;
OUTPUT FILE = typea ON;

print;

"EXTREMA OF Is~CURVE ";

"time t max(Se) Is(8Se) "}
print t~sel~f£3;

OUTPUT OFF;

"use file typea, reseta";

"continue : "“;;w2 = con(l,1):;
if w2 == 1;
goto anf2;
endif;

endgraph;
"reset <typea> with <run reseta>";

"END" ;
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A6 Check of the behavior of the similarity solution

We discuss here some of the applications of the symbolic
computation with MAPLE (Version 3) for obtaining partial
derivatives of f(xi,Nc). Note that most of the expressions
shown here are automatically reproduced during a MAPLE-
session.

A6.1 Analyvtical form of the similarity solution

L e e W e g i o At e A A e o s o i At P P A i S W Py o M G b ot o St ot o S

Here the formula f(x,Nc) is written to obtain (using
numerator nl and denominator dl). Note that this can
also be used for a 3D-representation.

2
> nl = exp(-0.25 nc x );

dll{x,nc) := 1/tanh(0.5%nc) -erf(0.5*nc”0.5%x);

¥

1 .5
dll(x, nc) = —cmecmm—ew—— - erf(.5 nc X)
tanh{(.5 nc)

» dl2(x,nc) = (Pi*nc)"0.5;

dl2(x, nc) := Pi nc

» dl(x,nc) := dl2{x,nc)*dll(x,nc);
/

dl(x, nc) := Pi nc | mmemmemm———— - erf(.5 nc x)
tanh{.5 nc)
\ /

: \
.5 .5 | 1 .5 {
|

The similarity solution f{x,nc) is represented as follows (A6-1):
» £(x.nc) := nl(x,nc)/dl(x,nc);

2
exp( - .25 nc x )
(X, NC) 15 —m e e e {(A6-1)

\
.5 .5 | 1 .5 |
Pi ne [ - erf(.5 nc x)l
| tanh(.5 nc) !

\ /
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A6.2 Partial derivative with regard to x:

it et e G e s n e e m G M SR S G e ot et e S K e e St Rn mn Mot b e et b ey e et

We now make a partial derivative for f(x,Nc) with regard to x,
showing the slope of £(x,Nc) with regard to x.

» £ (x,nc) = diff(f(x,nc), x);

.5 2
nc x exp({ - .25 nc x )
T (X, NC) 5 = B0 e e e e e e ——————
b / \
.5 1 .5 l
Pi I e T P - erf(.5 nc x) |
! tanh(.5 nc) [
\ /
(A6-2)
2 2
exp( - .25 nc x ) exp( - .25 nc x )
b o ot e e e e o e o e o o b o o e e e o e e e e o o e e e
/ \ 2
l 1 .5 I
Pi | mmmmmemmee o - erf(.5 nc x) |
I tanh(.5 nc) !
\ /

A6.3 Partial derivative of f(x,nc) with regard to nc :

We also make a partial derivative of f(x, Nc) with regard
to Ne. It shows in more detail the behavior of the reduced
saturation f(x,Nc) with regard to possible mechanisms.

» £ (x,nc) := diff(f(x.nc), nc);
nc

f (x,nc) :=

nc
2 2 2
® expl{ - .25 nc x ) exp{ - .25 nc x )
= 225 e ————— - 5 (A6-3)
.5 .5 .5 1.5 (a)
Pi nc tl Pi nc tl

(continued)




2
2 .5 ~.5 tanh(.5 nc)
exp(=.25 NC X ) = ===mmmmm e
2 (A6-3)
tanh(.5 nc) (b)
.5
Pi nc tl
2
exp{- .25 nc x) X
+ B e ——————————
.5
Pi nc ti
where t1 means
1 .5
tl = e - erf(.5 nc Xx)

tanh(.5 nc)

This answers the questions of increasing and decreasing of the
similarity solutions with regard to Nc.
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