Forschungszentrum Karlsruhe Technik und Umwelt

Wissenschaftliche Berichte FZKA 5619

# Bestrahlungsprogramm MANITU

Ergebnisse der Kerbschlagbiegeversuche mit den bis 0,8 dpa bestrahlten Werkstoffen der ersten Bestrahlungsphase

M. Rieth, B. Dafferner, H. Ries, O. Romer

Institut für Materialforschung Hauptabteilung Versuchstechnik Projekt Kernfusion Association Forschungszentrum Karlsruhe/EURATOM

September 1995

# Forschungszentrum Karlsruhe

**Technik und Umwelt** 

Wissenschaftliche Berichte FZKA 5619

# **Bestrahlungsprogramm MANITU**

Ergebnisse der Kerbschlagbiegeversuche mit den bis 0,8 dpa bestrahlten Werkstoffen der ersten Bestrahlungsphase

M. Rieth, B. Dafferner, H. Ries, O. Romer

Institut für Materialforschung Hauptabteilung Versuchstechnik Projekt Kernfusion Association Forschungszentrum Karlsruhe / EURATOM

Forschungszentrum Karlsruhe GmbH, Karlsruhe

1995

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

\*

Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe ISSN 0947-8620

#### KURZFASSUNG

Das Bestrahlungsprojekt MANITU wurde im Rahmen des europäischen Langzeitprogramms für Materialentwicklung für die Kernfusion geplant und durchgeführt. Das Problem der bestrahlungsinduzierten Versprödung bei den in Frage kommenden martensitischen Werkstoffen ist nach wie vor ungelöst. Eine erste Tendenz zeichnete sich jedoch nach der Auswertung der Kerbschlagbiegeversuche an den unbestrahlten miniaturisierten Referenzproben des MANITU-Programms ab. Die neu entwickelten niedrig aktivierbaren 7-10% Cr-W(Ge)VTa-Legierungen weisen gegenüber den modifizierten kommerziellen 10-11 % Cr-NiMoVNb-Stählen teilweise bessere mechanische Eigenschaften auf. Im vorliegenden Bericht werden die Ergebnisse aus den instrumentierten Kerbschlagbiegeversuchen der ersten Phase des MANITU-Programms (Bestrahlungsdosis 0,8 dpa, Bestrahlungstemperaturen 250, 300, 350, 400 und 450°C) analysiert und bewertet. Von den untersuchten Legierungen (MANET-I, MANET-II, Kastencharge, OPTIFER-Ia, OPTIFER-II, F82H, 9Cr-2WVTa ORNL 3791) zeigt der ORNL-Stahl das mit Abstand beste Versprödungsverhalten nach Neutronenbestrahlung.

#### ABSTRACT

#### Irradiation Programme MANITU: Results of impact tests with the irradiated

#### materials of the first irradiation phase (0.8 dpa)

The irradiation project MANITU was planned and carried out in the frame of the European Longterm Fusion Materials Development Programme. The problem of the irradiation induced embrittlement of possible martensitic alloy candidates is still unsolved. But after the evaluation of subsize Charpy tests with the unirradiated reference specimens of MANITU a first tendency was recognizable. The mechanical properties of the newly developed low activation 7-10% Cr-W(Ge)VTa alloys are partly better compared to the modified commercial 10-11 % Cr-NiMoVNb steels. In the present report the results of instrumented impact tests within the first phase of the MANITU programme (irradiation dose 0.8 dpa, irradiation temperatures 250, 300, 350, 400, and 450°C) are analysed and assessed. Among all examined alloys (MANET-I, MANET-II, K-heat, OPTIFER-Ia, OPTIFER-II, F82H, 9Cr-2WVTa ORNL 3791) the ORNL steel shows the very best embrittlement behaviour after neutron irradiation.

| 1   | EINLEITUNG1                                               |
|-----|-----------------------------------------------------------|
| 2   | VERSUCHS- UND AUSWERTETECHNIK2                            |
| 3   | Das Bestrahlungsprogramm MANITU6                          |
| 3.1 | ÜBERBLICK, INTENTION, AKTUELLER STAND6                    |
| 3.2 | VERSUCHSMATERIALIEN7                                      |
| 3.  | 2.1 CHEMISCHE ZUSAMMENSETZUNG                             |
| 3.  | 2.2 BEARBEITUNGSSCHRITTE                                  |
| 3.3 | PROBENHERSTELLUNG11                                       |
| 3.4 | Bestrahlungsdaten und Parameter11                         |
| 4   | VERGLEICH DER MATERIALKENNWERTE                           |
| 4.1 | SCHLAGARBEIT IN DER HOCHLAGE (USE)12                      |
| 4.2 | Sprödbruchübergangstemperatur (DBTT)14                    |
| 4.3 | NIEDRIGSTE TEMPERATUR IN DER HOCHLAGE (LTUS)16            |
| 4.4 | DYNAMISCHE STRECKGRENZE ( $\sigma_{\text{YD, 100°C}}$ )17 |
| 4.5 | VERSPRÖDUNG UND FESTIGKEIT18                              |
| 5   | VERGLEICH DES BESTRAHLUNGSEINFLUSSES21                    |
| 5.1 | REDUKTION DER ENERGIE IN DER HOCHLAGE                     |
| 5.2 | ERHÖHUNG DER SPRÖDBRUCHÜBERGANGSTEMPERATUR22              |
| 5.3 | ERHÖHUNG DER LTUS23                                       |
| 5.4 | ERHÖHUNG DER DYNAMISCHEN STRECKGRENZE                     |
| 5.5 | VERSPRÖDUNGS- UND FESTIGKEITSZUNAHME24                    |
| 6   | DISKUSSION27                                              |
| 6.1 | RELEVANZ DER UNTERSUCHUNGSERGEBNISSE                      |
| 6.2 | BEWERTUNG DER EINZELNEN LEGIERUNGEN                       |
| 7   | ZUSAMMENFASSUNG                                           |

a politic

| 8 DANKSAGUNG                                | . 34  |
|---------------------------------------------|-------|
| 9 LITERATURVERZEICHNIS                      | . 35  |
| 10 ANHANG                                   | . 38  |
| 10.1 VERSUCHSERGEBNISSE UND PROBENZUORDNUNG | 38    |
| 10.1.1 MANET-I                              | 38    |
| 10.1.2 MANET-II                             | 43    |
| 10.1.3 K-Charge                             | 48    |
| 10.1.4 OPTIFER-IA                           | 53    |
| 10.1.5 OPTIFER-II                           | 58    |
| 10.1.6 F82H                                 | 63    |
| 10.1.7 ORNL 3791                            | 68    |
| 10.2 AUSWERTEERGEBNISSE                     | 73    |
| 10.2.1 MANET-I                              | 73    |
| 10.2.2 MANET-II                             | 78    |
| 10.2.3 K-Charge                             | 83    |
| 10.2.4 OPTIFER-IA                           | 88    |
| 10.2.5 OPTIFER-II                           | 93    |
| 10.2.6 F82H                                 | 98    |
| 10.2.7 ORNL 3791                            | . 103 |

#### EINLEITUNG

Mit dem MANITU-(Manet Irradiation for Fusion Applications)-Bestrahlungsprogramm werden innerhalb der Materialforschung für Anwendungen auf dem Gebiet der Kernfusion mehrere Ziele verfolgt.

Grundsätzlich wird in dem als Niederdosisexperiment (Bestrahlungsdosen zwischen 0,2 und 2,4 dpa) konzipierten Bestrahlungsprogramm die Materialversprödung im Bestrahlungstemperaturbereich von 250°C bis 450°C bei unterschiedlichen martensitischen Stahllegierungen untersucht. Dabei soll die Datenbasis der kommerziellen 9-12 % Cr-NiMoVNb-Legierungen, die bei früheren Bestrahlungsprogrammen äußerst unbefriedigende Ergebnisse lieferten, vervollständigt werden. Der Schwerpunkt des MANITU-Programms liegt jedoch bei der Untersuchung der bestrahlungsinduzierten Versprödung von niedrig aktivierbaren 7-10 % Cr-WVTa-Legierungen. Diese Stahltypen könnten außer den Vorteilen, die sich durch die niedrige Aktivierung ergeben, ein wesentlich besseres Versprödungsverhalten aufweisen und damit für Kernfusionsanwendungen ideale Strukturwerkstoffe abgeben. Die Ergebnisse des MANITU-Programms werden zumindest im Bereich der verwendeten Versuchsparameter zeigen, inwieweit diese Vermutung zutrifft.

In der ersten Bestrahlungsphase wurden Kerbschlagproben von insgesamt sieben verschiedenen Legierungen bis zu einer Dosis von je 0,2 und 0,8 dpa bestrahlt. Im vorliegenden Bericht werden die Ergebnisse der Kerbschlagbiegeuntersuchungen mit den bis 0,8 dpa bestrahlten Proben dokumentiert. Im Vordergrund steht hierbei der Vergleich der Materialeigenschaften in Abhängigkeit von der Bestrahlungstemperatur bei den verschiedenen Legierungen.

Als Prüfverfahren wurde der instrumentierte Kerbschlagbiegversuch mit miniaturisierten Proben eingesetzt. Um sämtliche Einflüsse, die die Versprödungsuntersuchungen negativ beeinflussen könnten, auszuschalten, wurde ein nicht unerheblicher Aufwand bei der Probenherstellung und Prüfung betrieben. Dadurch konnte trotz einer geringen Probenanzahl pro Versuchsparameter ein genauer Vergleich zwischen einigen aussichtsreichen Legierungskandidaten angestellt werden.

1

## **2** VERSUCHS- UND AUSWERTETECHNIK

Alle Kerbschlagbiegeversuche wurden mit derselben, im IMF-II entwickelten Versuchsanlage in den Heißen Zellen durchgeführt. Dadurch wurden bei der Auswertung anlagenspezifische Einflüsse auf die Meßergebnisse unterdrückt.

Der verwendete Probentyp (s. Abbildung 1) ist in der DIN 50115 unter der Bezeichnung KLST spezifiziert.



Abbildung 1: Probengeometrie

Die Kerbschlagbiegeversuche wurden instrumentiert durchgeführt, d.h., zu jedem Versuch wurde ein Kraft-Durchbiegungs-Verlauf aufgezeichnet. Die im vorliegenden Bericht angegebenen Schlagenergiewerte wurden über die Inte-

gration dieser Kraft-Durchbiegungs-Verläufe ermittelt.

Die Auslegung der Prüfanlage übertrifft die Anforderungen in DIN 50115, DIN 51222, DVM 001 und EN DIN 10045. Die technischen Daten sind im nebenstehenden Kasten zusammengefaßt.

Für die Charakterisierung der

#### Technische Daten

15 J Pendelschlagwerk Hammerfinnenradius 2 mm Widerlagerabstand 22 mm Schlaggeschwindigkeit 3,85 m/s Kraftmeßeinrichtung in der Hammerfinne Meßwerterfassungsrate 1 MHz Meßverstärkerbandbreite 1 MHz (-3dB) A/D-Wandlerauflösung 1,2 mV Halbautomatische Probenbeladevorrichtung Beladeverzugszeit max. 2 sec PC-gesteuerte Versuchsdurchführung Prüftemperaturbereich -180°C bis +600°C Kerbschlageigenschaften wurden die experimentell ermittelten Schlagarbeit-Prüftemperatur-Kurven herangezogen. Daraus wurden drei Kenngrößen ermittelt: zum einen die Schlagarbeit in der Hochlage (Upper Shelf Energy, USE) als Maximalwert der Schlagarbeit bei vollständig duktilem Materialverhalten, zum anderen die Sprödbruchübergangstemperatur (Ductile-to-Brittle Transition Temperature, DBTT). Dieser Temperaturwert charakterisiert für jeden Werkstoff die Materialversprödung in Abhängigkeit von der Temperatur. Im vorliegenden Bericht wurden die DBTT-Werte an den Stellen aus den Schlagarbeit-Prüftemperatur-Diagrammen abgelesen, an denen die Schlagarbeit genau die Hälfte der Hochlagenenergie annimmt. Bei dieser Temperatur treten Mischbrüche auf. Dabei ist der Anteil von Sprödbrüchen und Brüchen durch duktile Rißverlängerung ungefähr gleich.

Zusätzlich zur Sprödbruchübergangstemperatur (DBTT) wurde ein weiterer Temperaturkennwert ermittelt, der für Designüberlegungen besser geeignet ist. Dabei handelt es sich um die niedrigste Prüftemperatur bei der gerade noch duktiles Materialverhalten auftritt (Lowest Temperature in Upper Shelf, LTUS). Damit schreibt der LTUS-Werte die niedrigst mögliche Einsatztemperatur für eine Konstruktion aus dem betreffenden Material vor, wenn dabei die im Betrieb auftretenden dynamischen Belastungen mit denen des miniaturisierten Kerbschlagbiegeversuchs vergleichbar sind. Weitere Überlegungen zu den LTUS-Werten findet man in [1].

Ein weiterer Kennwert bei instrumentierten Kerbschlagbiegeversuchen ist die Fließkraft F<sub>gy</sub>. Sie charakterisiert den Übergang vom rein elastischen zum elastisch-plastischen Bereich, also den Beginn des Fließens. Die Bestimmung der Fließkraft aus der Kraft-Durchbiegungs-Kurve ist in SEP 1315 definiert. Dabei wird zunächst eine Gerade durch den mittleren Verlauf der ersten drei Schwingungen des gemessenen Kraftsignals gezogen und in den weiteren Kraftverlauf wird eine Mittelwertkurve gezeichnet. Die Fließkraft ist dann durch den Schnittpunkt der Gerade mit der Mittelwertkurve bestimmt. Der Nachteil dieser Methode besteht in der mangelnden Genauigkeit und Reproduzierbarkeit, bedingt durch unterschiedliche Prüfanlagen und durch die Subjektivität des Auswerters. Nach [2] liegt die Standardabweichung bei der Ermittlung der Fließkraft bei Kerbschlagbiegeversuchen mit ISO-V-Proben zwischen 4 und 5 %. Für minia-

turisierte Proben (z.B. KLST) sind noch höhere Abweichung zu erwarten. Deshalb wurden die Oszillationen aus den gemessenen Kraftkurven mit dem "Störgrößenkompensationsverfahren" [3] extrahiert. Die so gewonnenen schwingungsfreien Kraftkurven ermöglichen eine reproduzierbare Bestimmung der Fließkräfte mittels der in Abbildung 2 dargestellten Tangentenmethode.



Abbildung 2: Ermittlung der Fließkraft F<sub>gy</sub>

Die Bestimmung der Fließkraft ist vor allem deshalb interessant, weil damit aufgrund vereinfachter theoretischer Überlegungen die dynamische Streckgrenze  $\sigma_{yd}$  abgeschätzt werden kann. Nach [4] gilt bei Proben mit V-Kerben für die Streckgrenze und das Biegemoment folgende Beziehung:

$$\sigma_{yd} = C_g M_{bgy} / \{B (W-a_0)^2\}$$

C<sub>g</sub>, Constraint Faktor M<sub>bgy</sub>, Biegemoment an der Fließgrenze W, Probenhöhe (4 mm) B, Probenbreite (3 mm) a<sub>o</sub>, Kerbtiefe (1 mm)

Weiterhin gilt beim Kerbschlagbiegeversuch für das Biegemoment und die gemessenen Fließkraft:

# $M_{bgy} = F_{gy} I / 4$

F<sub>gy</sub>, gemessene Fließkraft M<sub>bgy</sub>, Biegemoment an der Fließgrenze I, Widerlagerabstand (22 mm)

Bei der Ermittlung der dynamischen Streckgrenzen wurde für den Constraint Faktor  $C_g$  nach [5] ein Wert von 2,99 verwendet.

Für den charakteristischen Spannungswert zum Vergleich der verschiedenen Legierungen und Bestrahlungszustände wurde die dynamische Streckgrenze bei einer Prüftemperatur von 100°C ( $\sigma_{yd, 100°C}$ ) gewählt. Diese Wahl ist willkürlich. Die Mehrzahl der durchgeführten Prüfungen fand jedoch in diesem Temperaturbereich statt. Deshalb konnte die dynamische Streckgrenze bei 100°C für alle Materialien und Zustände am genauesten ermittelt werden.

In der Abbildung 3 sind die Werte der Streckgrenzen aus Kerbschlagbiegeversuchen ( $\sigma_{yd}$ ) mit KLST-Proben und konventionellen Zugversuchen ( $R_{p0,2}$ ) aus [6] einander gegenübergestellt.



Abbildung 3: Vergleich zwischen der dynamischen und quasi-statischen Streckgrenze

Im Prüftemperaturbereich zwischen Raumtemperatur und 300°C herrscht im Rahmen der Meßgenauigkeit eine gute Übereinstimmung zwischen den unterschiedlich ermittelten Streckgrenzen. Damit ist sichergestellt, daß die verwendete Formel zur Abschätzung der dynamischen Streckgrenze aus instrumentierten Kerbschlagbiegeversuchen praxisrelevante Werte liefert.

Zur Beurteilung des Bestrahlungseinflusses auf die unterschiedlichen Legierungen ist die Differenz der charakteristischen Kenngrößen (DBTT, LTUS, USE,  $\sigma_{yd, 100^{\circ}C}$ ) vor und nach Bestrahlung von Interesse. Im vorliegenden Bericht ist diesen Differenzwerten ein  $\Delta$  vorangestellt ( $\Delta$ DBBT,  $\Delta$ LTUS,  $\Delta$ USE,  $\Delta \sigma_{yd, 100^{\circ}C}$ ).

## **3** DAS BESTRAHLUNGSPROGRAMM MANITU

### 3.1 ÜBERBLICK, INTENTION, AKTUELLER STAND

Im Rahmen des Bestrahlungsprogramms MANITU wird der Einfluß der Neutronenbestrahlung auf die Tieftemperaturmaterialversprödung bei verschiedenen neu entwickelten und modifizierten martensitischen Stählen untersucht. Die Untersuchungen sollen zeigen, in wie weit martensitische Stahllegierungen für den Einsatz als Erste-Wand- und Strukturwerkstoffe bei zukünftigen Fusionskraftwerken geeignet sind. Trotz einiger wesentlichen Vorteile der Martensite gegenüber anderen Werkstoffen gibt es bei den kommerziellen martensitischen Stählen einen erheblichen Nachteil. Sie verspröden, verstärkt durch Neutronenbestrahlung bei Temperaturen unterhalb von ca. 370°C, so stark, daß sie bei Fusionsanwendungen nur sehr begrenzt einsetzbar wären.

Bei dem vorangegangenen Bestrahlungsprojekt FRUST/SIENA [7] wurde an einer Legierung (MANET-I) der Einfluß der Wärmebehandlung und der Bestrahlungstemperatur bei hohen Bestrahlungsdosen (5, 10 und 15 dpa) ermittelt. Dabei wurde festgestellt, daß die bestrahlungsinduzierte Verschiebung der Sprödbruchübergangstemperatur (ΔDBTT) beim MANET-I-Stahl unabhängig von der Wärmebehandlung ist. Die Ergebnisse zeigten weiterhin, daß eine vorübergehende Sättigung der Materialversprödung in Abhängigkeit von der Bestrahlungsdosis schon bei sehr kleinen Werten (deutlich unter 5 dpa) erreicht wird. Bei Zugversuchen wurde eine Sättigungsgrenze bei Dosiswerten von ca. 2 dpa gefunden [8]. Das Bestrahlungsprogramm MANITU wurde ausgehend von diesen Ergebnissen als Niederdosisexperiment mit Dosiswerten von 0,2 sowie 0,8 und 2,4 dpa durchgeführt. Weiterhin wurde auf die Untersuchung von Wärmebehandlungseinflüssen verzichtet. Dadurch konnte die gesamte Bestrahlungskapazität für insgesamt 10 verschiedene Legierungen ausgenutzt werden.

Die Untersuchung der niedrig aktivierbaren Legierungen soll zeigen, ob durch deren unterschiedlich modifizierte chemische Zusammensetzung die bestrahlungsinduzierte Verschiebung der Sprödbruchübergangstemperatur verringert werden kann und ob eine Absenkung der Sprödbruchübergangstemperaturen auf unter 200°C generell möglich ist.

Die Bestrahlung wird in zwei Phasen im High-Flux-Reactor (HFR) des European Joint Research Centre in Petten, Niederlande, durchgeführt [9]. Die für den vorliegenden Bericht relevante Bestrahlungsphase umfaßt insgesamt 180 KLST-Proben aus sieben verschiedenen Legierungen (s. Tabelle 1), die bei Temperaturen von 250, 300, 350, 400 und 450°C bis zu einer Dosis von 0,8

Tabelle 1: Legierungen der 1. Bestrahlungs-<br/>phase von MANITU

| 9-12% CrMoV(Nb)<br>kommerziell | 7-10% CrWVTa<br>niedrig aktivierbar |
|--------------------------------|-------------------------------------|
| MANET-I                        | OPTIFER la, ll                      |
| MANET-II                       | F82H                                |
| K-Charge                       | ORNL 3791                           |

dpa bestrahlt wurden. Die Prüfung dieser Proben ist abgeschlossen. Die Ergebnisse werden im folgenden dargestellt und diskutiert. Weitere 180 KLST-Proben aus denselben Legierungen wurden unter den gleichen Bedingungen bis zu einer Dosis von 0,2 dpa

bestrahlt. Die Prüfung dieser Proben wird voraussichtlich im 3. Quartal 1995 abgeschlossen sein. Die zweite Bestrahlungsphase mit weiteren Werkstoffen bis zu 0,8 und 2,4 dpa endet im 4. Quartal 1995.

### 3.2 VERSUCHSMATERIALIEN

Die drei verwendeten 9-12% CrMoVNb-Legierungen wurden im IMF aus dem kommerziellen Stahl X 18 CrMoVNb 12 1 (DIN 1.4914) weiterentwickelt. Die beiden MANET-Legierungen wurden speziell für Fusionszwecke konzipiert [7, 10, 11, 12], während die K-Charge für Brennelementkästen des Schnellen Brüters entwickelt wurde [13, 14, 15, 16, 17]. Alle drei Chargen wurden bei der Firma ARBED-SAARSTAHL erschmolzen. Die MANET- und K-Chargen wurden zu Blechen in unterschiedlicher Dicke verarbeitet.

Vom Oak Ridge National Laboratory (Dr. R. Klueh) wurde für das MANITU-Programm ein 6,4 mm starkes Blech des 9Cr-2WVTa Stahls ORNL 3791 zur Verfügung gestellt. Mit dieser Legierung wurden schon einige Kerbschlagbiegeversuchsreihen nach ASTM durchgeführt [18, 19, 20]. Außerdem wurde der Stahl in den USA in einem anderen Bestrahlungsprogramm eingesetzt.

Der von Japan für Fusionsanwendungen favorisierte Werkstoff ist die F82H-Legierung. Hiervon wurde 1994 eine modifizierte Großcharge (F82H mod.) weltweit für die Fusionsforschung verteilt. Uns wurde vorab vom Japan Atomic Energy Research Institute (Dr. A. Hishinuma) ein Blech einer F82H-Charge, die nur geringfügig von der modifizierten Großcharge abweicht, für die MANITU-Bestrahlung zur Verfügung gestellt. Über die mechanischen Eigenschaften des F82H gibt es zahlreiche Veröffentlichungen (z.B. [21, 22, 23]). Kerbschlagbiegeversuchsergebnisse mit Miniaturproben wurden bis jetzt jedoch noch nicht veröffentlicht (außer in [1]).

#### 3.2.1 Chemische Zusammensetzung

In der Tabelle 2 ist die prozentuale chemische Zusammensetzung der einzelnen Legierungen angegeben. Die Angaben stammen entweder vom Hersteller oder aus IMF-eigenen Analysen. Die Reihenfolge der chemischen Elemente hat für die niedrig aktivierenden Legierungen eine besondere Bedeutung. Im oberen Drittel der Tabelle 2 stehen die Elementgehalte, bei denen sich die vier Stähle wesentlich unterscheiden und von denen ein erheblicher Einfluß auf die Kerbschlageigenschaften bekannt ist. Die OPTIFER-la-Legierung wurde dabei willkürlich zum Referenzmaterial gewählt. Bei den anderen Legierungen sind jeweils die Werte, die von der OPTIFER-la-Charge abweichen dunkel unterlegt.

Im unteren Drittel sind die Gehalte der Elemente, die für niedrige Aktivierungswerte ausschlaggebend sind, aufgeführt. Im mittleren Teil der Tabelle stehen die restlichen Legierungselemente. Die OPTIFER-II-Legierung unterscheidet sich von der OPTIFER-Ia-Charge hauptsächlich in einem Punkt. Der Wolframgehalt wurde hier vollständig durch Germanium ersetzt.

Auch beim ORNL-Stahl tritt im wesentlichen nur ein Unterschied auf. Der Wolframgehalt liegt mit 2 % doppelt so hoch wie bei der OPTIFER-Ia-Legierung.

| Tabelle 2: | Chemische | Zusammensetzung | der | einzelnen | Legierung | en in | Prozent |
|------------|-----------|-----------------|-----|-----------|-----------|-------|---------|
|            |           |                 |     |           | - 0       |       |         |

|    | 9-12 % 0                                                         | Cr-NiMoVN | lb Stähle | niedrig aktivierende Legierungen                                       |          |                    |                   |
|----|------------------------------------------------------------------|-----------|-----------|------------------------------------------------------------------------|----------|--------------------|-------------------|
|    | K-Charge <sup>1</sup> MANET I <sup>2</sup> MANET II <sup>2</sup> |           |           | OPTIFER la <sup>1</sup> OPTIFER II <sup>1</sup> F82H <sup>2</sup> ORNL |          |                    | ORNL <sup>1</sup> |
|    | 51482                                                            | 53645     | 50805     | 664                                                                    | 668      | std.               | 3791              |
| Cr | 10,5                                                             | 10,8      | 9,94      | 9,3                                                                    | 9,43     | 7,73               | 8,9               |
| W  |                                                                  |           |           | 0,965                                                                  | 0,005    | 2,06               | 2,01              |
| Ge |                                                                  |           |           |                                                                        | 1,1      |                    |                   |
| N  | 0,003                                                            | 0,02      | 0,023     | 0,015                                                                  | 0,016    | 0,0027             | 0,0215            |
| С  | 0,17                                                             | 0,14      | 0,1       | 0,1                                                                    | 0,125    | 0,092              | 0,11              |
| Mn | 0,64                                                             | 0,76      | 0,79      | 0,5                                                                    | 0,5      | 0,083              | 0,44              |
| Та |                                                                  |           |           | 0,066                                                                  | ca. 0,02 | 0,018              | 0,06              |
| Ρ  | 0,005                                                            | 0,005     | <0,006    | 0,0047                                                                 | 0,004    | 0,003 <sup>1</sup> | 0,015             |
| S  | 0,005                                                            | 0,004     | <0,007    | 0,005                                                                  | 0,002    | 0,003 <sup>1</sup> | 0,008             |
| V  | 0,25                                                             | 0,2       | 0,22      | 0,26                                                                   | 0,28     | 0,189              | 0,23              |
| В  | 0,002                                                            | 0,0085    | 0,007     | 0,006                                                                  | 0,006    | 0,003 1            | <0,001            |
| Si | 0,31                                                             | 0,37      | 0,14      | 0,06                                                                   | 0,038    | 0,09 <sup>1</sup>  | 0,21              |
| Ni | 0,87                                                             | 0,92      | 0,66      | 0,005                                                                  | 0,005    | 0,032              | <0,01             |
| Мо | 0,56                                                             | 0,77      | 0,59      | 0,005                                                                  | 0,005    | 0,0053             | 0,01              |
| AI | 0,05                                                             | 0,054     | <0,02     | 0,008                                                                  | 0,008    | 0,01               | 0,017             |
| Со | 0,02                                                             | 0,01      | <0,02     |                                                                        |          | 0,0024             | 0,012             |
| Cu | 0,01                                                             | 0,015     | <0,01     | 0,035                                                                  | 0,007    | 0,0059             | 0,03              |
| Nb | 0,2                                                              | 0,16      | 0,14      | 0,009                                                                  | 0,009    | 0,0057             |                   |
| Zr |                                                                  | 0,059     | 0,034     |                                                                        |          |                    | <0,001            |
| Се |                                                                  |           |           | <0,001                                                                 | <0,001   |                    |                   |
| Ti | 0,007                                                            |           | _         | 0,007                                                                  | 0,007    | 0,0104             | <0,01             |
| Fe | Rest                                                             | Rest      | Rest      | Rest                                                                   | Rest     | Rest               | Rest              |

<sup>1</sup> Herstellerangabe

<sup>2</sup> IMF-Analyse

Am größten sind die Unterschiede zwischen dem F82H-Stahl und der OPTIFER-Ia-Charge. Der Chromgehalt von 7,7 % liegt beim F82H niedriger,

der Wolframgehalt ist doppelt so hoch und der Stickstoffanteil von 27 ppm fünfmal geringer.

Die bei den 9-12 % Cr-NiMoVNb-Stählen für die Kerbschlageigenschaften maßgeblichen Unterschiede der chemischen Zusammensetzung sind schnell aufgeführt. Beim MANET-II-Stahl wurde im Vergleich zum MANET-I der Zirkonund Kohlenstoffgehalt abgesenkt. Die K-Charge ist mit nur 30 ppm nahezu frei von Stickstoff.

#### 3.2.2 Bearbeitungsschritte

Je nach Ausgangsmaterial waren vor der Probenherstellung noch einige Kaltwalzschritte mit nachfolgender Glühung notwendig. Die Endwärmebehandlung wurde bei allen Stählen im IMF durchgeführt.

| Werkstoff  | Kaltver-<br>formungs-<br>grad | Endwärmebehandlung                    | Härte<br>HV2 | Korngröße<br>in µm |
|------------|-------------------------------|---------------------------------------|--------------|--------------------|
| K - Charge | 27%                           | 1075°C/ 0,5h + 765°C/2h               | 238          | 30 ± 5             |
| MANET I    | 23%                           | 980°C/2h + 1075°C/ 0,5h +<br>750°C/2h | 279          | 30 ± 5             |
| MANET II   | 27%                           | 965°C/2h + 1075°C/ 0,5h +<br>750°C/2h | 274          | 40 ± 5             |
| OPTIFER la |                               | 1075°C/ 0,5h + 780°C/2h               | 199          | 50 ± 5             |
| OPTIFER II |                               | 950°C/2h + 780°C/2h                   | 206          | 55 ± 5             |
| F82H       | 20%                           | 1040°C/ 0,5h + 750°C/2h               | 227          | 35 ± 5             |
| ORNL       | 22%                           | 1050°C/ 0,5h + 750°C/1h               | 245          | $25\pm5$           |

#### Tabelle 3: Materialzustand vor der Probenherstellung

Die Legierungen, die in Blechform vorlagen, wurden auf ein einheitliches Endmaß kaltgewalzt. Dadurch ergab sich je nach Dicke des Ausgangsmaterials ein unterschiedlicher Kaltverformungsgrad **vor** der Endwärmebehandlung. Abschließend wurde von jedem Materialstück die Härte gemessen (s. Tabelle 3). Der Gefügezustand der einzelnen Legierungen vor der Probenherstellung ist in [1] dokumentiert.

### **3.3 PROBENHERSTELLUNG**

Die Herstellung der KLST-Kerbschlagbiegeproben erfolgte unabhängig von der Form des Ausgangsmaterials einheitlich mittels Drahterodieren längs zur Walzrichtung in L-T-Orientierung. Die Vorteile gegenüber herkömmlichen Herstellungsverfahren wurden durch Voruntersuchungen bestätigt und sind in [1] ausführlich dargestellt.

### 3.4 BESTRAHLUNGSDATEN UND PARAMETER

Für das Bestrahlungsexperiment MANITU wurde eine sog. TRIO-Kapsel verwendet [24]. Diese Bestrahlungskapsel kann mit drei Probenhaltern bestückt werden. Die MANITU-Probenhalter sind in jeweils fünf Etagen aufgeteilt. Die Bestrahlungstemperatur kann in jeder Etage separat geregelt werden. Pro Etage wurden beim MANITU-Programm jeweils 36 KLST-Proben bestrahlt. Die

Anordnung der einzelnen Etagen mit der jeweiligen Bestrahlungstemperatur ist in Abbildung 4 dargestellt (s.a. [9]).

Die TRIO-Kapsel für das MANITU-Experiment wurde innerhalb des HFR-Kerns auf die randnahe Position F2 gesetzt. In dieser Position beträgt der Fluß für schnelle Neutronen (E>1 MeV) auf der Höhe der Core Centre Line  $1,01 \ 10^{18} \text{ m}^{-2} \text{ s}^{-1}$  und für thermische Neutronen (E>0,1 MeV)  $1,90 \ 10^{18} \text{ m}^{-2} \text{ s}^{-1}$ [24]. Die erste Bestrahlungsphase bis zu einer Nenndosis von 0,8 dpa lief unter der Experimentnummer D 271-02 und



Abbildung 4: MANITU-Probenhalter

erfolgte in fünf Zyklen vom 09.05.1994 bis 17.10.1994. Durch die vertikale Anordnung der Proben im Probenhalter weichen die tatsächlichen Dosiswerte in den einzelnen Etagen entsprechend der Flußverteilung in der Reaktorposition F2 [24] von der Nenndosis ab (s. Tabelle 4). Der Maximalwert der Dosis betrug für die schnellen Neutronen (E>1 MeV) 0,594 10<sup>21</sup> n/cm<sup>2</sup> und für die thermischen Neutronen (E>0,1 MeV) 1,262 10<sup>21</sup> n/cm<sup>2</sup>. Dies entspricht einem Versetzungsschaden von 0,924 dpa.

Die in der Tabelle 4 angegebenen Istwerte der Bestrahlungstemperatur wurden sowohl über den gesamten Bestrahlungszeitraum als auch über die Anzahl der Meßfühler gemittelt. Die Werte der Temperaturabweichungen gelten für mehr als 95 % der Betriebsdauer. Kurzfristig traten geringfügig höhere Abweichungen auf.

| Tabelle 4: Soll- | und Istwerte | der Bestrahlı | ingsparameter |
|------------------|--------------|---------------|---------------|
|------------------|--------------|---------------|---------------|

| Bestrahlung                  | stemperatur | Bestrahlungsdosis |                |  |
|------------------------------|-------------|-------------------|----------------|--|
| Sollwert in °C Istwert in °C |             | Sollwert in dpa   | lstwert in dpa |  |
| 250                          | 255 ± 4     | 0,8               | 0,785          |  |
| 300                          | 301 ± 13    | 0,8               | 0,832          |  |
| 350                          | 347 ± 17    | 0,8               | 0,887          |  |
| 400                          | 406 ± 14    | 0,8               | 0,887          |  |
| 450                          | 446 ± 16    | 0,8               | 0,924          |  |

### 4 VERGLEICH DER MATERIALKENNWERTE

Die Versuchsdurchführung und Auswertung der Meßergebnisse erfolgte gemäß den Ausführungen im Kapitel 2.

Sämtliche Versuchs- und Auswerteergebnisse sind in tabellarischer und grafischer Form detailliert und unter Angabe der Probenzuordnung im Anhang dargestellt.

Im Folgenden werden die charakteristischen Kenngrößen der einzelnen Legierungen in Abhängigkeit von der Bestrahlungstemperatur einander gegenübergestellt.

### 4.1 SCHLAGARBEIT IN DER HOCHLAGE (USE)

Betrachtet man in der Abbildung 5 die USE-Verläufe der verschiedenen Stähle über der Bestrahlungstemperatur, so fällt auf, daß alle Cr-NiMoVNbLegierungen (MANET-I, -II, K-Charge) und OPTIFER-Ia ein ähnliches Verhalten aufweisen. Im Bestrahlungstemperaturbereich zwischen 400°C und 350°C fällt die Hochlagenenergie stärker als bei den höheren und niedrigeren Temperaturen ab. Von den Cr-NiMoVNb-Stählen zeigt die K-Charge die höchsten Schlagarbeitswerte. Die USE-Werte der 9Cr-1WVTa-Legierung OPTIFER-Ia liegen jedoch noch deutlich darüber.

Bei der 9Cr-1GeVTa-Legierung OPTIFER-II findet der USE-Abfall im Temperaturbereich von 400-450°C statt. Die Hochlagenenergie liegt im gesamten Bereich niedriger als bei der OPTIFER-Ia-Legierung und im Temperaturbereich unter 370°C höher als bei der K-Charge.

Sowohl bei dem 8Cr-2WVTa-Stahl F82H als auch bei der 9Cr-2WVTa-Legierung ORNL tritt keine signifikante Abhängigkeit der USE von der Bestrahlungstemperatur auf. Die USE-Werte der ORNL-Legierung liegen ungefähr auf demselben Niveau wie die Werte der OPTIFER-II-Legierung. Von allen untersuchten Stählen weist der F82H-Stahl die höchsten Schlagarbeitswerte in der Hochlage auf.



Abbildung 5: Vergleich der USE in Abhängigkeit von der Bestrahlungstemperatur

Beim Einsatz von martensitischen Legierungen in zukünftigen Fusionsanlagen ist aufgrund der Materialversprödung der Temperaturbereich von 250-350°C von besonderem Interesse. Bei höheren Bestrahlungstemperaturen (400-450°C) beobachtet man bei den meisten Stählen die geringsten Bestrahlungseffekte. In Abbildung 6 sind die USE-Werte der einzelnen Legierungen, getrennt für den unteren und oberen Temperaturbereich, in Form eines Balkendiagramms dargestellt.



Abbildung 6: USE im unteren und oberen Bereich der Bestrahlungstemperatur

Hierbei wird nochmals die geringe Abhängigkeit der USE von der Bestrahlungstemperatur beim F82H- und ORNL-Stahl deutlich.

### 4.2 SPRÖDBRUCHÜBERGANGSTEMPERATUR (DBTT)

In der Abbildung 7 ist die Versprödungscharakteristik der untersuchten Legierungen, gemessen an der Sprödbruchübergangstemperatur, in Abhängigkeit von der Bestrahlungstemperatur dargestellt.

Mit Ausnahme der OPTIFER-II- und der ORNL-Legierung nehmen die DBTT-Werte bei allen Stählen mit sinkender Bestrahlungstemperatur stetig zu.

Bei den Legierungen MANET-I, MANET-II, K-Charge, OPTIFER-II und F82H ist zwischen 450°C und 400°C nur eine geringe Abhängigkeit der DBTT von der

Bestrahlungstemperatur zu beobachten. Unterhalb von ca. 400°C steigen die DBTT-Werte jedoch je nach Material erheblich an. Bei der OPTIFER-II-Legierung stagniert die DBTT-Zunahme unterhalb von ca. 300°C.



Abbildung 7: Vergleich der DBTT in Abhängigkeit von der Bestrahlungstemperatur



Abbildung 8: DBTT im unteren und oberen Bereich der Bestrahlungstemperatur

Bei der OPTIFER-Ia-Legierung findet zwischen 350°C und 300°C eine verstärkte DBTT-Zunahme statt. Beim ORNL-Stahl fällt die DBTT-Kurve zwischen 450°C und 350°C und bleibt bei weiter sinkenden Temperaturen im Rahmen der Meßgenauigkeit auf einem konstanten Wert.

Im unteren Bereich der Bestrahlungstemperatur (250-350°C) zeigt der ORNL-Stahl mit Abstand den besten DBTT-Verlauf. Die DBTT-Werte der Legierungen F82H, OPTIFER-Ia, OPTIFER-II und K-Charge liegen deutlich darüber. Die Stähle MANET-I und -II schneiden am schlechtesten ab.

In der Abbildung 8 sind die DBTT-Werte für den oberen und unteren Bereich der Bestrahlungstemperatur der einzelnen Legierungen als Balkendiagramm dargestellt.

### 4.3 NIEDRIGSTE TEMPERATUR IN DER HOCHLAGE (LTUS)

Abbildung 9 zeigt die designorientierte Versprödungstemperatur (LTUS) der einzelnen Stähle in Abhängigkeit von der Bestrahlungstemperatur.

Es fällt auf, daß bei den MANET-Legierungen und andeutungsweise auch bei der OPTIFER-Ia-Legierung bei Temperaturen unterhalb von ca. 300°C eine Sättigung eintritt.



Abbildung 9: Vergleich der LTUS in Abhängigkeit von der Bestrahlungstemperatur

가 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 같은 것이 있는 것이 같은 것이 있는 같은 것이 있는 것이 같은 것이 있는 것

Die LTUS-Werte bleiben bei sinkender Bestrahlungstemperatur annähernd konstant. Dagegen zeigt die K-Charge und die F82H-Legierung eine kontinuierliche Zunahme der LTUS.

Ein völlig anders gearteter LTUS-Verlauf ergibt sich bei der OPTIFER-II- und ORNL-Legierung. Der OPTIFER-II-Stahl zeigt bei 300°C ein Maximum und sinkt bei tieferen Temperaturen wieder ab. Beim ORNL-Stahl liegt das Maximum bei 400°C. Bei Bestrahlungstemperaturen unterhalb von 350°C bleiben die LTUS-Werte auf einem konstanten Level.

Im Temperaturbereich von 400-450°C weisen die Legierungen F82H, OPTIFER-Ia und K-Charge die besten Werte auf. OPTIFER-II und die MANET-Stähle schneiden in diesem Bereich am schlechtesten ab. Im Niedertemperaturbereich von 250-300°C liegen die ORNL- und F82H-Legierung mit Werten von unter 0°C ganz deutlich vor allen anderen Stählen. Dieser Sachverhalt geht besonders anschaulich mit der Aufteilung in einen oberen und unteren Bestrahlungstemperaturbereich aus der Abbildung 10 hervor.



Abbildung 10: LTUS im unteren und oberen Bereich der Bestrahlungstemperatur

### 4.4 DYNAMISCHE STRECKGRENZE ( $\sigma_{yd, 100^{\circ}C}$ )

Die bei einer Prüftemperatur von 100°C ermittelten Werte der dynamischen Streckgrenze in Abhängigkeit von der Bestrahlungstemperatur sind in der Abbildung 11 dargestellt. Im allgemeinen gilt bei den martensitischen Legierungen für die Versprödungs- und Festigkeitseigenschaften die gegensätzliche Beziehung "je besser die Versprödungstemperaturwerte, desto schlechter die Festigkeit".



Abbildung 11:  $\sigma_{vd, 100^{\circ}C}$  in Abhängigkeit von der Bestrahlungstemperatur

Deshalb sind hier die relativ hohen Werte der F82H- und ORNL-Legierung besonders hervorzuheben. Beide Legierungen zeigen ungefähr denselben Verlauf der dynamischen Streckgrenze bei 100°C über der Bestrahlungstemperatur. Ihre Werte liegen oberhalb der OPTIFER-Legierungen obwohl sie deutlich bessere Versprödungstemperaturen aufweisen.

Am besten sind die Streckgrenzen der MANET-Stähle, die wiederum die schlechtesten Sprödbruchübergangstemperaturen zeigen.

### 4.5 VERSPRÖDUNG UND FESTIGKEIT

Zur abschließenden Beurteilung der aus dem instrumentierten Kerbschlagbiegeversuch ermittelten mechanischen Materialeigenschaften ist es sinnvoll, die Versprödungskennwerte (DBTT und LTUS) über den Festigkeitswerten (hier die dynamische Streckgrenzen) aufzutragen. Die Versprödung nimmt im Gegensatz zur Festigkeit durch Neutronenbestrahlung zu. Deshalb muß bei der Materialbewertung den Versprödungskennwerten ein höherer Stellenwert als den Festigkeitswerten eingeräumt werden. Dies gilt im besonderen Maße für die hier untersuchten martensitischen Werkstoffe.

In der Abbildung 12 sind die Sprödbruchübergangstemperaturen der verschiedenen Legierungen über den entsprechenden dynamischen Streckgrenzenwerten aufgetragen und mit Streubändern verbunden. In der Abbildung 13 sind die niedrigsten Temperaturen in der Hochlage über der Streckgrenze eingezeichnet. Bei jedem Material wurde der niedrigste Meßpunkt aus dem unbestrahlten Zustand gewonnen. Die fünf Punkte darüber repräsentieren die Ergebnisse nach Bestrahlung. Die Länge der Streubänder ist ein Maß für den Einfluß der Bestrahlung auf die mechanischen Eigenschaften. Je nach Steigung der Streubänder überwiegt entweder die bestrahlungsinduzierte Versprödung oder Verfestigung.



Abbildung 12: DBTT über  $\sigma_{yd, 100^{\circ}C}$ 

In der Abbildung 12 erkennt man sowohl den starken Bestrahlungseinfluß als auch die hohen Festigkeitswerte der Cr-NiMoV-Stähle gegenüber den Cr-W-

bzw. Cr-Ge-Legierungen, wobei sich die MANET-Stähle zusätzlich durch ihre hohen Versprödungswerte hervorheben.

Mit Ausnahme der OPTIFER-II- und der ORNL-Legierung ist die Steigung der Versprödung-Verfestigungsgerade ungefähr gleich. Damit nimmt bei diesen Stählen die Festigkeit im selben Verhältnis wie die Versprödung zu.

Beim OPTIFER-II-Stahl findet, ausgehend vom unbestrahlten Zustand, zunächst eine stärkere Versprödung und mit sinkenden Bestrahlungstemperaturen eine überwiegende Verfestigung statt. Vergleichbares gilt für die ORNL-Legierung, die unter Bestrahlung fast ausschließlich Verfestigung zeigt.

Die Praxistauglichkeit der Legierungen wird noch deutlicher, wenn man die Versprödung nach der niedrigsten Temperatur in der Hochlage charakterisiert (s. Abbildung 13).



Abbildung 13: LTUS über  $\sigma_{yd, 100^{\circ}C}$ 

Das mit Abstand beste Versprödungsverhalten bei hoher Festigkeit zeigt sich bei den Stählen F82H und ORNL. Bei der OPTIFER-la-Legierung und bei der Kastencharge tritt eine stärkere Versprödung ein, wobei die K-Charge deutlich höhere Streckgrenzenwerte aufweist. Die OPTIFER-II-Legierung hebt sich vor allem durch ihre niedrigen Festigkeitswerte von den anderen Werkstoffen ab. Bei der Versprödungscharakterisierung nach der LTUS tritt gegenüber dem DBTT- $\sigma_{yd, 100^{\circ}C}$ -Diagramm noch ein anderer Effekt auf. Bei den Legierungen MANET-I und -II, OPTIFER-II, ORNL und vermutlich bei der K-Charge setzt bei niedrigen Bestrahlungstemperaturen eine Sättigung bei der Versprödung (LTUS) ein. In diesen Bereichen findet ausschließlich bestrahlungsinduzierte Verfestigung statt.

## **5** VERGLEICH DES BESTRAHLUNGSEINFLUSSES

#### 5.1 REDUKTION DER ENERGIE IN DER HOCHLAGE

In der Abbildung 14 ist die durch Neutronenbestrahlung bedingte Reduktion der Hochlagenenergie als prozentuale Abweichung vom unbestrahlten Zustand eingezeichnet.



Abbildung 14: Bestrahlungsinduzierte Reduktion der Hochlagenenergie

Im Bereich von 250-350°C der Bestrahlungstemperatur ist der Bestrahlungseinfluß auf die USE beim F82H-Stahl, gefolgt von der OPTIFER-Ia- und ORNL-Legierung, mit weniger als -10 % am geringsten. Beim OPTIFER-II-Stahl, der Kastencharge und der MANET-II-Legierung liegt die Reduktion zwischen -12 und -28 %. Die MANET-I-Legierung zeigt hier mit -35 bis -44 % den stärksten Bestrahlungseinfluß.

Im oberen Bestrahlungstemperaturbereich geht der Einfluß der Bestrahlung auf die USE bei der Kastencharge, dem MANET-II-Stahl und der OPTIFER-Ia-Legierung auf unter 2 % zurück. Der stärkst Bestrahlungseinfluß tritt mit 5-18 % bei den Legierungen OPTIFER-II, MANET-I und ORNL auf.

#### 5.2 ERHÖHUNG DER SPRÖDBRUCHÜBERGANGSTEMPERATUR

Zwischen 350°C und 450°C Bestrahlungstemperatur zeigen die Cr-NiMoVNb-Stähle ungefähr denselben Einfluß der Bestrahlung auf die DBTT-Verschiebung (s. Abbildung 15). Unterhalb von 350°C ist der Bestrahlungseinfluß bei der K-Charge am geringsten und beim MANET-I-Stahl am höchsten.

Im unteren Temperaturbereich ist die DBTT-Verschiebung bei der OPTIFER-Ia-Legierung geringfügig kleiner und bei der OPTIFER-II-Legierung im Mittel etwas höher als bei der K-Charge. Deutlich weniger Einfluß auf die DBTT-Verschiebung zeigt sich bei der F82H-Legierung und der absolut niedrigste  $\Delta$ DBTT-Verlauf im unteren Bereich der Bestrahlungstemperatur tritt beim ORNL-Stahl auf.



Abbildung 15: Bestrahlungsinduzierte Verschiebung der DBTT

3

Zwischen 400°C und 450°C verschiebt sich beim OPTIFER-II-Stahl, gefolgt von der ORNL-Legierung, die Sprödbruchübergangstemperatur am stärksten. Die anderen Stähle zeigen hier ungefähr denselben Verlauf.

## 5.3 ERHÖHUNG DER LTUS

Beim Einfluß der Bestrahlung auf die LTUS ergeben sich gegenüber der bestrahlungsinduzierten DBTT-Verschiebung wesentliche Unterschiede. Die entsprechenden Kurvenverläufe sind in der Abbildung 16 dargestellt.

Bei der Kastencharge wirkt sich die Bestrahlung deutlich schwächer auf die LTUS aus als bei der OPTIFER-Ia-Legierung. Im unteren Temperaturbereich weist die ORNL-Legierung mit weniger als 20°C von allen Stählen den kleinsten Bestrahlungseinfluß auf. Oberhalb von 400°C zeigt die K-Charge die geringsten LTUS-Verschiebungen.



Abbildung 16: Bestrahlungsinduzierte Verschiebung der LTUS

## 5.4 ERHÖHUNG DER DYNAMISCHEN STRECKGRENZE

Durch die Neutronenbestrahlung erhöht sich bei den martensitischen Legierungen die dynamische Streckgrenze gegenüber dem unbestrahlten Ausgangszu-

stand. Die Verläufe der Festigkeitszunahme sind in der Abbildung 17 in Abhängigkeit von der Bestrahlungstemperatur eingetragen.

Unterhalb von 400°C tritt bei der MANET-I-Legierung die höchste Verfestigung ein. Unterhalb von 350°C ist bei der K-Charge und beim MANET-II-Stahl der Bestrahlungseinfluß auf die Streckgrenze deutlich höher als bei den Cr-W- bzw. Cr-Ge-Legierungen. Die beiden OPTIFER-Legierungen zeigen im gesamten Temperaturbereich ungefähr dieselbe bestrahlungsinduzierte Verfestigung, die fast linear verläuft. Der F82H- und ORNL-Stahl weicht von diesem Verlauf nur im mittleren Temperaturbereich ab. Hier ist der Bestrahlungseinfluß etwas geringer als bei den OPTIFER-Legierungen.



Abbildung 17: Bestrahlungsinduzierte Verschiebung der dynamischen Streckgrenze

### 5.5 VERSPRÖDUNGS- UND FESTIGKEITSZUNAHME

In der Abbildung 18 ist die bestrahlungsinduzierte Versprödung über der Verfestigung aufgetragen. Man erkennt, daß bei den Cr-W- bzw. Cr-Ge-Legierungen die maximale Verfestigung bei 140-150 MPa endet. Dagegen erreicht die Festigkeitszunahme bei den Cr-NiMoVNb-Stählen Werte zwischen 270 und 300 MPa.

Bei der Kastencharge, dem MANET-II und OPTIFER-Ia-Stahl gilt im Bereich unterhalb von 150 MPa zwischen Versprödung und Verfestigung ungefähr derselbe Zusammenhang. Im weiteren Verlauf überwiegt bei der Kastencharge und bei der MANET-II-Legierung die Festigkeitszunahme. Dasselbe gilt für den F82H- und MANET-I-Stahl. Im unteren Bereich der Verfestigung zeigen beide Legierungen dieselbe Abhängigkeit zwischen Versprödung und Verfestigung. Im weiteren Verlauf überwiegt bei der MANET-I-Legierung die Versprödung. Beim OPTIFER-II-Stahl zeigt sich anfänglich ein hohes Versprödungsniveau. Die Steigung der Versprödungs-Verfestigungs-Kurve ist jedoch mit der des F82H-Stahls vergleichbar. Die ORNL-Legierung beginnt ebenso auf einem hohen Versprödungsniveau. Bei diesem Stahl zeigt sich aber im weiteren Verlauf nur noch Verfestigung bei gleichzeitigem Versprödungsrückgang.



Abbildung 18: DBTT-Verschiebung in Abhängigkeit von der Verfestigung

Insgesamt betrachtet wirkt sich die Neutonenbestrahlung bei den Cr-NiMoVNb-Stählen am stärksten aus. Sie zeigen die höchsten Versprödungs- und Verfestigungswerte. Bei den Cr-W- bzw. Cr-Ge-Legierungen ist die bestrahlungsinduzierte Verfestigung ungefähr gleich. Die einzelnen Legierungen unterscheiden sich jedoch deutlich in ihrem Versprödungsverhalten. Dabei zeigt der ORNL-Stahl über einem weiten Bereich die niedrigsten Versprödungswerte bei gleichzeitiger Verfestigung.

Die Abbildung 19 zeigt die bestrahlungsinduzierte Zunahme der LTUS in Abhängigkeit von der Verfestigung. Gegenüber der Abbildung 18 ist hier zu erkennen, daß bei allen Legierungen, außer beim OPTIFER-Ia- und F82H-Stahl, eine Sättigung in der Versprödung eintritt. Bei der ORNL- und OPTIFER-II-Legierung ist das schon bei 50 MPa, bei der MANET-II-Legierung bei 130 MPa und beim MANET-I-Stahl und bei der Kastencharge erst bei ca. 220 MPa der Fall.

Ein weiterer Unterschied zur Abbildung 18 besteht darin, daß alle Stähle bis zum Einsetzten der Versprödungssättigung mit Ausnahme der F82H-Legierung dieselbe Steigung im  $\Delta$ LTUS- $\Delta\sigma$ -Verlauf zeigen.



Abbildung 19: LTUS-Verschiebung in Abhängigkeit von der Verfestigung

# **6 DISKUSSION**

### 6.1 RELEVANZ DER UNTERSUCHUNGSERGEBNISSE

Für die Bewertung der Einsatztauglichkeit der untersuchten Legierungen sind die im Kapitel 4 dargestellten Absolutkennwerte ausschlaggebend. Diese hängen jedoch nicht nur von der Legierungszusammensetzung sondern auch von der jeweils angewandten Wärmebehandlung ab. Aus früheren Untersuchungen [25] ist wiederum bekannt, daß verschiedene Anlaßwärmebehandlungen zumindest beim MANET-I-Stahl keine Auswirkung auf den Bestrahlungseinfluß haben. Dieses Ergebnis kann mit ziemlicher Sicherheit auch auf andere ferritisch-martensitische Legierungen übertragen werden. Bisher wurde aber noch nicht untersucht ob und wie sich der Einfluß der Neutronenbestrahlung in Abhängigkeit unterschiedlicher Austenitisierungswärmebehandlungen ändert. Da sich die Austenitisierungstemperatur und -dauer direkt auf das Gefüge (v.a. Korngröße) der Werkstoffe auswirkt, ist anzunehmen, daß hierbei ein gewisser Zusammenhang mit dem Bestrahlungseinfluß auf die mechanischen Eigenschaften besteht.

Umfangreiche Untersuchungen [26, 27, 28] an verschiedenen martensitischen Chromstählen (MANET-II, OPTIFER-IV, F82H mod.) haben gezeigt, daß durch eine bestimmte Kombination von Austenitierungs- und Anlaßwärmebehandlung jeweils ein optimaler Zustand mit niedriger Versprödungstemperatur und hohen Festigkeitswerten erreicht werden kann. In diesem optimierten, relativ genau definierten Materialzustand könnten die mechanischen Eigenschaften von unterschiedlich legierten Stählen vor und nach Bestrahlung aussagekräftig miteinander verglichen werden.

Da bei keiner der im Rahmen des MANITU-Programms untersuchten Legierungen eine optimierte Wärmebehandlung durchgeführt wurde, können weder aus den absoluten noch aus den bestrahlungsinduzierten Materialkennwerten sichere Rückschlüsse auf den Einfluß der unterschiedlichen Legierungselemente gezogen werden. Die nachfolgende Bewertung der mechanischen Eigenschaften der einzelnen Legierungen ist deshalb nur in Zusammenhang mit den in der Tabelle 3 angegebenen Werkstoffzuständen gültig. Gegen den Einsatz martensitischer Stähle in zukünftigen Fusionsanlagen spricht vor allem die Materialversprödung bei niedrigen Temperaturen. Dabei ist zu befürchten, daß die Versprödungstemperatur von Strukturelementen durch

hochenergetische Neutronenbestrahlung auf Werte ansteigt, die oberhalb der Betriebstemperatur liegen. Deshalb wird bei der Materialbewertung nur der unterste Bestrahlungstemperaturbereich von 250-300°C betrachtet. Bei der Ermittlung charakteristischer Versprödungstemperaturen aus dem Kerbschlagbiegeversuch ist jedoch zu beachten, daß die Versprödungstemperaturen nur für dynamische Belastungen, so wie sie in der verwendeten Prüfanlage auftreten, gültig sind. Reale Bauteile können entweder durch eine andere Geometrie oder durch andere Belastungsfälle höhere oder auch niedrigere Versprödungstemperaturen aufweisen.

Ein weiterer Punkt, den man sich bei der Bewertung der Ergebnisse vor Augen halten muß, betrifft die Bestrahlungsdosis und das Neutronenspektrum. Zum einen werden Strukturkomponenten zukünftiger Fusionsanlagen Bestrahlungsdosen erreichen, die weit über den im MANITU-Programm erreichten 0,8 bzw. 2,4 dpa liegen. Andererseits tritt bei der Kernfusion ein hochenergetisches Linienspektrum auf, während die spektrale Neutronenverteilung im HFR sehr breit gefächert ist. Da sich sowohl die Bestrahlungsdosis als auch das Neutronenspektrum bei jeder Legierung unterschiedlich auswirken könnte, darf aus den hier vorgestellten Versuchsergebnissen nicht automatisch auf fusionsrelevante Betriebsbedingungen geschlossen werden.

### 6.2 BEWERTUNG DER EINZELNEN LEGIERUNGEN

In der Abbildung 20 sind die Schlagenergiewerte in der Hochlage der einzelnen Legierungen von links nach rechts in aufsteigender Reihenfolge dargestellt. Ausschlaggebend für die Bewertung sind die niedrigsten USE-Werte im Bestrahlungstemperaturbereich von 250-300°C (graue Balken). Zum Vergleich und zur Beurteilung des Bestrahlungseinflusses sind die Werte der unbestrahlten Werkstoffe mit schwarzen Balken eingezeichnet.

Die Energie in der Hochlage ist ein Maß für die maximal mögliche Kerbschlagzähigkeit eines Werkstoffs. Die USE-Werte sind jedoch für die Auslegung von Bauteilen ungeeignet, da aus ihnen keine kritischen Kenngrößen für praxisrelevante Belastungsfälle abgeleitet werden können.



Trotzdem kann man die Legierungen anhand der USE (s. Abbildung 20) deutlich in zwei Gruppen mit unterschiedlichem Bestrahlungsverhalten aufteilen. Bei den Cr-NiMoVNb-Stählen ist der bestrahlungsinduzierte Zähigkeitsverlust mindestens doppelt so hoch wie bei den Cr-WVTa- bzw. Cr-GeVTa-Legierungen. Dieses Verhalten ist unabhängig von der Höhe des USE-Werts der unbestrahlten Werkstoffe. Die K-Charge, die man bezüglich der Kerbschlageigenschaften als optimierte 10-11 % Cr-NiMoVNb-Legierung bezeichnen kann, liegt im unbestrahlten Ausgangszustand auf demselben Zähigkeitsniveau wie die Stähle OPTIFER-II und ORNL. Nach Bestrahlung sind die niedrig aktivierbaren Legierungen jedoch eindeutig besser. Besonders zäh sind hierbei der F82H- und OPTIFER-Ia-Stahl.

Wertet man die Versprödung nach dem klassischen DBTT-Verfahren aus so ergibt sich für die Werkstoffe ein vergleichbares Bild (s. Abbildung 21). Im unbestrahlten Zustand ist die Sprödbruchübergangstemperatur der Kastencharge genauso niedrig wie die der niedrig aktivierbaren Stähle. Die bestrahlungsinduzierte Versprödung wirkt sich bei den Cr-NiMoVNb-Legierungen jedoch stärker aus. Die beiden Legierungen mit einem Wolframgehalt von 2% (ORNL und


F82H) zeigen den geringsten Bestrahlungseinfluß sowie die niedrigsten DBTT-Werte.

Abbildung 21: Bewertung der Legierungen nach der Sprödbruchübergangstemperatur

Durch die designorientierte Charakterisierung der Versprödung nach der niedrigsten Temperatur in der Hochlage verschieben sich die Werte der unbestrahlten Werkstoffe gegenüber dem DBTT-Kriterium erheblich (s. Abbildung 22).



Deshalb ergibt sich bei der Bewertung eine andere Reihenfolge. Die Cr-Ge-Legierung OPTIFER-II verschlechtert sich gegenüber der K-Charge. An den extrem tiefen Versprödungstemperaturen der beiden niedrig aktivierbaren Stählen mit 2 % Wolfram (ORNL und F82H) ändert sich jedoch nichts. Im unbestrahlten Zustand zeigen die Legierungen OPTIFER-la und F82H die besten LTUS-Werte.

Bei der Bewertung der Festigkeit der unbestrahlten Werkstoffe liegt die K-Charge mit dem ORNL- und F82H-Stahl auf gleicher Höhe (s. Abbildung 23). Die OPTIFER-Legierungen zeigen die niedrigsten und die MANET-Stähle die höchsten Werte der dynamischen Streckgrenze.



Abbildung 23: Bewertung der Legierungen nach der dynamischen Streckgrenze

Die bestrahlungsinduzierte Verfestigung liegt bei den Cr-NiMoVNb-Stählen um den Faktor zwei höher als bei den Cr-W- bzw. Cr-Ge-Legierungen. Dadurch ergibt sich zwischen den beiden Legierungstypen nach Bestrahlung ein Unterschied von über 150 MPa.

Betrachtet man die mechanischen Eigenschaften der unbestrahlten Werkstoffe, so sind die K-Charge, OPTIFER-la-, ORNL- und F82H-Legierung gleichwertig. Nach Neutronenbestrahlung bis zu einer Dosis von 0,8 dpa bei Temperaturen zwischen 250 und 300°C zeigt der ORNL-Stahl bei allen untersuchten Materialeigenschaften den geringsten Bestrahlungseinfluß. Gleichzeitig liegt die Ver-

sprödungstemperatur bei diesem Stahl nach der Bestrahlung am tiefsten und die Festigkeit auf einem relativ hohen Niveau. Deshalb muß man unter den in Kapitel 6.1 gesetzten Voraussetzungen die ORNL-Legierung, dicht gefolgt vom F82H-Stahl, für Fusionsanwendungen am geeignetsten bezeichnen.

## 7 ZUSAMMENFASSUNG

Im Rahmen der ersten Phase des Bestrahlungsprogramms MANITU wurden drei 10-11 % Cr-NiMoVNb-Stähle und vier niedrig aktivierbare 7-9 % Cr-WVTabzw. Cr-GeVTa-Legierungen untersucht. Aus instrumentierten Kerbschlagbiegeversuchen mit miniaturisierten Proben wurden nach einer Bestrahlungsdosis von 0,8 dpa die mechanischen Eigenschaften (Schlagarbeit in der Hochlage, Sprödbruchübergangstemperatur, niedrigste Temperatur in der Hochlage und dynamische Streckgrenze) in Abhängigkeit von Bestrahlungstemperaturen zwischen 250 und 450°C ermittelt.

Aus der Untersuchung der unbestrahlten Proben ergab sich, daß die niedrig aktivierbaren Legierungen den kommerziellen Cr-NiMoVNb-Stählen bezüglich der Kerbschlagzähigkeit und designrelevanten Versprödungstemperatur überlegen sind. Dies gilt in besonderem Maße dann, wenn man beachtet, daß die untersuchte Kastencharge aufgrund ihrer chemischen Zusammensetzung und Wärmebehandlung vermutlich die maximal möglichen Kerbschlageigenschaften unter den 10-11 % Cr-NiMoVNb-Stähle aufweist und wenn man berücksichtigt, daß keine der untersuchten niedrig aktivierbaren Legierungen einer optimierten Wärmebehandlung unterzogen wurde.

Beim Einsatz von martensitischen Stählen in zukünftigen Kernfusionsanlagen ist das Versprödungsverhalten bei niedrigen Bestrahlungstemperaturen das ausschlaggebende Kriterium für die Materialauswahl. Nach Neutronenbestrahlung zeigen von den sieben untersuchten Legierungen nur der ORNL- und F82H-Stahl ein überragendes Versprödungsverhalten im Temperaturbereich zwischen 250 und 300°C. Dies gilt für beide Versprödungstemperaturen (DBTT und LTUS) sowie für den Bestrahlungseinfluß auf diese Größen. Die beiden OPTIFER-Legierungen und die Kastencharge weisen nach Bestrahlung deutlich schlechtere Versprödungswerte auf. Die höchste bestrahlungsinduzierte Versprödung tritt bei den beiden MANET-Stählen auf.

Bei den niedrig aktivierbaren Legierungen ist der Bestrahlungseinfluß auf die mechanischen Eigenschaften geringer als bei den Cr-NiMoVNb-Stählen ausgeprägt. Dies gilt vor allem für die Energie in der Hochlage und die dynamische Streckgrenze.

Die höchste Festigkeit wird durch Molybdän erreicht. Etwas niedrigere Festigkeitswerte zeigen die Legierungen mit Wolfram, wobei ein höherer Wolframgehalt auch eine höhere Festigkeit bringt. Die geringste Festigkeit erreicht die OPTIFER-II-Legierung mit Germanium.

Die Untersuchung der martensitischen Stähle im Rahmen der ersten Phase des Bestrahlungsprogramms MANITU hat gezeigt, daß niedrig aktivierbare Cr-Wund Cr-Ge-Legierungen nach Neutronenbestrahlung nicht generell ein erheblich besseres Versprödungsverhalten aufweisen als kommerzielle, modifizierte 10-11 % Cr-NiMoVNb-Legierungen. Allerdings unterscheidet sich hierbei der ORNL-Stahl ganz besonders von allen anderen untersuchten Legierungen. Bei diesem Werkstoff tritt bei Bestrahlungstemperaturen unterhalb von 350°C nur noch bestrahlungsinduzierte Verfestigung, jedoch keine Versprödung ein. Da der ORNL-Stahl zudem die niedrigsten Versprödungstemperaturen bei relativ hoher Festigkeit aufweist, ist diese Legierung (dicht gefolgt vom F82H-Stahl) unter den im Kapitel 6.1 erläuterten Vorbehalten für Fusionsanwendungen prädestiniert.

Es muß allerdings noch überprüft werden, inwieweit sich die mechanischen Eigenschaften der einzelnen Legierung in Abhängigkeit von der Bestrahlungsdosis ändern. Darüber kann aber erst der Abschluß des gesamten MANITU-Programms Aufschluß geben.

# 8 DANKSAGUNG

Die Autoren danken den Herren Kunisch und Drasl für die tatkräftige Unterstützung bei den Prüfungen und Wartungsarbeiten in den Heißen Zellen.

Die vorliegende Arbeit wurde im Rahmen des Projekts Kernfusion des Forschungszentrums Karlsruhe durchgeführt und ist ein von den Europäischen Gemeinschaften geförderter Beitrag im Rahmen des Fusionstechnologieprogramms.

#### 9 **LITERATURVERZEICHNIS**

- M. Rieth, B. Dafferner, H. Ries, O. Romer, Bestrahlungsprogramm [1] MANITU: Ergebnisse der Voruntersuchungen und der Kerbschlagbiegeversuche mit den unbestrahlten Werkstoffen, Forschungszentrum Karlsruhe, FZKA 5550, April 1995.
- W. Böhme, W. Klemm, Ergebnisse des Ringtests "Kerbform" der DVM-[2] Arbeitsgruppe "Instrumentierter Kerbschlagbiegeversuch", Fraunhofer-Institut für Werkstoffmechanik IWM, IWM-Bericht W 7/93, November 1993.
- C. Wassilew, M. Rieth, B. Dafferner, Verfahren zur Störgrößenkompensa-[3] tion bei instrumentierten Kerbschlagbiegeversuchen, Kernforschungszentrum Karlsruhe, KfK-Bericht 4796, Oktober 1990.
- [4] J.M. Alexander, T.J. Komoly, On the yielding of a rigid/plastic bar with an IZOD notch, J. Mech. Phys. Solids, Vol. 10, (1962) 265-275.
- W.L. Server, Impact Three-Point Bend Testing for Notched and Precrak-[5] ked Specimens, Journal of Testing and Evaluation, JTEVA, Vol. 6, No.1, Jan. 1978, pp. 29-34.
- L.O. Schäfer, H. Kempe, W. Meyer, Zug- und Kerbschlageigenschaften [6] des martensitischen Stahles MANET-II und deren Optimierung, Institut für Materialforschung, Kernforschungszentrum Karlsruhe, KfK-Bericht 5245, Oktober 1993.
- M. Rieth, B. Dafferner, C. Wassilew, Der Einfluß von Wärmebehandlung [7] und Neutronenbestrahlung auf die Kerbschlageigenschaften des martensitischen 10,6% Cr-Stahls MANET-I, Institut für Materialforschung, Kernforschungszentrum Karlsruhe, KfK-Bericht 5243, September 1993.
- K.K. Bae, K. Ehrlich and A. Möslang, Tensile behaviour and microstructu-[8] re of the helium and hydrogen implanted 12% Cr steel MANET, J. Nucl. Mater. 191-194 (1992) 905-909.
- [9] P. Fraipont, G.P. Tartaglia, MANITU Project D 271: Design and Safety Report, Joint Research Centre, Institute for Advanced Materials/Petten Site, P/F1/94/12, July 1994.
- [10] M. Schirra, S. Heger, H. Meinzer, B. Ritter, W. Schweiger, Untersuchungen zum Vergütungsverhalten, Umwandlungsverhalten und der mechanischen Eigenschaften am martensitischen Stahl 1.4914 (NET-Charge MANET-I), Institut für Materialforschung, Kernforschungszentrum Karlsruhe, KfK-Bericht 4561, Juni 1989.
- [11] M. Schirra, P. Graf, S. Heger, H. Meinzer, W. Schweiger, H. Zimmermann, MANET-II. Untersuchungsergebnisse zum Umwandlungs- und Vergütungsverhalten und Prüfung mechanischer Eigenschaften, Institut für Materialforschung, Kernforschungszentrum Karlsruhe, KfK-Bericht 5177, Mai 1993.
- [12] L.O. Schäfer, H. Kempe, W. Meyer, Zug- und Kerbschlageigenschaften des martensitischen Stahles MANET-II und deren Optimierung, Institut für Materialforschung, Kernforschungszentrum Karlsruhe, KfK-Bericht 5245, Oktober 1993.

- [13] E. Materna-Morris, Mikrostrukturelle Untersuchungen und Fraktographie an einem Nb-haltigen martensitischen 12%-Chromstahl (DIN 1.4914) mit abgesenktem Stickstoffgehalt, Institut für Materialforschung, Kernforschungszentrum Karlsruhe, KfK-Bericht 4288, Juli 1989.
- [14] M. Rieth, B. Dafferner, C. Wassilew, Der Einfluß der chemischen Zusammensetzung verschiedener Hüllkastenwerkstoffe vom Typ 1.4914 auf die Kerbschlageigenschaften vor und nach Neutronenbestrahlung, Jahrestagung Kerntechnik, Deutsches Atomforum e.V., Stuttgart, Mai 1994, 347-350.
- [15] M. Schirra, Charakterisierende thermische und mechanische Untersuchungen an einem Nb-legierten martensitischen 12% Cr-Stahl (W.Nr. 1.4914) mit abgesenktem Stickstoffgehalt, Institut für Materialforschung, Kernforschungszentrum Karlsruhe, KfK-Bericht 3640, August 1984.
- [16] M. Schirra, S. Heger, Der Einfluß des δ-Ferrit-Gehaltes auf die Vergütungseigenschaften und das Zugfestigkeits- und Zeitstandverhalten eines Cr-Ni-Mo-V-Nb-Stahles mit 9-14 % Chrom, Institut für Materialforschung, Kernforschungszentrum Karlsruhe, KfK-Bericht 5080, Februar 1994.
- [17] M. Rieth, B. Dafferner, H. Ries, O. Romer, Bestrahlungsprogramm SAMARCANDE, Ergebnisse der Kerbschlagbiegeversuche, Institut für Materialforschung, Kernforschungszentrum Karlsruhe, KfK-Bericht 5264, August 1994.
- [18] R.L. Klueh, Irradiation effects on mechanical properties: U.S. Studies, Proceedings of the Workshop on Ferritic/Martensitic Steels, JAERI Tokyo, Japan, 26-28 October, 1992, 311-339.
- [19] R.L. Klueh, K. Ehrlich and F. Abe, Ferritic / martensitic steels: promises and problems, J. Nucl. Mater. 191-194 (1992) 116-124.
- [20] R.L. Klueh and D.J. Alexander, Charpy impact behavior of irradiated reduced-activation steels, J. Nucl. Mater. 212-215 (1994) 736-740.
- [21] Proceedings of the Second Fusion Reactor Materials Forum, held at Sendai and Zao, Sept. 28-29, 1990, 441.
- [22] A. Kohyama, Y. Kohno, K. Asakura, H. Kayano, R&D of low activation ferritic steels for fusion in Japanese universities, J. Nucl. Mater. 212-215 (1994) 684-689.
- [23] A. Kohyama, Y. Kohno, K. Asakura, M. Yoshino, C. Namba, C.R. Eiholzer, Irradiation creep of low-activation ferritic steels in FFTF / MOTA, J. Nucl. Mater. 212-215 (1994) 715-754.
- [24] J. Ahlf, A. Zurita, High Flux Reactor (HFR) Petten Characteristics of the Installation and the Irradiation Facilities, Nuclear Science and Technology, EUR 15151 EN, 1993.
- [25] M. Rieth, B. Dafferner, H.D. Röhrig, C. Wassilew, The charpy impact properties of martensitic 10.6% Cr steel (MANET-I) before and after neutron exposure, Fusion Engineering and Design 29 (1995) 365-370.
- [26] L.O. Schäfer, H. Kempe, W. Meyer, Zug- und Kerbschlageigenschaften des martensitischen Stahles MANET-II und deren Optimierung, Institut für Materialforschung, Kernforschungszentrum Karlsruhe, KfK-Bericht 5245, Oktober 1993.

- [27] L. Schäfer, H. Kempe, Metallkundliche und mechanische Untersuchungen an dem schwach aktivierbaren martensitischen Chromstahl OPTIFER-IV, Institut für Materialforschung, Kernforschungszentrum Karlsruhe, KfK-Bericht 5353, August 1994.
- [28] L. Schäfer, H. Kempe, W. Meyer, Interner Bericht, Institut für Materialforschung, Kernforschungszentrum Karlsruhe, Juni 1995.

# **10** ANHANG

# **10.1 VERSUCHSERGEBNISSE UND PROBENZUORDNUNG** 10.1.1 MANET-I

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| A33        | 50                      | 0,33                 | 907,6                       |
| A35        | 100                     | 0,8                  | 925,9                       |
| A31        | 150                     | 2,03                 | 968,6                       |
| A32        | 200                     | 3,34                 | 919,7                       |
| A34        | 250                     | 3,65                 | 871,1                       |





| Bestrahlungsparameter: | 300°C / 0,8 dpa |
|------------------------|-----------------|
|------------------------|-----------------|

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| A41        | 50                      | 1,17                 | 902,8                       |
| A38        | 100                     | 1,92                 | 895,4                       |
| A39        | 150                     | 2,89                 | 865                         |
| A37        | 200                     | 3,57                 | 816,2                       |
| A40        | 300                     | 3,96                 | 749,2                       |





| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| A46        | -20                     | 0,47                 | 834,5                       |
| A44        | 26                      | 1,5                  | 901,5                       |
| A43        | 100                     | 3,09                 | 816,2                       |
| A45        | 200                     | 4,2                  | 773,6                       |
| A47        | 350                     | 4,41                 | 676,1                       |





| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| A52        | -30                     | 2,01                 | 834,5                       |
| A51        | 0                       | 3,26                 | 828,4                       |
| A49        | 30                      | 4,9                  |                             |
| A50        | 100                     | 5,66                 | 706,6                       |
| A53        | 300                     | 5,69                 | 590,8                       |





| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| A55        | 0                       | 4,81                 | 797,9                       |
| A56        | -30                     | 2,59                 |                             |
| A57        | 26                      | 5,76                 | 737                         |
| A58        | 80                      | 6,07                 | 700,6                       |
| A59        | -50                     | 1,81                 | 865                         |





#### 10.1.2 MANET-II

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| B29        | 50                      | 0,52                 | 944,2                       |
| B26        | 100                     | 2,44                 | 901,5                       |
| B27        | 150                     | 4,88                 | 865                         |
| B28        | 250                     | 5,11                 | 791,9                       |





| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| B32        | 0                       | 0,43                 | 895,4                       |
| B31        | 50                      | 2,49                 | 822,4                       |
| B33        | 100                     | 3,8                  | 761,5                       |
| B34        | 150                     | 5,2                  | 718,7                       |
| B35        | 300                     | 5,52                 | 676,1                       |





| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| B36        | 100                     | 4,92                 | 724,9                       |
| B37        | 26                      | 2,77                 | 834,5                       |
| B38        | -10                     | 1,34                 | 865                         |
| B39        | 350                     | 5,48                 | 603,1                       |
| B40        | 150                     | 5,38                 | 694,4                       |





| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| B43        | -50                     | 0,26                 |                             |
| B42        | -20                     | 3,8                  | 840,5                       |
| B41        | 28                      | 6,53                 | 688,3                       |
| B45        | 70                      | 7,28                 | 706,6                       |
| B44        | 300                     | 6,59                 | 578,7                       |





| Bestrahlungsparameter: | 450°C / 0,8 | dpa |
|------------------------|-------------|-----|
|------------------------|-------------|-----|

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| B47        | -50                     | 2,48                 | 852,8                       |
| B46        | -20                     | 4,21                 |                             |
| B48        | 26                      | 7,39                 | 706,6                       |





#### 지수는 일을 다니 한 것이라 잘 몰랐다.

### 10.1.3 K-Charge

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| C29        | 0                       | 1,07                 | 968,6                       |
| C26        | 050                     | 3,29                 | 946,8                       |
| C27        | 100                     | 5,69                 | 840,5                       |
| C30        | 150                     | 6,4                  | 828,4                       |
| C28        | 250                     | 6,63                 | 735,6                       |





| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| C32        | -30                     | 1,56                 | 889,4                       |
| C34        | 0                       | 3,31                 | 828,4                       |
| C31        | 50                      | 6,3                  | 791,9                       |
| C35        | 100                     | 7,32                 | 700,6                       |
| C33        | 300                     | 7,14                 | 615,2                       |



| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| C38        | -50                     | 1,26                 | 913,7                       |
| C37        | -10                     | 1,87                 | 834,5                       |
| C39        | 0                       | 4,25                 | 791,9                       |
| C36        | 26                      | 7                    | 743,2                       |
| C40        | 350                     | 7,52                 | 536                         |



| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| C43        | -90                     | 2,21                 | 907,6                       |
| C42        | -60                     | 5,02                 | 828,4                       |
| C41        | -20                     | 8,13                 | 755,3                       |
| C45        | 26                      | 8,64                 | 657,8                       |
| C44        | 300                     | 8,98                 | 493,4                       |



| Bestrahlungsparameter: | 450°C / 0,8 dpa |
|------------------------|-----------------|
|------------------------|-----------------|

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| C48        | -90                     | 0,33                 |                             |
| C49        | -90                     | 2,97                 | 858,8                       |
| C47        | -60                     | 5,19                 | 816,2                       |
| C46        | -20                     | 8,73                 | 712,7                       |



#### 10.1.4 OPTIFER-Ia

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| D29        | -10                     | 0,31                 | 749,2                       |
| D27        | 26                      | 5,6                  | 743,2                       |
| D26        | 50                      | 7,15                 | 700,6                       |
| D30        | 100                     | 9,4                  | 645,7                       |
| D28        | 250                     | 8,37                 | 554,3                       |





| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| D32        | -50                     | 0,18                 |                             |
| D33        | -20                     | 0,56                 | 724,9                       |
| D34        | 10                      | 4,39                 | 718,7                       |
| D31        | 50                      | 8,35                 | 645,7                       |
| D35        | 300                     | 8,06                 | 481,3                       |



| Bestrahlungsparameter: | 350°C | / 0,8 | dpa |
|------------------------|-------|-------|-----|
|------------------------|-------|-------|-----|

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| D39        | -50                     | 4,67                 |                             |
| D38        | -20                     | 8,31                 | 743,2                       |
| D37        | 0                       | 8,96                 | 694,4                       |
| D36        | 26                      | 9,22                 | 645,7                       |
| D40        | 350                     | 8,38                 | 426,4                       |



| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| D41        | -50                     | 0,6                  | 755,3                       |
| D42        | -20                     | 10,47                | 688,3                       |
| D43        | -40                     | 7,07                 | 718,7                       |
| D44        | 150                     | 9,58                 | 438,6                       |
| D45        | 300                     | 9,77                 | 444,7                       |





| Bestrahlungsparameter: | 450°C / 0,8 dpa |
|------------------------|-----------------|
|------------------------|-----------------|

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| D48        | -70                     | 0,33                 | 816,2                       |
| D49        | -60                     | 8,02                 | 797,9                       |
| D46        | -50                     | 8,04                 | 731                         |
| D47        | -20                     | 9,76                 | 657,8                       |
| D50        | 350                     | 10,71                | 396                         |



#### 10.1.5 OPTIFER-II

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| E29        | -10                     | 1,89                 | 737                         |
| E27        | 26                      | 4,12                 |                             |
| E30        | 70                      | 6,32                 | 621,4                       |
| E26        | 100                     | 8,11                 | 578,7                       |
| E28        | 250                     | 7,91                 | 499,5                       |



| Bestrahlungsparameter: | 300°C / | 0,8 dpa |
|------------------------|---------|---------|
|------------------------|---------|---------|

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| E32        | 0                       | 1,92                 | 688,3                       |
| E31        | 50                      | 4,92                 | 633,5                       |
| E33        | 100                     | 7,02                 | 560,5                       |
| E34        | 150                     | 7,88                 | 511,6                       |
| E35        | 300                     | 7,95                 | 487,3                       |



| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| E37        | -10                     | 2,41                 | 670                         |
| E36        | 50                      | 6,22                 | 572,6                       |
| E38        | 100                     | 8,24                 | 517,8                       |
| E39        | 350                     | 8,33                 | 426,4                       |



| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| E43        | -60                     | 0,23                 |                             |
| E41        | -20                     | 3,65                 | 657,8                       |
| E42        | 26                      | 6,68                 | 566,5                       |
| E44        | 100                     | 7,65                 | 450,7                       |
| E45        | 300                     | 9,61                 | 463                         |



| Bestrahlungsparameter: | 450°C / 0,8 dpa |
|------------------------|-----------------|
|------------------------|-----------------|

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| E48        | -50                     | 0,81                 | 682,3                       |
| E47        | -20                     | 3,87                 | 633,5                       |
| E46        | 26                      | 6,62                 | 529,9                       |
| E49        | 70                      | 8,88                 | 469                         |
| E50        | 350                     | 10,12                | 371,5                       |



#### 10.1.6 F82H

| AND AND A CONTRACTOR OF A CONTRACT OF A CONT |                         |                      |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|-----------------------------|
| Proben-Nr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
| F26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -20                     | 0,56                 | 865                         |
| F28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -10                     | 0,53                 | 858,8                       |
| F27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                       | 9,88                 | 840,5                       |
| F30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                     | 9,87                 | 687,8                       |
| F29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250                     | 8,34                 | 615,2                       |

![](_page_69_Figure_4.jpeg)

![](_page_69_Figure_5.jpeg)

| Bestrahlungsparameter: | 300°C / 0,8 dpa |
|------------------------|-----------------|
|------------------------|-----------------|

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| F32        | -50                     | 0,24                 | 822,4                       |
| F34        | -35                     | 0,35                 |                             |
| F33        | -20                     | 10,44                | 816,2                       |
| F31        | 50                      | 9,92                 | 688,3                       |
| F35        | 300                     | 8,79                 | 523,9                       |

![](_page_70_Figure_3.jpeg)

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| F39        | -60                     | 1,96                 | 883,3                       |
| F38        | -50                     | 9,61                 | 822,4                       |
| F37        | -45                     | 7,32                 | 822,4                       |
| F36        | -30                     | 10,37                | 810,2                       |
| F40        | 350                     | 9,02                 | 481,3                       |

![](_page_71_Figure_3.jpeg)
Bestrahlungsparameter: 400°C / 0,8 dpa

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| F41        | -50                     | 0,12                 |                             |
| F43        | -45                     | 0,53                 |                             |
| F42        | -35                     | 10,2                 | 822,4                       |
| F44        | 150                     | 9,94                 | 584,8                       |
| F45        | 300                     | 10,37                | 548,2                       |



| Bestrahlungsparameter: 4 | 450°C | / 0,8 | dpa |
|--------------------------|-------|-------|-----|
|--------------------------|-------|-------|-----|

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| F48        | -70                     | 5,23                 | 889,4                       |
| F47        | -60                     | 9,5                  | 846,7                       |
| F46        | -50                     | 8,55                 | 828,4                       |
| F50        | -20                     | 10,2                 | 737                         |
| F49        | 350                     | 10,05                | 463                         |



### 10.1.7 ORNL 3791

250°C / 0,8 dpa Bestrahlungsparameter:

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| 129        | -80                     | 0,17                 |                             |
| 128        | · -60                   | 4,18                 | 998,9                       |
| 127        | -40                     | 5,98                 | 974,6                       |
| 126        | -20                     | 8,29                 | 852,8                       |
| 130        | 250                     | 7,42                 | 627,3                       |





ANG

| Bestrahlungsparameter: | 300°C / | / 0,8 | dpa |
|------------------------|---------|-------|-----|
|------------------------|---------|-------|-----|

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| 135        | -70                     | 0,11                 |                             |
| 132        | -50                     | 3,54                 | 998,9                       |
| 134        | -25                     | 7,73                 | 858,8                       |
| 133        | 0                       | 8,81                 | 822,4                       |
| 131        | 50                      | 8,08                 | 724,9                       |



HANG

Bestrahlungsparameter: 350°C / 0,8 dpa

| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| 139        | -80                     | 0,16                 |                             |
| 137        | -50                     | 6,82                 | 871,1                       |
| I36        | -30                     | 8,53                 | 785,8                       |
| I38        | 150                     | 8,3                  | 548,2                       |
| 140        | 350                     | 7,63                 | 529,9                       |



| Bestrahlungsparameter: | 400°C / 0,8 dpa |
|------------------------|-----------------|
|------------------------|-----------------|

| Proben-Nr.  | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|-------------|-------------------------|----------------------|-----------------------------|
| <b>I</b> 41 | -50                     | 0,25                 |                             |
| 142         | -30                     | 5,79                 | 779,6                       |
| 143         | 26                      | 8,06                 | 645,7                       |
| 144         | 150                     | 8,37                 | 590,8                       |
| 145         | 300                     | 8,44                 | 523,9                       |



| Proben-Nr. | Prüftemperatur<br>in °C | Schlagarbeit<br>in J | dyn. Streckgrenze<br>in Mpa |
|------------|-------------------------|----------------------|-----------------------------|
| 146        | -50                     | 0,22                 |                             |
| 147        | -30                     | 1,1                  | 718,7                       |
| 150        | -10                     | 8,16                 | 700,6                       |
| 148        | 26                      | 8,29                 | 633,5                       |
| 149        | 350                     | 7,48                 | 511,6                       |

Bestrahlungsparameter: 450°C / 0,8 dpa



## **10.2** AUSWERTEERGEBNISSE

#### 10.2.1 MANET-I





| Bestrahlungstem-<br>peratur in °C | USE<br>in J | DBTT<br>in °C | LTUS<br>in °C | $\sigma_{_{yd,\ 100^\circC}}$ in Mpa |
|-----------------------------------|-------------|---------------|---------------|--------------------------------------|
| 250                               | 3,7         | 145           | 225           | 940                                  |
| 300                               | 4           | 100           | 225           | 890                                  |
| 350                               | 4,3         | 50            | 180           | 840                                  |
| 400                               | 5,6         | -10           | 70            | 710                                  |
| 450                               | 6,1         | -25           | 40            | 670                                  |









| Bestrahlungstem-<br>peratur in °C | ∆USE<br>in J | ∆DBTT<br>in °C | ∆LTUS<br>in °C | $\Delta \sigma_{yd,\ 100^{\circC}}$ in Mpa |
|-----------------------------------|--------------|----------------|----------------|--------------------------------------------|
| 250                               | -2,9         | 175            | 190            | 270                                        |
| 300                               | -2,6         | 130            | 190            | 220                                        |
| 350                               | -2,3         | 80             | 145            | 170                                        |
| 400                               | -1           | 20             | 35             | 40                                         |
| 450                               | -0,5         | 5              | 5              | 0                                          |









## 10.2.2 MANET-II





| Bestrahlungstem-<br>peratur in °C | USE<br>in J | DBTT<br>in °C | LTUS<br>in °C | σ <sub>yd, 100°C</sub> in Mpa |
|-----------------------------------|-------------|---------------|---------------|-------------------------------|
| 250                               | 5,1         | 100           | 165           | 900                           |
| 300                               | 5,5         | 70            | 165           | 760                           |
| 350                               | 5,5         | 25            | 150           | 730                           |
| 400                               | 7,2         | -20           | 70            | 660                           |
| 450                               | 7,3         | -30           | 25            | 630                           |







80

•

| Bestrahlungstem-<br>peratur in °C | ∆USE<br>in J | ∆DBTT<br>in °C | ∆LTUS<br>in °C | $\Delta \sigma_{ m yd,  100^{\circ}C}$ in Mpa |
|-----------------------------------|--------------|----------------|----------------|-----------------------------------------------|
| 250                               | -2,2         | 145            | 145            | 280                                           |
| 300                               | -1,8         | 115            | 145            | 140                                           |
| 350                               | -1,8         | 70             | 130            | 110                                           |
| 400                               | -0,1         | 25             | 50             | 40                                            |
| 450                               | 0            | 15             | 5              | 10                                            |







Bestrahlungstemperatur in °C

0 \_\_\_\_ 

Bds/0.8\_mr.CDR

# 10.2.3 K-Charge





| Bestrahlungstem-<br>peratur in °C | USE<br>in J | DBTT<br>in °C | LTUS<br>in °C | $\sigma_{_{yd,100^\circC}}$ in Mpa |
|-----------------------------------|-------------|---------------|---------------|------------------------------------|
| 250                               | 6,5         | 50            | 85            | 850                                |
| 300                               | 7,2         | 5             | 75            | 700                                |
| 350                               | 7,4         | -10           | 20            | 660                                |
| 400                               | 8,7         | -65           | -20           | 600                                |
| 450                               | 8,9         | -65           | -30           | 580                                |









| Bestrahlungstem-<br>peratur in °C | ∆USE<br>in J | ∆DBTT<br>in °C | ∆LTUS<br>in °C | $\Delta \sigma_{_{yd, \ 100^\circ C}}$ in Mpa |
|-----------------------------------|--------------|----------------|----------------|-----------------------------------------------|
| 250                               | -2,5         | 130            | 145            | 300                                           |
| 300                               | -1,8         | 85             | 135            | 150                                           |
| 350                               | -1,6         | 70             | 80             | 110                                           |
| 400                               | -0,3         | 15             | 40             | 50                                            |
| 450                               | -0,1         | 15             | 30             | 30                                            |









## 10.2.4 OPTIFER-Ia





| Bestrahlungstem-<br>peratur in °C | USE<br>in J | DBTT<br>in °C | LTUS<br>in °C | $\sigma_{_{yd,\ 100^\circ C}}$ in Mpa |
|-----------------------------------|-------------|---------------|---------------|---------------------------------------|
| 250                               | 9,4         | 25            | 85            | 620                                   |
| 300                               | 9,2         | 10            | 75            | 590                                   |
| 350                               | 9,2         | -50           | 20            | 560                                   |
| 400                               | 10          | -45           | -20           | 510                                   |
| 450                               | 9,7         | -60           | -30           | 500                                   |







| Bestrahlungstem-<br>peratur in °C | ∆USE<br>in J | ∆DBTT<br>in °C | ∆LTUS<br>in °C | Δ <del>Ο<sub>yd, 100°C</sub> in Mpa</del> |
|-----------------------------------|--------------|----------------|----------------|-------------------------------------------|
| 250                               | -0,6         | 105            | 145            | 150                                       |
| 300                               | -0,8         | 90             | 135            | 120                                       |
| 350                               | -0,8         | 30             | 80             | 90                                        |
| 400                               | 0            | 35             | 40             | 40                                        |
| 450                               | -0,3         | 20             | 30             | 30                                        |









# 10.2.5 OPTIFER-II





| Bestrahlungstem-<br>peratur in °C | USE<br>in J | DBTT<br>in °C | LTUS<br>in °C | $\sigma_{_{yd,\ 100^{\circC}}}$ in Mpa |
|-----------------------------------|-------------|---------------|---------------|----------------------------------------|
| 250                               | 8,1         | 25            | 100           | 580                                    |
| 300                               | 7,9         | 35            | 130           | 560                                    |
| 350                               | 8,3         | 20            | 100           | 520                                    |

-15

-10

9,2

ANHANG

det di







| Bestrahlungstem-<br>peratur in °C | ∆USE<br>in J | ∆DBTT<br>in °C | ∆LTUS<br>in °C | Δ <b>σ<sub>yd, 100°C</sub> in Mpa</b> |
|-----------------------------------|--------------|----------------|----------------|---------------------------------------|
| 250                               | -1,7         | 95             | 80             | 150                                   |
| 300                               | -1,9         | 105            | 110            | 130                                   |
| 350                               | -1,2         | 90             | 80             | 90                                    |
| 400                               | -1,8         | 55             | 80             | 30                                    |
| 450                               | -0,6         | 60             | 60             | 10                                    |









# 10.2.6 F82H





| Bestrahlungstem-<br>peratur in °C | USE<br>in J | DBTT<br>in °C | LTUS<br>in °C | $\sigma_{_{yd,\;100^\circ C}}$ in Mpa |
|-----------------------------------|-------------|---------------|---------------|---------------------------------------|
| 250                               | 10,1        | -5            | 0             | 690                                   |
| 300                               | 10,4        | -25           | -20           | 630                                   |
| 350                               | 10,5        | -50           | -30           | 590                                   |
| 400                               | 10,4        | -40           | -35           | 610                                   |
| 450                               | 10,2        | -60           | -40           | 560                                   |









| Bestrahlungstem-<br>peratur in °C | ∆USE<br>in J | ∆DBTT<br>in °C | ∆LTUS<br>in °C | Δ <b>σ<sub>yd, 100°C</sub> in Mpa</b> |
|-----------------------------------|--------------|----------------|----------------|---------------------------------------|
| 250                               | -0,6         | 65             | 60             | 150                                   |
| 300                               | -0,3         | 45             | 40             | 90                                    |
| 350                               | -0,2         | 20             | 30             | 50                                    |
| 400                               | -0,3         | 30             | 25             | 70                                    |
| 450                               | -0,5         | 10             | 20             | 20                                    |






ANHANG



## 10.2.7 ORNL 3791

Bestrahlungsparameter: 0,8 dpa





| Bestrahlungstem-<br>peratur in °C | USE<br>in J | DBTT<br>in °C | LTUS<br>in °C | $\sigma_{_{yd, \ 100^\circ C}}$ in Mpa |
|-----------------------------------|-------------|---------------|---------------|----------------------------------------|
| 250                               | 8,3         | -55           | -20           | 690                                    |
| 300                               | 8,4         | -45           | -10           | 670                                    |
| 350                               | 8,7         | -60           | -20           | 600                                    |
| 400                               | 8,4         | -40           | 30            | 590                                    |
| 450                               | 8,3         | -25           | -5            | 560                                    |







| Bestrahlungstem-<br>peratur in °C | ∆USE<br>in J | ∆DBTT<br>in °C | ∆LTUS<br>in °C | $\Delta \sigma_{_{yd, \ 100^{\circ}C}}$ in Mpa |
|-----------------------------------|--------------|----------------|----------------|------------------------------------------------|
| 250                               | -0,9         | 25             | 10             | 140                                            |
| 300                               | -0,8         | 35             | 20             | 120                                            |
| 350                               | -0,5         | 20             | 10             | 50                                             |
| 400                               | -0,8         | 40             | 60             | 40                                             |
| 450                               | -0,9         | 55             | 25             | 10                                             |

ANHANG





