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Abstract 

The core melt down and the subsequent steam explosion in a Light Water 

Reactor is an accident scenario under discussion. Here the resulting impact 

loading of the vessel head and its integrity is of primary concern. lt was reasoned 

that an experimental approach (BERDA experiment), using a scaled down model 

(scale 1:1 0) which simulates this impact scenario with an alternative energy 

source, is required. Appropriate similarity laws should be used to design the small 

scale model and to transfer the experimental results to the actual (1: 1 )-

configuration. 

This impact scenario involves the motion, the elastic-plastic deformation and 

the failure of various solid structures at elevated temperatures and the motion 

and deformation of a viscous fluid as weil as their interaction. 

ln the present two-part report the emphasis is on aspects of similitude theory 

for solid continua and structures in general. ln part I the analysis is restricted to 

the deformation behavior. Using the "method of differential equations", 

similarity laws are derived and size effects are discussed for two important 

phenomena: 

Motion and deformation of an elastic-viscoplastic continuum with isotropic 

hardening; 

motion and deformation of an elastic-time independent plastic continuum 

with isotropic hardening. 

The presence of gravitational forces is discussed. They are expected to be of 

minor importance and they are therefore excluded from the further analysis. The 

derived similarity conditions are interpreted and the limitations are analyzed if 

different or the same materials are used for the model and the prototype. ln 

particular, if the material response is viscoplastic and if the samematerial is used 

for the model and the prototype, a size effect occurs. Using a simple impact 

problem, this is quantitatively assessed for stainless steel AISI 304 at room 

temperature. lt is shown that this size effect is enhanced if the structure is 

undergoing strain softening. 

The quality of the derived similarity laws and the conclusions obtained 

depend, among others, upon the assumed scale invariance of the basic material 

data; a provisional discussion of some experimental results and preliminary 

theoretical models is presented. Further, the scale factors are listed. Finally, 

several aspects, which need more attention, are indicated. 

ln part II of this report, which is still in preparation, similarity laws and size effects 

in case of failure and fracture are studied. 
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Aspekte der Ähnlichkeitstheorie in der Festkörper­
mechanik 

Teil I: Deformationsverhalten 

Zusammenfassung 

Der Kernschmelzunfall und die in der Folge auftretende Dampfexplosion in 

einem Leichtwasserreaktor sind ein zur Zeit diskutiertes Unfallszenario. Dabei ist 

die lmpaktbelastung des Druckbehälterdeckels und seine Integrität von besonde­

rem Interesse. Ein experimentelles Vorgehen (BERDA-Experiment), bei dem in 

einem verkleinerten Modell (Maßstab 1:1 O) das lmpaktszenario mit einer alterna­

tiven Energiequelle simuliert wird, wird als erforderlich angesehen. Entsprechen­

de Ähnlichkeitsgesetze sollten den Entwurf des Modells erlauben und die Über­

tragung der experimentellen Ergebnisse auf die aktuelle (1: 1)-Konfiguration er­

möglichen. 

Dieses lmpaktszenario beinhaltet die Bewegung, die elastisch-plastische De­

formation und das Versagen verschiedener Festkörperstrukturen bei erhöhten 

Temperaturen und die Bewegung und Deformation einer viskosen Flüssigkeit so­

wie ihre Wechselwirkungen. 

ln dem vorliegenden, zweiteiligen Bericht liegt die Betonung auf mehr allge­

meinen Aspekten der Ähnlichkeitstheorie für Festkörperkontinua und Struktu­

ren. Im 1. Teil beschränkt sich die Analyse auf das Deformationsverhalten. Mittels 

der" Methode der Differentialgleichungen" werden für zwei wichtige Phänome­

ne Ähnlichkeitsgesetze abgeleitet und Größeneffekte diskutiert: 

Bewegung und Deformation eines elastisch-viskoplastischen Kontinuums mit 

isotroper Verfestigung; 

Bewegung und Deformation eines elastisch-zeitunabhängig plastischen Kon­

tinuums mit isotroper Verfestigung. 

Die Bedeutung von Gewichtskräften wird diskutiert. Es wird erwartet, daß sie 

von untergeordneter Wichtigkeit sind, und sie werden deshalb bei der weiteren 

Analyse vernachlässigt. Die abgeleiteten Ähnlichkeitsbedingungen werden inter­

pretiert und die Einschränkungen werden analysiert, wenn dasselbe Material für 

Modell und Prototyp verwendet wird. Ein Größeneffekt tritt insbesondere dann 

auf, wenn das Materialverhalten viskoplastisch ist und wenn dasselbe Material im 

Modell und Prototyp Anwendung findet. Dies wird quantitativ überprüft für den 

rostfreien Stahl AISI 304 bei Raumtemperatur anhand eines einfachen lmpaktpro-
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blems. Es wird gezeigt, daß der Größeneffekt verstärkt wird, wenn die Struktur 

eine Erweichung mit der Deformation erfährt. 

Die Qualität der abgeleiteten Ähnlichkeitsgesetze und Schlußfolgerungen 

hängt unter anderem von der angenommenen Skaleninvarianz der Basismaterial­

daten ab; eine vorläufige Diskussion einiger experimenteller Resultate und erster 

theoretischer Modelle wird vorgestellt. Weiterhin werden die Maßstabsfaktoren 

angegeben. Schließlich werden einige Aspekte berührt, die weiterer Aufmerk­

samkeit bedürfen. 

Im 2. Teil dieses Berichtes, der noch. in Vorbereitung ist, werden Ähniichkeits­

gesetze und Größeneffekte für Versagens-und Bruchphänomene studiert. 
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1. lntroduction 

Within the frame of the safety analysis of Light Water Reactors a core melt down 

and a subsequent steam explosion is an accident scenario und er discussion [1 ]. 

After melt down the steam explosion is assumed to take place in the lower part of 

the reactor pressure vessel. Large masses of molten core material (80 t are envis­

aged) will be accelerated upward and will force its way through the upper inter­

nal structures (grid plate, guide tubes and support colums, support grid) deform­

ing and crushing them, and will finally impact on the head of the pressure vessel. 

There are other mechanical consequences in the lower part of the vessel but here 

the loading of the head is of primary concern. Of course, the crucial question is 

the integrity of the the vessel head and its bolting since a failure would endanger 

the containment. 

A reliable theoretical treatment of this problern requires modeling of complex in­

teractions between the molten core material and the deforming in-vessel struc­

tures and the vessel head. lt was reasoned [1, 2] that an experimental approach, 

using a scaled down model experiment (scale 1:1 0) which simulates this scenario 

with an alternative energy source, is preferable and that appropriate similarity 

laws should allow the transfer of the results to the actual1: 1 configuration. Some 

preliminary scaling factors were put down in ref. [2]. 

lf such an approach should be successfull, then it is of upmost importance to un­

derstand and quantify the governing physical phenomena. lf the appropriate bal­

ance equations and constitutive relations have been set up, the similarity laws can 

be found by transforming the governing equations in a dimensionless form which 

automatically yields a set of dimensionless characteristic numbers or functions. 

Similarity of model and prototype response means that the dimensionless solu­

tions for displacement, strain, velocity, stress etc. of model and prototype equa­

tions are identical. This implies the equality of the corresponding characteristic 

numbers or functions; these requirements represent the similarity /aws. This ap­

proach is called the "method of differential equations" [3, 4], or simply the 

"method of equations 11
, and will be used in this study. There are other ap­

proaches like 

the method of ratios of forces, energies etc. 

or dimensional analysis and application of the Buckingham-II-Theorem. 
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However, the "method of differential equations" allows a deeper insight into the 

laws of similarity and has also a wider applicability, particularly if laws of similar­

ity for distored models are sought [3]. 

lt may be argued that, if the differential equations are known, it would be 

straight forward to solve these by numerical methods rather than to obtain a so­

lution experimentally using a small scale model and similarity laws. Here the im­

portant pointisthat the development of an analytical or numerical solution may 

be extremely difficuit, if not impossible; on the other hand solutions which are 

obtainable are subject to various simplifications and their reliability is hardly to 

assess. However, the model experiment and the transfer of its results to the pro­

totype situation with the similarity laws is not necessarily more reliable. lt is evi­

dent that the derived similarity laws arevalid only as far as the underlying phys­

ical theory is valid and appropriate. Therefore the identification of the relevant 

physical processes and their mathematical characterization is most important 

whereas the derivation of the similarity laws from this theoretical basis is math­

ematically a simple matter. 

Experience with similarity analysis in general, as published in the literature, shows 

that some of the similarity laws cannot be satisfied at all and others can be satis­

fied only approximately. lf small scale model experiments are done under these 

circumstances, size-effects occur, i.e. the dimensionless soiutions for the modei 

and the prototype are not identical but depend on the scale. Thus, ignoring the 

inadequacy of the similarity, a prediction of the prototype behavior from the 

model experiment causes misleading conclusions. 

Therefore, besides the derivation of the similarity laws and a discussion of their 

realization, a qualitatitve and quantitative analysis of size effects is indispensible 

for a reliable similarity theory of model tests. This can be done theoretically to 

some extend but ultimately systematic model experiments at various scales are 

necessary. 

The above sketched impact szenario involves the motion, the elastic-plastic de­

formation and the failure of various solid struetures at elevated temperatures 

and the motion and deformation of a viscous fluid as weil as the interaction of 

the structures and the fluid. Similarity laws have been developed extensively in 

the field of fluid mechanics but have received far less attention in the mechanics 

of solid continua or structures. This is reflected in relevant text books on simili­

tude theory (e.g. [3 - 12]); there a detailed treatment of elastic-plastic or even 
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elastic-viscoplastic continua or structures under the aspect of similarity is practi­

cally not existing. Murphy [1 0] made use of dimensional analysis to derive simili­

tude rules for simple perfect and distorted elastic structures; plasticity was but 

only briefly mentioned. Langhaar [3] applied dimensional analysis to different 

elastic and some plastic structures on an elementary Ievei. Baker et al. [6] gave a 

very limited treatment of elastic-plastic deformations but valuable experimental 

data of similarity experiments of simple structures under blast loading were pre­

sented. Some more in-depth studies were published by Jones [13 - 15]. Educa­

tional articles have been published by Goodier [53], Soper [55] and Young [56], 

and Murphy [57] gave a Iiterature survey. Nevertheless, scaling laws related to 

structural mechanics have been applied in a variety of engineering applications, 

mostly based on dimensional analysis and the Buckingham-TI-Theorem, e.g. [58-

66]. However, thorough analyses of similarity laws for elastic-plastic and elastic­

viscoplastic material deformation behaviour under a threedimensional state of 

stress and for failure or fracture rules have found very limited attention; al­

though some scaling laws for static fracture of linear or non-linear elastic struc­

tures with geometrically scaled cracks have been derived (e.g. [67]). More com­

prehensive studies are wanting. This situation prompted the present effort. 

ln a previous unpublished report [16] similarity laws have been derived for several 

theoretical models, describing some of the phenomena involved in the above im­

pact szenario; this inciuded aiso the coupiing of fluid and structure. However, the 

main aspect ofthat study was the constitutive modeling of a dass of inelastic ma­

terials. 

ln the present two-part report the emphasis is on aspects of similitude theory for 

solid continua and structures. ln part I the analysis is restricted to the deformation 

behavior of structural materials; it is assumed that progressive darnage processes 

or fracture do not affect the deformation behavior. ln part II failure and fracture 

are studied. 

Similarity laws are derived and size effects are discussed for two important 

phenomena: 

Motion and deformation of an elastic-viscoplastic continuum with isotropic 

hardening; this constitutive model allows to describe the strain-rate depen­

dent yielding in dynamic plasticity. 

Motion and deformation of an elastic-time independent plastic continuum 

with isotropic hardening. 
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These constitutive models belong to the simplest models and allow to describe 

the multiaxial response under monotonaus radial loading. Of course, more ad­

vanced modelsexist which allow to encompass also kinematic hardening and oth­

er phenomena. Naturally, they would require different and more similarity con­

ditions. However, presently it appears to be advisable to restriet oneself to the 

simplest theoretical basis. 

This development will be based on the assumption of infinitesimal strains and ro­

tations suchthat the kinematics is linear, density changes need not to be consid­

ered and the undeformed reference and the current configuration of the solid 

body need nottobe distinguished. These assumptions are certainly not correct in 

the described accident szenario since it is expected that the upper internal struc­

tures are likely to buckle and crush up; this is a structural stability problern and its 

theoretical treatment requires at least the allowance for large rotations, i.e., a 

nonlinear kinematic. However, this has no consequences for the similarity laws, 

provided the buckling and crushing can be described with the same constitutive 

equations but supplemented with nonlinear kinematic relations and properly 

chosen objective time rates in the evolution equations. lf, however, very large 

strains occur, it is expected that progressive damaging will occur which is pres­

ently not included in the theory. Nevertheless, if a size effect is present in small 

scale modeling, its theoretical estimate will be certainly affected whether or not 

the nonlinear kinematics is accounted for. 

Part I is organized as follows. ln section 2 the weil known balance equations and 

constitutive relations for an elastic-viscoplastic and an elastic-time independent 

plastic material as weil as boundary and initial conditions are listed. A theoretical 

discussion of these models is not included (see e.g. [16]). Some illustrative experi­

mental data characterizing the viscoplastic response are contained. 

ln section 3 the similarity laws are derived and discussed for these two models and 

equivalent alternative similarity parameters are introduced. The presence of 

gravitational forces is discussed. Principially they impose severe restrictions but 

fortunately they are expected to be of no importance for the described impact 

szenario and they are therefore excluded from the further analysis. Then the de­

rived similarity conditions are interpreted and conclusions are drawn with respect 

to the similarity of basicmaterial tests which are required to identify the material 

parameters of the constitutive model. Further the limitations are analyzed if dif­

ferent or the same materials (at the same temperature) are used for the model 

and the prototype. Especially, if the material response is viscoplastic and if the 
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same material is used, a size effect occurs. Using a simple impact model this is 

quantitatively assessed for stainless steel type 304 at room temperature. lt is also 

demonstrated that this size effect is enhanced if the structure is subject to strain­

or deformation softening. 

The quality of the derived similarity laws and the conclusions obtained from 

them depends, among others, upon the assumed sca/e invariance of the basic ma­

terial data, e.g. Young's modulus, yield stress, hardening stress, viscosity param­

eters and others. A rudimentary discussion of some experimental results taken 

from the open Iiterature and of preliminary theoretical models is presented. Fi­

nally, the scale factors associated with the two constitutive models are listed. Sec­

tion 3 closes with a summary and conclusions of the most important theoretical 

findings. 
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2. Basic Equations for Two Simple Constitutive Models Characteriz­
ing Elastic-Piastic and Elastic-Viscoplastic Deformation Behavior 

ln the following the complete set of equations consisting of the balance equa­

tions, constitutive relations as weil as initial and boundary conditions are formu­

lated to describe two relatively simple models for the e/astic-time independent 
p/astic behavior and the e/astic-viscop/astic behavior, both involving isotropic 

hardening. Thesemodels can be set up within a thermodynamic frame to assure 

consistence with thermodynamic principies [16, 17]. This is not enclosed in this 

study. ln most engineering applications of plasticity, and also in this report, it is 

tacitly assumed that processes are isothermal; thus the energy balance and the 

coupling with the temperature field are ignored. Therefore, only purely mechani­

cal theories are considered. lt is also noted that only small deformations and rota­

tions are considered. Then the governing equations are as follows. 

Cauchy's first /aw of motion reads 

= 0, I = 1 I 21 3 I (2.1) 

where 

: symmetric stress tensor 

: displacement vector 

body force density 

cartesian coordinates 

: time 

p = P 
0 

=const : density (small deformation assumption) 

ln the gravitational field the body force density f1 derives from a potential U 

g 

a 
k 

fk 
au 

k = 11213 ---
ilxk 

u =g(a~x 1 + a~x 2 + a~x3 ) 

gravitational acceleration 

. direction cosinus between constant body force field and 
· cartesian coordinate system (dimensionless) 

(2.2) 
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The relations between strains Ekl and displacements Uk 

(2.3) 

are linearized in the displacementderivatives because of the small-strain assump­

tion. 

For both plasticity models we assume that the total strain is additively composed 

of an elastic and a plastic or viscoplastic strain, i.e. 

e 
Ekl = Ekl 

elastic 
strain 

+ Ekl 
plastic 
strain 

The elastic strain is assumed tobe related to the stressesvia Hooke's law 

implying isotropic behavior; here the two material parameters 

E: Young's modulus 

v: Poissons number 

(2.4) 

(2.5) 

are involved. Clearly, the relations (2.1) to (2.5) apply to both plasticity models. 

The time-independent p/astic response is assumed to be characterized by a yield 

surface for isotropic hardening 

f ( omn, p) = 0 (2.6) 

and an associated flow law. The yield function f is given by 

f ( omn , p) = oequ - ( oy + R. {p)) (2.7) 

where 
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- ( ~ o o ) -t v. Mises equivalent stress - 2 o,mn o,mn 
(2.8) 

0 o,mn 
1 

omn -3 okk ömn deviatoricstress (2.9) 

p Jt ( 2 p p )-t = - t t dt : accumulated plastic strain 
0 

3 mn mn (2.1 0) 

oy initial uniaxial yield stress 

R.(p) ;;:-:: 0 : yield stress increase due to isotropic strain hardening . 

The associated flow law which describes the evolution of the plastic strain of a 

"time-indepent" plastic material is given by 

with 

1 (M. \M 
dR/dp I ~ 0 mn)-;;;;=-; 

\ mn kl 

0 

1 3 

of 
f=O n--o >O mn 

oomn 

f < 0 or 

f=O n~o :::;o 
oo mn 

mn 

--= --2°o,kl 
0 equ 

(2.11) 

(2.12) 

This relation is homogeneous of degree one in the time scale and therefore, the 

time scale does not affect the stress-strain response, excluding inertia effects. 

The switch conditions correspond to the following situations 

f = 0 

f<O 

f=O 

f=O 

of 
n -- o mn > 0 plastic loading 

oomn 
elastic response 

Of 
n -- omn < 0 elastic response due to unloading 

00 
mn 

Of . 
n -- o = 0 elastic response due to neutralloading. oo mn 

mn 

lt is noted that the yield surface (2.6) can be visualized in the two-dimensional 

stress space as shown in Fig. 1: The v. Mises ellipse showsanaffine expansion due 
to the isotropic hardening. 
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ln the uniaxial state of stress the yield condition reads 

which simply represents the uniaxial stress-plastic strain curve (Fig. 2a). 

Aside from the elastic constants E and v, the quantities 

oy and R = R(p) , 

(2.13) 

obtainable from a tensile test, completely define the response ofthissimple time­

independent plasticity model. 

The viscoplastic material law is also assumed to follow an isotropic hardening 

mode. The evolution law is taken tobe [16, 18] 

{ 

df 
A <f> (f)- ; f > 0 

t kl = aokl 

0 ; f::;O 

(2.14) 

where f is given by (2.7). As before an explicit temperature dependence is not 

considered. Here A is a relaxation parameter with the dimension (Time)-1; the 

function cp is dimensionless. For f > 0 and with (2.1 0) squaring of both sides of 

(2.14)gives 

p = A<f>(f) . (2.15) 

Inversion yields 

(2.16) 

According to Perzyna [18], this is called the "dynamic yield condition" for a 

viscoplastic isotropic strain hardening material; it describes the "dependence of 

the yield condition on the strain rate". However, for the model discussed here, 

this description is misleading since the equation (2.16) does not represent a sur­

face in the stress space which separates the elastic from the plastic response; this 

is done solely by the condition f = 0. 
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Fig. 1: v. Mises Ellipse and Isotropie Expansion 

0~--------------~--------

0 

(a} Schematic Stress-Piastic Strain Curve 
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ae (MPa) 
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900 
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Medium-carbon steel 
annealed 

(b} Engineering Stress-Strain Curves lncluding 
Necking and Fracture, from [68] 

Fig. 2: Uniaxial Stress-Strain Curves 
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With (2.7) equation (2.16) yields 

' -1 ( p ) o = o + R( ) + <f> -equ y p A 
(2.17) 

The right hand side consists of three parts: A constant term oy equivalent to the 

initial yield stress, a nonlinear strain hardening term R(p) and a nonlinear viscous 
stress q>-1(p/A). ln fact, this represents the multiaxial equivalent of the "dynamic 

stress strain curve" for constant p *). 

Oequ 
[Stress] 

. Dynamic Stress­
Strain Curves 

[
Initial 

0 
Y l 

Yi e l d StressJ 

Static Stress­
Strain Curve 

o~-L~~~~~~-L~~----~ 

0 P [ Plastic Strain] 

Fig. 3: Static and Dynamic Stress-Piastic Strain Curves (Schematic) 

Fig. 3 illustrates that a change of the viscoplastic strain rate produces a parallel 

shift of the "static stress- plastic strain curve" defined by 

(2.18) 

With Oequ being the applied stress, the difference Oequ - o5 is called the 

n ove rstress" . 

ln the following apower function is assumed for <P 

n ;::: 1 ; (2.19) 

* Note that p is the rate of the accumulated viscoplastic strain. 
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ON is not a material parameter but some normalizing stress. Then the "dynamic 

stress strain curve" takes the form 

1 

o equ = oy + R(p) + oN ( ~) n 
(2.20) 

Fora uniaxial state of stress Oequ and p have tobe replaced by the uniaxial stress o 

and the plastic strain EP. 

Putting 

(2.21) 

(2.20) takes-in the uniaxial case- the convenient form 

0 = 0 
(2.22) 

y 

For the purpose of illustration some experimental results are shown in Fig. 4 to 7: 

Figs. 4+ 5 show dynamic stress-strain curves obtained by Maiden and Green [19] 

for titanium 6A-4V in compression tests. Note that here the total strain and total 

strain rate is used. Fig. 4 suggestively demonstrates that the dynamic stress-strain 

curves are approximately parallel for larger strains. According to the above theo­

retical model, the viscoplastic part of the curve should start off from Hooke's 

straight line at o = oy. However, the static yield stress oy is difficult to infer from 

Fig. 4, since the curves are tangent to Hooke's straight line. One should realize of 

course, that the assumption of a static stress-strain curve or static yield surface is, 

on physical grounds, possibly not realistic. 

The flow stresses at various strains are plotted in Fig. 5 as a function of the total 

strait1 rate; in this strain regime the total strain rate is essentially equal to the 

viscoplastic strain rate. 

Hauser [20] has obtained flow stresses for stainless steel Type AISI 304 at room 

temperature as a function of the strain rate with the strain as a parameter, Fig. 6. 

Also included are proof stress oo,2-values for AISI 304, solution annealed, mea­

sured by Steichen et al. [21-23, 24]. Note that again, to a first approximation, 

these semilogarithmic plots are parallel. 
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Fig. 4: Compression Tests on Titanium, from [19] 
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.001 .01 .I 1.0 10.0 100.0 1000.0 10000.0 
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Fig. 5: Stress Versus Strain Rate for Compression Tests on Titanium, from [19] 
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The 0.2 % proof stress data for AISI 304 at room and elevated temperatures as 

weil are presented in Fig. 7a. lt is evident that the largest strain rate effect for the 

proof stress of AISI 304 (solution annealed) is present at room temperature. On 

the contrary, the ultimate stress, shown in Fig. 7b, is approximately rate insensi­

tive in the range 2 · 1 o-s < E < 102 for temperatures between room temperature 

and 538 oc. Beyond this temperature an increasing rate influence is observed. 

Fig. 7c illustrates the rate dependence of the uniform elongation at various tem­

perature Ieveis. At room temperature a significant decrease from a high Ievei at 

small rates is observed with increasing strain rate down to a saturation Ievei; in 

the range from 316 °( to 538 °( rate insensitivity is found, whereas above 538 °( 

an increase from a low Ievei at small rates to a saturation Ievei is seen. 

Extensive dynamic tensile testing of several austenitic steels, especially AISI type 

316, at different strain rates and temperatures has been performed by Albertini 

and Montagnani and collaborators (e.g. ref. [69] and references cited therein). 
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This work includes also various damaging effects (creep, fatigue, irradiation) 

which are not considered here. 

lt appears that the simple model, equ. (2.22), which implies the additivity of the 

strain dependent hardening stress and the strain rate dependent viscous stress at 

any temperature Ievei, cannot describe the measured dynamic stress-strain curve 

at all temperature Ieveis. ln any case the complex temperature influence must be 

accounted for if the prototype and the model operate at different temperature 

Ieveis. 

lt should be pointed out that these data arenot sufficient to identify uniquely the 

parameters of the above mathematical model, if not additional assumptions are 

made. At this place the question of the identification of the constitutive model 

will not be further discussed but in section 3.2.4 an identification for a simplified 

versionwill be done. 

For a formally complete description the initial and boundary conditions are re­

quired. The usual boundary conditions are displacement and stress boundary con­

ditions, i.e. 

where 

uk = Uk on iJBu 

ak1 n 1 =TkoniJB
0 

for all t (2.23) 

is the boundary of the body and Uk and Tk are prescribed displacement and stress 

components at the corresponding parts of the boundary. The initial conditions 

are assumed to characterize the undeformed state of rest, i.e., 

uk = 0 

auk for t = 0 and all xk E B . (2.24) 

-= 0 at 
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3. Similarity laws for the Deformation Behavior 

3.1 Derivation of Similarity laws 

The basic quantities in mechanics and their appropriate dimensions are usually 

given by (e.g. [25]) 

length, time and mass. 

The dimensions of all other quantities in mechanics can then be obtained from 

the definition of these quantities. Therefore, from a dimensional point of view it 

suffices to define a 

characteristic length IR 

characteristic time tR 

characteristic mass 

(3.1) 

for any system, be it the prototype or the model. However, for the present pur­

poseit is convenient to use an alternative set of characteristic quantities, i.e., a 

characteristic length IR 

characteristic velocity vR 

characteristic density pR 

Thus, if necessary, we get for the set (3.1) 

(3.2) 

(3.3) 

The "method of differential equations" requires the introduction of dimension­

less independent and dependent variables. According to the equations in section 

2.1, the following dimensionless variables are introduced: 
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Cartesian Coordinates 

displacements 

time 

velocities 

-=--
1 

at (3.4) 

accelerations 

strains 

strain rates 

stresses 

stress rates 

ln dimensionless terms the basic equations take the following form: 

Cauchy's first Jaw of motion 

(3.5) 

the strain displacement relations and strain partitioning 

= ~ ( au~ + au; J 
Ekl 2 I I I ) 

\ ax1 axk (3.6) 

e I p I 

Ekf = Ekf + Ekf 



Hooke's law 

yield function 

where 

0 = equ 

oy = 

R = 

p = 

oy 
--

2 
pRvR 

Rl <PI> 

p; 
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(3.7) 

(3.8) 

(3.9) 

R R(p} 
= ---

2 
pRvR 

2 
pRvR 

flow lawfor the time~independent plastic response with isotropic hardening 

( I 

aal \ 
I 

aomn PI af af at 
atkl 1 I mn 1 f =On---- >O h'l-1 -, )-1 ; I I 

--= iJomn (Jt 
I aomn at aokl 

at (3.10) 
0 f <0 or 

at ao 
1 mn 

t =On----:s:o 
I I 

where 

(3.11) 
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evolution lawfor the viscoplastic response 

ClEkll IR ( 1 ~ n 

7 = vR A l oN/pR v~ ) <f > 

n Clf 

with the Macauley-brackets 

<f > = f~. 
I 

f > 0 

f :s;O; 

boundary conditions 

uk = uk 

okl nl = Tk 

and the initial conditions 

uk = 0 

auk 
-

I 
= 0 

at 

- uk/rR on ClBu 

.- r/( PRVn on ClB
0 

I 

for t = 0 and x,_ E B 
" 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

This completes the formulation of the dimensionless system of basic equations. 

Geometrical and physical similarity between the prototype and the model 

requires that the dimensionless so/utions of this system of equations, both ob­

tained for the prototype and the model, are identical. This is assured if and only if 

the dimensionless parameters and the dimensionless externally applied forces 

and constraints are the same for prototype and model. ldentifying quantities 

related to the prototype by the index "p" and those related to the model by the 

index "m", the similarity conditions for both constitutive models are listed in 

Tab. 1. 



A 

B 

c 

D 

E 

F 

G 

H 

J 

K 

Elastic-Viscoplastic Behavior 

1 Vx' 

( 1+v 2) (1+v 2) 
-E- PR vR = -E- PR vR 

p m 

( R(p) \ l __ l 

I , I 
\ PR vR) P 

(n)p = (n)m 
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Ion C!B 
0 

Elastic Time-Independent 

Plastic Behavior 

- ditto -

ditto 

- ditto -

- ditto -

- ditto -

(3.16)1 

- ditto -

- not applicable -

- not applicable -

- ditto -

- ditto -

Tab. 1: PrimaryList of Similarity Conditions 
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Some of these conditions can be related to weil known dimensionless parame­

ters. 

Condition (A, Tab. 1) states thatthe Froude nurober 

2 
VR 

Fr:=-
IRg 

is the same for prototype and model 

( Fr ) = ( Fr ) . P m 

(3 .17) 

(3.18) 

The conditions (C, Tab. 1) and (D, Tab. 1 ), which follow from Hooke 's law, yield 

( E \ , __ , 
\pRv~)m' 

( V ) 
p 

= (V) . m 
(3.19) 

Using the Cauchy nurober 

Ca =---

[0:' (3.20) 

condition (3.19), is equivalent to 

( Ca ) P = ( Ca ) m . (3.21) 

Note that VEIPR is the propagation velocity of small elastic disturbances in long 

slender rods; thus the Cauchy number resembles the Mach number in fluid me­

chanics: 

(3.22) 

Condition (G, Tab. 1) may be put in a form which resembles a more familiar di­

mensionless parameter. lntroducing the material parameter 

(3.23) 

which has the dimension [stress/(strain rate)1/n] and which is a measure of the 

quasi-viscosity of the material, a "generalized Reynolds number" 



Re 
n 
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=-----

may be defined; then condition (G, Tab. 1) yields 

(3.24) 

(3.25) 

Obviously, the generalized Reynolds number corresponds to the classical Rey­

nolds number for n = 1; that is 

n = 1: Re =Re = 
n 

With these definition the primary Iist Tab. 1 yields a secondary equivalent Iist of 

conditions, Tab. 2. 



A 

B 

c 

D 

E 

F 

G 

H 

J 

K 
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Elastic-Viscoplastic Behavior 

( Fr ) p = ( Fr ) m 

, V x' 

( oy \ 

= '--' 

~ PR V~ ) m 

( R(p) \ 

= l PR 'd m 

( Tk \ , __ , 
~pRv~)p 

I 'v' p 

, on aB 
0 

Elastic Time-Independent 
Pl~c:tic RPh~vior 

- ditto -

- ditto -

- ditto -

- ditto -

- ditto -

(3.16)11 

- ditto -

- inapplicable -

- inapplicable -

- ditto -

- ditto -

Tab. 2: Secondary List of Similarity Conditions 
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Up to now the characteristic quantities IR, VR, PR have not been definitely defined. 

Usually they will be directly related to corresponding quantities of the modeland 

prototype, for example some actuallength (e.g. diameter) or actual velocity (e.g. 

impact velocity of a striker). However, the characteristic quantities may also be re­

lated to non-material physical quantities. One example will be discussed here 

which will give an alternative Iist of similarity conditions. Assurne the characteris­

tic velocitytobe defined by the so und velocity in long slender bars: 

vR = c = J E/p and p = PR ; (3.26) 

here the characteristic density should correspond at least to some part of the 

structure. Then 

and the dimensionless quantity (3.24) takes the form 

with 

c (aN\ n 
1
in = A l-E-) 

= 
I. 
ln 

(3.27) 

(3.28) 

(3.29) 

The length lin is solely characterized by constitutive quantities and is therefore 

termed "internal constitutive length". lt can be interpreted as follows. With 

(2.15) and (2.19) we have 

(3.30) 

lf the "overstress" 

f = a - ( a + R( ) ) equ y p (3.31) 
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takes the value* 

f = EI 

then the corresponding accumulated viscoplastic strain rate is given by 

The internal constitutive length (3.29) is then given by 

or 

c 
I.=-ln . 

PE 

I in PE = c. 

(3.32) 

(3.33) 

(3.34) 

Consequently, lin corresponds to the length of a specimen whose speed of 

viscoplastic extensionund er the overstress f = E equals the elastic sound speed c. 

With (3.26) - (3.28) the secondary Iist takes the form given in Tab. 3. Note that 

condition (C, Tab. 3) is identically satisfied since the Cauchy number is equal to 

"one" for both the modeland the prototype. On the first sight it appears that the 

Iist of conditions is reduced by one due to the specific choice (3.26). However, this 

is a premature conclusion. For example, if the dynamic elastic-plastic problern in­

volves the impact velocity Vimp of a striker, then similarity requires the equality of 

the dimensionless striker velocities, i.e., 

(3.35) 

Thus, a Cauchy number pops up again. 

Whatever choice of dimensionless parameters and functions is made, Tables 1 to 

3 are accompanied by the similarity requirements for the initial conditions, equ. 

(3.15). 

*) ln reality this is purely fictitious since f ~ E 
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Elastic-Viscoplastic Behavior 
Elastic Time-Independent 

Plastic Behavior 

A 
( / \ ( ,2 \ - ditto -

~~)p=~~)m 

B 
(p} (p\ 
~~)P=l~Jm,Vx 

- ditto -

c ( Ca ) p = 1 , ( Ca ) m = 1 - ditto -

identically satisfied 

D (v)p = (v)m - ditto -

( oy \ ( oy \ 

(3.16)111 

E 
~-E )p = ~-E )m - ditto -

F 
( R(p) \ ( R(p) \ 
\-E JP =\-E )m,Vp - ditto -

' ' \. I -

G 
( 1R \ (IR \ 

~~)p = ~~)m 
- inapplicable -

H (n)p=(n)m - inapplicable -

J 
( uk \ ( uk \ 

~ ~ )P =~I; )m - ditto -

K ( Tk \ ( Tk \ 

~-E )p = ~-E )m - ditto -

Tab. 3: Tertiary List of Similarity Conditions 
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3.2 Interpretationsand Discussion 

3.2.1 Modeling Similarity of Gravitational Forces 

Since the gravitational acceleration g cannot be controlled and is approximately 

constant, 

condition (A) yields 

- IRp -
--- A. 

1Rm 

where "Ais the ratio of the characteristic lengths 

IRp 
A.:=- ;:o: 1; 

1Rm 

(3.36) 

(3.37) 

(3.38) 

note that the discussion will be restricted to cases where the model is always 

smaller than the prototype. Condition (3.37) shows that the choice of the charac­

teristic lengths completely determines the ratio of the characteristic velocities 

and vice versa. Obviously, this reduces the fiexibiiity of the smali scale simulation 

considerably; for example, from (3.37) it follows that the sound velocities have to 

satisfy the condition 

(3.39) 

According to condition (E & F) the initial yield stress oy and the hardening stress R 

have to satisfy 

0 YP PRp 
--=--A. 
0 ym PR m 

( '\p)) p 

( R(p)) m 

(3.40) 

Of primary interest are steel structures and here the densities in modeland proto­

type are approximately the same. Thus, 



A I 
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( R(p)) P 

( R(p)) m 

= 'A 

and with (3.19) the ratio of Youngs moduli is approximately 

(3.41) 

(3.42) 

lf the viscoplastic response is importanti then in addition (G) and (H) have to be 

observed. From (3.25) one gets with (3.39) 

2n+1 

= A 2 (3.43) 

ln principle, these conditions can be satisfied, however, in practice it is rather dif­

ficult. For example, if the scaling factor "Ais prescribed, e.g. "A = 10, then the yield 

stress in the model must be reduced by a factor 10. Alternatively, the ratio of the 

yield stresses etc. determine the geometric scale factor. 

lf the material of the model and the prototype is chosen to be the same (at the 

same temperature), then the conditions (A) to (G) can consistently be satisfied on­

ly if 

A = 1 I 

i.e. a small scale model test is not possible. This is true whether one accounts for 

viscoplasticity and plasticity or not. 

Frequentlyl however, gravitational effects may be safely neglected. Then condi­

tion (A), i.e. the equality of the Froude numbersl can be deleted. As a conse­

quence the geometric scale factor "A and the ratio of characteristic velocities 

VRpiVRm are uncoupled. 

Throughout the following this assumption will be made. 
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3.2.2 Modeling the Density Distribution 

The similarity condition {B) has a very simple interpretation: The density distribu­

tions of model and prototype must be the same, they differ only by a constant 

factor 

(3.44) 

lf the density is uniformly constant throughout the modeland the prototype and 

if the characteristic density PR is taken tobethismaterial value po, then condition 

(B) is identically satisfied. 

3.2.3 Modeling the Constitutive Response 

The conditions (C) to (H) are all related to the constitutive behavior: Conditions 

(C) and (D) concern the elastic response, conditions (E) and (F) the time indepen­

dent plastic response, and conditions (G) and (H) the viscoplastic effects. 

These requirements may be interpreted in terms of the empirical data which are 

used for the identification of the constitutive model. Here it is assumed that the 

elastic moduli have been determined in seperate purely elastic experiments and 

are known in advance. 

ln dynamic plasticity [24, 26, 27] a basic experiment is the dynamic tensile test, i.e., 

a test at approximately constant engineering strain rate or constant cross head 

velocity. The outcome is a set of stress-total strain curves with the strain rate as a 

parameter. For the above elastic-viscoplastic model these curves can be obtained 

by integrating the differential constitutive relations 

t = te + tp = const. 

.e 
= o/E E 

tP = {: ( f/ ON )". 
f>O (3.45) 

1 f:::; 0 

f = o- ( oy + f\EP) ) 
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which yields the stress as a function of time or total strain. The typical result is 

shown schematically in Fig. 8. 

0 

[ Stress) 

Oy 

Q ) 0 4 b) 

E = E:P= C ans! 

04-------------~ 

0 
[ Total Stain 1 E 0 [ P!asticStrain] t:P 

Fig. 8: Dynamic Stress-Strain Diagrams (Schematic) 

The representation in Fig. 8a still contains the elastic strain ee = o/E. The plastic 

strain at B can be obtained in a fast unloading experiment which Ieads to point C. 

Note that du ringthisfast unloading no further plastic strain is produced since the 

generation of viscoplastic strain isatime dependent process and the time interval 

is too short 

Thus, if experimental stress-total strain curves are given as shown in Fig. 8a, they 

also can be represented as stress-plastic strain curves (Fig. Sb). Of course, the 

curve parameter is still the total strain rate e = te + EP. For the initial part the 

elastic strain rate is the dominating contribution but for the later and largest part 

the viscoplastic strain rate is essential. Therefore, the curve parameter in Fig. 8 is 

considered to be approximately equal to the viscoplastic strain rate tP. The 

constitutive model und er discussion yields a "dynamic stress - viscoplastic strain 

curve" at constant viscoplastic strain rate as given by equ. (2.22). ln the uniaxial 

case this is 

(3.46) 

Using the dimensionless variables (3.4), (3.9) and the generalized Reynolds num­

ber (3.24), equ. (3.46) takes the following dimensionless form 
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(3.47) 

This expression contains the similarity terms (E to H, Tab. 2). lts structure Ieads to 

the following statement, which is alternative to the similarity conditions (E to H, 

Tab. 2): 

Provided the viscoplastic responses of modei and prototype can be de­

scribed within the same dass of constitutive models, i.e., equ. (2.7), (2.14), 

and (2.19), then physical similarity requires, among others, 

equality of the dimensionless "dynamic stress - viscoplastic strain 

curves" for the same dimensionless viscoplastic strain rates 

or (3.48) 

lf only time-independent plasticity is considered, then the last term in 

(3.47) is tobe deleted and (3.47) simplifies to 

-.-- (3.49) 

thus, similarity simply requires, among others, 

equality of the dimensionless "stress-plastic strain curves", i.e. 

( ö(eP) \ ( ö(eP) \ 

lpRvdp ~lpRv~)m (3.50) 

One may raise the question whether this criterion applies also to the "ex­

perimental stress-total strain curves" intensionsuchthat 



- 33 -

(3.51) 

Some reflection about the geometric construction of the curves ö(e) from 

the knowledge of E and ö(eP) and with the additivity of elastic and plastic 

strains confirmes the validity of the similarity condition (3.51). 

Ä statement equivalent to (3.51) can be made for the elastic-viscoplastic 

material behavior, however, the constant curve parameter is still the di­

mensionless viscoplastic strain rate (3.48)1 and not the dimensionless total 
strain rate. 

lt should be noted that the dimensionless stress- strain curve can be obtained by 

choosing any "stress-related" normalizing quantity, for example, instead of 

PR vR2, one can take Youngs modulus E (see Table 3), the yield stress oy or the ulti­

mate stress Ou. 

ln general it is notasimple matter to find a material for the small scale modeltest 

which satisfies the similarity condition. ln the following this and related questions 

are discussed separately for the time-independent plastic and the viscoplastic be­

havior. 

Elastic- time independent plastic material 

For the elastic-time independent plastic material reponse there is a chance to find 

a model material which satisfies the similarity condition approximately in some 

strain interval 0 < e :::; Et of interest since only a single stress-strain curve has to 

be simulated. lf such a material is found, then the similarity condition (E) yields 

r-- r----
1 °ym I Ern 

""'"1--- 1-

~ oyp - ~ Ep · 

vRm I PRp 0 ym 
-- = 1----

VRp ~ PRm oyp 

(3.52) 

Thus, the choice of the model material puts a constraint on the characteristic ve­

locities, e.g., the impact velocities. 

ln particular the identification of a model material is required if the modeltest 
cannot be performed at the same temperature Ievei as the prototype, e.g., the 

prototype is at elevated temperature (T) whereas the model operates at room 

temperature (R.T.). There is an exceptional situation where the samematerial can 
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be used for the model test. lf the temperature affects the stress-strain curve 

uniformely suchthat 

R 

E(T) 
p 

oy(T) ( f: 'T) 
\f Ep I 

(3.53) 
--- = = e (T), 
E(RT) 0 y(RT) R 

p 
(!: 'RT) 

then similarity of the stress-strain curves at the different temperatures is assured 

and the same material can be used for the room temperature model test. Of 

course, if the temperature is non-uniformly distributed in the prototype then the 

variation of the material properties in the structure and the effect of thermal 

stresses are not properly modeled. Disregarding these effects, the characteristic 

velocity ratio is then given by 

v Rm l pRp 1 
--= 1----
v ~I P e (T) . 

Rp ~ Rm 

(3.54) 

ln the following the condition (3.53) is checked for two austenitic stainless steels, 

AISI 347 and AISI 304. Both steels are important in nuclear engineering: They are 

used for the upper internal structures of Light Water Reactors or Fast Breeders. 

Fig. 7 shows that a change of the strain rate by one order of magnitude, e.g. from 

t = 101 to 102, does not affect the 0.2% proof stress, ultimate stress and the uni­

form elongation of AIS I 304 (annealed) significantly at any temperature; the larg­

est influence is seen at room temperature. Such an order of magnitude change in 

strain rate corresponds to the difference instrainrate if the small scale modeland 

the large scale prototype are related by a scale factor A. = 10 and if the same im­

pact velocity is used, equ. (3.48); thus 

t = t A.. m p 

The main influence comes from a change in temperature from an elevated Ievei, 

say 400- 700 °C, down to room temperature. Therefore, the material response for 

model and prototype may be considered as approximately rate insensitive* but 

temperature dependent. Fig. 9 shows the temperature dependence of the proof 

stress and the ultimate stress of the two austenitic steels [28, 29] obtained in 
quasistatic tensile tests. 

* This assumption implies that the strain rate does not vary too much in the structure. 
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Fig. 10 represents the temperature dependence of the ratios 

I 00,2 (T) l 
l a (RT) J 

0,2 static 

in the interval 200 °( < T < 800 oc. lf perfect similarity of the stress strain curve at 

all temperatures with that at room temperature were found, then 

the two ratios should be the same at all temperatures, and 

the uniform elongations should be equal. 
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Fig. 10 shows that the first requirement is not strictly satisfied, but the relative 

difference is not large between room temperature and 700 oc. 

A more representative comparison is obtained if dynamic stress-strain data are 

used. Here the results of Steichen et al. [21] for AISI304 (annealed) shown in Fig. 7 

are used. The maximum strain rate is limited to t = 102 s-1. Therefore, it is as­

sumed that the prototype operates at tp = 10 s-1. Then for A. = 10 the model sees 

a strain rate of Ern = 102 s-1. Therefore, the following ratios are determined: 

o0,2 (T, E= 10) ou (T, E= 10) 

o 0 2 (RT, E= 102) 
I 

o u (RT, t = 1 02) 

as weil as 

o0,2 (T, E= 102) o u (T, t = 1 02) 

o0 2 (RT, E= 102) 
I 

ou (RT, E= 102) 

lt is found that 

o 02 (T,E=10) 
I 

ou (T, E=10) 
= 

o0 2 (RT, E= 102) 
I 

ou (RT, t= 102) 

The firstpair of ratios is the relevant one. Fig. 11a demonstrates that the relative 

difference in the ratios has increased. This is due to the fact that the temperature 

influence is different in quasistatic tensile tests compared to dynamic tensile tests. 

Finally, in Fig. 11 b the ratio of the uniform elongations 

e
9 

(T, E= 10) 

e
9 

(T, E= 102) 

is plotted. Perfeet similarity would require a ratio of 1. But unfortunately the uni­

form elongation e9 (RT, t= 102) in the fictitious model is clearly I arger than that in 

the fictitious prototype. lf the uniform elongation is taken as a failure Iimit, then 

the "ductility" of the model is definitely too large. These mismatched data prove 

that an other material choice for the model is required, if a size effect due totem­

perature differences is to be prevented. 
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Uniform Elongation of AISI Type 304 Versus Temperature 
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A fortunate simulation is found if the model test can be performed at the same 
temperature as the prototype and the same material can be used (replica 

models). Assurne that the material properties 

do not depend on the scale factor A, i.e., tensile tests of different size specimens 

taken from the same block of material yield the same stress-strain curve. Then the 

the similarity conditions (C) and (E ~ G) (Tab. 2) are satisfied if and only if the char­

acteristic velocities are the same 

(3.55) 

A restriction on the geometric scale factor A. does not exist since gravitational 

forces are assumed tobe negligible. 

Note that the conclusion (3.55) is obtained both for the purely elastic behavior 

(condition (C)) and the time independent plastic behavior (conditions (E) and (F)) 

(Tab. 2) independently. 

A basic requirement for the validity of (3.55) is the scale invariance of the elastic­

plastic material properties. This essential, presently taken for granted, will be dis­

cussed separately in section 3.2.5. 

Elastic-viscoplastic material 

For the elastic-viscoplastic material response it is more difficult to find a model 

material which satisfies the similarity conditions since not only a single stress­

strain curve but a set of curves has tobe simulated. lf a wide range of strain rates 

has tobe covered, this may be practically impossible. 

lf the small scale test is done at the same temperature as required in the full scale 

situation and the samematerial is used, then following conclusions are obtained 

(Tab. 2) 

(C) satisfied only iff v Rm = v Rp 

(E) & (F) satisfied only iff v Rm = v Rp 
(3.56) 

but then the contribution (G) on the generalized Reynolds number equ. (3.24) 

yields 
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- IRp -
"A---1; 

1Rm 
(3.57) 

thus a small scale model test using the same material is not possible. Here again 

the scale invariance of basicmaterial parameters and functions is tacitly assumed 

(see section 3.2.5). 

ln reality most structural steels are more or less strain rate sensitive and should be 

modeled by a viscoplastic material model. However, in some cases the sensitivity 

is moderate and one is tempted to ignore this effect. Thus, the material is simply 

considered to be time-independent plastic. 

lf the small scale modeltest is then done with the samematerial at the same tem­

perature as used in the full scale situation, then the strict scaling laws are not sat­

isfied and a size effect occurs. ln the following section this size effect is treated to 

some extend for rather simple conditions. 

3.2.4 Size Effect for Viscoplastic Material Response 

3.2.4.1 Constant Flow Stress Assumption 

To il!ustrate the size effect a simple impactproblern is considered: A mass vvith a 

given kinetic energy impacts a moderately rate sensitive but massless strut in a 

compressive deformation mode (Fig. 12). Note that wave propagation and buck-

Massless Strut Rigid Striker 

Cross-section F 

Fig. 12: Impact Problem (Schematic) 

ling phenomena arenot considered. The kinetic energy of the mass is 

2 
Ekin = fp V V (3.58) 
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p: density 

} V: volume of rigid striker . 

v: impact velocity 

The material response is described by a simplified viscoplastic model: Elastic de­

formations are entirely ignored suchthat the total strain rate consists only of the 

viscoplastic part 

further the strain hardening term R(EP) is neglected. Then equ. (3.46) simplifies to 

(3.59) 

The data of Steichen et al. [21-24] for stainless steel AISI304 at room temperature 

(Fig. 7) may be used to determine the parameters of the above simple model, pro­

vided the measured 0.2 % proof stresses are interpreted as the dynamic yield 

stresses o, equ. (3.59), at vanishing viscoplastic strain. Note that such an interpre­

tation is conceptually not possible for the complete elastic-viscoplastic model de­

scribed in section 2. 

A proper identification approach would be to develop on optimized fit to all the 

measured data within a prescribed strain rate interval but this Ieads to a nonline­

ar system of algebraic equations for oy. Ay and n. Forrestal and Sagartz [31] have 

performed a fit to these data but the method they used is not readily available. 

They obtained [31] 

-1 
ay = 172.34 MPa I Ay = 100 s 1 n = 10 

= 25 · 10 
3 

psi 
(3.60) 

and this fit is shown in Fig. 13. 

lt should be observed that the above data correspond to the following choice of 

the static yield 

(3.61) 

where o** is the measured proof stress at a strain ratet** = 102 s-1. lf the mea­

sured data point (t**, o**) is then exactly fitted by the relation (3.59), one finds 
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** 2 -1 = 10 s . 

Oy 

[ MPa] 50 

300 t 
Oy 

[ksi] 
40 

t 
30 200 

20 
• Experim. from [ 21-23] 

-oy= 25ksi ·[l+(E/100)0.1] 
1 

,from [ 31] 

-·-oy = 25ksi .[,+(t/100) 8,1677] 
100 

1 0 

o~----~------.------~----~-----4-o 

1Ö 3 10 
E r s-1 J 

100 

(3.62) 

Fig. 13: 0.2 % Proof Stress Versus Strain Rate (Room Tempeiature}, Based on [31] 

The choice of the "static yield stress" equ. (3.61) can be interpreted as follows. 

The existence of a "static yield stress" is not evident from the data in Fig. 7. There­

fore, a choice has to be made, for example the smallest measured dynamic proof 

stress or some value below this one. According to Fig. 7, the value of oy = 25 ksi 

corresponds to an extrapolated proof stress at about t :::::::: 10-5 s-1. 

ln the following the same choice is made, i.e. 

** 3 oy = t o = t344.74 MPa = 172.34 MPa = 25 · 10 psi 

** 2 -1 
Ay = t = 10 s . 

(3.63) 

Then the exponent "nn is determined by a leastsquarefit to the room tempera­

ture data of Fig. 7 in the range 10-5 < t < 102 as follows 

6 

2:: = Min 
i= 1 
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which yields 

6 

L 
i=1 

n 

where (Ei, Oi) are the measured data pairs. One obtains 

n = 8.1177 . 

(3.64) 

(3.65) 

The measured yield stresses and the fit are compared in Fig. 13. Note the differ­

ence of the exponents. This is partly due to the fact that in equ. (3.64) the data 

base is somewhat larger. This condudes the parameter identification. 

lf the small-scale modeland the full-scale prototype are made from the same ma­

terial and the impact velocities are the same 

(3.66) 

then the kinetic energies scale according to 

( E kin ) p ( V p \ 

( E kin ) m = l V m ) 

(3.67) 

For reasons of simplicity it is assumed that the flow stresses in the struts are con­

stant or can be represented by some average value öp and öm. respectively. Then 

the plastic work in the struts are 

(3.68) 

where F is the cross section area of a strut. Assuming that the kinetic energy is 

completely dissipated by the plastic deformation, then 

( E k' ) = W , ( Ek. ) = W m p p m m m 
(3.69) 

Thus, 

(3.70) 
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i.e., the plastic work per unit volume are the same in the prototype and model. 

From (3.70) one gets 

-=-. (3.71) 

The initial strain rates in the struts are 

V 
(3.72) 

and therefore 

(3.73) 

with 'A > 1 the initial strain rate in the model is 'A-times larger than in the proto­

type. Therefore, the initial flow stress in the model is larger than in the prototype. 

With 

em öp 
-=-<1 
EP öm 

(3.74) 

the final strain in the model is underestimated; this relative underestimation is in­

versely proportional to the relative increase in the average flow stress in the 

small-scale model. 

ln the following an estimation of the flow stress ratio öp/öm is given. lnitially the 

strain rate is 

V 

After the first contact of the mass and the strut the velocity and thus the strain 

rate continuously decreases until the mass has come to a halt. Thus the strain rate 

varies in the interval 

(3.75) 

Accordingly, the flow stress o is bounded by 
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Using the lower bound as an estimate for ö, one gets 

The upper bound yields 

( E \ II 

l .: ) 

with (3.73) one obtains 

where 

II 

ß . -op.-

öp oy 
1 = = = 

öm oy 

=---------

II 

+ ßop 
=-----

+ß/1 A.1/n 
op 

(3.76) 

(3.77) 

(3.78) 

Consequently, the use of the lower bound amounts to ignoring the viscous effect 

suchthat similarity is obtained. The use of the upper bounds yields a dependence 

of Em/Ep on the geometric scale factor. 
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With A. > 1 I formally equ. (3.77) may be simplified: 

(1) lf the initial dynamic yield stress is very large compared to the static yield 

Stress Oy for the prototypel i.e.ll 11 
op ~ 1 I then 

( E \ II 

l E:) =--

(2) lf this is true only for the modell i.e. ll" op A. 11n ~ 1 onlyl then 

( E \ II 

l ,: ) 
> 1 

Howeverl it appears that these simplified situations are difficult to obtain for real 

materials. 

An improved estimation can be derived as follows. The equation of motion for 

the point mass is 

With 

pVx=-oF. 

u 
-=e 
I 

and (3.59) equ. (3.79) reads 

dt 1 F 
E = =---o 

dt pl V Y 

Seperation of variables yield as a firstintegral 

dt 1 F -------= ---0 t. 
pl V Y 

(3.79) 

(3.80) 

(3.81) 

(3.82) 
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Unfortunately a closed form solution for the left hand side is not available. There­

fore, it is reasonable to try an approximate solution of (3.81) by using an average 

value ö"' for the flow stress o. on the r.h.s. of (3.79) in the strain rate interval 

(3.75). Thus 

111 

ö = 

0 

(3.83) 

= o { 1 +~ ( t o \) 1 /n _n }) 
Y A n+1 

y 

With this results integration of (3.79) yields 

( 

\ 111 1 + 
110

"p, 
Ern I = 

I sp ) ---"-~ -1 /-n 
\ + /1op A 

(3.84) 

where 

111 ( · \ 1/n 
e op I n " n 

l_l --=11 --
\ Ay ) n+ 1 op n+ 1 ' 

(3.85) 

Clearly 

(3.86) 

Note that for large values of the exponent n the factor (n/(1 + n)) is close to 1. 

Thus 

11 I II 

(3.87) 

and the upper bound estimate for ö is sufficiently accurate. 



- 48 -

These results will be illustrated by some numerical data for the stainless steel 

model described above. From (3.85) it is evident that l.l 1 11 ap depends on the initial 

strain rate in the prototype strut. For two initial strain rates top and different 

scale factors "A the corresponding ratios (Em/Ep)" 1 and l.l 1
" ap are listed in Tab. 4. 

( Em/Ep )"' 
top (s-1) /.l'"op (-) 

"A=2 10 50 

1 Q-1 0.4095 0.9748 0.913 0.8475 

102 0.890 0.9559 0.866 0.774 

Tab. 4: Size Effect under Impact Conditions for Stainless Steel AISI 304 at 
Room Temperature 

lt is seen that the underestimation in the permanent strain of the model is always 

less than 14% for scale factors "A < 10 and top :5 102. 

3.2.4.2 Variing Viscous Stress 

One should remember that the simple formular (3.84) is based on the assumption 

that the deformation is approximately uniform in the structure and a constant 

average flow stress is representative. For the above example the dynamic yield 

stress varies in the prototype by a factor of 2 between the "dynamic" value 

-347 N/mm2 at an initial rate of top = 102 s-1 and the "static" value 

-172 N/mm2; this is a considerable margin and it is not clear whether an 

accountance for this decrease of the flow stress du ring the deformation, which is 

a kind of "viscous softening", would affect the ratio (em/Ep)'". 
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Some orientation may be obtained from a numerical study on penetration and 

perforation dynamics. Anderson, Mullin and Kuhlmann [32] performed a compu­

tational study to quantify the effects of strain rate on replica-model experiments 

of penetration and perforation. The impact of a tungsten-alloy long rod projec­

tile into an armor steel target at 1.5 km s-1 was investigated. The target consid­

ered was 4340 steel and its constitutive responsewas represented by the Johnson­

Cook model [33]: 

o eq = 792 [ 1 + 0.644 e ~q26 J [ 1 + 0.0141n C:q J [ 1 - T * 1
·
03 J ; 

* . > 1 eeq -

o eq v. Mises effective flow stress (MPa) 

e equivalent plastic strain eq 

E * = E je E = 1S -1 
eq eq o ' o 

* T : homologaus temperature . 

Fig 14 shows the stress-strain response under isothermal and adiabatic conditions 

(thermal softening). 

2 .5 
Strain Rate r s -, 1 

c 
-1o1 Isothermal c... 2.0 c..:::> 

(I) --103 
(I) 

---10 5 w 
..... 1.5 ..... 

V') 

c:: 
CU 

c 1. 0 > 
~ 
c:::r 

LW 

0.5 

0~------~--------~-------.------~------~ 

0 0.5 1.0 1.5 2.0 2.5 
Plastic Strain [ - J 

Fig. 14: Stress-Strain Diagram for 4340 Steel According to the Johnson-Cook 
Model for Different Strain Rates and Under Isothermal and Adiabatic 
Conditions, from [32] 
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The constitutive behavior of the tungsten alloy is described by 

oeq = 1350 [ 1 + 0.06ln <q J. 

The strain rate sensitivity of the targetmaterial for isothermal conditions is mod­

erate: An increase of three orders of magnitude from Eeq = 1 s-1 to 103 increases 

the flow stress by about 10 %. The sensitivity of the rod material is more pro­

nounced: The increase in flow stress is about 0.06/0.014 = 4.25 times larger, i.e. 

43 %. in comparison the increase in flow stress for stainless steel AIS I 304 is about 

50% over the same strain rate interval. 

Anderson, Mullin and Kuhlmann did the analysis with a three-dimensional 

Eulerian wave propagation computer program; it includes, of course, a variing 

viscous stress and thermal softening. lt was found that over a scale factor of 10, 

strain rate effects change the depth of penetration, for semi-infinite targets, and 

the residual velocity and length of the projectile, for finite thickness targets, by 

about 5 % only. Such a small effect is likely not separable from experimental 

scatter. 

A more definite conclusion can be obtained by calculating some examples. lf 

equation (3.81) or (3.82) were integrable analytically, the influence of the de­

crease of the viscous stress could easily be estimated. But a closed form integral of 

the left hand side of (3.82) does not exist. Therefore, modified rate models are 

considered. lnstead of (3.59) the relation 

( t \ 1/n 

o = öy · \ 1 + ÄY ) , n > 1 

and the linear relation (3.88) 
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are used. Then the appropriately changed left hand side of (3.82) yields 

Nonlinear model: 

t 
0 

dy 

( y \ 1 /ft 
\ 1 + Äy ) 

Linear model: 

( 1 +~' I - I 
dy I A I 

----=ÄII yl 

( 
\ Y nl t I 

t 
0 

1+ y I 11+ o)l 
\ Äy) \ Äy 

Equ. (3.89) combined with the r.h.s. of (3.82) gives 

Nonlinear model: 

r( - )ft~1 1 1 F (ft-1) 1ft-1 
t (!) ~ - Äy + l t o + Ay n - Ä: /ii pj V ö y fi t J 

Linear model: 

1 1 F _ 
----0 t 

Ä pl V Y 
e Y - 1 

J 

(3.89) 

(3.90) 
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The impacting mass comes to a halt when t = 0; thus 

Nonlinear mode/: 1 

r 
- ri 1 n -

_ 1 /ri V 1 ri . _ f\1 _ Ii - 1 
t = A pl - - - ( E + A ) - - A 
f y F ö ri-1 o y y 

y l J 
(3.91) 

Linear mode/: 

- V 1 ( to \ 
tf = A pl--ln l1 +-_-) Y F ö A 

y y J 

The integration of (3.90) yields with the initial condition 

t=O, e=O 

Nonlinear model: 

- - 1 /ri V 1 fi 
E(t) = - Ay t - Ay pl F -_-

oy ( 2ri- 1 ) 

) 

I 
fi-1 ~~::; 

( t +Ä )"A __ , .2._.!:_ö (~)t 
0 Y 1 /fi pl V Y ri 

Äy J 

2ri- 1 

r 
ri -1 1--1 

( to + Äy) A n-

l J 

(3.92) 

Linear model: 

( --
1 2_.!:_ ö t \ 

V 1 
I Ä pl V Y 1 

-2 I y I 
A pl-- I 1 - e 

1
1 - Äy t. 

Y F - I 

oy ~ ) 
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Consequently, the final strains are 

With 

and 

Nonlinear model: 
-2 V 1 fi 

Ef = Ay piF--- fi-1 
oy 

Linear model: 

t 
om 

I 
V V p 

=- = -- = t A 
I I I op 
m p m 

F V I 
1 p m m -----

F V I A2 
m P P 

the ratio of the final strains of the modeland the prototype are 

(3.93) 

(3.94) 
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Nonlinear model: 

_211-1 1 
11 - 1 

J 

r 
( top \ 

_ I 1 + -f.. I 

l \ Äy ) 

11- 1 1 
11 

- 1 

J 

11- 1 r ( top \ __ 11+-1 

211- 1 \ Äy ) 
(3.95} 

r 
( top\ 

_ I 1+- I 

l \ Äy ) 

-1 
11- 1 1 

11 
- 1 

J 

Linear model: 
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These results should be compared to the corresponding results obtained under 

the assumption of a constant viscous flow stress ö. With (3.88) one gets 

Nonlinear model: 

1 
ö =-Ö 

t y 
0 

0 

Linear model: 

1 
ö =-Ö 

t y 
0 

0 

1 
=-ö 

t y 
0 

r( . \fl+1 1 
- Eo I 

Ä ~ I 1 +---)I n - 1 
Y n+ 1l \ Ay J 

Observing (3.71) the strain ratios are 

Nonlinear model: 

-+1 1 
~ 1 + top 1 n n - 1 

E Ö l \ J 
_m_ = _P = A -------
E 

p 
ö m 

Linear model: 

E 
p 

ö 
m t 

0 
1 +--"A 

2Ä 
y 

(3.96) 

(3.97) 
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Fora quantitative comparison of the two ratios Efm/Efp and Em/Ep it is necessary 

to choose the parameters Öy1 Äy and n of the two material models. 8oth models 

are defined in relation to the model equ. (3.59) 1 i.e. 1 

a = a y 

o = 25 ksi I 

y 
-1 

A = 100 s I 

y 

(3.98) 

n = 8.1177 . 

Equ. (3.98) represents a nth-order root parabola whose vertex is positioned on 

the ordinate at oloy = 1 (Fig. 15). The nonlinear relation (3.88)1 may be written as 

( A t \~ 0 = I 1 + __l_- In (3.99) 
oy \ AY AY ) 

lt is an nth-order root parabola whose vertex is on the abzissa at t/ Ay = -Äy/ Ay 

(Fig. 15). 

This parabola is choosen suchthat it has two points in common with (3.98): The 
intersection on the ordinatesuchthat 

(3.100) 

and the point 

Consequently 

(3.101) 
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Fig. 15: Dynamic Yield Stress Versus Strain Rate for Tree Different Constitutive 
Models 
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A third condition could be the least square fit of the two functions (3.98) and 

(3.99). However, this isafurther non-linear condition. A moresimpler but less ac­

curate approach is as follows: lt is required that the function (3.99) is just 5% less 

than the value of (3.98) aU:/Ay = 0.1.*) Thus, 

1.665 . (3.1 02) 

From (3.101) and (3.102) one obtains 

and this yields 

( A 'ß 
I 1 + .2_ 0. 1 .JI 

~' Äy ' 

(3.103) 

A first estimate shows that Ay/ Äy ~ 1. Therefore, (3.1 03) is approximated by 

( Ay 0.1 ~ ß Ay 

\ Äy ) - Äy 

This yields as a first approximation 

Furtheriterations yield 

ß 
Ay = 0.1 ß-1 = 6105.6 . 

Äy 

(3.1 04) 

* This coice was made to assure that (3.99) is a lower bound of (3.98) in the interval 
0 < t/Ay < 1. 
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which is accurate up to the 4th digit. Thus 

and 

Ä = 1.647 10-2 
y 

( Ay ' 
ln l1 + -Ä-y ) 

= ----- = 12.568 . 
ln 2 

1 

With these parameters the function (3.99) is shown in Fig. 15. 

For the linear model the following choice is made 

(3.105) 

(3.106) 

and this relation is also plotted in Fig. 15. Thus, the nonlinear and linear model 

(3.88} are qualitatively rather different: The nonlinear model is similar to the 

original visco-plastic model (3.98) and over a large strain rate regime the flow 

stress varies only moderately; the linear model varies continuously. 

The two approaches (3.95) and (3.97) are exercised for the selected values 

· 10 7 - 1 . 2 ·o 5 E
0

p = - s · I A = I 1 I 0 

and the results are summarized in Tab. 5. 

Tab. 5: Size Effect under Impact Conditions for a Nonlinear and Linear 
Constitutive Model with Different Assumptions about the Flow Stress 

8fm/8fp (Variing Flow Stress) 

Em/Ep (Constant Flow Stress) 

A.=2 A. = 10 A. =50 

0.94635 0.83261 0.73253 
Nonlinear Model 

0.94638 0.83266 0.73253 

0.734 0.2477 0.060 
Linear Model 

0.75 0.25 0.058 
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For a very large scaling range 'A < 50 it is seen the results of the approximate 

method yielding Em/Ep are quite sufficiently accurate not only for the nonlinear 

model but also for the linear model. This is understandable for the nonlinear 

model since the viscous stress varies moderately over one order of magnitude of 

strain rate. 

lt is also noted that the size effect of the nonlinear model is comparable tothat of 

the original viscoplastic model (Tab. 4) and it is relatively moderate. However, the 

linear model shows a rather pronounced size effect. 

3.2.4.3 Enhancement of the Strain Rate Effect Due to Strain- or Deformation­

Softening 

ln connection with interpretations of discrepancies between impact experiments 

of replica models and linear scaling theory [34] Calladine [35] pointed out that in 

structures with a falling load-deflection characteristic an increase in the flow 

stress in the small scale model due to a strain rate effect causes a proportionally 

much larger decrease in the final deformation than in structures with a constant 

load-deflection characteristic. A falling load-deflection characteristic is not so 

much a constitutive property but a property of the structure and is related to a 

crushing or buckling phenomenon. Qualitatively this effect may b~ explained as 

shown in Fig. 16. lt is valid for the case the specific kinetic energy of the impacting 

mass is the same for both the model and the prototype and is completely dissi­

pated by plastic work; also astrainrate sensitive material is used. Fig. 16a shows 

the simple case with a constant crushing force as treated in section 3.2.4.1 which 

yields 

= (3.1 07) 

Fig. 16b demonstrates a falling crushing stress which is proportionally enhanced 

in the model due to the strain rate effect. The equality of corresponding plastic 

work areas implies 

Ern op 
- <- = const. 

(3.1 08) 

EP om 
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1 
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Fig. 16: Enhancement of Size Effect in Viscoplasticity Due To Strain-Softening, 
from [35] 

Calladine [35] has performed a simple analysis but this needs correction and sup­

plementation. 

ln the following a visco-plastic model with a strain softening behavior is consid­

ered: 

0 = 
r 

- aE 
+ o 1 e 

strain softening 

\ ( ( t \ 1/n \ 

) l1 + ~ Ay ) ) 
(3.109) 

strain rate sensitivity 
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and it is assumed that all parameters are scale invariant. Fig. 16b gives a qualita­

tive impression of the stress-strain response at constant strain rate. lt should be 

noted that this is a mathematical construct and the parameters oo, 01, a, and r> 1 

arenot related to physical data of a real structure. For the impactproblern consid­

ered the strain rate influence is approximated as before by the mean value 

( ( t l 1/n \ 

~ 1 + ~ Ay ) ) 
dt = 

( t o l 1/n n 
1+1-1 --

~Ay) n+1 

0 

in the rate interval 0 <t st0 where 

V 

is the initial strain rate. Thus 

l ( ( t o l 1 /n n l 
111+1-1 -1 

) \ ~ Ay j n+ 1 } 

' ' 

With this simplification the stress work is 

Substituting 

the last integral in (3.111) is 

1 /r 
e* = a e 

(3.110) 

(3.111) 

(3.112) 



- 63 -

e- E de * *r l 
(3.113) 

0 

1 r o, 1 1 
=- e*+ -- E ( E*) . 

a1/rl aor! r J 

Here Er is defined by 

X 

Er (x} = r! (3.114) 

0 

and shown in Fig. 17. The function Er(x) is the error integral. 

t 

0,0 -lL----+---+------1t-----+---+---..----J 

0,0 0,2 0,4 0,6 0,8 1,0 1,2 
- ..... X 

Fig. 17: Error Integral and Related Functions [36] 
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Consequently, 

r 
( . \ 11

n 1 I l E Eo I n 1 °1 1 

J o dE = o 1 -1- I - I -- · E -1------ E ( E*) . 
0 0 l \ Ay ) n+ 1 J l a 1/r oo r! r J 

(3.115) 

Following energetic arguments (section 3.2.4.1), the stress work for the small 

scale model equals that of the full scale prototype 

(3.116) 

Thus 

1 °1 1 
E +-----E 

P a 1/r 00 r! r 

( t \ 1 /n 
Op I n 

1+1-1 --
\ Ay ) n + 1 ( E \ 111 

( 0om \ 1/n n ~ l ": ) 
1+1 __ 1 --

\ Ay ) n+1 

(3.117) 

1 °1 1 
E +-----E 

m 1 /r r! r 
a 0 0 

-------------------- = 

here equ. (3.84) is observed. A further simplification is necessary to obtain a us­

able result. Assurne that the residual stress oo at I arge strains issmall or vanishing, 

then (3.117) simplifies 

( t \ 1 /n 
Op I n 

1+1-1 --
\ Ay j n+1 

(3.118) = < 1 . 

( t \ 1 /n 
Om I n 

1+1--1 --
\ AY ) n+1 

For small values of 

the function Er is approximately linear and therefore 

(3.119) 
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Thusl the deformation softening has no effect. For large values of E* the function 

Ertvrr may be approximated by a power function in some interval. For examplel 

with r=2 

where 

A = 0.8427 I c = 0.6951 1 0.5:::; c*:::; 1.0 

A = 0.9427 I c = 0.3370 1 1.0 :::; c* :::; 1.5 

(3.120) 

(3.121) 

These parameters have been found by fitting the power function to the values of 

E2/vrr at the end-points of the intervals. The power function underestimates 

E2/vn in the middle of the intervals by less than 3 %. Then the l.h.s. of (3.118) is 

approximated by 

(3.122) 

Herel of coursei it is assumed that both values E*m and E*p are within the same in­

terval. 

Theseapproximations finally yieldl observing (3.84)1 

( 

111 \ 1 /c 
Ern 1 + L.lop 

= I 1 
111 1 /n j' 

Ep \ + L.lop A. 

( E \ 111 1/c 

I m I 

= l ~) (3.123) 

Since c< 1 I the deformation softening further decreases the final strain in the 

model beyond the decrease due to the strain rate sensitivity. For examplel with 

'A= 10 and top = 102 s-1 I one gets from Tab. 5 

111 

1 + L.lop 
=----- = 0.866 

111 1 /n 
+ L.lop A. 

and thus 
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Em = { 0.812 if 0.5:::; a 
112 

E < 1.0 

E 0.650 if 1.0:::; a 112 
E < 1.5 

p 

(3.124) 

where E represents Ern and Ep. ln the first case the effect of deformation softening 

is Jess than 10% and in second it amounts about 25 %. 

lt should be realized that these sample calculations were done to illustrate the 

generat qualitative trend; quantitatively they are not related to a precise me­

chanical model. 

3.2.5 Scale lnvariance of Material Data 

A fundamental requirement for similarity experiments with replica models, i.e. 

small scale models made from - nominally- the "same material" asthelarge pro­

totype, is the sca/e invariance of the basicmaterial data and functions as assumed 

in the theory. The realization of this requirement has technological as weil as 

physicallimitations [37]. 

The technological size effect observed for material data obtained in small and 

large size specimens is due to different fabrications, e.g. casting, cold working or 

forging conditions, heat treatment, and mechanical treatment (turning, grind­

ing). However, this effect can be limited or even eliminated by keeping treat­

ments for the different size specimens the "same". Beyond that one should take 

care of the fact that the different size specimens are taken from the same posi­

tion of the raw material to eliminate gross inhomogeneities. 

ln spite of such precautions size effects on material data have been found. 

Faulhaber et al. [38] supposingly state that for homogeneous states of tensile and 

compressive stresses similarity laws are sufficiently accurate such that the yield 

stress and the ultimate stress are size invariant. This is demonstrated in Fig. 18 

which shows,among others, the upper tensile yield stress of a plain carbon steel 

obtained by Morrison [39]; a scale factor of 1 < A. < 3.55 is covered. ln Fig. 20 the 

ultimate tensile stress for 7075-TG alumini um is plottedas a function of specimen 

size with 1 < "A. < 8.2 and Fig. 21a presents the ultimate tensile strength of 

AISI H-11-steel which corresponds to 1.3343 (X38 Cr Mo V51) [40]. 
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Thorton [41] performed tensile tests of annealed samples of a ground-to­

thickness low carbon steel sheet and obtained values for the quasi-static lower 

yield stress, ultimate stress, and elongation (Tab. 6). 

Tab. 6: Mechanical Properties of Low Carbon Steel Sheets (annealed 1 hr at 
500 °(, air cooled), from [41] 

Scale factor Thickness 0.2% Proof Ultimate %Elongation Stress Stress 'A mm MPa MPa 2 in. (5.08 cm) 

1 3.25 248 311 35 
1.33 2.44 249 314 33 

2 1.64 261 319 29 
2.66 1.22 264 318 28 

4 0.83 266 322 29 

Over the range of scale factors 1 ::::; 'A ::::; 4 the lower yield stress increases moder­

ately by about 7% whereas the elongation reduces by 17%. 

Shearin, Ruark and Trimble [42] reported that true size effects in ordinary tensile 

tests of ductile engineering materials aresosmall that they are difficult to detect 

and still more difficult to measure. They found a small size effect in the maximum 

true stress and in the breaking stress of a nickel-chromium steel; however, errors 

were large enough to mask the effect and make their reality uncertain. However, 

an unmistakable size effect was found in the reduction of area. 

lf inhomogeneaus stress distributions are present, for example such simple cases 

as pure bending or torsion, the situation is complex; of course inhomogeneaus 

stress distributionsarealso generated by cornerns, notches or cracks but these are 

not considered here. Thum and Wunderlich [43] observed an increase in the yield 

stress in case of bending of about 40- 60 % compared with the yield in tension. 

Also the height, width or length of the specimen had no sensible effect, results 

which may suggest that there is no size effect. However, the specimen had no 

geometric similartiy. lt was also found that the form of the cross section relative 

to the plane of bending has an important effect on the magnitude of the yield 

stress: The more material is concentrated araund the neutral axes, the higher is 

the yield stress in bending. 

Thum and Wunderlich proposed a qualitative explanation for this effect: Steel 
and probably also other metals yield in finite thickness Jayers if some layer has 

reached the yield stress found in a tensile test, then this layer gives suddenly way 
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to the loading. This formulation is still rather vague; in the later discussion an in­

terpretation will be given which allows a quantitative analysis. 

The results of Thum and Wunderlich, however, are subject to doubts since the 

specimens were not sufficiently homogeneous: lt is stated in [43] that nearly all 

steels were segregated; therefore, the yield strength in the boundary layer was 

smaller than in the core region. 

Morrison [39] has performed a series of careful tension, torsion and bending tests 

as weil as combined tests on the (upper) yield of plain carbon steel with particular 

reference to the effect of size of the specimens. The tension tests (Fig. 18) were al­

ready mentioned above. The torsion (Fig. 18) and bending tests (Fig. 21 b) yielded 

an increase in the apparent stress at yield with decreasing specimen size. Fig. 18 

shows the results for two series of torsion tests differing in the heat treatment. ln 

Fig. 19 these torsion test results are normalized with respect to the tensile yield 

stress and are combined. lf the one inch-diameter specimen is the prototype, then 

these tests cover a scale factor up to A=8.67 and the ratio of the apparent shear 

stress at yield is 

(3.125) 

where the subscript "m" refers to the "model" and "p" to the "prototype". 

For the the bending test (Fig. 22) there is no sudden change in the slope of the 

curves as the moment is increased; it is therefore impossible to tabulate a value of 

the stress at which yield occurred on the bases of these curves alone. But it is ap­

parent that the shape of the curves are affected by the size of the specimen. 

These bending experiments cover a range of 1 $.A < 5.2 and the maximum value 

increases by about 8% when the size is decreased from the largest to the smallest 

specimen. 
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Size Effect in Flexure: Moment-Angle Curves; from [39] 

Morrison discussed the effect of inhomogeneaus stress distribution in relation to 

the crystal structure. He stated that "yield cannot occur in an individual crystal 

surrounded by unyielding material but only in a number of crystals which occupy 

a sufficient thickness to permit of the complicated readjustment which must take 

place before movement can occur, it is unreasonable to expect to find yield be­

fore a stress equal to the yield stress in uniform tension is applied to a depth of 

this magnitude. lt seems reasonable to suppose that the depth might be of a few 

crystal diameters." Morrison [39] proposed a model simulating the drop in yield 

stress (upper and lower yield stress) and which involves a single Jength parameter. 

Fitting this parameter to the experimental results, the dotted curves in Fig. 22 are 

obtained. 

Weissand Yukawa [40] have published strength data for bending specimens (Fig. 

21 b) made from AIS I H-11. Here again a size effect with the same trend is present 

and is very pronounced over a scale range of 1 ::;:;A<4.8. Unfortunately, the pre­

cise meaning of the strength data is not given in [40] and also other details of the 

experiments are missing. 

The present data for monotonaus quasistatic Joading support the opinion that 

the yield stress and ultimate stress for homogeneaus stress fields are scale invari-
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ant or only moderately depending on scale, provided technological variability is 

excluded and the specimens are taken from a very homogeneaus material; also 

the specimen should not be too small so that they lose their polycrystalline char­

acter. Shearin et al. [42] state that 50+ 100 grains should be present across a 

diameter. 

Whether the uniform elongation, the strain associated to the ultimate stress and 

indicating the initiation of necking, is also scale invariant, is presently not known 

to the author. 

Further, there is experimental evidence that the c/assica/ loca/ yield criteria 

where local values of the stress etc. define the initiation of yielding- arenot valid 

for inhomogeneous stress field; i.e., when a stress gradient is present (e.g. bend­

ing and torsion). Deviations of about 15 % in the yield have been found for a 

scale factor of i\= 10 [39]. Much larger deviations have also been observed [38, 

40]. Clearly, this problern needs further attention. 

A fairly generat and qualitative explanation is as follows. A material, which is ho­

mogeneous from a macroscopic point of view, is structured on a microscopic Ievei 

due to the grain structure, micro-inhomogenities and defects. Therefore, the ma­

terial data obtained in a usual tensile test with nominally homogeneaus state of 

stress represent average values over some finite area or volume. 

lf stresses in a structure do not change appreciably across spatial regimes, then it 

may suffice to compare a /oca/ stress value with the corresponding characteristic 

material value obtained in a tensile test. However, if large stress gradients are 

present due to bending or torsion in smooth structures or due to corners, notches 

and cracks with stress singularities, the comparison of a local stress value with 

characteristic average material data is not appropriate. Rather some averaging 

procedure or integral measures*) must be used [44- 46]. lt is also noted that the 

stress gradient, e.g. ao/az in the case of bending of a beam, depends on the geo­

metric scale factor i\ if the "same materials" are used in the modeland prototype: 

*) Such measures were taken especially to cope with stress singularities [45, 46], e.g. 
the concept of "Mikrostützwirkung" (micro-supporting effect) of Neuber [46]. 
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i.e. the stress gradient is 7\-times larger in the small scale model than in the large 

scale prototype. Thereforel the microstructural variations have a more pro­

nounced effect for smaller models. This implies a size effect. 

lf the yield condition should reflect scale dependence as observed in the experi­

mentsl then phenomenological approaches are conceiveable to describe this size 

effect; for example: 

an integral yield condition which involves the stress (or strain) distribution 

in a finite region of the body 

or a loca/ condition which involves not only the stress (or strain) but also 

stress gradients (or strain gradients). 

Such conditions automatically involve a length scale. 

The second approach 1 e.g. the inclusion of first or higher-order spatial gradients 

of the plastic strain in the yield conditionl was used by various authors (Flecket al 

[48]1 Zbib [49] and Mühlhaus and Aifantis [50], Zbib and Aifantis [51 I 52]) to ex­

plain or describe several observed plasticity phenomena which display a size ef­

fect such as the increase of hardening with a greater imposed strain gradient or 

the modeling of shear banding. 

ln the following the first approach is illustrated by a simple example for the case 

of pure bending and torsion. This choice is motivated by the suggestion of Thum 

and Wunderlich [43] as weil as Morrison [39]. lt is noted that similar approaches 

are used to characterize the size dependence of the fatigue Iimit [44, 47]; this is 

partly based on statistical concepts. 

Pure Bending: 

The following model describes the initiation of yielding in a finite thickness 

boundary region of a beam with reetangular cross section (Fig. 23). lt is assumed 

thatl considering a standard tensile testl a single value o0 defines the initiation of 

yielding*)~ i.e. the existence of an upper and lower yield stress is excluded. lt is as­

sumed that the average stress in a boundary layer of thickness d* I section area 

A*=Bd* and volume V*=A*L1 where Bis the width and L is the length of the 

beaml must attain the uniform tensile yield stress o0 to initiate "yielding in this 

*) A precise operational definition of "yielding" is not given here; in the experiments 
different concepts are used. 
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layer". ln addition it is necessary to make an assumption which of the three geo­

metric quantities d*, A * and possibly V* should be viewed as a scale invariant ma­

terial property; this choice is postponed. 

Fig. 23: Pure Bending of a Beam with a "Micro-Supporting Effect" in a Finite 
Thickness Boundary Layer 

lf H is the height of the cross section, then the integral yield condition is 

1 /H/2 1 /H/2 
- oßdz =- odz = o A*=d*B. 
A* H/2-d* d* H/2-d* 0

, 

(3.126) 

As long as the condition (3.126) is not satisfied the stress distribution is entirely 

elastic 

M 
= -z, 

J 

M : bending moment 

BH
3 

J=~~ 
12 

: moment of ineitia 

Integration of the left hand side of (3.126) yields 

-
1 

H/
2 

o d z = -
1 

M ( !:! ) 
2 ~ r 1 - ( 1 -~ ) 2 l. 

d' f H/2 _ d' d' J 2 2 l , H/2 J 

With 

MH 
0 =--

max J 2 

which is the maximum elastic bending stressatz = H/2, one gets for the initiation 

ofyielding 
d* 2 

0 max =o --------

o H/2 r 1 - ( 1 -~ ) 21 

l H/2 J 

(3.127) 

of course, this is only valid if d* I (H/2) ~ 1. 

lt is convenient to introduce the area (or volume) ratio 
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A* d* 
a* = -- =- (3.128) 

BH/2 H/2 

where BH/2 is the cross section area in tension (or compression) and A * is the 

yielding section in tension (or compression). Then (3.127) takes the form 

0 max 2 
-- = a* ------

0 o [ 1 - ( 1 - a*) 2 J 

Fora*~ 0 one derives (applying !'Hospitals rule) 

and with a* ~ 1 one gets 

lim 0 max 
--= 1 a*......,.Q 

00 

lim 0 max 
--=2. 

a*___,. 1 
00 

(3.129) 

(3.130) 

(3.131) 

Fig. 24 shows the apparent yield stress Omax in bending as a function of 1 /a* > 1. 

This curve reflects the size dependence of the apparent yield stress in different 

ways, depending on the hypotheses used: 

(a) lf the thickness d* of the yielding layer is a sca/e invariant material prop­
erty, which corresponds to the number of grains across the layer, then 

1 H/2 
= 

a* d* 

and the abscissa in Fig. 24 is proportional to the size of the specimens with 

reetangular cross section (case A). 

(ß) lf the area A* is a scale invariant material property, then 1/a* = 

(BH/2) I A* which is proportional to the square of the length scale. Espe­

cially, if the cross section is quadratic, one gets 

H2/2 

a* A* 

(y) Provided V* = A * · L is a scale invariant material property, then 

LBH/2 
= 

a* V* 

is proportional to the cube of the length scale. However, since there is no 

stress gradient along the length of the beam, this choice is not physically 

plausible. 
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ln any case for 1 /a* close to 1 I i.e. for "small" specimensl the increase of the ap­

parent yield stress in bending above the uniform tension yields stress o0 is consid­

erable. Howeverl for 1 /a* > 5 the size effect is less than 10%. 

For the purpose of illustration it is shown that the integral yield condition (3.127) 

can also be formulated in a local form involving a stress gradient. For the case of 

pure bending (case A) the bending stress distribution may be represented by 

o(z) = o(z=H/2) + ( :; )z=H/2 ( z-H/2). 

lnserting this in (3.126) and integration yields 

- o _ - - (z- H/2) dz = 1 JH/2 [ ( do) l 
d* H/2-d* (z-H/2) dz H/2 

( 
do) H 1 [ d* l 

= 0
max + dz H/

2 
22 1

- H/2 

Thusl instead of (3.126) one has 

( 
do) H o+ dz 2 t(a*):::; o0 1 

--------------

1 
f(a*) = - ( 1 - a* ) 

2 (3.132) 

where the underlined term represents the influence of the stress gradient on the 

yielding. Note that (3.132) is a derived condition and not an a priory postulate as 

(3.126). 

One should recall the experimental results of Thum and Wunderlich [43]: The 

more material is concentrated around the neutral axesl the higher is the yield 

stress in bending. ln the following this effect is illustrated for the integral yield 

condition (3.126). lnstead of a reetangular cross section used above (Case A)l a 

quadratic cross section is considered with two opposite corners in the plane of 

bending (Case 8) 1 Fig. 25. 
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h/2 

H=hV2 

Fig. 25: Cross Section of Bend Specimen 

The integral yield condition takes the form 

1 /h/2 
-;- o b (z) dz :::; o0 
A h/2- d* 

with 

A* = d*
2 

I b=h-2z o= Mz 
I J 

and integration yields 

1 /h/2 1 M ( h ) 3 [ 1 (' d* ) 2 2 ( d* ) 3] 
A* h/

2
-d* ob(z)dz = A*J 2 3· 1

-h/2 +3 1
-h/2 

Since 

one finds 

Mh 
0 max = J 2 

(~)2 __ 3-
h/2 1 - 3 ( 1 -_d_* ) 2 + 2 ( 1 - _d_* ) 3 

h/2 h/2 

(3.133) 

(3.134) 

(3.135) 
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lntroducing the yielding fraction of the cross section in tension (or compression) 

A* 1 ( d* ) 
2 

= ( hd/*
2 

) 
2 

a* = H2/2 = 2 H/2 
(3.136) 

equ. (3.135) may be written as 

0 max 3 
---- = a*--------------------------------

00 1-3 ( 1-v;; ) 2 +2 ( 1-v;; )3 
(3.137) 

One obtains 

and 

I im 

a*---?0 

0
max 

0 max 
---3. 

(3.138) 

J 

The relation (3.137) is also plotted in Fig. 24 (case B). lt reflects a size dependence 

according to the hypotheses used: 

(a) Using the thickness d* (Fig. 25) as a scale invariant material parameter, 

then 

_1 = 2 ( H/2) 
2 

a* d* 

for a quadratic cross section. Thus 1 /a* is proportional to the square of the 

length scale which is in cantrast to case A. Therefore, for constant values H 

(and d*, of course) the two curves in Fig. 24 arenot directly comparable; a 

change of the scale of the abscissa is necessary. Also it is feit that d* of case 

B is not physically equivalent to the thickness value d* of case A: The width 

of the yielding region in case Bis varying between 2d* and zero. 
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(ß) lf the area A * is a material property, then 
1 A* 
-=--
a* H2/2 

which is proportional to the square of the length scale. Thus, the results of 

case A and B in Fig. 24 can be directly compared if the cross sections are 

quadratic, i.e. B = H. Then it is seen that the orientation of the cross section 

with respect to the plane of bending has a significant effect on the appar­

ent yield stress: The more material is surrounded around the neutral axes, 

the larger is the apparent yield stress Omax· This is in qualitative agreement 

with the experimental data [43]. 

Torsion of a Cicular Cross Section: 

The integral yield condition takes the following form (Fig. 26) 

1 IR * t 2rrr dr ::::; t 0 . 
A R-d* 

(3.139) 

where t 0 is the uniform shear stress at yield. According to the von Mises or Tresca 

yield condition for homogeneaus states of stress, the yield stress in shear is re­

lated to the yield stress in tension by 

1 
r:; 00 = 0.5774 00 v. Mises 

•o = v:::. 
(3.140) 

1 
-o 
2 0 

= 0.5 00 Tresca 

l:max 

Fig. 26: Cross Section of Torsion Specimen 
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The elastic shear stress distribution is 

1: = 1: r/R. max 

Integration of the left hand side of (3.139) gives 

1 R nR2 2 f ( d* )31 - j 1: 2nr dr = 1: ---1 1- 1 --
A * R-d* max A * 3 l R J 

Thus the apparent shear stress at yield tmax is given by 

where 

1 max 3 / 2 
-- = a* __ ...;._ __ 

( 
d* )3 

1 - 1 -'"R 

A* 
a* = --

nR2 

is the fractional partat yield of the cross sectional area rrR2. With 

one gets 

or 
d* 

1 - ( 1 - a * ) 1 12 . R -

Observing (3.144)1 and (3.140)1, equ. (3.141) reads 

'max 3 'o a* 
= 

o o 2 o o 1 - ( 1 - a* ) 3/2 

where 

(3.141) 

(3.142) 

(3.143) 

(3.144) 

(3.145) 
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3 •o 
{3 = 0.8660 v. Mises 
2 

= 
2 0 3 

0 = 0.75 Tresca 
4 

Special values are 

•max •o 13- 0.5774 v. Mises 
lim 

a*__,.o --=-= 
00 00 = 0.5 Tresca 

2 

which corresponds to the dassicallocal yield condition and 

13 = 0.8660 

Thus the maximum size effect is 

3 

4 

2 

( tmax ) a* = 1 

( 1: ) 
\ max a* = 0 

= 0.75 

= 
3 

2 

v. Mises 

Tresca 

(3.146) 

(3.147) 

(3.148) 

The simple theory of yielding presented here which involves only two scalar ma­

terial parameters, i.e., o0 and A* or d*, should be compared to the experimental 

results. Unfortunately, the data for the case of bending are insufficient, however, 

the combined torsional data of Morrison [39] can be used. These data are pre­

sented in Fig. 19 in a form which does not require the determination of o0 , the 

tensile yield stress for homogeneaus states of stress. Considering A* as a material 

parameter, A* was determined by trial and error in such a way that the theoreti­

cal value tmaxlo0 , equ. (3.145), agrees with the experimental value for the small­

est specimen, i.e. for 2 · Rmin = 0.1154 in, and assuming either the von Mises or 

the Tresca stress ratio t 0 /o0 , equ. (3.146). 
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A* = 
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2.0253 10-
3 

[in 
2 J v. Mises 

6. 5083 1 0 -
3 

[in 
2 J Tresca . 

(3.149) 

lnstead of A *,also the yield thickness d* was considered tobe a size independent 

material parameter, and the fit procedure was repeated. One obtains 

{ 

5.8868 10-
3 

[in] v.Mises 

d* = 
-3 

6.5083 10 [in] Tresca . 

(3.150) 

The corresponding normalized shear stresses at yield and their size dependence 

according to equ. (3.145) are shown in Fig. 27. The largest discrepancies are found 

when the von Mises stress ratio t 0 /o0 = 1 /V3 is used, independent of the choice 

of A* or d* as a constant material parameter. The best agreement is found when 

the Tresca stress ratio t 0 /o0 = 1/2 is applied and d* is used as a material constant. 

lt is interesting to note that the slope of this curve agrees approximately for di­

ameters larger than 0.35 in. For smaller specimens the size sensitivity is still too 

large. lt is clear that this choice of size effect parameter d* is physically reason­

able for the case of torsion; however, for more complex geometries and states of 

stress this concept is not readily realizable. 

The experimental findings reported here and the above theoretical consider­

ations suggest that it would be rather worthwhile to perform a comprehensive 

Iiterature survey on this subject. 
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Fig. 27: Size Effect in Torsion: Experiment and Theory 
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3.3 Scale Factors 

The experimental results of a modeltest can be transferred to the full scale proto­

type situation if similarity holds. Here scale factors are required which allow to re­

late corresponding quantities of the model and the prototype. ln the following, 

scale factors are defined and their interrelations are evaluated. 

With the index notation 
• d II II t t rn ex p = pro o"ype 
index "mll = model 

the following scale factors are introduced with respect to variables 

coord inates 

displacements 

time 

velocities 

accelerations 

strains 

strain rates 

stresses 

single or resulting force 

and others as required. 

( xk ) p = MI ( xk ) m 

( uk ) P = Mu ( uk ) m 

( t ) 
p = Mt ( t) m 

I \ I \ 

\ ük ) p = Ma \ ük ) m 

( "kl ) p = ME ( Ekl ) m 

( tkl ) p = Mt ( tkl ) m 

( 
0

kl ) p = M 0 ( 
0

kl ) m 

( F ) 
p = MF ( F) m 

1 

(3.151) 



- 87 -

Scale factors related to geometry and material data are 

length, distance ( I ) 
p 

density 

Youngs modulus ( E ) 
p 

(3.152) 
yield stress 

hardening stress 

relaxation parameter ( A ) 
p 

Note that scale factors for the dimensionless material parameters v and n are not 

required; similarity demands that their scale factors are equal to unity. 

Similarity implies the equality of the dimensionless variables (3.4) for model and 

prototype. Observing (3.152) this yields 

( xk \ (X~ \ (IR )p 
' / 

xk = ll; Jp 

= l ~ )m 
=} MI = =:"A 

(IR )m 

( uk \ ( uk \ 
uk = l I; )p = l_l =} M = MI =:"A 

\IR) m 
u 

( tvR \ ( tvR \ ( vR \ ( IR \ 
t I = l_l -1-1 =} Mt = li;)ml:;)P \ IR )p- \IR )m 

vRm 1Rp 
(3.153) 

VRm 
=---- = -·A 

VRp 1Rm vRp 



( auk 1 \ 
-

I =\--) at v 
R p at 

and 
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( VRp '
2 1

Rm M-1--1-

a - \ vRm) IRp 

= M2 ]_ 
V A 

vRp 1Rm 
M. ----- = M 

E VRm IRp 

2 2 2 
M =M A =M M A . 

F o V p 

(3.153) 

V A 

lf the scale factors M1 = A., Mv and Mp are given, then the rest of the above factors 

are uniquely defined. 

Provided gravitational forces are ignored, the similarity conditions (Tab. 1) imply 

the following relations for an elastic-viscoplastic material 

1 
ME = 1 1 My = 1 1 MR = 

2 2 
M M

2 
Mp MV Mp MV p V 

or 

ME = M = MR =M M2 
y p V (3.154) 

and 
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= 1; (3.155) 

here the choices of the normalizing stresses (oN)p and (oN)m arestill arbitrary. lf 

an elastic-time independent plastic material model is appropriate, then condition 

(3.155} drops out. 

For replica models one obtains 

thus, equ. (3.154) yields 

and this implies 

and 

M =1 
V 

This applies to an elastic-time independentmaterial behavior. For the viscoplastic 

response condition (3.155) is tobe observed also and this yields 

A = 1 I 

a result already known: A small scale model test, obeying the similarity laws 

strictly, is not possible. This concludes the discussion of scale factors. 
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3.4 Summary and Condusions 

For future pressurized water reactors investigations are required to demonstrate 

that a core melt-down and a subsequent steam explosion does not endanger the 

integrity of the pressure vessel head and its bolting since a failure would impair 

the reactor containment. lt was reasoned that an experimental approach, using a 

scaled down model of the upper part of the pressure vessel (scale 1:1 O) subjected 

to the impact of a liquid metal slug, is appropriate and similarity laws for fluid 

and solid continua should ailow the transfer of the experimental results to the ac­

tual1: 1 configuration. 

A survey of existing Iiterature revealed that detailed systematic treatments of 

elastic-plastic or even elastic-viscoplastic deformation behavior and of failure or 

fracture rules under the aspect of similarity have found limited attention only. 

This situation initiated the present work which is documented in a two-part re­

port. Here the emphasis is on aspects of similitude theory for solid continua and 

structures. 

ln Part I at hand the analysis is restricted solely to the deformation behavior of 

continua. ln Part II, still under preparation, progressive darnage processes and 

fracture are considered. 

Similarity laws are derived and size effects are studied for two relätively simple 

constitutive models which allow to describe the multiaxial response under mo­

notonous radialloading for two important phenomena: 

The motion and deformation of an elastic-viscoplastic continuum with iso­

tropic hardening which allows to describe the strain-rate dependent yielding 

in dynamic plasticity; a power law influence of the strain rate on the flow 

stress is assumed. 

The motion and deformation of an elastic-time independent plastic continu­

um with isotropic hardening. 

Both constitutive models are isothermaL The influence of temperature can be ac­

counted for by adjusting the material parameters and functions to different iso­

thermal tests. Here it must be considered that dynamic tensile tests at high rates 

are almost adiabatic and the plastic work dissipation may raise the temperature 

during the test. For some steels at a high temperature Ievei a small temperature 

rise has a significant effect on the material data (thermal softening). 
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The simplicity of these models implies that uniaxial static and dynamic tensile 

tests suffice to identify the material parameters and functions. 

The analysis is based on the assumption of infinitesimal strains and rotationssuch 

that the kinematics is linear. This has no consequences for the similarity laws as al­

ready noted by Goodier [53] and Langhaar [3]. Further, gravitational forces are 

discussed and assumed tobe negligible. 

The "method of differential equations" is applied to the balance equations, 

constitutive relations and initial and boundary conditions to derive the similarity 

conditions, for structures with perfect geometric similarity. * The reference values 

chosen for the modeland the prototype are 

IR referencelength 

vR reference velocity, e.g. impact velocity 

PR : reference density . 

The geometric scale factor 'Ais defined by 

where the subscripts "p" and "m" referto prototype and model, respectively. The 

"method of differential equations" requires to put the governing equations in a 

dimensionless form which automatically yields a set of dimensionless parameters 

as weil as functions. Similarity of the small scale modeland the large scale proto­

type implies the equality of the dimensionless solutions of the general initial­

boundary value problern at homologaus points and scaled times. For example, 

the implications for the stress and strain fields, Okl and Ekl· are 

* Of course, this is an idealized situation which cannot be perfectly realized. There are 
practicallimitations on the construction of very small models [6]: For example, the 
wall thickness limitations due to a minimum number of grains across the thickness, 
manufacturing problems due to the required decrease of allowable tolerances, ac­
cess to the interior of small models, difficulties and costs to duplicate all structural 
details. These aspects may dictate a deviation from similarity. 
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( 0 kl \ ( 0 kl \ 
( ~) = ( ~) , __ , 

= 
, __ , ~IR) m ~IR) p 

~PR V~) m ~PR V~) p for all 

( VR \ ( VR \ 
( ekl ) m = ( ekl) p l t~ )m = l t~ )p 

lnstead of PRVR2 any other stress like normalizing quantity can be used. 

The necessary and sufficient similarity conditions for the two constitutive models 

may be stated in alternative but equivalent formulations as indicated in Tab. 1-3 

andin the associated text (section 3.1). They can be interpreted as follows: 

General requirements are: 

1. The density distribution in the modeland in the prototype must be similar. 

2. The boundary conditions (surface tractions and kinematic constraints) must 

be similar at homologaus points and at scaled tim es. 

3. The initial conditions must be similar at homologaus points. 

With respect to the constitutive behavior one has to distinguish between the two 

constitutive models and whether the test model is made of the samematerial as 

the prototype and is operated at the same temperature. The basic results are 

shown in Table 7 and are commented as follows. 

Provided the material behavior of both the prototype and the model is described 

by the samedass of rate or time independent elasto-plasticity but a different ma­

terial is used for the model, then similarity of the deformation behavior requires 

the similarity of the stress-strain curves. This is a very weil known fact and has 

been noted by Murphy [1 0], Goodier [53], and Langhaar [3]. The theoretical con­

siderations give no restrictions for the geometric scale factor f.... However, the ve­

locity scale factor 



Tab. 7: Requirements on the Constitutive Relations for Similarity of the Deformation Behavior 

Elastic-Time Independent Plastic Material Behavior Elastic-Viscoplastic Material Behavior 

Different Materials or Equal Materials but Different Temperatures 

Equality of the dimensionless stress-strain curves Equality of the dimensionless static and dynamic stress-strain 
curves for corresponding equal dimensionless viscoplastic strain 
rates, i.e . 

Geometrie scale factor l\ arbitrary 
Velocity scale factor Mv restricted by 

I _ .I PRm ~ 

~ PRp oym 

VRp 
M 

V 
vRm 

Difficult to realize 

Geometrical scale factor l\ arbitrary 
Velocity scale factor Mv restricted by 

M = 
V Rp 
--- = 1 

V 
vRm 

i.e. equal impact velocities 

. P . P "A 
Ern = Ep ;-

V 

Geometrie scale factor l\ arbitrary 
Velocity scale factor Mv restricted by 

V I p a 
Rp I Rm yp 

M v = v Rm = ~ PRp oym 

Even more difficult to realize 

Equal MaterialsandEqual Temperatures 

A model experiment with l\ :;t: 1, satisfying strictly the similarity 
laws, is not possible. Due to the visco-plasticity a size effect is 
present. 

1.0 
w 
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given, e.g., by the ratio of the impact velocities, is determined by the ratio of 

Youngs moduli or the yield stresses or other stress quantities characteristic for the 

stress-strain curve: 

lp 0 
I Rm yp 

= 1----

~ PRp oym 

Note that the ratio of the characteristic densities is close to one if both model and 

prototype are made from steel. ln practice the identification of a suitable mate­

rial for the model is not an easy matter, especially if similarity is required over a 

large strain range. 

The use of a differentrate-independentmaterial for the model may be required 

if the model test has to be performed at a different temperature Ievei than the 

prototype. This is due to the possible dissimilarity of the stress-strain curves of a 

material at different temperatures. lf the same material is used for the model and 

the prototype but temperatures arenot the same, this dissimilarity yields a "size 

effect". Whether or not it is tolerable or causes misleading conclusions needs ana­

lysis. 

A fortunate situation is given when the same rate-independent material at the 

same temperature ievel can be used for the smali scale modei. Then similarity is 

trivially satisfied if, among others, the impact velocities are the same, a condition 

which can easily be realized. From the Iiterature it appears that most model tests 

are of this nature. 

Under these conditions not only the strains but also the stresses are the same in 

the modeland the prototype at homologaus points and scaled times. 

The situation is rather different when viscop/asticity is important for the material 

response. lf different materials or if equal materials but different temperatures 

are used for the model test, then, from a theoretical point of view, similarity re­

quires that the dimensionless stress-strain curves of the model and the prototype 

are congruent for all corresponding dimensionless viscoplastic strain rates, i.e. 

or 
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ln terms of the constitutive model analyzed in section 3.1 - power Jaw relation 

between the overstress and the viscoplastic strain rate - this is equivalent to the 

statement that the 

dimensionless static stress-strain curves are congruent 

the "generalized Reynolds numbersn Re are the same and 
n 

the exponents n, controlling the nonlinearity of the strain rate influence, 

are the same. 

No restriction is found for the geometric scale factor "A but the velocity scale factor 

Mv is restricted as above by the scale factors for the stress and density. 

The realization of these conditions is much more difficult compared to the rate 

independent constitutive model, since similarity of two sets of dynamic stress­

strain curves is required. ln practice this can hardly be achieved. Therefore, some­

times experimenters restriet their attention to a single dynamic stress-strain curve 

corresponding to a representative strain rate (e.g. Florence et al. [64], Romander 

[66]). This reduced similarity imposes a distortion on the results of the modeltest. 

lf the model test is done with the same material at the same temperature as the 

prototype, similarity cannot be achieved. Any test of this kindwill yield distorted 

results. This isaweil known fact (e.g. Soper [55], Jones [14]). However, whether or 

not this size effect is tolerable depends on the strain rate sensitivity of the mate­

rial. 

The trend to be expected is as follows. Usually an increase of the strain rate in a 

tensile test yields an increase of the flow stress. Assurne that a modeltest with the 

same viscoplastic material at the same temperature as the prototype is done and 

the same impact velocity is used. Then an increased strain rate is observed for the 

model, i.e. Ern = Ep A, provided "A> 1. Thus the flow stress in the model is !arger 

than in the prototype. Since the specific dissipated plastic work is the same in the 

model and the prototype, the strains will be underestimated in the model. Thus 

the result is non-conservative. Therefore, it is necessary to estimate this discrep­

ancy. ln section 3.2. a simple one degree of freedom model 

straight strut under compressive loading due to 

the impact of a mass at one end 
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is used to obtain a quantitative estimate. The material chosen is stainless steel 

AISI 304 at room temperature which is moderately strain rate sensitive: An in­

crease of the strain rate by one order of magnitude from 10 to 102 s-1 yields an in­

crease of the 0.2 % proof stress of about 10 %. The experimental data of Steichen 

[21-23] are interpolated by a power law relation between the plastic strain rate 

and the overstress, ignoring strain hardening and elasticity. Permanent strains for 

the model and the prototype are determined using the assumption of constant 

average flow stress du ring the deformation process. lt is shown that the underes­

timation of the strain in the model increases nonlinearly with the scale factor A. 

and the initial strain rate of the prototype. However, the effect is moderate: For 

example, forarather high initialstrainrate of the prototype of 102 s-1 and a very 

large scale factor of 50 the underestimation is about 23 % (Tab. 4). The validity of 

the constant flow stress assumption has been checked using a modified but simi­

lar constitutive model. ln this context it was found that the influence of the scale 

factor A. on the underestimate (the "size effect") is much I arger for a linear stress­

strain rate relation than for the non-linear one. 

Of course, the present analysis does not account for any thermal softening effect; 

but at room temperature it is expected tobe small. The "size effect" due to strain 

rate sensitivity (i.e. viscoplasticity) may be amplified due to strain or deformation 

softening: Calladine [35] had pointed out that in structures with a falling load­

deflection characteristic an increase in the flow stress in the small scale model due 

toastrainrate effect causes a proportionally much larger decrease in the final de­

formation than in structures with a constant load-deflection characteristic. This 

enhanced size effect is qualitatively demonstrated using a fictitious strain soften­

ing model and avoiding some unrealistic premises in Calladines work. However, 

for a realistic quantitative estimate of this effect a mechanical model must be de­

fined. 

ln summary, apparently only one testing situation is unproblematic from a theo­

retical point of view: Modelsmade from the samerate-insensitive material as the 

prototype and tested at the same temperature Ievei (replica models). 

However, an important premise for the validity of the derived similarity laws for 

replica models is the scale invariance of the basicmaterial data and functions like 

Youngs modulus E, Poissons number v, yield stress oy. and hardening stress R(EP). 

Published data indicate - technological variability excluded as far as possible -

that a size dependence is present, its significance depending on the homogeneity 
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of the stress or strain distribution: lt appears that the yield stress and the ulti­

mate stress obtained in a tensile test (homogeneous state of stress) are approxi­

mately scale invariant. Whether the uniform elongation, also an important quan­

tity characterizing the stress-strain curve and commonly not given, is also scale in­

variant, is presently not known to the author. This appears to be an important 

gap, especially if large deformations and failure are important. 

On the other hand there is experimental evidence that the initiation of yielding is 

depending on the presence of a stress (or strain) gradient and this appears to be 

related to the microstructure of the material. lt turnsout that a size effect will be 

present yielding a higher flow resistance for small specimens. This also implies 

that the classicallocal yield criteria, characterized only by the local state of stress 

and strain, are insufficient. A simple non-local yield condition has been applied to 

illustrate this effect. Clearly, the study of the scale invariance of material data for 

homogeneaus and especially inhomogeneaus states of stress should be continued 

and extended. 

Part I of this report closes with a derivation of the appropriate scale factors which 

isatrivial matter when the mechanical model is known. 

Within the context of the similarity theory for the deformation behavior of solid 

materials and structures several aspects need further study or have not been dis­

cussed in this study at all and require attention: 

• Quantitativedetermination of size effects due to inadequate material choice 

for the model. A special case of interest is the use of the same material for 

the model as used for the prototype but performing the modeltest at a dif­

ferent temperature. 

• Scale invariance of material data under homogeneaus and non­

homogeneaus states of stress and analysis of non-local plasticity theories. 

• Collection of systematic scaled model tests from the Iiterature and a quanti­

tative comparison with the similarity laws. Same information may be ob­

tained from the cited literature. lt is the author's impression that it is some­

times difficult to understand the stated "agreement"; such judgements de­

pend strongly on the intended application of the small scale model experi­

ments and the assumed tolerance margin. 
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As stated above the important question of progressive darnage and its influence 

on the deformation behavior as weil as failure and fracture will be the subject of 

Part II of this report which is still in preparation. 
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