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Abstract

The diffraction is investigated of harmaonic spherical scalar waves without attenuation at
the plane interface between two homogeneous fluids. For the strict Sommerfeld integral
description and for the ray tube approximation numerical examples, calculated for the
near field region, are figured in two-dimensional piots of the reflected and transmitted
wave fields. Ratios of densities and phase velocities are chosen such that the results
could be extended to describe the diffraction of electromagnetic dipole waves. A special
mechanism of phase angle absorption of a wave field transmitted into an acoustically
thinner medium has been found which to our knowledge has not yet been described in

the literature.

Zur Berechung harmonischer sphérischer Wellen: Ein Vergleich zwischen der exakten

Beschreibung nach Sommerfeld und der Ndherung der geometrischen Akustik

Zusammenfassung

Die Brechung von harmonischen sphérischen skalaren Wellen ohne Absorption an einer
ebenen Trennfliche zwischen zwei homogenen Fluiden wird untersucht. Numerische
Beispiele werden zweidimensional dargesteilt fir reflektierte und transmittierte Wellen
im Nahfeldbereich, und zwar fiur die exakte Integralmethode nach Sommerfeld und far
die Naherung der geometrischen Akustik (ray tube approximation). Die Verhdltnisse von
Dichten und Phasengeschwindigkeiten wurden so gewahlt, daB die Ergebnisse auch zur
Beschreibung der Brechung elektromagnetischer Dipolwellen dienen kénnen. Ein spe-
zieller Mechanismus zur Phasenwinkelabsorption im Feid einer in ein akustisch dunne-
res Medium transmittierten Welle wurde gefunden, der - nach unserer Kenntnis - bisher

in der Literatur noch nicht beschrieben wurde.
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1. Introduction

Atmospheric emission measurements, which were performed with the airborne variant
of the Michelson Interferometer of Passive Atmospheric Sounding (MIPAS, [1] ) under
the German stratospheric ozone program from 1991 until 1995, revealed heavily disturbed
phase and magnitude spectra. These disturbances were attributed [2, 3] to thermallly
excited dipole radiation from sources within the beam splitter. Since, for a quantitative
treatment, multiple reflections and transmissions at the surfaces of the beam splitter are
needed, the strict Sommerfeld description [4] should be used in a first step which, 6f
course, was not practicable in our case. Therefore, for the semiquantitative treatment in
ref. [2], the Ray Tube Approximation (RTA) was supposed to be valid which describes
the diffraction of divergent rays by the Fresnel coefficients for plane waves. This might
be a good approximation in the far field region of an electromagnetic dipole, but certainly
not for distances z; of the source from the diffracting plane which are comparable with
or smaller than the wavelength. This is the case for thermal beam splitter emission.

The refraction of electromagnetic dipole radiation is closely related to the refraction
of scalar spherical waves like acoustic waves in fluids (see e.g. ref. [5], p. 79 ff). The
sound pressure p can be used to form the Hertz vector fle = pn ( nis the unit vector in
the direction of the oscillating dipole) from which, by differential operations, the electric
and magnetic fields of the diffracted wave can be derived.

As a first step towards a quantitative description of beam splitter emission we pre-
pared the mathematical and computational tools for numerical calculations needed to
compare the strict Sommerfeld solution with the RTA results. In Section 2 of this report
we will summarize the diffraction of harmonic scalar plane waves defining quantities
which will be needed later. In Section 3 complex and real expressions for the strict
Sommerfeld description will be given. Before proceding to the RTA, we will introduce
‘optical’ coordinates, which in our case are suited to formulate RTA expressions. Finally,

some typical results of the strict Sommerfeld method will be indicated and compared with

those from the RTA.




In this report we will restrict ourselves to harmonic scalar waves without attenuation.
For the sake of simplicity different quantities will occasionally be described by the same

symbol, but only if there is no risk of confusion.

2. The Diffraction of Plane Waves

The diffraction of scalar harmonic acoustic plane waves has been described by Bretko-
vistikh and Godin [6] . We summarize here the results as far as they will be needed in

the subsequent sections.

2.1 The Helmholiz equation

The sound pressure p(r,t) in isotropic fluids (gases or liquids) without attenuation and at

rest is described in an adiabatic and linear approximation by the wave equation

&*p(r b

Ap(rt) = 0, . (2.1)
ot

where ¢ = (&/p)'? is the phase velocity of sound ( p = density, & = compressibility ).
For harmonic waves p(r,f) = p(r)e-“ with the angular frequency w . In a source free

region the phasor p(r) satisfies the homogeneous Helmholtz equation
Ap(r) + K*p(r) = 0, (2.2)

where k = w/c is the scalar wave number and A is the Laplace operator. From now on,
we will call p(r) sound pressure or simply pressure. The general solution of Eq. (2.2) for

plane waves with ¢/dy = 0 ( omitting coordinate and time independent factors) is
pr) = ", (2.3)
where the vector k = (k. 0, k,) of the wave number satisfies

K2 = K% (2.4)



The vector k may be real or complex which leads to the following two types of plane

waves.

211 Homogeneous plane waves

If k is real, the pressure is given by

The absolute value of p(r) is constant. This type is called homogeneous because planes

of constant phase are also planes of constant intensity (see Fig. 1).

2.1.2 Inhomogeneous plane waves

If we allow k to be complex (E = /:1 +i Ez, /:1 , /:2 = real), it follows from (2.4) that
kiky =0, K2~k =k . (2.6a, b)

Then the pressure becomes

p(ry=e" ' ™" (2.7)

The wave number of the oscillating part is increased with respect to k, and the absolute

value of p(r) decreases exponentially in a direction perpendicular to /:. (see Fig 1b). From
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Fig.1: Homogeneous (a) and inhomogeneous (b) plane waves. Solid lines indicate planes

of constant intensity, broken lines planes of constant phase.



optics we know this case as transversely attenuated waves [7] which, when total re-
flection occurs, penetrate into the optically thinner medium and propagate parallel to the

interface.

2.2 Boundary conditions

If an incident wave

,D,'(F) _ eil((xsln()— z cos 6) (2.8)

hits the plane interface between two isotropic fluids, a reflected wave p, and a transmitted

wave p, will arise:

Y eik(x sin @, + z cos z0,) (2_9)

’

pr(F) =

—

,Dt(f) = W eilq(x sin 8, — z cos 0y) ) (2.10)

For definitions see Fig. 2. The Fresnel coefficients V for reflection and W for transmission
and the relevant angles result from the boundary conditions at z=0:

The kinematic boundary condition

p(z=0)+p(z=0) = pfz=0) (2.11)

calls for continuity of the pressure at the interface and leads to the Snellius refractive

laws (equal phase in x-direction)

Fig.2: Refraction of an incident plane wave

( pi ) at the interface of two homogeneous
fluids. p,, p: are the reflected and transmitted

waves. p, p, = densities, k, ki, = wave

numbers.




- i k
0,=9, ;’:g = 71- =n, | (2.12a, b)

and to a first relation between the Fresnel coefficients:
1+V=W. (2.13)
The dynamic boundary condition

1.9p  Opr 1 Opy
P ( 0z + 0z )= P10z ' (2.14)

at z=0 calls for equal accelerations and, therefore, for equal velocities and deviations
in z-direction for the two media. The application of (2.14) to (2.9) and (2.10) gives the

second condition for V and W:
m(1 —V)cos @ =nWcos¥b, , (2.15)

where m = p,[p is the ratio of densities and n is the relative refractive index (see Eq.

2.12b).

2.3 The Fresnel coefficients
From Egs. (2.13) and (2.15) one obtains

m cos § — n cos 0,
V= (2.16)

m cos 6 + n cos 0,

2m cos f
= 217
m cos 0 + n cos 0, (217)

The value of V depends on m and n and on the angle 6 of incidence. It varies within the
limits shown in Fig. 3. The limiting cases m = oo (absolutely rigid) and m =0 (absolutely
soft) are treated in the literature for various scattering geometries, e.g. in Ref. [8]. The

corresponding values are (V,W)=(1,2) and (-1,0), respectively.
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Fig.3: Real and imaginary parts of the reflection coefficient V (from [6] , p.23). Charac-
teristic values for the angle 8 of incidence are given. If 8 exceeds ¢ , total reflection oc-

curs and V gets complex. m = density ratio, n = relative refractive index.

It should be mentioned that the Fresnel coefficients for electromagnetic plane waves
are obtained from the formal substitutions m = u,/u for the transverse electric (TE) case
and m = ¢/e for the transverse magnetic (TM) case. The meaning of n as the ratio of
phase velocities ¢ = (ue) "2 is unchanged ( ¢ = susceptibility, u = permeability ). Since in
most cases the deviation of u from unity is negligible, (2.16) and (2.17) are valid for such

waves if we write for
TE:m=1, TM:m=n>. (2.18a, b)

This means that TE waves behave according to Fig. 3b and 3c, whereas TM waves be-

have according to Fig. 3a and 3d. (Only for TM waves a Brewster angle with V=0 exists.)

2.4 Conservation of energy flux at the interface

The specific mean energy flux density I of a harmonic scalar plane wave of unit ampli-

tude is given by ( [6],p. 19)

- K
= - (2.19)

-~

At an element dF of the interface, the energy fluxes for the incident, the reflected and the

transmitted beams are



1
ldF = 200 cos 0dF , (2.20)
-
ldF = 2 Vcos 0dF , (2.21)
N
IdF = =W cos 0:dF . (2.22)

Conservation of energy flux means that
IdF = IdF + IdF . (2.23)

If the Fresnel coefficients are taken from (2.16) and (2.17), relation (2.23) leads to the

mathematical identity

2

2
m cos 0 — n cos 0, 2m cos 0 ) cos 0 (2.24)
1 - :

JJeos b = n( m cos 6 + ncos 0,

m(1 = ( m cos 6 + n cos 0,

This means that the Fresnel coefficients describe the conservation of energy flux. This
seems to be trivial, but is rarely described in textbooks. It will be explicitly needed for the

ay tube approximation.

3. The Diffraction of Spherical Waves

Also the diffraction of spherical waves has been described by Brekhoviskitch and Godin
{9]. They use the complex Sommerfeld formalism. To save computer time for numerical
calculations, we transformed the complex formalism into a real one with reduced vari-

ables. An intermediate transformation of coordinates helps to simplily expressions.

3.1 The Sommerfeld integral description

tn this report we choose the geometrical conditions shown in Fig. 4a. We start the deri-
vation of the Sommerfeld description in Cartesian coordinates and then change over to

cylindrical coordinates, as Sommerfeld did.




341 The incident wave

The sound pressure of a point source located at the Cartesian coordinates (0,0, z,) is

given by

e(ik x2+y2+(z—z(,)2 )

\/x2+y2+(z—zo)2

p(x.y,z) =

The Fourier transform of this expression for z = z, is proportional to
exp(i(kx + ky))Jk? — k2 — k2, where K = (Ks, Ky, k.) is the vector of the wave number in

the Cartesian k-space. lts backtransformation gives

. +00 s +oo
p(xy, zg) = ﬁf J. dkydk, exp(i(kx + kyy))l K? — kxz — /<y2 , (3.2a)
Im(J K~k —k}?)=0 . (3.2b)

The integrand of (3.2a) is a plane wave perpendiclular to the z-axis.
The integral form of (3.1) for z # z, is obtained, if the integrand in (3.2a) is expanded

R
by the factor exp( ik — k2 — k2 |z — z) :

Fo0 »too
p(x,y,2) = __/..j J dkxdky gliloX + kyy + kz—kxz—ky2 z—zl)) (3.3)
7 23 N I oy e s : :
o o \/ k - kX - ky

The integrand in this expression fulfills the Helmholtz equation (2.2), and for z = z, (3.3)
equals (3.2a). The absolute value of z — z, must be used to avoid divergencies. If we pass
to cylindrical coordinates in r — space and Kk — space and integrate over the azimuthal

angle, we get the Sommerfeld integral representation




Here, k, = /k + k2 is the radial wave number and J, is the ordinary Bessel function of

order zero:
1
2 cos(ut)
Jo(u)=7j —_—t (3.5)
o J1-¢

uILngoJo(u) = “/n_zu cos(u——g—) . (3.6)

In (3.4) the pressure was marked by a subscript i since it describes the incident wave
for our geometry (Fig. 4a). Due to the axial symmetry we will suppress the azimuthal

variable ¢ in the following relevant expressions.

3.1.2 The reflected and transmitted waves

To describe these waves we must expand the integrand of (3.4) by V (Eq. (2.16)) or W
(Eq.(2.17)), expressed in k-coordinates (see Fig. 4b), and rearrange the exponent such
that the Helmholtz equation (2.2) remains satisfied and no divergency occurs if |z| tends

to infinity. For the reflected wave (z>0) we get

a |z N

(
\' e e
| kr
. |
7

/ d ki=n-k

// p! l

- Zo 01

Fig.4: Our geometry (a) and description (b) of the angles 8 for reflection and 8, for trans-
mission in coordinates of wave numbers k. The harmonic point source is at

(r,z)=(0,20). Kk*—k? = kcos@,./nk?—k? = nkcos 0.
v V




i JE— R - kT
o Je b Tk

(3.7)

Vik, k) =

prz) = ,J " T (k) VK, K e K R @t (3.8)
0 \/k — k2 :

and for the transmitted wave (z2<0)

om/ k® — k,? | .(39)
m\/kz—k,2+\/n2k2~k2 , .

W(k, k,)

k,dk, N RS Y
e Jo(kir) W(k,/(,)e('(\/ Kk 2= i~ 2 (3.10)

v

3.2 Real expressions for the Sommerfeld integrals

For numerical calculations the Sommerfeld forms (3.8) and (3.10) are not well suited due
to irregularities at k, near k. Here a simple coordinate transformation will help. To save
CPU-time, real expressions with reduced variables are desirable in addition. It will turn
out that for p; three real integrals have to be evaluated. For p, and p, there are five inte-
grals each; the forms of which depend on the sign of the quantity n-1. We will briefly

describe the different steps and then give directly the relevant integrals and functions.

3.2.1 Transformation of k-coordinates

The Sommerfeld integrals are decomposed into two parts:

1. For the homogeneous component 0 < k, < k the quantity k = (/k* — k? is real. «kis

used as a new variable, and the substitution of — dk for kdk,[/k?* — k? eliminates the

irregularity at k, = k or k = 0.

10




2. For the inhomogeneous component k, > k the expression /k* — k? is purely imagi-

nary. Here we use as new variable k' =i,/k?— k* and d«’ replaces

ik, dk | ke — k2 .

3.2.2 Reduced variables and notations

The scalar wave number k in the source medium is chosen as scale factor:

R=kr , Z=kz , Z0=kzy , (3.10a, b, c)
K K'
T e — * O
K o o (3.10d)
_Pi _ Pr _ P
Pl = P PR = P PT = P (3.10e, f, g)

Real and imaginary parts are marked by the two additional letters RE or IM (e.g. PTRE).
Homogeneous and inhomogeneous components have the form XHOM and XINHOM,
where X stands for I, R or T. In addition, we use capital letters (M and N) for the ratios

m of densities and n of wave numbers or phase velocities, defined in Section 2.

3.2.3 The incident wave

Real and imaginary parts can directly be taken from (3.1):

cos(\/R2 +(Z - 207)
PIRE = : (3.11)
JR?+(Z - 20y

/
sin(y/R* +(Z — 20)*)
PIIM = . (3.12)
\/R2 +(z — 20

To investigate the different constituents of the Sommerfeld integral, it is interesting
to evaluate the homogeneous and inhomogeneous components separately. These are

the relevant expressions:

1"




1 1
/HOsz dK F1l + iJ dK F2I = PIHRE + iPIHIM
0 0

with

F1l = — Jo(s/1 — K* R) sin(K|Z — z0]) ,

F2l = + Jg(/ 1 — K R) cos(K|Z — Z0]) .

The inhomogeneous component is described by one real integral only:

/INHOM:f dK F3l = PIINHOM
0

with

F3I = + Jo(/1 + K2 R)e! ~KI1Z=20h

Equations (3.11) and (3.12) then can be expressed by

PIRE = PIHRE + PIINHOM

PIIM = PIHIM .

3.2.4 The reflected and transmitted waves forn > 1

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

The real and imaginary parts of the homogeneous components result from the integration

of one real function for PR and PT each. The inhomogeneous components decompose

into two sections (0 <K < /N*—1 and K> /M —1 ) and three real functions are

needed.

For the reflected wave PR (z > 0) we get

1 1
RHOM =J dK FIR + if dK F2R = PRHRE +iPRHIM
0 0

12

(3.20)




N NE—1 oo
dK (FAR + iF5R) + f dK F3R
2

RINHOM = f

= (PRIRE1 + i PRIIM) + PRIRE2

with

MK — JK* + (N* — 1
FIR = —Jo(RJ1—K?)sin(K(Z + 20)) KoK )

MK + K>+ (N* = 1)

— JKP+ (N* =1
FoR = +Jo(R 1 — K2 ) cos(K(Z + Z20)) MK - VKL ) ,
MK + JK® + (N* = 1)

MK — JK? = (N* = 1)

MK 4+ /K2 = (N* = 1)

F3R = +Jg(Ry/ 1 + K* el ~KE+20
OVN

(M? + 1)K? — (N* —1)
(M? — DK? + (N* —1)

FAR = +Jo(R\/ 1+ K? Je! =€ +29)
UASN

2MK\[(N? —1) — K*

(M? — )K? + (N* =1)

F5R = +Jo(Ry/ 1+ K2 )e! K +2%
ol

The final results for PR are obtained by combining the various contributions:

PRRE = PRHRE + PRIRE1 + PRIREZ

PRIM = PRHIM + PRIIM

For the transmitted wave PT (z <0 ) we get

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

13




1 1
THOM =f dK FAT + if dK F2T = PTHRE +iPTHIM (3.29)
0 0

1/N2—1 %)
dK (FAT + iF5T) +j dK F3T
2

TINHOM =f
0 N -1

—~
[o°]
()
(=]

~—

= (PTIRE1+iPTIIM) + PTIRE2

with

FAT = —Jo(Ry/ 1 — K* ) sin(KZ0 — z\/m) MK , (3.31)
MK + /K> + (N> = 1)

2MK

F2T = +Jo(Ry/ 1 — K* ) cos(KZ0 — Z\/ K* + (N> — 1)) , (3.32)
MK 4+ K2+ (N? = 1)
FBT = 1R 1 + K ol HZ0F VKO-V = 2) MK (3.33)
MK + JKZ = (V% = 1)
N

FAT = +Jo(R/ 1 + K? Y™ "*%2mK
MK cos(Z\/N* =1 — K* )+ N> =1 — K® sin(Z /N> —1—K?) 0.0
. — , 3.34

(M? = DK? + (N* =1)

i

F5T = +Jo(Ry/ 1 + K? Je " 2mK

JN? =1 =K? cos(ZN* =1 — K® ) = MK sin(Z\/N* =1 - K?) 635
. . 3.35
(M? = DK? + (N> =1)

The final results for PT are obtained by combining the various contributions:

PTRE = PTHRE + PTIRE1 + PTIRE2 , (3.36)

14




PTIM = PTHIM + PTIIM . (3.37)

3.2.5 The reflected and transmitted waves forn < 1

The real and imaginary parts of the homogeneous components result from the integration
of four real functions for PR and PT. The inhomogeneous component stems from only
one real function for each wave field.

For the reflected wave PR (z>0) we get

1

JNE-1
RHOM = J dK(FIR + iF2R) + J dK(F3R + iF4R) =
0 N —1
= (PRHRE1 + iPRHIM1) + (PRHRE2 + iPRHIM2) | (3.38)
RINHOM = j dKF5R = PRIRE (3.39)
0
with
+Jo(Ry 1= K?)
FIR =

(M® — DK® + (1 = N?)

e (MK 1= N? = K? cos(K(Z + Z0)) — (M? + DK? — (1 — N?) sin(K(Z + Z0))) , (3.40)

+ (R 1= K?)
(M® — DK+ (1= N?)

FoR =

. (MK (1 = N%) = K? sin(K(Z + Z0)) + (M? + DK? — (1 = N?) cos(K(Z + Z0))) , (3.41)

MK — /K = (1 = N?)
MK + /K2 — (1= N?)

(3.42)

FAR = — Jo(R\/ 1 — K* ) sin(K(Z + Z0))

15




MK — /K> = (1 =N?)

FAR = +Jy(R1—K?)cos(K(Z + Z0))

MK — /K= (1 = N?)
FSR = +Jo(RJ 1+ K? )el~KE+20
MK + K> — (1 = N?)

The final results for PR are obtained by combining the various contributions:

PRRE = PRHRE1 4+ PRHRE2 + PRIRE ,

PRIM = PRHIM1 + PRHIM2 .

For the transmitted wave PT (z <0 ) we get

1—N?

1
dK(FAT + iF2T) + f dK(F3T + iFAT)
2

THOM = f
0 1—-N

— (PTHRE1 + iPTHIM1) + (PTHRE2 + iPTHIM2) |

TINHOM = J dKF8T = PTIRE
0

with

2 2
FIT = +Jy(RJ1—K?)e@VI=NI=KD ok

J(1=NH = K? cos(KZ0) — MK sin(KZ0)

(M* =K+ (1 = N?)

e 2 2
FoT = +Jo(RJ1—K?)e¥VI=NI=K D opmk

J(1 = N% = K?* sin(KZ0) + MK cos(KZ0)

(M? =DK* + (1 = N?)

16

MK + /K = (1 = N?)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)



2MK

F3T = —Jo(RJ1—K?)sin(Kz0—Z /K2 = (1=N?)) :
’ MK + JK* = (1 = N?)

(3.51)

FAT = + Jy(RJ1—K?)cos(KZ0—Z/K? — (1 — N?) 2MK , (3.52
0 2 2
MK + /K?— (1 = N3 ,

T 2 2
FST =+ Jy(Ry1+ K )l KO+ Z/K + (1 =19) 2MK ‘ (3.53)

MK + K2+ (1= N%)

The final results for PT are obtained by combining the various contributions:

PTRE = PTHRE1 + PTHRE2 + PTIRE (3.54)

PTIM = PTHIM1 + PTHIM2 . (3.55)

4. The Optical Coordinate System

Optical coordinates are the proper ones for the ray tube approximation decribed in

Section 5. The optical coordinates are (see Fig. 5):

e r,,the radius of intersection with the refracting interface at z=0 of a geometrical ray

from the source at Q = (0, z,) to an arbitrary point X = (r,z).
¢ s, the optical path or eikonal between Q and X, and
¢ @, the usual azimuthal angle around the z-axis.

In agreement with the Fermat principle, the optical coordinate system is orthogonal, and
the differential operators can be derived in the usual way. The relations between optical
and cylindrical coordinates for the reflected wave are different from those for the trans-

mitted wave. This section will be subdivided accordingly. The azimuthal angle ¢, which
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has the same meaning in both coordinate systems, will be mentioned only when needed.

Throughout this section we will use the abbreviations (not to be confused with the den-

sities):
py = \/(n2 —1)r02 + nzzo2 . . (4.2)

4.1 Transformations between cylindrical and optical coordinates

41.1 For the reflected wave

For this wave the relative refractive index is n=1 and z>= 0. The relations between (r,z)

and (re,s) can directly be read from Fig. 5a:

rzg
rO = Z+ZO ’ (43)
p(z + zp)
s = 7l (4.4)
a) z ‘
ds
h3d(/) /771dl‘0
Zgy
d/’n r
ve
W

Fig.5: For derivation of the scale factors A, of optical coordinates ry, s, ¢ for the reflected

wave (a) and for the transmitted wave (b).
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41.2 For the transmitted wave

For this wave n# 1 and z < 0 and the identity

together with the Snellius relations (2.12) leads to

cosf, = —%1)— . (4.8)

Supposing r, = r(r,z) to be known, the following three expressions are quickly derived

from Fig. bb:

s = p+n\/(r—r0)2 +z2° (4.9)
1 . S—p )

r=rot+g—psint = r(1+-—75—) , (4.10)
n n’p
1 5—p

z = ——p(s—p)costy = —p— . (4.11)

np

It is quite a long way to derive ry from r and z for the transmitted wave. It is done by

solving the fourth order equation

4 2 2 ”2202 z° 2 2n’zy’ryr 2’ 2
ro —2rry” +(r" + — - ot —— +— r°=20 (4.12)
n® —1 n®—1 n®—1 n°—1
in ro which results from nsin 8, = sin 8 after two squarings. One gets up to four real

values for ry (see e.g. [10] ,p 183 ff ), two of which may be relevant in our case. In the

19




following expressions upper signs are valid for the case n > 1, lower signs forn < 1.

One starts by calculating the quantities

2_2 2
S Enk R (4.13)
n®—1
p = :51_(,2+A2) , (4.14)
(r2+A) ? nzgrz 2
Q= ~2A(—F") +2A—=5—7)) . (4.15)
n — . )
W= (" -28) (4.16)
D - (%(rQ+A))3+( i - (4.17)
n2 _
R = sgn(Q) % (4.18)

Special precautions must be taken for the case R=0. If the determinant D is positive,

then

1 Q Q
O = —In( + /( ) —1) , (4.19)

3 " oR? 2R®
U = Rcosh® , (4.20)
V = /3 Rsinh® | (4.21)
Py = %arccos W+U , (4.22)

JW+ 0P+ VP
' 1

UV = 2((W + U)* + V)7 cos o, (4.23)

are calculated. Then ry is given by

- —;—(r P w20 —uvy) (4.24)

20




If D is smaller than or equal to zero, then

@ = - arccos( Qs) , (4.25)
3 2R

U = Rcosep |, (4.26)

V = J3Rsing (4.27)

are calculated, and r, is given by

o= w0 T W - WUV - WU V) (4.28)

Under very special conditions, this value is outside the physical range 0 < r, <r . In this

case, for D <0, use

o= w0 (WU + WrU—V — JWrU+V)) . (4.29)

Before starting the determination of ry, the following special cases are interrogated:

if r=0: rp=0, (4.30)

if z=0andn>1: ro=r , (4.31)

. , nzy

if z=0andn<1: ry = min(r, - ) . (4.32)
1—n

4.2 Differential operators in optical coordinates

Differential operators for curvilinear orthogonal coordinates are expressed in terms of

scale factors h; (see e.g. [11], p 41 ff ). These are obtained by expressing a line element

ds = \/dxz + dy?+ dz* (x,y,z = Cartesian coordinates) by elements of the curvilinear co-

ordinates. For optical coordinates, this leads to

ds® = h2dry + hy’ds® + hy’do® . (4.33)
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If the scale factors are known, the usual differential operators are given by:

o L T L T L
VO = (h1 ore By 3s ' e a<p)' (4.34)

Ved = — 1 (L (hmA) + 2 (hihea,) + -2 (h1h2A)) (4.35)
h1h2h3 aro 2737 aS 17T 5q0 h3 3 ’ .
5 hoh 7 hh I hih
AD = 1 0 My o 0§ 136(D+ 0 126(13)_ (4.36)

Pihghy \ Ory hy 0rg | 9s h, ds | 0 hs 0@

/

The scale factors and the differential operators have different shapes for the reflected and
for the transmitted waves. In the following subsections we will give the scale factors and

the Laplace operator only.

4.24 For the reflected wave

The scale factors are determined for the geometrical conditions shown in Fig. 5a. Using

the relations (2.12), (4.7), and (4.8), one gets

hed drycos 0 52, J (4.37)
1 rO = $ = 2 rO ’ .
[ 2 2
Vo T 2o
hyds = ds , (4.38)
oS
hgdqo = ro’q) = —ﬁ— d(p . (4.39)

The Laplace operator (4.36) takes the form

3 . 2
N~ R G S R e (4.40)
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4.2.2 For the transmitted wave

The geometrical conditions are shown in Fig. 5b. To derive the first scale factor we must
know the distance R, between the backward intersection A of two infinitesimally adjacent
rays and the point of impact (r,z) = (r,,0) on the diffracting plane:

Jrot+20° 0 cos 0, opi '(4 )

Ri = cos 6 do, nzy?

The distance between A and a point of interest, defined by its optical coordinates, is

3

Ry = Ri+-(s—Jrl+22) = (s+(n*=1)25) . (4.42)

4y

With these auxiliary quantities we get

2 3

R, cos @ z
hydry = ——tdry = —5—(s+(n" —1) S5 )dr, (4.49)
! np py 2o
hods = 5=, : (4.44)
hdo — 1o 2
sdp = rdp = ——(s+(n"—1)p)de . (4.45)
n‘p .

The Laplace operator (4.36) can now be written as

.
n"Rip 9  Rirp 9 n® 9 ., 0 1 9
A= Rorpy 0Org ( Rypy 0Ory )+ R,r @s (Ror Js )+ P2 a(pQ ’ (4.46)

where Ry, R, r, p, py, are given by (4.41), (4.42), (4.10), (4.1) and (4.2), respectively.

4.3 The boundary conditions in optical coordinates
The diffracting plane z=0 is described by

S=p . (4.47)
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The kinematic boundary condition (2.11) can be written as

pilro p) + Plro, ) = pdro, p) - (4.48)

For the dynamic boundary condition (2.14) we have to express the gradient 8/0z in

z-direction by optical variables. It is easily shown that

for pdro, S)

0 _ sin@ 9 cosb 9 _ foP o o 0 (4.49)
0z hy  dry h, ds SZo drg p os -
for p.(rs, s)

0 sinf 0 cosf 0 —Iop o 0

< - _ - 2 4 22 50
0z hy  0dr, + hy &s SZp  dr, P os (4.80)
for p(rs, s)

KA _ cosfO, g 3 sin 8, KA _ Ryro 8 P a (4.51)
oz hy  dr, hy, 0Os R,py org P 9s '

At the boundary s = p, Ry=R,;, and the dynamic boundary condition takes the form

0

Js

s n _ A foo P

; Wiros) sy (452)

Remember that m is the density ratio in Eq. (2.15).

5. The Ray Tube Approximation (RTA)

The RTA is used in geometrical optics (see e.g. [5], p 109 ff). It is a good approximation
if the wavelength is small with respect to geometrical dimensions. The following as-

sumptions are made:
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® Rays within the waves propagate perpendicularly to surfaces of constant eikonal or

optical path.
® |n optically homogeneous media the propagation is rectilinear.

®  The diffraction at the interface between two homogeneous media can be described

by the Fresnel coefficients for plane waves.

® The energy flux through surface elements, which are limited by the same rays (ray

tube), is independent of the coordinate along the rays.

In this section we will restrict ourselves to the case n > 1. For n < 1 total reflection will

occur if the radius ry of impact at z=0 (see Fig. 5) is larger than the limiting radius

—r (5.1)

Then, inhomogeneous waves will pene
will not be aftenuated but extend to z -+ — co . This causes irregularities which, in physics
terms, make no sense. We conclude that the RTA is not suited to describe diffracton of
spherical waves in the case n < 1.

From the assumptions of the RTA it follows that the phase of a spherical scalar har-
monic wave is given by the optical path s and that the amplitude is inversely proportional
to the square root of a tube cross section. Due to the use of Fresne! coefficients, the
energy flux will be conserved at the interface (as described in Subsection 2.4), and the
kinematical and dynamical boundary conditions (2.11) and (2.14) will be fulfilled. How-
ever, the Helmholtz equation (2.2) is violated in p, and p, .This can be shown by lengthy

calculations in a general form. We demonstrate it numerically for the examples given in

Subsection 6.3, Figs. 34 and 37.
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5.1 | The incident wave

The cross section of a ray tube is proportional to the square of the optical path s and thus

iKs

plros) = e . (5.2)

It is identical to (3.1) and fulfills the Helmholtz equation (2.2).

5.2 The reflected wave

From Fig. ba it follows that the cross section of a ray tube behaves as for the incident
wave. The reflection coefficient V (2.16) can be expressed by optical coordinates with the
auxiliary quantities p, ps (see (4.7) and (4.8)), and we get

mzo—py "

pr(rO’ S) = mz, + P1 S (53)

5.3 The transmitted wave

From Fig. 5b it can be seen that the cross section dF(r,, s) of a ray tube, defined by

dé and do, is

dF(ro, s) = Rydbrde . (5.4)

At the interface we have

dFo(ro, S = p) = R1d91l‘0dg0 . (5.5)
. dfs 2
Since |pdre, s)| = ( dFO Y lpdres=p)| we get
o R1 iks

(5.6)

pdros) = W [+ —5—

Ry, R, r, and p are given in (4.41), (4.42), (4.10), and (4.1). W follows from (2.17) using (4.7)

and (4.8):
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W = _2mz (5.7)
mzy + py '

with py given in (4.2) .

6. Some Numerical Results

In this section examples are shown for wave fields obtained by the strict Sommerfeld
method and from the ray tube approximation (RTA). We will call them here Sommeffeld

and RTA waves. The following parameters have been chosen:

® Z0=3 inreduced units (see Eq.(3.10c)). This means that in all cases the point source

is about half a wavelength above the refracting plane.

e N=2and N=0.5. This means that examples are shown for diffraction from and into

an acoustically thinner medium.

®  M=1and M =N?. This means that combinations of the relative refractive index N
and the density ratio M are chosen which could be extended to describe the diffrac-

tion of spherical electromagnetic dipole waves (see Eq.(2.18)).

The wave fields are figured as two-dimensional plots in reduced cylindrical coordinates.
In each case the real and imaginary parts were calculated in steps of 0.1 reduced unit for
R=0to 20 and |Z| =0to 15. From these twice 151 x 201 = 60,702 primary data the

quantities of interest were deduced using simple FORTRAN routines and plotted with the
FORTRAN graphics subroutine library CA-DISSPLA (Display Integrated Software System
and Plotting LAnguage [12] ). For Sommerfeld waves the homogeneous and inhomoge-
neous components are figured in addition. The calculation of involved integrals in k-

space is described in Subsection 6.1.
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6.1 | The incident wave

This wave was calculated analytically (Fig.6) and following the Sommerfeld integral for-
malism (Fig.7). The Sommerfeld wave is the sum of its homogeneous component (Fig.8)
and its inhomogeneous component (Fig.9). It reproduces the circular structure of abso-
lute value and phase angle sufficiently well. Only in Fig.7a, slight wiggles can be seen
at Z=270 where the integrand (3.17) of the inhomogeneous component has no exponential
damping factor, and therefore (3.16) converges very slowly.

The Sommerfeld waves shown in this section are obtained from trapezoidal inte-
gration in k-space. Finite integrals are calculated with up to 2,000 integration intervals.
Infinite integrals were extended up to kn.x =200 with up to 16,000 integration intervals. It
turned out that the quality of infinite integrals depends critically on the width of inte-
gration intervals, whereas an increase in kn.x produced no improvement. Homogeneous
components, as shown in Fig.8, exhibit points of zero absolute value with ambiguities in
phase angle. Turning around these points changes the phase angle by 2z . DISSPLA
generates in such cases lines of discontinuity. These lines were eliminated by hand.
Only those branches are labeled which are essentially stable when the inhomogeneous

component is added to form the complete Sommerfeld wave.
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Fig.6: Absolute value (a) and phase angle (b) of the incident wave obtained from the an-

alytical expressions (3.11) and (3.12). Their isolines will be used for comparison in sub-

sequent figures.
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Sommerfeld integral description, Egs. (3.13) to (3.19).
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6.2 Sommeifeld waves for reflection and transmission

The reflected (PR) and transmitted (PT) Sommerfeld waves and their homogeneous and
inhomogeneous components for the parameter combinations N=2, 0.5 and M=1, N? are
shown in Figs.10 to 31. The inhomogeneous components are complex for N=2 and real
for N=0.5 (see Egs. (3.21), (3.30) and (3.39), (3.48)).

The case M=1, N=2 (Figs.10 to 15) corresponds to Fig.3b for plane waves. The ne-
gative sign of the iocai reflection coefficient is expressed in Fig.11 by a shift of the PR
phase with respect to Pl at Z=0 of about — 7 . The spurious irregularities of PT in Figs.10
and 11 could be suppressed by a greater computational effort than described in Sub-
section 6.1.

The case M=4, N=2 (Figs.16 to 21) corresponds to Fig.3a for plane waves. A line
through the relative minima of PR in Fig.16 éescribes roughly the angle 0 of incidence in
Fig.3a for which the reflection coefficient vanishes.

The case M=1, N=0.5 (Figs.22 to 26) corresponds to Fig.3c for plane waves. The
point 6f ambiguous phase angle near (R,Z) =(16,-2) in Figs.25 and 26 persists when the
inhomogeneous component is added. Thus, the corresponding points in Figs.22 and 23
figure an interesting mechanism of absorption of phase excess in the acoustically thinner
medium. We expect that such zero points of phase absorption appear periodically for R
> 20.

The case M=10.25, N=0.5 (Figs.27 to 31) corresponds to Fig.3d for plane waves. The
point of phase absorption in PT for M =1 (Figs.22 and 23) seems to be shifted in Figs.27
and 28 to the region Z>0 which is outside the physical range of PT. It would be inter-

esting to know how PT behaves in this case for R > 20.
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Fig.10:The absolute values of the reflected and transmitted Sommerfeld waves for the
ratios M and N of densities and phase velocities given above. For labels of the indicated

incident wave, see Fig.6a.
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Fig.11: Phase angle of the reflected and transmitted Sommerfeld waves for the ratios M

and N of densities and phase velocities given above. For labels of the indicated incident

wave, see Fig.6b.
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Fig.13: The phase angles of the homogeneous components of the Sommerfeld waves for

the ratios M and N of densities and phase velocities given above.
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Fig.14: The absolute values of the inhomogeneous components of the Sommerfeld

waves for the ratios M and N of densities and phase velocities given above.
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Fig.15: The phase angles of the inhomogeneous components of the Sommerfeld waves

for the ratios M and N of densities and phase velocities given above.
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ig.16: The absolute values of the reflected and transmitted Sommerfeld waves for the

ratios M and N of densities and phase velocities given above. For labels of the indicated

incident wave, see Fig.6a.
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Fig.17: Phase angle of the reflected and transmitted Sommerfeld waves for the ratios M

and N of densities and phase velocities given above. For labels of the indicated incident
wave, see Fig.6b.
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Fig.19: The phase angles of the homogeneous components of the Sommerfeld waves for

the ratios M and N of densities and phase velocities given above.
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Fig.20: The absolute values of the inhomogeneous components of the Sommerfeld

waves for the ratios M and N of densities and phase velocities given above.
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Fig.21: The phase angles of the inhomogeneous components of the Sommerfeld waves

for the ratios M and N of densities and phase velocities given above.
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Fig.22: The absolute values of the reflected and transmitted Sommerfeld waves for the
ratios M and N of densities and phase velocities given above. For labels of the indicated

incident wave, see Fig.6a.
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Fig.23: Phase angle of the reflected and transmitted Sommerfeld waves for the ratios M

and N of densities and phase velocities given above. For labels of the indicated incident

wave, see Fig.6b.

47




10 N=05

M =

[

[

¥

1
[}
!

\
4

- - ——
- -

- ~
P
-
rd
L d
-
- )
-
-

- ————

-~
S
e
e e e

- REFLECTED

e
st
-
A

/

TRANSMITTED

20

The absolute values of the homogeneous components of the Sommerfeld waves
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for the ratios M and N of densities and phase velocities given above.
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Fig.25: The phase angles of the homogeneous components of the Sommerfeld waves for

the ratios M and N of densities and phase velocities given above.
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Fig.26: The inhomogeneous components of the Sommerfeld waves for the ratios M and

N of densities and phase velocities given above.
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Fig.27: The absolute values of the reflected and transmitted Sommerfeld waves for the

ratios M and N of densities and phase velocities given above. For labels of the indicated

incident wave, see Fig.6a.
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Fig.28: Phase angle of the reflected and transmitted Sommerfeld waves for the ratios M
and N of densities and phase velocities given above. For labels of the indicated incident

wave, see Fig.6b.
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Fig.30: The phase angles of the homogeneous components of the Sommerfeld waves for

the ratios M and N of densities and phase velocities given above.
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Fig.31: The inhomogeneous components of the Sommerfeld waves for the ratios M and

N of densities and phase velocities given above.
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6.3 RTA waves for reflection and transmission

These waves are calculated following Egs. (5.3) and (5.6). Results are shown in Figs. 32
to 37. By the use of Fresnel coefficients (2.16), (2.17) the kinematic and dynamic bound-
ary conditions (2.11) and (2.14) are automatically fulfilled. However, the Helmholtz
equation (2.2) must be expected to be violated. To demonstrate this effect, the relative

violation of Eq. (2.2)

|APR + PRI[IPR] , (6.1)
|APT + N?PT|/|PT] (6.2)

for reflected and transmitted RTA waves are plotted in Figs. 34 and 37.

The case M=1, N=2 (Figs. 32 to 34) corresponds to Fig. 3b for plane waves. In Fig.
33 the negative sign of the local reflection coefficient V, Eq. (2.16), is described by a shift
by — = of PR with respect to the incident wave Pl. The relative violation of the Helmholtz
equation is shown in Fig. 34. It reaches as much as about 25 per cent for PR and PT at
the origin R=2=0.

The case M=4, N=2 (Figs. 35 to 37) Corresp.onds to Fig. 3a for plane waves. At the

line
R =2(Z + Z20) (6.3)

for Z0=3, Z = 0 the local reflection coefficient V, Eq. {2.16) vanishes and the phase angle
of PR has a discontinuity of = as is shown in Fig. 35 and 36. The relative violation of the
Helmholtz equation is shown in Fig. 37. For PR the maximum is about 35 per cent at

R=15, Z=0, for PT it is about 20 per cent at the origin.
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f:ig.32: The absolute values of the reflected and transmitted RTA waves for the ratios M

and N of densities and phase velocities given above. For labels of the indicated incident

wA/ave, see Fig.6a.
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Fig.33: The phase angles of the reflected and transmitted RTA waves for the ratios M and

N of densities and phase velocities given above. For labels of the indicated incident

wave, see Fig.6b.
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Fig.34: Relative violation of the Helmholtz equation by RTA waves for the ratios M and N

of densities and phase velocities given above. For definition, see expressions {(6.1) and

(6.2).
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Fig.35: The absolute values of the reflected and transmitted RTA waves for the ratios M

and N of densities and phase velocities given above. For labels of the indicated incident
wave, see Fig.6a.
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Fig.36: The phase angles of the reflected and transmitted RTA waves for the ratios M and
N of densities and phase velocities given above. For labels of the indicated incident

wave, see Fig.6b.
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Fig.37: Relative violation of the Helmholtz equation by RTA waves for the ratios M and N

of densities and phase velocities given above. For definition, see expressions (6.1) and

(6.2).
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6.4 | A comparison of RTA with Sommerfeld waves

The comparisons of these waves are shown in Figs. 38 to 43. As quantities of comparison

we use (Y stands for R (reflected) or T (transmitted)):

® the relative difference of magnitude
DMYR = (IPYgal — IPYsou) | |PYsoml (6.4)

which is shown in Figs. 38 and 42;

® the difference of phase angles
DOY = ®dgrp— Pson > (6.5)

which is shown in Figs. 39 and 43;

@ the local reflection coefficient
V, = PR(R,Z=0)/PI(R,Z=0) . (6.6)

The magnitude and argument of this coefficient is shown in Figs. 40 and 43.

Since RTA and Sommerfeld waves fulfill the kinematic and dynamic boundary condi-

t ions, the locai transmission coefficient W, equals 1 4+ V,.

For the case M=1, N=2 RTA are shown in Figs. 32, 33 and Sommerfeld waves in
F=igs. 10, 11. The relative difference of PR in Fig. 38 seems to vanish along the line R=5
( Z+3)/3 within the computational accuracy. The difference of phase angle DOR (Fig. 39)
cdecreases monotonously with increasing distance from the origin. The local reflection
< oeefficients (Fig. 40) are very similar in magnitude. At R=0 their arguments differ by
&zbout 0.3 radian. For this case, MRgra has been increased by 2 n with respect to fig. 33.

For the case M=4, N=2 RTA waves are shown in Figs. 35, 36 and Sommerfeld

wwaves in Figs. 16, 17. Absolute value and argument of the reflected RTA wave have
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Fig.38: Relative difference of magnitude between RTA and Sommerfeld waves for the ra-

tios M and N of densities and phase velocities given above. For definition, see Eq. (6.4).
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Fig.39: Difference of phase angles (in radian) between RTA and Sommerfeld waves for

the ratios M and N of densities and phase velocities given above. For definition, see Eq.
{6.5).
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Fig.40: Magnitude (a) and argument (b) (in radian) of the local reflection coefficient for
RTA and Sommerfeld waves for the ratios M and N of densities and phase velocities

given above. For definition, see Eq. (6.6).
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F=ig.41: Relative difference of magnitude between RTA and Sommerfeld waves for the ra-

t ios M and N of densities and phase velocities given above. For definition, see Eq. (6.4).
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Fig.42: Difference of phase angles (in radian) between RTA and Sommerfeld waves for
the ratios M and N of densities and phase velocities given above. For definition, see Eq.

(6.5).
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Fig.43: Magnitude (a) and argument (b) (in radian) of the local reflection coefficient for
RTA and Sommerfeld waves for the ratios M and N of densities and phase velocities

given above. For definition, see Eq. (6.6).




discontinuities along the line (6.3) of vanishing coefficient of local reflection. Therefor, in
Fig. 41 DMRR is -1 along this line, and in Fig. 42 DDOR has a discontinuity of n. The local
reflection coefficient of the Sommerfeld wave follows smoothly the trend of the RTA

wave, both in magnitude and in argument as shown in Fig. 43. For this figure, ®Rgr4 has

been increased by 2z for Z values which are smaller than those given by Eq. (6.3).

7. Summary

In this report we have described the physical background of the diffraction of plane .and
spherical harmonic scalar waves without attenuation at the interface between two ho-
mogeneous fluids. The strict Sommerfeld complex integral formalism for spherical waves
has been transformed into finite and infinite real integrals in k-spaces. ‘Optical’ coordi-
nates for reflected and transmitted wave fields are discussed, including scale factors and
differential operators. These coordinates are used to formulate the ray tube approxi-
mation for diffracted spherical waves.

The reliability of our algorithm is shown by comparing the Sommerfeld results (Som-
merfeld waves) for the incident wave (Fig. 7) with the well known analytical form (Fig.6).

All calculations of reflected and transmitted waves concern the near field region. The
point source is about half a wavelength above the diffracting plane. Sommerfeld waves
for reflection and transmission are shown for the following combinations of ratics M and
N of densities and phase velocities: M=1, N=2 (Figs. 10,11), M=4, N=2 (Figs. 16, 17),
M =1, N=0.5 (Figs. 22, 23), and M=0.25, N=0.5 (Figs. 27, 28). The Sommerfeld waves
are the sum of "homogeneous’ and ‘inhomogeneous’ components as defined in Sub-
section 3.2.1. These components are shown also.

The cases with M =1 could be extended to describe the diffraction of electric dipole
radiation, those with M = N? to describe diffraction of magnetic dipole radiation. This
follows from Eq. (2.18).

The ray tube approximation (RTA) is unsuited for the cases with N<1 where total re-

flection is involved. Therefore, RTA waves are shown only for the cases M=1, N=2 (Figs.

32, 33) and M=4, N=2 (Figs. 35, 36). The violation of the Helmholtz wave equation is
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demonstrated for these cases in Figs. 34 and 37. RTA waves are compared with Som-
merfeld waves by plotting the differences of absolute values (Figs. 38, 41) and of phase

angles (Figs. 39, 42). The local reflection coefficients of RTA and Sommerfeld waves are

intercompared in Figs. 40 and 43.

Two interesting features have been observed which possibly could help to find an

analytical description of Sommerfeld waves:

¢  When a spherical wave is transmitted into an acoustically thinner medium, a ring
of zero absolute sound pressure appears which absorbs an excess of phase angle
of 2w . This is shown in Figs. 22 and 23 for the case M =1, N=0.5. To our knowledge,

this effect has not yet been described in the literature.

® For the case M =1, N=2 there is a cone on which reflected RTA and Sommerfeld

waves seem to have equal absolute values (Figs. 38 and 40a).

Further search for an analytical description of diffraction of spherical waves will be based

on the results of this report.
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