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Abstract

In order to simulate the flow of liquid metal in blankets for the cooling of
thermonuclear fusion reactors, a finite volume code has been developed at
IATF/KSK. It is able to compute both velocity field and induced currents in
ducts of rectangular cross section.

The full Navier-Stokes equation for incompressible fluids is solved,
while the magnetic field is supposed to be constant, the induced magnetic field
being neglected. The coupling between the velocity field and the induced
current is expressed by the Lorentz force introduced in the Navier-Stokes
equation. Most of the computation time consists of solving a Poisson equation
for pressure and another Poisson equation for the electric potential. The
marching in time is achieved by fractional step. This code is restricted by some
numerical instabilities, and by the resolution of the boundary layers. It allows
calculations only for very special electrical boundary conditions. It has also
never been used for unsteady flow simulation.

In order to overcome these limitations, a numerical stability analysis of
the MHD Navier-Stokes equation is developed, and a new finite difference
scheme is proposed and successfully tested. Besides, the code is now able to
calculate flows in ducts of arbitrary electrical conductivity. An integral
treatment of the thin boundary layers perpendicular to the magnetic field is
also described and allows to get rid of the resolution limits on the grid size in
these layers. As a result, the new version of the code allows to simulate flows at
higher Hartmann numbers without increasing the number of grid points, and
an example of flow computation at Hartmann number 1000 is shown.
Moreover, a scheme of second order in time is now available for unsteady flow
simulation.

The code is used to calculate a special kind of unsteady flow in an
electrically insulated duct. The instability is initiated by the shear created by a
pair of copper strips in the middle of each wall perpendicular the magnetic
field, the strips being oriented with the axis of the duct. Such a device has been
proposed and studied analytically and numerically in two dimensions and also
investigated experimentally. The instabilities do not arise only from the shear
layers beside the copper strips but also from the side layers. The instability of
the side layers is enhanced by the instability of the shear layers beside the strips
and become dominant when the vorticies growing from the strips to the side
walls reach the side layers. Moreover the same simulation with all walls
insulating show that the flow is unstable even without the copper strips. In that
case, the instability needs a longer time to develop, but the flow becomes
nevertheless very unstable.

The flow is almost 2-D. The small 3-D effects lie in a stretching of the
vorticies along the strips when one moves from the middle of the duct to the
Hartmann walls. The velocity component parallel to the magnetic field remains
one or two orders of magnitude smaller than the perturbation perpendicular to
this field. It proves however to be antisymetric with respect to the axis of the
duct. It is also antisymetric with respect to the plane in between the Hartmann
walls.

Finally, some informations of practical interest for the use of the code are
given.




Numerische Simulation von instationiren
MHD Stromungen in Kanalen

Zusammenfassung

Um die Strémung eines Fliissigmetalls zur Kiihlung des Blankets eines
Fusionsreaktors numerisch simulieren zu kénnen, wurde vor einiger Zeit ein
Rechenprogramm auf der Basis der Finiten-Volumen-Methode entwickelt.
Dieses Programm berechnet sowohl das Geschwindigkeitsfeld als auch die
induzierten elektrischen Strome fiir Kanalgeometrien mit rechteckigem
Querschnitt.

In diesem Rechenprogramm werden die vollstindigen Navier-Stokes-
Gleichungen geltst, widhrend das angelegte Magnetfeld als konstant
angenommen wird und das induzierte Magnetfeld vernachlissigt wird. Die
Kopplung zwischen Geschwindigkeitsfeld und induzierten Strémen wird
durch die Lorentzkraft bewirkt, welche in den Navier-Stokes-Gleichungen
auftritt. Die meiste Rechenzeit wird damit verbraucht, eine Poissongleichung
fiir den Druck und eine weitere Poissongleichung fiir das elektrische Potential
zu losen. Die Integration iiber der Zeit wird mit einer 'Fractional time step'-
Methode durchgefiihrt. Die Anwendbarkeit des Codes wird durch einige
numerische Instabilititen und die numerische Auflosbarkeit von
Grenzschichten beschridnkt. Es sind nur Rechnungen mit speziellen
Randbedingungen fiir den elektrischen Strom erlaubt. Er wurde bisher nur fiir
stationdre Rechnungen eingesetzt.

Um diese Einschrdnkungen zu tiberwinden, wurde eine Analyse der
numerischen Stabilitdt der diskretisierten MHD-Navier-Stokes-Gleichungen
durchgefiihrt und im Anschlufs daran ein neues finites Differenzenverfahren
vorgeschlagen und erfolgreich getestet. Aufierdem ist die neue Version des
Codes nunmehr in der Lage, Stromungen in Kanélen mit beliebiger elektrischer
Leitfdhigkeit der Wande zu berechnen. Eine integrale Modellierung der
diinnen Grenzschichten senkrecht zum Magnetfeld ist ebenfalls beschrieben,
damit befreit man sich von den Schranken beziiglich der Auflosbarkeit dieser
Schichten. So ist man jetzt im Stande, Stromungen bei hoherer Hartmannzahl
zu berechnen, ohne die Anzahl der Maschenpunkte vergréfiern zu miissen. Ein
Rechenbeispiel fiir eine Stromungsberechnung fiir Hartmannzahl 1000 ist in
diesem Bericht enthalten. Auflerdem ist nun ein Zeitintegrationsverfahren der
Fehlerordnung zwei fiir transiente Rechnungen verfiigbar.

Das Programm wird dazu beniitzt, eine spezielle Art transienter
Stromung in einem isolierten Kanal zu berechnen. Die physikalische Instabilitat
wird durch die Schubspannung verursacht, welche von einem Paar von
Kupferstreifen ausgeht, welche mitten an der Wand senkrecht zum Magnetfeld
angebracht sind und in Richtung der Kanalachse orientiert sind. Eine solche
Vorrichtung war 1994 von L. Biihler vorgeschlagen und analytisch und
numerisch in zwei Raumdimensionen und experimentell von F. Debray
untersucht worden. Die Instabilitdten werden sowohl von den Scherschichten
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bei den Kupferstreifen als auch von den Seitenschichten erzeugt. Die
Instabilitdt der Seitenschichten wird durch die Instabilitdt der Scherschichten
nahe der Streifen verstiarkt und wird dominant, wenn die Wirbel, die an den
Streifen entstehen, sich bis zu den Seitenschichten ausdehnen. Aulerdem zeigt
die Untersuchung, daf8 die entsprechende Strémung mit vollisolierten Wénden
auch ohne Kupferstreifen instabil wird. In diesem Falle benétigt die Instabilitit
mehr Zeit, um sich auszubilden, dennoch, nach gentigend langer Zeit wird die
Stromung sehr instabil. Die Strémung ist fast zweidimensional. Die kleinen
dreidimensionalen Effekte zeigen sich im Strecken der Wirbel ldngs der
Streifen, wenn sich diese von der Kanalmitte zur Hartmannwand bewegen. Die
Geschwindigkeitskomponente parallel zum Magnetfeld bleibt ein oder zwei
Groflenordnungen kleiner als die Storungen senkrecht dazu. Diese
Geschwindigkeitskomponente erweist sich als antisymmetrisch zur
Kanalachse. Sie ist auch antisymmetrisch zur Ebene zwischen den
Hartmannwénden. '

Zum Schluff werden noch einige Informationen und Hinweise zur
Beniitzung des Rechenprogramms gegeben.







Contents

Nomenclature
1 - DESCRIPTION OF THE CODE
1.1— Algorithm of the code
1.2— Temporary velocity
1.3— Restrictions of the old version of the code
2 — NUMERICAL STABILITY ANALYSIS
2.1— Stability of MHD Navier-Stokes equation
with Lorentz force JxB discretised on a staggered grid
2.2— Improved, stable scheme for the JxB Lorentz force
2.3— Accuracy of the scheme for the JxB Lorentz force
2.4— Example of computation with the different schemes
3 — ARBITRARY WALL CONDUCTIVITY
& INTEGRAL TREATMENT OF THE HARTMANN LAYERS
3.1— Arbitrary conductivity of the walls
3.2— Integral treatment of the Hartmann layer
3.3— Boundary condition for the tangential component of the velocity
3.4— Boundary condition for the normal component of the velocity
3.5— Example of computation at Hartmann number = 1000
4 — UNSTABLE FLOW IN A DUCT WITH CONDUCTING STRIPS
4.1— Introduction
4.2— Flow between two infinite plates with a conducting strip
4.3— Slightly unstable flow in a duct with conducting strips
4.4— Strongly unstable flow in a duct with conducting strips
4.5— Unstable flow in a duct with all walls insulating
5 — PRACTICAL INFORMATIONS ON THE CODE
5.1— Summary of the code
5.2— Input parameters
5.3— Where to find & how to run the code
5.4— Restrictions of the new version of the code
References

08

09
11
12
12

15

17
21
23
25

29
31
33
35
39
39

43
45
45
49
55
66

75
77
79
53
80

81




j2Y
4

AOTE £ W

Nomenclature

characteristic length, usually half width of the duct

aspect ratio = a/half width of electrically conducting strip
characteristic magnetic field

characteristic velocity of the fluid

dynamic viscosity

mass density of the fluid

electrical conductivity of the fluid

dimensionless quantities

Ha
J

n
N
Re
U

superscripts

C
M

Hartmann number Ha = oBld/p

electric current density

vector normal to the wall

Interaction parameter N = oB; a/(pu,)
Reynolds number Re = Ha'/N

velocity vector

velocity component in the x-direction. (idem for vy & vz)
magnetic field

Hartmann layer thickness 8 = Ha’

grid spacing in the x-direction. (idem for Ay & Az)
electric potential

component normal to the wall

component tangential to the wall

value at the wall

components in the plane perpendicular to the magnetic field
Hartmann wall

side wall

value off the Hartmann layer (in the core)
integral value across the Hartmann layer

temp temporary velocity



1—DESCRIPTION OF THE CODE







1.1—Algorithm of the code

The code is based on a 3-D finite volume discretisation, equally spaced
on an orthogonal grid. Both pressure and electric potential are located at the
centre of each cell, while the velocity and current density are positionned at the
centre of the cell interfaces. In the same way, scalar quantities such as the
divergence of vectors are calculated at cell centres, and the vector quantities
such as the gradient of scalar quantities are computed on cell interfaces.

Central second order differences are used for all terms with the
exception of the advective term (U.V)U for which the LECUSSO-C upwind
scheme (C. Gilinther 1992) is used if the mesh Reynolds number exceeds the
value of 2. In the new version of the code, this upwind scheme is used in any
case where it can be applied. Only at the grid point next to the wall and only
when the fluid comes from that wall, the central difference scheme is used for
the velocity component normal to the wall, for any mesh Reynolds number. In
this case, it is not possible to use a second order upwind scheme which requires
2 points in the upwind direction. Although no first order upwind scheme has
been introduced, no numerical instability has been detected at the boundaries.

The magnetic field is known and remains the same during the
calculation since the induced field is neglected. The electric potential is
computed as the solution of the Poisson equation whose right hand side is
known from the velocity at the old time step n

V'® = V. (U xB). (1.1)
The electric current density can then be directly calculated as

J =-V& +U xB. (1.2)

All other terms are evaluated explicitly, with the exception of the
pressure. The time dependence of the solution via the so called 'fractional step'
method as summarised by the following 3 equations.

First consider the Navier-Stokes equation

+(U"VY) U"] = -V'P+) xB+-=V'U" (1.3)
Ha

1 Un+l_Un
ﬁ[ At

Second, take the divergence of this equation in order to get a Poisson-type
equation which can be solved for pressure since its right hand side is known
explicitly from the old time step n

v'pP = V. (—%I(U".V*) U'+] xB +——1—3V"2Un) (1.4)
a

Third, the velocity at the next time step n+1 is then

U™ = U+ NAt (— % U'.VHU" -V'P+ ] xB+ HLaz V*zUn) (1.5)
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1.2—Temporary velocity

The literature and the code itself refer to a so called temporary velocity
as soon as the fractional step method is used. It is defined as the following

1 [Utemp - Un

1 1
At

L + (U U“] = J"xB+- V0" (1.6)
Ha
It's a kind of fictive velocity since it omits the contribution of the pressure
gradient to the momentum equation. Then equations (1.4) & (1.5) can be
rewritten
1

" temp
VLU (1.7)

V'P =

n+

U™ = U™ - NAtV'P. (1.8)

Note that the incompressibility is automatically satisfied by this fractional step
method:

VU = CNALV.YP V.U = 0 (1.9)
Furthermore the finite volumes ensures that the dicretised form of the
continuity equation is a good approximation of its continuous form.
A clear analysis of the fractional step method and its required boundary
conditions is available in the journal of computational physics (J.Blair Perot, 92)

1.3—Restrictions of the old version of the code

¢ The code suffers from two kinds of numerical instabilities:

1) Time dependant instabilities: these oscillations give rise to an overflow if the
time step is not much smaller than the theoretical diffusion limit for numerical
stability At < 1/5 Re /(Ax*+Ay’+Az *). Much smaller means about 10 to 50 times
smaller for typical calculations found in the thesis report (L. Lenhart, 1994).

2) Spatial oscillations: they do not give any overflow but some strong unphysical
oscillations at the corners of the duct in case of perfectly electrically conducting
walls. For an equal grid spacing in both directions perpendicular to the flow,
they appear as soon as the Hartmann layer is not resolved. The following
chapter will show that this is pure coincidence and that these instabilities have
nothing to do with the resolution of the Hartmann layers.

¢ The electrical boundary conditions are limited to two ideal cases: perfectly
conducting walls (Dirichlet condition on ®), or perfectly insulating walls
(Neumann condition on ®). Therefore, flows in real ducts without insulating
coating cannot be modeled.

¢ The lack of resolution of the thin Hartmann layers gives wrong quantitative
results even at low Hartmann numbers. The figures 1.1 and 1.2 shows how
much the calculated pressure drop changes with the resolution for insulating
and conducting walls.
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2—NUMERICAL STABILITY ANALYSIS







2.1—Stability of MHD Navier-Stokes equation with Lorentz force JxB
discretised on a staggered grid

The case of central differences and transverse magnetic field in the y-direction
B = By is analysed. For simplicity, the magnetic field is supposed to vary only
slightly within the scale of a grid cell, so that its value is By for all neighbouring
points of the central point (i, j, k).

In case where By is constant in the whole domain, its value should be 1 so that
the dimensionless quantities Ha and N defined in the code are really significant
For shorter notations, the 3 components vx, vy, vz of the velocity U are written
just like in the code itself, the 1/2 indices being dropped:

VXit12,j,k  —> VX, k
VYij+2, k. —  VYij k
VZijk+ti2  —>  VZijk

The expression of the x-component of the temporary velocity as defined by the
equation U™ = U™ -N At VP is:

temp
in,j, k = in,j, k
+ At {

1 \

“aa LVXia1, j, kX, 1) (VX kT VX, 10
- (¥, k ¥ VX1, j, 10 (VX3 k + Vi, 1]
1
“aay LVYisL,j k + VY1) (9, a1, k0 + VX, 1)
= (V¥is1, i1, k + VY, -1, 1) (VX K+ VX 51, 1]
1
"8z [(VZivd,j, k + V2,10 (VX j i + VX 1)
- (VZit1,j, k1 ¥ VZi,j, k-1) (VX j, k + VX, j, k-1)]

+ N{
By . . . :
- T GZis1, & +12is1,j, ket + 323§,k + 120, k1)
1
+——_
Ha2{

1

+ 32 (VXisd, j k VX, j, 1)
1

e (VXi, j+1, k + VX, 51, )

1
+3Z (VX j ket VX, k1)

-2 L_,__L_*._.l_. ..
AxE T Ay?  AZ? VXi j, k
)

The current density is defined by Ohm's law:

J=-V&+UxB.
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Due to the staggered grid, the cross product of two vectors has to be calculated
as an average of several neighbouring vectors since U, B and U X B have
different direction and are defined on different points.
Let us first consider the Ux B term only which contains explicitly the velocity.
Then the z-component of UXx B for 4 positions appearing below is:
- '_-"X
(UXB)zjj,k = =5 (VXij, kel + VX1, kel + VX, k + VXie, j, k)
(UxB)zj41,j,k = —X (VXiy1,j, k+1 + VXi,j, kel ¥ VXig1, j, k + VX, 5, 1)
(UxB)zis1,j, k1 = - —4X (VXi41,j, k + VXi,j, k + VXisd, j, k-1 + VX, j, k-1)

B
(UXB)zj, k1 = = (VXij,k * VXi1,j, k + VXi,j, k-1 + VX0, j, ke1)-
Then the x-component of the Lorentz force due to U x B, [(U x B) x B]x is:

B
[(UxB)XBlxj,jk = -7 [(UxB)zis1,jk+ (UXBzis,j, k1
+(UxXB)zj,x  +(UxB)zj k1]
_ By By,
43 ( VXi j, k+2 VX4, j, k + 2 VXi,j,k + 2vx, jk+l 2 vx;, j k-1

+ VXir1,j, kel F VXix1, j, kA + VX, §, kel F VXio, j, k1)

Suppose that vy = vz = 0 (fully developed flow). The temporary velocity can
then be expressed explicitly in terms of the old velocity field in the
neighbouring of the central point (i, j, k), the V @ x B term being omitted:

temp
VX i, ]’

At AtI\2I(AX +Ay?+ Az ))13*

VX, k (1 2 Ax VXitl, ],k+4A VXi1,j, k AtN—L 2

+ VXi+1,j, k ( 4AXVX1+1 k- 4A VXi,j k - AtN“yj Afzt;]az) 2

+ VX1, j, k ( 4AAxVX1J k+7A At AV, j,k AtN—g_-.-A:(S;II-\I]aZ) 3rd
+ in,j+1,k(ﬁ)+ VX, i1, k (Z;]A-%I—I?]I;—z) 4th & 5th

+VXj, j, k+1 (-At N §8L2+ Ajztgaz) 6

+in,j,k-1( AtN—L+Az Il-\I]a ) 7
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2 2
+ VXii1, j, k+l (- AtN Pl% )+ VXj41,j, k-1 (- AtN %6& ) 8th & gth

2 2
+ VXi-1,j, k+1 (- AtN 1—31% )+ VXi-1,j, k-1 (- AtN % ) 10th & 11t

This scheme involves 10 neighbouring points around the point (i, j, k) and is
stable if all coefficients are positive (C. Glinther, 1994), except the diagonal
points (i+1, j, k+1), (i+1, j, k-1), (i-1, j, k+1), (i-1, j, k-1) whose coefficient may be
negative to some extend (see below).

1) The diffusion limit for the time step comes out of the 1st coefficient

(1'4A—7-Atxvxi+1,j,k+4AAxVX,1Jk AtN—L 2AtN(Ax Ay'2+Az'2))2

Suppose that vxj,q j k and vxig j i are of the same order of magnitude, then
they cancel out and the condition simplifies to

AtN

1- AtN—y— 277 (A7 +Ay?+ AZ?) 2

which is just the usual time step criteria for a convection diffusion problem, but
it is now modified by the 2nd term due to 1/4 of the Lorentz force in the x-
direction. This term gives a stronger limit for the maximum time step allowed
for stable computation, especially at high Hartmann numbers:

R Ha?
2 ,whereRe=Fa.

At £ Ha By2
2 (Ax2+ Ay? + AZ?) +

2) The mesh-Reynolds number limit comes out of the 2nd and 3rd coefficients

At At By’ . AtN
L = >
( A VXL kT TAYX, ), k AtN8 +Ax2Ha2)—0.

Suppose again that vx;,1 j k = VX j, k = VX, then

_ At By’
AR VX" AtN 3 +Ax2Re

2 0.

Due to the electromagnetic term, the mesh-Reynolds number Re w Ax is then
limited to a lower value than 2




This condition can be rewritten in terms of a limitation to the grid spacing in
the flow direction:

2vx (‘j \/3
Ax < - <
NBy2 e By2 sy Ha Byl

3) An additional limitation which has no equivalent in computation of ordinary fluid
dynamics has to be considered and is due to the 6th and 7th coefficients.

(AtN—ﬁ AtN )z 0.

Az? Ha?

This limitation is independent of the time step and the mesh-Reynolds number
and is responsible for strong spatial oscillation (but no overflow) near the four
corners of a square duct for flows at high Hartmann numbers. It implies a
restriction to the grid spacing in the direction perpendicular to both magnetic
field and flow direction:

V8

Az < Ha IByl "’

For example, if one uses a 32 x 32 grid in the cross section of the duct of half
width a = 1, and a normalised magnetic field By = 1, then the maximum
Hartmann number that can be reached without oscillation is:

= V8 / (AzBy) = V8 /(2/32x1) = 45.

This analyse does not take into account the effect of the electric potential
gradient on the Lorentz force since it does not contain explicitly the velocity. In
fact, this term is cougled to the velocity field via the Poisson-type equation on
electric potential V°® =V. (U x B). But the gradient of potential usually
counterbalances the U x B part of the current and therefore reduces the total
current density J as well as the Lorentz force itself. This could explain why no
oscillations appear for computation at Hartmann number higher than 45 in case
of perfectly insulating walls where the potential gradient is maximum. But as
soon as the walls are electrically conducting, the oscillations occur and become
stronger as the wall conductivity increases. The oscillations are maximum for
perfectly conducting walls in which case the Hartmann number cannot be more
than 50 for the above parameters. This is actually the highest value chosen for
which L. Lenhart could find good results for MHD flow in perfectly conducting
ducts (L. Lenhart pp 64-72).

4) Finally the last 4 coefficients which are negative in any case should not be
larger in absolute value than the product of the coefficients of the neighbouring
points, e. dg the 81 coefficient should be less in absolute value than the product
of the 219 and 6th coefficients:

’ At _(-A—vx AtN—y— AN )( AtN—Y—+ AtN )

2A Ax? Ha? Az? Ha®
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This relation can be satisfied if one chooses the largest value allowed for Az, i.e.
V8 / (Ha By) in which case the 6th coefficient is zero.

2.2—Improved, stable scheme for the JxB Lorentz force

As a conclusion to the previous section, the MHD numerical oscillations are
due to the distribution of the weight of the Lorentz force on several
neighbouring grid points. These oscillations can be suppressed if a new scheme
is chosen for this electromagnetic force.

The Lorentz force can be written:

JxB = (-V®+UxB)xB = -V®&XxB + (UxB)xB =-VdxB - |IBFfU,,
where U, stands for the velocity components perpendicular to B. (UxB ) x B
is the electromagnetic braking, while -V @ X B is more often accelerating the
fluid. In the vicinity of an insulating side wall, the V ® term forces the current
to an opposite direction of the (U x B)-part of the current.

Then the x-component of (U X B ) x B is discretized as:
2
[(UXB) XB]Xi,j,k = -By in,j,k
The temporary velocity can now be expressed easier as:
temp
VXi, j’ kK =

At At 2 . AtN g g -
VX i, k (1'mvxi‘*l,j,k+mvxi-1,j,k'AtNBy -ZT{ZZ-(AX2+Ay2+Azz))

puxeg oy (AL A AN
VXitl,j, k | "7ax VX1, k T ax X k Ax? Ha?

At At AtN
+ VX, j, k (+ aax VXL kP avYXieL gkt A2 Ha? )
AtN AtN
+ VX, j+1, k W + VX, 1, k Ay? Ha®

AtN . AtN
+ inr j/ k+1 Az2 Ha2 + vxi/]/ k-1 Az2 Ha2

This new scheme involves only 6 neighbouring points around the point (i, j, k).
With this new expression for the (U x B ) x B term, all the numerical
oscillations are suppressed, and all the weight of the Lorentz force is
concentrated on a single grid point. Moreover, this scheme gives an exact value,
while the old scheme with subsequent cross-product computation gives an
approximate value created by several averaging steps.

21




1) diffusion limit for the time step: the only numerical stability limitation which is
modified by the Lorentz force, compared to ordinary hydrodynamics is the
diffusion limit. This limitation is now:

At < Re

2 (Ax? + Ay2 + AZ?) + Ha By?

It appears to be stronger than the limitation of the old scheme, since it involves
the whole electromagnetic braking which is not splitted any more on the
coefficients of several grid points. The electromagnetic contribution Hd By’ is
not divided by 4 any more. In the worse case, the time step would be 4 times
smaller with the new scheme than it was with the old scheme.

This limitation would be overcome if the (Ux B ) X B term was treated
implicitly. This is done most easily by expressing the temporary velocity
without this term and taking it into account in the final velocity U™" as

U™ = U™ -AtNVP- AtN IBI2U,

U™ being now expressed without the (U xB ) x B term. Then, the diffusion
limit is exactly the same as in ordinary computational fluid dynamics:

1 1,1 1Y
At < 'Z-RE(Z‘X-E+A—),2+E) .
Unfortunately this implicit scheme for the (Ux B ) X B term fails because it
breaks the law of mass conservation. Indeed,

2
V' U™ = AtN IBI . \vad U/;\ew
1+AtN IBI
is zero only if Uy;"", the component of velocity parallel to the B field, is constant
in the whole space, i.e. if U;"" = 0. Then this implicit scheme can only be used
to compute a fully developped laminar flow in a straight duct. It is nevertheless
of some interest when one wants to set up the initial conditions for an unsteady

flow. The initial velocity field is reached faster with this scheme.

2) mesh Reynolds number limitation: on the other hand, the mesh Reynolds
number limitation is not affected any more by the electromagnetic braking. It is
now the same as in ordinary hydrodynamics:

Revx Ax < 2.

If this limit does not hold, standard upwind schemes can be used in the same
form as in ordinary fluid dynamics.

3) no other limitations: finally, the limitation that was responsible for strong
oscillations at the corners of the duct, and that has no equivalent in ordinary
fluid dynamics, is now removed. Therefore, there is no limitation any more on
the grid spacing in the direction perpendicular to both, magnetic field and
velocity, and no stronger limitation on the time step than without the Lorentz
force. Finally, the only difference of the new scheme compared to a pure fluid
dynamic code lies in the stronger diffusion limit for the time step. However,
this limitation is more acceptable for an unsteady flow simulation, since the
Reynolds number is larger than that of a laminar steady flow.
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2.3—Accuracy of the scheme for the JxB Lorentz force

-Erroron (UxB)xB

The new scheme for (U x B ) x B is more accurate since it requires no
averaging approximation. It is exact as far as the velocity has a correct value.
The error of the old scheme for this term is of the order

2
o0 vx

(ot i) - ot

ovx
AX2+ —‘.’T

-Erroron -V®xB

What about the other term of the Lorentz force? Since it contains only one cross
product, there is no way to avoid the averaging calculation due to the
staggered grid. This averaging procedure gives rise to an error.

The same problem occurs for the computatlon of ® itself. Indeed, the
right hand side of the Poisson equatlon V’® = V. (U xB) involves the cross
product U x B. Although this term is computed as

V.(UxB) = B.(VxU)-U.(VxB),

it is still ill-adapted to the staggered grid since any simple finite difference
scheme for the scalar quantity B . (V x U) will give a value at a position
different from the cell centres. Therefore an average calculation of
neighbouring points is needed again.

In the old scheme, the errors on both terms of the Lorentz force partly
cancel each another since they are similar and of opposite sign. In the new
scheme, only the Vv @ x B term contains an error. Then this error is not
counterbalanced by the (UX B ) x B term which is now exact. Unless a new
scheme is chosen for the -V @ x B term, the new scheme is on the whole less
accurate than the old one, although it is stable. The velocity profile calculated
with the new scheme at a given Hartmann number looks like the velocity
profile at a lower Hartmann number, i.e. the side layers have a larger thickness
and a lower velocity than they should have.

Accurate scheme for the -V @ x B term of the Lorentz force and fully staggered grid

VZ A j
* z D1/ 101/2 % I ”k’;/ ?

j .

VX p @ T X ]Y
—r>e e} vy —> PO vy
]X (1/2,i, k) | (-3 k) ﬁv\ vx|i-1/2,,k) | @i K i‘\

: y
fi) )
ordinary staggered grid fully staggered grid
Fig. 2.1
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In order to have both, accuracy and stability, a more accurate scheme for
-V ® x B should be chosen. Several schemes have been tried and as a result, the
grid itself has been modified. Other attempts to modify the scheme on the
ordinary staggered grid have failed. In particular higher order central
difference schemes gave some oscillations. When applied to both V. (U x B)
and -V ® x B terms, they gave accurate results just before the code started to
diverge after a few hundreds of time iterations. The use of higher order central
differences applied to only one of the V. (U x B) and -V ® x B terms was found
to be stable but helpless since it almost did not improve the accuracy.

The only way to avoid the averaging procedure of cross products is to
use a different grid. The electric potential should not be calculated at the cell
centres but on the edges of the cells. This type of mesh is referred as a 'fully
staggered grid' (Y. Shimomura, 1991). This new grid is better than the old one
because it allows to calculate the cross product without averaging since the two
vectors -V @ and B are defined at the same point. The first order derivatives are
then calculated with central differences of the form:

Ju oWy -y
0z T Az

k+1/2

instead of an average of several central differences of the form

ou| Uy = U

E-)zlk 2Az 7

where u represents both vx for the computation of V. (U x B), and @ for the
computation of -V & x B. The new scheme has the accuracy of a grid of size Az,
while the old scheme has the accuracy of a grid of size 2Az.

Note that this new grid allows a B-field in the y-direction only. If more
than one component for this field was needed, then one should try a fully
staggered grid with the electric potential defined at the 8 corners of the cell.

Divergence of the Lorentz force
Although not zero, the divergence of the Lorentz force should have a correct
value when it is discretised on a staggered grid. This non zero divergence is

due to the variations of the velocity in the B field direction only as shown
below. Let us split the divergence of J x B into two terms:

V.JQxB) = -V.(V®dxB) + V.[(UxB ) xB]

Then, the first term is zero as far as Vx B = 0 which is verified when B is
chosen to be constant:

V.(V®xB) =B.(VxV®)-VD.(VxB) =0

The second term is responsible for the non zero divergence. Split it again into
two terms:
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V.[(UxB)xB] = B.[Vx(UxB)] - (UxB).(VxB),

and the 2nd term vanishes since we suppose that VxB = 0. Write V x (Ux B)
in the following form:

Vx(UxB)=U(.B)-B(V.U +B.V)U-U.V)B=(B.V)U
Note that V.B = V.U = 0,and that (U.V)B = 0 since B is constant. Then,

B.[Vx(UxB)] = B.[(B.V)U] = By2 if B = By = Cst

Finally the divergence of the Lorentz force in case of constant magnetic field
B = By = Cst is proportional to the first derivative of the velocity aligned with B
in the direction of B:

V.(JxB)sz%Y-.

2.4—Examples of computation with the different schemes

The foliowing pages show two examples of computation:

- one with the old scheme and the ordinary staggered grid (top)
- and one with the new scheme and the fully staggered grid (bottom).

Both examples are made with a grid size of 3232 cells in the cross section of
the duct. The Hartmann number is 200 and the interaction parameter is 5000,
i.e. the same as often used in the report of L. Lenhart (1994). All walls are
perfectly conducting. One can see the oscillations of the old scheme and the
stable solution of the new scheme. Moreover, the stable solution shows that for
such a Hartmann number, not only the Hartmann layers are not resolved but
also the side layers have a very poor resolution.
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& INNEW CYU = 1.00D-1, CYO = 1.00D-1, CZU = 1.D-1, C2z0 = 1.D-1,
IRAND = 0, ISUPR = 0, ISYMS = 0, IADBA = 0,
IJBLF = 0, IMPLIC = 0, MINUTE = 03, ISECON = 00
&END
&INALL HA = 2.0D+2, ST = 5.0D+3, DT = 1.0D-4,
ALFA = 9.0D1, X0 = 0.0DO, TOL = 1.0D-9,
DX = 0.10000D0, DY = 0.06250D0, DZ = 0.062500D0,
ISTP = 1, JSTP = 1, KSTP = 1,
MSTP =9999, ICOMP = 001, IPRINT=9999,
START ='N"’, IPARTS= 1,
INFO =’ MHD BEI KONSTANTEM MAGNETFELD BY=1 !
&END
&INPUT XL = 0.0D0, 2.0D-1, 1.0D0O, -0.5DO0, -1.5DO,
XH = 0.4D0O, 4.0D-1, 2.0D0, 0.5D0, -0.5DO,
YL = -1,0D0, -1.0D-1, 0.5D0, 0.5D0, 0.5D0,
YH = 1,0D0, 1.0D-1, 1.5D0, 1.5D0, 1.5DO,
ZL = -1.0D0, -1.0D-1,-0.5D0, -0.5D0, -0.5DO,
ZH = 1.0D0, 1.0D-1, 0.5D0, 0.5D0, 0.5DO,
IBCXL = 3, 5, 5, 2, 4,
IBCXH = ¢4, 4, 4, 2, 5,
IBCYL = 1, 1, 1, 5, 1,
IBCYH = 1, 1, 1, 4, 1,
IBCZL = 1, 1, 2, 2, 2,
IBCZH = 1, 1, 2, 2, 2,
ICROSS = 1, 1, 4, 3, 1,
VXWERT = 1.0D0, 1.0DO, 0.0DO, 0.0D0O, -1.0DO,
VYWERT = 0.0D0O, 0.0DO, 1.0D0O, 1.0D0O, 0.0DO,
VZWERT = 0.0D0O, 0.0DO, 0.0DO, 0.0DO, 0.0DO
&END

Table 2.1: copy of namelists
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3—ARBITRARY WALL CONDUCTIVITY
& INTEGRAL TREATMENT OF THE HARTMANN LAYERS
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3.1—Arbitrary conductivity of the walls

If the walls of the duct have an arbitrary electrical conductivity, then the
currents inside the walls have to be computed since they modify the currents in
the fluid itself. In such a case, the thin wall condition (Walker 1981) is used. The
thickness € of the walls is supposed to be much smaller than the width of the
duct (& « a) so that the currents in the walls are modelled as a sheet of current.

The normal component of current coming from the fluid is a source for
the current in the wall. Therefore it gives rise to a non zero divergence of the 2-
dimensional current tangential to the wall:

or in terms of electric potential,
V@ = V. (cVD) (3.2)

where the wall conductance ratio c is defined as the ratio of the apparent
conductivity of the wall o,, to the conductivity of the fluid &
o

c=—
c

’

and the apparent conductivity of the wallc,, is the conductivity of the wall o,
times it relative thickness ¢/a:

Iterative computation of the electric potential at the wall

The potential at the wall has been computed in the past with a 2-D
Poisson-solver (A. Sterl, 1990). The iterative method that was used is the
following.

One starts with arbitrary Dirichlet boundary conditions at the wall for
the 3-D Poisson solver that gives a solution for the potential in the fluid. This
3D solution also gives the normal derivative of the potential at the walls. Then
equation (3.2) can be solved for the potential at the walls using a 2-D Poisson
solver that gives a new value of the wall potential. This new value of the wall
potential is then used as a Dirichlet boundary condition for the 3-D Poisson

31




solver. This process is repeated until the potential converges to some value.
This algorithm has been used in the new code but only for the ordinary
staggered grid and the old finite difference scheme.

An easier algorithm is used in the new code for the fully staggered grid
and the new finite difference scheme. It does the same iteration procedure, but
in the other way round. One starts with arbitrary Neumann boundary
conditions at the wall for the 3-D Poisson solver that gives a solution for the
potential in the fluid. This 3-D solution also gives the wall potential itself. Then
eq. (3.4) gives directly the normal derivative of the potential at the wall,
without the need to solve a 2-D Poisson equation. This new value of the normal
derivative of the wall potential is then used as a Neumann boundary condition
for the 3-D poisson solver. This process is also repeated until it converges.

In the new code, the convergence is accelarated by an initial guess of the
solution at each time step. This guess V., ®"" is first order in t1me, itis estlmated
from the solution at the two previous iteration steps V,®"¢ and V, & It is
defined in such a way that

Vn (Dnew _ Vn (Dold - Vn (I)old - Vn (Dolder

Both old and new iteration algorithm between the volume and its
boundaries requires a stabilising under-relaxation; the wall potential or its
derivative at the new step is set to an average value between the last step and
the new step. The relaxation coefficient is set to the highest value as possible in
order to converge as fast as possible. This value depends on the different
parameters of the run and is set empirically by starting the execution for a few
time steps only. If the relaxation coefficient is too high, the code diverges
usually at the first time step. For the most unstable calculation given at the end
of this report, the code needs on average 12 iterations steps on the potential per
time step.

j=4 ® o} o) - |
j= 3(\’\ k i 1 N . k j 3 9
O 3-D potential in the fluid <] ¢ e < ]
2-D potential:
% at the Hartmann walls B
A at the side walls ) o ¢ ]
y
wall conductance ratio:
e at the Hartmann walis i
0 atthe side walls X ® o
Z
= Ok . —X
=0 & (o] (o] B
k=0 k=3

Fig. 3.2: discretisation of the electric potential in the fluid and on the walls
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The computation of the potential at the corners of the duct needs some
care. On the ordinary staggered grid, the treatment has already been described
(A. Sterl, 1989). On the fully staggered grid, the potential at the wall occupies
the following positions shown in Fig. 3.2.

On the side walls., the potential at the wall and the potential in the fluid
are just the same, and V,. (cV,®) is computed as:

Con, k [Pj+1, k - D, k] - Cowj-1, k [Py, k - Dj-1, k] , .
: ‘ Ay ' S (1<j<3, k=0or 3, see fig. 3.2)

On the Hartmann walls, the potential at the wall is the average value of two
values of the potential in the fluid, and V. (cV @) is computed as:

Crwi, k+1 [DQj, k+1 - B, k] - convi, k [Py, k - Dy, k-1]
AZZ

(G=00r3, 0<k<3) (3.4)

The value of the potential standing in the neighbourhood of the Hartmann
walls, and out of the duct, is given by the Neumann boundary conditions that
are used in the 3-D Poisson solver.

Therefore, on the Hartmann walls V @ is expressed as

®is1 k- D
V@:—Jﬂfy——u‘ (j=00r3, 0<k<3,see fig. 3.2)

The treatment of the corners is done when computing the potential at the
Hartmann walls and not at the side walls since the potential at the corners is
only defined on the Hartmann walls as one can see from the last figure. In the
corners, the conservation law V@ = V.. (cVi®) should be written in a different
way. Indeed, V,® = Vy® does not only create a current leaving the Hartmann
wall in direction of the fluid, but it also create a current leaving this wall and
entering the side wall. The y-component of the current density at the corner is

written -cg, Vy® -1/2 Az Vy® . The term -c,, Vy® is the current leaving the

Hartmann wall and entering the side wall. The term -1/2 Az V,® is the current
leaving the Hartmann wall and entering the fluid. The 1/2 coefficient comes
from the absence of fluid on that side out of the duct. The current leaving the
Hartmann wall and entering the fluid in the neighbourhood of the corner, can
only do so from that side inside the duct. Finally the conservation law at the
corner should be written:

W V,@+3 A2V, ® = c,V,®

3.2—Integral treatment of the Hartmann layer

For high values of the Hartmann number, the Hartmann layers are so
thin that they become impossible to be modelled with numerical codes based
on a constant grid spacing. Moreover, if one wants to implement a non regular
mesh, the diffusive viscous term should be treated implicitly. Otherwise the
time step which is limited at least to 14 Re /(Ax*+Ay*+Az*) by the explicit
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scheme of the code would tend to zero as Ax, Ay, Az —> 0. Furthermore, a non
regular spacing would increase the computation time when solving the two
Poisson equations for pressure and potential.

As already pointed out (L. Biihler 1994), the Hartmann layer can be
removed from the model, with the use of the electric potential boundary
conditions that we have defined for walls of arbitrary conductivity. The electric
currents in the Hartmann layer are then included in the theory in the same way
as the currents in the walls. The boundary condition for potential becomes

V.® =V, (c+&V,). (3.5)

Indeed, let us write the actual velocity U which decreases exponentially across
the Hartmann layer, from the velocity UL in the core to U, = 0 at the wall.

U = U (1-e™?). (3.6)

U: is the velocity in the core which is reached when n is big enough. Let us
compare the actual current density J, to the current density JC outside the
Hartmann layer

Jo=-V,®+UxB, (3.7)
Jt = -V, 0+ U xB. (3.8)

Smce the potential is continuous between the wall and the Hartmann layer,
@° ~ @, the contribution of the Hartmann layer to the tangential current is

=0 = - (V) e
and should be divergence free
VP =0=V.]i+V..].

Integrating this relation in the normal direction from 0 to e gives an expression
for the jump in the normal component of this current over the Hartmann layer.

AJn =Tl_-Il, = fvn.Jﬁdn = f V.Jidn
0 0

= - f V. (Vo +J) e ™ dn = -V, BV + 8JO).
0

Then the jump A J, of the normal component J, of the total current is

AJ, = Al +AJs = -V, (8V,®°).
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Therefore the Hartmann layer can be modelled in the same way as a thin wall
of arbitrary conductivity. It can be replaced by an infinitely thin sheet of current
where the normal current entering this sheet gives rise to a divergence in its
plane. Both wall and Hartmann layer can be superposed as a single sheet of
current. The boundary condition for the electric potential is then (3.5).

§ = Ha
il b el B e e il s
I i - :
wlh cclbhcwealeoeed o= L. (Y SR IR A R
1 1 L 1
1 1 'L |
' B 1 - B )
| _’ ] ) __> i
1 ] [
1 ] : K :
1 ' . ]
1 1 | e 1
| 1 & 1
S Tt SEEE ERT LANISVAR [ R R P B
| ] ~ a r B |
] ] ] 1
t t
V.o =V, (V) V.o =V, (c+ VD)
" Ur
U, =0 Us = -Halv,.US
physical boundary conditions modelled boundary conditions

Fig. 3.3: treatment of the Hartmann layers

3.3—Boundary condition for the tangential component of the velocity

If the Hartmann layers are removed from the mesh, then modified
boundary conditions for the tangential and normal components of the velocity
are needed. Subtract equation (3.7) from equation (3.8), then the contribution of
the Hartmann layer to the current density can be written

J =)o) = V,(@°-9)- (U - U)xB ~ - (U -U)xB
One can then integrate the last relation in the normal direction, from the wall to

the core, and express the current in the Hartmann layer as a function of the
velocity in the core:

f]?dn = -USxB fe'“”’dn = -3 U xB.
0 0

Therefore, even for a non parallel flow, the electric current in the Harmann
layer is proportional to the velocity of the fluid out of the layer. Note that
d=Ha"!, multiply both sides of the above equation by B x, and define ]} as the
whole current in the Hartmann layer
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= [0 an

then
U’ = HaJ'xB

Therefore, even for a non parallel flow, the electric current in the Harmann
layer is proportional to the velocity of the fluid out of the layer.
It is hard to derive a practical boundary condition from this relation, since it
requires in advance the knowledge of the current density which can only be
calculated once the velocity field is known.
The practical boundary condition used in the code when the Hartmann layer
are removed from the discretised computational domain is to suppress the
viscous braking at the Hartmann walls, i.e. the second derivative in the
direction normal to the walls of the component of velocity parallel to the walls
is set to zero.

Fur

anZ

= ().

Such a condition neglects viscous braking in the core, near the wall, an obvious
assumption, since viscous braking is already taken into account by adding the
thikness of the Hartmann layer to the wall conductance ratio. Indeed, this
modified electrical boundary condition allows more electric current to flow at
the boundary. This additional current closes then in the core where the
interaction with the magnetic field causes the required braking effect due to the
modelled Hartmann layers.
But it can be that the core itself, even in a region far from the Hartmann layers
is submitted to some small viscous effect. This is the case when the velocity
profile in the core has some curvature. Usually, the core is a 'quiet' region with
a flat velocity profile. Things are different in the side layers showing a parabolic
velocity profile along the magnetic field. This parabolic profile implies that the
second derivative of the velocity in the direction parallel to the B-field is
constant. Then one may prefer the following boundary condition at the
Hartmann walls:

Pur

an3

= 0.

Furthermore, if the flow is 3-dimensional, as it is the case when it is unstable or
when it passes through a non uniform B-field, the core velocity can have any
profile. There is then no better thing to do than to extrapolate the velocity in the
core onto the Hartmann walls. This can be done for instance by setting to zero
higher order normal derivatives. The higher the order is, the better the
extrapolation is. The code is actually using a zero fourth order normal
derivative.

As a summary, there is no satifactory boundary condition available for the
tangential core velocity at the Hartmann walls. But one can easily show that
this boundary condition has a very small influence on the result. Even if this
condition is chosen as a first order derivative, which is a completely wrong in
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the vicinity of the side layers, the results in terms of velocity profile or pressure
drop show a slight difference compared to the results obtained with higher
order derivatives. This fact is consistent with the small effect of the viscosity in
the core flow at high Reynolds numbers.

An example of computation with Hartmann number = 100 with two completely
different boundarys condition for Ur is given on the following page. The figure
3.4 show the core velocities. The side walls are insulating while the Hartmann
walls have a wall conductance ratio c= 0.07. Such parameters generate jets at
the side layers and a non constant dvx/dn at the Hartmann walls. The upper
plot correspond to the 4th order normal derivative of vx set to zero at the
Hartmann walls. The lower plot has the 1st order normal derivative of vx set to
zero so that the velocity profile becomes suddenly horizontal at the Hartmann
walls.

In spite of this drastic difference, the maximum velocity in the jet, the minimum
velocity in the core, and the pressure drops are almost the same:

- 0" vx IVX
- boundary condition ay“ = ( 3y =
- vx maximum in the jet 2.076 2.077
- vX minimum in the core 0.872 0.871
- pressure gradient 0.0645 0.0644
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Fig. 3.4: velocity plot Z Ha-= 100, com =0.07, csw =0, 3" vx/ dy' = 0 at the Hartmann walls,
calculated pressure gradient = 0.0645
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3.4—Boundary condition for the normal component of the velocity

Consider the continuity equation,
VnUn = -Vt' Ut'

If n is the direction normal to the Hartmann wall, integrating this equation in
the normal direction from the wall (n=0) to the core (n—><-), with the use of
equation (3.6) leads to

Ur = -[n-8(l-e™] V.. Ur.
Then, if n/8>> 1,
Us = -(n-8) V, U

as if the wall was shifted by a distance §, and the Hartmann layer suppressed
(R. Moreau, 1990). Let then the Hartmann layer be removed and replaced by
the appropriate analytical boundary condition. In the dimensionless form, this
equation becomes at the boundary (n = 0):

US = Halv,. US

C
Therefore U,—>0, as Ha—>ee,

3.5—Example of computation at Hartmann number = 1000

The following pages show an example of computation at a high Hartmann
number with the integral treatment of the Hartmann layer. The most
numerically unstable case is chosen, i.e. all walls perfectly conducting. The grid
size is 8x128 cells in the cross section of the duct. It has the same number of grid
points as in the examples of section 2.4 since 8x128 = 32x32. The integral
treatment of the Hartmann layers allows to use few grid point in the direction
of the magnetic field and therefore, more grid points to resolve the side layers.
Moreover, and in spite the high value of the Hartmann number, one can see
that the new scheme with the fully staggered grid provide numerically stable
calculation.
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&INFC

&END
&INALL

&END
&INPUT

&END

CYyu =
IRAND
ICYCL

HA
ALFA
DX
ISTP
MSTP
START
INFO

XL

XH

YL

YH

ZL

ZH
IBCXL
IBCXH
IBCYL
IBCYH
IBCZL
IBCZH
ICROSS
VXWERT
VYWERT
VZWERT

o

i uwnan

IADBA

Cz0 =1
IJBLF =

.D-1,
0,
2

5.0D-4,

1.0D-4,

0.015625D0,
1,

IPRINT=9999,

I3

~1.5D0,
-0.5D0,

0.5D0,
1.5D0,

-0.5D0,

0.5D0,

.00D~1, CYO = 1,00D-1, CZ2U = 1.D-1,
0, ISUPR = 1, IsYymMms = 0,
0, MINUTE = 00, ISECON = 30,
1.0D+3, ST = 1,0D+3, DT
9.0D1, X0 = 0,0D0, TOL
0.10000D0, DY = 0.25000D0, D2

1, JsTp = 1, KSTP

9999, ICOMP = 001,

'Y, IPARTS= 1,

 MHD BEI KONSTANTEM MAGNETFELD BY=1l

= 0.0D0, 2.0D-1, 1.0DO, -0.5DO,

= 0.4D0, 4.0D-1, 2.0DO, 0.5DO0,

= -1.,0D0, -1.0D-1, 0.5D0, 0.5D0,

= 1.0D0, 1.0D-1, 1.5D0, 1.5D0,

= -1,0D0, -1.0D-1,-0.5D0, -0.5D0,

= 1.0D0, 1.0D-1, 0.5D0, 0.5DO0,

= 3, 5, 5, 2,

= 4, 4, 4, 2,

= 1, 1, 1, 5,

= 1, 1, 1, 4,

= 1, 1, 2, 2,

= 1, 1, 2, 2,

= 1, 1, 4, 3,

= 1,0DO0, l.0D0, 0.0DO, 0.0DO,

= 0.0DO, 0.0DO, 1.0DO, 1.0DO,

= 0.0D0, 0.0DO, O0.0DO, 0.0DO,

Table 3.1: copy of namelists
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4—UNSTABLE FLOW IN A DUCT WITH CONDUCTING STRIPS
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4,1—Introduction

In connection with the thermonuclear fusion project the cooling of reactors
such as tokamaks by a liquid metal coolant is investigated in various ways. In
order to enhance the heat transfert in insulating ducts, a coating of the walls
perpendicular to the magnetic field by a pair of electrically conducting strips
has been proposed as a turbulence promotor device (Kolesnikov, 1972).

L u/V

Fig. 4.1

This device has been modelled analytically and numerically as a 2-dimensional
system (L. Biihler) , and was also investigated experimentally (F. Debray, 1995).
The experience was succesfully compared with the theory.

This previous work is used to test the 3-D code described in this report. Then,
informations about the possible 3-D effects and the influence of the walls
parallel to the magnetic field are obtained.

4.2—Flow between two infinite plates with a conducting strip

The 3-D code is first tested for a flow between two plates (no walls parallel to B)
and with periodic boundary conditions in the direction of the flow (inlet =
outlet). This configuration corresponds to the linear stability analysis and also
to some results of the 2-D finite difference code.

The parameters used in the 3-D code are the following:

- Hartmann number based on the channel's half height: 1000

- Hartmann number based on the strip's half width: 100

- aspect ratio = channel's half height/strip's half width:  a, =10
~ conductivity of the strip ¢, =10 and width a;' = 0.1.

- insulating Hartmann walls

- size of the grid in x, y, z-directions: 27 X 16 x 64 cells

- computational domain: 0 <x < (A =0.802)
-1 <y <+l
-1 <z<+1
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A smooth function is actually chosen to resolve the transition between the
insulating and conducting parts:

c= . sf:uomh(z) -, sothat c—> cy=10" nearz=0, c—> 0 as z —> too
(sinh(a;‘))

dimensionless numbers are based on the velocity far from the conducting strip
and on the half width between the Hartmann walls

Boundary conditions:

- periodic boundary conditions at the inlet x = 0 and outlet x = A:

vx, vy, vx, @ at the inlet = vx, vy vz, ® at the outlet
pressure P at inlet = pressure P - Cst at the outlet

- integral treatment of the Hartmann layers at y =+ 1:

9> vx _ o' vz - 0
ay> — oy

vy =0

V.® = V. {c+OV D)
- Neumann boundary conditions at z =+ 1

dvx _ ovy odvz _
3z oz oz -0

y=+1

QU

d 1+9

A 1+c

vx = vx so that sz dy = 0

y=-1

These last conditions at z = + 1 are chosen to give some freedom to the fluid so
that the effect of these boundaries is minimum.

The parameters used in the 2-D code are the same except that the
computational domain extends to a distance twice as wide in the direction
perpendicular to the B-field and to the main flow. The boundary conditions are
the same as far as only two directions are concerned with the exception of that
of the component of velocity parallel to the side wall.

- Dirichlet & Neumann boundary conditions at z=*2: vx = 1, dvz/dz=0

- size of the grid in x, z-directions: 30 X80 or 40 x 100 cells
- computational domain: 0 <x<(A=0.802)
2 <z<+2
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profile, and at half way between the Hartmann plates. The two vortices have 3
components. Both sine wave and vortices have a maximum velocity of 10°.

Various Reynolds numbers are tried and the flow becomes unstable in the 3-D
code at a critical value between 2000 and 2100 if scaled on the half width of the
channel (200 and 210 if based on the half width of the strip). In the linear
stability analysis and in the 2-D code the critical Reynolds number is 1800 if
based on the half width of the channel (180 if based on the half width of the
strip).

The following next page shows the flow at a Reynolds number of 4000 scaled
on the half width of the channel. The wave length used in this calculation is the
same as that of the critical Reynolds number. The instability is not fully
developed and the vortices were still growing at that time of the simulation.
The vorticity lines are plotted in 2 different planes perpendicular to the
magnetic field, the first plane being at half way between the Hartmann plates,
the second being close to the lower Hartmann plate. The flow is almost two
dimensional although the amplitude of the oscillations is reduced as one moves
from the middle to the Hartmann plates, and in the vicinity of these plates,
when ones moves from the sides to the strig. The velocity component parallel
to the magnetic field remains of the order 10".
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4.3—Slightly unstable flow in a duct with conducting strips

This section and the next one present the results obtained for the same
parameter as the experiment performed by F. Debray (1995). It exhibits the
interaction of the vortices with the side walls parallel to the B-field.

The parameters of the experiment and its numerical simulation:

- Hartmann number based on the channel's half height: 300
- Interaction parameter based on the channel's half height: 60
- Reynolds number based on the channel's half height: 1500

- Hartmann number based on the strip's half width: 50
- Interaction parameter based on the strip's half width: 10
- Reynolds number based on the strip's half width: 250

- aspect ratio = channel's half height/strip's half width:  a, =6
- conductivity of the strip ¢, = 4.2 x 10” and width a;' = 0.167.
- insulating Hartmann walls and insulating side walls

- size of the grid in x, y, z-directions: 27 x 16 X 128 cells
- computational domain: 0 <x < (A =1.51)
2 <y<+2
-1 <z<+1

Again a smooth function is chosen to resolve the transition between the
insulating and conducting parts:

c= CO so that c—> ¢, =4.2x 10" ifz—> 0, c—> 0 if z —> oo
sinh(z) ¥’ !

1+ (sinh(a: ))

Boundary conditions:

- periodic boundary conditions at the inlet x = 0 and outlet x = A:
VX, vy, vx, ® at the inlet = vx, vy vz, @ at the outlet
pressure P at inlet = pressure P - Cst at the outlet

- integral treatment of the Hartmann layers at y =+ 1:
O ’vx d'vz

8_y2 = a_y2 = vy =0, V@ = V. ((c+d VD)
- No slip conditions and insulating wallsatz=%1
o
vx=vy=vz=a—z-=0

The computation is run until the flow reaches a constant oscillatory regime, i.e.
the small instability is fully developped and will not grow further in time. The
amplitudes of the oscillation are the following:

VX max. vy max. x 10° | vz max. x 10'
1.00 1.24 0.88

Although the y-component of velocity, i.e. the component parallel to the B-
field, remains very small, it is been ploted on the next figures because it is
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organised in the following way. It is anti-symmetric with respect to the plane
y=0, i.e. the mid plane between the Hartmann walls. It is also anti-symmetric
with respect to the central x-axis of the duct. This structure has been found as
well in all other runs described in this chapter.

The figure 4.7 shows that the perturbation for the y-component of velocity
remains in the region of the strong shear layer in between the conducting strips.
Although not represented in the next sections, this perturbation arises also in
the shear layers of the side walls for the runs described in sections 4.4 and 4.5.
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4.4—Strongly unstable flow in a duct with conducting strips

This section uses the same parameters and boundary conditions as those of the
previous section describing the experiment. But the Reynolds number is now
about twice its previous value, the corresponding interaction parameter being
twice as low as before.

- Hartmann number based on the channel's half height: 300
- Interaction parameter based on the channel's half height: 28.96
- Reynolds number based on the channel's half height: 3108

- Hartmann number based on the strip's half width: 50
- Interaction parameter based on the strip's half width: 4.83
- Reynolds number based on the strip's half width: 518
- computational domain: 0 <x<(A=279)

The dimensionless numbers are now based on the mean velocity that can be
deduced from the flow rate. The flow rate is kept constant throughout the
simulation. For this purpose, the pressure drop is adapted continuously during
the execution of the program.

The following figures show the evolution in time of the flow. The y-vorticity is
ploted at y=0, y=-0.5, y=-1. The z-vorticity is ploted in the region of strong
shear at z=-0.39, z=-0.45, z=-0.51. This z-vorticity is smaller than the y-vorticity.
The y-velocity is of the order 10°, while the z-velocity is of the order 1.
However the y-velocity is growing as the instabity occuring from the strip
reaches the side walls. The evolution of the maximum value of each component
of the velocity is shown on table 4.1.

time vxmax. |vymax.x10'| vzmax.
25 1.13 0.008 0.01
5.0 1.26 044 0.23
75 1.45 0.79 0.52
10.0 1.47 0.80 0.46
12.5 1.46 0.84 0.40
15.0 1.50 0.78 0.43
17.5 1.48 0.79 0.40
20.0 1.48 0.86 0.37
22.5 1.65 0.89 0.50
25.0 1.97 1.04 1.18
27.5 2.10 2.66 1.20
30.0 1.65 3.20 1.25
Table 4.1
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The flow exhibits the following behaviour:

- the perturbation is rapidely amplified to form vorticies around the strip.

- then, these vorticies grow relatively slowly compared to the initial small
perturbation and develop from the strip to the side walls.

- when they reach the side layers, some new vortices are created and develop
from the side layers to the strip

- the vorticies occuring from the side walls become stronger than the initial
vorticies that arose from the strip. At this time the maximum z- velocity
changes rapidely from 0.4 to 1.3

- then the whole domain is strongly unstable and the resolution of the
simulation becomes too weak.

Next to the plot of vorticity are represented some statistics. The 3-D plots on the
left represent the evolution of the mean velocity <vx>. The 3-D plots on the
right represent the evolution of the mean value of the x- and z-pertubations
product <vx' x vz'>. The quantities vx' and vz' are defined as

VX =<Vx> + VX, Vz=<vz>+vz

The mean value can be considered either as an average in time or as an average
in the x-direction of space since the flow is periodic in that direction. One can
see that the thickness of the shear layer between the strips is first widened.
Then is remains about the same until the perturbation reaches the side layers.
From that time, both quantities <vx> and <vx' X vz"> change rapidely.
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4.5—Unstable flow in a duct with all walls insulating

An important point is that in the simulation presented in the last section, the
side layers are unstable very soon and that the vortices coming from the strip
enhance the instability of the side layers. It would be interesting to know if the
flow is still unstable in case where there are no conducting strips. In order to
answer this question, the same simulation is run without the conducting strips.
The problem of this run is to choose the length of the domain. This length fixes
the wave length and there is no experimental data in that case. Although this
parameter is unknown, the run has nevertheless been performed with the wave
length of the previous simulation, as first attempt to model this flow.

- Hartmann number based on the channel's half height: 300
- Interaction parameter based on the channel's half height: 28.96
- Reynolds number based on the channel's half height: 3108
- computational domain: 0 <x<(A=279)

The initial perturbation is again composed of a sine wave of z-velocity
extending to the whole domain. It also contains a 'Dirac’ of vortex in each shear
layer, but the shear layers are now located at the side walls. The two vorticies
have 3 components. Both sine wave and vorticies have a maximum velocity of
of 10°. The perturbation needs a much longer time than in the previous section,
in order to be amplified as indicated on the next plots, and on the table below.

The following figures show the evolution in time of the flow. The y-vorticity is
plotted again at y=0, y=-0.5, y=-1. The z-vorticity is plotted in the region of
strong shear which are now the side layers. This z-vorticity is plotted at z=-
1.77, 2=-1.83, z=-1.89. It is again smaller than the y-vorticity. There is now
almost no 3-D effect since nothing special happens at the Hartmann walls
where the conducting strips have been removed.

time VX max. vy max. X 10° vz max.
52.5 1.07 0.03 0.133
55.0 1.09 0.06 0.217
57.5 1.18 0.12 0.330
60.0 1.40 0.10 0.505
62.5 1.60 0.31 0.620
65.0 1.66 0.79 0.641
67.5 1.61 0.33 0.536
70.0 1.66 0.51 0.524
Table 4.2

As shown on the following plots of vorticity and statistics, the flow exhibits the
following behaviour:
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- at the beginning, the vorticies are located close to the side walls, and extend to
the bulk of the flow, but there is a quiet region in the middle of the duct.

- the wave length of the perturbation is half the length of the computation
domain in the axial direction.

- later, the vorticies coming from a side wall meet the vorticies coming from the
opposite side wall.

- at this stage, the vorticies mix together and form a larger structure with a
wave length equal to the length of the domain.

- at the end of the run, the flow has not reached a final state, but the amplitude
of the oscillation seems to decrease as shown on table 4.2.
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5—PRACTICAL INFORMATIONS ON THE CODE
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5.1—Summary of the code

Declarations
& initialisations

READ Reading of the input parameter via 3 namelists:
INPUT, INALL, INFC.
A the half-width of the duct a should be equal to 1,
otherwise the Hartmann number and interaction
parameter would be false by a factor 1/a.

CALL CHECK checking compatibility of input parameter.
Only in the new version of the code.

CALL INUNF In case of restart reading of unformatted old
intermediate results by the subroutine.

CALL GRID otherwise initialisation of grid points magnetic field
velocity and pressure by the subroutine.

label 1 Start of time iteration.

CALL RPOT computation of the right hand side of the Poisson
equation for electric potential.

CALL RAND computation of the wall potential PHIWND with a 2-D
Poisson solver.

CALL FCYW computation of the wall potential without 2-D Poisson

CALL FCZW solver.

CALL SHIBO3 modification of this right hand side of the potential
equation with respect to the boundary conditions stored
in the arrays FX0, FXM, FY0, ...

CALL SHAFT3 fast Poisson solver using Fourrier transform, developped
at the University of Karlsruhe. Solves the poisson
equation for potential.

CALL DBX, NBX, [the boundary values of the potential are affected by

DBY, ... these special subroutines since the SHAFT3 solver only
returns the potential inside the volume and not at the
boundaries.

CALL CUR computation of the current density, once the potential is
known.

CALL TVEL affectation of the temporary velocity including all terms
of the Navier-Stokes eq., pressure gradient excepted.

CALL BVXPYZ, ... |subroutines for affectation of the boundary values of the
temporary velocity.

CALL BCTVEL call in one statement all theses subroutines of the old
version. Only in the new version of the code.

CALL RPRE computation of the right hand side of the Poisson

equation for pressure, i.e. the divergence of the
temporary velocity.

A\ The coefficient 1/NAt of eq. (1.7) is omitted as well as
the coefficient NAt of eq. (1.8) in subroutine FVEL.
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CALL SHIBO3

modification of this right hand side of the pressure
equation with respect to the boundary conditions stored
again in the arrays FX0, FXM, FY0, ... that were
previously used for the potential

The boundary cond. include a factor NAt (see below) so
that a restart with a different time step would produce a
discontinuity at the first time step.

CALL SHAFT3 Solves the poisson equation for pressure. It returns NAt
times the pressure instead of the actual pressure,

CALL DBX, NBX, |affectation of the boundary values for the electric

DBY, ... potential with Dirichlet or Neumann boundary
conditions . '

CALL FVEL computation of the final velocity as defined by eq. (1.8).
A The coefficient of eq. (1.8) is omitted as well as the
coefficient 1/NAt of eq. (1.7) in subroutine RPRE. It
returns the actual velocity since the factor NAt is
omitted twice:once in a division, once in a multiplication

CALL FVELBC subroutines for affectation of the boundary values of the
actual velocity.

CALL COMPAR |comparison of old and new velocity for testing the
convergence of a steady expected solution.

CALL NORMV normalisation of the velocity in order to achieve the
exact Hartmann and interaction parameter defined in the
input namelist.

CALL DIVV test of the divergence of the velocity.

back to label 1 end of time iteration.

CALL OUTUNF unformatted output of results.
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5.2—Input parameters

//* NAMELIST INNEW

//* CYL = WALL CONDUCTANCE RATIO AT (Y=YL)
//* CYH = WALL CONDUCTANCE RATIO AT (Y=YH)
//* CZL = WALL CONDUCTANCE RATIO AT (2=2L)
//% CZH = WALL CONDUCTANCE RATIO AT (Z=ZH)
//* IRAND = 0 FOR PERFECTLY CONDUCTING OR INSULATING WALLS
//* IRAND = 2 FOR FINITE WALL CONDUCTIVITY
//* ISUPR = 0 FOR NO SPECIAL TREATMENT OF THE HARTMANN LAYERS
//* ISUPR = 1 FOR INTEGRAL TREATMENT OF THE HARTMANN LAYERS
//* ISYMS = 0 FOR NO SYMETRY PLANE
//* ISYMS = 1 FOR SYMETRY PLANE AT (2Z=ZIL=0)
//* IADBA = 0 FOR SCHEME OF FIRST ORDER IN TIME
//* IADBA = 1 FOR SECOND ORDER ADAMS-BASHFORT SCHEME
//* ICYCL = 1 FOR CYCLIC BOUNDARY COND. AT X = XL & XH. = 0 OTHERWISE
//* IJBLF = 0 ORDINARY STAGGERED GRID, AVERAGED CROSS PRODUCTS VXBXB
//%* IJBLF = 1 ORDINARY STAGGERED GRID, VXBXB = -V NORMAL TO B
//* IJBLF = 2 FULLY STAGGERED GRID, VXBXB = -V NORMAL TO B
//* IMPLIC = 0 FOR EXPLICIT SCHEME FOR THE VXBXB-PART OF LORENTZ FORCE
//* IMPLIC = 1 FOR IMPLICIT SCHEME FOR THE VXBXB-PART OF LORENTZ FORCE
//* 12DIM = 1 FOR THE CREATION OF AN OUTPUT FILE OF RESULTS AT X=CST
//* I2DIM = 2 FOR COPYING THIS FILE OVER THE WHOLE RANGE XL<X<XH
//*%* 12DIM = 0 FOR NO USE OF THIS FILE
//* ISLIP = 1 FOR SLIP CONDITION AT Z=3%L & Z=ZH. ISLIP = 0 OTHERWISE
//* ICMHD = 1 FOR COMPUTATION OF MHD FLOW
//% ICMED = 1 TO COMPUTE THE LORENTZ FORCE AND ICMHD = 0 TO CANCEL IT
//* MINUTE = MAXIMUM EXECUTION TIME : C
//* ISECON = MAXIMUM EXECUTION TIME
//* VXLO = DESIRED VALUE OF VX AT Z=2%L, ONLY EFFECTIVE IF ISLIP=1
//%* VXHI = DESIRED VALUE OF VX AT Z=2%H, ONLY EFFECTIVE IF ISLIP=1
//* IPOIS = 1 FOR A FIXED POISEUILLE-LIKE FLOW IPOIS = 0 OTHERWISE
//* TOLEL = TOLERANCE FOR THE CONVERGENCE OF THE POTENTIAL AT THE WALLS
//* VXCURL = X-VELOCITY AT THE LOCAL VORTEX INITIAL PERTURBATION
//* VXCURL = Y-VELOCITY AT THE LOCAL VORTEX INITIAL PERTURBATION
//* VXCURL = Z-VELOCITY AT THE LOCAL VORTEX INITIAL PERTURBATION
//* IOUTP = 1 STORE THE OUTPUT IN A DATA SET IOUTP = 0 NO OUTPUT
//* INORM = 1 NORMALISE THE VELOCITY AT EACH TIME INORM = 1 OTHERWISE
//* IPERT = 1 FOR AN INITIAL PERTURBATION IPERT = 0 OTHERWISE
//* COEFF = RELAXATION COEFFICENT FOR THE CONVERGENCE OF WALL POTENTIAL
//* ISTRIP = 1 FOR A CONDUCTING STRIP ISTRIP = 0 OTHERWISE
//% CST = COEFFICENT CHANGING THE PRESSURE DROP FOR CST FLOW RATE
jj* A = ASPECT RATIO: (YH-YL)/(WIDTH OF THE STRIP)
*
//* NAMELIST INALL
//% HA = HARTMANN NUMBER
//% ST = STEWART NUMBER OR INTERACTION PARAMETER
//* DT = TIME STEP
//*%* ALFA = ANGLE OF MAGNETIC FIELD, INEFFECTIVE ON FULLY STAGGERED GRID
//% X0 = COEFFICIENT FOR EXPONENTIAL VARIATION OF MAGNETIC FIELD
//% TOL = TOLERANCE (MAXIMUM DIFFERENCE BETWEEN OLD AND NEW VELOCITY)
//* IM = NUMBER OF CELLS IN THE X-DIRECTION
//% JIM = NUMBER OF CELLS IN THE Y-DIRECTION
//* KM = NUMBER OF CELLS IN THE Z-DIRECTION
//% MSTP = MAXIMUM NUBER OF TIME STEPS
//* ICOMP = COMPARISON OF OLD AND NEW VELOCITY EVERY ICOMP-TIME STEPS
//% IPRINT = PRINTING RESULTS EVERY IPRINT TIME STEPS
//* START = 'Y’ FOR A RESTART FROM THE LAST RESULTS
//%* START = ‘N’ FOR A COMPLETELY NEW RUN
//* INFO = 'STRING OF 40 CHARACTERS TO BE DISPLAYED'
//*
//* NBMELIST INPUT
//* XL = LOWER X LIMIT OF THE COMPUTING DOMAIN
//* XH = HIGHER X LIMIT OF THE COMPUTING DOMAIN
//*% YL = LOWER Y LIMIT OF THE COMPUTING DOMAIN
//% YH = HIGHER Y LIMIT OF THE COMPUTING DOMAIN
//% 2L = LOWER 2 LIMIT OF THE COMPUTING DOMAIN
//* ZH = HIGHER 7 LIMIT OF THE COMPUTING DOMAIN
//* ICROSS = VELOCITY NORMALISATION AT CROSS SECTION X=X(ICROSS)
//% VXWERT = INITIAL UNIFORM VALUE OF THE VELOCITY IN X-DIRECTION
//%* VXWERT = INITIAL UNIFORM VALUE OF THE VELOCITY IN Y-DIRECTION

//% VXWERT INITIAL UNIFORM VALUE OF THE VELOCITY IN Z-DIRECTION




5.3—Where to find & how to run the code

Old version of the code

Flow in straight ducts: the old code is located on the main frame IBM scalar
computer of KfK in the data set 'ATF3Z0.TEST.FORT'. The main program is
PROGRAM FLIB. The code is compiled, linked and executed by the single job
card named SCJCLX on the scalar computer.

New version of the code

The new code is located in the data set 'ATF3Z0.UMHD.FORT' on the main
frame IBM computer of KfK only. The code can be recompiled and linked with
the job card JCC@LINK. It can be run with the job card JCGOSTEP which
includes the namelists with all input parameters. ’

5.4—Restrictions of the new version of the code

e The new code does not allow to split the duct into pieces. It cannot use the
matching parts of the old code. The domain decomposition used in the old code
is not suitable for unsteady flow computation. Apart from that, it allows all the
possibilities of the old code.

Some restrictions occur when using the new features of the new code.

e If the fully staggered grid is used (input parameter I[JBLF set to 2), the B-field
can only have a component in the y-direction (Bx=Bz=0).
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