Forschungszentrum Karlsruhe Technik und Umwelt

Wissenschaftliche Berichte FZKA 5701

Korrelation zwischen Fließspannung und Duktilität sowie Verformungsverfestigung von kubisch raumund flächenzentrierten Werkstoffen

D. Preininger Institut für Materialforschung Projekt Kernfusion

Februar 1996

Forschungszentrum Karlsruhe

Technik und Umwelt Wissenschaftliche Berichte FZKA 5701

Korrelation zwischen Fließspannung und Duktilität sowie Verformungsverfestigung von kubisch raum- und flächenzentrierten Werkstoffen

> D. Preininger Institut für Materialforschung Projekt Kernfusion

Forschungszentrum Karlsruhe GmbH, Karlsruhe 1996

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

> Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

> > ISSN 0947-8620

Zusammenfassung

Verknüpfungen zwischen Fließgrenze σ_v , Gleichmaßdehnung ε_u , mittlerem Verformungsverfestigungskoeffizienten und Zugfestigkeit von kubisch raum- (krz.) und flächenzentrierten (kfz.) vielkristallinen Werkstoffen werden anhand mikrostrukturell orientierter Modelle dargestellt. Diese Zusammenhänge werden wesentlich geprägt durch Versetzungsgleitmodus, dynamische Erholung und Härtungsmechanismus. Beim krz. Gleitmodus über Doppelkinken in Schraubenversetzungen erfolgt bei tieferen Temperaturen bei dominanter Mischkristall-, Ausscheidungs- oder Korngrenzenhärtung die härtungsbedingte Reduzierung der Gleichmaßdehnung entsprechend $\varepsilon_{\rm u} \sim 1/\sigma_{\rm v}^2$. Bei kubisch flächenzentrierten generell, aber auch bei krz. Werkstoffen bei höherer Temperatur ergibt sich mit $\varepsilon_{\rm u} \simeq \varepsilon_{\rm uo} [1 - (\sigma_{\rm v}/\sigma_{\rm c})^z]$ und z = 1,2; $\varepsilon_{\rm u,o} \leq 0,5$ eine ausgeprägtere Festigkeitsabhängigkeit mit einer oberen Fließspannungsgrenze oc für Verformungsverfestigung und Gleichmaßdehnung. Die Grenzfestigkeit, die bei kubisch raumzentrierten Werkstoffen bei tieferen Temperaturen für dominante Versetzungshärtung ebenfalls auftritt, charakterisiert innere Strukturgrößen wie Versetzungslaufwege, Gleitsysteme und Härtungsmechanismus und ist eng mit dem mittleren Verfestigungskoeffizienten und der Zug- sowie Bruchfestigkeit verknüpft.

Einflüsse von Ausscheidungsvolumenanteilen und Korngrößen werden näher betrachtet, wobei für diesbezüglich kritische Werte ein Duktilitätsminimum vorliegen kann. Der Einfluß des Mechanismus der Teilchenhärtung auf das Gleichmaßdehnungsverhalten von krz. und kfz. Werkstoffen ist unterschiedlich. Diesbezüglich wird ein Phasendiagramm zur mechanismusabhängigen Duktilitätsoptimierung vorgestellt. Der Einfluß einer Korngrößenverminderung auf das Gleichmaßdehnungsverhalten wird entscheidend vom Beitrag der Korngrenzen zur Versetzungsmultiplikation, dem Versetzungsgleitmodus und der Änderung im Verformungsmechanismus vom Versetzungsgleiten zum Kriechen oder Korngrenzengleiten bestimmt.

Die Modelle werden schließlich angewandt auf die Analyse des Duktilitäts- und Verformungsverhaltens austenitischer Cr/Ni- und martensitischer 9 - 12 % Cr Stähle, insbesondere im Hinblick auf Strukturänderung und Härtung durch Neutronenbestrahlung, Kaltverformung oder Wärmebehandlung. Der Einfluß der Teilchenhärtung auf das Duktilitätsverhalten wird am Beispiel von Kohlenstoffstählen mit kugelförmigem Zementit diskutiert.

Summary

Correlation between yield strength and ductility as well as work hardening of body centered and face centered cubic materials

Correlations between yield stress σ_y , uniform strain ε_u , mean work hardening coefficient and ultimate tensile stress of bcc. and fcc. polycristalline metals are derived from microstructural related work hardening models. These relations are primarily formed by the dislocation glide mode, dynamic recovery and hardening mechanism. For glide by double kinks in screw dislocations at lower temperatures of bcc.- (L) metals the uniform strain drops with strengthening according to $\varepsilon_u \sim 1/\sigma_y^2$ due to dominant lattice friction, precipitation or grain boundary hardening. In contrast, for fcc. alloys generally but also for bcc.-(H) metals at higher temperatures a comparably stronger strength dependency $\varepsilon_u \approx \varepsilon_{u,o}[1 - (\sigma_y/\sigma_c)^2]$ with z = 1,2 and $\varepsilon_{u,o} \leq 0.5$ has been found. σ_c describes the upper yield strength limit for work hardening and uniform strain appearance. This strength limit which for bcc. metals also arises for dominant dislocation hardening characterizes microstructural parameters like mean dislocation glide distance, glide systems or hardening mechanism. It correlates also to the mean work hardening coefficient and ultimate tensile as well as fracture strength.

Especially the influence from the precipitation volume fraction and the grain size are considered. Critical values have been found to control the experimentally observed ductility minimum. The mechanism of precipitation hardening and its impact on uniform strain behaviour of bcc. and fcc. metals is different. In this case a diagram is given for the mechanism-related optimization of ductility. The influence of grain refinement on uniform strain is mainly formed by the additionally contribution of grain boundaries to dislocation generation, the dislocation glide mode and the resulted change in deformation mechanism from dislocation glide to creep or grain boundary sliding.

Finally, the model is applied for analysis of ductility and deformation behaviour of austenitic Cr/Ni- and martensitic 9 - 12 % Cr steels especially with regard to hardening and microstructural changes by neutron irradiation, cold working or heat treatment. The effect of precipitation hardening on ductility will be discussed on spheroidized high-carbon steels.

Inhaltsverzeichnis

1.	Einleitung	1
2.	Modell für Verformungsverfestigung und Gleichmaßdehnung	2
	2.1 Kubisch raumzentrierte Werkstoffe	3
	2.2 Kubisch flächenzentrierte Werkstoffe	12
	2.2.1 Einfluß von Teilchenhärtung und Korngröße	a 1 11
	auf die Gleichmaßdehnung	17
3.	Zugfestigkeit und mittlerer Verformungsverfestigungskoeffizient	19
	3.1 Kubisch raumzentrierte Werkstoffe	19
	3.2 Kubisch flächenzentrierte Werkstoffe	23
4.	Bruchfestigkeit	26
	4.1 Kubisch raumzentrierte Werkstoffe	26
	4.2 Kubisch flächenzentrierte Werkstoffe	27
5.	Gleichmaßdehnungsverhalten bei Tieftemperaturverformung	27
6.	Diskussion mit Gegenüberstellung zwischen Theorie und	
	experimentellen Beobachtungen	30
	6.1 Austenitische Cr/Ni-und martensitische 9 - 12 % Cr Stähle	31
	6.2 Ausscheidungsgehärtete Kohlenstoffstähle	35
Anha	ing A1:	
	Duktilität und Verformungsverfestigung bei Teilchenscherung	
	entsprechend dem Hart'schen Ansatz	36
Anha	ng A2 :	
	Abhängigkeit des Hollmon'schen Verfestigungsindex n von der	
	Fließspannung	37
Anha	ng A3:	
	Voce'sche Verfestigungsindex	38
Litera	aturverzeichnis	40
Abbil	dungen	43

1. Einleitung

Die Beziehungen zwischen Fließspannung und Verformungsverfestigung, sowie Duktilität, charakterisiert durch die Gleichmaßdehnung werden anhand eines mikrostrukturell orientierten Verformungsverfestigungsmodells für vielkristalline kubisch raum (krz.)- und flächenzentrierte (kfz.) Werkstoffe zusammenfassend dargestellt. Beobachtungen zur Versprödung, speziell austenitischer Cr/Ni - Stähle [1] durch Härtung infolge Defektbildung durch Neutronenbestrahlung und Kaltverformung gaben frühzeitig (1978) Hinweise für eine enge Verknüpfung zwischen Fließgrenze und Gleichmaßdehnung mit der Existenz einer oberen Fließspannungsgrenze oc für Verfomungsverfestigung und Gleichmaßdehnungsbildung unter Zugverformung, die nachfolgend mehrmals experimentell verifiziert wurden [2,3]. Obwohl mit empirischen Modellen beschrieben [1, 4 - 6], blieb ihre physikalische Bedeutung insbesondere mit Verknüpfung zu Strukturgrößen unklar. Ferritisch/martensitische Stähle [69] zeigen andererseits bei schwächerer Festigkeitsabhängigkeit der Gleichmaßdehnung nicht diesen Übergang zur Verformungsentfestigung bei den duch Vergütung erreichten hohen Festigkeiten von ≤ 1500 MPa.

Die vorliegende Arbeit basierend auf ein Verformungsverfestigungsmodell über Versetzungspopulation, ohne Berücksichtigung von strukturellen Instabilitäten [7,8] gibt eine Begründung dieser experimentellen Befunde mit quantitativen Bezug zur Mikrostruktur. Sie verdeutlicht hierbei insbesondere die diesbezüglich typischen Unterschiede von kfz.- und krz. Werkstoffen aufgrund ihres differenzierten Versetzungsgleitmechanismus durch unterschiedliche Mobilität [9] von Schrauben - und Stufenversetzungen im krz.-Gitter bei tieferen Temperaturen \leq 0,1 - 0,3 T_{m(Schmelztemperatur)} [10], aber auch durch die unterschiedlich starke dynamische Erholung. Darüber hinaus wird insbesondere die differenzierte Wirkung einer Härtung über Gitterreibung, Versetzungen, Ausscheidungen und Korngrenzen mit den hieraus resultierenden Einflüssen der Korngröße, sowie von Teilchenvolumenanteilen- und Größen dargestellt. Die abgeleiteten Korrelationen zwischen Fließspannung und Duktilität, sowie Zug- und Bruchfestigkeit und Grenzfestigkeit σ_c werden dann schließlich entsprechenden experimentellen Messungen an bestrahlungsverfestigten, sowie kaltverformten austenitischen Cr/Ni- und martensitischen (krz.) 9 - 12 % Cr Stählen gegenübergestellt, die breite Anwendung als Strukturwerkstoffe in der Energietechnik finden. Ziel dieser Analyse ist aber auch die Verifizierung vorliegender Verformungsmechanismen als Basis zur strukturbezogenen Duktilitätsoptimierung von kubischen metallischen Werkstoffen.

2. Modell für Verformungsverfestigung und Gleichmaßdehnung

Die Fließgrenze realer vielkristalliner Materialien ergibt sich aus der additiven Summation, der aus verschiedenen Härtungskomponenten zusammengesetzten Matrixfestigkeit, o_M, und dem Beitrag der Korngrenzen entsprechend

$$\sigma_y = \sigma_M + \kappa_h d_K^{-\frac{1}{2}}$$
(1a)

abhängig von der Korngröße d_k und der Hall-Petch Konstanten K_h [11]. Die Matrixfestigkeit σ_M , läßt sich aufgliedern in einen Gitterreibungsanteil $\sigma_{0,f}$, der Gleitversetzungen beeinflußt von substitutionellen und interstitionellen Elementen, sowie den hierzu meist additiven Beiträgen größerer Gitterdefekte bzw. Gleithindernisse wie Versetzungen $\sigma_{o,d}$, Ausscheidungen $\sigma_{o,p}$, und Defektcluster $\sigma_{o,c}$,

$$\sigma_{M} = \sigma_{o,f} + \sigma_{o,d} + \sigma_{o,p} + \sigma_{o,c}$$
(1b)

Zwischen Gitterreibung - und Ausscheidungshärtung wird allerdings auch vereinzelt eine nicht - additive Überlagerung, z. B. entsprechend ($\sigma_{0,f}^{3/2} + \sigma_{0,p}^{3/2}$)^{3/2} beobachtet [12]. Durch die Versetzungsgenerierung unter Verformung mit gegebenenfalls auch begleitenden Texturänderungen tritt der weitere Härtungsanteil $\Delta \sigma_{\epsilon}$ hinzu. Die mögliche Wechselwirkung der generierten Versetzungen mit einzelnen Komponenten der härtenden Matrixdefekte, führt dann zu einer teilweisen auch nicht-additiven Überlagerung entsprechend

$$\sigma = \sigma_{o,a} + \left\{ (\sigma_{o,i})^{z} + (\Delta \sigma_{\varepsilon})^{z} \right\}^{1/z}$$
⁽²⁾

mit der dehnratenabhängigen additiven Komponente $\sigma_{o,a} \leq \sigma_{o,f}$ und der athermischen Wechselwirkungskomponente $\sigma_{o,i} \leq \sigma_{o,d}$. Der Überlagerungskoeffizient $1 \leq z \leq 2$ [13] charakterisiert dann die Wechselwirkungsstärke einschließlich einer verformungsinduzierten Ausscheidungsbildung - und Auflösung, sowie Leerstellenagglomeration. Neben der additiven Überlagerung, z = 1, ist hierbei insbesondere die quadratische z = 2, bedeutsam, beispielsweise im Fall hoher Ausgangsversetzungsdichten infolge einer vorausgehenden Kaltverformung oder Neutronenbestrahlung, soweit diese äquivalent zu den nachfolgend durch Verformung generierten Versetzungen härten, oder eben bei verformungsinduzierter Ausscheidungsbildung [14]. Unter Vernachlässigung verformungsinduzierter Texturänderungen resultiert die Verformungsverfestigung entsprechend

1

 $\Delta \sigma_{\epsilon} = \alpha \mu b \ M \sqrt{\rho(\epsilon)}$ allein über die Versetzungspopulation $\rho(\epsilon)$. Hierin kennzeichnet μ den Schermodul, b den Burgers Vektor, $\alpha \leq 0.5$ den Härtungskoeffizienten, sowie $M = \gamma/\epsilon \geq 1$ den Taylorfaktor der makroskopische Dehnung ϵ mit Abgleitung γ in den Gleitebenen verknüpft $M_{krz.} \approx 1.8 - 3$ [15] und $M_{kfz.} \approx 1.8$ [16]. Die Versetzungsentwicklung ergibt sich aus der konkurierenden Wirkung von Versetzungsmultiplikation - und Annihilation [17], wofür bei nicht all zu hohen Verformungen und geringen Temperaturen die Ratengleichung

$$\frac{\partial \rho}{\partial \varepsilon} = M \left\{ \frac{1}{b\Lambda} + g_{K} + g_{P} \right\} - \frac{2RM}{b} \rho$$
(3)

angesetzt werden kann. Der erste Term beschreibt hierin die Versetzungsmultiplikation resultierend aus der Immobilisierung von Gleitversetzungen 1/(bA) [18,19] bestimmt von ihrem mittleren Laufweg A, sowie den zusätzlichen Beiträgen von Korngrenzen g_K und auch Ausscheidungen g_p infolge Bildung geometrisch notwendiger Versetzungen. Hierfür kann im wesentlichen $g_k \simeq K_K / d_K$ ⁽¹⁻²⁾ [20] abhängig von der Korngrenzendichte, sowie $g_p = K_p f_v/d_p$ [21] angesetzt werden abhängig von Volumenanteil f_v und Durchmesser d_p der Ausscheidungen mit den Konstanten K_K und K_p \approx 8/b [21]. Der zweite Term in Gl. 3 stellt die Annihilation durch dynamische Erholung dar, bestimmt durch die Distanz R (T, ɛ,...), wo sich Versetzungen ungleichen Vorzeichens auslöschen. Bei höheren Temperaturen wird die Annihilation zunehmend dann diffusionsgesteuert entsprechend dem Reaktionsterm β MD ρ^2 (β = Konstante) [22] und damit verstärkt von der Versetzungsdichte und der Diffusionskonstanten D abhängig. Nachfolgend wird diese diffusionsgesteuerte Versetzungsanihilation aber vernachlässigt, kann jedoch im Rahmen des Modells Gl. 3 durch entspechend vergrößerte Annihilationsdistanz R bei höheren Fließspannungen simuliert werden.

2.1 Kubisch raumzentrierte Werkstoffe

Bei tieferen Temperaturen T < T_c (ϵ) \simeq 0,1 - 0,3 T_m und hohen Verformungsgeschwindigkeiten ϵ erfolgt die Gleitung, infolge der durch die hohe Peierlsspannung bedingten geringen Mobilität der ½a <111> Schraubenversetzungen, über einen meist nukleationsgesteuerten Doppelkinkenmechanismus [10]. Dies ist auch die Ursache der ausgeprägten Temperaturabhängigkeit der Fließgrenze bei tiefen Temperaturen mit ihrer außerordentlich starken Beeinflussung bereits durch geringe Gehalten an interstitionellen Elemente, wie C, N, O [23,24]. Diese beeinflussen über lokal wirkende innere Spannungen die Kinkennukleation, sowie Kinkenlänge [25] - und Mobilität und prägen damit den Gleitmodus, der sich nicht nur auf niedrig indizierte Ebenen, wie im Fall von krz. Werkstoffen beschränkt [26]. Als Konsequenz hiervon wird die Gleitdistanz Λ nicht mehr durch generierte Versetzungen selbst begrenzt, da diese mehr oder weniger durch entsprechende Kinkenbewegung unter Beteiligung auch von Quergleitprozessen [27] umlaufen werden können. Für T < T_c gilt damit näherungsweise Λ = konst. $\neq \rho$, während bei T > T_c die Gleitung dann vergleichbar zu kfz. Materialien überwiegend über langgestreckte Stufenversetzungen erfolgt, wobei M_{kfz.} $\leq M_{krz.}$. Für den Fall von Λ = konst. und additiver Überlagerung, z = 1, erhält man als Lösung der Differenzialgleichung Gl. 3 für den verformungsbedingten Festigkeitsanstieg unmittelbar

$$\Delta \sigma_{\varepsilon} = \Delta \sigma_{\varepsilon,m} \sqrt{1 - \exp\left(\frac{-2RM}{b}\varepsilon\right)}$$
⁽⁴⁾

mit dem Sättigungswert

$$\Delta \sigma_{\varepsilon,m} = \alpha \mu b M \sqrt{\frac{b}{2R} \left(\frac{1}{\Lambda b} + g_{K} + g_{P}\right)}$$
(5)

Die Gleichmaßdehnung unter Berücksichtigung des Consideré Kriteriums [28] der platischen Stabilität d $\sigma/d\epsilon = \sigma$ andererseits schreibt sich zu

$$\varepsilon_u = -\frac{b}{2RM} \ln \left(1 - \eta^2\right) \tag{6a}$$

mit $\bar{\epsilon}_u = \exp(\epsilon_u) - 1 = \Delta I/I_o$ für die auf die Ausgangslänge I_o bezogene Probenverlängerung. Definiert man das Verfestigungspotential $Y = \Delta \sigma_{\epsilon,m} / \sigma_o$ bezogen auf die Fließspannung $\sigma_y = \sigma_o$, so ergibt sich für die Koeffizienten η (Y,R,M,b)

$$\eta = \frac{\left[\sqrt{1 + \frac{4RM}{b}(1 + \frac{RM}{b})Y^2} - 1\right]}{2(1 + \frac{R \cdot M}{b})Y}$$
(6b)

Die zu $\sigma_o \rightarrow 0$ extrapolierte maximale Gleichmaßdehnung

$$\varepsilon_{u,o}^{X} = -\frac{b}{2RM} \ln \frac{1}{1 + \frac{RM}{b}}$$
(6c)

wird hierbei nur vom normierten Annihilationsparameter $R_m = R \cdot M/b$ bestimmt.

Für kleine η bzw. hohe Fließspannungen σ_0 und ausgeprägter Versetzungsmultiplikation gilt ferner in Näherung auch

$$\varepsilon_{u} \simeq \frac{b}{8MR} \left[\frac{\sqrt{1+C} - 1}{\left(1 + \frac{RM}{b}\right)Y} \right]^{2} \left\{ 1 + \frac{1}{8} \left[\frac{\sqrt{1+C} - 1}{\left(1 + \frac{RM}{b}\right)Y} \right]^{2} \right\}$$
(7a)
$$C = \frac{4RM}{b} \left(1 + \frac{RM}{b}\right)Y^{2}$$

die dann mit der Vereinfachung $\sqrt{1+c} \approx 1+c/2 - c^2/8$ in die einfachere Form

$$\varepsilon_{u} \approx \frac{(\alpha \mu)^{2} M^{3}}{4\sigma_{o}^{2}} \left[\frac{b}{\Lambda} + b^{2} \left(g_{p} + g_{K} \right) \right] \phi$$

$$\phi = \left\{ 1 + \frac{(\alpha \mu)^{2} M^{4}}{4\sigma_{o}^{2}} \left[\frac{R}{\Lambda} + b \cdot R \left(g_{K} + g_{P} \right) \right] \phi_{a} \right\} \cdot \phi_{a}$$
(7b)

übergeht mit

$$\phi_{a} \approx \left\{ 1 - \left(1 + \frac{R \cdot M}{b} \right) \frac{(\alpha \mu b)^{2} M^{3}}{2\sigma_{o}^{2}} \left(\frac{1}{\Lambda b} + g_{K} + g_{p} \right) \right\}^{2}$$

und dem Korrekturfaktor ϕ (R) \leq 1 gegenüber der exakten Lösung Gl. 6 a, b, wobei für C $\rightarrow 0, \phi = 1$ gilt. Diese Lösung verdeutlicht anschaulich, daß bei hohen Fließpannungen $\sigma_y = \sigma_0$ die Gleichmaßdehnung auch bei dominant auscheidungs- und korngrenzengehärteten Werkstoffen in den hyperbolischen Verlauf entsprechend $\varepsilon_u \sim 1/\sigma_0^2$ einmündet, der gleichzeitig auch die obere asymtotische Begrenzung bildet. Hierbei wird der Parameter $\sqrt{\varepsilon_u}(\sigma_0/\mu) \approx$ konst. unabhängig von der Temperatur, soweit M³b $\alpha^2/\Lambda \neq$ T zutrifft. Dieser Parameter scheint damit ein geeigneter Indikator zur Erkennung struktureller Instabilitäten bei T <

 T_c (krz.- (T)) zu sein, beispielsweise induziert durch dynamische Reckalterung, Gleitbandverformung oder Versetzungs-channeling. Bei geringeren Fließspannungen erhält man andererseits für die Gleichmaßdehnung die nichtlineare Näherung

$$\varepsilon_{u} \simeq 1 - \frac{1}{2R_{m}} \ln \frac{1}{1+R_{m}} + \frac{(\Delta \sigma_{\varepsilon,m} / \sigma_{o}) \cdot R_{Q}}{1 + (\Delta \sigma_{\varepsilon,m} / \sigma_{o}) R_{Q}} \left| R_{Q} = 2 \sqrt{R_{m}} \frac{(1+R_{m})}{(1+R_{m})} \right|^{(7c)}$$

nun als asymtotische untere Begrenzung von Gl. 6a, b. Dieser Zusammenhang zeigt, daß die Duktilitätsverminderung durch dynamische Erholung sich mit abnehmender Fließspannung verstärkt, während demgegenüber die Versetzungsmultiplikation insbesondere bei hohen Fließspannungen verstärkt wirkt. Abb. 1a,b verdeutlicht im einzelnen den Einfluß von dynamischer Erholung R_m und Versetzungslaufweg Λ - bzw. Multiplikation auf die Festigkeitsabhängigkeit der Gleichmaßdehnung $\varepsilon_u(\sigma_0)$.

Unter der Voraussetzung der gleitdominanten Versetzungsmultiplikation ergibt sich die Gleichmaßdehnung bei krz.- (T) in Abhängigkeit vom Härtungsmodus wie folgt: Für mischkristallgehärtete krz. Materialien mit größerer Korngröße ($g_K = 0$) gilt

$$\varepsilon_{u} \simeq \frac{(\alpha \mu)^{2} \ b \ M^{3} \ \phi}{4 \Lambda \sigma_{o}^{2}} = \left(\frac{\Delta \sigma_{\varepsilon,m}}{\sigma_{o}}\right)^{2} \frac{R_{m} \phi}{2}$$
 (8a)

Die Gleichmaßdehnung ist somit parabolisch abhängig vom Verfestigungspotential y und proportional zum relativen Annihilationswert R_m. Für ausscheidungsgehärtete krz. Werkstoffe gilt andererseits

$$\varepsilon_{u} \simeq \frac{\left(\alpha \mu b\right)^{2} M^{3} \kappa_{p} \phi}{4\left[\sigma_{o,f} + \sigma_{o,p} \left(f_{v}, d_{p}\right)\right]^{2}} \frac{f_{v}}{d_{p}}$$
(8b)

die sich bei Dominanz der Ausscheidungshärtung $\sigma_{o,p} > \sigma_{o,f}$, somit $b^2g_P \gg b/\Lambda$ über den Orowanmechanismus $\sigma_{o,p} = \beta_{OR} \mu b M/L$ mit $L = d_p \sqrt{\pi/(6f_v)}$ [29] und den Koeffizienten $\beta_{OR} = (A/2\pi) \ln (L/b)$ (A = 1 für Stufen- und A = 1/ (1-v) für Schraubenversetzungen, v = Querkontraktionszahl) zu

$$\varepsilon_{u} = \frac{n\phi}{24} \left(\frac{\alpha}{\beta_{OR}}\right)^{2} M K_{P} d_{P} \tag{8c}$$

reduziert. Die Gleichmaßdehnung nimmt damit hierfür linear mit der Partikelgröße d_P, stets unabhängig vom Teilchenvolumenanteil f_v zu. Im allgemeinen ist die Härtung gegenüber dem Orowan-Umgehungsmechanismus unter Beteiligung von Quergleitung aber schwächer $\beta \leq \beta_{OR}$, begrenzt nun durch die nachfolgend erforderliche Versetzungsablösung [30] vom härtenden Teilchen. Bei geringen Fließspannungen wird gegenüber Gl. 8C die Partikelgrößenabhängigkeit der Gleichmaßdehnung entsprechend $\varepsilon_{u} \sim \sqrt{d_P/R}$ bzw. Y $\sim \sqrt{d_P/R}$ und Gl. 6a, b geringfügig abgeschwächt.

Entsprechend dem Modell [7] des duktilen Bruches mit nukleationsgesteuerter Porenschädigungsbildung an Ausscheidungen ist andererseits die lokale Bruchdehnung annähernd durch $\varepsilon_f \simeq K_f \Delta f^x f_V^{-t}$, $t \simeq \frac{2}{3}$ beschreibbar mit der Materialkonstanten K_f und der kritischen Porenschädigung $\Delta f^x \simeq 0, 1 - 0, 3$ wo makroskopisches Versagen durch Porenkoaleszenz auftritt. Die Materialkennwerte t, K_f und Δ_f^x hängen hierbei vom Typ, Größe und Größenverteilung der Ausscheidungen ab. Dieser Zusammenhang beschreibt befriedigend den Trend der beobachtete Partikelkonzentrationsabhängigkeit der lokalen Bruchdehnung vieler kfz. und krz. Werkstoffe, wie in Abb. 2 gezeigt. Unter Berücksichtigung dieses Zusammenhanges $\varepsilon_{f}(f_v)$ mit dem Exponenten t = - 2/3 ergibt sich für das Verhältnis $\varepsilon_u/\varepsilon_f$ als Kennwert für die Duktilitätsumsetzung dann,

$$(\varepsilon_{u}/\varepsilon_{f})_{Orowan} = \frac{n\phi}{24} \left(\frac{\alpha}{\beta_{OR}}\right)^{2} \frac{K_{P}}{K_{f}} \frac{d_{P}}{\Delta f^{X}} f_{V}^{\frac{2}{3}}$$
(8d)

also gleichermaßen ein Anstieg mit der Partikelgröße d_p aber auch etwas schwächer mit dem Volumenanteil f_v³ der Partikel. Im Fall der Härtung durch Teilchenscherung, die bevorzugt bei kleinen köhärenten Ausscheidungen vorliegt, ergibt sich mit $\sigma_{o,p} = K_S M \sqrt{d_p f_v}$ [31]

$$\varepsilon_{u} = \frac{(\alpha \mu)^{2} b M \phi}{\kappa_{S}^{2} 4 \Lambda d_{P} f_{V}}$$
(8e)

sowie für die Duktilitätsumsetzung (K_S ... Konstante)

$$(\varepsilon_{u}/\varepsilon_{f})_{Scherung} = \frac{(\alpha\mu)^{2} b M}{4\Lambda K_{f} \Delta f^{*} K_{S}^{2}} \frac{\phi}{d_{p} f_{v}^{\frac{1}{2}}}$$
(8f)

Gegensätzlich zum Orowanmechanismus fällt damit bei Partikelscherung die Gleichmaßdehnung entsprechend $\varepsilon_u \sim d_p^{-1} f_{v}^{-1}$ mit zunehmender Partikelgröße und Ausscheidungskonzentration f_v in der gleichen Stärke hyperbolisch ab, soweit $\Lambda \neq d_p$. Oberhalb eines kritischen Teilchenvolumenanteils von

$$f^*_{V} = \frac{6}{n} \left\{ \frac{\mu \beta_{OR}}{\kappa_{S}} \right\}^2 \frac{b}{\Lambda \kappa_{p}} \frac{1}{d_{p}^2}$$
(8g)

der unabhängig von der Textur M schwach mit zunehmendem d_p aber auch Λ abnimmt, führt der Orowan-Umgehungsmechanismus gegenüber Partikelscherung schließlich zu höheren Duktilitäten. Ist allerdings die Gleitdistanz Λ auch bei Scherung durch die Partikel begrenzt, d.h. $\Lambda \sim d_p f_{v}$ -1/2, so wird $\varepsilon_u \sim 1/(d^2_p \sqrt{f_v})$ und $\varepsilon_u / \varepsilon_f \sim f_v^{1/6} d_p^2$. Im Fall der Härtung entspechend dem Hart'schen Ansatz $\sigma_{o,p} = 3M \tau_c f_v^{2/3}$ [32] ($\tau_c \ldots$ Parikelscherspannung) gilt bei $\Lambda \neq f_v$, $\varepsilon_u \sim 1/(\Lambda \tau_c 2 f_v 4/3)$ und $\varepsilon_u / \varepsilon_f \sim 1/(\Lambda \tau_c^2 f_v^{2/3})$ sowie für den kritischen Volumenanteil der Teilchen $f_v^* \sim 1/(\Lambda \tau_c^2 d_p)^{3/4}$ (siehe Anhang A1). Soweit $\tau_c \sim \sqrt{d_p}$ [53] wird dann entspechend $\varepsilon_u \sim 1 / (\Lambda d_p f_v^{4/3})$ und $f_v^* \sim 1/(\Lambda^{3/4} d_p^{3/2})$. Dies verdeutlicht, daß die Duktilität ε_u aber auch die Duktilitätsumsetzung entscheidend vom Ausscheidungshärtungsmechanismus, aber auch vom Härtungsverhältnis $\sigma_{o,f} / \sigma_{o,p}$ beeinflußt wird.

Im Fall geordneter kohärenter Teilchen ist die kritische von einer Einzelversetzung noch schneibarer Teilchendurchmesser nach [53,58,68] durch

$$d_{c}^{s} \simeq \frac{\mu b^{2}}{\gamma} \left[1 + \beta_{OR} \sqrt{\frac{6f_{v}}{n}} \right]$$
(9)

bestimmt, worin γ die Grenzflächenenergie kennzeichnet. Für die maximale erzielbare Härtung gilt dann

$$\sigma_{c,max} \simeq \beta_{OR} M \frac{\gamma}{b} \frac{\sqrt{\frac{6f_v}{\pi}}}{\left[1 + \beta_{OR} \sqrt{\frac{6f_v}{\pi}}\right]}$$
(10)

mit der hierfür zuordbaren minemalen Gleichmaßdehnung

$$\varepsilon_{u,min} = \left(\frac{\alpha}{\beta_{OR}} \frac{\mu}{\gamma}\right)^2 \frac{\pi}{24} \frac{\left[1 + \beta_{OR} \sqrt{\frac{6f_v}{\pi}}\right]^2}{\Lambda f_v}$$
(11)

Während $\epsilon_{u,min}$ mit zunehmendem Teilchenvolumenanteil abnimmt, vergößert sich der nachfolgende Duktilitätsanstieg

$$\frac{\varepsilon_{u}^{OR}}{\varepsilon_{u,min}} = 1 + \kappa_{p} \frac{\gamma}{\mu b} \frac{\Lambda f_{v}}{\left[1 + \beta_{OR} \sqrt{\frac{6f_{v}}{\pi}}\right]}$$
(12)

beim Übergang von Teilchenscherung zur Orowanumgehung mit zunehmendem f_v . Dies verdeutlicht Abb. 3a, die die Abhängigkeit der Gleichmaßdehnung von Teilchengröße und Volumenanteil f_v für durch kohärente Ausscheidungen gehärtete krz. Werkstoffe zeigt. Zunehmend überlagernde Härtung durch Gitterreibung $\sigma_{o,f} > 0$ glättet dann die Abhängigkeit $\varepsilon_u(d_p)$ (Abb. 3b) bei Erhalt der wesentlichen Charakteristik aber von $\sigma_{o,f} = 0$.

Bei krz.-Materialien mit dominanter Korngrenzenhärtung infolge Kornfeinung und Versetzungsgenerierung primär an Korngrenzen, i.e. $1/\Lambda \ll b \cdot g_K$ wird

$$\varepsilon_{u} \approx \frac{(\alpha \mu b)^{2} M^{3} \phi}{4 (\sigma_{o,f} + K_{h} / d_{K}^{\frac{1}{2}})^{2}} \frac{K_{K}}{d_{K}^{(1-2)}}$$
(13)

ergibt also bei höheren Temperaturen oder geringen Reibungsspannungen oo,f mit $\varepsilon_{u} \sim 1/d_{K}^{(<1)}$ eine etwas schwächere Korngrößenabhängigkeit als bei niedrigen Temperaturen T \ll T_c wo $\varepsilon_u \sim 1/d_K^{(<2)}$ gilt, mit der Begrenzung für die Duktilität von $\varepsilon_{u} = \varepsilon_{f}$ für geringe d_K. Bei matrixgesteuerter Versetzungsmultiplikation aber resultiert $\varepsilon_u \sim d_K$ (<1)/ Λ , also ein Anstieg der Duktilität mit zunehmender Korngröße, soweit $\Lambda \neq d_K$ bzw. $\Lambda \ll d_K$ mit $\varepsilon_u = 0$ für $d_K \rightarrow 0$. Abhängig von Versetzungsmultiplikation und Reibungsspannnung ergibt sich damit generell für die Korngrößenabhängigkeit der Gleichmaßdehnung $\varepsilon_u \sim 1/d_{K^{X}}$ mit den möglichen Koeffizienten $-1 \le X \le 2$. Mit zunehmender Kornfeinung, insbesondere in Richtung ultrafeinkristalliner Materialien ($d_K < 500$ nm) ist hierbei infolge hoher Korngrenzendichte prinzipiell ein Übergang zur Versetzungsgenerierung an Korngrenzen möglich, so daß eine kritische Korngröße $d^{x}K = (\Lambda \cdot K_{K})^{1/x}$ existieren kann, wo ein Duktilitätsminimum (ε_u) vorliegt (Abb. 4). Für einen versetzungsgesteuerten Hall-Petch Mechanismus entweder nach einem pile-up [11] oder Versetzungs-Quellmechanismus an Korngrenzen [20] wird generell K_h $\sim \mu$ und damit die Gleichmaßdehnung auch unabhängig vom Schermodul soweit $K_K \neq \mu$ zutrifft ähnlich wie bei Härtung über Gitterdefekte. Weitere Kornfeinung in Richtung Nanokristallite führt dann zu einem Übergang vom Versetzungsgleiten zum Kriechen, zunächst als Versetzungskriechen ($\sigma \sim \epsilon \geq 1/4$)dann schließlich als Diffusionskriechen ($\sigma \sim \epsilon d_K^3/D_K$ [57], D_K . . . Korngrenzendiffusionskonstante) oder Korngrenzengleiten mit einer gegenüber Hall-Petch gegensätzlichen Korngrößenabhängigkeit der Festigkeit. Verbunden damit ist auch eine Verminderung des Verformungsverfestigungspotential $y \rightarrow 0$ und damit auch der Gleichmaßdehnung $\varepsilon_u \rightarrow 0$ mit Übergang zum superplastisch vergleichbarem necking.

Nachfolgend wird die quadratische Überlagerung, z = 2, zwischen Härtung und Verformungsverfestigung entsprechend Gl. 2 betrachtet. Hierfür gilt wiederum Gl. 6a,c allerdings mit dem Koeffizienten $\eta = (\Delta \sigma_{\epsilon})_{\epsilon_{II}}/\Delta \sigma_{\epsilon,m}$ von

- 10 -

$$\eta = \frac{\sigma_{o,a}}{\Delta \sigma_{\varepsilon,m}} \frac{[1 + 2(1 + R_m)P]^{\frac{1}{2}}}{\sqrt{2(1 + R_m)}} \left(1 - \sqrt{1 - \Delta}\right)^{\frac{1}{2}}$$

$$\Delta = \frac{4(1 + R_m)^2 \left[p^2 - (\sigma_{o,i}/\sigma_{o,a})^2\right]}{\left[1 + 2(1 + R_m)P\right]^2}$$

$$P = \frac{\Delta \sigma_{\varepsilon,m}^2 R \cdot M / b - \sigma_{o,i}^2}{\sigma_{o,a}^2}$$
(14)

gültig für $\sigma_{o,a} > 0$ wobei wiederum $R_m = R \cdot M$ /b. Entsprechend Gl. 6a, 14 wird $\varepsilon_u = 0$ für $p = \sigma_{o,i} / \sigma_{o,a}$. Dies verdeutlicht, daß für z = 2 auch bei krz. (T) Werkstoffen, ähnlich wie bei kubisch flächenzentrierten, gezeigt in 2.2, eine obere Fließspannungsgrenze σ_c für Verformungsverfestigung und Gleichmaßdehnungsbildung $\varepsilon_u > 0$ vorliegt. Für $\sigma_y > \sigma_c$ tritt unmittelbar Verformungsentfestigung bei gänzlichem Verlust an Gleichmaßdehnung auf. Für $\sigma_{o,i}$, $\sigma_{o,a} > 0$ ist entsprechend Gl. 14 die Grenzfestigkeit durch

$$\sigma_{c} = \frac{\Delta \sigma_{\varepsilon,m}^{2} \frac{RM}{b} - \sigma_{o,i}^{2}}{\sigma_{o,a}}$$
(15a)

bestimmt, während diese mit

$$\sigma_{c} = \Delta \sigma_{\varepsilon,m} \sqrt{\frac{RM}{b}}$$
(15b)

für $\sigma_{o,i}>o,\sigma_{o,a}=0$ bei vergleichsweise kleineren Werten liegt. Für den Koeffizeienten η gilt hierfür dann

$$\eta = \sqrt{\frac{\frac{RM}{b} - \left(\sigma_{o,i} / \Delta \sigma_{\varepsilon,m}\right)^{2}}{1 + \frac{RM}{b}}}$$
(16a)

mit der Gleichmaßdehnung

$$\varepsilon_{u} = -\frac{1}{2R_{m}} \ln \left\{ \frac{1 + R_{m} (\sigma_{o,i} / \sigma_{c})^{2}}{1 + R_{m}} \right\}$$
(16b)

und der für kleine n bzw. höheren Fließspannungen gültigen Näherung

$$\varepsilon_{u} \simeq \varepsilon_{u,o} \left[1 - \left(\frac{\sigma_{o,i}}{\sigma_{c}} \right)^{2} \right]$$
(16c)

wobei für die zu $\sigma_{o,i} \rightarrow O$ extrapolierte Dehnung $\varepsilon_{u,o} = 1/(2(1 + RM/b))$ gilt. Die Grenzfestigkeit σ_c steigt also mit abnehmendem Spannungsverhältnis $\sigma_{o,i}/\sigma_o$ an. Für geringe Fließspannungen bzw. $\eta \rightarrow 1$ erhält man als asymtotische untere Begrenzung für die Gleichmaßdehnung bei z = 2, $\sigma_{o,a} = 0$ ferner

$$\varepsilon_{u} \simeq -\frac{1}{2R_{m}} \ln \frac{1}{1+R_{m}} - \left(\frac{\sigma_{o,i}}{\sigma_{c}}\right)^{2}$$
 (16d)

diese ist also nun parabolisch vom Spannungsverhältnis $\sigma_{o,i}/\sigma_c$ abhängig.

2.2 Kubisch flächenzentrierte Werkstoffe

Kfz. Werkstoffe zeichnen sich durch eine geringe Peierlsspannung bei vergleichbarer Mobilität von Schrauben- und Stufenversetzungen aus, wobei Gleitung auf niedrig indizierte Ebenen über langgestreckte Stufenversetzungen erfolgt. Die durch Verformung generierten Waldversetzungen wirken als effektive Gleithindernisse, die den Versetzungslaufweg begrenzen und somit die Immobilisierung der Gleitversetzungen bzw. die Versetzungsmultiplikation verstärken. Ist der mittlere Gleitweg Λ durch den mittleren Abstand zwischen den Waldversetzungen bestimmt, so wird $\Lambda = \Lambda_0 / (b\sqrt{\rho})$ mit der Konstanten Λ_0 ähnlich wie für krz. Werkstoffe bei T > T_c (2.1). Hierfür erhält man als Lösung von Gl. 3 für die Verformungsverfestigung bei additiver Überlagerung z = 1

$$\sigma = \sigma_{o,f} + \sigma_{o,i} + \Delta \sigma_{\varepsilon,m} \left[1 - \exp\left(-\frac{RM}{b}\varepsilon\right) \right]$$
(17)

mit dem Sättigungswert

$$\Delta \sigma_{\varepsilon,m} = \alpha \frac{\mu b^2 M}{4R\Lambda_o} \left[1 + \sqrt{\frac{8R\Lambda_o^2}{b} (g_P + g_K)} \right]$$
(18)

und der Gleichmaßdehnung

$$\varepsilon_{u} = -\frac{b}{RM} \ln \left[\frac{\frac{RM}{b} - \frac{\sigma_{o,a} + \sigma_{o,i}}{\Delta \sigma_{\varepsilon,m}}}{1 - \frac{(1 + \frac{RM}{b})}{(1 + \frac{RM}{b})}} \right]$$
(19)

Für das Gleichmaßdehnungsmaximum bei $\sigma_o \rightarrow 0$ ergibt sich nun der gegenüber krz. Werkstoffe vergrößerte Wert

$$\varepsilon_{u,o}^{X} = -\frac{1}{R_m} \ln \frac{1}{1+R_m}$$
(19a)

, bestimmt wiederum vom normierten Annihilationsparameter $R_{\rm m}.$ Bei hohen Festigkeiten bzw. geringen η gilt dann näherungsweise

$$\varepsilon_{u} = \varepsilon_{u,o} \left[1 - \frac{\sigma_{o,a} + \sigma_{o,i}}{\sigma_{c}} \right]$$
(20a)

mit nun $\epsilon_{u,o}=1/(1+R\cdot M/b)\leq \epsilon_{u,o}{}^x$ und der Grenzfestigkeit

$$\sigma_{c} = \frac{\alpha \mu b M^{2}}{4\Lambda_{o}} \left[1 + \sqrt{\frac{8R\Lambda_{o}^{2}}{b}(g_{P} + g_{K})} \right]$$
(20b)

der mit dem anfänglichen Verfestigungskoeffizienten

$$\frac{d\sigma}{d\varepsilon} \bigg|_{\sigma_{0}} = \sigma_{c}$$
(20c)

identisch ist. Für geringe Fließspannungen gilt andererseits für die Gleichmaßdehnung als Asymtote von Gl. 19

$$\varepsilon_{u} \simeq \varepsilon_{u,o}^{x} - \frac{\sigma_{o,a} + \sigma_{o,i}}{\sigma_{c}}$$
 (20d)

also gleichfalls wiederum ein linearer Zusammenhang aber mit gegenüber Gl. 20a vergrößerter Steigung.

Gegenüber krz.- (T), z = 2 erwartet man bei kfz. Werkstoffen für z = 1 eine lineare Spannungsabhängigkeit der Gleichmaßdehnung bei geringeren Grenzfestigkeiten, die jedoch mit zunehmendem Ausscheidungshärtungsbeitrag ansteigen. Der Zusammenhang in Gl. 20a ähnelt der von [5] angegebenen empirischen Beziehung $\bar{\epsilon}$ = 0,5 (1- σ_y/σ_{UTS}) da die Grenzfestigkeit mit der Zugfestigkeit σ_{UTS} ebenfalls korreliert, wie in 2.3 dargestellt. Abb. 5a verdeutlicht den Einfluß der dynamischen Erholung R_m und σ_c auf die Abhängigkeit ϵ_u (σ_o) für kfz. Werkstoffe.

Betrachten wir nun den Fall kfz. Werkstoffe bei quadratischer Überlagerung z = 2. Dieser ist in geschlossener Form nicht analytisch lösbar, jedoch einige wichtige Grenzfälle. Für $\sigma_{o,i} \rightarrow 0$ asymtiert die Lösung in die bereits für z = 1 bekannten (Gl. 19). Für $\sigma_{o,i} > 0$ aber $\sigma_{o,a} = 0$ andererseits gilt wiederum Gl. 6a, 19a mit dem Koeffizienten

$$\eta^{2} = \frac{RM}{b (1 + \frac{RM}{b})} \left[1 - \left(\frac{\sigma_{o,i}}{\Delta \sigma_{\varepsilon,m}}\right)^{2} \frac{\left(1 + \frac{RM}{b}\right)}{\left(\frac{RM}{b}\right)^{2}} \right]$$
(21)

und der gegenüber z = 1 verringerten Grenzfestigkeit von

$$\sigma_{c} = \Delta \sigma_{\varepsilon,m} \frac{\frac{RM}{b}}{\sqrt{1 + \frac{RM}{b}}}$$
(22a)

bzw.

$$\sigma_{c} = \alpha \frac{\mu b M^{2}}{2\Lambda_{o} \sqrt{1 + \frac{RM}{b}}} \left[1 + \sqrt{1 + \frac{8R\Lambda_{o}^{2}}{b}(g_{P} + g_{K})} \right]$$

Der Verfestigungsverlauf $\sigma(\varepsilon)$ ist dann mit $\Delta \sigma_{\varepsilon,m}$ nach Gl. 18 durch

$$\sigma = \sigma_{o,f} + \left\{ \sigma_{o,i}^2 + \Delta \sigma_{\varepsilon,m}^2 \left[1 - \exp\left(-\frac{RM}{b}\varepsilon\right) \right]^2 \right\}^{\frac{1}{2}}$$
(23)

(22b)

bestimmt. Die Näherung von Gl. 6a, 21 - 22 b, für kleine n schreibt sich dann zu

$$\varepsilon_{u} \simeq \varepsilon_{u,0} \left[1 - \left(\frac{\sigma_{o,i}}{\sigma_{c}} \right)^{2} \right]$$
(24)

mit der zu $\sigma_{0,i} \rightarrow 0$ extrapolierten Dehnung $\varepsilon_{u,o} = 1/(1 + R \cdot M/b) \le \varepsilon_{u,o} x$ bestimmt durch Versetzungsannihilation und Gleitsysteme. Dieser Zusammenhang ist fast identisch mit der ursprünglich von R.L. Fish. et. al. [1] angegebenen empirischen Beziehung zur Beschreibung der Versprödung austenitischer Cr/Ni-Stähle durch Bestrahlungshärtung. Gl. 24 ist damit gleichermaßen für kfz.- und krz.- (T) Werkstoffe anwendbar, allerdings mit den Unterschieden ($\varepsilon_{u,o}$)krz. = 1/2 ($\varepsilon_{u,o}$) kfz. und (σ_c)kfz. < (σ_c) krz. soweit eine Wechselwirkung zwischen härtenden Defekten und der durch Verformung generierten Versetzungsstruktur entsprechend z = 2 vorliegt oder bei dominierender Versetzungshärtung. Die Steigung $\partial \varepsilon_u / \partial \sigma_{o,i} = \phi^z = 2$ bei der Grenzfestigkeit $\sigma_{o,i} = \sigma_c$ nimmt infolge

$$(\partial \varepsilon_{u} / \partial \sigma_{o,i}) \sigma_{o,i} = \sigma_{c}^{= -2 \varepsilon_{u,o} / \sigma_{c}}$$
 (25)

für z = 2 umgekehrt proportional mit der Grenzfestigkeit ab woraus mit $\varepsilon_{u,o}$ auch die maximale Verformungsverfestigung $\Delta \sigma_{\varepsilon,m}$ entnehmbar ist, da entsprechend Gl. 22a gleichermaßen $\sigma_c \approx \Delta \sigma_{\varepsilon,m} (1 - \varepsilon_{u,o})/\varepsilon_{u,o}^{1/2}$ gilt. Steigung $\phi^z = 2$ ist damit doppelt so groß als für z = 1 bei identischer Grenzfestigkeit σ_c aber um den Faktor 2 $\sqrt{\varepsilon_{u,o}}$ größer bei gleichem $\Delta \sigma_{\varepsilon,m}$, während hierfür sich aber die Grenzfestigkeiten $\sigma_c z = 2/\sigma_c z = 1 = (\varepsilon_{u,o})^{-1/2}$ nur um die Hälfte dieses Faktors unterscheiden. Dies verdeutlicht Abb. 5b, die in schematischer Form die Zusammenhänge ε_u (σ_y) für kfz. Werkstoffe in Abhängigkeit vom Überlagerungskoeffizienten z zeigt. Als weiteren Grenzfall bei z = 2 erhält man für $\sigma_{o,i}/\sigma_{o,a} = 1$ eine allerdings bereits komplexe analytische Lösung. Hierfür gilt für die Koeffizienten η

$$\eta \simeq \frac{2}{3} \frac{R_m}{(1+R_m)} \left[3 \sqrt{3 \left\{ 1 + \left(\frac{\sigma_{o,i}}{\Delta \sigma_{\varepsilon,m} R_m} \right)^2 \left[2 \left(1 + R_m \right)^{-1} \right] \right\}} -1 \right]$$
(26a)

als Näherung von

$$\eta = \frac{3\sqrt{-q} + \sqrt{q^2 + \bar{p}^3}}{\Delta \sigma_{\varepsilon,m}} + \sqrt{-q} - \sqrt{q^2 + \bar{p}^3}} - \frac{2}{3} \frac{R_m}{(1 + R_m)}$$
(27a)

mit den entsprechenden Koeffizienten for $q^2\!+\!\bar{p}^3\!>\!0$

$$\bar{p} = \frac{b}{3} - \frac{a^2}{9}$$

$$q = \frac{a^3}{27} - \frac{a \cdot b}{6} + \frac{c}{2}$$
(27b)

und

$$a = \frac{2R_m \Delta \sigma_{\varepsilon,m}}{1+R_m}$$
(27c)
$$b = \frac{\left\{ \left(R_m \Delta \sigma_{\varepsilon,m} \right)^2 + \sigma_{0,i} \left[2(1+R_m) - 1 \right] \right\}}{\left(1+R_m \right)^2}$$
$$c = \sigma_{0,i}^2 \Delta \sigma_{\varepsilon,m}^2 \frac{2R_m}{\left(1+R_m \right)^2}$$

die von $\sigma_{o,i}, \Delta\sigma_{\epsilon,m}$ und R_m gleichermaßen abhängen.

Infolge der linearen Spannungsabhängigkeit der Gleichmaßdehnung (Gl. 20a) ist dessen Abhängigkeit von der Korngröße bei kfz. Werkstoffen gegenüber kubisch raumzentrierten generell stärker. Bei dominanter Korngrenzenhärtung mit z = 1 gilt diesbezüglich bei kfz. Werkstoffe

$$S = \frac{\varepsilon_{u,o} - \varepsilon_{u}}{\varepsilon_{u,o}} = \frac{\sigma_{o}}{\sigma_{c}} \sim d_{K}^{y}$$
(28a)

mit den Exponenten Y=-1/2 bei $\Lambda_0 \neq d_K$ and y = 1/2 bei $\Lambda_0 \sim d_K$ und somit generell begrenzt durch -1/2 \geq Y \leq 1/2. Mit zunehmend überlagerter Härtung durch Gitterreibung verringert sich der Expontenwert zu /Y/ \rightarrow 0. Darüberhinaus läßt sich hierfür eine kritische Korngröße

$$d_{K}^{c} = \left[\frac{\kappa_{h}/\mu}{\sigma_{c} - \sigma_{o,f}}\right]^{2}$$
(28b)

definieren unterhalb dieser dann der Übergang zur Verformungsentfestigung erfolgt. Insbesondere bei hohen Verhältnissen K_h/ μ von Hall-Petch Konstanten zu Schermodul in Verbindung mit starker Gitterreibung z. B. Mischkristallhärtung verschiebt sich dieser kritische Korngrößenwert zunehmend in den Versetzungsgleitbereich. Das differenzierte Verhalten der Korngrößenabhängigkeit der Gleichmaßdehnung von krz. und kfz. Werkstoffen zeigt in schematischer Form Abb. 6. für g_{P, K} = 0.

Andererseits bei dominanter Ausscheidungshärtung ($\sigma_{o,p} > \sigma_{o,f}$) erhält man für die Abhängigkeit der Gleichmaßdehnung vom Teilchenvolumenanteil

$$S_{O,R} \sim \frac{\sqrt{f_v}}{d_p R \Lambda_o \left[1 + K_o \sqrt{\frac{f_v}{d_p}}\right]}$$
(29a)

im Fall des Orowanmechanismus mit $k_0 = (8R\Lambda_0^2K_pb^{-1})^{1/2}$ und

$$S^{P,S} \sim \sqrt{f_v d_p} \tag{29b}$$

bei Teilchenscherung; also eine vergleichbare Abhängigkeit vom Teilchenvolumenanteil f_v aber konträre Abhängigkeit von der Teilchengröße. Für den kritischen Teilchenvolumenanteil gilt dann anhand von Gl. 18 und 20a

$$f_{V}^{*} = \frac{bd_{P}}{8R\Lambda_{o}^{2}\kappa_{p}} \left[1 - \frac{1,38\beta_{OR}}{\kappa_{s}} \frac{\mu b}{d_{p}^{2/3}} \right]^{2}$$
(29c)

für $g_{K} = 0$ und den plausiblen Annahmen von g_{p} ^{Scherung} = 0 und Λ_{o} Orowan = Ao Scherung. Im Gegensatz zu krz. Werkstoffen (2.1) nimmt der krititsche Volumenanteil fv* oberhalb diesem der Orowan - gegenüber dem Schermechanismus größere Gleichmaßdehnungen ergibt, mit zunehmender Teilchengröße, bei grö-Beren etwa linear $f_v \sim d_p$, zu. Hierbei existiert eine kritische Teilchengröße d_p^* , unterhalb dieser die Orowanumgehung stets höhere Duktilitäten ergibt. Oberhalb dieser kritischen Teilchengröße ergibt, ähnlich wie bei krz. Werkstoffen bei geringem Teilchenvolumenanteil ($f_v < f_v^*$) Teilchenscherung und bei höherem (f_v >fv*) dann der Orowanmechanismus größere Gleichmaßdehnungen. Dieser Bereich ist nach oben jedoch durch die maximale noch schneidbare Teilchengröße dcScherung im Fall geordneter kohärenter Ausscheidungen begrenzt. Dieses differenzierte Duktilitätsverhalten ausscheidungsgehärteter kfz. und krz. Werkstoffe verdeutlicht das härtungsmechanismusabhängige Phasendiagramm fv*vs. dp, gezeigt in schematischer Form in Abb. 7a,b. Das hier erkennbare f_v *-Riff bei kfz. Werkstoffen im Bereich mittlerer Teilchengrößen $d_p x > d_p > d_c$ Scherung wird mit zunehmender dynamischen Erholung und reduzierter Versetzungsmultiplikation und somit zunehmender Temperatur zu geringeren f_vx-Werten gedrückt, ähnlich wie bei krz. Werkstoffen für $d_p \leq d_c^{Scherung}$. Bei kfz. Werkstoffen ergeben im Bereich kleiner Teilchen (dp<dp*) stets inkohärente während im Fall von krz. Werkstoffen kohärente schneidbare Teilchen bei geringem Volumenanteil $f_v < f_v^*$ und inkohärente bei höherem Volumenanteil $f_v > f_v^*$ größere Gleichmaßdehnungen ergeben. In stark ausscheidungsgehärteten Werkstoffen mit hohem Teilchenvolumenanteil führen somit stets inkohärente Teilchen in kfz. aber auch krz. Werkstoffen gegenüber kohärenten zu deutlichen Duktilitätsverbesserungen.

3. Zugfestigkeit und mittlerer Verformungsverfestigungskoeffizient

3.1 Kubisch raumzentrierte Werkstoffe

Zur Vervollständigung werden folgend die weiteren direkt aus dem Zugtest bestimmbaren Größen, wie Verfestigungsanstieg $\Delta \sigma_{\epsilon}^{x}$, bei ϵ_{u} , Zugfestigkeit σ_{UTS} und mittlerer Verfestigungskoeffizient $\Theta = \Delta \sigma_{\epsilon}^{x} / \epsilon_{u}$ betrachtet, als Konsequenz des Verformungsverfestigungsmodells Gl. 3. Zunächst zum Verfestigungsanstieg $\Delta \sigma_{\epsilon} = \sigma_{UTS} - \sigma_{o}$ charakterisiert durch die Differenz zwischen Zugfestigkeit σ_{UTS} und Fließgrenze σ_{o} . Da $\Delta \sigma_{\epsilon}^{x} = (\eta)_{\epsilon_{u}} \Delta \sigma_{\epsilon,m}$ folgt für krz.-(T)-Werkstoffe bei z = 1, $\phi = 1$ aus Gl. 5,6b unmittelbar

$$\Delta \sigma_{\varepsilon}^{X} = \sigma_{o} \frac{\left[\sqrt{1 + 4R_{m}(1 + R_{m})y^{2}} - 1\right]}{2(1 + R_{m})}$$
(30a)

Die Näherung für kleine η bzw. hohe Fließspannungen σ_0 und geringe (b/R) M³ $(\mu/\sigma_0)^2$ schreibt sich zu $\Delta \sigma^x{}_{\epsilon} = (\Delta \sigma_{\epsilon,m})^2 R_m/\sigma_0$, woraus

$$\Delta \sigma_{\varepsilon}^{X} \simeq \frac{(\alpha \mu b)^{2} M^{3} \left[\frac{1}{\Lambda b} + g_{\kappa} + g_{p} \right]}{2 \sigma_{0}}$$
(30b)

folgt, die übersichtlich verdeutlicht, daß hierfür Verfestigungsanstieg $\Delta \sigma^x \epsilon^{-1/\sigma_o}$ umgekehrt und Zugfestigkeit mit

$$\sigma_{UTS} \simeq \sigma_0 (1 + 2\varepsilon_u) \tag{31}$$

nicht direkt proportional zur Fließgrenze ist da $\varepsilon_u \sim 1/\sigma_o^2$. Gl. 13 beschreibt gleichzeitig den unteren Grenzwert der Zugfestigkeit für geringe ε_u , R während exakt

$$\sigma_{UTS} = \sigma_{o} \left[1 + \frac{\Delta \sigma_{\varepsilon,m}}{\sigma_{o}} \sqrt{1 - \exp\left(-2R_{m}\varepsilon\right)} \right]$$
(31a)

gilt. Hieraus resultiert für den oberen Grenzwert dann

$$\sigma_{UTS} = \sigma_o \left(1 + \frac{\alpha \mu}{\sigma_o} \sqrt{\frac{M^3 b}{\Lambda} \varepsilon_u} \right)$$

(31b)

Abb. 8 verdeutlicht den Anstieg der normierten Zugfestigkeit σ_{UTS}/σ_o mit zunehmender Gleichmaßdehnung und R mit den entsprechenden Anwendungsbereich der Näherungen Gl. 31, 31b.

Bei dominanter Ausscheidungshärtung, $\sigma_o \simeq \sigma_p$, über den Orowanmechanismus wird der Verfestigungsanstieg andererseits

$$(\Delta \sigma_{\varepsilon}^{X})_{P, OR} \simeq \frac{(\alpha M)^{2} \mu b K_{p}}{2,76 \beta_{OR}} \sqrt{f_{v}}$$
(32a)

also unabhängig von Partikelgröße d_p, aber proportional zu $\sqrt{f_v}$, ähnlich wie die Zugfestigkeit

$$(\sigma_{UTS})_{P,OR} = \beta \ \mu b \frac{M}{d_p} \sqrt{\frac{6f_v}{n}} \left[1 + \frac{\pi}{12} \left(\frac{\alpha}{\beta_{OR}} \right)^2 \ M K_p d_p \right]$$
(32b)

wobei hier allerdings etwa $(\sigma_{UTS})_{p,oR} \sim 1/d_p$ gilt. Unter den gleichen Voraussetzungen ergibt sich für den mittleren Verfestigungskoeffizienten, definiert zu $\Theta = (\sigma_{UTS} - \sigma_o)/\epsilon_u$ dann

$$\theta_{P,OR} = \frac{12}{\sqrt{6\pi}} \beta_{OR} \mu b \frac{\sqrt{f}_{v}}{d_{p}}$$
(33)

also proportional zu $\sqrt{f_v}/d_p$. Für den mittleren Verfestigungskoeffizienten erhält man exakt

$$\Theta = -\frac{2RM}{b}\Delta\sigma_{\varepsilon,m}\eta/\ln(1-\eta^2)$$
(34a)

sowie mittels der Näherung Gl 30 b für höhere Fließspannungen und somit $\varphi=1$

$$\Theta \ge 2\sigma_{0}$$
 (34b)

á

die gleichzeitig die asymtotische untere Begrenzung des mittleren Verfestigungskoeffizienten bei $\Delta \sigma_{\epsilon,m} / \sigma_o \rightarrow 0$ darstellt. Für das obere Limit gilt dann

$$\theta \leq \frac{2RM}{b\Delta\sigma_{\varepsilon}^{X}} \Delta\sigma_{\varepsilon,m}^{2}$$
(34c)

Diese Zusammenhänge Gl. 34 a - c verdeutlichen, daß der mittlere Verfestigungskoeffizient entspechend $\Theta = X\sigma_0$ bei konstantem $\Delta\sigma_{\epsilon,m}/\sigma_0$ und R_m linear mit der Fließspannung zunimmt. Die Steigung $X \ge 2$ vermindert sich mit zunehmendem $\Delta\sigma_{\epsilon,m}/\sigma_0$ und R, somit bei verstärkter Versetzungsmultiplikation und Annihilation, wie Abb. 9a,b verdeutlicht. Der überraschend einfache und universelle, damit vom Werkstoff und Verformungsbedingungen (T, ϵ) unabhängige Zusammenhang Gl. 34b eignet sich ausgezeichnet zur Überprüfung der mikrostrukturellen Voraussetzungen beim krz-(T)-Gleitmodus mit z=1. Dies bedingt eine Korngrößenabhängigkeit des Verfestigungskoeffizienten von $\Theta \simeq x [\sigma_{o,a}(T) + K_h d_K^{-\frac{1}{2}}]$, die mit zunehmender Peierls- bzw. Reibungsspannung $\sigma_{o,a}$ und somit abnehmender Temperatur, soweit $K_h \neq T$ gegenüber Hall-Petch ($\sigma_0 \sim d_K^{-\frac{1}{2}}$) schwächer wird. Aufgrund Gl. 34b, 8a kann damit die Gleichmaßdehnung im Fall krz.-(T)-Werkstoffe auch durch

$$\varepsilon_u = \frac{\left(\alpha\mu\right)^2 \ bM^3}{\Lambda\theta^2} \tag{35}$$

ausgedrückt werden (x = 2, ϕ = 1), wobei Parameter $\varepsilon_u \theta^2 \sim \Lambda^{-1}$ gleichermaßen den Versetzungslaufweg charakterisiert. Bei dominanter Ausscheidungshärtung, $\sigma_o \simeq \sigma_p$, über dem Schermechanismus ($\sigma_{O,P} \sim \sqrt{d_p f_v}$) gilt andererseits

$$\left(\Delta\sigma_{\varepsilon}^{*}\right)_{P,S} \simeq \frac{\left(\alpha\mu M\right)^{2} b}{2\Lambda K_{S} d_{p}^{1/2} f_{v}^{1/2}}$$
(36)

sowie

$$\Theta_{P,S} = K M d_p^{1/2} f_v^{1/2}$$
(37)

und damit ($\Delta \sigma_{\epsilon}$)_{p,s} ~ 1/($\Lambda d_p^{1/2} f_v^{1/2}$) sowie $\Theta_{p,s}$ ~ $\sqrt{d_p f_v}$. Das Produkt

$$(\theta \Delta \sigma_{\varepsilon}^{\chi})_{P,S} \simeq \frac{(\alpha \mu)^2 \ b \ M^3}{\Lambda}$$
(38)

charakterisiert dann den mittleren Versetzungslaufweg bzw. M³/A.

Für den Fall krz.-(T) bei quadratischer Überlagerung z = 2 ergibt sich für den mittleren Verfestigungskoeffizienten mit

$$\Theta_{krz.}^{z=2} = \sigma_{o,i} (1+R_m) \frac{\left\{ \sqrt{\frac{R_m}{1+R_m}} \left[1 + \frac{1}{R_m^2} (\sigma_c / \sigma_{o,i})^2 \right] - 1 \right\}}{\left[1 - (\sigma_{o,i} / \sigma_c)^2 \right]}$$
(39)

aber keine vereinfachte Korrelation mehr zu inneren Strukturgrößen. Die Zugfestigkeit krz. Werkstoffe ist für z = 1 durch Gl. 30a, 31a und in Näherung durch Gl. 30, 31b bestimmt. Bei Z = 2 gilt andererseits $\sigma_{UTS} = \sigma_{o,a} + \sqrt{\sigma_{o,i}^2 + \Delta \sigma_{\epsilon}^{*2}}$ mit $\Delta \sigma_{\epsilon}^* = \eta \Delta \sigma_{\epsilon,m}$ und η entsprechend nach Gl. 14,16a. Für den Fall von $\sigma_{o,a}$ = 0, $\sigma_{o,i}$ >0 erhält man diesbezüglich die noch übersichtlichere Form

$$\sigma_{UTS}^{Z=2} \simeq \sigma_{o,i} \sqrt{\frac{R_m}{1+R_m} \left[1 + \left(\frac{\Delta \sigma_{\varepsilon,m}}{\sigma_{o,i}}\right)^2\right]}$$
(40)

(41)

, die die starke Abhängigkeit der Zugfestigkeit $\sigma_{UTS} \leq \sigma_c$ von Annihilation R_m und Verfestigungspotential $\Delta \sigma_{\epsilon,m}/\sigma_{o,i}$ unterstreicht. Für das Verhältnis der Zugfestigkeiten $\Omega = \sigma_{UTS}^{Z=2}/\sigma_{UTS}^{Z=1} \leq 1$ bei Z = 2 ($\sigma_{o,a} = 0$) und Z = 1, das den möglichen Einfluß des Härtungsmechanismus charakterisiert, erhält man dann

$$\Omega \simeq \frac{\sqrt{\frac{R_m}{1+R_m}} \left[1 + \left(\Delta \sigma_{\varepsilon,m} / \sigma_{o,i} \right)^2 \right]}{\left[1 + R_m \left(\Delta \sigma_{\varepsilon,m} / \sigma_{o,i} \right)^2 \right]}$$

Die Umformung von Gl. 40 als Funktion der Gleichmaßdehnung andererseits ergibt bei geringen Fließspannungen

$$\frac{\sigma_{UTS}^{z=2}}{\sigma_{o,i}} \ge \sqrt{\frac{R_m}{1+R_m}} \left[1 + \frac{1}{R_m (\varepsilon_u - \varepsilon_{u,o}^x)} \right]$$

und bei hohen

$$\frac{\sigma_{UTS}^{Z=2}}{\sigma_{o,i}} \leqslant \sqrt{\frac{R_m}{1+R_m} \left[1 + \frac{\varepsilon_{u,o}}{R_m(\varepsilon_{u,o} \ \varepsilon_u)}\right]}$$
(41b)

mit der hierfür asymtotischen unteren Begrenzung für $\epsilon_u \,{\rightarrow}\, 0$ und $R_m \,{\rightarrow}\, 0$ von

$$\frac{\sigma_{UTS}^{Z=2}}{\sigma_{o,i}} \ge \sqrt{\frac{1}{1-2\varepsilon_{u}}}$$
(41c)

Interessanterweise wird somit für beide Fälle Z = 1,2 der Zusammenhang σ_{UTS}/σ_o vs. ε_u nur vom relativen Annihilationswert R_m bestimmt, der damit aus einer solchen Auftragung direkt entnommen werden kann. Die Festigkeitsverhältnisse σ_{UTS}/σ_o sind hierbei für Z = 2 gegenüber Z = 1 etwas kleiner und somit auch dessen ε_u -Abhängigkeit schwächer.

3.2 Kubisch flächenzentrierte Werkstoffe

Für den kfz. Fall bei additiver Überlagerung, z = 1, ergibt sich mit Gl. 18,19,21 für den Festigkeitsanstieg $\Delta \sigma x_{\epsilon}$

$$\Delta \sigma_{\mathcal{E}}^{X} = \frac{\sigma_{c} - \sigma_{o}}{1 + \frac{RM}{b}}$$
(42)

und für die Zugfestigkeit

$$\sigma_{UTS} = \sigma_c \frac{1 + \frac{RM}{b} \frac{\sigma_o}{\sigma_c}}{1 + \frac{RM}{b}}$$
(43)

(41a)

mit $\sigma_{UTS} = (\sigma_c + \sigma_o)/2$ als Grenzwert für RM/b = 1.

Beide Kennwerte $\Delta \sigma^{x}_{\epsilon}$, σ_{UTS} sind damit im wesentlichen neben der Fließspannung σ_{o} von der Grenzfestigkeit σ_{c} abhängig. Für den mittleren Verfestigungskoeffizienten erhält man andererseits für kfz. Werkstoffe nun

$$\theta_{kfz.}^{z=1} = \sigma_c \tag{44}$$

gültig für kleine η bzw. höhere Fließspannungen σ_0 . Interessanterweise wird hierfür (z = 1) der mittlere Verfestigungskoeffizient identisch zur Grenzfestigkeit welche, damit direkt aus einem einzelnen Zugtest, insbesondere bei Mischkristall - und korngrenzengehärteten kfz. Werkstoffen entnommen werden kann. Andererseits zeigt Gl. 43,44, daß ein direkter Zusammenhang ε_u = f(σ_0/σ_{UTS}) bezogen auf die Zugfestigkeit, wie in [3,5] diskutiert, nicht exakt gilt, wohl aber $\varepsilon_u = \varepsilon_{u,0} [1 - \sigma_0/\Theta]$.

Folgend wird der kfz.-Fall bei z = 2 mit der Einschränkung $\sigma_{o,a} = 0, \sigma_{o,i} > 0$ betrachtet. Hierfür erhält man für den Festigkeitsanstieg durch Verformung $(\Delta \sigma_{\epsilon}^*)z = 2 \text{ kfz.} = \sigma_{UTS} - \sigma_{o,i}$

$$(\Delta \sigma_{\varepsilon}^{X})_{kfz.}^{Z=2} = \sigma_{o,i} \left\{ \sqrt{\frac{1 + \frac{u^{2} (1 - 1/u^{2})^{2}}{1 + \frac{RM}{b}}} - 1} \right\}$$
(45a)

oder mittels der Näherung Gl. 24

$$\left(\Delta\sigma_{\varepsilon}^{*}\right)_{kfz.}^{Z=2} \simeq \sigma_{o,i} \left\{ \sqrt{1 + \frac{\varepsilon_{u}^{2}}{\varepsilon_{u,o}^{-\varepsilon} \varepsilon_{u}}} - 1 \right\}$$
(45b)

mit $u = \sigma_c/\sigma_{o,i} \ge 1$. Die Zugfestigkeit schreibt sich dann zu

$$\left(\sigma_{UTS}\right)_{kfz.}^{Z=2} = \sigma_{o,i} \sqrt{1 + \frac{\left(\sigma_{c}/\sigma_{o,i}\right)^{2}}{\left(1 + R_{m}\right)^{2}} \left[1 - \left(\frac{\sigma_{o,i}}{\sigma_{c}}\right)^{2}\right]}$$
(46)

Das Verhältnis der Zugfestigkeiten $\Omega = \sigma_{UTS}^{Z=2} / \sigma_{UTS}^{Z=1}$ für kfz. Werkstoffe mit $s = \sigma_{o,i} / \Delta \sigma_{\epsilon,m}$ wird

$$\Omega = \frac{1+R_m}{R_m} \frac{S}{(1+S)} \sqrt{1 + \left[\frac{R_m}{S(1+R_m)}\right]^2 \left[1-S^2 \frac{(1+R_m)}{R_m^2}\right]^2}$$
(47)

also wiederum von S und R_m abhängig. Für den mittleren Verformungsverfestigungskoeffizient Θ gilt dann der Zusammenhang,

$$\theta_{kfz.}^{z=2} = \frac{(1+R_m)\sigma_{o,i}}{[1-(\sigma_{o,i}/\sigma_c)^2]} \left\{ \sqrt{1+D} - 1 \right\}$$
(48a)

welcher sich für kleine Werte von D = $u^2[1 - 1/u^2]^2/(1 + R_m) \rightarrow 0$ d. h. schwache Verfomungsverfestigung zu

$$\theta_{kfz.}^{z=2} = \frac{\sigma_c^2}{2\sigma_{o,i}} \frac{\varepsilon_u}{\varepsilon_{u,o}}$$
(48b)

mit

$$(\Delta \sigma_{\varepsilon}^{x})_{kfz.}^{z=2} \simeq \frac{(\sigma_{c}^{2} - \sigma_{o,i}^{2})^{2}}{2 \sigma_{o,i} (1 + R_{m}) \sigma_{c}^{2}}$$
(49)

reduziert. Gegenüber z = 1 wird somit nun θ bei kfz. (z = 2) neben σ_c zusätzlich von $\sigma_{o,i}$ abhängig. Für das Verhältnis $\Omega^{\theta} = \theta^z = 2/\theta^z = 1$ gilt dann exakt

$$\Omega^{\theta} = \frac{\sigma_{o,i}}{\sigma_c^{z=1}} \frac{\left\{\sqrt{1+D} - 1\right\}}{\varepsilon_u^{z=2}}$$
(50a)

und in Näherung für kleine D

$$\Omega^{\theta} \simeq \frac{\sigma_c^{z=1}}{2\sigma_{o,i}} \varepsilon_u^{z=2}$$
(50b)

die verdeutlicht, daß Ω^{θ} primär mit zunehmendem $\sigma_c^{z=1}C/\sigma_{o,i}$ und $\epsilon_u^{Z=2}$ ansteigt. In den Anhängen A2, A3 werden schließlich Näherungen für die Abhängigkeit des Hollomon'schen und Voce'schen Verfestigungsindex von der Fließspannung angegeben.

4. Bruchfestigkeit

4.1 <u>Kubisch raumzentrierte Werkstoffe</u>

Entsprechend Gl. 2 ist die Bruchfestigkeit of

$$\sigma_{f} = \sigma_{o,a} + \sigma_{o,i} \left\{ 1 + (\Delta \sigma_{\varepsilon,f}^{\prime} / \sigma_{o,i}^{\prime})^{Z} \right\}^{1/Z}$$
(51)

im Fall des duktilen Bruches über $\Delta \sigma_{\epsilon,f} = f(\epsilon_{f}, R_{m})$ von der lokalen Bruchdehnung ϵ_{f} , bei der unmittelbar Porenkoaleszenz auftritt, abhängig. Bei krz. Werkstoffen gilt hiermit für Z = 1

$$hohe \,\varepsilon_f \cdot R_m : \qquad geringe \,\varepsilon_f \cdot R_m : \qquad (52)$$

$$\sigma_f = \sigma_y \left(1 + \frac{\Delta \sigma_{\varepsilon,m}}{\sigma_y} \right) \qquad \sigma_f \simeq \sigma_y + \alpha \mu M^{3/2} \sqrt{\frac{b\varepsilon_f}{\Lambda}}$$

mit $\Delta \sigma_{\epsilon,m}$ nach Gl. 5. Im Fall dominanter Teilchenhärtung über Orowan und ausscheidungsbedingter Versetzungsmultiplikation ergibt sich damit bei höheren $\epsilon_{\rm f}$ für die Bruchspannung die Abhängigkeit $\sigma_{\rm f} \sim \sqrt{f_v}$ /dp und bei geringen $\epsilon_{\rm f}$ bzw. höherem Teilchenvolumengehalt

$$\sigma_{f} \sim \sqrt{\frac{6}{\pi}} \beta_{OR} \mu b M \frac{\sqrt{f_{v}}}{d_{p}} \left[1 + \frac{\alpha}{\beta_{OR}} f_{v}^{-1/3} \sqrt{\frac{3}{4} \pi d_{p}} K_{f} M/b \right]$$
(53)

also eine etwas schwächere Abhängigkeit vom Teilchenvolumenanteil und Korngröße entsprechend $\sigma_{f} \sim f_{v} \times d_{p}^{Y}$ mit den möglichen Exponenten -1/3 $\leq X \leq$ 1/2 und - 1 $\leq Y \leq$ -1/2. Bei dominanter Korngrenzenhärtung gilt für die Bruchspannung gleichermaßen die Hall-Petch Beziehung soweit $g_{K} = 0$ und $\Lambda \neq d_{K}$. Demgegenüber resultiert für $\Lambda \sim d_{K}$ ($g_{k} = 0$), wie bei geringen Korngrößen zu erwarten mit $\sigma_{f} \sim 1/d_{K} <$ 1/2 eine etwas reduzierte Korngrößenabhängigkeit. Der Einfluß von Teilchengröße d_p und Korngröße d_K auf die Bruchspannung ist somit annähernd vergleichbar.

4.2 Kubisch flächenzentrierte Werkstoffe

Für kfz. Werkstoffe erhält man für die Bruchspannung bei z = 1:

hohe
$$\varepsilon_{f} \cdot R_{m}$$
: geringe $\varepsilon_{f} \cdot R_{m}$: (54)
 $\sigma_{f} = \sigma_{y} + \sigma_{c} \varepsilon_{f}$ $\sigma_{f} \leq \sigma_{y} + \frac{\sigma_{c}}{R_{m}}$

Sie ist damit wesentlich auch abhängig von der Grenzfestigkeit σ_c . Im Fall der Teilchenhärtung über Orowan ergibt sich bei kfz. Werkstoffen bei geringen ϵ_f , R_m bzw. hohem Teilchenvolumengehalt $\sigma_f \sim f_v x d^y$ mit den möglichen Exponenten $1/2 \ge X \ge -1/6$ sowie $1 \ge Y \ge 1/2$. Gegenüber krz. erhält man somit für kfz. Werkstoffe eine vergleichbare Abhängigkeit von der Teilchengröße aber eine geringfügig schwächere Abhängigkeit vom Teilchenvolumenanteil.

5. Gleichmaßdehnungsverhalten bei Tieftemperaturverformung

Folgend wird die Charakteristik der Temperaturabhängigkeit der Gleichmaßdehnung krz. und kfz. Werkstoffe bei tiefen Temperaturen T $< T_o \approx RT$ etwa unterhalb der Raumtemperatur betrachtet. Der hier vorliegende, ausgeprägte Anstieg der Fließspannung bei Erniedrigung der Temperatur kann im Fall der thermisch aktivierten Wechselwirkung von Gleitversetzungen mit tetragonalen Defekten der Konzentration C durch [47]

$$\sigma_{e} = M\tau_{c,o} \left[1 - \left(T/T_{o} \right) \frac{1}{2} \right]^{2}$$
(55a)

beschrieben mit der Temperatur T_o für $\sigma_e=0$

$$T_{o} = \frac{\mu b^{3} \Delta \varepsilon^{X}}{3.86 \, A \, k \, \ln \, \varepsilon_{o} / \varepsilon}$$
(55b)

und der maximalen kritischen Scherspannung te,o

$$\tau_{e,o} = \frac{\mu \Delta \varepsilon^{X}}{k_{1}A} \sqrt{C}$$
(55c)

bei T = 0. Hierin bezeichnet $\Delta \epsilon^{x}$ die tetragonale Verzerrung der wirkenden Defekte (Fremdatome, Cluster, Versetzungsringe), wobei k₁ \approx 3,3 sowie A=1 für Schraubenversetzungen und A=1-v für Stufenversetzungen gilt. Gl. 55 a - c stellt allerdings für kfz./krz. Materialien nur eine Näherung dar [48,49], da sowohl die Wechselwirkungsenergie, Gleitversetzung-Defekt als auch dessen Spannungsabhängigkeit zusätzlich von Versetzungstyp, Defektorientierung und Anisotropie abhängt. Bei Berücksichtigung von Gl. 55 a - c erhält man für die Gleichmaßdehnung $\epsilon_u(T)$ kfz.-Werkstoffe mit Gl. 20a somit

$$\varepsilon_{u} = \varepsilon_{u,o} \left[1 - \frac{4\Lambda_{o} \left[1 - (T/T_{o})^{\frac{1}{2}} \right]^{2}}{k_{1}A\alpha bMK} \Delta \varepsilon^{X} \sqrt{c} + \frac{\sigma_{o,a}}{\sigma_{c}} \right]$$

$$K = 1 + \sqrt{\frac{8R\Lambda_{o}^{2}}{b} (g_{P} + g_{K})}$$
(56)

also für $\sigma_{o,a} = 0$ eine Abhängigkeit entsprechend $\varepsilon_u / \varepsilon_{u,o} = [1-B(T)\sqrt{C}]$ mit dem temperaturabhängigen Parameter B(T). Bei höherer Defektkonzentration c > c^x bzw. M $\tau_{o,e}(c) + \sigma_{o,a} \ge \sigma_c$ tritt unterhalb einer kritischen Temperatur von

$$T^{X} = T_{o} \left\{ 1 - \sqrt{\frac{\alpha k_{1} A b M K}{4 \Lambda_{o} \Delta \varepsilon^{X} \sqrt{c}}} - \frac{\sigma_{o,a}}{M \tau_{o,e}} \right\}^{2}$$
(57)

hierbei stets nur "instabile Verformung" mit $\varepsilon_u = 0$ auf, soweit $\sigma_c \neq T$. Dieser Tieftemperaturbereich T < T×(C>C×) ist damit besonders für Verformungslokalisation und Stukturinstabilitäten anfällig. Die kritische Temperatur erhöht sich mit zunehmender Defektkonzentration und $\Lambda_o \Delta \varepsilon^{\times}/M$, somit bei höherer Tetragonalität sowie reduzierter Versetzungsmultiplikation und geringerem Taylorfaktor. Lokale Bereiche mit geringerem M-Wert stellen damit bevorzugte Ansatzpunkte für lokalisierte Verformung sowie Gleitbandbildung dar. Der gleiche Härtungsmechanismus angewandt auf krz. Werkstoffe (A=1) ergibt mittels Gl. 8a für die Gleichmaßdehnung

$$\varepsilon_{u} = \frac{1}{4} \left(\frac{k_{1} \alpha}{\Delta \varepsilon^{X}} \right)^{2} \frac{bM\phi}{c \left\{ \left[1 - (T/T_{0})^{\frac{1}{2}} \right]^{2} + \frac{k_{1} A \sigma_{0,a}}{M \mu \Delta \varepsilon^{X} \sqrt{c}} \right\}^{2}}$$
(58)

also etwa eine Abhängigkeit von $\varepsilon_u \sim C^{-1} [1 - (T/T_o)^{\frac{1}{2}}]^4$. Der starke Anstieg von der thermischen Fließspannungskomponente σ_e mit abnehmender Temperatur erniedrigt hierbei gleichermaßen den Faktor $\sigma_{o,i}/\sigma_y$ auch bei versetzungsgehärteten krz. Werkstoffen wodurch die Ausbildung eines singulären, instabilen Verformungsbereiches mit $\varepsilon_u = 0$ bei tiefen Temperaturen unterdrückt wird. Betrachtet wird nun der Fall wenn die Kinkenbildung in Schraubenversetzungen der geschwindigkeitsbestimmende Schritt der Gleitung in krz. Werkstoffen darstellt. Die Bildungsenergie einer Doppelkinke von trapezförmiger Gestalt im Peierlspotential ist bei Betrachtung der langreichweitigen elastischen Wechselwirkung der Versetzungssegmente für kleine Scherspannungen $\tau \leq 0,02 \tau_p$ durch [50]

$$\Delta H^{DK} = \mu b^{3} \left(\tau_{\rho} / \mu \right)^{\frac{1}{2}} \left[1 - A^{x} \frac{\sqrt{\mu \tau}}{\tau_{\rho}} \right]$$
(59)

bestimmt mit $A^{x} = 7.2 \cdot 10^{-2}$ und der Peierlsspannung von $\tau_{p} \simeq 10^{-2} \mu$ bei T = 0. Für höhere Spannungen $\tau \leq \tau_{p}$ resultiert gegenüber Gl. 54 eine abweichende Spannungsabhängigkeit ΔH^{DK} (T), beeinflußt vom Peierlspotential [51], die mit dem Modell konstanter Linienspannung von 0,7 μ b² [48, 52] gut beschrieben wird. Mittels Gl. 59 und $\varepsilon = \varepsilon_{o} \exp(-\Delta H^{DK}(\tau) / kT)$; $\varepsilon_{o} \neq \tau$ resultiert eine Temperaturabhängigkeit der effektiven Fließspannungskomponente von

$$\sigma_{e}^{DK} \simeq \left(\frac{\tau_{p}}{A^{x}}\right)^{2} \frac{M}{\mu} \left[1 - T/T_{o}\right]^{2}$$

$$T_{o} = \mu b^{3} \left(\frac{\tau_{p}}{\mu}\right)^{\frac{1}{2}} k \cdot \ln \dot{\varepsilon}_{o} / \dot{\varepsilon}$$
(60)

und somit für die Gleichmaßdehnung entsprechend Gl. 8a
$$\varepsilon_{u} = \frac{\left(A^{X}\alpha\right)^{2} bM\phi \left(\mu/\tau_{p}\right)^{4}}{4\Lambda \left\{\left(1 - T/T_{o}\right)^{2} + \sigma_{o,a}\left(\frac{A^{X}}{\tau_{p}}\right)^{2}\frac{\mu}{M}\right\}^{2}}$$

(61)

bzw. $\varepsilon_u \sim (\mu/\tau_p)^4 [1 - T/T_o]^{-4}$ für $\sigma_{o,a} = 0$. Gegenüber der Härtung durch tetragonale Defekte ergibt somit der Doppelkinkenmechanismus eine stärkere Reduzierung der Gleichmaßdehnung mit abnehmender Temperatur.

6. <u>Diskussion mit Gegenüberstellung zwischen Theorie und experimentellen</u> <u>Beobachtungen</u>

Als Konsequenz des durch Versetzungsmultiplikation - und Annihilation gesteuerten Verfestigungsmodell, Gl. 3, resultieren definierte Verknüpfungen zwischen Fließgrenze und Gleichmaßdehnung, mittlerem Verformungsverfestigungskoeffizient O sowie Zug- und Bruchfestigkeit. Diese Korrelationen werden wesentlich geprägt vom Versetzungsgleitmechanismus (krz.- (T) sowie kfz./krz.-(H)) und somit der Gitterstruktur, beeinflußt aber auch von dynamischer Erhohlung und insbesondere dem Härtungsmechanismus. Bei dominanter Gleitung über Stufenversetzungen (kfz. und krz.-(H)) resultiert bei höheren Festigkeiten eine zur Fließspannung lineare oder quadratische Abhängigkeit der Gleichmaßdehnung $\varepsilon_u \simeq$ $\varepsilon_{u,o}$ [1- $(\sigma_o/\sigma_c)^z$], z = 1,2 bei $\varepsilon_{u,o} \le 0,5$ mit einer oberen Fließspannungsgrenze oc für Verformungsverfestigung und Gleichmaßdehnungsbildung. Die Grenzfestigkeit charakterisiert, abhängig vom Härtungsmechanismus und Schermodul die für Festigkeit und Duktilität relevante Strukturgrößen wie Versetzungslaufwege, Gleitsysteme und Annihilationsdistanz R der dynamischen Erholung. Im Fall additiver Überlagerung von Härtung und Verformungsverfestigung, z = 1, wird die Grenzfestigkeit identisch zum mittlerem Verfestigungskoeffizient $\Theta =$ σ_c , dem damit nun eine physikalische Bedeutung zukommt, ermittelbar aus einem einzelnen Test. Bei krz.-(T)-Werkstoffen mit Gleitung über Doppelkinken in Schraubenversetzungen resultiert eine solche Grenzfestigkeit allerdings nur für z = 2, also bei dominanter Versetzungshärtung oder Wechselwirkung der Gleithindernisse mit der Verformungsstruktur, wobei allgemein σ_c krz. > σ_c kfz. gilt. In den übrigen Fällen der Härtung über Gitterreibung, Ausscheidungen und Korngrenzen nimmt die Gleichmaßdehnung etwa gleich oder schwächer als $\varepsilon_{\rm u} \sim 1/\sigma_{\rm o}^2$ mit zunehmender Fließspannung ab. Primär infolge der härtungsabhängigen Versetzungsmultiplikation bei verstärkter dynamischer Erholung wird im Fall von krz.- (T) die Festigkeitsabhängigkeit der Gleichmaßdehnung vergleichsweise schwächer als bei kfz.-Materialien, die aber dann beim Übergang zur krz.- (H) Gleitung allerdings wieder zunimmt.

6.1 <u>Austenitische Cr/Ni-und martensitische 9 - 12 % Cr Stähle</u>

Die Abb. 10 zeigt eine Gegenüberstellung der bei z = 1,2 erwarteten Festigkeitsabhängigkeit ε_u (σ_o) mit entsprechenden Messungen am austenitischen Stahl 316 L [2], neutronenbestrahlt und/oder kaltverformt, sowie an martensitischen 9 - 12 % Cr Stählen [33 - 39] neutronenbestrahlt und auch unterschiedlich wärmebehandelt. Sie verdeutlicht die gute Übereinstimmung zwischen Modell und Experiment einerseits beim austenitischen Stahl 316 L für z = 2 bei $T_T = T_I = 230^{\circ}$ C, bestätigt die Existenz der Grenzfestigkeit und demonstriert die hierfür erwartete vergleichbare Wirkung von Neutronenbestrahlung und Kaltverformung infolge ihrer bewirkten Härtung über Versetzungsbildung. Die martensitischen 9 - 12 % Cr Stähle zeigen andererseits unterhalb Verformungstemperaturen von 300°C etwa den Trend $\varepsilon_u \sim 1/\sigma_o^2$ für krz.-(T) mit z $\simeq 1$ (Abb. 10). Dieser Trend wäre auch zu erwarten infolge der durch die Vergütung bewirkten vergleichbaren Härtung von ca. \leq 700 MPa über Versetzungen, Gitterreibung und Korngrenzen wie infolge Neutronenbestrahlung durch Defektcluster, Versetzungsringe und Heliumblasen von ca. $\Delta \sigma_v^{\text{lrr}} \leq 600$ MPa [27,38,40]. Die zu hohen Fließspannungen gegenüber $\varepsilon_u \sim 1/\sigma_o^2$ sichtlich stärker erfolgende Reduzierung der Gleichmaßdehnung könnte mehrere Ursachen haben: i)vorliegende dominante Versetzungshärtung infolge der aus der Martensitumwandlung durch Akkomodation gebildeter geometrischer Veretzungen wodruch $\sigma_{o,i}/\sigma_{o,a} > 0$ und $z \ge 1$, ii) verstärkte Versetzungsannihilation (Rirr > R) über infolge lokaler Spannungen begünstigten Kinkennukleation sowie iii) eventuell verformungsbedingte Auflösung von Bestrahlungsdefekten. Der stärkste Effekt resultiert hier offenbar seitens i). Dies verdeutlicht Abb. 11 in der Modellberechnungen von $\varepsilon_u(\sigma_o)$ für Z = 1 und Z = 2 entsprechenden Messungen an martensitischen Cr-Stählen gegenübergestellt sind. Der hierin berücksichtigte Annihilationswert $R_m = 5$ ergibt sich aus der Anpassung der Meßwerte in der Auftragung σ_{UTS}/σ_o vs. ε_u entspechend Abb. 12, die gut den Modellerwartungen folgen. Neutronenbestrahlung, Kaltverformung sowie Wärmebehandlung sollten sich damit im Gleichmaßdehnungsverhalten martensitische Stähle infolge der differenzierten Strukturentwicklung und Härtungskomponenten besonders bei hohen Fließspannungen unterscheiden da hier der Härtungsmechanismus entscheidend Einfluß nimmt (Abb. 11). Dies mit der hierdurch bedingten Variation im Z-Wert scheint auch die Ursache für die hier beobachte-

ten Streuungen in den Gleichmaßdehnungswerten (Abb. 10) zu sein, unterstützt auch infolge der Stukturinstabilitäten, durch die bei 250 - 350°C vorliegende dynamische Reckalterung (DRA). Abb. 13a zeigt, daß Parameter $\sqrt{\epsilon_u}\sigma_V \sim \Lambda^{-1/2}$ ermittelt an 12 % CrMoVNb [41 - 42] Stählen mit unterschiedlichem C, N-Gehalt mit zunehmender Verformungstemperatur auf das ca. 20 % niedrigere Plateau bei 250 - 400°C abfällt, wo dynamische Reckalterung durch Wechselwirkung von Gleitversetzungen mit C und N Atomen vorliegt [40], erkennbar auch durch Fließoszillationen im Spannung-Dehnungsverlauf mit negativer Dehnratenempfindlichkeit $\partial \ln \sigma_v / \partial \epsilon < 0$ der Fließspannung. Die durch DRA verstärkt bei höherem (C+N)-Gehalt und niedriger Anlaßtemperatur bedingte Versetzungsumordnung in Wänden, Bündeln und Zellen führt hier zur Abschwächung der Verformungsverfestigung durch Erhöhung der Versetzungslaufwege, verbunden mit einer Reduzierung der Gleichmaß- aber auch Bruchdehnung, sichtbar am un-und neutronenbestrahltem Material etwa in vergleichbarer Stärke. Überlagert wird dies mit dem bei oder gering unterhalb der DRA-Temperatur erwarteten Übergang der Gleitung von krz.-(T) zu krz. (H). Ein ähnliches Verhalten $\sqrt{\varepsilon_u}\sigma_v = f(T)$ zeigen auch die 10 % Cr-WVTa Stähle[42, 43] mit reduzierter Aktivität (Abb. 13b). Oberhalb der DRA-Temperatur fällt andererseits auch die durch Neutronenbestrahlung $(T_T = T_I)$ erzielte beträchtliche Härtung $\Delta \sigma^{irr} \leq 600$ MPa von martensitischen 9 -12% Cr Stählen außerordentlich steil ab (Abb. 14), infolge der sich nun abschwächenden Effizienz der Cluster als Gleithindernisse von mobilen Stufenversetzungen, sowie zunehmender Defektausheilung. Während die DRA die Gleichmaßund Bruchdehnung durch Abschwächung der Verformungsverfestigung reduziert, wird andererseits jedoch die Übergangstemperatur vom duktilen zum Sprödbruch (DBTT) ermittelt aus Kerbschlagexperimenten möglicherweise infolge reduzierter Porenschädigung und erhöhter Versetzungsbeweglichkeit begrenzt, erkennbar durch die sich in Abb. 15 andeutende Abflachung im festigkeitsbedingtem Anstieg der DBTT [44]. Abb. 16 demonstriert gleichermaßen im Parameter $\sqrt{\varepsilon_u}\sigma_v$ ermittelt aus Daten von [41] die empfindliche Reaktion von Strukturänderungen bei 12 % Cr Stählen durch Vergütung bzw. Anlassen auf die Versetzungsgleitdistanz bei Raumtemperatur. Die einsetzende feindisperse Bildung von (Fe₃C), M₂C, M₇C₃- Matrixkarbiden oberhalb Anlaßtemperaturen von 300°C reduziert die Gleitdistanz Λ bzw. verstärkt die Versetzungsmultiplikation, während die nachfolgende (Fe₃C)M₇C₃ \rightarrow M₂₃C₆ Transformation mit zunehmender Tendenz zu dessen Bildung an Korngrenzen bei Fe₃C-Auflösung die Gleitdistanz dann abrupt erhöht. Die Koagulation der M23C6 Karbide oberhalb 600°C und Versetzungszellbildung durch Erholung schließlich oberhalb 700°C führt dann zu einer weiteren Erhöhung der Gleitdistanz. Unter Verformung bei höhe-

ren Temperaturen auch im Vergütungszustand resultieren weitere verformungsrelevante Strukturänderungen, verdeutlicht in der Abhängigkeit des mittleren Verfestigungskoeffizienten O von der Verformungstemperatur (Abb. 17). Infolge der geringen Martensitplattendicke (ca. 0,3 µm) bzw. geringen effektiven Korngröße resultieren gegenüber austenitischen Cr/Ni-Stählen (d_K \approx 15 - 30 µm) um mehr als dem Faktor 2 höhere Verfestigungskoeffizienten von $\Theta \leq 2500$ MPa bzw. Grenzfestigkeiten $\sigma_c = \Theta$, die mit zunehmender Anlaßtemperatur durch verstärkte Erholung detenzionell abnehmen, wobei im Detail aber strukturbezogene Änderungen sichtbar werden. Bei niedriger Anlaßtemperatur, 600°C, wird die $M_7C_3 \rightarrow M_{23}C_6$ Transformation und Koagulation wiederum erkennbar (Maxima I und II), die offensichtlich durch Verformung unterstützt abläuft. Oberhalb Verformungstemperatuen von 500°C resultiert der Verfestigungskoeffizient dann aus der gegensätzlichen Wirkung einer Reduzierung der Gleitdistanz A durch Matrixkarbidbildung und Erhöhung durch Versetzungserholung. Bei höheren Anlaßtemperaturen \geq 700°C wird ein zusätzliches Θ -Maximum bei 500°C erkennbar (III), zuordbar der Wechselwirkung von gröberen M23C6-Ausscheidungen mit Versetzungs-Subzellen, die die Versetzungsgleitdistanz verringert. Diese Wechselwirkung wird auch im Kriechtest als Anomalie [45] im Kriechverlauf bei geringer Verformung- und Beanspruchungsdauer sichtbar.

Die notwendige Bedingung $\Theta \ge 2\sigma_0$ (Gl. 34a) beim krz.-(T)-Gleitmode für z = 1 wird entspechend Abb. 18 bei den vergüteten 9 - 12 % Cr Stählen aber auch anderen lösungsgeglühten krz. Werkstoffen wie V, Nb Mo bei Raumtemperaturverformung hinreichend erfüllt. Der mittlere Verfestigungskoeffizient steigt, wie für z = 1 erwartet etwa linear mit zunehmender Fließspannung an. Die Steigung entspricht gemäß Gl. 34a dem Wertebereich für das Spannungsverhältnis von $1 \ge \Delta \sigma_{\epsilon,m}/\sigma_o \ge 0.5$ bei Z = 1 und R_m > 1; d. h. die maximale Verformungsverfestigung ist deutlich geringer als die Fließspannung. Auch entspricht der in Abb. 17 erkennbare anfängliche Anstieg von O oberhalb Raumtemperatur den Erwartungen aufgrund des Übergangs von krz.-(T) zu krz. -(H), ($\Theta = \sigma_c$) infolge der durch verstärkte Versetzungsmultiplikation resultierenden hohen Grenzfestigkeiten von $\sigma_c > 2 \sigma_o$, da die Matrixdefekte nun die Versetzungslaufwege effizienter reduzieren. Anhand von Gl. 8b errechnet sich mit $\alpha = 0,1, M = 2, \mu/\sigma_0 = 71,25$ ein mittlerer Versetzungslaufweg von $\Lambda \simeq 1015$ b bzw. $\sim 3 \mu m$, der etwa der Pocketgröße der Martensitlatten entspricht, jedoch deutlich größer ist als die Lattenbreite von ca. 0,3 µm. Dies bekräftigt, wie für krz.- (T) erwartet, daß die Lattengrenzen, aber auch zusätzlich die Matrixstruktur die Versetzungsgleitwege begrenzen sowie daß die Gleitung bevorzugt entlang der Martensitlatten verläuft,

wie dies auch TEM-Untersuchungen durch bevorzugte Streckung von Heliumblasen entlang dieser nahelegen.

Bei austenitischen Stählen liegt mit der Annihilationsdistanz R \geq 0,5b, ermittelt aus dem Dehnungswert $\varepsilon_{u,o}$ (Gl.19a) generell eine schwache dynamische Erholung, aber ausgeprägte Dehnungsverfestigung $\Delta \sigma_{\epsilon,m} \leq 900$ MPa etwa in der Größenordnung der Grenzfestigkeit σ_c vor, so daß Verformungsverfestigung die Festigkeit dieser Materialien wesentlich charakterisiert. Bei martensitischen 12 % Cr Stählen ist jedoch die Sättigungsdehnverfestigung $\Delta \sigma_{\epsilon,m}$ gegenüber der Grenzfestigkeit $\sigma_c \leq 2500$ MPa vergleichbar klein und entspricht annähernd etwa dem nominellen Verfestigungswert $\Delta \bar{\sigma}_{\epsilon} = \bar{\sigma}_{UTS} - \sigma_{v} \leq 300$ MPa beim Lastmaximum. Die dynamische Erholung ist hier, charakterisiert mit Annihilationsdistanzen von $R \ge 4 - 10b$, gegenüber austenitischen Stählen aber deutlich ausgeprägter infolge der erleichteten Quergleitung. Der hohe Verfestigungskoeffizient bzw. Grenzfestigkeitswert $\Theta = \sigma_c(z=1)$ dieser martensitischen Stähle 12 % Cr auch noch bei höheren Verformungstemperaturen $\leq 600^{\circ}$ C ergibt sich als Konsequenz ihrer feinen Kornstruktur, da diesbezüglich mit $\Theta = \sim 1/d_{\rm K} < 1/2$ gemäß Gl. 34a ein zu Hall-Petch vergleichbarer Zusammenhang gilt. Am Beispiel der 12 % Cr Stähle wird damit verdeutlicht, daß Strukturänderungen entsprechend TEM-Beobachtungen überraschend empfindlich Änderungen der Versetzungsgleitdistanz A als eine Art Verformungs-DTA wiederspiegeln und bestätigen damit die wesentlichen Grundvoraussetzungen des mikrostrukturell orientierten Verformungsmodells.

Abb. 19 verdeutlicht an dem bei $T_T = T_I = 230$ bis 600°C neutronenbestrahltem Nb-stabilisierten Stahl 1,4988, daß die Korrelation zwischen Gleichmaßdehnung und Fließgrenze auch bei höherem Ausscheidungsgehalt bzw. stärkeren Ausscheidungshärtung vorliegt. Allerdings folgt die Gleichmaßdehnung ε_u (σ_y) gegenüber dem unstabilisierten Stahl 316L nun der linearen Abhängigkeit entsprechend z = 1 bei etwas höherer Grenzfestigkeit, infolge reduzierter Versetzungshärtung und der durch die Ausscheidungen verstärkten Versetzungsmultiplikation. Die Grenzfestigkeit fällt mit zunehmender Verformungs- und Bestrahlungstemperatur $T_T = T_I$ infolge verstärkter Erholung bei vermindeter Versetzungsmultiplikation deutlich ab. Interessanterweise entspricht diese ziemlich gut der durch Neutronenbestrahlung erzielbaren Sättigungshärtung $\sigma_{y, sat}$ bei höheren Dosen bzw. Gitterverlagerungen, wie in Abb. 20 gezeigt. Dies läßt vermuten, daß auch unter Bestrahlung ähnliche Erholungs- und Versetzungsmultiplikationsmechanismen ablaufen. Dies gilt jedoch nicht für den feinkörnigen martensitischen 12 % Cr Stahl, wo $\sigma_{v, sat} \ll \Theta = \sigma_c$, wie es auch zu erwarten wäre bei der hier vor-

liegenden dominanten Bestrahlungshärtung über kleine (<1 nm) Defektcluster und Versetzungsringe(Abb. 14), sowie einer bestrahlungsinduziert beschleunigten Erholung der Bestrahlungsdefekte durch Versetzungsklettern, die schließlich oberhalb Bestrahlungstemperaturen von ca. 450°C überwiegt und nun zur Bestrahlungsentfestigung [37,40] führt.

6.2 Ausscheidungsgehärtete Kohlenstoffstähle

Abb. 21 zeigt die Reduzierung der Gleichmaßdehnung mit zunehmender Fließspannung des übereutektischen feinkörnigen ($d_{\rm K} = 0,22 - 5 \,\mu{\rm m}$) Kohlenstoffstahles (1,8 Gew. % C) mit hohem Volumenanteil $f_v = 0,29$ an kugelförmigem Zementit, entsprechend Daten nach [59]. Der Verlauf $\varepsilon_u(\sigma_v)$ entspricht etwa dem zu erwartenden Trend $\varepsilon_u \propto f_v/(d_p \sigma_v 2)$ für Orowanhärtung, wobei die erkenntlichen Streuungen den zusätzlichen Beitrag der Versetzungsmultiplikation durch Ausscheidungen mit Variation im Faktor $f_v/d_p = (0,3 - 1)$ charakterisiert sowie daß Bruch z. T. auch vor der Einschnürung auftritt. Durch die verstärkte Versetzungsmultiplikations seitens der Karbidausscheidungen liegen erwartungsgemäß die Gleichmaßdehnungswerte des ausscheidungs- und korngrenzengehärteten Kohlenstoffstahles deutlich über den entsprechenden Werten der martensitischen 9 -12 % Cr Stähle. Abb. 22 verdeutlicht mit den selben Daten die vorliegende Korrelation zwischen Gleichmaßdehnung und Größe der Karbidteilchen. Die Gleichmaßdehnung steigt etwa linear mit zunehmender Teilchengröße, wie bei dominanter Härtung über den Orowanmechanismus (Gl. 8c) erwartet an, mit ε_u/d_p \simeq 0,234µm⁻¹. Erwartungsgemäß ist sie im wesentlichen auch unabhängig vom Teilchenvolumenanteil im weitem Intervall von $f_v \leq 0,25$ für unter- und übereutektische Kohlenstoffstähle mit kugelförmigen Karbiden (Abb. 23b). Die Streuungen in der Darstellung ɛu vs. dp von Abb. 22 charakterisieren primär den differenzierten Härtungsbeitrag durch die feine Kornstruktur. Messungen mit geringem Verhältnis $d_{\rm K}/d_{\rm p}$ d. h. stärkerer Korngrenzenhärtung sind damit am unteren Streuband angesiedelt. Infolge dieses Korngrenzenhärtungsbeitrages nimmt die Gleichmaßdehnung auch mit zunehmender Korngröße, wie in Abb. 24 erkenntlich zu. Dieser Anstieg mit erreichtem Sättigungswert reduziert sich deutlich mit zunehmender Reibungsspannung bzw. Ausscheidungshärtung, somit Faktor $\sigma_{O,P}/\sigma_{O,K}$. Die Gleichmaßdehnungswerte des 1,8 Gew. % C-Stahles werden etwa durch $\sigma_{O,P} = 300 - 700$ MPa und der Hall-Petch Konstanten 344,7 MPa $\sqrt{\mu m}$ beschrieben. Abb. 24 verdeutlicht aber zudem, daß in dem ausscheidungs- und korngrenzengehärteten C-Stahl der Beitrag der Korngrenzen zur Versetzungsmultiplikation im Korngrößenbereich von 0,2 - 5 µm vernachlässigbar ist. Es liegt hier primär Versetzungsmultiplikation an den kugelförmingen Karbidteilchen

vor während bei den 9 - 12 % Cr Stählen die matrixgesteuerte Versetzungsmultiplikation dominiert. In diesem Sinne ist auch der Anstieg der Bruchfestigkeit von übereutektischen Kohlenstoffstählen, mit zunehmendem Teilchenvolumenanteil ($f_v = 0,12 - 0,29$) und Teilchengröße, gezeigt in Abb. 25, entsprechend den Modellerwartungen von $\sigma_f \sim \sqrt{f_v}$ und $\sigma_f \sim d_p -1/2$ verständlich. Bei geringer Teilchenkonzentration $f_v < 0,12$ von untereutektischen C-Stählen (Abb. 23a) wird dann erwartungsgemäß diese Abhängigkeit σ_f (f_v, d_p) schwächer, infolge zunehmend überlagernde matrixgesteuerter Versetzungsmultiplikation. Diese Ergebnisse an feinkörnigen karbidgehärteten Kohlenstoffstählen sind damit im Einklang mit den Modellerwartungen und dem duktilen Bruchmechanismus durch Bildung und Koaleszenz von Poren an Ausscheidungen.

Anhang A1:

Duktilität und Verformungsverfestigung bei Teilchenscherung entsprechend dem Hart'schen Ansatz:

Mittels des Ansatzes für die Härtung durch Teilchenscherung entspechend $\sigma_{O;P}$ = 3 M $\tau_c f_v 2/3$ nach E. W. Hart [31] ($\tau_c \dots$ Partikelscherspannung) erhält man für krz. Werkstoffe bei z = 1

$$\varepsilon_{u} = \frac{(\alpha \mu)^{2} b M \phi}{36 \Lambda \tau_{c}^{2} f_{v}^{4/3}}$$

_

und

$$(\varepsilon_u / \varepsilon_f)_{Scherung} = \frac{(\alpha \mu)^2 b M}{36 \kappa_f \Delta f^X} \frac{\phi}{\tau_c^2 \Lambda f_v^{2/3}}$$

sowie

$$f_{V}^{X} = \left\{\frac{2}{3}\frac{b}{\pi\Lambda K_{p}}\right\}^{\frac{3}{4}} \left(\frac{\mu\beta}{\tau_{c}}\right)^{\frac{3}{2}} d_{p}^{-\frac{3}{4}}$$
A3

Hierfür gilt ferner für den Verfestigungsanstieg

A1

$$(\Delta \sigma_{\varepsilon}^{X})_{P,S} \simeq \frac{(\alpha \mu M)^{2} b}{6\Lambda \tau_{c} f_{v}^{\frac{2}{3}}}$$

und den mittleren Verfestigungskoeffizient

$$\theta_{P,S} \simeq 6 \tau_c M f_v^{\frac{2}{3}}$$
 A5

<u>Anhang A2 :</u>

Abhängigkeit des Hollmon'schen Verfestigungsindex n von der Fließspannung.

Die Verformungsverfestigung metallischer Werkstoffe wird häufig durch den Koeffizienten n entsprechend der Hollomon'schen Beziehung $\sigma \ge \sigma_0$ ($\epsilon/0,002$)ⁿ gekennzeichnet. Im Folgenden werden Näherungen für die Abhängigkeit diese Koeffizienten von der Fließspannung im Rahmen des dargestellten Verformungsmodells angegeben. Folgende Grenzfälle werden hierzu betrachtet: Anpassung der konstitutiven Beziehungen $\sigma(\epsilon)$ an die Zugfestigkeit (Fall I) und an die lokale Bruchdehnung (Fall II). Für kubisch raumzentrierte Werkstoffe erhält man für den Fall I bei z = 1:

$$n_{I} = \frac{\ln (1 + 2\varepsilon_{u})}{\ln (\varepsilon_{u}/0.002)}$$
 A6a

und mit der Näherung $\varepsilon_u = K_{krz.} \sigma_0^{-2}$ bei hohen Fließspannungen

$$n_{I} = \frac{2K_{krz.}}{\sigma_{o}^{2}} \left\{ \ln K_{krz.} / (\sigma_{o}^{2} \cdot 0.002) \right\}^{-1}$$
 A6b

Die Festigkeitsabhängigkeit des Verfestigungsindex n is damit geringfügig schwächer als $n_1 \sim 1/\sigma^2$. Für Fall II und Z = 1,2 gilt andererseits mit B = $\ln \epsilon_f / 0.002$

$$n_{I} = B \ln \left\{ 1 + \left(\frac{\Delta \sigma_{\varepsilon,m}}{\sigma_{o}} \right)^{Z} \left[1 - \exp\left(-2R_{m}\varepsilon_{f}\right)^{Z/2} \right\}^{Z} \right\}^{Z}$$

- 37 -

Α4

; somit für geringe $\Delta \sigma_{\epsilon,m}/\sigma_o$ etwa n_{II} ~($\Delta \sigma_{\epsilon,m}/\sigma_o$)z, also gegenüber I eine etwas schwächere Abhängigkeit von der Fließspannung. Für kubisch flächenzentrierte Werkstoffe erhält man für Z = 1 und Fall I andererseits

$$n_{j} = \frac{ln \frac{\sigma_{c}}{\sigma_{o}} \frac{1 + R_{m} \sigma_{o} / \sigma_{c}}{(1 + R_{m})}}{ln \left[5 - 10^{2} \varepsilon_{u,o} (1 - \sigma_{o} / \sigma_{c}) \right]}$$
A8

während für Fall II

$$n_{II} = B \ln \left\{ 1 + \frac{\sigma_c}{\sigma_o R_m} \left[1 - \exp\left(-R_m \varepsilon_f\right) \right] \right\}$$
A9a

bei Z = 1 gilt und bei Z = 2 ($\sigma_{o,a} = 0, \sigma_{o,i} > 0$):

$$n_{II} = B \ln \left\{ \sqrt{1 + \left(\frac{\sigma_c}{\sigma_{o,i}}\right)^2 \frac{(1+R_m)}{R_m^2} \left[1 - \exp\left(-R_m \varepsilon_f\right)^2\right]^2} \right\}$$
 A9b

Unter vergleichbaren Bedingungen resultiert damit für kfz. gegenüber krz. Werkstoffen analog zu ε_u (σ_o) auch für den Verfestigungsindex n eine etwas ausgeprägtere Abhängigkeit von der Fließspannung.

Anhang A3: Voce'sche Verfestigungsindex

Entsprechend Voce wird das Fließverhalten durch

$$\sigma = \sigma_{s} - (\sigma_{s} - \sigma_{y}) \exp(-N_{v}\varepsilon)$$
 A10

mit dem Verfestigungsindex N_v und der Sättigungsspannung σ_S charakterisiert. Die Anpassung des dargestellten Verformungsmodells an Gl. A 10 bei $\epsilon = \epsilon_f$ (Fall 2 A2) ergibt für den Index N_v bei krz - z = 1

$$N_{v} \simeq \frac{1}{\varepsilon_{f}} ln \left\{ 1 - \sqrt{1 - exp(-2R_{m}\varepsilon_{f})} \right\}$$
 A11a

welcher sich für geringe $\epsilon_f zu$

$$N_{V} \geq \sqrt{\frac{2RM}{b\varepsilon_{f}}}$$
 A11b

reduziert, die gleichzeitig die Untergrenze darstellt. Für Z = 2 wird dann der Voce-Koeffizient

$$N_{v} = -\frac{1}{\varepsilon_{f}} \ln \left\{ \frac{\sigma_{s} - \sigma_{o,i} \sqrt{1 - \exp(-2R_{m}\varepsilon)}}{\sigma_{s} - \sigma_{o,i}} \right\}$$
A12

abhängig von der Fließspannung. Bei kfz. Werkstoffen gilt $N_{v}=R\cdot M/b$ für z=1 während bei Z=2

$$N_{v} = -\frac{1}{\varepsilon_{f}} ln \left\{ \frac{\sigma_{s} - \sigma_{o,i} \sqrt{1 + \left(\frac{\sigma_{c}}{\sigma_{o,i}}\right)^{2} \frac{(1 + R_{m})}{R_{m}} \left[1 - exp(-R_{m}\varepsilon_{f})\right]^{2}}}{\sigma_{s} - \sigma_{o,i}} \right\}$$
A13

wird.

Literaturverzeichnis

- R. L. Fish, N. S. Cannon and G. L. Wire, Proc. 9th Int. Symp. on Effects of Radiation on Structural Materials, ASTM, Richland, 1978, ASTM-STP 683 (1979) 450
- [2] J. D. Elen and P. Fenici, J. Nucl. Mater. 191 194 (1992) 766
- J. D. Elen, P. Fenici and G. P. Tartaglia; Fusion Technology (1992), P. 1336
 ed. C. Ferro, M. Gasparotto, H. Knoepfel
- [4] G. E. Lucas, J. Nucl. Mater. 206 (1993) 287
- [5] G. R. Odette and D. Frey, J. Nucl. Mater. 85/86 (1979) 817
- [6] N. Jgata et. al., Radiat. Eff. 101 (1986) 131
- [7] D. Preininger, Journal de Physique IV, Vol. 3, Novembre (1993)
- [8] C. G'sell, S. Boni and S. Shrivastava, J. Nucl. Sci. A 111, 903 (1983)
- [9] B. Šestak, Mater. Sci. and Eng. 25 (1976) 171
- [10] B. Šestak and A. Seeger, Z. Metallkde 69 (1978) 195
- [1]] N. J. Petch, J. Iron Steel Inst. 174 (1953) 25
- [12] E. Nembach and G. Weite, Prog. Mater. Sci. 29 (1985) 177
- [13] P. S. Follansbee and U. F. Kocks, Acta Metall. 36 (1988) 81
- [14] L. M. Brown and R. K. Ham, Strengthening Methods in Crystals, (Ed. A. Kelly and R.B. Nicholsen) p. 9, Wiley, New York (1970)
- [15] U. F. Kocks, Mat. Trans. 1 (1970) 1121
- [16] J. Kellerhods, F. Minari and B. Pichand, Phil. Mag. A 39 (1979) 341
- [17] U. F. Kocks, J. Engng. Mater. Tech. (ASME H) 98 (1976) 76
- [18] J. P. Hirth and J. Lothe, Theory of Dislocations, Wiley Intersience, New York (1988)
- [19] W. G. Johnston and J. J. Gilman, J. Appl. Phys. 30 (195)) 129
- [20] A. Lasalmonie and J. Strudel, J. Mater. Sci. 21 (1986) 1817
- [21] M. F. Ashby, Phil. Mag, 21 (1970) 399
- [22] B. A. Senior; Mater. Sci. Engng., A 124 (1990) 159
- [23] W. A. Spitzig und A. S. Keh, Acta Metall. 18 (1979) 611

- [24] J. Bressers, M. Heerschap and P. De. Meester, J. Less-Common Metals 22 (1970) 321
- [25] O. V. Klyavin and N. P: Likhodedov, Sov. Phys. Solid State 34 (3) (1992) 530
- [26] A. Seeger, Kristallplastizität; Handbuch der Physik Bd. VII/2, Springer Verlag, Berlin-Göttingen-Heidelberg (1958)
- [27] B. Šeestak und A. Seeger, Z. f. Metallkde 69 (1978) 425
- [28] M. Consideré; Ann. de Ponts et Chaussées, (1885) 574
- [29] A. Kelly and R. B. Nicholson, Prog. Mater. Sci. 10, 149 (1963)
- [30] J. Rösler and E. Arzt, Acta Metall. 38 (1990) 671
- [31] E. Nembach, Scripta Metall. 18 (1984) 105
- [32] E. W. Hart, Relation and Properties in Microstructure, 95, American Society of Metals (1954)
- [33] R. L. Klueh and J. M. Vitek, J. Nucl. Mater. 161 (1989) 13
- [34] R. L. Klueh and J. M. Vitek, J. Nucl. Mater. 132 (1985) 27
- [35] R. L. Klueh, J. Nucl. Mater. 179 181 (1991) 728
- [36] W. Vandermeulen W. Hendrix, V. Massant, J. Van de Velde, Ch. De Raedt, December 1992 MAT/P1/WVM/gm/ (92 - 11 FT /Mol/92 - 05)
- [37] A. Möslang and D. Preininger, J. Nucl. Mater. 155 157 (1988) 1064
- [38] A. Möslang, D. Preininger and K. Ehrlich, Proc. All-Union Conf. on Effect of Irradiation on Materials for Fusion Reactors (Leningrad, USSR), p. 65
- [39] A. Marmy and M. Victoria, J. Nucl. Mater. 191 194 (1992) 861
- [40] D. Preininger, KfK-internal report (1991)
- [41] M. Schirra, P. Graf, S. Heger, H. Meinzer, W. Schweiger, H. Zimmermann, KfK 5177, Juni 1993
- [42] K. Anderko, K. Ehrlich, L. Schäfer, M. Schirra, KfK 5060, April 1993
- [43] F. Abe, T. Noda, H. Araki, M. Nurui and H. Kayano, J. Nucl. Mater. 191 194 (1992) 845
- [44] D. Preininger, ICFRM-6, 23 28. Okt. (1993), Stresa, p. 105
- [45] M. Schirra and K. Anderko, steel research 61 (1990) 242
- [46] K. Ehrlich, J. Nucl. Mater. 133/134 (1985) 119

- [47] R. L. Fleischer, J. appl. Phys. 33 (1962) 3504
- [48] D. M. Barnett and W. D. Nix, Acta Metall. 21 (1973) 1157
- [49] G. B. Gibbs, Phil. Mag. 20 (1968) 671
- [50] H. Koizumi, H. O. K. Kirchner and T. Suzuki, Phil. Mag. 69 (1994) 805
- [51] H. Koizumi, H. O. K. Kirchner and T. Suzuki, Acta Metall. 41 (1993) 3483
- [52] A. Seeger, Phil. Mag. 1 (1956) 651
- [53] H. Gleiter and B. Hornbogen, phys. Stat. sol. 12 (1965) 235
- [55] RT. L. Klueh et. al. in "Materials Considerations for the ITERFW/B/S", 1992
- [56] C. Wassilew (†) and K. Ehrlich, J. Nucl. Mater. 191 194 (1992) 850
- [57] R. L. Coble, J. appl. Phys. 34 (1963) 1679
- [58] P. Guyot, Phil. Mag. 24 (1971) 989
- [59] C. K. Syn, D. R. Lesuer and O. D. Sherby; Metallurgical Trans. 25 A (1994) 1481
- [60] J. C. I. Liu and J. Gurland, Trans. TMS-AIME 242 (1968) 1535
- [61] D. Bly, O.D. Sherby, C. Young and Y. Mischenkov; Mater. Sci. Eng. 12 (1973) 41
- [62] T. E. Davidson and G. S. Ansell; Trans. ASM 61 (1968) 242
- [63] T. Inoue and S. Kinoshita; Proc. 3rd. Int. Conf. on Strength of Metals and Alloys, Cambridge, Institute of Metals and Iron and Steel Institute, London, 1973, p 159
- [64] T. Oyama, O. D. Sherby, J. Wadsworth and B. Walser; Scripta Metall. 18 (1984) 799
- [65] G. LeRoy, J. D. Embury, G. Edward and M. F. Ashby; Acta Metall. 29 (1981) 1509
- [66] S. Fukai and N. Uehara: 2nd Int. Conf. on the Strength of Metals and Alloys, ASM. Metals Park, OH. 1979, Vol. II, p. 616
- [67] T. Gladman, B. Holmes and I. D. Mc Ivor: Effect of Second Phase Particles on Mechanical properties of Steels, ISI Conf. Iron and Steel Institute, London 1971, p. 68
- [68] W. Hüther and B. Reppich, Z. Metallkunde 69 (1978) 628
- [69] M. Gensamer, Trans. ASM 36 (1946) 30

Abb. 1a,b: Einfluß von dynamischer Erholung (a) und Versetzungslaufweg(b) auf die Abhängigkeit $\varepsilon_u(\sigma_o)$ für krz. - z = 1 entsprechend Gl. 6a, b

Abb. 1a,b: Einfluß von dynamischer Erholung (a) und Versetzungslaufweg(b) auf die Abhängigkeit $\varepsilon_u(\sigma_o)$ für krz. - z = 1 entsprechend Gl. 6a, b

Abb. 2: Abhängigkeit der lokalen Bruchdehnung vom Teilchenvolumengehalt einiger krz. und kfz. Werkstoffe

Abb. 3a: Einfluß der Teilchengröße auf das Duktilitätsverhalten von krz. Werkstoffen, verfestigt durch schneidbare Teilchen (Einzelversetzung, $\sigma_{o,f}=0$)

Abb. 3b: Einfluß einer überlagernden Härtung durch Gitterreibung und schneidbare Teilchen auf die Abhängigkeit $\epsilon_u(d_p)$ von krz. Werkstoffen

Abb. 4: Charakteristische Abhängigkeit der Gleichmaßdehnung von der Korngröße bei krz. Werkstoffen

Abb. 5a: Einfluß von dynamischer Erholung R_m , und Grenzfestigkeit σ_c auf die Abhängigkeit der Gleichmaßdehnung von der Fließspanung für kfz. Werkstoffe bei Z = 1

Abb. 5b: Die aus dem Verformungsmodell resultierende Festigkeitsabhängigkeit der Duktilität ε_u (σ_y) für kfz. Werkstoffe bei z = 1,2

Abb. 6: Gegenüberstellung der Korngrößenabhängigkeit der Gleichmaßdehnung von krz. und kfz. Werkstoffen bei $g_{P,K} = 0$

Abb. 7ab: Phasendiagramm f_v^* vs. d_p für dominant teilchengehärtete kfz. und krz. Werkstoffe. Größere Gleichmaßdehnwerte ergibt Orowan für $f_v > f_v^*$ und Teilchenscherung für $f_v < f_v^*$

Abb. 8: Einfluß der dynamischen Erholung auf die Korrelation zwischen normierter Zugfestigkeit σ_{UTS}/σ_0 und Gleichmaßdehnung bei krz. Werkstoffen (Z = 1)

Abb. 9ab: Einfluß von Versetzungslaufweg a) und dynamischer Erholung b) auf die Abhängigkeit des mittleren Verfestigungskoeffizienten von der Fließspannung für krz. Werkstoffe (Z = 1)

Abb. 9ab: Einfluß von Versetzungslaufweg a) und dynamischer Erholung b) auf die Abhängigkeit des mittleren Verfestigungskoeffizienten von der Fließspannung für krz. Werkstoffe (Z = 1)

b)

Abb. 10: Härtungsbedingte Reduzierung der Gleichmaßdehnung von austenitischen Cr/Ni- und martensitischen 12 % Cr Stählen - Gegenüberstellung von Modell und Experiment

Abb. 11: Einfluß des Härtungsmechanismus $1 \le Z \le 2$ auf die Festigkeitsabhängigkeit der Gleichmaßdehnung für $R_m = 5$ - Gegenüberstellung mit Messungen an martensitischen Cr Stählen

Abb. 12: Gegenüberstellung des an 9 - 12 % Cr Stählen, verfestigt durch Bestrahlungshärtung oder Vergütung beobachteten Zusammenhangs σ_{UTS}/σ_o vs. ϵ_u mit Modellberechnungen für Z = 1

Abb. 13a: Einfluß der Verformungstemperatur auf Parameter $\sqrt{\epsilon_u}\sigma_y$ von 9 - 12 % Cr-MoVNb Stählen mit unterschiedlichem (C+N)-Gehalt

Abb. 13b: Einfluß der Verformungstemperatur auf Parameter $\sqrt{\epsilon_u}\sigma_y$ von 10 % Cr-WVTa Stählen mit reduzierter Aktivität

Abb. 14: Festigkeitsanstieg $\Delta \sigma_{y^i}$ von martensitischen 9 - 12 % Cr Stählen durch Teilchenbestrahlung [33 - 40] in Abhängigkeit von Bestrahlungs- und Verformungstemperatur T_I = T_T

Abb. 15: Härtungsbedingter Anstieg der duktil-spröd Übergangstemperatur DBTT von 9 - 12 % Cr Stählen, ermittelt aus Kerbschlagexperimenten [44] ($\sigma_{y,DBTT}$ = Fließgrenze bei T_T = DBTT, T_a = 600 - 780°C)

Abb. 16: Parameter $\sqrt{\epsilon_u}\sigma_y$ ermittelt am 12 % Cr Stahl MANET II bei RT nach Daten von [41] in Abhängigkeit von derAnlaßtemperatur

Abb. 17: Änderung des mittleren Verfestigungskoeffizienten θ vom 12 % Cr Stahl MANET II mit der Verformungstemperatur

Abb. 18: Korrelation zwischen mittlerem Verfestigungskoeffizienten θ und Fließspannung verschiedener krz. Werkstoffe bei Raumtemperatur. Gegenüberstellung von Experiment und Theorie

Abb. 19: Festigkeitsabhängigkeit der Gleichmaßdehnung ε_u(σ_y) vom Nbstabilisierten austenitischen Stahl 1.4988, zusammengestellt nach Daten von [46]

Abb. 20: Grenzfestigkeit σ_c und Stättigungshärtung σ_{sat.} durch Neutronenbestrahlung von austenitischen Cr/Ni-Stählen

Abb. 21: Einfluß der Fließspannung auf die Gleichmaßdehnung des ausscheidungsgehärteten übereutektischen Kohlenstoffstahles mit 1.8 Gw. % C entsprechend Daten nach [59]

Abb. 22: Einfluß der Ausscheidungsgröße auf die Gleichmaßdehnung des übereutektischen Kohlenstoffstahles mit 1.8 Gw. % C

Abb. 23a.b: Bruchspannung (a), Bruchdehnung sowie Gleichmaßdehnung (b) in Abhängigkeit vom Volumenanteil an kugelförmigen Karbiden für Stähle mit geringem und mittlerem C-Gehalt [59]

Abb. 24: Einfluß der Korngröße auf die Gleichmaßdehnung des übereutektischen Kohlenstoffstahles mit 1.8 Gw. % C

Abb. 25: Einfluß des Volumenanteils und Größe der Karbidausscheidungen auf die Bruchspannung von übereutektischen Kohlenstoffstählen [59]