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MHD FLOW STRUCTURE IN BENDS PERPENDICULAR OR PARTLY PARALLEL TO THE 

MAGNETIC FIELD 

ABSTRACT 

This report describes results on the flow structure (distributions of mean 
velocities, velocity fluctuations and signal spectra) in magnetohydrodynamic 
(MHD) flow in 90° bends. These bends were either perpendicular or partly parallel 
to the magnetic field. The experiments were carried out in mercury flow with 
Hartmann numbers and Interactionparameters of O<Ha<550 and O<N<150. 
Ducts with both electrical conducting and nonconducting walls were 
investigated. Velocitydistributions were measured in different duct cross sections 
using traversable hot wire probes or different types of electric potential probes. 
The velocity distributions were also evaluated by theoretical analyses valid for 
inertialess laminarized flow. 

For both types of bend orientations significant differences to the theoretical 
predictions occur in the bend region due to the local influence of inertial forces. 
Strong flow instabilities with axis parallel to the magnetic field are observed in 
both cases which can persist for a quite long distance in the downstream duct, 
depending on the MHD parameters. Differentgeneration mechanisms for these 
vortices exist: For the bend perpendicular to B, inertia effects near the inner 
corner play a dominant role and, for electrically conducting duct walls, the M 
shaped velocity profile in the downstream duct. For bends with the downstream 
duct parallel to B, inertial forces in combination with the enforced M shaping of 
the velocity distribution in the inlet duct are of prime importance. 

ln duct flows with heat transfer, these MHD flow instabilities are expected to 
prevent the formation of hot spots in the bend regions and might be still 
effective for an improved heat removal in a significant part of the downstream 
duct. 

MHD STRÖMUNGSSTRUKTUR IN KRÜMMERN SENKRECHT ODER TEILWEISE 
PARALLEL ZUM MAGNETISCHEN FELD 

ZUSAMMENFASSUNG 

Dieser Bericht beschreibt Ergebnisse über die Strömungsstruktur (Verteilungen 
der zeitlich gemittelten Geschwindigkeiten, der Geschwindigkeitsverteilungen 
und Signalspektren) von magnetohydrodynamischer (MHD) Strömung in 90° 
Krümmern. Diese Krümmer waren entweder senkrecht oder teilweise parallel 
zum magnetischen Feld angeordnet. Die Experimente fanden in Quecksilber­
Strömung statt bei Hartmann-Zahlen und Interaktions-Parametern von 
0::; Ha< 550 und 0 < N < 150. Es wurden Kanäle mit sowohl elektrisch leitenden 
als auch nichtleitenden Wänden untersucht. Die Geschwindigkeitsverteilungen 
wurden mit Hitzdrahtsonden oder verschiedenen Typen von elektrischen 
Potentialsonden in verschiedenen Kanalquerschnitten gemessen. Die Geschwin­
digkeitsverteilungen wurden weiterhin durch theoretische Analysen bestimmt, 
gültig für trägheitsfreie laminare Strömung. 

ln beiden Kanaltypen treten wesentliche Unterschiede zu den theoretischen 
Ergebnissen im Bereich des Krümmers auf, hervorgerufen durch den lokalen 
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Einfluß von Trägheitskräften. Es werden ausgeprägte Strömungsinstabilitäten 
mit Achsen parallel zum Magnetfeld beobachtet, die, abhängig von MHD 
Parametern, über eine recht lange Lauflänge im Kanal stromab des Krümmers 
bestehen können. Die Erzeugungsmechanismen für diese Wirbel sind 
unterschiedlich: Für senkrecht zum Magnetfeld angeordnete Krümmer spielen 
Trägheitskräfte nahe der inneren Ecke eine dominierende Rolle und für elektrisch 
leitfähige Kanalwände das M-förmige Geschwindigkeitsprofil im strom­
abgelegenen Kanal. Für Krümmer, bei denen dieser Kanal parallel zu B 
angeordnet ist, sind Trägheitskräfte in Verbindung mit einem verstärkten M­
förmigen Geschwindigkeitsprofil im Eintrittskanal von wesentlicher Bedeutung. 
Es wird erwartet, daß die MHD-Turbulenz die Bildung von Heißstellen im 
Krümmerbereich verhindert und auch in einem beträchtlichen Bereich stromab 
sich noch günstig auf den Wärmeübergang auswirkt. 
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1. INTRODUCTION 

The investigations described in this report are related to the design of liquid 

metal cooled blankets for fusion reactors. An important concern for these 

blankets are magnetohydrodynamic (MHD) effects and their influence on heat 

and mass transfer processes. MHD effects might overwhelm viscous and inertia 

effects, resulting in suppression of usual turbulence and radically alter flow 

structures. (ln this report the term flow structure comprises the distribution of 

mean and fluctuating velocity components and spectra of these fluctuations). 

ln the past, experimental investigations for fusion reactor blankets concentrated 

on the determination of pressure drop in various flow components mostly 

perpendicular to the magnetic field. Flow profiles, however, were in general 

determined only theoretically based on assumptions valid for laminar, inertialess 

MHD flow /1-4/. These assumptions appeared to be reasonable because 

theoretical results for pressure drop often agree fairly weil with experimental 

results for a wide range of MHD parameters. However, it has been known for 

many years that strong flow instabilities or a significant anisotropic turbulence 

might exist /5-8/ which does not cause a noticeabie pressure drop. The 

exploitation of this "MHD turbulence" could significantly improve the heat 

transfer characteristics and thus simplify blanket designs /9/. 

This report describes investigations on the structure of MHD flow in different 

types of bends. Of particular interest is if these bends can act as promotors for 

flow instabilities. ln MHD flow the orientation of the bend in respect to the 

magnetic field direction is a very important parameter. Essentially, two different 

cases are of interest for technical applications: bends with ducts perpendicular to 

the magnetic field B or bends where one duct is perpendicular toB and the other 

is parallel toB. 

An example for the latter case is shown in Fig. 1 a). ln this blanket concept /11 the 

"radial" ducts (perpendicular to B) by 90° bends with the "toroidal" ducts 

(parallel toB) which must remove from the "first waii"(FW) heat flux from the 

plasma. 

Bends with one duct parallel to B are of technical interest because the pressure 

drop in a duct parallel to B is negligible compared to that one in a duct 

perpendicular to B. However, the change of the flow direction in respect to B 
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Fig. 1.1 

First W<tl 
Coolant Systems 

magnetic field B 

a) 

radial duct magnetic field B 

b) 

Liquid metal-cooled blankets developed in FZK: a) Self-cooled 
Pb-17Li blanket based on radial-toroidal flow concept /1 /; b) 
Duai-Coolant Concept mainly based on poloidal flow /2/. 

causes three-dimensional (3d) electric currents in the bend region which result in 

an additional bend pressure drop which is for inertialess MHD flow of the order 

of the pressure drop over a characteristic length in a two-dimensional (2d) duct 

flow. For inertial flow this additional pressure drop increases with increasing 

velocity and decreasing magnetic field strength, details for different duct 

geometries are given in /10, 11/. 

For the U-bend geometry the two 90° bends are electrically connected by a global 

current circuit and the pressure drop is increased compared to that one for a 

single 90° bend. The dependencies of this additional pressure drop on the duct 

parameters and MHD parameters are given in /10-12/. Therefore, pressure drop 

can presently be predicted with an accuracy sufficient for technical applications. 

The change of the flow direction with respect to magnetic field direction Ieads to 

very different flow patterns in the upstream and downstream duct. These 

distributions were up to now only predicted theoretically for laminar inertialess 

flow. (A certain experimental verification was obtained .by a good agreement 

between numerous measured and predicted electric wall potentials /10, 11 /). Due 
to the importance of the flow distribution for heat transfer the present 
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investigations were performed. The flow structure at the entrance of the 

downstream duct is of prime importance because hot spots might occur. 

Bends with ducts perpendicular toB are part of many blanket designs. ln the Dual 

Coolant Blanket /2/ this flow geometry exists at the blanket bottom (Fig. 1 b) 

where the downward flow in poloidal direction is deflected into the radial 

direction and then again in a 90° bend into the upward poloidal direction. 

The flow in this kind of bends is characterized by two-dimensional (2d) current 

distributions which do not result in remarkable additional pressure drops as 

predicted theoretically for inertialess flor /4/ and verified experimentally for a 

wide range of MHD parameters /13/. Another characteristic features are short 

flow lengths upstream and downstream ofthebend where fully developed flow 

is restored. Therefore, the mutual influence of the 90° bends in a U-bend becomes 

negligible for quite small lengths of the duct inbetween. Again direct 

measurements of the flow structure did not exist prior to the present 

investigations. 

in this report detailed results of investigations are presented on the flow 

structure in bends with the two different orientations to the magnetic field B, as 

outlined above. Some singular results published before, see /14, 15/. The 

following designations are used: "bpeB" stands for .Qend ~rpendicular to ~ and 

"bpaß" holds for .Qend partly ~rallel to ~· 
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2. EXPERIMENTAL 

2.1 Test loop and Test Sections 

The experiments were performed in the MHD Iabaratory of the Institute 

of Physics of the latvian Academy of Sciences. Mercury (Hg) was used as liquid 

metal. A magnet with circular pole shoes was used with a homogeneaus mag­

netic field for a diameter of 400 mm. An electromagnetic (EM) pump circulated 

the liquid metal in the loop. Flow rates were measured with an EM flow meter 

which could be calibrated by means of a venturi nozzle. The Hg temperature was 

kept constant by means of a water-cooler. 

Fig. 2.1 shows schematically the test section (which was used in both types of ex­

periments) and its arrangement for the bpaB experiments. The test section con­

sists of two 90° bends connected by the duct parallel toB. This U-bend geometry is 

representative for the blanket shown in Fig. 1 a. Therefore, again the designa-
\ 

tions radial and toroidal, are used for the bpaB experiments, as defined before. 

Fig. 2.1 

N 8 s J:;:!>" 

----__ sensor w i th 
r two-direction 
II 

positioner 
111 I I f I 

- toroidal duct 
2d _j 

- f-- r- 2a width of oll 
Lt 

lr ducts: 2b 
I 

----- -----rod io I f-' 
~ 

( i) duct -
J 

:--... "~xternal 
honeycomb 

Schematical graph of test section for the experiments with the bend 
partly parallel to the magnetic field B (bpaB-exps) 
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ln order to generate a constant velocity in the inlet cross section a flow straight­

ener was used consisting of a bundle of plastic tubes. The test section casing had 

electrically insulating inner walls and the dimensions 2a =40 mm in the inlet ra­

dial channel, a height 2d of 19 mm in the toroidal part and 2ao=20 mm in the 

outletradial channel. The width of the U-bend was 2b=40 mm. Thin electrically 

conducting walls were obtained by glueing sheets of stainless steel of thicknesses 

tw= 1 mm on the walls of the casing, reducing the characteristic lengths given 

above. ln most of the experiments a symmetric U-bend was investigated (Geome­

tries 8, C, D) by using a plexiglass insert to reduce the depth of the inlet radial 

channel. ln Geometry C the stainless steel sheet at the FW was replaced by a brass 

sheet of the same thickness which results in a FW conductivity higher by more 

than a factor of 1 0. ln Geometry D the meta I sheets were removed and the veloc­

ity distribution in a nonconducting U-bend was investigated. Table 11.1 contains 

the values of the characteristic lengths, the wall conductance ratios C, and the 

maximum Hartmann numbers and Interaction parameters N which are defined 

with the half depth II a II of the inlet dimension in direction of the magnetic field: 

C=twow/(ao), 

Ha= a8(o/(pv ))0.5 

N = aoB2/(pv) , 

where ow and o are the specific electric conductivities of the wall material and 

mercury (ow55 =1.16·106 A/Vm; Ow brass=1.5·107 A/Vm, 0Hg=1.06·106 A/Vm), p 

and v are the liquid meta I density and kinematic viscosity (PHg = 1.357·1 04 kg/m3, 

VHg = 1.2·1 0-7 m2/s), and v is the cross sectional averaged liquid meta I velocity in 

theinletradial channel. 

Table II. I Test section characteristics for the experiments with the bend 
partly parallel to 8 (bpa8-exps) 

Geometry a 2d ao C* Hamax * (mm) (mm)b (mm) (mm) 

A 19 19 17 9 0.06 =460 

8 9 19 17 9 0.122 =230 

c 9 19 17 9 0.122** =230 

D 10 20 19 10 0 =255 

Lr:::::: 210 mm, Lt = 130 mm (for A: Lt= 148) 
* values based on the quantities in the radial channel 
** except wall conductivity at First Wall which is C= 1.2 
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The aim of the experiments was to create a data basis for a wide range of 

Hartmann numbers and Interaction parameters. 

The top wall (FW) of the toroidal section consisted of plexiglass pieces (covered 

on the liquid metal facing side with the appropriate metal sheets). One of these 

pieces contained the velocityprobe which could be traversed in the y and z direc­

tions, see Fig. 2.1. By mounting the instrumented partat different positions in the 

toroidal channel different values of the coordinate x were obtained. 

For the experiments with the bend perpendicular to B (bpeB-exps), the test sec­

tion was rotated horizontally by 90°. Compared to the precedent bpaB experi­

ments the test section inserts were modified as shown in Fig. 2.2 and Table 11.11. 

The experiments with nonconducting walls were performed with a sharp-edged 

and a rounded corner. ln the experiments with conducting walls only the sharp-

Fig. 2.2 

external 
honeycomb 

11--~t--t- 170 --t-i 
180 

Schematical graph of test section for the experiments with 
the bend perpendicular to B (bpeB-exps) 
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edged versionwas used, however, two different wall conductance ratios were in­

vesti g ated. 

Note that Ha, N and C are always defined with the half length 11 a 11 of the inlet 

duct in direction of B. Therefore 11 a 11 (and with this 11 b 11
) are defined differently in 

the two types of experiments. 

Table II. II Test section characteristic for the experiments with the bend 

perpendicular toB (bpeB-exps) 

nonconducting bend conducting bend 

c 0 1.0; 0.1 
a(mm) 20 19.5 
b(mm) 10 9.5 
d(mm) 8.5 8.0 
r;(mm) 0; 10 0 
ra(mm) 0; 30 0 

Ha 25- 630 
N 0.02-230 
Re 2·1 04- 3.5·1 os 

2.2 Measuring Techniques for local Velocities 

2.2.1 Hot Wire Anemometry 

Electric potential probes cannot be used in the bpaB-exp to measure the velocity 

component u in the toroidal duct because u is parallel toB. Hot wire anemometry 

was believed to be best suited for this purpose. However, the use of this tech­

nique in mercury and magnetic fields requires a much larger technological and 

experimental effort compared to conventional applications. Figure 2.3 shows the 

hot wire probe used in the present experiments. The tungsten wire (thickness 

5 f.Jm) was electrically insulated by a Si02 layer (thickness 5 f.Jm) which subse­

quently was covered by a thin Cr layer, followed by a gold layer of 2 f.Jm thickness 

in order to ensure good wetting and to avoid the adherence of impurities. An ac­

curate temperature stabilization of the loop was required and a procedure to 

compensate the small residual temperature changes. 
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Another MHD feature which might falsify the measurements is the existence of 

flow regions with reduced velocities upstream of a body located in a flow par­

allel to the magnetic field /16,17 I. The dimensions of these regions are depen­

dent on Ha and N based on the dimensions of the body. Table 11.111 contains char­

acteristic values for the used probe. Figure 2.4 shows the decrease of the velocity 

for different distances x/d and Hartmann numbers. lt was estimated for the 

present experimental conditions that these effects could cause an error less than 

5%. 

Special attention was paid on the hot wire calibration at low velocities. First, an 

insert containing a venturi nozzle with a manometer for pressure difference mea­

surement was used, see Fig. 2.5a Due to an unsufficient accuracy in the low ve-

_[
2om 

vocu~ . loc~r covering 
~1tlon / 
1l SiO ____.. ~ tlflQSten wire 
j ~~ -===; t 0 .Oß n1n 

~~~·~~---_-_-_==~=nrn====~ 

~--------------------75nrn 

Fig. 2.3 Hot wire probe 

0.8 
U/lh 

0.7 ~ 
0.6 Ho 

~ 0- 0 'f-"'1-
0.5 0 

52- e 
\ 0.4 104- + 

0.3 156- 0 \ 

0.2 x/d=1.5 0\ 

0.1 

1.0 $Gre-~~ 
0.9 

0.8 R,an xjd=n ~J 
0.7 4 3 2 1 0 

Fig. 2.4. Decrease of velocity in upstream region (from /17 /) 
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Table 11.111 Ha and x/d for hot wire probe components 

Ha x/d 

wire 0.22 1 

probe body 10 29 

probe rod 31 40 

Ylater moroneter 

lbzzle 
A-A 

----. / 
fl()lill'lt)ter 

a) first calibration insert b) secend improved calibration insert 

Fig. 2.5 Inserts for hot wire calibration 

locity range this unit was replaced by the improved system shown in Fig. 2.5b con­

sisting of a nozzle and an integrated EM flow meter. The calibration runs were 

performed at a maximum field strength of B = 1 Tesla at which most of the experi­
ments were performed, as required by /18/. 

The velocity distribution in the nozzle jetwas determined by traversing the probe 

and appropriate wire positions were determined where the velocity profilewas 

quite flat. The Figs. 2.6 and 2.7 show measured velocity distribution and a calibra­

tion curve. 
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Fig. 2.6 Velocitydistribution for a nozzle flow of v- 1.1 cm/s (B = 1 Tesla) 

0 
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,., 
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> 

8~--~--~--~~~~--~--~--~--~, /( 
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5 

1 
4700 

/I 
// 1 

/ ' 
/ J 

// j 
~ ... I 

4750 4800 4850 4900 4950 5000 5050 5100 515( 

Voltage, mV 

Fig. 2.7 Characteristic hot wire calibration curve (B = 1 Tesla) 

2.2.2 Electric Potential Probes 

These probes are widely used in MHD flow. The measured electric potential 

differences act>/az and a/ct>ax between the probe tips perpendicular to B are . 

proportional to the velocity components u and was long as the electric currents h 
and h between the probe tips is negligible, (for coordinates, see Fig. 2.8), as can 

be easily seen by Ohm 's Law 
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B 

"'-
z,w 

2 mm between tips in x y 
and z directions ' 

a) Single-Tripie Probe (STP) 

c) Tri pie-Single-Probe (TSP) 

r mercury 

17mm 

z 
lnvestugated 
area 

potential 

probe Ups 

b) STP for measurements close 
to thewall 

Fig. 2.8 Traversable potential probes 
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u=h + acp/az; w=jx-acp/ax. 

For insulated duct walls this assumption is justified. For weil conducting duct 

walls (C > > Ha-1) the currents are in the order of C. For the bpeB-exp with C = 1 

(compare Table 11.11) the currents reach the same order as the other terms. 

Therefore, these results are considered to be of rather qualitative nature. For the 

other versions with conducting walls, the values of C are so small that the 

assumption is fairly weil fulfilled. 

Beside several standard electric potential probes consisting of one pair of 

electrodes, two other types of traversable probes were used (Fig. 2.8): 

Single-Triple-Probes (STP), which measure simultaneously the potential 

gradients in the x,y and z directions (Fig. 2.8a). The STP with the small tip 

distances (Fig. 2.8b) was built for the final bpeß-exp with C=0.1 where the 

aim was to measure very close to the wall. 

The Triple-Single-Probe (TSP) which measures simultaneously potential 

gradients a<f>/az at three different positions y in the test section (Fig. 2.8c). 

The correlation of these signals provide information on the two­

dimensionality of the flow structure in planes perpendicular to the 

magnetic field B. 

2.3 Data Acquisition 

During the experiments, the following quantities were measured: flow rate Q, 

magnetic field strength B, velocity probe signals and the position of the probe 

tip. ln the bpaß-exps, the probe signals were taken sequentially with a frequency 

of 200 Hz for a measurement period of 20 s for each probe position. For the 

subsequent bpeß-exps the capacity of the computerized data acquistion system 

was considerably enlarged: all probe signals were measured in parallel with 200 
Hz for 150 s. 
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3. THEORETICAl ANAlYSIS 

3.1 Velocity Distributions in U-bends Partly Parallel to the Magnetit Field 

(bpaB-exps) 

The flow in a U-bend has been analysed by the asymptotic theory for high values 

of Ha and N . The governing equations and boundary conditions are given in de­

tail in Ref. /12/. The assumptions used to simplify the analysis are the following: i} 

the induced magnetic field may be neglected compared to the external magnetic 

field (small magnetic Reynolds number), ii) Ha>>1, N>>Ha3/2, C>>Ha-1/2, iii) 

radial ducts are semi-infinite, so that the flow is fully developed as z~ -oo. The as­

sumptions ii) allow to neglect inertia terms everywhere, while viscous effects will 

be confined tothin boundary layers at the wall (~ore f.low Approximation (CFA) 

method). 

At high Hartmann numbers the flow region exhibits inviscid cores CR and CT, 

Hartmann boundary layers (H} near the walls perpendicular to the magnetic field 

with a thickness O(Ha-1), parabolic layers SR, ST, F, Sand I of O(Ha-1/2) at the walls 

parallel to the magnetic field, corner layers A 1 and A2 with dimension O(Ha-

1/2)x(O(Ha-1/2) see Fig. 3.1. Under the assumptions made, the probiem is reduced 

to a system oftwo-dimensional equations governing the wall potentials and the 

core pressure in the radial duct. All other variables both in the core and in the lay­

ers are expressed in terms of them. The main flow features, which result from this 

z 
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model are the following: ln the radial duct close to the junction the fluid is 

pushed towards the sidewalls and part of the core flow enters the layers SR. At 

the junction these layers carry for the present Geometry B, see Table 11.1, 18% of 

the total volume flux. ln the toroidal duct the fluid participates in a very complex 

motion which involves helical-type of flow. The core of the toroidal duct CT does 

not carry volume flux in the x-direction, so that all the volume flux is carried by 

the layers ST, F, I and S. The flow distribution between the layers is given in Table 

111.1. However, the core CT is not completely stagnant, since both core velocity 

components perpendicular to the field are not zero. They are responsible for a 

flow distribution between the parabolic layers. The projection of the helical flow 

on the y,z-plane in the toroidal duct results in two vortices with the velocity com­

ponent in the center towards the FW in the first part of the U-bend and opposite 

in the second part. The fluid that enters the layers F or SR from the core returns 

back within these layers and the layer S (Fig. 3.2). lt should be noted, however, 

that the flow pattern in the toroidal duct is essentially three-dimensional with 

maximum absolute core velocity close to the Hartmann walls (20 % of the aver­

age velocity in the radial ducts) and zero at the symmetry plane x= I. The reversed 

flow in the layer S (Table 111.1) is associated with a three-dimensional vortex close 

to the symmetry plane (for details see /12/}. 

Fig. 3.2 
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Table 111.1 

X 

Flow distribution between the layers in the toroidal duct 
(Geometry C, flow rates normalized with total flow rate Q) 

QF Osr Os 

0 22.9% 52.6% 24.5% 

I= (Lt-2a)/2 47.1% 65.3% -12.4% 

3.2 Velocity Distribution in Bends Perpendicular to the Magnetic Field 

(bpeB-exps) 

The asymptotic theory for high Ha and N (CFA) has been also used for this flow 

geometry /19/. Figure 3.3 shows the results for a nonconducting bend: the ve­

locity distribution is similar to that of a potential flow with the highest velocity 

near the inner corner (for the calculations a small inner radiuswas assumed). As 

normalizing quantities, the cross section averaged velocity is used for the velocity 

and the quantity nan forthe coordinates. 

~ 

Fig. 3.3 
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For the conducting bends (Fig. 3.4) an expressed M-shaping is observed near the 

wallsparallel to B. The symmetric profilein the inlet duct deforms in the turning 

zone in such a way that a strong velocity jet occurs close to the inner corner. 

Downstream ofthebend again a symmetric M-shape profile starts to develop. 

lncreasing the wall conductivity, the M-shaping first increases, reaches a maxi­

mum and almost disappears for highly conducting duct walls. The M-shaping for 

the two considered values of the wall conductance ratio does not differ very 

much although C differs by one order of magnitude. The reason for this is that 

the maximum velocity scales as 

Umax- (C+ Ha-1) (1 +C)-1 (C+ Ha-0.5)-1. 

The differences of the electric currents within the flow are quite significant be­
cause 

j- (C+Ha-1) (1 +C)-1. 
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4. EXPERIMENTAL RESULTS 

The results for the two different types of experiments are presented in Sections 

4.1 and 4.2. The same coordinate system is used but the direction of the magnetic 

field differs, see Fig. 4.1. All velocities and velocity fluctuations are normalized 

with the corresponding cross section averaged throughput velocities. The values 

for x,y are normalized with the inlet duct half lengths in corresponding direc­

tions , z is normalized with "2d ". 

The experiments concentrated in both cases on the flow structure in the vicinity 

of the first 90° bend. 

bpaB-experiments bpeB-experiments 

Fig.4.1 Coordinate system 

4.1 Bend Partly Parallel to B (bpaB-exps) 

4.1.1 Velocity Distribution in the Radial Duct 

A simple traversable potential probe was used which measured only the velocity 

component in z-direction. Figure 4.2 shows the distribution of the mean velocity 

for the duct with thin conducting walls. For Ha =46 and N =0.2 the MHD influ­

ence is not very expressed; a quite flat velocity distribution is observed. For the 

higher values of Ha and N a characteristic M-shaped profile exists. Jt should be 

taken into account that very close to the sidewalls the velocities could still in-
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Fig. 4.2 Velocitydistribution in the radial duct for C = 0.06 (potential probe) 
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crease considerably. These layers with increased velocity are very important for 

the flow phenomena in the toroidal duct as discussed later. As outlined in Section 

3, the 3d electric currents due to the flow deflection into the B direction should 

increase the M-shaping when approaching the bend. This effect is not very pro­

nounced in the experiments and might be hidden by the fact that the thickness of 

the sidelayers atz= -2 is already considerably thicker than predicted for laminar 

flow. This might be caused by an intense mixing effect due to turbulence as 

shown in Fig. 4.3 which contains the corresponding distributions of the velocity 

fluctuations. For the lowest values of Ha and N again a quite flat distribution is 

observed whereas for the highest values the fluctuations are significantly larger 

in the zones where the gradients of the mean velocities are largest. 

For nonconducting walls (Fig. 4.4) the influence of the downstream bend due to 

3d currents is much more expressed: a strong redistribution is observed for 

z = - 0.26, again pushing the liquid towards the side walls. This tendency was also 

observed for other flow conditions (e.g. changing magnetic field strength in 

straight ducts /17 /). The turbulence Ievei increases also near the side walls with 

decreasing z. For the smallest value of z, the values in the middle of the duct are 

also increased, this complex behaviour will be explained in the next sections. 

4.1.2 Velocity Distributions in the Toroidal Duct 

The Figs. 4.5 - 4.11 show results obtained with the hot wire probe. ln order to 

interpretate these signals one should keep in mind that the hot wire is mainly 

sensitive to the absolute velocity perpendicular to the wire. During the planning 

of these experiments it was assumed that in the toroidal duct the flow direction is 

parallel tothex direction. This assumption is not justified as shown in the follow­

ing. Therefore, the velocity determined from the hot wire signal may contain the 

velocity components w if the wire is parallel to the y-direction and the velocity 

component vif the wireisparallel to the z-direction. For the results shown in Figs. 

4.5-4.7, the wire was parallel to y. 

Fig. 4.5 shows the influence of Ha and N for the duct with thin conducting walls. 

For pure hydrodynamic flow (Ha= N = 0) a characteristic separation zone occurs -

as expected- downstream of the inner corner. For the values of Ha = 230 and N 

= 17, MHD effects are sufficiently large to suppress this recirculation zone. The 

velocity distribution for Ha =230 and N = 35 differs significantly from the other 

ones: in agreement with the theoretical analyses for high Ha and N (compare Sec-
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Fig. 4.5 Velocitydistribution in the toroidal duct for C=0.06 (hot wire probe) 
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tion 3) the liquid metal flow is pushed towards the side walls with a distinctively 

higher velocity at the FW than at the Second Wall (z = 0). Surprisingly, there is an 

expressed maximum at y::::::: 0 which is not predicted by theoretical analyses. 

Figure 4.6 contains the corresponding results for the velocity fluctuations. For 

pure hydrodynamic flow the fluctuations are quite uniform and small except in 

the separation zone. Forthelarger values of Ha and N the distributions differ sig­

nificantly. For x< 0, strong fluctuations occur close to the side walls and in the 

middle of the duct (y::::::O). For x>O, the fluctuations in the middle of the duct 

have increased. 

Figure 4.7 contains mean velocity distributions for Geometry B. The spatial resolu­

tion is higher compared to Figs. 4.5 and 4.6 due to an increased number of mea­

surement positions. Again, high velocities in the side layers are found and the 

characteristic maxima at y::::::O. 

One explanation for these surprising velocity distributions is the occurence of two 

strong vortices with axes parallel to B. Such vortices are generally favourized in 

MHD flow due tosmall damping, compare /20/. Such vortices were also predicted 

by analyses for inertialess MHD flow (Section 3), however, with maximum vortex 

velocities in the core of about 10 % of the cross section averaged velocity. These 

values are significantly smaller than the experimental values. The observed high 

turbulence Ieveis also indicate that the flow behaves differently from that pre­

dicted by the CFA. 

lf such strong vortices exist in the toroidal duct then one would expect that the 

hot wire probe signals differ characteristically if the wire orientation is changed. 

Figure 4.8 shows results for a hot wire parallel to z: the mean velocity is still the 

highest in the side layers and the maximum at y::::::O still exists. This result rather 

indicates a jettype flow distribution than a vortex flow. (However, a jet at y::::::O is 

in contradiction with basic MHD considerations). 

Comparing in more detail the velocity distributions in the entrance zone of the 

toroidal duct (x<O) one observes for the wire parallel to z higher velocities near 

the FW. This could be caused by higher velocity component in y direction, char­

acteristic again for a vortex flow. The velocity fluctuations first occur close to the 

FW and expand in the core region with increasing x. 
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Figure 4.9 shows the corresponding results for the bend with nonconducting 

walls, again there is no qualitative difference to the results with thin conducting 

walls. 

Figure 4.10 contains results for the test section with a much better conducting 

FW. Again, it is clearly seen that the instabilities first occur in zones close to the 

FW. The thick FW seems to reduce the growth of the (supposed) vortices with in­

creasing x, the minima of the mean velocity and velocity fluctuation at Y""' 0 could 

mean that the vortices, generated near the corners to the side walls, arestill sepa­

rated by a zone of nearly stagnant liquid. 

Figure 4.11 finally shows a result from hot wire measurements where curves of 

0.8 

0.7 

0.6 

-0.9 -0.8 -0.6 -0.5 -0.4 -0.3 -0.1 0.0 0.1 0.3 0.4 0.5 0.6 0.8 0.9 

y 
Fig. 4.11 Curves of constant velocities (from hot wire probe) in toroidal cross 

section (Ha=255, N= 18, x=2.7) 

equal signal heights (equal velocities) are shown. Again this figure could be char­

acteristic for jettype flow with only a velocity component in x direction or a flow 

in x direction with superimposed vortices. 

4.1.3 Measurement of the Flow Structure in the Toroidal Duct with Potential 

Prob es 

ln order to investigate in more detail the flow structure the triple potential probe 

(STP) was built (Fig. 2.7) which measures independently the velocity components 
v and w in the y,z-plane . 

Figure 4.12 contains results for v and w and the velocity Vxy which is the vector 

sum of v and w. This figure shows very clearly the existence of a pair of vortices 
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which rotate in opposite directions with a downward flow at y:::::O. Furthermore it 

can be seen that the sense of rotation does not change up to the end of the 

toroidal duct. A remarkable damping of the vortex strength with increasing x is 

not observed. (The same results were obtained up to the maximum investigated 

value of N = 150). The change of the w distribution at x=4.2 is attributed to the 

influence of the downstream bend whose inner corner is positioned at 4.9. The 

position x=6.2 is already in the region of the outletradial duct which explains 

the strongly changed velocity distribution. 

The characteristic features of the observed vortices are in contradiction to the 

theoretical results valid for inertialess laminar flow which predicts an upward vor­

tex flow at y=O in the firsthalf of the toroidal duct and an increasing downward 

flow in the second half; compare Section 3. Therefore, it seems to be reasonable 

that these vortices are caused by an effect which is not taken into account in the­

ory: inertia. 

The following phenomenological description is proposed, see Fig. 4.13: The 3d 

FirstWall 

radial duct 

B 
® 

Fig. 4.13 Schematical graph of assumed mechanism for vortex generation 

electric currents in the radial duct produce an increasing M-shaping when ap­

proaching the bend. This M-shaping causes an increased momentum flux pw2 in 

the side layers at y= + 1. While being deflected into the toroidal direction these 

layers approach the FW and are deflected there from both sides towards the mid­

dle ofthe FW (y=O) and flowdownward. 
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This generation of vortices is quite different to pure hydrodynamic flow in bends 

where a vortexpair is caused by inertia effects, too. The sense of rotation, how­

ever, is opposite because the fluid momentum flux in the boundary layers at 

y= + 1 is lowest, compare e.g. /21/. 

lf the vortices are generated by inertial forces, then the vortex strength should 

decrease with increasing N. This tendency can be seen in Fig. 4.14 where velocity 

distributions for different N at three different positions z are shown. Fora fur­

ther increase of N, these vortices are expected to vanish and for very high N the 

flow pattern predicted by the CFA should establish. The value of N where this 

transition occurs is dependent on the wall conductivity and the Hartmann num­

ber as weil. ln detailed experiments /10/ with C=0.04, Ha;::::500 and N ;::::: 1000 a 

good agreement was obtained between the numerous potential wall probe 

measurements and the CFA results, indicating that vortices no Ionger existed. 

The Figs. 4.15 and 4.16 contain characteristic examples of the time dependency of 

the hot wire signals. ln Fig. 4.15 the signals for two different values z = const. 

close to the FW are shown. The minimum of the fluctuations at y =0 is quite ex­

pressed indicating that the vortices arestill separated, seealso Fig. 4.7. For small­

er z the fluctuations become smaller and vanish in the zone close to the Second 

Wall. 

Figure 4.16 shows corresponding results for x = 1.6 and a vertical traverse at 

y=O. ln this case the vortices have grown together and cover the total cross sec­

tion. For all values of z, high fluctuating components are observed. (The signal 

noise Ievei is about 1.5 mV). Both figures show characteristic frequencies in the 

range of some Hz. Such low frequencies for a cross-sectional velocity of 2.2 cm/s 

are quite characteristic for MHD instabilities as will be shown in more detail in 

Section 4.2.3. 

4.1.4 Conclusions for Fusion Reactor Blankets 

For the considered Pb-17Li blanket with the radial-toroidal U-bend (Fig. 1 a) the 

Hartmann numbers and Interaction parameters (Ha= 8000, N = 200) are between 

the experimentally investigated values and the values assumed in the theoretical 

analyses (CFA). Therefore, the following extrapolations to blanket conditions are 

rather qualitative. 
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lt was observed experimentally, that with increasing N liquid is increasingly 

pushed to the FW as predicted by the CFA. Due to this fact the heat transfer from 

the FW should be much more favourable even for laminar flow than that result­

ing from a constant velocity profile with laminar flow as assumed in the design of 

the blanket according to Fig. 1a /1/. 

The occurence of vortices with axis parallel to B is generallynot accompanied by 

an expressed additional pressure drop as observed in duct flows already many 

years ago /5/. From different bend experiments /10, 11 I with one duct parallel to 

B the following pressure drop correlation was deduced 

where the coefficients Ki depend on the flow bend and wall conductance ratio. 

Using the results from a similar U-bend geometry /10/ as investigated in the 

present experiments only a pressure drop increase of less than 10% is obtained by 

changing the Interaction parameter from N = 1000 (no vortices in /1 0/) to N = 

150 (vortices in present experiments). 

lf the vortices exist, they would be very beneficial for heat transfer. The transver­

sal velocities should provide a very effective temperature equilibration in the FW 

duct. Larger channels with lower mean velocities could be used which could result 

in considerably simplified designs. The present knowledge, however, is not suffi­

cient to judge if these vortices occur at blanket relevant conditions. lf such vorti­

ces would not be generated there is still the possibility to provoke the vortex gen­

eration in the bend zone by MHD relevant measures (e.g. shaping of the flow dis­

tribution by mechanical inserts or locally differing wall conductivities). Due to the 

small damping of vortices with axis parallel to B, such vortices could exist over a 

considerable flow length. 

4.2 Bend Perpendicular toB (bpeB-exp) 

The strong 3d electric currents which gave rise to a strong increase of the veloci­

ties near the side walls y= + 1 in the previous experiments, do not occur in the 

present flow geometry as outlined in Section 3. According to the CFA, the velocity 

distribution in the core for high values of Ha and N is similar to potential flow for 

both conducting and nonconducting walls. A distinct difference between con-
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ducting and nonconducting walls is the occurence of M-shaping at the side walls 

for C>O. This difference has a strong impact on the flow structure as will be dem­

onstrated later. Therefore, the results for the two wall conductance conditions 

are presented separately. 

Of special interest in these investigations is the question if the 90° bend acts 

again as a promotor of instabilities. lf instabilities with axis paralleltoB are again 

favoured, then the inner corner could play a special role as a turbulence pro­

moter. 

Compared to the previous experiments, the maximum achievable values of Ha 

and N have about doubled because the characteristic length in direction of B has 

changed. (Besides the magnetic field strength B could be increased to = 1.2 Tesla 

by narrowing the magnet pole shoes). 

4.2.1 Velocity Distribution in the Bend with Nonconducting Walls 

ln this section results obtained with the STP are reported. Measurements in the 

inlet ductat z = -3.2 showed again that the velocity distributionwas very homo­

geneous and the turbulence Ievei was less than 4 % (which proved that the com­

bination of honeycomb and copper bars worked as anticipated). 

Figure 4.17 shows velocity distributions in the downstream duct of the sharp­

edged bend for y=O and different values of Ha and N. For the lowest values the 

velocity distribution should be similar tothat for pure hydrodynamic flow. ln fact, 

the velocity distribution is very similar tothat for Ha=N=O shown in Fig. 4.5: a 

strong separation zone exists downstream of the inner corner. ln contrast to the 

previous results this separation zone persists up to significantly higher values of 

N; only at N = 200 the zone of reduced velocities is limited to a small zone down­

stream of the inner corner. The reason for the larger separation zone are the 

missing 3d currents which otherwise dominate inertial forces already at moderate 

values of Ha and N. The theoretical analyses based on inertialess flow (see Fig. 

3.3) are therefore not weil suited to predict the flow distribution in the down­

stream zone close to the inner corner. 
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Figure 4.18 contains corresponding results for a position y = -0.8. The velocity dis­

tributions are very similar to those in the duct midplane which means the distri­

butions are fairly two-dimensional (2d), depending only on x and z. Therefore, in 

the following only results with the STP at y=O are presented. Moredetails on the 

2d structure will be given in Section 4.2.2. 

The next figures show distributions of the mean velocities u and wand the corre­

sponding mean values of the velocity fluctuations u' and v'. For completeness the 

distribution of the correlation coefficient K is also shown which is the product of 

the instantaneous fluctuating components normalized by their mean values (for 

details, see Appendix 1). The distributions of the coefficient K might be of interest 

for detailed analyses of the structure of the flow instabilities; in this report, K is 
not further analyzed. 

Results for N =8 at different position x are presented in Fig. 4.19. The position 

x=0.25 is very close to the inner corner. The influence of flow separation caused 

by this corner should be restricted tosmall values of z. lt is seen that for x=0.25 

the turbulence Ievei in the upper part of the cross section is significantly increased 

compared to the value in the inlet duct. This might be caused by the strong veloc­

ity gradients in this region or by a marked recirculation zone near the outer cor­

ner. With increasing x the fluctuations increase significantly in the lower half of 

the duct cross section where flow separation and eventually flow recirculation ex­

ist. 

For large N (Fig. 4.20), the increase of the turbulence Ievei in the upper duct por­

tion is not observed for x=0.25, however, an increased turbulence Ievei exists in 

the total cross section. For increasing x, the fluctuations close to the upper side­

wall are damped. ln the lower duct part the fluctuations first increase with in~ 

creasing x in the zone of strong velocity gradients and decrease when the velocity 

profile flattens. 

Measurements with a similar test matrix were performed with a rounded bend. 

Forthis geometry smaller inertia effects are expected resulting in a reduced sep­

aration zone. Figure 4.21 shows results for a cross-section close to the inner bend 

corner. For an Interaction parameter close to zero the mean velocity exhibits a 

potential type behavior. The turbulence Ievei is very small. For the higher N 
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the mean velocity profiles are changed and the turbulence Ievels have increased 

in the total cross section. 

Comparing the results for the sharp-edged and rounded bend for x=0.25 and 

large None can observe that in both cases the turbulence Ievel has increased com­

pared to the value in the test section inlet (and compared to the turbulence Ievel 

for ordinary hydrodynamic flow at x=0.25). The conclusion, therefore, isthat in 

the bend itself (and not only downstream of the bend in the separation zone) 

mechanisms exist which promote turbulence. 

The dependence of the flow structure on the flow path x is shown in Fig. 4.22 for 

N = 8. The separation zone near the lower sidewall is smaller than for the sharp­

edged bend, compare Fig. 4.19, however, the values of the turbulence Ievel differ 

not significantly. 

4.2.2 Velocity Distribution in the Sharp-edged Bend with Conducting Walls 

For the bend with conducting duct walls strong 2d electric currents exist in the 

core which generate Lorentz forces which partly counteract with inertiai forces. 

Of special interest is, if instabilities are generated near the side walls due to the 

characteristic M-shaping. 

The Figs. 4.23-4.25 contain results for C = 1.0 obtained with a TSP or a STP. For 

C= 1.0, the accuracy of velocity evaluation is no Ionger satisfactory, as mentioned 

in Section 2.2.2. Sensitivity calculations with the CFA showed that the assumption 

of negligible currents resulted in velocities which could be about 30% of the cor­

rect value. Therefore, these measurements arerather qualitative, however, essen­

tial tendencies should be reproduced. 

Figure 4.23 contains results for different N in the entrance zone of the down­

stream duct (x=0.25) obtained with the TSP. The mean and fluctuating velocity 

components Ui and u'i at y=O; 0.4 and 0.8 are shown. Additionally the distribu­

tions of the correlation coefficients K'12,K'23,K'13 are presented which are the 

products of the corresponding instantaneous fluctuating components normalized 

with the product of their mean values (for denotation see Appendix 1). For N = 2.3 

the distributions are similar to those of ordinary turbulent flow. lnertial forces 

cause a distinct zone of flow recirculation near the lower sidewall. The turbulence 

Ievel is about 4 % in the total cross section and the values of the correlation coef-
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ficients are quite small. For N :::::40, the flow distribution has changed consider­

ably: High velocities in the side layers occur (according to the predictions of the 

CFA, see Fig. 3.4). At the inner side wall this layer detaches from the wall down­

stream of the inner corner. With increasing N the high velocity jets become thin­

ner and shifttowards the sidewalls. 

Due to the strong flow redistribution in the side layers during the deflection in 

the bend very high turbulence Ieveis are measured in these zones with the probe 

positioned at y=O and y=0.4. The probe at y=0.8 which is closest to a Hartmann 

wall measures much lower Ieveis. 

The development of these distributions with increasing flow path is shown in Fig. 

4.24 for N = 140. Close to the FW, the mean velocity distribution does not change 

remarkably. The turbulence Ievei, however, decreases with increasing x and be­

comes very small at x= 4.5. 

At the lower sidewall MHD forces push the high velocity jet towards the walland 

the recirculation zone disappears after a considerably shorter flow length than 

for the nonconducting duct. The turbulence Ievei in the lower part of the cross 

section first increases with increasing x and after attachment of the separated 

side layer starts to decrease. At x=4.7 the Ievei is still :::::15%, a value significantly 

larger than in the inlet duct. 

Fig. 4.25 shows the influence of N for the axial position x=2.5 measured by the 

TSP. (Good agreements were obtained between STP and TSP measurements, com­

pare e.g. the results for N = 140 and x= 2.5 in Figs. 4.23 and 4.24). For N::::: 140, the 

side layers are the thinnest and a fairly constant core velocity has developed. The 

thickening of the side layers with decreasing N might be caused by inertia effects 

in the entrance region and the increased turbulence Ievei which reduces velocity 

gradients. 

Of special interest for fusion reactor blankets is the velocity and turbulence Ievel 

distribution close to the FW (z = 1 ). The TSP measurements for Zmax showed a 

strong dependence on y. A parabolic type distribution (predicted by the CFA, see 

Fig. 3.2) is not always obtained because small errors in the probe adjustment may 

cause large measurement errors in zones with high velocity gradients. (ln Fig. 

4.23, the expected distribution is found except for the measurements at x= 1.5 

and x=2.5 which were performed after a new probe installation). An important 
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result isthat the probe which is positioned closed to the Hartmannwall (y= -0.8) 

measures always a very low turbulence Ievei. This low value in combination with 

the low mean velocity in the zone close to y= + 1 and z = 1 could result in 

unfavourable heat transport characteristics (hot spots). 

ln order to investigate in more detail the velocity distribution close to the FW 

some special experiments were performed using the specially built STP which 

could be traversed very close to the walls, see Fig. 2.7. ln ordertobe more blanket 

relevant, a wall conductivity ratio of C=0.1 was used. This value results in a better 

accuracy of the measured core flow velocities compared to C= 1.0, see Section 

2.2.2. These measurements concentrated on one half of the upper part of the 

cross section (Fig. 4.26). For N = 8, the dependency of the velocity distribution on 

the coordinate y is not very expressed compared to N = 100. For the high value of 

N, a considerable amount of the fluid is transported in the sidelayer. Again the 

thickness of the sidelayer is larger than predicted by the CFA. The decrease of the 

velocity with increasing y close to the FW is also smaller than predicted for 

laminar flow, both tendencies are propably caused by the increased turbulence 

Ievei. Although the fluctuations become small for y~ 1, the quite I arge velocity in 

this zonewill probably ensure a sufficient heat transport. 

4.2.3 Analyses of lnstabilities 

The two-dimensionality of the time averaged velocity distribution for the bend 

with nonconducting wallswas demonstrated in the Figs. 4.17 and 4.18. For the 

bends with conducting walls the previous figures also showed this two­

dimensionality except for the side wall layers. 

Of interest is if this two-dimensionality is also characteristic for the velocity fluc­

tuations. The previous figures with the TSP results for C = 1.0 show that the corre­

lation coefficicents K12, K23 and K13 increase with increasing N and reach high 

values in the largest part of the cross-section, indicating that the instabilities are 

fairly 2d, too. 

For the nonconducting bend experiments the STP was mainly used (showing only 

that the u' and w' components are fairly equal at each measurement position). ln 

order to investigate the two-dimensionality in a similar way as for C= 1, addi­

tional test series were performed with the TSP positioned at z = 0. 5 and the de­

pendence of the correlation coefficients on N was determined for different axial 
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positions. Figure 4.27 shows a steep increase of the coefficients at low values of N 

with values above 0.8 for N >20. 

A convincing impression of the restructuring of an ordinary turbulent flow at 

N =Ha= 0 to a 2d structure with increasing N and Ha was obtained by removing 

the upper wall of the test section and observing visually the liquid metal surface 

(Fig. 4.28). Although this changes the boundary conditions it is still believed that 

the main features prevail. The upper photo shows the surface for turbulent flow 

without magnetic field. When the magnetic field is increased, the flow structure 

changes impressively by becoming two-dimensional. Dips in the interface occur in 

the entrance region which travel downstream with a velocity comparable to the 

mean flow velocity. Thesedipsare supposingly caused by the circumferential ve­

locity component of large vortices. By decreasing the volume flow rate (increas­

ing the Interaction parameter) the number of dips become smaller. The lowest 

photo corresponds tothat condition where quite rarely a dip occurred. 

Further details of the flow structure are revealed by analysing the time depen­

dent signals and the energy spectra shown in the following figures for three dif­

ferent values of z. The abszissa of the spectra is the wave number A. which is the 

ratio of frequency and cross sectional mean velocity. The wave number is a crude 

measure for the numbers of vortices per unit length (in the present case per cm). 

Figures 4.29 and 4.30 contains STP results for the nonconducting sharp-edged 

bend for N::::::: 140 at different positions x. ln the bend zone (x=0.25) the fluctu­

ations are largest for z=0.08 which is located in the flow separation zone. With 

increasing z the fluctuations are somewhat smaller but still pronounced in the to­

tal cross section. With increasing x, the tendencies described already earlier are 

clearly seen: at the highest z value the instabilities are damped and at the lowest 

z the fluctuations first increase and then decrease. 

Figure 4.30 contains a comparison between nonconducting and conducting 

bends: the !arger fluctuations in the conducting bend close to the FW are clearly 

seen. 

For heat transfer in blankets the signals close to the FW are most interesting. Fig­

ure 4.31 presents characteristic results for the conducting bend obtained with the 

TSP forahigh value of z: The damping of the fluctuations with increasing x is very 

expressed. 
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Figure 4.32 finally shows a comparison between STP and TSP results for N = 32. A 

quite good agreement is observed between the signals for the u-component from 

. the probes at y=O. 

A characteristic feature of all measured spectra (only some few results were 

shown) is the bending of the curves at wave numbers between 0,5 < A. < 1 and 

the steep drop with increasing wave number (respectively frequency). The slope 

of the curve in this part is typically about -5; this value is much larger than char­

acteristic for developed MHD turbulence (compare /20 1). This slope could be ex­

plained by the fact that preferably I arge instabilities are generated in the bend. 

4.2.4 Extrapolation for Blanket Conditions 

The flow through a 90° bend perpendicular to the magnetic field seems to pro­

mote two kinds of 2d instabilities due to: 

i) velocity gradients in the zone of the 90° deflection 

ii) velocity gradients due to inertia effects downstream of the inner corner 

The contribution i) influences mainly the turbulence promotion at the upper 

sidewall (the FW in a fusion reactor). The contribution ii) is firstdominant at the 

lower sidewall but large vortices might reach the upper sidewall further 

downstream. 

For fusion reactor blankets it is of interest if these instabilities improve the heat 

transfer from the FW in the bend region and how far downstream these 

instabilities prevail. 

The occurrence of MHD turbulence in straight duct flow is often expressed in 

terms of 

Re/Ha = HaiN> (Re/Ha)crit, 

where the critical value for nonconducting ducts, determined from pressure drop 

measurements, is of the order of 100 /5/. As mentioned earlier, the onset of 

turbulence promotion was observed at significantly lower values /9/. For 

conducting ducts it is important to know when instabilities generated in the 
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zones with strong velocity gradients due to the M-shaped velocity profile are 

strong enough to improve the heat transfer from the walls. These critical Re/Ha 

values are presently not sufficiently known for arbitrary duct flows and no work 

existed up to now on turbulence generation in bend flows. 

For fusion reactor blankets using liquid Pb-17Li, characteristic values of the 

Hartmann numbers and Interaction parameters are Ha= 6000 and N = 150 

corresponding to Ha/N=40. The duct walls are either insulated (C=O) orthin 

electrically conducting (C=0.05). 

The present experiments concentrated on Ha= 530, N = 140 and N = 8 wh ich 

corresponds to Re/Ha =4 and =66. Even for these low values a significant 

turbulence generation is observed in the bend region for both conducting and 

nonconducting bends. For the conducting duct this turbulence is damped out 

completely in the region downstream of the bend after some characteristic 

lengths. Here, the Hartmann braking effect in this duct with the high wall 

conductance ratio of C= 1 is strong enough to prevent a permanent turbulence 

generation in the zones of the strong gradients of the M-shaped profile. For the 

nonconducting bend a damping effect in the downsteam duct is also observed. 

Here, the turbulence Ievei becomes negligible when a flat velocity profile is 

reached. 

The extrapolation of the results to blanket conditions can be performed only 

qualitatively: lt is supposed that the bend acts as an effective turbulence 

promotor (or amplifier if there is already a distinct turbulence Ievei at the bend 

inlet). Hotspots at the outer sidewall (the First Wall) in the bend arenot expected 

because the turbulence Ievei in the deflection zone is quite high. 

For insulating ducts, vortices, once initiated, should exist for a nondimensional 

time period t- Ha/N, where t is the Hartmann breaking time [22]. Therefore, for 

blanket-relevant conditions these vortices are expected to be damped much 

slower. For conducting ducts with C> > Ha-o.s the decay time of the vortex 

structure is t-(1 + C)/(CN), a value which also increases considerably for blanket 

conditions due to the much smaller value of C. Additional turbulence promotors 

might be required in the downstream duct in order to keep the turbulence Ievei 

high. 
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Further investigations should be performed at more blanket-relevant parameters 

and attention should be paid to velocity distributions in the corner between First 

Walland Hartmannwall because heat transfer is expected tobe worst there. 

5. SUMMARY AND CONClUSIONS 

This report summarizes the first detailed investigations on the flow structure of 

MHD flow in bends. These results are of interest for fusion reactor blankets where 

bends are connected with the First Wall which transfers the plasma heat flux to 

the coolant ducts. ln the bend zones the formation of hot spots is of great 

concern. 

ln MHD flow the bend orientation in respect to the magnetic field direction is of 

significant influence on the flow structure. Two types of 90° bends were 

investigated: bends which were either perpendicular or partly parallel toB. The 

duct walls were either electrically conducting or nonconducting. The experiments 

were carried out in mercury flow at Hartmann numbers 0 <Ha:::; 550 and 

Interaction parameters 0:::; N:::; 150. Distributions of mean velocity, velocity 

fluctuations and spectra were determined in different duct cross sections with 

traversable hot wire probes or different types of electric potential probes. 

Furthermore, the velocity distributions were evaluated by theoretical analyses 

valid for inertialess laminarized flow. 

For both types of bend orientations significant differences to the theoretical 

predictions occur in the bend zones due to the local influence of inertial forces. 

Strang flow instabilities with axis parallel to the magnetic field are observed in 

both cases which can persist for a quite long distance in the downstream duct, 

depending on the MHD parameters. Differentgeneration mechanisms for these 

vortices exist: For the bend perpendicular to B, inertia effects near the inner 

corner play a dominant role and, for electrically conducting duct walls, the M­

shaped velocity profile in the downstream duct. For bends with the downstream 

duct parallel to B, inertial forces in combination with the enforced M-shaping of 

the velocity distribution in the inlet duct are of prime importance. 

ln duct flows with heat transfer, such MHD flow instabilities are expected to 

prevent the formation of hot spots in the bend zones and might be still effective 

for an improved heat removal in a significant part of the downstream duct. 
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Further experiments are required with larger Hartmann numbers and smaller 

wall conductivity ratios in order to show if these instabilities exist at blanket 

relevant parameters. 
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APPENDIX 1: VELOCITY AND CORRELATION COEFFICIENT DEFINITIONS 

ln the report velocities are presented in dimensionless form. As normalizing 

factor the cross-section averaged throughout velocity Q is used (which is equal to 

the flow rate devided by the cross-sectional area). 

The local time averaged (mean) velocity components <u>, <v>, and <w> (for 

flow directions, see Fig. 2.7) are given by 

n n 
<u> = n-1 L u(1); <v> = n-1 2:v(1); <w> = n-1, 

i= 1 i= 1 

where u(i), v(i) and w(i) are the instantaneous values and n is the number of 

discrete measurements (n=4·103 in the bpaß-exps; n= 3·105 in the bpeB-exps). 

The local time averaged (mean) value of the velocity fluctuation in x direction is: 

<u'> = n-1 .~ ( (u(t)- <u>) 2 )0.5 
I= 1 

Corresponding definitions are used for < u' > and <w' >. 

Note: The parentheses < > have been omitted in the presentations of the 

report! 

The correlation coefficient K for the STP is defined in the following way 

n 
K = n-1 '2:::: (u(1) - <u>)(v(l)- <v>) I (<u'>) <v'>). 

i= 1 

For the TSP, the correlation coefficient K'12 (using the probe signals at Y1 and Y2) 
is given by 

' -1 n ' ' 
K12 = n .L (u(1) 1 - <u1 >)(u(1)2 - <u2 >I (<u1 > <u2 >). 

I= 1 

The coefficients K'12 and K'23 are defined correspondingly. 
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