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Abstract 

The first regular stress term of the crack-tip stress field, the so-called T-stress, has an 
influence on the fracture behaviour of cracked components. Whilst for the singular 
stress term - represented by the stress intensity factor - handbook solutions are avail­
able, there is a Iack of T-stress data. 
ln this report some solutions are summarised for edge cracks in reetangular plates or 
bars and in circular discs. As special loadings the cases of pure tension, bending, ther­
mal stresses, and single forces are considered. 

Der Konstant=Spannungsterm in Platten mit 
Außenrissen 

Zusammenfassung 

Der erste reguläre Spannungsterm des Rißspitzen-Spannungsfelds - der sogenannte T­
stress-Term - besitzt neben dem dominierenden singulären Spannungsterm einen 
Einfluß auf das Bruchverhalten von rißbehafteten Bauteilen. Während für den 
Spannungsintensitätsfaktor, der das singuläre Spannungsfeld an einer Rißspitze charak­
terisiert, Handbuch-Lösungen verfügbar sind, herrscht Mangel an entsprechenden Daten 
für den Konstantspannungsterm T. 
Im vorliegenden Bericht werden einige Lösungen für seitliche, durchgehende Risse in 
Platten bzw. Balken sowie in Kreisscheiben zusammengestellt. Als Belastungen wer­
den Zug, Biegung, Thermospannungen und Einzelkräfte betrachtet. 
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1. I ntrod uction 

ln fracture mechanics most interest is focussed on stress intensity factors, which de­
scribe the singular stress field ahead of a crack tip and govern fracture of a specimen 
when a critical stress intensity factor is reached. Nevertheless, there is experimental 
evidence (e.g. [1]-[3]) that also the constant stress contributions acting over a Ionger 
distance from the crack tip may affect fracture mechanics properties. Apart from the 
singular stress term, the most important one is the so-called T-stress term which de­
scribes a constant stress parallel to crack direction. 
Different methods were applied in the past to compute the T-stress term for fracture 
mechanics standard test specimens. Regarding one-dimendional cracks, Leevers and 
Radon [4] made a numerical analysis based on a variational method. Kfouri [5] applied 
an Eshelby-technique. Sham [6],[7] developed a second-order weight function based 
on a work-conjugate integral and evaluated it for the SEN specimen using the FE-meth­
od. ln [8] a Green's function for T-stresses was determined on the basis of Boundary­
Collocation results. Direct adjustment of the Green's function to reference T-stress sol­
utions was made (see also [9]). Wang and Parks [10] extended the T-stress evaluation 
to two-dimensional surface cracks and used the line-spring method. 
The aim of this report is to collect T-stress solutions for edge-cracked specimens under 
different loadings. 
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2. T-stress term 

2.1 The Airy stress function 

The total stress state in a cracked body is known if the Airy stress function <I> is avail­
able. The stress function can be obtained by solving the equation of compatibility 

~~<I>= 0 (1) 

For a cracked body a series representation for <I> was given by Williams [11]. lts sym­
metric part can be written 

00 

<I> = a* W
2 L (r/W)n + 3/

2
A{ cos(n + 3/2)cp - ~ ~ ~~~ cos(n - 1/2)cp] 

n=O 
(2) 

00 

+ a* W2 L (r/Wt + 2 A:[ cos(n + 2)cp - cos ncp] 

n=O 

with the characteristic stress a* which may be the remote tensile stress in tensile tests 
or the outer fibre tensile stress in bending. The geometrical data are explained in fig.1. 
From the stress function the stress components can be computed by 

(3) 

1 8<1> 1 i<I> ' =-------
flp / ocp r orocp 

where r and cp are polar coordinates with the pole in the crack tip. One obtains 
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Figure 1. . Crack in a component; definition of polar coordinates. 

a ~ ( r )n -1/2 [ n
2 
-2n- 5/4 ] 

a; = j;:
0

An W (n + 3/2) n _ 
112 

cos(n- 1/2)cp- (n + 1/2) cos(n + 3/2)cp 

~ ~ 

+ I A:( ~ f[ (n 2 
-n- 2) cos ncp- (n + 2)(n + 1) cos(n + 2)cp J 

n=O 

~ ( r )n -1/2 [ n + 3/2 ] 
/-;;

0

An W (n + 3/2)(n + 1/2) cos(n + 3/2)cp- n _ 
112 

cos(n- 1/2)cp 

~ 
(5) 

+ I A:( ~ f(n + 2)(n + 1)[ cos(n +2)cp- cos ncp] 

n=O 

~ ( r )n-112 
= i....J An W (n + 3/2)(n + 1 /2)[ sin(n + 3/2)cp - sin(n - 1 /2)cp J 

n=O 

~ 
(6) 

+ I A:( ~ f(n + 1)[(n + 2) sin(n + 2)cp- n sin ncp] 

n=O 

The unknown coefficients An and A* have to be determined for the special 
specimen/crack-geometry and the chosen loading mode. Especially for the stress com­
ponent ax ahead of the crack (cp = 0), eq.(4) reads 
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00 00 

ax /a* = - 2: 2An (r/W)n - 112
( n + ~ ) ~~ ~ ~ - 2: 4A:(r/W)n (n- 1) (7) 

n=O n=O 

ln fracture mechanics most interest is focussed on the stress intensity factor character­
ising the singular stress field ahead of a crack tip. The related stress singularity is 
responsible mainly for the failure of cracked components. The stress intensity factor Kr 
is related to coefficient Ao by 

(8) 

with the geometric function F. As Larsson and Carlsson [1] showed very early, there is 
experimental evidence that also the constant stress contributions acting over a Ionger 
distance from the crack tip may affect fracture mechanics properties. The related coeffi­
cient A~ Ieads to the constant stress term. lf no x-stress component is present in the 
uncracked structure, the total x-stress is given by the so-called T-stress T 

* * a x = T = - 4a A0 (9) 

Following a suggestion by Leevers and Radon [4], the T-stress can be dimensionless 
expressed by the "stress biaxiality ratio" ß 

r;;a 
ß= K, 

or written in terms of coefficients Ao, A~ as 

ß= T 
a* F 

= __ 4_F A~ 
J18 Ao 

lntroducing the normalised coefficients 

* * ( )2 80 = A0 1- cx 

we find 

ß= T 4 B~ 
-a-* -F = - -J-;:::1=8=( 1=-=cx )=- Ba 

(10) 

( 11) 

(12) 

(13) 

(14) 

lf in the uncracked component already an x-stress is present, the effective x-component 
of stresses at the crack tip (x = a) is given as the sum of the x-stress component in the 
uncracked structure ax,o and the contribution due to the presence of the crack, the so­
called T-stress term 

ax, eff = T + ax,o (15) 
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Figure 2. BCM. Edge-cracked plate under tensile loading with collocation points. 

2.2 Determination of the coefficients A0 and Af 

A simple possibility to determine the coefficients Ao and At is the application of the 
Boundary Collocation Method (BCM). For practical application of eq.(2), which is used 
to determine Ao and At, the infinite series must be truncated after the Nth term for 
which an adequate value must be chosen. The still unknown coefficients are deter­
mined by fitting the stresses to the specified boundary conditions at the surface. ln case 
of the edge-cracked reetangular plate of width Wand length 2L (fig.2) the stresses at the 
borderare 

ax= 0 ' 'txy = 0 for X=O (16) 

ay= a* 
' 'txy = 0 for y=L (17) 

ax= 0 ' 'txy = 0 for X=W (18) 

About 100-120 coefficients for eq.(2) were determined from 800 stress equations given at 
400 nodes along the outer contour (symbolised by the circles in fig.2). For a selected 
number of (N + 1) edge points the related stress components are computed, and we ob­
tain a system of 2(N + 1) equations with 2(N + 1) unknowns whose solutions allow all 
2(N + 1) coefficients of eq.(2) tobe determined. 
The expenditure in terms of computation can be reduced by selection of a rather large 
number of edge points and by solving subsequently the then overdetermined system of 
equations using the least squares of deviations so that a set of "best" coefficients is 
obtained. The Harwell subroutine V02AD is used here to determine the best fit. 
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3. Green's function for T-stress 

3.1 Representation of T-stresses by a Green's function 

As a consequence of the principle of superposition for linear-elastic problems the T­
stress term can be expressed by an integral (fig.3a) 

T = Jat(x,a) a(x) dx 
0 

(19) 

where t(x,a) is the Green's function for the T-stress, i.e. the T-value resulting for a pair 
of single unit forces. lf we represent the single force P by a stress distribution 

p 
ay(x) = B Ci(x- x0) (20) 

(see fig.3b) where Ci is the Dirac Ci-function and B is the thickness of the plate. 

a) b) 

1--- X • X ~ 

- Xo---tj 
.. ,. p 

.. ~ I -a 

w ------11 w 

Figure 3. Green's function for T·stress. Edge-cracked plate: a) crack loaded by continuously 
distributed normal stresses, b) crack loaded with a single pair of forces. 
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Figure 4. Green's function for T-stress. An infinite crack in an infinite body. Near-tip loading by 
a pair of single forces. 

lntroducing this stress into eq.(19) gives 

p Ja p T = B 
0 

t(x,a) b(x- x0 ) dx = B t(x0 ,a) (21) 

i.e. the term t(x0,a) is the Green's function for the T-stress. ln order to obtain informa­
tion on the asymptotic behaviour of the weight or Green's function, we consider an infi­
nitely long crack of length a in an infinite body which is loaded by a pair of forces acting 
at ~ = -b (see fig.4). The related Westergaard stress function is ([12]) 

(22) 

The singular term results for z--+ 0 

Zstng = 
p 1 
1l JbZ (23) 

and the non-singular part follows as 

Zreg = Z- Zsing = 
p 1 
1l z + b 

(24) 

Gy,reg I = Re{Zreg} I 
Y=O Y=O 

(25) 
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Figure 5. Green's function. Green's function for the T-stress term represented by the three-
terms approximation, eqs.(29) and (33), for different relative crack sizes. 

With the geometric data of fig.3 the asymptotic part then reads 

r::;--::: 
1 ..,;x -a 

t0 = - , x' > a 
n (x' -x)Ja -x 

(26) 

where x is the location where the normal stress ay acts on the crack faces and x' de­
notes the location where the a.-stress is computed. Integration of the singular term to 
according to eq.(19) can be performed analytically for regular stress distributions, and 
the related T-stress term To simply results as 

T0 = lim J
8

t0 a(x) dx = - a I 
~~a 0 X=a 

(27) 

3.2 Set-up for the Green's function and application 

lt can be seen from eq.(2J that the dominating near-tip term of the Green's function is 
of the same order ( oc 1/ a- x) as the singular term in the weight function for stress 
intensity factors. Therefore, we will use the sametype of set-up [9] 

00 

t = t0 + Iov (1- xfar+112 (28) 
v=O 

For the numerical evaluation we have to restriet the number of series terms. ln the fol­
lowing considerations a three-term approximation will be used. 
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Figure 6. Green's function. Green's function for the T-stress term represented by the two-
terms approximation (dashed lines), given by eqs.(34) and (36), compared with the 
three-terms approximation (solid curves) according to eqs.(29) and (32). 

3.2.1 Approximation of the Green's function by direct adjustment to reference 
loading cases 

The general treatment for the determination of the unknown coefficients from reference 
loading cases may be explained in case of a three-terms Green's function. According to 
eq.(28), we consider the approximation 

t = t0 + 0 0 J1 - xfa + 0 1 (1 - xfa)3
/
2 (29) 

with to defined by eq.(26). As the first reference loading case we use pure tension 
a = a*. lntroducing eq.(29) into eq.(19) gives, with xfa = p, 

(30) 

From the bending reference loading case it follows 

1 ( :! ~ -1 + 2o + 00 a I, ji=P(1- 2op)dp + 0 1 a J, (1- p)'i' (1- 2op)dp (31) 

where Tt is the T-stress in tension and Tb is the T-stress in bending. The two relations, 
eqs.(30) and (31), provide the coefficients 
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Figure 7. Blaxiality. Biaxiality ratio for bending computed from the T-stress approximation, 
eqs.(34) and (36) (circles); solid line: result for bending obtained with the Boundary Col­
location Method [9]; dashed line: reference loading case tension. 

15 ( Tt Tb ) D = - (7 ~ 4cx) -- -7 ~ + 1 Ocx 
o 16a a* a* 

(32) 

35 ( Tt Tb ) 0 1 = --- (5- 4cx)--5- +6cx 
16a a* a* 

or after introducing eqs.(9), (39) and (41) 

15 ( 2 3 4 5) 0 0 = 
2 

-0.3889 +1.8706a -2.0012cx -1.0544cx +2.283cx -0.3932cx 
8W(1 - cx) 

(33) 
35 ( 2 3 4 5) 0 1 = -

2 
-0.5487 +2.1127 cx -2.1180cx -1.1845cx +2.0864cx -0.3932cx 

8W(1 - cx) 

The three-term Green's function, described by eqs.(29) and (33), is plotted in fig.5. The 
negative singular term dominates only for xfa > 0.99. 
ln order to make a rough estimate of the Green's function which allows simplest com­
putations to be performed, we arbitrarily assume the terms wlth the exponents 1/2 and 
3/2 to be replaced by one single term with the intermediate exponent 1. Under this 
condition the two-terms approximation reads 

t = t0 + C ( 1 - x I a) (34) 

lntroducing this set-up into eq.(19) and taking into consideration eq.(9), we obtain the 
relation 
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(35) 

which provides the coefficient 

(36) 

Based on the tensile solution, the T-stress for bending has been computed by 

-a 

Tb= j
0
t(x,a) a* (1- 2 ~ ) dx (37) 

where W is the width of the plate and a* is the outer fibre stress. The result is plotted 
as the biaxiality ratio Tb/(Fa*) and represented as circles in fig.7. The solution based on 
Boundary Collocation computations [9]is represented by the solid curve. The dashed 
curve represents the reference loading case (tension) from which the coefficient D1 has 
been determined. Although a rough approximatlon has been applied in this case, the 
agreement is excellent. 
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4. Edge-cracked reetangular plate 

4.1 lnfluence of plate length 

Figure 8 shows an edge-cracked reetangular plate under constant tensile stress. 
BCM-computations provided the coefficients Ao and A~ which are entered in tables 1 and 
2 and figures 9 and 10 for several plate lengths. The coefficients are represented in a 
normalised form according to eqs.(12) and (13). The biaxiality ratio is shown in table 3 
and fig.11. 

"'t + + + + + + + + .. "' 
r-- X -+ 

2L 

.._ a _J 

..-
w 

Flgure 8. Edge-cracked plate. Short plate under tensile loading. 

IX L/W= 1.5 0.75 0.50 0.40 0.30 0.25 

0 0.2643 0.2643 0.2643 0.2643 0.2643 0.2643 

0.1 0.2397 0.240 0.244 0.251 0.270 0.293 

0.2 0.2315 0.232 0.251 0.274 0.321 0.362 

0.3 0.230 0.231 0.255 0.286 0.351 0.406 
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0.40 

0.30 

.00 

LNV 
0.25 
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Figure 9. Coefficient A0 • Coefficient A0 in representation 8 0 = A0(1 - rx)312fj;;'. 

0.4 0.231 0.234 0.255 0.285 0.355 

0.5 0.235 0.237 0.251 0.275 0.337 

0.6 0.240 0.241 0.247 0.261 0.304 

0.7 0.246 0.246 0.248 0.252 0.271 

0.8 0.252 0.252 0.252 0.253 0.256 

0.9 0.258 0.258 0.258 0.258 0.258 

1.0 0.2643 0.2643 0.2643 0.2643 0.2643 

Table 1. . Coefficients Bo = Ao (1- rx)312fj;;' 

(X L/W=1.5 0.75 0.50 0.40 0.30 

0 0.1315 0.1315 0.1315 0.1315 0.1315 

0.1 0.113 0.113 0.111 0.108 0.104 

0.2 0.0936 0.0932 0.0835 0.0674 0.0211 

0.3 0.0748 0.0706 0.0369 -0.0074 -0.1122 

0.4 0.0521 0.0438 -0.0099 -0.0774 -0.2279 

0.5 0.0264 0.0174 -0.0417 -0.1183 -0.2913 

0.6 -0.0015 -0.0079 -0.0550 -0.1225 -0.2854 
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Figure 10. Coefficient A/. Coefficient Al in representation Bt = Ac\"(1 - o:)2. 

0.7 -0.0306 -0.0334 -0.0585 -0.1009 -0.2172 -0.3468 

0.8 -0.058 -0.060 -0.067 -0.081 -0.131 -0.190 

0.9 -0.088 -0.089 -0.091 -0.093 -0.094 -0.095 

1.0 -0.1185 -0.1185 -0.1185 -0.1185 -0.1185 -0.1185 

Table 2. . Coefficients Bt =Al (1 - o:)2 

a L/W= 1.5 0.75 0.50 0.40 0.30 0.25 

0 -0.469 -0.469 -0.469 -0.469 -0.469 -0.469 

0.1 -0.444 -0.444 -0.429 -0.406 -0.363 -0.322 

0.2 -0.381 -0.379 -0.314 -0.232 -0.062 0.087 

0.3 -0.307 -0.288 -0.137 0.024 0.302 0.516 

0.4 -0.212 -0.177 0.037 0.256 0.605 0.856 

0.5 -0.106 -0.069 0.157 0.406 0.814 -0.1091 

0.6 0.006 0.031 0.209 0.443 0.885 1.204 

0.7 0.117 0.128 0.223 0.377 0.755 1.092 

0.8 0.217 0.226 0.252 0.305 0.480 0.678 

0.9 0.321 0.325 0.332 0.341 0.343 0.346 

1.0 0.4227 0.4227 0.4227 0.4227 0.4227 0.4227 

Table 3. . Biaxiality ratio ß ~ 
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Flgure 11. p. Biaxiality ratio in the form of ß~ 

4.2 Long edge-cracked plate 

The coefficients determined for the long edge-cracked plate were fitted and represented 
in polynomial form [9]. 

Tension 

r::: 0.26434 - 0.39652cx + 1.5806cx2 - 2.8451 cx3 +2.5055cx 4 -0.84445cx5 

A0 =.ycx 
(1 - cx)3/2 

* 0.13149- 0.16024cx -0.051233cx2 - 0.18874cx3 +0.19936cx4 -0.04915cx5 

Ao = 
(1 - cx)2 

Bending 

0.264345- 0.5574Bcx +0.8280cx2 - 0.6481Bcx3 +0.20153cx4 
Ao = F _:..:...;..::.....;._:_____:...;"_:__:_____:...:..:.......:....:...:...:..::...:....::~--=-~:;.,.;,.,;:;..:..:__:.......:....:.:;..__;____:.;__ 

(1 - cx)3/2 

A* _ 0.13149- 0.6203cx +0.88823cx2 - 0.65955cx3 +0.2319cx4 

o - (1 - cx)2 

The biaxiality ratios for the long plate are given in fig.12. 
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Figure 12. T-stress. Biaxiality ratio for the lang edge-cracked plate 

4.3 Reetangular plate with thermal stresses 

A reetangular plate with a parabolically distributed temperature ® 

is considered, wich causes a stress distribution 

a = a* --4-+4-
( 

2 x x
2 

) 
Y 3 w w2 

.80 
a/W 

(42) 

(43) 

with E=Young's modulus and cxr=thermal expansion coefficient. The stress distribution 
is shown in the insert of fig.13. lntroducing this stress distribution into eq.(19) yields the 
T-stress 

I * 2 2( *) 2 Ta = 3 (1 - a) 1 - 4A0 + 4a(1 - a)- 3 (44) 

with A~ taken from Table 2 or computed with eq.(39). The T-stress is plotted in fig.13. 
The corresponding stress intensity factor was calculated by 

K1 = Jah(x,a) a(x) dx (45) 
0 
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Figure 13. Thermal stress. Stress intensity factor and T-stress in a reetangular plate under 
thermal stress conditions. Insert: stress distribution according to eq.(43). 

with the weight fu nction h taken from [9]. The stress intensity factors have been en­
tered additionally in fig.13. Finally, the biaxiality ratio ß is represented in fig.14. Large 
positive biaxiality ratios are obvious for deep cracks. This is a consequence of the low 
stress intensity factors near a/W = 0.8. 

ß 

a/W 
Figure 14. Thermal stress. Biaxiality ratio forthermal stresses given by eq.(43). 
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5. DCB-specimen 

A Double-Cantilever-Beam(DCB) specimen is shown in fig.15. For the numerical consid­
erations the width W was chosen to be Wfd > 3. The stress intensity factor under con­
stant tension as weil as the T-stress term were determined by application of the Bound­
ary Collocation Method. The ß-values, obtained with BCM, are plotted in fig.16 as open 
symbols. Data from the Iiterature ( Leevers and Radon [ 4]) are entered as solid sym­
bols. For dfa < 0.5 the ß-ratio is found to be independent of afW if afW::;; 0.55. The aver­
aging curve provides the relation 

1 d ß ~ o.681 8 +0.0685 

which is represented in fig.16 by the solid line. 

p 
p 

~ 

~ 

~~-~--- 0------~~~ 

.... 

,. 

(46) 

.,jp.. 

2d 

"''V 

·~-----------vv----------1~ 

Figure 15. DCB-specimen. Geometrical data of a DCB-specimen. 

The stress intensity factor solution is given by 
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Flgure 16. T-stress. Biaxiality ratio for the DCB-specimen as a function of dfa (computed for 

several ratios a/W). BCM-results: open symbols; Results of Leevers and Radon [4]: 
solid symbols; straight line: eq.(46). 

(47) 

The T-stress results from eqs.(46) and (47) as 

(48) 
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6. Edge-cracked circular disc 

Edge-cracked circular discs are often used as fracture mechanics test specimens, espe­
cially in case of ceramic materials [13]-[15]. Figure 17 shows the geometric data. 

Figure 17. Clrcular dlsc. Geometrie data of an edge-cracked disc. 

6.1 Circumferentially loaded disc 

A circular disc is loaded by constant normal tractions along the circumference 

an = const , 't' = 0 (49) 

ln this case it holds [9] 

A0(1- rx)3
/
2 rx-1

/
2 = 0.2643452 = C0 (50) 
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Figure 18. Circular disc. Stresses in a diametrically loaded circular disc (along the x-axis). 

where the values Co and Ct are the coefficients of Wigglesworth's [16] expansion for the 
edge-cracked semi-infinite body. 

6.2 Diametrically loaded disc 

The Green's function method may be applied here to the diametrically loaded edge­
cracked disc (see fig.18). ln this case it holds [9] 

A*=- 0.11851 +1/4 ' rx=a/D 
o ( 1 - rx)2 

(52) 

As a consequence of eq.(19) it follows for the edge-cracked disc 

1 

o.9481 f I T ~ 
2 

( 1 - p) a y(p) d p - a y 
(1-rx) 0 x=a 

(53) 

As an application we consider the disc of unit thickness which is diametrically loaded 
by a pair of forces P (see Insert of fig.18). ln this case the stresses are given by 

e = x/R , R = D/2 (54) 
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Figure 19. Circular disc. Biaxiality ratio for an edge-cracked circular disc diametrically loaded 
by a pair of forces; lines: eq.(56). 

(1 - ~)2 
= 1 - 4 ----'-----'----:-2 

[1+(1-~)2 ] 
(55) 

as illustrated in fig.18. lntroducing ay in eq.(19) yields the T-stress term 

T ~ 0
·
94810* [4(1 - ~ )arctan(1 - ~) + 2 ~ 

(1 - C1l(a/R)2 R R R 
(56) 

- ( ~ )2 - n(1 - ~ ) J - a I 
R R Y x=a 

The stress intensity factor results from [17] as 

(57) 

where h is the fracture mechanics weight function. ln case of an edge-cracked disc a 
representation is glven in [9], i.e. 

h(x,a) ~ a[ h + Do~ + 0 1(1 - p)312 + 0 2(1 - p)
5

1
2

] (58) 

with the coefficients 
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Figure 20. . Stress distributions in a thermally heated disc. 

D0 = (1.5721 + 2.4109o:- 0.8968o:2
- 1.4311o:3)/(1- o:)312 

01 = (0.4612 + 0.5972o: + 0.7466i + 2.2131o:
3
)/(1- o:)

3
'
2 

0 2 = (- 0.2537 + 0.4353o:- 0.2851l- 0.5853o:3)/(1 - cx)3/
2 

By consideration of the total x-stress one can define an additional biaxiality ratio 

(59) 

(60) 

~ 

The T-stress and the stress intensity factor result in the biaxiality ratlos ß and ß which 
are shown as curves in fig.19. ln addition, the biaxiality ratlos were directly determined 
with the Boundary Collocation Method (BCM) which provide_the coefficient A~ for the 
situation of diametrical loading. The results - expressed by ß - are entered as clrcles. 
An excellent agreement is obvious between the BCM results and those obtained from 
the Green's function representation. This is an indication of an adequate description of 
the Green's function by the set-up in eq.(34). 

6.3 Disc with thermal stresses 

ln a thermally loaded circular disc the stresses in the absence of a crack consist of the 
circumferential stress component a11 and of the radial stress contribution a,. The two 
stress components can be computed from the temperature distribution ®(r) with 
r = 0/2- x (see e.g. [18]) 
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Flgure 21. . Stress intensity factor, T-stress and total x-stress at the crack tip for thermal load­
ing according to fig.20. 

(61) 

(f = a.E( - 1- IRe r dr + -1 Ire r dr - e) 
'P R2 o r 2 o 

(62) 

ln [14] the temperatures were found to be expressed by 

(63) 

with the maximum temperature 0 0 occurring in the centre of the disc (r = 0). The re­
lated stresses are 

(64) 

(65) 

For a typical stress dlstribution in a thermally heated disc we can conclude from curves 
plotted in [14] 
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Figure 22. . Stress intensity factor, biaxiality ratio ß, and effective biaxiality ratio ß." defined by 

eq.(71). 

or 

(J = 
lp - a* 1 -- - +- -[ 

9 ( r )
2 

5 ( r ·)
4

] 
2 , R 2 , R, 

(66) 

(67) 

(68) 

(69) 

where a* is the circumferential tensile stress at r = R. When eq.(19) is used, the ther­
mal stresses result in the T-stress 

(70) 

Equation (15) gives rise to definition of an effective biaxiality ratio 

(71) 
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that includes the ax-stresses in the u ncracked disc. The biaxiality ratio ß and the effec­
tive biaxiality ratio ß." were computed using the weight function for the edge-cracked 
disc. Figure 22 represents the biaxiality ratios for the thermally stressed edge-cracked 
disc. Very high values of the ß-values occur for a/D > 0.6. The main reason is the very 
small stress intensity factor which disappears at approximately a/D'.:!:!.0.7. 
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7. Cracks ahead of notches 

Special specimens contain narrow notches which are introduced in order to simulate a 
starter crack. This is for instance the case in fracture toughness experiments carried out 
on ceramics. A plate with a slender edge notch of depth a0 is considered. A small 
crack of length t is assumed to occur directly at the notch root with the radius R. The 
geometrical data are illustrated in fig.23. 

y 
; 

; .... 
; 

,~~ , ' 
' I I 

e--
__:_;.J 

Oo ·-·-·- ...... 

w 

Flgure 23. Clrcular notch. A small crack emanating from the root of a notch; geometric data. 

ln the absence of a crack the stresses near the notch root are given by 

2K(a0) R+~ 
ay = 

Jn(R + 2~) R+2~ 

(72) 
2K(a0) ~ 

ax = 
Jn(R + 2~) R + 2~ 

7. Cracks ahead of notches 31 



15 

10 

5 

i .......... , 
: ..... '-. ......... 

I 
I 

--·~ 

y 

............. ~·--~-~·--·-~-~--........................ . 
........................................................................................................................ 
I 
I 

1.00 1.50 2.00 

t;/R 

Figure 24. Notch stress. Stresses ahead of a slender notch computed according to Creager 
and Paris [19] for aofW = 0.5 and R/W = 0.025. 

(for ~ see fig.24) as shown by Creager and Paris [19]. The quantity K(ao) is the stress 
intenslty factor of a crack with the same length a0 as the notch under ldentlcal external 
Ioad 

(73) 

with the characteristic stress a* and the geometric function F. The stresses resulting 
from eq.(72) are plotted in fig.24. The solid parts of the curves represent the region 
(0 s ~ < R/2) where higher order terms are negligible. A small crack of length t ls con­
sidered which emanates from the notch root (see fig.23). Under externally applied Ioad 
the coefficients of the stress function were calculated. The coefficient Ao is related to 
the stress intensity factor K, by 

(74) 

with the geometric function F. lf we define here the T-stress as the total x-stress result­
ing from the contrlbution of the notch in the absence of the crack and from the contrib­
ution of the crack, we have 

a x = T = - 4a * A~ (75) 

Boundary Collocation computations were performed and the results are plotted for 
bending in fig.25. ln this case the reference stress is the outer fibre bendlng stress 
a* = ab with 

(76) 
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Flgure 25. Bending Ioad. T-stress term for a small crack ahead of a slender notch in bending, 
computed with the Boundary Collocation method for R/W = 0.025. Solid line: Ieng­
crack solution. 

(M = bending moment, B = thickness of the component). Additionally, the "long crack 
solution" is introduced as solid curve. This curve represents the stress intensity factor 
T* for an edge crack of total length a = ao + t in bending [9] 

2 3 4 
T*/a* =-4 0.13149-0.6203a+0.88823a

2
-0.65955a +0.2319a 

(1 - a) 
(77) 

In case of pure tension with a* = a0 (a0 = remote tensile stress) it holds [9] 

2 3 4 5 
T*fa* = _ 4 0.13149- 0.16024a -0.051233a - 0.18874a +0.19936a -0.04915a (?8) 

(1 - a)2 

The results obtained under tension are plotted in fig.26. For the Iimit case t/R--+ 0 the 
T-stress can be determined from the solution for a small crack in a plate with a tensile 
stress identical with the maximum normal stress Gmax occurring directly at the notch root 

* fäO amax = 2a F(ao)'\f R (79) 

Then it holds 

Tptate I 
Ta = Tt/R-+ o = --*- 0 max 

a a-+0 
(80) 
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Figure 26. Tensile loading. T-stress for a small crack ahead of a slender notch under tension, 
computed with the Boundary Collocation method for R/W = 0.025. Solid line: Ieng­
crack solution. 

*I . *) Tptatefa IX .... 
0 

= ~4(Ao plate,ct .... o = -0.526 (81) 

and, consequently, 

* rao T0/a = -1.052F(aohj R (82) 

lt becomes obvious from eq.(82) that for slender notches very streng compressive T­
stresses occur in the Iimit case t'/R--+ 0. The Iimit values To for tension and bending, 
indicated by the arrows in figs.25 and 26, are entered in table 1. 
ln fig.27 both the bending and the tension results are plotted in a normalised represen­
tation. From the Insert in fig.27 we can conclude that the deviation between the T-stress 
term for the crack/notch configuration and the long-crack solution (with the crack as­
sumed to have a total length a0 + t') is negligible for t'/R > 1. The drastlc decrease in T 
for t'/R--+ 0 must occur within the range 0 < t'/R < 0.2. 

a/W Tofa• (bending) Tofa• (tension) 

0.3 -4.11 -6.05 

0.4 -5.28 -8.91 

0.5 -7.01 -13.31 

0.6 -9.86 -20.74 

Table 4. . Limit values for the T-stress term (t/R-+ 0). 
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Figure 27. Circular notch. T-stress in a normalised representation. 
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8. Array of deep edge cracks 

Figure 28 shows an array of periodical edge cracks. BCM-computations were performed 
for an element of periodicity for the special case of a constant remote tensile stress a. 
The boundary conditions are given by constant displacements v and disappearing shear 
stresses along the symmetry lines, i.e. 

(83) 

(E' = E for plane stress and E' = E/(1 - v2) for plane strain, E = Young's modulus, 
v = Poisson's ratio) as illustrated in fig.29. The coefficient At is shown in fig.10 as a 
function of the ratio d/a for different relative crack lengths o: = a/W. The result can be 
summarised as 

w 

t 
d 
J. 

Flgure 28. Crack array. Periodical edge cracks in an endless strip 
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Figure 29. Periodical boundary conditions. Boundary conditions representing an endless strip 
with periodical cracks. 

A~ = 0.148 d/a::;; 1.5 (84) 

The coefficient Ao is plotted in fig.9 in the normalised form 

A* a/W 
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Figure 30. Af. lnfluence of the geometric data on the coefficient At for remote tension. 

38 T-stress in edge-cracked specimens 



-
Ao a/W 

1.100 0 0.4 

0 0.5 

/::;. 0.6 
1.050 

1 .000 .............................. 00-9·8l()·G·B ....... O ....... o ....................................... O 

0.950 

0 ·90~o .20 .40 .60 .80 1 .00 1 .20 1.40 

d/a 
Figure 31. Ao. Coefficient Ao in the normalisation Äo = 6A0}rr:W/d as a function of geometry. 

(85) 

For all values cx = afW investigated it was found 

~ 

A0 = 1.000 ± 0.002 (86) 

resulting in the stress intensity factor solution 

(87) 

(see e.g. [20]). The biaxiality ratio is 

ß ~ -1.484 jijd (88) 
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