Forschungszentrum Karlsruhe Technik und Umwelt
 Wissenschaftliche Berichte
 FZKA 5795

The International Standard Problem ISP37 Calculations with CONTAIN 1.12 for VANAM M3

G. Henneges, H. Peter
Institut für Neutronenphysik und Reaktortechnik Projekt Nukleare Sicherheitsforschung

Forschungszentrum Karlsruhe Technik und Umwelt Wissenschaftliche Berichte FZKA 5795

The International Standard Problem ISP37

Calculations with CONTAIN 1.12 for VANAM M3

G. Henneges, H. Peter
Institut für Neutronenphysik und Reaktortechnik
Projekt Nukleare Sicherheitsforschung

Forschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript gedruckt
Für diesen Bericht behalten wir uns alle Rechte vor

Abstract

This publication deals with results of a series of containment thermalhydraulic and aerosol studies made with the multicompartment code system CONTAIN 1.12 for the VANAM experiment M3. This work was done as a participation to the open ISP37. VANAM M3 was planned to give experimental data for verification of aerosol computer codes and test their thermohydraulic and aerosol results on such a large integral multicompartment containment experiment.

Five different calculations are compared in this paper. The influence of simplifications was studied for example by

- taking only oxygen instead of air as atmospheric gas
- modeling the outer structures only by concrete
- using flow coefficients according to Idel'chick or improved values
- including radiation transport effects.

CONTAIN thermohydraulic results are within the accuracy that can be obtained regarding the uncertainties of the experiment and the the boundary conditions used as code input. CONTAIN is able to simulate atmospheric stratifications as observed in the experiment.
VANAM M3 used water soluble NaOH aerosol to study a "dry" aerosol depletion phase and later after a second aerosol injection the behaviour in a "wet" surrounding. The aerosol densities differ by more than an order of magnitude in the different compartments. To calculate this behaviour a multicell code like CONTAIN with its powerful MAEROS tool for the hygroscopic aerosol treatment was needed. The aerosol transport to different cells and the aerosol densities in these rooms are calculated qualitatively correct with CONTAIN 1.12.

Das Internationale Standard Problem ISP37

Rechnungen mit CONTAIN 1.12 für das VANAM M3 Experiment

Zusammenfassung

In diesem Bericht werden die Resultate von thermohydraulischen und Aerosolausbreitungsrechnungen mit dem Programmsystem CONTAIN 1.12 beschrieben, die im Rahmen des Internationalen Standard Problems 37 für das VANAM M3 Experiment durchgeführt wurden. VANAM M3 wurde geplant, um experimentelle Daten zur Verifikation von Aerosolrechenprogrammen in einem großen Mehrraumbehälter zu liefern.

Fünf unterschiedliche Rechnungen werden in diesem Bericht verglichen. Der Einfluß von Simplifizierungen wurde zum Beispiel studiert an

- Rechnungen, wo nur Sauerstoff anstatt Luft in der Atmosphäre benutzt wurde
- Modellierung der äußeren Strukturen durch modifizierte Betonstrukturen
- Benutzung von Flußwiderstandsbeiwerten gemäß Idel'chick bzw. angepaßten Werten
- Berücksichtigung des Strahlungstransporteffekts.

Die mit CONTAIN erhaltenen thermohydraulischen Ergebnisse sind innerhalb der experimentellen Fehler erklärbar durch die Randbedingungen, die den Rechnungen per Eingabe aufgeprägt wurden. Mit CONTAIN gelingt es, die atmosphärische Stratifikation, welche sich im Experiment einstellte, nachzurechnen.
In VANAM M3 wurde das Absetzverhalten von hygroskopischem NaOH Aerosol während einer eher trockenen Phase und nach einer zweiten Injektion während einer nassen Phase untersucht. Die Aerosoldichten unterschieden sich um mehr als eine Größenordnung in den verschiedenen Räumen. Um dieses Verhalten nachzurechnen, war ein Mehrzellenrechenprogramm wie CONTAIN mit seinem leistungsfähigen MAEROS Unterprogramm nötig. CONTAIN 1.12 berechnet sowohl den Transport in die verschiedenen Räume als auch die Aerosoldichten in der richtigen Größenordnung.

The International Standard Problem ISP37 Calculations with CONTAIN 1.12 for VANAM M3

G. Henneges, H. Peter
Forschungszentrum Karlsruhe (FZK)
Institut für Neutronenphysik und Reaktortechnik (INR)

Content

1. Summary 5
2. Objectives of the ISP37 6
3. Experiments M3 in the Battelle Model Containment 6
3.1 Measurements 7
3.2 Experimental Phases 7
3.3 Summary of Thermohydraulic Results 8
3.4 Summary of Aerosol Results 9
3.5 Vapour Condensation on the NaOH Aerosol 10
4. Specifications for Modelling ISP37 10
4.1 Geometry, Nodes, Connections, Flowpath and Structures 10
4.2 Initial and Boundary Conditions 11
4.3 Leakage 11
4.4 Aerosol Data 12
5. CONTAIN Calculations 12
5.1 Simplifications for Case 40 and Case 4215
5.2 Air Leakage 15
5.3 Aerosols 16
5.4 Radiative Heat Transfer 16
6. Informations to Computer Environment 17
7. Discussion of the Analytical Results 17
7.1 Pressure 18
7.2 Temperatures 18
7.3 Atmospheric Flow Velocities 20
7.4 Structure Temperatures 20
7.5 Air Mass 21
7.6 Water and Vapour Mass 21
7.7 Sump Temperatures 21
7.8 Saturation Ratios (Humidities) 22
7.9 NaOH Aerosol Concentrations (RADHEAT = off) 22
7.10 NaOH Aerosol Concentrations (RADHEAT = on) 23
8. Conclusions 24
Appendix: Theorectical Models Used in CONTAIN 1.12 26
A. 1 Cell Atmosphere 26
A. 2 Intercompartment Flow 26
A. 3 Lower Cell and Sump Models 27
A. 4 Drainage Simulation 28
A. 5 Boundaries 28
A. 6 Material Properties 28
A. 7 Heat Transfer Model 28
A. 8 Coupling of Atmosphere and Water, Fog Formation 29
A. 9 Aerosol Treatment 29
A. 10 Aerosol Treatment with Respect to Radiation 31
9. Literature 32
10. List of Tables 33
Tab. 1 to 14 34
11. List of Figures 128
Fig. 1 to 30 129

1. Summary

This paper deals with results of a series of containment thermalhydraulic and aerosol studies made with the multicompartment code system CONTAIN 1.12 for the VANAM experiment M3 which was performed at the Battelle Model Containment in Frankfurt. This work was done as a participation to the open OECD/CSNI/ISP-37.

The VANAM M3 test was planned to give experimental data for verification of aerosol computer codes and test their thermohydraulic and aerosol results on such a large integral multicompartment containment experiment.

Five different calculations are compared in this paper. The influence of simplifications was studied for example by

- taking only oxygen instead of air as atmospheric gas
- modeling the outer structures only by concrete
- using flow coefficients according to Idel'chick or improved values
- including radiation transport effects.

Comparing the thermohydraulic CONTAIN results by taking the proposed ISP37-input and compare them with experimental values one may conclude that the calculated pressure is within the accuracy that can be obtained regarding the uncertainties of the boundary conditions. CONTAIN is able to simulate atmospheric stratifications as observed in the experiment.

VANAM M3 used water soluble NaOH aerosol to study a "dry" aerosol depletion phase and later after a second aerosol injection the behaviour in a "wet" surrounding. Although the depletion rate of the very hygroscopic NaOH aerosol depends strongly on the relative humidity (rh) of the atmosphere and on the volume condensation rate at $\mathrm{rh}=100 \%$ the aerosol behaviour is predicted surprisingly well. The aerosol densities differ by more than an order of magnitude in the different compartments.

To calculate this behaviour a multicell code like CONTAIN with its powerful MAEROS tool for the hygroscopic aerosol treatment was needed. The aerosol transport to different cells is calculated qualitatively correct.

2. Obiectives of the ISP37

The ISP37 is an open standard problem, which means that besides initial and boundary conditions, all experimental results are delivered to the participants prior to performing the calculations. These experiments are described in detail in $/ 2 /$. In the following the subject and objectives of the ISP37 are explained together with the Battelle data and the agreed initial conditions which are neccesary to perform the calculations.

The knowledge on thermalhydraulic long-term effects and depletion behaviour of aerosols in a core melt-down atmosphere of a PWR containment after a LP*-path / $4 /$ is of crucial importance for predicting the environmental impact by the determination of the so-called radioactivity source term.

ISP37 objectives are the comparison and investigation of the following physical variables and phenomena:

- State-of-the-art status review on computer codes for containment analysis with respect to thermalhydraulics and aerosol behaviour
- Phenomena to be investigated
- behaviour in multi compartment geometry
- atmospheric mixing by natural convection loops
- stratified atmosphere
- structural heat transfer
- wall condensation
- saturation ratio, fog formation etc.
- hygroscopic aerosol distribution and settling
- volume condensation
- steam condensation on aerosol component

3. Experiment M3 in the Battelle Model Containment

The model containment is shown in Figure 1. It has a free volume of $626 \mathrm{~m}^{3}$. The VANAM geometry represents roughly a PWR-containment. The arrangements of the compartments and openings connecting them is shown in Fig. 2 and data is listed in Tables 1 and 2. The concrete and steel structures are shown in Fig. 3 and details are given in Tables 3 to 4. The numbering is sometimes different for the calculations where the rooms 9.1 to 9.4 are grouped in cells 9 to 11 (Fig. 9).

3.1 Measurements

The measured parameters and their accuracy are given in the following Table. The devices, exact locations etc. are described in $/ 2 /$.

	Error band according to $/ 2 /$	Comment
temperatures	1.4 K	o.k.
pressure	0.02 bar	o.k.
sump level	0.01 m	sometimes 0.05 m
humidity	10%	when the sensor is wet due to condensate, the signal is greater than 100%
gas velocity	$0.15 \mathrm{~m} / \mathrm{s}$	a minimum velocity of $0.2 \mathrm{~m} / \mathrm{s}$ is necessary to initiate turbine flow meter measurement
steam injection rate to R 5	$0.01 \mathrm{~kg} / \mathrm{s}$	measurement device not redundant
steam injection rate to R 3	$0.006 \mathrm{~kg} / \mathrm{s}$	measurement device not redundant
air injection	$0.61 / \mathrm{s}$	measurement device not redundant
air removal	$0.3 \mathrm{~g} / \mathrm{s}$	measurement device not redundant

3.2 Experimental Phases

The experiment is oriented on the core meltdown scenarion LP* according to the German Risk Study, Phase B / $4 /$. First steam is injected into room R5. This simulates the blowdown of the primary circuit. After a phase without injection, steam is injected into the lower part of the model containment (R3) corresponding to the contact of corium and sump water.

This scenario leads to the following 6 experimental phases (see Fig. 4 and Tab. 5 to 8):

Phase 1: 1.13 to $17.2 h$ (4068 to $61920 s$)

The containment is heated up and the initial boundary conditions are adjusted by injection of steam in R5. This injection is controlled to get a constant containment pressure of 1.25 bar in all rooms. At the beginning of this phase air is removed out of R9.4. This allows steam to enter the lower
compartments and heat up the structures. At the end of phase 1 (from 16.52 to 16.61 h) air is reinjected into R 9.4 (cell 10) and R3 to get the desired air content.

Phase 2: 17.2 to $18.23 h$ (61920 to 65628 s)
Hygroscopic NaOH aerosol is injected in R5. It is suspended in a steam-air mixture. No pressure control is done. Therefore the presssure rises to 2.05 bar.

Phase 3: 18.23 to 22.7 h (65628 to 81720 s)
All injections are stopped. Because the steam condensation on the colder structures is not compensated the pressure decreases to 1.25 bar.

Phase 4: 22.7 to 23.14 (81720 to 83304 s)
NaOH suspended in a steam-air mixture is injected a second time into R5. The pressure increases again.

Phase 5: 23.14 to $25.26 h$ (83304 to 90936 s)

For the first 600s all injections are stopped. Then steam is injected into the lower central room R3. The pressure increases to 1.7 bar.

Phase 6: 25.26 to 30.0 h (90936 to 108000s)
The steam is now injected into R5. The pressure stabilizes near 1.7 bar.

3.3 Summary of Thermohydraulic Results

Some of the measured results are shown in Fig. 5 (flow velocities) and 6 (temperatures in room 9). Fig. 7 gives information of the locations for the heights of the thermocouples used in the outer ring cell and the dome. The abbreviations used indicate heights above zero level and location angle in the cylinder.

When steam or steam-air mixture is injected to R 5 a convection loop mixes the atmosphere of the upper inner rooms (R5, R7) and the dome (R9d) according to Fig. 5. As a result of the mixing the temperatures in these rooms are nearly identical. The atmosphere in the lower inner compartments R1, R3, R6 and R8 generally stagnates. In the bottom closed annulus (R9.3, R9.4 and R4) it always stagnates.

At about 4 h the steam front reaches the elevation of the openings of R1, enters it and replaces air. A weak convection loop between R5 and R6 removes air out of R6, R8 and R1. The convection lasts until 10h.

When steam is injected to R3 in phase 5 a strong convection loop is induced, which mixes all inner rooms. When the steam injection is switched to R5 the stagnation in the lower inner rooms is reestablished.

The annulus ($\mathrm{R} 9.3+\mathrm{R} 9.4$) and R4 always stays stratified. For better illustration of the temperature evolution in rooms 9.3, 9.4 and 9 d (dome) the measured values are given in Fig. 6. The heights of the thermocouples are depicted as well. The rotational symmetry is not perfect. A single temperature value for rooms 9.3, 9.4 and the dome is difficult to deduce. Therefore a comparison with calculated numbers is only qualitatively possible (see chapter 7.2). This problem holds for rooms 4,6 and 8 as well.

3.4 Summary of Aerosol Results

The measured histories for the aerosol concentrations are depicted in Fig. 8. As mentioned earlier at the end of phase 1 the containment atmosphere is stratified with mainly hot steam in the upper part and cold air in the lower part.

In phase 2 the aerosol is injected into R5. By the natural convection loop $\mathrm{R} 5>\mathrm{R} 9 \mathrm{~d}>\mathrm{R} 7$ the NaOH is distributed. Due to the rising pressure aerosol loaded atmosphere flows from the upper rooms to the lower rooms, as well as into the annular rooms. The condensation on the cold structures of these rooms increases the downward flows.

In phase 3 all injections are stopped. The dome R9d, R5 and R7 have equal aerosol concentrations. These are in the beginning significantly higher than in the other rooms.

In phase 4 with its second aerosol injection the flow conditions are comparable to those of phase 2 .

In the mixing phase 5 when steam is injected to the central lower room R3 one has to distinguish two different flow patterns: At the beginning, the steam mainly heats up the lower rooms R3, R6 and R8 by condensation on the cold structures. The pressure rises slightly which induces a small atmospheric flow from the lower to the upper rooms. Because of the short duration the spatial aerosol distribution is not much affected. Then the flows change rapidly. A large natural convection loop establishes from R3 to the dome and mixes the whole inner containment. All these rooms have now the same aerosol concentration. The aerosol concentrations decrease rapidly in all rooms except the annulus due to strong volume condensation.

In phase 6 steam injection is moved back to R5 which yields comparable flows like those in phase 2 . The aerosol concentration in the annular rooms is in the beginning 100 times higher than in the other rooms.

3.5 Vapour Condensation on the NaOH Aerosol

The depletion rate of the very hygroscopic NaOH aerosol depends strongly on the relative humidity (rh) of the atmosphere and the volume condensation rate at $\mathrm{rh}=100 \%$.

Tab. 9 gives information on the local humidity histories. The black bars indicate time and location of larger amounts of airborne water (fog). The atmosphere was saturated and volume condensation occured. The white bars show measured superheated conditions with $\mathrm{rh}<100 \%$.

In phase 2 in nearly all rooms fog formation takes place. In phase 3 the atmosphere of the whole containment is superheated with lowest humidities at the end of this phase (about 85% in the upper rooms but around 100% in the others). During this phase the aerosol particles grow by the hygroscopic water take-up and aerosol depletion occurs under rather dry conditions.

In the mixing phase 5 extensive volume condensation takes place in all rooms except in the annular rooms. Because of the wet conditions the aerosols deplete rapidly.

4. Specifications for Modelling ISP37

This chapter repeats some of the specifications given in /1/ and describes the different approach which was sometimes necessary to complete the calculations.

4.1 Geometry, nodes, connections, flowpath and structures

The nodalisation has been reduced to a minimum number of 11 cells. This was thought to be sufficient to simulate all important phenomena measured in the experiment. It should be reasonable easy to handle for combined thermalhydraulic and aerosol calculations.

The sumps on the bottom of some cells had to be modelled code according to the code used. This could be as individual nodes or as it is done in CONTAIN $/ 3$ / by specifying them as lower cells.

The atmospheric flow paths are specified according to Tab. 2a,b and shown in Fig. 9. In /1/ it is proposed to use flow coefficients based on Tab. 2b.

They are higher than the values derived by taking Idel'chicks method for unrecoverable pressure loss. The influence of different flow coefficients was studied. More informations are given in chapters 5 and 7.

The containment structures are shown in Fig. 3. The informations of Tab. $3 b$ from $/ 1 /$ are used to deduce the values for the code input. Slabs with average cross sectional areas are used. The coating of internal surfaces of the outer containment shell should be simulated. The coating of the inner containment walls could be neglected. In total 50 structures are defined. Except structures 1 to 8 and 46, they are modelled by only one material.

The properties of structures of the outer shell are given in Tab. 3c. A correct description of the outer shell was used in the calulations of case 44 , case 45 and case 46 . Case 40 and case 42 used the 'simulant concrete'. The latter calculations only took concrete and steel materials as they are 'hardwired' in CONTAIN.

The proposed material properties according to /1/ are given in Tab. 4. Besides the default data for heavy concrete of CONTAIN case 44 , case 45 and case 46 calculations used the data given in Tab. 4.

The aerosol deposition areas for each room are subdivided in floor, ceiling and vertical walls. The orientations are given in Tab. 3a and 3b.

4.2 Initial and Boundary Conditions

The initial and boundary temperatures are shown in Tab. 5. All structures of the outer shell have a uniform temperature of 295 K at the beginning of the experiment.

The building which is in contact to the model containment according to Fig. 3 and 9) has a constant temperature of 295 K , the environment is kept at 283 K equal to the soil temperature.

Steam injection rates into cells R5 and R3 are listed in Tab. 6. The controlled air removal and injections in and from cells R9.4, R3 and R5 are shown in Tab. 7a,b.

4.3 Leakage

The model containment has a high atmospheric leakage through small cracks and fissures in the walls. The leakrates had been determined experimentally by using the actual air content and the known air injections and removals. They were given as an input to all participants (see Tab. 8a). The leakrate had to be split in a way proposed by $/ 1 /$ but this approach led to
problems. Later it was agreed to split the leakage in different rooms as shown in Tab. 8b,c.

The steam condensation inside the walls is an obstruction to the leak flow. The condensate will not block the leak path totally. Part of it will penetrate the wall, transporting its energy (saturated water). It is estimated in /1/ that at the start of the experiment 2% and at the end 10% of the steam, entering a crack, could reach the environment. But the steam leakage was not measured and therefore it was proposed not to take it into account. This may lead to a 0.2 to 0.3 bar higher calculated pressure.

4.4 Aerosol Data

The NaOH aerosol injection data are given in Tab. 10. The injection values for the aerosol carrier gas (air and steam) are listed in Tab. 6. The aerosol mass injection rates are constant for both injection periods.

The particle size distribution was estimated using electron microscop pictures. A log-normal distribution of the particle sizes was assumed. For the primary NaOH -aerosol distribution the following values are recommended:

Log-normal distribution
Mass median diameter

$$
\mathrm{MMD}=0.2 \mathrm{e}-6 \mathrm{~m}
$$

$$
\text { Geometric standard deviation GSD }=1.9-->\ln 1.9=0.641854
$$

The effective density of the dry primary NaOH -particles is not known. The theoretical density of pure NaOH is $2130 \mathrm{~kg} / \mathrm{m}^{3}$. In the wet atmosphere the hygroscopic salt increases its diameter rapidly and the effective particle density decreases. A mean value of $1100 \mathrm{~kg} / \mathrm{m}^{3}$ is proposed for the calculations.

Since the humidities are always near 100% during the experiment a Van't Hoff factor under these conditions of $\mathrm{SOL}=2.0$ is recommended. Because the aerosol particles rapidly become spherical droplets the dynamic and agglomeration shape factors CHI and GAMMA are 1.0.

5. CONTAIN Calculations

Each CONTAIN calculation discussed in this paper used the same nodalisation scheme. Fig. 9 shows the atmospheric and Fig. 10 the drain flow pathes used. 11 nodes (cells) are simulating the containment. The values of Tab. 1 are taken. The upper and lower node boundaries are used to determine the cell center heights.

In five cells sumps are modelled. The sump floor areas of Tab. 1 are used. In cells 5 and 7 no sumps are modelled because condensed water was diverted to cells 6 or 10 respectively. Condensed water from cell 11 was di-
rected to the sump of cell 10 which is different from the proposed split in /1/ because in CONTAIN only one cell can be specified to take the condensate from a donor cell. Therefore 100% of the condensate is forced to drain to cell 10 (R9.4) as shown in Fig. 10.
(According to the proposal it should be diverted from dome R9d to
R9.3 (56.2\%) + R7 (4.4\%) + R2 (31.4\%) +
R5 (3.5\%) + R4 (4.5\%)).
The volume of the environment (cell 12) is very large $\left(1.0 \mathrm{e} 15 \mathrm{~m}^{3}\right)$.
There are 13 atmospheric junctions for gas flow. The input values of Tables $2 \mathrm{a}, \mathrm{b}$ are used. The flow coefficients of both tables are halfed according to the models used in CONTAIN (see chapter A.2). The Idel'chick values which are given in Tab. 2 a were used for case 40 , case 42 and case 44 calculations. The aerosol calculations case 45 and case 46 used the flow coefficients of Tab. 2 b which are larger. They are based on experience with earlier Battelle containment calculations and their derivation is explained in more detail in $/ 1 /$. By comparing the thermohydraulic results with those of case 44 one clearly observes the influenc of this parameter (see chapter 7).

6 drain junctions are modelled according to Fig. 10. Atmospheric flow through these junctions is not possible. As mentioned earlier the condensation from the dome (cell 11) to lower cells is modified. 18 outer and 32 inner structures are definded.

Each internal structure between different cells is modelled by two 'half slabs' with a very high heat transfer coefficient between them (HGAP $=1.0 \mathrm{e} 20$ $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$). This value is a recommended user input if this option is taken. It was used for each internal structure (concrete and steel). The internal structures in rooms 1 to 8 and 11 are at the beginning at $25^{\circ} \mathrm{C}$. R9.3 and R9.4 are at $22^{\circ} \mathrm{C}$. Only the structures 17 to 22 have therefore a temperature stepfunction with the warmer surface 1 at $25^{\circ} \mathrm{C}$ and the colder surface 2 at $22^{\circ} \mathrm{C}$. The structures of the outer shell (1 to 16) all have the same temperature of $22^{\circ} \mathrm{C}$ (building).

The temperature profiles at the beginning of the calculation are user input. The variable TUNIF for all structures was specified which gives a uniform initial temperature for the whole structure (each node center has the same TUNIF value).

Calculated temperature profiles for inner and outer structures 2 and 18 are shown in Fig. 14 and 15 for different cases, each at about 10 h (36018s) and at $30 \mathrm{~h}(108000 \mathrm{~s}$). The results are discussed in chapter 7.5.

The heat transfer between the outer containment surfaces and the neighbouring structures or environment has nearly no influence because of the short experimental time. Therefore only the heat transfer coefficient between the outer containment and the environment (cell 12) is modelled due to the different temperatures of the building and environment. These temperatures are user input.

This means that the outer shell structures of Table $3 b$ have all the initial building temperature of $22^{\circ} \mathrm{C}$. This was done because of the relatively thick concrete structures and the dominance of the building temperature. Only structure 47 (rupture disk in top cover is 1 cm steel) is at $10^{\circ} \mathrm{C}$ which is environment temperature.

In most calculations the recommended CONTAIN option CONDENSE was used. It means the following: The surface condensation model for all structures in the cell and for the lower cell pool is activated. The default maximum condensate film depth is 0.5 mm . There was no change possible contrary to the input description (FLMAX). Any excess condensate will drain to a lower cell which can be specified by the OVERFLOW-option. This is done according to the recommended drain flow path scheme (Fig. 10). No forced convection input table was used.

If CONDENSE is not specified heat transfer between the atmosphere and structures is modelled with a dry convective heat transfer coefficient of 6.08 $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$.

If DROPOUT is specified all suspended liquid coolant from the atmosphere is removed and deposited in the appropriate pool. This is only possible if no aerosols are present (e.g. steam). This model was used only for one case to see the influence on pressure and temperature. The difference was very small for these variables but large for saturation ratio.

Due to the low temperatures no radiation was modelled for runs case 40 to case 45. Because Siccama reported at the second ISP37 workshop (2/96) that including it had a strong effect on the aerosol behaviour in phase 5 one additional calculation (case 46) with RAD-HEAT=on was performed. The results are discussed in chapters 5.4 and 7.10.

No additional boundary specifications were used (e.g. adiabatic).
The watermass at the end of 3 calculations is given in Table 11 to check the water balance of injected steam versus the sum of the distributed water.

Two typical CONTAIN input files are given in Tab. 13 (case 42) and Tab. 14 (case 46).

5.1 Simplifications for Case 40 and Case 42

There were situations where the calculation stopped or did not converge or gave questionable results. Therefore the input complexity for the outer shell structures input was reduced. Because of the relatively short experiment (30h) it was believed that the heat would not penetrate the relatively thick outer shell.

In both calculations the thickness of structures 1 to 8 and 46 of the outer shell is calculated from the values given in Table $3 c$ and 4 by multiplying the material thickness of material X in Table 4 with the ratio of heat conductivity of reinforced concrete divided by heat conductivity of material X. For example material YTONG has heat conductivity $0.55 \mathrm{~W} / \mathrm{mK}$ and concrete $2.4 \mathrm{~W} / \mathrm{mK}$. A ratio $=4.36$ is deduced which means that the thickness of YTONG in the outer shell structures is multiplied by 4.36. But this outer structure description has the disadvantage not to take into account the different heat capacities of the materials shown in Tab. 4. That means the structure temperatures for node 1 could be o.k. but definetely not the node temperatures of the outer nodes.

Additionally, the modelling of air leakages out of different cells and the injections/removals of air or vapor in parallel caused many problems to the code. This was overcome by reducing the CONTAIN input complexity even more for case 40 :

The number of input tables was minimized in cells $3,4,5,10$ and 11 by taking only oxygen in the cell atmospheres instead of air (0.79 molfraction N 2 plus $0.21 \mathrm{O} 2)$. Because the density of $\operatorname{air}\left(1.2928 \mathrm{~kg} / \mathrm{m}^{3}\right)$ is 1.105 times smaller than that of oxygen $\left(1.4289 \mathrm{~kg} / \mathrm{m}^{3}\right)$ the air mass flow rates in case 40 were divided by this value. The free atmospheric volumes in each cell was reduced by this factor as well to have the total oxygen mass comparable with the air mass given in $/ 1 /$. The leakage- and air injection mass tables are modified accordingly (Tab. 8b and 7a).

This approach has to be seen historically. After most of the difficulties with CONTAIN were solved the complexity of case 40 was increased and the calculation repeated with air (case 42).

5.2 Air Leakage

It is not known from which rooms the air leaks out. A good approach was thought to let the air leak out of cells $3,4,10$ and 11 . The leak rates are shown in Tab. 8b,c. It is taken as stepfunction input table. From 1.13 h to $2.74 \mathrm{~h} 25 \%$ of air leaks out of cell 11 and 75% out of cells 3,4 and 10 . The 75% leakage is volume weighted for these 3 cells. From 2.74 h to 14.75 h only cells $3,4,10$ leak air. From 14.75 h to 30 h the leakage is modelled as in the first
phase with 25% from cell 11 and 75% coming from cells 3,4 and 10 . Steam leakage was small ($<5 \%$) and not taken into account for ISP37.

5.3 Aerosols

For the thermalhydraulic calculations case 40 to 44 the only aerosol modelled is steam. The number of aerosol particle sections is 10 . The volume equivalent mass median particle diameter for the initial distribution is $1.0 \mathrm{e}-8 \mathrm{~m}$ and the natural logarithm of geometric standard deviation of the particle size for the initial distribution is 0.405 .

If NaOH is included as a second aerosol with the numbers proposed in Appendix B of /1/ the CONTAIN calculation stops with error message 'problems in dynamp' after some thousand seconds depending on the time step size and other parameters.

This problem could be solved by the following input modifications:

- do not specify SURTEN = 73.0e-3
- specify 'better' diam1, diam2, tgas1, tgas2, pgas1, pgas2 values
which are shown in Tab. 14
- increase TIMINC to 2.0s after restart time 54068s till 74068s

5.4 Radiative Heat Transfer

As mentioned earlier, due to the low temperatures no radiation was modelled for the first runs (case 40 to case 45). Because Siccama reported at the second ISP37 workshop (2/96) that including it had a strong effect on the aerosol behaviour in phase 5 one additional calculation (case 46) with RAD-HEAT $=$ ON was performed. The results are discussed in chapter 7 . The rad-heat block was specified with the recommended emissivity value for water vapour (0.94 in each cell) because the value for wet NaOH was not known. The default Modak model is used for gas emittance. By specifying KMX $=1.0$ the aerosol mass concentrations calculated by CONTAIN are made proportional to the absorption coefficient. For small soot-like aerosols and a material density of $2000 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{KMX}$ is about $1.0 / 3 /$. For comparison reasons with Siccama results this value was taken as well. A geometric mean beam length GASWAL of 2.5 was used which again is is the value Siccama used. It activates the simple atmosphere to structure radiation model and is used for all structures and the uppermost lower cell layer. More information to the radiation treatment in CONTAIN is summarized in A.10. The input file for case 46 is given in Tab. 14.

6. Information to Computer Environment

The CONTAIN 1.12 Version $/ 3$ / with update C110W for use on workstations was used. It was distributed in Sept. 1994 to FZK. All calculations were run on IBM RISC 6000/370 workstation. Optimisation to level 2 of the F77 compiler gave equal results as those calculated with 1.12 Version on the IBM main frame computer M3090 and is therefore believed reliable. Higher optimisation to compiler level 3 gave wrong results for aerosols and fission product calculations if the code is not modified.

CONTAIN calculations stop if the timestep size is too coarse. The time intervalls had to be reduced to values of 1.0 s which means that the CPU-time is large. Changing the steep slopes of material injections or removals was necessary. For air-leakage only changes from linear interpolation to step functions of the input tables solved convergence problems.

The computing time for the ISP37-problem depended strongly on the time step sizes: They varied between 10000s CPU-time for coarse calculations and more than 100000 s for finest timesteps! This is for thermohydraulic calculations alone with vapor included. The calculations discussed in this paper used internal time step sizes of 1.0 s which led to a CPU-time of about 10 h .

The aerosol calculations (case 45 and 46) made many problems if the 'moving grid scheme' was used. This is necessary when the hygroscopic behaviour of NaOH is calculated ($\mathrm{SOLUBL}=$ on). Then the calculation stopped around 60000 s. A restart at 54068 s with a coarser timestep of 2.0 s for the next 20000 s did work. With 'RAD-HEAT $=$ on' the case 46 calculation could not be finished. It stopped around 90000 s and increasing ($\Delta \mathrm{t}$ up to 10 s) or decreasing ($\Delta \mathrm{t}$ down to 0.1 s) did not solve the problem.

No modifications are done to the code.

7. Discussion of the Analytical Results

The differences of the discussed CONTAIN calculations are summarized in Tab. 12. The calculations submitted to the ISP37 comparision in 10/95 are cases 40 and 42 . Both differ only in the composition of the atmospheric gas, which is pure O 2 for case 40 and $\operatorname{air}(0.79 \mathrm{~N} 2+0.21 \mathrm{O} 2$ molefractions $)$ for case 42 . They used the flux coefficients of Tab. 2 b from $/ 3 /$ which are based on Idel'chick evaluations and have both the simplified outer structures described in chapter 5.1. To separate the effect of only O 2 versus air in the atmosphere is possible by comparing case 40 with 42 .

The influence of the correct modelling of the outer structures can be studied by comparing the results of cases 42 with 44 .

Which are the correct flux coefficients - those of Tab. 2a or Tab. 2 b in /1/ is not easy to answer. Therefore with both sets calculations were made.

The CONTAIN calculation case 45 is identical with 44 but with NaOH aerosols included. No radiative heat transfer is modelled.

This effect of radiation heat transfer is studied in case 46 where the simplified GASWAL block is activated additionally.

7.1 Pressure

The measured pressure in the dome (cell 11) is shown in Fig. 4. Calculated values and the influence of the above mentioned input modifications can be seen in Fig. 11 to 13.

Fig. 11 shows the influence of the simplification O 2 vrs. air. Case 40 with only oxygen gives up to 0.1 bar higher pressures. The peak value is identical for both cases.

Comparing case 42 with 44 shows the influence of the correct modelling of the outer structures (Fig. 12). The simplification reduced the p -values by about 0.05 bar in phase 1 and phase 6 . For phase 2 to 5 they are nearly identical.

Fig. 13 gives the pressure evolutions for cases 44 and 45 and for better comparison the experimental values as well. These calculations use different flux coefficients. The difference on pressure evolution is very small (<0.02 bar) till 27 h . Then it increases to 0.2 bar at 30 h . Case 44 stays closer to the experiment ($\Delta \mathrm{p}<0.1 \mathrm{bar}$). It differs in the heat up phase by only 0.1 bar from the experiment; for the other phases the agreement is even better.

The differences in pressure evolution can be qualitatively explained if the structure surface temperatures are examined (chapter 7.5).

7.2 Temperatures

The measured and calculated temperatures are shown in Fig. 16 to 18. The opaque symbols which are connected by solid lines indicate the calculated results for case 45 . The filled symbols and dashed lines are the related experimental values. The plots are grouped according to cell locations (heights) and the measured temperatures. The calculated temperatures for the other cases differ only by some degrees. Case 45 is taken as reference because it is the aerosol calculation.

The calculated and measured temperatures of the upper cells $2,5,9$ and 11 are shown in Fig. 16. It can be seen that after about 15 h the measured
temperatures of cells 5,9 and 11 are nearly the same $\left(108^{\circ} \mathrm{C}\right)$ and of cell 2 is slightly lower $\left(98^{\circ} \mathrm{C}\right)$. Till the end of phase $1(17.2 \mathrm{~h})$ the temperatures drop in each of these cells. Due to the air/steam injection in phase 2 (till 18.23h) the temperatures increase by about $10^{\circ} \mathrm{C}$. They drop in phase 3 (till 22.7 h) by about $15^{\circ} \mathrm{C}$. In phase 4 (till 23.14 h) follows again a temperature rise of some degrees because steam/air is injected a second time in cell 5 . After a short stop of all injections (10 min) steam is injected into the lower room 3. This causes again a temperature rise in the cells till 25.26 h . In phase 6 the steam injection is switched back to cell 5 till the end of the experiment (30h). This induces additional temperature increase.

The calculations for cell 5 slightly overpredict the temperatures in phase 1 by up to $4^{\circ} \mathrm{C}$ but in phase 2 the difference increase to more than $10^{\circ} \mathrm{C}$. Phase 3 to 6 is much better calculated with only small differences. The differences for cell 11 are generally larger. Phase 4 has the largest difference of about $20^{\circ} \mathrm{C}$. For both cells the shape of the curves is well predicted. The calculation for cell 9 shows no larger temperature differences than those for cells 5 and 11 but the shape differs more from the experimental plot. This is even more obvious for cell 2 where the calculated curve differs between 20 and $50^{\circ} \mathrm{C}$ and the shape is very different. One possible explaination for this large C-E difference is the necessary modification of the actual drain flow path split to cell 2 which could not be taken into account by the calculation. This split of the condensate steam from cell 11 should have been 31.4% for cell 2. The calculations instead assumed ' 100% flow to cell 10 (Fig. 10).

The temperatures of the lower inner cells $1,3,6$ and 8 are given in Fig. 17. The measured temperatures are lower and clearly show stratification. Comparing the calculated with the experimental results leads to the following observation: the general shape for cell 1 is similar but the calculation overpredicts the measured values after 7 h by about $20^{\circ} \mathrm{C}$. The agreement for cell 3 is much better with $\mathrm{C}-\mathrm{E}$ values near $10^{\circ} \mathrm{C}$ and smaller. During the heat up phase till 17 h CONTAIN overpredicts the temperature by up to $20^{\circ} \mathrm{C}$ for cell 6 . The following period is very well calculated with C-E being smaller than $5^{\circ} \mathrm{C}$. Cell 8 shows comparable behaviour. But during phase 1 the C-E reaches $40^{\circ} \mathrm{C}$ at 8 h . In phase 2 C - E decreases to about $10^{\circ} \mathrm{C}$. The next phases 3 to 5 give smaller differences. At 30 h CONTAIN calculates a $15^{\circ} \mathrm{C}$ higher temperature than measured.

The temperatures of the outer ring cells 9,10 and 4 are depicted in Fig. 18. The temperatures again show stratification. For better comparison the temperatures of cell 9 are included. The agreement for cell 10 is very good with C -E differences being smaller than $10^{\circ} \mathrm{C}$. Cell 4 is badly situated in the model containment to be simulated with a lumped parameter code. Connections and heat transfers are difficult to be modeled correctly. It is not surprising that the steep temperature increase (till 8 h) which is calculated is not found
for the experiment where the maximal value is reached 6 hours later. But than the differences stay below $20^{\circ} \mathrm{C}$ and the general shape is comparable.

Due to the measured inner cell stratification in cells $4,6,8,9$ and 10 one should only qualitatively compare the numbers with calculations because CONTAIN assumes for each node a well mixed atmosphere. Which experimental temperature curve at which time has to be taken for comparison is difficult to decide (see Fig. 6 and chapter 3.3).

But taking all calculated results one may conclude that the overall trend is well predicted in most cells, especially in those nodes where major aerosol effects take place (nodes $3,5,9,10$ and 11). Though the subdivision was coarse in z -direction the stratification is qualitatively correct calculated by CONTAIN.

7.3 Atmospheric Flow Velocities

The measured and calculated flux velocities for case 42 are shown for 3 connections:

- from cell 5 to cell 11 in Fig. 19
- from cell 7 to cell 11 in Fig. 20
- from cell 7 to cell 8 in Fig. 21.

It is obvious that calculations and measurements in Fig. 19 and 20 agree quite well (a minimum velocity of $0.2 \mathrm{~m} / \mathrm{s}$ is necessary to initiate turbine flow meter measurement - the error band is then $0.15 \mathrm{~m} / \mathrm{s}$. With the flow meter used no flow direction was measured. The calculations give this information as well). But for phases 4 and 5 (22.7 to 25.3 h) CONTAIN calculates a flow velocity of $0.5 \mathrm{~m} / \mathrm{s}$ and a reversal of flow direction for flux 7 to 8 as is shown in Fig. 21. This is in contradiction to the experiment where no flow velocity is measured at that time intervall.

7.4 Structure Temperatures

The temperature profiles at the beginning of the calculation are user input. The variable TUNIF for all structures was specified which gives a uniform initial temperature for the whole structure (each node center has the same TUNIF value). Calculated temperature profiles for outer structures 2 and inner structure 18 are shown in Fig. 14 and 15, each at about 10h (36018s) and at $30 \mathrm{~h}(108000 \mathrm{~s})$.

The surface temperature differences between case 42 and 44 (Fig. 14 and 15) help to understand the pressure differences discussed in chapter 7.1. Structure 2 is located in cell 9 and part of the outer shell. It was chosen as an example of the outer structures which were modelled differently in cases

40,42 and 44 to 46 . TUNIF was $22^{\circ} \mathrm{C}$. The sharp increase of the temperature of structure 2 near the surface for case 44 results from the coating material. It has a much stronger influence on the thermal hydraulics than expected and should therefore not be neglected. The insulation effect of the air gap at 45 cm depth is well shown.

The simplifications made for cases 40 and 42 give too small structure temperatures at the outer surfaces because the coating was not modeled by the proposed method (see chapter 5.1). This leads to lower pressure values which only apparantly agrees better with the experiment.

Fig. 15 shows as an example the temperature profile of an inner structure which is positioned half in cell 6 (left) and half in cell 10. At the beginning of the calculation cell 6 was at $25^{\circ} \mathrm{C}$ and cell 10 at $22^{\circ} \mathrm{C}$. The modeling of inner structures was the same for each of t he calculations. The shape of each temperature profile (case 40 and 42) is similar and is typical also for the other cases calculated.

7.5 Air Mass

The total air and vapor masses calculated by CONTAIN are shown in Fig. 22 for case 42 which stands for cases 44,45 and 46 as well. The total air mass has to be compared with the numbers determined by the experimentalists. For better comparison its profile is given in Fig. 23 (taken from /1/, page 61). The agreement for total air mass is very good.

7.6 Water and Vapour Mass

The water and vapor masses at the end of 3 calculations are given in Table 11 to check the water balance of injected steam versus the sum of the distributed water. The differences between the calculations are small. The sum of the total injected steam mass agrees well with the calculated values. The evolution of the total vapor mass for case 42 is shown in Fig. 22.

7.7 Sump Temperatures

The sump temperatures are generally overestimated in the calculation because the split of the condensate in cell 11 does not agree with the experimental drain flow path (Fig. 10). This can be seen in Fig. 24 where the measured and calculated sump temperatures are shown as a matter of completeness.

7.8 Saturation Ratios (Humidities)

The detected fog and measured humidities are given in Tab. 9 for phases 2 to 6 for selected rooms and different heights in room 9 . With the coarse nodalisation of ISP37 one is not able to calculate at the four given positions the humidities. The values at position R9 (1.0m) should represent cell 10 , the mean of R9 (3.6m) and R9 (6.0m) refers to cell 9 and the mean of R9 (7.6m) and R9 (6.0 m) represent cell $11 . \mathrm{R} 1, \mathrm{R} 3, \mathrm{R} 5, \mathrm{R} 6, \mathrm{R} 7$ and R 8 refer to cells $1,3,5,6,7$ and 8 . The heat up phase is not shown. During the aerosol injection of phase 2 in most of the cells fog formation ($\mathrm{rh}=100 \%$) is detected. Then the injection is stopped and for about 4.5 h superheated (dry) conditions are found. In this dry surroundings the aerosol settling is measured (phase 3). The second injection of aerosols (phase 4) is followed by the mixing phase 5. This gives "wet" conditions in each of the cells. During phase 5 and 6 aerosol depletion in wet surroundings can be studied.

Some calculated results are shown in Fig. 25 for cells $5,8,9$ and 11 and compared with experimental relative humidities. CONTAIN calculates a saturation ratio which is defined as the ratio of the total mass of coolant (liquid plus vapor) present in the atmosphere to the amount that would be present if the gas temperature corresponded to the dew point, with all other conditions held fixed. Thus, values of saturation ratio less than one represent a superheated condition, while values greater than one represent saturated conditions with suspended liquid coolant. Liquid water on aerosols is not included in this ratio.

To compare the experimental results with the calculated values the given humidities were divided by 100 . But then values larger than one are derived. This is not easy to understand. If one accepts that those measured values are equal to one and the calculated saturation rates larger than one are defined to be 1.0 some remarks are possible:

- for cell 9 the C-E difference is very large (10 to 40%) at each time
- for cell 5 the C-E difference is large (30%) between 19 to 24 h
- for cell 8 the agreement is very good besides of phase 4 (around 23h)
- for cell 11 the agreement again is good, but not from 26.2 to 27 h .

Due to difficulties in measuring rh near 100% with higher accuracy (see chapter 3.1) than 10% the reader is asked to compare the calculated saturation values shown in Fig. 25 with the experimental values of Tab. 9 because the rhs shown there are only qualitative numbers.

$7.9 \mathbf{N a O H}$ Aerosol Concentrations (RADHEAT $=$ off)

The experimental aerosol concentrations are given together with case 45 results in Fig. 26 to 28 . The aerosol depletion is very well calculated for the
dome (cell 11). Shape and absolute values agree quite well. The accuracy of the measurements are in the order of $1 . e-06 \mathrm{~kg} / \mathrm{m}^{3}$ as is illustrated by the scatter of the last 3 measured values.

The NaOH -aerosol diameter increases rapidly (Fig. 30) because of its hygroscopy. This leads to very fast depletion of the aerosol particles - two orders of magnitude in about two hours! CONTAIN calculates conservatively smaller depletion rates in phase $3(50 \%)$. The results of phase 4 are reproduced even better.

Fig. 27 shows the results for cell 9. This cell is located in the upper outer ring of the containment. Due to this location only 18% of the maximal aerosol concentration measured in the dome are reached. The depletion is again in qualitative agreement with the experiment. The calculated highest concentrations are of the same order. The decrease in phase 3 is underpredicted by CONTAIN by at least a factor of 20 . This again could be the result of the poor splitting of the condensate drain flow from cell 11 . Cell 9 should get 56% of this condensate but in the calculations it is diverted directly to cell 10.

Fig. 28 summarizes the measured and calculated NaOH concentrations in the lowest located cell 3 . Only a small amount of the injected aerosol reaches this part of the model containment. The maximum experimental concentration is less than 2% compared to the initial dome concentration. CONTAIN calculates a much higher transport to cell 3 (14\%). The measured decrease of the aerosol concentration in phase 3 is nearly two orders of magnitude while the code calculates only one order. The calculated concentration after the second injection is overpredicted by a factor of ten. The shape of the depletion for this phase is comparable with the experimental one.

7.10 NaOH Aerosol Concentrations (RADHEAT =on)

The influence of radiative heat transfer (RADHEAT $=$ on) is shown in Fig. 29. Cases 45 and 46 results are compared. The CONTAIN calculation with RADHEAT on stopped after about 25 h with negative radii of the aerosol particles. The comparison of both calculations show that during dry conditions (phase 3 and 4) results in cells 9 and 11 are nearly identical. The concentrations in cell 3 are smaller if radiation heat transfer is allowed by up to a factor of three but the shape is similar. The difference increases strongly for the time after the second aerosol injection (wet conditions). With radiation heat on the decrease of the aerosol concentration is extremly faster than for case 45 . This is in contradiction to the observed values.

These differences are reflected also when the mass median diameters are compared. In cell 3 the radiation effect leads to higher aerosol diameters which results in much smaller aerosol concentrations. There is nearly no
difference for cells 9 and 11 till 23 h neither for aerosol mean diameters nor for aerosol densities. For cell 9 the radiation effect leads to slightly smaller diameters with only minor effects on the aerosol densities. It is much larger for cells 3 and 11 where the diameters are calculated higher by factors of up to 3 .

8. Conclusions

This report presents results of a series of containment thermalhydraulic and aerosol studies made with the multicompartment code system CONTAIN 1.12 for the VANAM experiment M3 which was performed at the Battelle Model Containment in Frankfurt. This work was done as a participation to the open international standard problem OECD/CSNI/ISP-37.

The VANAM M3 test was planned to give experimental data for verification of aerosol computer codes and test their thermohydraulic and aerosol results on such a large integral multicompartment containment experiment.

Five different calculations are compared in this paper. The influence of simplifications was studied for example by

- taking only oxygen instead of air as atmospheric gas
- modeling the outer structures only by concrete
- using flow coefficients according to Idel'chick or improved values
- including radiation transport effects.

The calculated pressure is within the accuracy that can be obtained regarding the uncertainties of the boundary conditions. CONTAIN is able to simulate atmospheric stratifications as observed in the experiment. Due to the coarse nodalisation the observed stratification inside of some rooms cannot be calculated because the lumped parameter code CONTAIN assumes that the atmosphere in these rooms is well mixed. A higher subdivision would certainly result in a better prediction of the observed stratification.

VANAM M3 used water soluble NaOH aerosol to study a "dry" aerosol depletion phase and later after a second aerosol injection the behaviour in a "wet" environment. Although the depletion rate of the hygroscopic NaOH aerosol depends strongly on the relative humidity (rh) of the atmosphere and the volume condensation rate at $\mathrm{rh}=100 \%$ the aerosol behaviour is predicted surprisingly well. The aerosol densities differ by more than an order of magnitude in the different compartments. Therefore one needs a multicell code like CONTAIN with its highly developped aerosol routines which include hygroscopic aerosol treatment. Additionally, the aerosol transport to different cells is calculated qualitatively correct.

A sensitivity calculation with respect to the effect of radiation heat transfer shows that a simple description of this effect has a strong influence on aerosol concentrations during bulk condensation in a wet environment.This is in contradiction to the experiment and has to be studied in future.

Appendix: Theoretical Models used in CONTAIN 1.12

CONTAIN treats a containment system as a network of interconnected compartments (cells or nodes). Gas flow, liquid flow and/or heat flow is possible between them. For computational purposes, each cell/node is divided into two subcells: an upper and a lower cell. The upper cell consists of the gaseous atmosphere and the heat transfer structures that are in contact with it. The lower cell can include a coolant pool, the concrete floor etc. The lower cell models are optional, some cells may consist only of the atmosphere and the structures.

A. 1 Cell Atmosphere

The cell atmosphere model treats the atmosphere thermodynamics, condensation and evaporation, heat transfer to structures, aerosol behaviour, the intercell flow of gases and aerosols, etc. The atmosphere treament is zero dimensional, i.e. the atmosphere is considered to be thoroughly mixed. Where a pool is modelled, it can be a significant source of gases, aerosols and thermal energy injected to the atmosphere in that node. The structures in the compartment may be treated as thermal sources or sinks. Material can be added or removed via the interconnecting flow paths, by lower cell models, or by user specified source tables.

Variables of state (such as temperature, pressure and enthalpy) are calculated according to equilibrium thermodynamics. External heat sources and sinks, as well as coolant phase changes, are taken into account. Sources to the atmosphere include heat transfer from structures, mass and energy from the lower cell, flows into the cell from other cells, and user-defined sources.

The condensation onto or evaporation from structure surfaces is modelled. It can occur simultaneously with condensation and evaporation on/from aerosols. The aerosol treatment includes models of three agglomeration processes: Brownian, gravitational and turbulant. In addition four deposition processes are considered: gravitational settling, diffusiophoresis, thermophoresis and particle diffusion.

A. 2 Intercompartment Flow

Atmospheric flow between cells is modelled as user-specified or pressure driven orifice flow. The user specifies either the flow rate or the geometry of the flow paths between interconnected pairs of cells. The material transferred through the path is a portion of the atmosphere of the upstream compartment. Additionally engineering vents allow to model more than the above mentioned flow-paths between cells. Besides that the user may define additionally engineering vents. No mass or energy is considered to be in a
flow path at a given time, and no losses of mass or energy occur in flow paths or vents.

Two simple treatments of the liquid portion of the atmosphere condensable material inventory are available: the default treatment leaves the liquid in the atmosphere (e.g. as steam) to flow with the gas and to contribute to its heat capacity; the alternative (dropout) specifies that any such liquid is instantaneously removed from the atmosphere of a cell and placed in the pool of that cell, if present. Of course, the most accurate treatment lies between these extremes. For ISP37 both types of calculations resulted in nearly identical pressure and temperature values.

There are different ways to calculate the flow in a flow path: it can be calculated from the pressure difference across the flow path in a manner that considers the inertia of the material in the flow path as well as the frictional flow resistance of the flow path itself. Alternatively, the flow may be set to a user-specified mass flow rate or a volumetric flow rate independent of the pressure difference (for further details see $/ 1 /$, pages 2-13ff). Both models are used. Please notice, that CONTAIN defines flow coefficients differently from $/ 1 /$. They are half of the values given in Tab. $2 \mathrm{a} / \mathrm{b}$ of $/ 1 /$. Details are given in $/ 3 /$, pages $2-13 \mathrm{ff}$.

A. 3 Lower Cell and Sump Models

The lower cell system of models differs from the upper cell system primarily in that it deals with liquid and solid layers, as opposed to a gaseous atmosphere. The lower cell may include a concrete layer, intermediate layers and a coolant pool layer. Above an atmosphere layer has to follow. The lower cell is treated like a coupled thermal system, with heat transfer coefficients between layers. Coolant can condense or evaporate from the surface.

In the calculations done for ISP37 the lower cells in nodes 3,4,6,8 and 10 consist of a system of nodalized concrete (5 layers), a coolant pool (1 layer), and the atmosphere layer. Each layer is thermally coupled to adjacent layers by interlayer heat transfer coefficients which are by default internally calculated. The atmosphere layer serves merely as a collector of mass and energy which are generated by other layers and are to be passed to the upper cell.

The boiling model is activated in each of the calculations considered here which means that the pool is taken thermally coupled to the other lower cell nodes; however, any energy that would rise the pool above saturation is kept separate and passed to a seperate routine to determine the boiling rate. This energy is determined by iteration if the conduction routine returns a pool temperature above saturation temperature.

The draining of coolant from the atmosphere is modelled for all the calculations. The condense option is used. Then the coolant component is added to the condensate film on the deposition surface. If this film becomes too thick the excess coolant runs off to the pool in a specified overflow cell. Condensation heat is transferred to the pool. The Nusselt number on the atmosphere side of the atmosphere-pool interface is calculated as if the pool were a floor structure with a characteristic length equal to the pool diameter and a 'wall' temperature equal to the bulk pool temperature. The pool surface temperature is calculated self-consistently from the heat flux into the pool. Heat transfer coefficients and correlations are those described in $/ 3 /$, pages 2-106 ff. and are not modified.

A. 4 Drainage Simulation

When the condensate film thickness reaches a maximum thickness, any additional condensate is considered to drain from the structure surfaces and to flow into the pool of the cell specified by the overflow keyword. As shown in Fig. 10 the condensate of cell 1 flows to the sump of cell 3, 2 to 8,7 to 8,9 to 10,5 to 6 and 11 to 10 . The last is different to the proposed splitting into cells $9,7,2,5$ and 4 . This cannot be modelled in CONTAIN. Only one cell may be specified to take the overflow.

A. 5 Boundaries

The inner boundary of a structure is always inside the cell in which the structure is defined and exchanges heat with the atmosphere through condensation, evaporation or radiation.. From 7 possible outer boundary conditions mentioned in $/ 3 /$ two are used: (1) uniform temperature condition at the beginning and (2) the structure is connected to the outer boundary of a structure in another cell.

A. 6 Material Properties

The properties of concrete, steam, water, oxygen and steel were taken from the internal libraries of CONTAIN /3/.

A. 7 Heat Transfer Model

The heat transfer from the containment atmosphere to the structures and the sump surfaces takes convection, condensation and evaporation into account. No radiation effects are treated for ISP37, because the temperatures are so low that its influence is thought to be negligible. For case 46 radiation was included. Its influence is discussed in A.10.

Heat transfer within each structure is handled by solving a one-dimensional heat conduction equation for the materials specified for the structure.

CONTAIN allows for planar, cylindrical or spherical geometries. Planar is used here as proposed in $/ 1 /$. The type of orientation of the structure may be either a roof, wall or floor. Different heat transfer correlations are used with respect to aerosol deposition.

Structures may have two surfaces designated as inner and outer. The inner surface is always inside the cell and exchanges heat with the atmosphere through convective heat transfer and through condensation and evaporation of coolant. The code calculates a forced convective velocity for each structure surface from flow path velocities. Convection and condensation models are described in detail in /3/ pages 2-66 ff. for the upper cell and in pages 2-106 ff. for the lower cell.

A. 8 Coupling of Atmosphere and Water, Fog Formation

Under saturated conditions steam and water in a node would be in thermal equilibrium. They have saturation temperature. If temperature changes, either water evaporates or steam condenses in order to conserve the equilibrium. CONTAIN calculates the saturation ratio as the ratio of the total mass of coolant (liquid plus vapour) present in the atmosphere to the amount that would be present if the gas temperature corresponded to the dew point, with all other conditions held fixed. Thus, values of the saturation ratio less than one represent a superheated condition, while values greater than one represent saturated conditions with suspended liquid coolant. Liquid water on aerosols is not included in this ratio.

A. 9 Aerosol Treatment

The MAEROS aerosol model forms the basis for CONTAIN aerosol models in either wet or dry environments. The model uses a number NSECTN of size classes, to represent the particle size distribution for the suspended aerosols. One may specify up to 8 aerosol components. CONTAIN tracks the composition of a particle as a function of particle size according to the agglomeration and condensation history of the particle. Condensed water can be one of the aerosol components; the condensation and evaporation of water vapour, as they affect the aerosol composition and size, are modelled. The size distribution parameters govern the initial distribution and the distribution of sizes in a source of new particles. CONTAIN needs AMEAN and AVAR values to run a aerosol calculation. AMEAN is the volume-equivalent mass median diameter and AVAR is the natural logarithm of the geometric standard deviation with respect to diameter.

The lower and upper diameters for the particle sizes considered in the calculation are given by DIAM1 and DIAM2, respectively. The calculation of the coefficients is somewhat costly. Therefore they are either read from a file or calculated on the first call to the aerosol model for use throughout the
entire problem. Using a constant set of coefficients imposes some modeling constraints:

- The aerosol material density is assumed to be the same for all components.
- The particle shape is independent of the particle composition.
- The medium in which the aerosol processes are assumed to occur has fixed composition and is taken to be air.

A fixed set of aerosol coefficients can only be defined for a given temperature and pressure interval. However, the aerosol module actually calculates four sets of coefficients at points given by combinations of two temperatures (TGAS1 and TGAS2) and two pressures (PGAS1 and PGAS2). Changing thermal-hydraulic conditions during the problem are accommodated by interpolating between these sets of coefficients. These values should be chosen to bound the temperatures and pressures expected.

The ordinary differential equations governing agglomeration, deposition and condensation on aerosols are integrated forward in time using a Runge-Kutta method with its own timestep control. These three effects are assumed to occur in a closed cell during the integration, and changes in the aerosol population due to intercell flow are incorporated separately at every system timestep.

Two methods are available for computing aerosol dynamics with respect to condensation or evaporation of water to or from aerosol particles. These methods are the fixed- and moving-grid methods. The solubility effect of hygroscopic NaOH can only be calculated with the moving-grid method. This method is taken if SOLAER (soluble aerosol) is included in the input. The algorithm used is based on the method of characteristics and permits aerosol of the same size to be of different chemical composition during the condensation calculation. However, after the effects of condensation are calculated over a system timestep, the aerosol is remapped onto the fixed grid used for coagulation and deposition calculations. Thus, after the aerosol calculations are completed for a time step, all particles in a section have the same composition. For each timestep the growth or evaporation of a group of particles is calculated based on the assumed steam concentration at the end of the timestep. The water mass balance is determined from the amount of water condensed or vaporized and the assumed steam concentration. The code iterates on the end-of-timestep steam concentration until the water mass balance is satisfied.

Aerosols are allowed to flow between cells through regular flow paths and engineered vents. Deposition within such flow paths is not modelled.

A. 10 Aerosol Treatment with Respect to Radiation

If temperatures are high the heat transfer is affected by the large quantities of water vapour that are present in a containment after a PWR core melt accident. Aerosols contribute to the scattering and absorptivity of the atmosphere and therefore their effects should also be considered in the radiative process. CONTAIN allows through the RAD-HEAT input block to calculate radiative heat transfer within a cell by two different methods.

The simpler GASWAL model was used which only treats the radiative heat transfer between the atmosphere and the structures in the cell and between the uppermost lower cell layer. The net enclosure method (ENCLOS) selfconsistently treats the direct radiative heat transfer among all structures and the lower cell. Both models make use of the gas radiation properties that account for the absorptivity of aerosols and the emissivity of vapour. The default Modak model is used for gas emittance. The RAD-HEAT block was specified with the recommended emissivity value for water vapour (0.94 in each cell) because the value for wet NaOH was not known.

By specifying $K M X=1.0$ the aerosol mass concentrations calculated by CONTAIN are made proportional to the absorption coefficient. For small soot-like aerosols and a material density of $2000 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{KMX}$ is about 1.0 . If NaOH aerosols are small and soot-like is not known. Nevertheless 1.0 was taken.

A geometric mean beam length of 2.5 was used. It activates the simple atmosphere - to - structure radiation model and is used for all structures and the uppermost lower cell layer. This describes the fact that usually the enclosure is gray and not black, which means that some of the radiation striking it is reflected back into the gas and to other parts of the enclosure. Multiplication of the net radiative heat transfer flux q between the gas-aerosol mixture at gas temperature Tg and a black enclosure at temperature Tw by the surface emissivity, allows for proper reduction of the primary beams (gas - to -surface or surface - to - gas). With the user supplied EMSVT and GASWAL values the gas absorptivities are calculated from the Modak model by using Kirchhoff's law of radiation.

The input file for case $46($ RAD-HEAT $=\mathrm{ON})$ is given in Tab. 14.

9. Literature

/1/ M. Firnhaber, S. Schwarz, G. Weber, "Specification of the International Standard Problem ISP 37," GRS, Köln, April 1995

/2/ T. Kanzleiter, "VANAM-Mehrraum-Aerosolabbau-Versuch M3 mit löslichem Aerosolmaterial," Techn. Fachber. BleV-R67.098-304, Battelle Frankfurt, Juli 1993
/3/ K. K. Murata et. al., "Users Manual for CONTAIN 1.1," NUREG/CR-5026, Sandia National Laboratory (1989)
/4/ "Deutsche Risikostudie Kernkraftwerke, Phase B", GRS-A-1600, Juni 1989, GRS Köln

10. Tables

Tab. 1a: Volumes, node centers and sump floor area (case 40)
Tab. 1b: Volumes, node centers and sump floor area (case 42)
Tab. 2a: Openings connecting the compartments (cases 40,42 and 44)
Tab. 2b: Openings connecting the compartments (cases 45 and 46)
Tab. 3a: Structure input for internal structures
Tab. 3b: Structure input for outer zones (no second surface defined)
Tab. 3c: Material and thickness of the structural elements 1 to 8 and 46
Tab. 4: Material properties (according to /1/)
Tab. 5: Initial and boundary temperatures (according to $/ 1 /$)
Tab. 6: Steam injection rates to cells 3 and 5
Tab. 7a: Air removal and injection rates (case 40)
Tab. 7b: Air removal and injection rates (case 42)
Tab. 8a: Proposed leakage rate of the containment /1/
Tab. 8b: Oxygen leakage rate of the containment (case 40)
Tab. 8c: Air leakage rate of the containment (case 42)
Tab. 9: Detected fog and measured humidities in VANAM M3
Tab. 10: Aerosol injection data /1/
Tab. 11: Watermass at the end of calculations case 40, 42 and 44
Tab. 12: Differences of CONTAIN calculations
Tab. 13: Input for CONTAIN calculation case 42
Tab. 14: Input for CONTAIN calculation case 46

Table 1a: Volumes, node centers and sump floor area (case 40)

Cell		Volume $\left(\mathrm{m}^{3}\right)$	Node center (m)	Sump floor area $\left(\mathrm{m}^{2}\right)$
$/ 1 /$	CONT			
R1	01	14.48^{*}	2.3	0
R2	02	23.53^{*}	4.4	0
R3	03	25.34^{*}	-0.15	11
R4	04	12.67^{*}	2.0	1
R5	05	37.10^{*}	3.5	$0 * *$
R6	06	37.10^{*}	0.5	8
R7	07	37.10^{*}	3.5	$0 * *$
R8	08	37.10^{*}	0.5	8
R9d	11	194.57^{*}	6.8	0
R9.3	09	84.16^{*}	3.65	0
R9.4	10	63.35^{*}	1.1	27

*: The volumes given in Tab. 1 of $/ 1 /$ are divided by 1.105 .
**: This value is different from value in Tab. 1 of /1/

Table 1b: Volumes, node centers and sump floor area (case 42)

Cell		Volume $\left(\mathrm{m}^{3}\right)$	Node center (m)	Sump floor area $\left(\mathrm{m}^{2}\right)$
$/ 1 /$	CONT			
R1	01	16	2.3	0
R2	02	26	4.4	0
R3	03	28	-0.15	11
R4	04	14	2.0	1
R5	05	41	3.5	$0{ }^{* *}$
R6	06	41	0.5	8
R7	07	41	3.5	$0{ }^{* *}$
R8	08	41	0.5	8
R9d	11	215	6.8	0
R9.3	09	93	3.65	0
R9.4	10	70	1.1	27

**: This value is different from value in Tab. 1 of /1/ because in both cells there is no sump defined

Tab.2a Openings connecting the compartments (cases 40,42 and 44)

Opng.	Connecting nodes	Elevation- path (m)	Area $\left(\mathrm{m}^{2}\right)$	Average length(A/l)	cfc^{1}
Estg	1 with 8	$1.67->1.67$	0.04	2.0	0.10^{2}
Rk1	1 with 6	$1.70->1.70$	0.06	0.08	0.25
RRo	11 with 9	$5.20->4.90$	29.10	90.0	0.225^{2}
RRu	9 with 10	$2.20->2.20$	32.00	200.0	0.005
U29	11 with 2	$5.15->5.15$	16.33	200.0	0.28
U36	3 with 6	$0.20->0.20$	1.13	1.3	0.64
U38	3 with 8	$0.20->0.20$	1.30	1.5	0.605
U49B	4 with 11	$5.10->5.10$	2.31	200.0	0.365
U56	5 with 6	$2.275->1.925$	1.68	5.0	0.63
U57	5 with 7	$3.30->3.30$	1.40	5.6	0.375
U59B	5 with 11	$4.825->5.175$	1.82	5.5	0.675
U78	7 with 8	$2.275->1.925$	1.68	5.0	0.63
U79B	7 with 11	$4.825->5.175$	2.25	6.6	0.655

${ }^{1}$: Flow loss coeff. is half of the avg. flow coeff. from Tab. 2 a in $/ 1 /$.
${ }^{2}$: There is no value given in Tab. 2 a in $/ 1 /$.

Tab. 2 b Openings connecting the compartments (cases 45 and 46)

Opng.	Connecting nodes	Elevation- path (m)	Area $\left(\mathrm{m}^{2}\right)$	Average length(A/l)	cfc^{1}
Estg	1 with 8	$1.67->1.67$	0.04	2.0	1.35
Rk1	1 with 6	$1.70->1.70$	0.06	0.08	1.35
RRo	11 with 9	$5.20->4.90$	29.10	90.0	0.5
RRu	9 with 10	$2.20->2.20$	32.00	200.0	0.5
U29	11 with 2	$5.15->5.15$	16.33	200.0	0.5
U36	3 with 6	$0.20->0.20$	1.13	1.3	1.35
U38	3 with 8	$0.20->0.20$	1.30	1.5	1.35
U49B	4 with 11	$5.10->5.10$	2.31	200.0	0.5
U56	5 with 6	$2.275->1.925$	1.68	5.0	1.35
U57	5 with 7	$3.30->3.30$	1.40	5.6	1.35
U59B	5 with 11	$4.825->5.175$	1.82	5.5	1.35
U78	7 with 8	$2.275->1.925$	1.68	5.0	1.35
U79B	7 with 11	$4.825->5.175$	2.25	6.6	1.35

${ }^{1}$: Flow loss coeff. is half of the avg. flow coeff. from Tab. 2 b in $/ 1 /$.

Table 3a: Structure input for internal structures

Structural Element	Mat.	Side1 O	Side2	$\begin{gathered} \text { Area } \\ \mathrm{m}^{2} \end{gathered}$	Thickness m
Internal Structures					
17	C	8V	10 v	28.4	0.30
18	C	6 V	10 v	28.4	0.30
19	C	4 v	10 v	4.8	0.30
20	C	7 v	9 V	36.8	0.30
21	C	5 v	9 V	36.8	0.30
22	C	4 v	9 v	6.2	0.30
23	C	3 v	8 V	17.8	0.56
24	C	3 v	6 v	17.8	0.56
25	C	3 v	4 V	3.2	0.53
26	C	1 V	8 V	7.2	0.80
27	C	1 V	6 v	7.2	0.80
28	C	1 V	4 v	2.2	0.80
29	C	1v	7 v	5.9	0.80
30	C	1v	5 v	5.9	0.80
31	C	2v	7 v	13.9	0.37
32	C	2 V	5 v	13.9	0.37
33	C	2 V	4 V	2.3	0.37
34	C	7 f	8 r	14.9	0.35
35	C	5 f	6 r	12.9	0.35
36	C	11 f .	7 r	17.3	0.35
37	C	11f	5 r	17.5	0.35
38	SS	2 f	1 r	3.1	0.01
39	C	5 v	7 v	4.0	0.25
40	C	6 V	8 v	4.1	0.25
41	C	4 V	5 v	4.4	0.25
42	C	4 v	7 v	4.4	0.25
43	C	4 v	6 v	4.4	0.25
44	C	4 v	8 V	4.4	0.25
45	C	2 f	1 r	14.3	0.92
46 part of outer shell					
47 part of outer shell					
48	C	1f	3 r	7.0	0.30
49	SS	If	3 r	2.0	0.01
	SS	If		1.3	0.01
51 (door)	SS	10 v	build.	0.4	0.01 *
v : vertical w		r: roof	f: floor	s: sump	

Table 3b: Structure input (no second surface defined *)

Structural Element	Mat.	Surface Sidel Side2 Orientation		Area m^{2}	Thickness m
Outer Shell					
1	C*	10v*	10*	80.5	$1.884^{* *}$
2	C*	$9 \mathrm{~V}^{*}$	9*	37.7	1.884 **
3	C^{*}	$9 \mathrm{~V}^{*}$	9*	66.6	0.466 **
4	C*	$11 \mathrm{v}^{*}$	11*	16.5	$1.984 * *$
5	C*	11v*	11^{*}	29.1	0.566 **
6	C*	11r*	11*	86.3	1.436 **
7	C*	$11 r^{*}$	11*	7.8	1.410 **
8	C*	$11 r^{*}$	11*	19.0	$1.030^{* *}$
46	C*	$11 \mathrm{r}^{*}$	11*	8.7	$1.216^{* *}$
9	C	10s	10*	32.3	3.55
10	C	8 f	8*	18.8	3.55
11	C	6 f	6*	18.8	3.55
12	C	4f	4*	2.0	3.55
13	C	8 s	8*	7.7	2.55
14	C	6 s	6*	7.7	2.55
15	C	4 s	4*	1.2	2.55
16	C	3 s	3*	11.1	2.25
47	SS	11 r	11*	4.2	0.01

v : vertical wall
r: roof
f: floor s: sump
*: means that the values differ from / $1 /$.
**: Thickness of simulant concrete for cases 40 and 42
All structures have a uniform temperature (TUNIF) at $t=4068 \mathrm{~s}$ of 295 K $\left(22^{\circ} \mathrm{C}\right)$. For structure 47 it is 283 K .

Table 3c: Material and thickness of the structural elements 1 to 8 and 46

Structural element	Materials	Thickness m	Thickness of the simulant concrete which was used only for case 40 and $42^{* *}$	
1 and 2	coating	0.002	0.016	sum $=1.884 \mathrm{~m}$
	concrete	0.45	0.45	
	air gap	0.02	0.384	
	YTONG	0.24	1.05	
3	coating concrete	0.002	$0.016)$	$\mathrm{sum}=0.466 \mathrm{~m}$
		0.45	$0.45\}$	
4	coating concrete air gap YTONG	0.002	0.016	sum $=1.984 \mathrm{~m}$
		0.55	0.55	
		0.02	0.384	
		0.24		
5	coating concrete	0.002	0.016 \}	sum $=0.566 \mathrm{~m}$
		0.55	$0.55\}$	
6	coating concrete	0.002		sum $=1.436 \mathrm{~m}$
		1.42	1.42 \}	
7	steel liner concrete light conc.	0.002	0.00 >	sum $=1.410 \mathrm{~m}$
		0.52	$0.52\}$	
		0.52	0.89 S	
8	steel liner light conc.	0.002	0.00 \}	$\operatorname{sum}=1.030 \mathrm{~m}$
		0.60	$1.03\}$	
46	coating concrete	0.002		$\text { sum }=1.216 \mathrm{~m}$
		1.20	$1.20\}$	

** means that the values differ from /1/.
In case 40 and 42 the thickness of structures 1 to 8 and 46 of the outer shell is calculated from the values given in Table $3 c$ and 4 by multiplying the material thickness of material X in Table 3 c with the ratio of heat conductivity of reinforced concrete divided by heat conductivity of material X. For example material YTONG has heat conductivity $0.55 \mathrm{~W} / \mathrm{mK}$ and concrete $2.4 \mathrm{~W} / \mathrm{mK}$. Ratio $=4.36$ which means that the thickness of YTONG in the outer shell structures is multiplied by 4.36 .

Table 4: Material properties (according to /1/)

Material	Density $\mathrm{kg} / \mathrm{m}^{3}$	Heat Capacity $\mathrm{J} / \mathrm{kgK}$	Heat Cond. W / mK	Ratio ${ }^{1}$
Heavy concrete	2400	880	2.4	$2.4 / 2.4=1.0$
Light concrete	2000	880	1.4	$2.4 / 1.4=1.71$
YTONG bricks	1000	880	0.55	$2.4 / 0.55=4.36$
Coating	1500	1200	0.3	$2.4 / 0.3=8.0$
Steel	7850	480	45.0	$2.4 / 45.0=0.05$
Air gap	1.25	1000	0.125	$2.4 / 0.3=19.2$

${ }^{1}:$ Ratio $=$ heat conductivity of heavy concrete divided by heat conductivity of material X .

Table 5: Initial and boundary temperatures (according to /1/)

Cell	Initial Atmospheric Temperatures
1 to 8	$298 \mathrm{~K}=25^{\circ} \mathrm{C}$
11	$298 \mathrm{~K}=25^{\circ} \mathrm{C}$
9 and 10	$295 \mathrm{~K}=22^{\circ} \mathrm{C}$

Boundary	Fixed Temperature
Environment	$283 \mathrm{~K}=10^{\circ} \mathrm{C}$
Soil	$283 \mathrm{~K}=10^{\circ} \mathrm{C}$
Building	$295 \mathrm{~K}=22^{\circ} \mathrm{C}$

All structures of the outer shell have at $t=4068$ s the uniform temperature of 295 K .

Table 6: Steam injection rates to cells 3 and 5

Time			Mass flow rate $->5$ $\mathrm{~kg} / \mathrm{s}$	Mass flow rate $->$ kg / s
4068	1.13	0.000		Enthalpy
4320	1.20	0.400		$\mathrm{~J} / \mathrm{kg}$
5400	1.50	0.375		2.680 e 6
5436	1.51	0.310		2.680 e 6
7200	2.00	0.305		2.703 e 6
7920	2.20	0.420		2.73 e 6
8712	2.42	0.280		2.696 e 6
10296	2.86	0.362		2.714 e 6
12420	3.45	0.367		2.714 e 6
13104	3.64	0.423		2.716 e 6
16092	4.47	0.423		2.720 e 6
16848	4.68	0.369		2.730 e 6
19440	5.40	0.380		2.730 e 6
20988	5.83	0.358		2.728 e 6
23796	6.61	0.358		2.728 e 6
30996	8.61	0.279		2.728 e 6
31140	8.65	0.262		2.728 e 6
38160	10.60	0.205		2.728 e 6
52020	14.45	0.145		2.728 e 6
52200	14.50	0.000		2.722 e 6
57780	16.05	0.000		2.722 e 6
57960	16.10	0.033		2.686 e 6
61560	17.10	0.033		2.686 e 6
61920	17.20	0.124		2.686 e 6
65520	18.20	0.120		2.686 e 6
65628	18.23	0.000		2.709 e 6
81720	22.70	0.000		2.709 e 6
81797	22.72	0.122		2.693 e 6
83088	23.08	0.122		2.693 e 6
83160	23.10	0.000		2.700 e 6
84024	23.34		0.000	2.700 e 6
84096	23.36		0.185	2.7344 e 6
87480	24.30		0.746 e 6	
88380	24.55		2.746 e 6	
90864	25.24	0.000	0.165	2.746 e 6
91008	25.28	0.130	0.000	2.712 e 6
92520	25.70	0.135		2.715 e 6
108108	30.03	0.135		2.715 e 6
108180	30.05	0.000		

All values agree with those of Table 6 in /1/. They are linearly interpolated.

Table 7a: Air removal and injection rates (case 40)

	h	Mass flow rate -> 10 kg / s	$\begin{aligned} & \text { Mass flow } \\ & \text { rate -> } 3 \\ & \mathrm{~kg} / \mathrm{s} \end{aligned}$	Mass flow rate -> 5 kg / s	Temp. K
the following values are linearly interpolated:					
6280	1.74	0.0000			287**
6300	1.75	-0.0226*			287**
14580	4.05	-0.0226*			287**
15000	4.17	0.0000			287**
51732	14.37	0.0000	0.0000		287**
51840	14.39	0.05067*	0.05067*		287**
52250	14.51	0.05429*	0.05429*		287**
52300	14.53	0.0000	0.0000		287**
52350	14.54	0.0000			287
52380	14.55	0.0543*			287
53100	14.75	0.0724*			287
54972	15.27	0.0724*	0.0000		287
55008	15.28	0.0000	0.07238*		287
55584	15.44		0.07238*		287
55620	15.45		0.0000		287
59148	16.43		0.0000		287
59220	16.45		0.04976*		287
59472	16.52	0.0000	0.04976*		287
59508	16.53	0.0498*	0.0000		287
59760	16.60	0.0498*			287
59800	16.61	0.0000			287
61920	17.20			0.000	383
62028	17.23			0.0977*	523
62748	17.43			0.0977*	567
63756	17.71			0.0977*	564
63864	17.74			0.0977*	517
64296	17.86			0.0977*	517
64332	17.87			0.0977*	548
65592	18.22			0.0977*	529
65628	18.23			0.000	383
the next values are step function input:					
82046	22.79			0.0977*	531
83424	23.17			0.000	383

${ }^{1}$ Injection times differ sometimes slightly from Tab. 7 in /1/.

* All mass flow rates are smaller by a factor of 1.105 as Tab. 7 in / $1 /$.
**Should be at 295 K according to Table 7 in /1/.

Table 7 b : Air removal and injection rates (case 42,44,45 and 46)

Time ${ }^{1}$		Mass flow	Mass flow	Mass flow	Temp.
sec	h	kg / s	kg / s	kg / s	K
the following values are linearly interpolated:					
6280	1.74	0.000			287**
6300	1.75	-0.025*			287**
14580	4.05	-0.025*			287**
15000	4.17	0.000			287**
51732	14.37	0.000	0.000		287**
51840	14.39	0.056 *	0.056 *		287**
52250	14.51	0.060 *	0.060 *		287**
52300	14.53	0.000	0.000		287**
52350	14.54	0.000			287
52380	14.55	0.060*			287
53100	14.75	0.080 *			287
54972	15.27	0.080 *	0.000		287
55008	15.28	0.000	0.080 *		287
55584	15.44		0.080 *		287
55620	15.45		0.000		287
59148	16.43		0.000		287
59220	16.45		0.055 *		287
59472	16.52	0.000	0.055 *		287
59508	16.53	0.055 *	0.000		287
59760	16.60	0.055 *			287
59800	16.61	0.000			287
61920	17.20			0.000	383
62028	17.23			0.108 *	523
62748	17.43			0.108 *	567
63756	17.71			0.108 *	564
63864	17.74			0.108 *	517
64296	17.86			0.108*	517
64332	17.87			0.108 *	548
65592	18.22			0.108 *	529
65628	18.23			0.000	383
the next values are step function input:					
82046	22.79			0.108 *	531
83424	23.17			0.000	383

[^0]Table 8a: Proposed leakage rate of the containment /1/

Time		h
4068	1.13	Leakage Rate kg / s
4320	1.20	0.000
9864	2.74	-0.01484
10116	2.81	-0.01484
23029	6.397	-0.01098
23209	6.447	-0.01098
32508	9.03	-0.00672
32760	9.10	-0.00672
53100	14.75	-0.001797
53111	14.753	-0.001797
108000	30.00	-0.01226
		-0.01226

Total leakage
1004 kg

Table 8b: Oxygen leakage rate of the containment (case 40)

Time ${ }^{1}$		Leakage rate 3-> 12 kg / s	Leakage rate 4-> 12 kg/s	Leakage rate $10->12$ kg / s	Leakage rate $11->12$ kg / s
sec	h				
4320	1.20	-0.0025175	-0.0012587	-0.0062936	-0.003357
9864	2.74	-0.002484	-0.0012418	-0.0062089	-0.00
23029	6.397	-0.00152	-0.00076	-0.00380	-0.00
32508	9.03	-0.00040646	-0.00020323	-0.00101615	-0.00
53100	14.75	-0.0020798	-0.0010399	-0.0051995	-0.002773
108000	30.00	-0.00	-0.00	-0.00	-0.00

the above values are step function input
${ }^{1}$ Injection times differ sometimes slightly from Tab. 8 in /1/.

* All mass flow rates are smaller by a factor of 1.105 as Tab. 8 in $/ 1 /$.

Table 8c: Air leakage rate of the containment (case $42,44,45$ and 46)

Time ${ }^{1}$		Leakage rate 3-> 12 kg / s	Leakage rate 4-> 12 kg / s	Leakage rate $10->12$ kg / s	Leakage rate 11-> 12 kg / s
sec	h				
4320	1.20	-0.0027825	-0.00139125	-0.00695625	-0.003
9864	2.74	-0.0027450	-0.00137250	-0.0068625	-0.00
23029	6.397	-0.0016800	-0.00084000	-0.0042000	-0.00
32508	9.03	-0.00044925	-0.000224625	-0.00112313	-0.00
53100	14.75	-0.00229875	-0.001149375	-0.00574688	-0.003064
108000	30.00	-0.00	-0.00	-0.00	-0.00

the above values are step function input

[^1]Table 9 : Detected fog and measured humidities in VANAM M3

${ }^{*}$) stratified, upper part superheated in ph. 2

Legend:
RH humidity sensor
PH extinction photometer
CM calorimeter
SP spectral photometer

85%
superheated conditions (rh < 100\%) measured

Table 10: Aerosol injection data

Parameter	First aerosol injection	Second aerosol injection
Experimental phase	2	4
Location, room no.	5	5
Period of injection, [h]	17,70 until 18,18	22,92 until 23,08
Duration, [s]	1728	576
Total generated NaOH aerosol mass, [kg]	2.21	0.719
Constant aerosol mass injection rate, [kg / s]	$1.28 \cdot 10^{3}$	$1.25 \cdot 10^{3}$
	equal for both injections	
Mass median particle diameter, [$\mu \mathrm{m}$]	0.2	
(Number median particle diameter, [$\mu \mathrm{m}$])	(0.058)	
Particle size distribution	log-normal	
Geometric standard deviation	1.9	
Dry theoretical NaOH density, $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	2130	
Molecular weight of $\mathrm{NaOH},[\mathrm{kg} / \mathrm{kmol}]$	40	
Solubility (Van't Hoff) factor, recommended	2.0	
Dynamic shape factor, recommended	1.0	
Agglomeration shape factor, recommended	1.0	

Table 11: Watermass at the end of calculation

Room	Watermass (at 30h) in kg		
	case 40	case 42	case 44
		$27.00+0.15$	$26.95+0.15$
R1	8.52	$26.95+0.15$	
R2	27.51	27.09	8.55
R3	1832	1743	$27.23+0.23$
R3 sump	10.87	12.48	1777
R4	580	596	12.71
R4 sump	45.28	45.32	600
R5	$38.87+0.34$	$38.94+0.34$	45.29
R6	2984	2823	38.90
R6 sump	$46.15+0.09$	$46.18+0.05$	$46.15+0.07$
R7	$46.07+0.27$	$45.41+0.27$	46.28
R8	3579	3408	3434
R8 sump	50.80	50.71	50.61
R9.3	56.02	55.94	55.89
R9.4	8152	8531	8434
R9.4 sump	$97.50+0.47$	$97.48+0.25$	$97.37+0.35$
dome	17583	17557	17544

To be compared with the total injected steam mass of: 17500 kg

Table 12: Differences of CONTAIN calculations

Case	cfc		Air	O2	Outer Structure		Aeroso1	Rad.
	Idel'chick $/ 1 /$ Tab. 2a Tab. 2b			Modified	Correct	NaOH	on	
40	x			x	x			
42	x		x		x			
44	x		x			x		
45		x	x			x	x	
46		x	x			x	x	x

Tab. 13 CONTAIN input for case 42
\&\& Run on workstation inrrisc3:
\&\&
\&\& 15.1.96: I found that for structure 47 (rupture disk
$\& \&$ in dome made of steel) i used the TUNIF of the
$\& \&$ building $=295 \mathrm{~K}$). This is may be wrong and i should
$\& \&$ have used the initial uniform temperature of the
$\& \&$ environment, which is $10 \mathrm{grd}=283 \mathrm{~K}$. So i repeat
\&\& case 42 x as case 42 xmod today.
\&\&
$\& \&$ I assume that structure thicknesses of int. structures which are $\& \&$ connected to other cells (Tab. 3b) have to be halfed.
\&\&
\&\& Condensation drain flow paths are slightly modified from Fig. 6.
\&\& They are modelled by engineering overflows and by condensation \&\& in lower cells of appropriate cells.
\&\&
\&\& Drain flow from dome (cell 11) could not be diverted in to \&\& different cells. I model it by overflow to cell 9 after short \&\& discussion with Mr. Schwarz (GRS).
\&\&
\&\&
\&\&
\&\& cell 1: central cell
R1
\&\& cell 2: above cell 1 R2
\&\& cell 3: below cell 1 R3
\&\& cell 4: inner ringsegment below dome $\quad \mathrm{R} 4=\mathrm{R} 4.1+\mathrm{R} 4.2$
\&\& cell 5: below dome R5
\&\& cell 6: below cell 5 R6
\&\& cell 7: inner ringsegment below dome R7
\&\& cell 8: below cell 7 R8
\&\& cell 9: upper annular ring below dome R9.3
$\& \&$ cell 10: lower annular ring below dome \quad R9.4
\&\& cell 11: dome $\quad \mathrm{R} 9=\mathrm{R} 9.1+\mathrm{R} 9.2$
\&\& cell 12: environment
\&\&
\&\&
control
ncells $=12$
ntitl $=2$
ntzone $=11$
nac $\quad=1 \& \&$ no. of aerosol components <9
nsectn $=10 \& \& \quad$ " particle sections
eoi
\&\& --------------------- materials
material
compound n2 o2 h2ol h2ov
ss conc h2o
naoh \&\& aerosol material
thermal
flows
\&\& cross-section flow-loss coeff. average length
\&\& area of flowpath
\&\& Tab. 2a

$$
\begin{array}{lll}
\operatorname{area}(1,8)=0.04 & \operatorname{cfc}(1,8)=0.1 & \operatorname{avl}(1,8)=2.0 \\
\operatorname{area}(1,6)=0.06 & \operatorname{cfc}(1,6)=0.25 & \operatorname{avl}(1,6)=0.08 \\
\operatorname{area}(9,11)=29.1 & \operatorname{cfc}(9,11)=0.225 & \operatorname{avl}(9,11)=90.0 \\
\operatorname{area}(9,10)=32.0 & \operatorname{cfc}(9,10)=0.005 & \operatorname{avl}(9,10)=200.0 \\
\operatorname{area}(2,11)=16.33 & \operatorname{cfc}(2,11)=0.28 & \operatorname{avl}(2,11)=200.0 \\
\operatorname{area}(3,6)=1.13 & \operatorname{cfc}(3,6)=0.64 & \operatorname{avl}(3,6)=1.3 \\
\operatorname{area}(3,8)=1.30 & \operatorname{cfc}(3,8)=0.605 & \operatorname{avl}(3,8)=1.5 \\
\operatorname{area}(4,11)=2.31 & \operatorname{cfc}(4,11)=0.365 & \operatorname{avl}(4,11)=200.0 \\
\operatorname{area}(5,6)=1.68 & \operatorname{cfc}(5,6)=0.63 & \operatorname{avl}(5,6)=5.0 \\
\operatorname{area}(5,7)=1.40 & \operatorname{cfc}(5,7)=0.375 & \operatorname{avl}(5,7)=5.6 \\
\operatorname{area}(5,11)=1.82 & \operatorname{cfc}(5,11)=0.675 & \operatorname{avl}(5,1)=5.5 \\
\operatorname{area}(7,8)=1.68 & \operatorname{cfc}(7,8)=0.63 & \operatorname{avl}(7,8)=5.0 \\
\operatorname{area}(7,11)=2.25 & \operatorname{cfc}(7,11)=0.655 & \operatorname{avl}(7,11)=6.6
\end{array}
$$

\&\& flow $(\mathrm{i}, \mathrm{j})=$ flow: a constant or initial flow rate; def $=0.0$
$\& \& \operatorname{cfrflag}(1, j)=1$ means constant rate with kg / s
$\& \& \operatorname{cfrflag}(i, j)=-1$ means constant rate with $\mathrm{m} 3 / \mathrm{s}$
\&\& no cfrflag means: flow is interpreted as initial flow rate
implicit $=11 \quad \& \&$ no. of cells to be solved implicitly
\&\& -------- elevations of cells (positions of cell-centers)
\&\& -------- taken from Tab. 1

```
elevcl(1)=2.3 elevcl(2)=4.4 elevcl(3)=-0.15
elevcl(4) = 2.0 elevcl(5) = 3.5 elevcl(6) = 0.5
elevcl(7) = 3.5 elevcl(8)=0.5 elevcl(9) = 3.65
elevcl(10)=1.1 elevcl(11)=6.8 elevcl(12)=0.0
```

\&\& \qquad elevations of flowpath ends
\&\& \qquad taken from Tab. 2a

```
elevfp(1,8) = 1.67
elevfp(8,1) = 1.67
elevfp(1,6) = 1.70
elevfp(11,9) = 5.20
elevfp(9,10) = 2.2
elevfp(11,2) = 5.15
elevfp(3,6) = 0.20
elevfp(3,8) = 0.20
elevfp(11,4) = 5.1
elevfp(5,6) = 2.275
elevfp(5,7) = 3.30
elevfp(11,5) = 5.175
elevfp(7,8) = 2.275
elevfp(11,7) = 5.175
elevfp(6,1) = 1.70
    elevfp(9,11) = 4.90
    elevfp(10,9) = 2.2
    elevfp(2,11) = 5.15
    elevfp(6,3) = 0.20
    elevfp(8,3) = 0.20
    elevfp(4,11) = 5.1
    elevfp(6,5) = 1.925
    elevfp(7,5) = 3.30
    elevfp(5,11) = 4.825
    elevfp(7,5) = 1.925
    elevfp(7,11) = 4.825
```

\&\& engvent \&\& specifies the engineering vents aerosol h2ol $1.0 \mathrm{e}-8 \quad 0.405$ \&\& s.S. 6.13 CONTAIN-desc.
\&\& \qquad times
times 99999. 4068.0 \&\& max. cpu-limit ; start time (s) \&\& timinc edtdto tstop

1.0	50.0	14068.	$\& \&$
1.0	50.0	24068.	
1.0	50.0	34068.	
1.0	50.0	44068.	
1.0	50.0	54068.	
1.0	50.0	64068.	
1.0	50.0	74068.	
1.0	50.0	84068.	
1.0	50.0	94068.	
1.0	50.0	100000.	
1.0	50.0	108000.	

shortedt $500 \& \&$ no. of system timesteps between short edits longedt 1000 \&\& " " edit " " long "
\&\& \qquad print output options \qquad prengsys praer prflow prheat prlow-cl \&\& praer2
title \&\& written over every long edit output isp37-benchmark, only therm. hydr.
\&\&
\&\& cell input
\&\&
\&\& \&
cell 1
control
nhtm $=10 \& \&$ no of heat transfer structures
mxslab $=20$ \&\&" " nodes in any "
nspatm $=10 \quad \& \&$ max. no of entries in atmosphere source tables
naensy $=1 \quad \& \&$ no of separate eng. systems
numtbc $=4 \quad \& \&$ no of cell level tables
maxtbc $=8 \quad \& \&$ max. no of any cell level table
eoi
title
--- central cell --- \&\& only one line is allowed

```
geometry 16. \(2.6 \& \&\) free initial atmosphere volume; height
    \(\operatorname{atmos}=2 \quad \& \&\) no of materials
        \(\operatorname{tg} \mathrm{as}=298\).
        pgas \(=1.0130 \mathrm{e} 5\)
    . molefrac \(\mathrm{n} 2=0.79 \mathrm{o} 2=0.21\)
```

eoi
$\& \&$ source $=$ nso \&\& no. of source tables to follow, s.S. 3-120ff \& \& eoi

\&\&

\qquad heat structures
\&\& assume that average thickness means total thickness of structure \&\& i take in aech cell half the thickness and good connection to the $\& \&$ neighbouring structure in other cell

struc

\&\& structure $(1,1)$
\&\& lower, middle inner cylinder
\&\& no. 26 of Tab. 3b

$$
\begin{aligned}
& \text { name }=\text { struc261 type }=\text { wall } \text { shape }=\text { slab } \\
& \text { tunif }=298.0 \text { slarea }=7.2 \text { nslab }=6 \quad \text { chrlen }=5 . \\
& \text { compound }=\text { conc conc conc conc conc conc }
\end{aligned}
$$

$$
\begin{array}{llllllll}
\mathrm{x}= & 0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.4
\end{array}
$$

\&\& no. of cell connected to
bcouter icell $=8$
$\& \&$ structure no. in this cell
strnum $=4$, l.e20 eoi
eoi
\&\& structure $(1,2)$
\&\& lower, middle inner cylinder
\&\& no. 27 of Tab. 3b

```
name = struc271 type = wall shape = slab
    tunif}=298.0 slarea = 7.2 nslab = 6 chrlen = 5 .
    compound = conc conc conc conic conc conc
```

 \(x=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.4\end{array}\)
 \&\& no. of cell connected to
 bcouter icell \(=6\)
 \&\& structure no. in this cell
 strnum \(=4,1 . \mathrm{e} 20 \quad\) eoi
 eoi
 \&\& structure $(1,3)$
\&\& middle of middle inner cylinder
\&\& no. 28 of Tab. 3b
name $=$ struc 281 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=2.2 \quad$ nslab $=6 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc
$x=\begin{array}{llllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.4\end{array}$
\&\& no. of cell connected to
bcouter icell $=4$
\&\& structure no. in this cell
strnum $=7,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(1,4)$
\&\& upper, middle inner cylinder
\&\& no. 29 of Tab. 3b
name $=$ struc291 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=5.9 \quad$ nslab $=6 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc
$x=\begin{array}{lllllll}x & 0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3\end{array} 0.4$
\&\& no. of cell connected to bcouter icell $=7$
\&\& structure no. in this cell
strnum $=5,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(1,5)$
\&\& upper, middle inner cylinder
\&\& no. 30 of Tab. 3b
name $=$ struc301 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=5.9$ nslab $=6 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc
$x=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.4\end{array}$
\& \& no. of cell connected to
bcouter icell $=5$
$\& \&$ structure no. in this cell
strnum $=4,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(1,6)$
\&\& upper, middle inner cylinder; mezzanine central floor
\&\& no. 48 of Tab. 3b
name $=$ struc 481 type $=$ floor shape $=$ slab
tunif $=298.0 \quad$ slarea $=7.0 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllllll}x & 0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}$
\&\& no. of cell connected to
bcouter icell $=3$
$\& \&$ structure no. in this cell
strnum $=4,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(1,7)$
\&\& upper, middle inner cylinder; mezzanine central floor
\&\& no. 49 of Tab. 3b
name $=$ struc491 type $=$ floor shape $=$ slab
tunif $=298.0 \quad$ slarea $=2.0 \quad$ nslab $=3 \quad$ chrlen $=5$.
compound $=$ ss ss ss
$\mathrm{x}=\quad 0.0 \quad 0.0010 .0030 .005$
\&\& no. of cell connected to
bcouter icell $=3$
\&\& structure no. in this cell
strnum $=5,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(1,8)$
\&\& upper, middle inner cylinder; mezzanine central floor
\&\& no. 50 of Tab. 3b
name $=$ struc 501 type $=$ floor shape $=$ slab
tunif $=298.0 \quad$ slarea $=1.3$ nslab $=3 \quad$ chrlen $=5$.
compound $=$ ss ss ss
$\mathrm{x}=\quad 0.00 .0010 .0030 .005$
\&\& no. of cell connected to
bcouter icell $=3$
\&\& structure no. in this cell
strnum $=6,1 . \mathrm{e} 20$ eoi
eoi
\&\& structure $(1,9)$
\&\& upper inner cylinder;central floor R1/R2
\&\& no. 38 of Tab. 3b
name $=$ struc 381 type $=$ roof shape $=$ slab
tunif $=298.0 \quad$ slarea $=3.1 \quad$ nslab $=3 \quad$ chrlen $=5$.
compound $=$ ss ss ss
$\mathrm{x}=\quad 0.00 .0010 .0030 .005$
\&\& no. of cell connected to
bcouter icell $=2$
\&\& structure no. in this cell
strnum $=4$, l.e20 eoi
eoi
\&\& structure $(1,10)$
\&\& upper, middle inner cylinder; outer ring of central floor
\&\& no. 45 of Tab. 3b
name $=$ struc 451 type $=$ roof shape $=$ slab
tunif $=298.0 \quad$ slarea $=14.3$ nslab $=6 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc
$x=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.46\end{array}$
\&\& no. of cell connected to
bcouter icell $=2$
\&\& structure no. in this cell
strnum $=5,1 . \mathrm{e} 20 \quad$ eoi
eoi
condense

$$
\text { aerosol } 1 \text { h2ol } 0.001
$$

ht-tran on \&\& atmosphere to structures
off \&\& lower cell to substructure
off $\& \&$ interlayer in lower cell
off $\& \&$ lower cell to upper cell
off $\& \&$ pool-to-structure radiative transfer
\&\& no lower cell
overflow 3
\&\& \&
cell 2
control
nhtm $=5 \& \&$ no of heat transfer structures
mxslab = 20 \&\&" " nodes in any "
nspatm $=10 \& \&$ max. no of entries in atmosphere source tables
naensy $=1 \& \&$ no of separate eng. systems
numtbc $=4 \quad \& \&$ no of cell level tables
maxtbc $=8 \quad \& \&$ max. no of any cell level table
eoi
title
--- room above cell 1 ---

```
geometry 26. 1.4 \&\& free initial atmosphere volume; height
    atmos \(=2 \quad \& \&\) no of materials
        \(\operatorname{tg} a \mathrm{~s}=298\).
        pgas \(=1.0130 \mathrm{e} 5\)
        molefrac \(\mathrm{n} 2=0.79 \quad \mathrm{o} 2=0.21\)
    eoi
    \&\& source \(=\) nso \&\& no. of source tables to follow, s.S. 3-120ff
        \&\& eoi
```

\&\&
heat structures
struc
\&\& structure $(2,1)$
\&\& upper inner cylinder
\&\& no. 31 of Tab. 3b
name $=$ struc 312 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=13.9$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll} & 0.0 & 0.01 & 0.04 & 0.08 & 0.13 & 0.185\end{array}$
\&\& no. of cell connected to
bcouter icell $=7$
\&\& structure no. in this cell
strnum $=6,1 . \mathrm{e} 20$ eoi
eoi
\&\& structure $(2,2)$
\&\& upper inner cylinder
\&\& no. 32 of Tab. 3b
name $=$ struc322 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=13.9$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.08 & 0.13 & 0.185\end{array}$
\&\& no. of cell connected to
bcouter icell $=5$
\&\& structure no. in this cell
strnum $=5,1 . \mathrm{e} 20$ eoi
eoi
\&\& structure $(2,3)$
\&\& upper inner cylinder
\&\& no. 33 of Tab. 3b
name $=$ struc332 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=2.3$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.08 & 0.13 & 0.185\end{array}$
\&\& no. of cell connected to
bcouter icell $=4$
\&\& structure no. in this cell
strnum $=9$, l.e20 eoi
eoi
\& \& structure $(2,4)$
\&\& upper inner cylinder; central floor R1/R2
\&\& no. 38 of Tab. 3b
name $=$ struc 382 type $=$ floor shape $=$ slab

```
tunif =298.0 slarea = 3.1 nslab = 3 chrlen = 5.
compound = ss ss ss
x = 0.0 0.001 0.003 0.005
&& no. of cell connected to
    bcouter icell = 1
    && structure no. in this cell
    strnum = 5,1.e20 eoi
    eoi
&& structure (2,5)
&& upper, middle inner cylinder;outer ring of central floor
&& no. }45\mathrm{ of Tab. 3b
    name = struc452 type = floor shape = slab
    tunif=298.0 slarea=14.3 nslab=6 chrlen = 5.
    compound = conc conc conc conc conc conc
    x = }\begin{array}{lllllllll}{0.0}&{0.01}&{0.04}&{0.10}&{0.2}&{0.3}&{0.46}
    && no. of cell connected to
    bcouter icell = 1
    && structure no. in this cell
    strnum = 10,1.e20 eoi
    eoi
condense
    aerosol 1 h2ol 0.001
ht-tran on && atmosphere to structures
        off && lower cell to substructure
        off && interlayer in lower cell
        off && lower cell to upper cell
        off && pool-to-structure radiative transfer
```

\&\& no lower cell
overflow 8
\&\& \&
cell $3 \quad \& \&$ with sump and with steam injection
control
nhtm $=7 \& \&$ no of heat transfer structures
mxslab $=20$ \&\&" " nodes in any "
nsopl $=4$ \&\&" " external sources to lower cell layers
nsppl $=10 \& \&$ max. no of entries in lower cell source tables
nsoatm $=5 \& \&$ no of external sources to upper cell atmosphere
nspatm $=10 \& \&$ max. no of entries in atmosphere source tables
jint $=5 \& \&$ no of intermediate layers in lower cell
jpool $=1$ \&\& 1 if pool layer is used
numtbc $=4 \quad \& \&$ no of cell level tables
maxtbc $=8 \quad \& \&$ max. no of any cell level table
eoi
title
--- room below cell 1 ---
geometry 28. 2.3 \&\& free initial atmosphere volume; height
atmos $=2 \quad \& \&$ no of materials
$\operatorname{tgas}=298$.
pgas $=1.0130 \mathrm{e} 5$
molefrac $\mathrm{n} 2=0.79 \mathrm{o} 2=0.21$
eoi
\&\& source $=$ nso \&\& no. of source tables to follow, s.S. 3-120ff source $=5$
\&\& source 1: steam injection to cell 3
\&\& vapour and enthalpy rates according to Tab. 6
$\mathrm{h} 2 \mathrm{ov}=6$
iflag $=2 \& \&$ linear interpolation is used between points $\& \&$ iflag $=1 \& \&$ stepfunction for mass rate

```
    t = 84024. 84096. 87480.88380. 90864. 91008. && s
mass = 0. 0.185 0.180
enth =2.734e6 2.734e6 2.746e6 2.746e6 2.746e6 2.699e6 && J/kg
        eoi
```

 \&\& source 2: air injection rates to cell 3
 \(\& \&\) and temperatures
 \(\mathrm{o} 2=12\)
 iflag \(=2 \& \&\) linear interpolation is used between points
 \&\& iflag $=1 \& \&$ stepfunction for mass rate
$\mathrm{t}=51732$. 51840 . 52250 . 52300. 54972 . $55008.55584 . \& \& \mathrm{~s}$
55620. 59148. 59220. 59472. 59508.
mass $=0 . \begin{array}{lllllll}0.01176 & 0.0126 & 0.0 & 0.0 & 0.0168 & 0.0168\end{array} \& \& \mathrm{~kg} / \mathrm{s}$
0. $0.0 \quad 0.011550 .011550 .0$
temp $=287.287 .287 .287 .287 .287 .287 . \quad \& \& \mathrm{k}$
287. 287. 287. 287. 287.
eoi
\&\& source 3: air injection rates to cell 3
\&\& and temperatures
$\mathrm{n} 2=12$
iflag $=2 \& \&$ linear interpolation is used between points
\&\& iflag $=1 \& \&$ stepfunction for mass rate

$$
\mathrm{t}=51732.51840 .52250 .52300 .54972 .55008 .55584 . \& \& \mathrm{~s}
$$ 55620. 59148. 59220. 59472. 59508.

mass $=0 . \begin{array}{lllllll}0.04424 & 0.0474 & 0.0 & 0.0 & 0.0632 & 0.0632 \quad \& \& \mathrm{~kg} / \mathrm{s}\end{array}$ $\begin{array}{lllll}0 . & 0.0 & 0.04345 & 0.04345 & 0.0\end{array}$
temp $=287.287 .287 . \quad$ 287. 287. 287. 287. \&\& k 287. 287. 287. 287. 287. eoi
\&\& source 4: air removal(leakage) from cell 3

$$
02=6
$$

$\& \&$ iflag $=2 \& \&$ linear interpolation is used between points iflag $=1 \& \&$ stepfunction for mass rate
$\mathrm{t}=$ 4320. $9864.23029 .32508 . \quad 53100.108000 . \quad \& \& \mathrm{~s}$
mass $=-0.584325 \mathrm{e}-3-5.7645 \mathrm{e}-4-3.528 \mathrm{e}-4-9.43425 \mathrm{e}-5-4.827375 \mathrm{e}-40.0$
eoi
\&\& source 5: air removal(leakage) from cell 3

$$
\mathrm{n} 2=6
$$

$\& \&$ iflag $=2 \& \&$ linear interpolation is used between points iflag $=1 \& \&$ stepfunction for mass rate
$\mathrm{t}=$ 4320. 9864. 23029. 32508. 53100. 108000. \&\& S
mass $=-2.198175 \mathrm{e}-3-2.16855 \mathrm{e}-3-1.3272 \mathrm{e}-3-3.549075 \mathrm{e}-4-1.8160125 \mathrm{e}-3$
0.0
eoi
\&\& ------.-..------ heat structures
struc
\&\& structure $(3,1)$
\&\& lower inner cylinder
\&\& no. 23 of Tab. 3b
name $=$ struc 233 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=17.8$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.08 & 0.15 & 0.28\end{array}$
$\& \&$ no. of cell connected to
bcouter icell $=8$
\&\& structure no. in this cell
strnum $=3$, 1.e20 eoi
eoi
\&\& structure $(3,2)$
\& \& lower inner cylinder
\&\& no. 24 of Tab. 3b
name $=$ struc 243 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=17.8 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$\mathrm{x}=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.08 & 0.15 & 0.28\end{array}$
\&\& no. of cell connected to
bcouter icell $=6$
\&\& structure no. in this cell
strnum $=3,1 . e 20$ eoi
eoi
$\& \&$ structure $(3,3)$
\&\& lower inner cylinder
\&\& no. 25 of Tab. 3b
name $=$ struc253 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=3.2$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.08 & 0.15 & 0.265\end{array}$
\&\& no. of cell connected to
bcouter icell $=4$
\&\& structure no. in this cell
strnum $=6,1 . \mathrm{e} 20$ eoi
eoi
\&\& structure $(3,4)$
\&\& lower, middle inner cylinder; mezzanine central floor
\&\& no. 48 of Tab. 3b
name $=$ struc 483 type $=$ roof shape $=$ slab
tunif $=298.0 \quad$ slarea $=7.0 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}$
\&\& no. of cell connected to
bcouter icell $=1$
\&\& structure no. in this cell
strnum $=6,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(3,5)$
\&\& lower, middle inner cylinder; mezzanine central roof
\&\& no. 49 of Tab. 3b
name $=$ struc493 type $=$ roof shape $=$ slab
tunif $=298.0 \quad$ slarea $=2.0 \quad$ nslab $=3 \quad$ chrlen $=5$.
compound $=$ ss ss ss
$\mathrm{x}=\quad 0.0 \quad 0.0010 .0030 .005$
\&\& no. of cell connected to
bcouter icell $=1$
\&\& structure no. in this cell
strnum $=7,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(3,6)$
$\& \&$ lower, middle inner cylinder; mezzanine central roof
\&\& no. 50 of Tab. 3 b
name $=$ struc503 type $=$ roof shape $=$ slab
tunif $=298.0 \quad$ slarea $=1.3$ nslab $=3 \quad$ chrlen $=5$.
compound $=$ ss ss ss
$\mathrm{x}=\quad 0.0 \quad 0.0010 .0030 .005$
\&\& no. of cell connected to
bcouter icell $=1$
\&\& structure no. in this cell
strnum $=8,1 . \mathrm{e} 20$ eoi
eoi
\&\& structure $(3,7)$
\&\& basemat, center (sump region)
\&\& no. 16 of Tab. 3b
name $=\operatorname{str} 16-03$ type $=$ floor shape $=$ slab
tunif $=295.0 \quad$ slare $=11.1$ nslab $=12 \quad$ chrlen $=5$.
compound $=$ conc conc
$\mathrm{x}=\begin{array}{llllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.20 & 0.35 & 0.5 & 0.7\end{array}$

```
                0.8
    eoi
condense
        aerosol 1 h2ol 0.001
    ht-tran on && atmosphere to structures
            off && lower cell to substructure
            on && interlayer in lower cell
            on && lower cell to upper cell
            on && pool-to-structure radiative transfer
low-cell
    geometry 11.&& floor area, about 350cm thick concrete
                    && i modelled 3.1m
        bc 283. && basemat boundary condition temperature
    interm lay-name = conc5 temp = 283.
        compos =1 conc = 42240. && ca.1.6m dick
    eoi
    interm lay-name = conc4 temp = 283.
        compos = 1 conc = 21120. && ca. 0.8m dick
    eoi
    interm lay-name = conc3 temp = 283.
        compos=1 conc = 10560. && ca. 0.4m dick
    eoi
    interm lay-name = conc2 temp = 283.
        compos =1 conc = 5280. && ca.0.2m dick
    eoi
    interm lay-name = concl temp = 283.
    &&
        compos =1 conc = 2640.&& mass in kg; ca. 0.1m dick
    eoi
    pool temp = 283.
        compos=1 h2ol = 0.1 && one material: compos = 1
                                    && water, mass(kg) initially
        physics
            boil && activates pool boiling model
            && settle && allows direct aerosol settling onto pool
        eoi && end of physics
    eoi && end of pool
eoi && end of lower cell
&&
&& &&&&&&&&&&&&&&&&&&&&&&&&&&
cell 4 && with sump
control
nhtm = 11 && no of heat transfer structures
mxslab = 20 &&" " nodes in any "
nsopl = 4 &&" " external sources to lower cell layers
```

```
nsppl \(=10\) \&\& max. no of entries in lower cell source tables
nsoatm \(=2 \& \&\) no. of external sources to upper cell atmosphere
nspatm \(=10 \quad \& \&\) max. no of entries in atmosphere source tables
jint \(=5 \& \&\) no of intermediate layers in lower cell
jpool \(=1\) \&\& 1 if pool layer is used
numtbc \(=4 \quad \& \&\) no of cell level tables
maxtbc \(=8 \quad \& \&\) max. no of any cell level table
eoi
title
--- inner ring segment below dome \(\mathrm{R} 4=\mathrm{R} 4.1+\mathrm{R} 4.2\)
geometry 14. \(6.1 \& \&\) free initial atmosphere volume; heightdiff.
    atmos \(=2 \quad \& \&\) no of materials
        tgas \(=298\).
        pgas \(=1.0130 \mathrm{e} 5\)
        molefrac \(\mathrm{n} 2=0.79 \mathrm{o} 2=0.21\)
    eoi
    source \(=2\)
        \&\& source 1: air removal(leakage) from cell 4
        \(\mathrm{o} 2=6\)
    \&\& iflag \(=2 \& \&\) linear interpolation is used between points
        iflag \(=1 \& \&\) stepfunction for mass rate
    \(\mathrm{t}=4320 . \quad 9864 . \quad 23029.32508 . \quad 53100.108000 . \& \& \mathrm{~s}\)
mass \(=-2.921625 \mathrm{e}-4-2.88225 \mathrm{e}-4-1.764 \mathrm{e}-4-4.717125 \mathrm{e}-5-2.4136875 \mathrm{e}-4\)
        0.0
            eoi
        \&\& source 2: air removal(leakage) from cell 4
        \(\mathrm{n} 2=6\)
    \&\& iflag \(=2 \& \&\) linear interpolation is used between points
        iflag \(=1 \& \&\) stepfunction for mass rate
    \(\mathrm{t}=4320 . \quad 9864 . \quad 23029.32508 . \quad 53100.108000 . \& \& \mathrm{~s}\)
mass \(=-1.0990875 \mathrm{e}-3-1.084275 \mathrm{e}-3-6.636 \mathrm{e}-4-1.7745375 \mathrm{e}-4-9.0800625 \mathrm{e}-4\)
        0.0
        eoi
\&\& --------------- heat structures
    struc
\&\& structure \((4,1)\)
\&\& upper middle cylinder
\&\& no. 22 of Tab. 3b
    name \(=\) struc224 type \(=\) wall shape \(=\) slab
    tunif \(=298.0 \quad\) slarea \(=6.2 \quad\) nslab \(=5 \quad\) chrlen \(=5\).
    compound \(=\) conc conc conc conc conc
    \(x=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}\)
```

\&\& no. of cell connected to bcouter icell $=9$
\&\& structure no. in this cell
strnum $=3,1 . \mathrm{e} 20$ eoi
eoi
\&\& structure $(4,2)$
\&\& vertical partition R4/R5
\&\& no. 41 of Tab. 3b
name $=$ struc414 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=4.4$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$\mathrm{x}=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}$
\&\& no. of cell connected to
bcouter icell $=5$
\&\& structure no. in this cell
strnum $=7,1 . \mathrm{e} 20$ eoi
eoi
\&\& structure $(4,3)$
\&\& vertical partition R4/R7
\&\& no. 42 of Tab. 3b
name $=$ struc424 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=4.4 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}$
\&\& no. of cell connected to
bcouter icell $=7$
\&\& structure no. in this cell
strnum $=7,1 . \mathrm{e} 20$ eoi
eoi
\&\& structure $(4,4)$
\&\& vertical partition R4/R6
\&\& no. 43 of Tab. 3b
name $=$ struc434 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=4.4 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll}x & 0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}$
\&\& no. of cell connected to
bcouter icell $=6$
\&\& structure no. in this cell
strnum $=6,1 . \mathrm{e} 20$ eoi
eoi
\& \& structure $(4,5)$
\&\& vertical partition R4/R8
\&\& no. 44 of Tab. 3b
name $=$ struc444 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=4.4 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}$
\& \& no. of cell connected to
bcouter icell $=8$
\&\& structure no. in this cell
strnum $=6,1 . \mathrm{e} 20$ eoi
eoi
\&\& structure $(4,6)$
\&\& lower inner cylinder
\&\& no. 25 of Tab. 3b
name $=$ struc 254 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=3.2$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$\mathrm{x}=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.08 & 0.15 & 0.265\end{array}$
\&\& no. of cell connected to
bcouter icell $=3$
\&\& structure no. in this cell
strnum $=3,1 . \mathrm{e} 20$ eoi
eoi
\& \& structure $(4,7)$
\&\& middle of middle inner cylinder
\&\& no. 28 of Tab. 3b
name $=$ struc284 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=2.2 \quad$ nslab $=6 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc
$x=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.4\end{array}$
\&\& no. of cell connected to
bcouter icell $=1$
\&\& structure no. in this cell
strnum $=3,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(4,8)$
\&\& lower middle cylinder
\&\& no. 19 of Tab. 3b
name $=\operatorname{strc} 194$ type $=$ wall shape $=$ slab
tunif $=295.0 \quad$ slarea $=4.8$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}$
\&\& no. of cell connected to
bcouter icell $=10$
$\& \&$ structure no. in this cell
strnum $=3,1 . \mathrm{e} 20$ eoi
eoi
\&\& structure $(4,9)$
\&\& upper inner cylinder
\&\& no. 33 of Tab. 3b
name $=$ struc334 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=2.3 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$\begin{array}{lllllll}\mathrm{x}= & \left.\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.08 & 0.13 & 0.185\end{array}\right]\end{array}$
\&\& no. of cell connected to
bcouter icell $=2$
\&\& structure no. in this cell
strnum $=3,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(4,10)$
\&\& basemat, second ring
\&\& no. 12 of Tab. 3b
name $=$ str12-04 type $=$ floor shape $=$ slab
tunif $=295.0 \quad$ slarea $=2.0$ nslab $=13 \quad$ chrlen $=5$.

```
compound = conc conc conc conc conc conc conc
        conc conc conc conc conc conc
    X = }\quad0.0.
        0.8
    eoi
&& structure (4,11)
&& basemat, third ring (sump region)
&& no. 15 of Tab. 3b
    name = str15-04 type = floor shape = slab
    tunif}=295.0 slarea = 1.2 nslab=12 chrlen = 5 .
    compound = conc conc conc conc conc conc conc
        conc conc conc conc conc
    X = }\begin{array}{llllllllll}{0.0}&{0.01}&{0.04}&{0.10}&{0.20}&{0.35}&{0.5}&{0.7}
```



```
    eoi
```

condense

```
aerosol 1 h2ol 0.001
```

ht-tran on \&\& atmosphere to structures off $\& \&$ lower cell to substructure
on $\& \&$ interlayer in lower cell
on $\& \&$ lower cell to upper cell
on $\& \&$ pool-to-structure radiative transfer
low-cell
geometry 1. \&\& floor area, about 250 cm thick concrete \&\& i modelled 3.1m
bc 283. \&\& basemat boundary condition temperature
interm lay-name $=$ conc5 temp $=283$. compos $=1$ conc $=3840 . \quad \& \&$ ca. 1.6 m dick
eoi
interm lay-name $=$ conc4 temp $=283$. compos $=1$ conc $=1920 . \quad \& \&$ ca. 0.8 m dick
eoi
interm lay-name $=$ conc3 temp $=283$. compos $=1$ conc $=960 . \quad \& \&$ ca. 0.4 m dick
eoi
interm lay-name $=$ conc2 temp $=283$. compos $=1$ conc $=480 . \quad \& \&$ ca. 0.2 m dick
eoi
interm lay-name $=$ conc1 temp $=283$. compos $=1$ conc $=\quad 240 . \& \&$ mass in $\mathrm{kg} ;$ ca. 0.1 m dick
eoi
pool \quad temp $=283$.
compos $=1 \quad \mathrm{~h} 2 \mathrm{ol}=0.1 \& \&$ one material: compos $=1$ \&\& water, mass(kg) initially
physics
boil $\quad \& \&$ activates pool boiling model \&\& settle \&\& allows direct aerosol settling onto pool

```
    eoi && end of physics
    eoi && end of pool
eoi && end of lower cell
\&\&
```

\&\& \&
cell 5 \&\& no sump
\&\& cell with steam injection
control
nhtm $=7$ \&\& no of heat transfer structures
mxslab $=20$ \&\&" " nodes in any "
nspatm $=10 \quad \& \&$ max. no of entries in atmosphere source tables
nsoatm $=5 \& \&$ no of external sources to upper cell atmosphere
naensy $=1$ \&\& no of separate eng. systems
numtbc $=4 \quad \& \&$ no of cell level tables
maxtbc $=8 \& \&$ max. no of any cell level table
eoi
title
--- cell between cells 6 and $11 \& \&$ only one line is allowed
geometry 41. 2.45 \&\& free initial atmosphere volume; height
$\operatorname{atmos}=2 \quad \& \&$ no of materials
$\operatorname{tgas}=298$.
pgas $=1.0130 \mathrm{e} 5$
molefrac $\mathrm{n} 2=0.79 \mathrm{o} 2=0.21$
eoi
$\& \&$ source $=$ nso \&\& no. of source tables to follow, s.S. 3-120ff
source $=5$
\&\& source 1
$\mathrm{h} 2 \mathrm{ov}=35$
iflag $=2 \& \&$ linear interpolation is used between points
$\& \&$ iflag $=1 \& \&$ stepfunction for mass rate
\&\& vapour and enthalpy rates according to tab. 6

$$
\begin{array}{rrrrrrl}
\mathrm{t}=4068 . & 4320 . & 5400 . & 5436 . & 7200 . & 7920 . & 8712 . \& \& \mathrm{~s} \\
\text { 10296. } & 12420 . & 13104 . & 16092 . & 16848 . & 19440 . & 20988 . \\
\text { 23796. } & 30996 . & 31140 . & 38160 . & 52020 . & 52200 . & 57780 . \\
\text { 57960. } & 61560 . & 61920 & 65520 . & 65628 . & 81720 . & 81797 . \\
\text { 83088. } & 83160 . & 90864 & 91008 . & 92520 . & 108108 . & 108180 . \\
\text { mass }=0 . & 0.4 & 0.375 & 0.310 & 0.305 & 0.420 & 0.280 \\
0.362 & 0.367 & 0.423 & 0.423 & 0.369 & 0.380 & 0.358 \\
0.358 & 0.279 & 0.262 & 0.205 & 0.145 & 0.0 & 0.0 \\
0.033 & 0.033 & 0.124 & 0.120 & 0.0 & 0.0 & 0.122 \\
0.122 & 0.0 & 0.0 & 0.130 & 0.135 & 0.135 & 0.0
\end{array}
$$

enth $=2.680 \mathrm{e} 62.680 \mathrm{e} 62.703 \mathrm{e} 62.703 \mathrm{e} 62.696 \mathrm{e} 62.714 \mathrm{e} 62.714 \mathrm{e} 6$ \& \& J/kg
2.716 e 62.720 e 62.730 e 62.730 e 62.728 e 62.728 e 62.728 e 6 2.728 e 6 2.728е6 2.728е6 2.728е6 2.722е6 2.722е6 2.686e6 2.686 e 6 2.686e6 2.686e6 2.709e6 2.709е6 2.693е6 2.693e6 2.700 e 62.700 e 62.746 e 62.699 e 62.712 e 62.715 e 62.715 e 6 eoi
\&\& source 2
\&\& air injection rates to cell 5
$02=9$
iflag $=2 \& \&$ linear interpolation is used between points
\&\& iflag $=1 \& \&$ stepfunction for mass rate
\&\& the following table refers to Tab. 7
$\mathrm{t}=61920.62028$. 62748. 63756. 63864. 64296. $64332 . \& \& \mathrm{~s}$ 65592. 65628.

```
mass =0.0 0.02268 0.02268 0.02268 0.02268 0.02268 0.02268
    0.022680.0
```

temp $=383 . \quad 523 . \quad 567 . \quad 564 . \quad 517.517 .548 . \quad \& \& \mathrm{k}$
529. 283.
eoi
\&\& source 3
\&\& air injection rates to cell 5
$\mathrm{n} 2=9$
iflag $=2 \& \&$ linear interpolation is used between points \&\& iflag $=1 \& \&$ stepfunction for mass rate

\&\& the following table refers to Tab. 7

$$
\mathrm{t}=61920.62028 .62748 .63756 .63864 .64296 .64332 . \& \& \mathrm{~s}
$$ 65592. 65628.

```
mass = 0.0 0.08532 0.08532 0.08532 0.08532 0.08532 0.08532
    0.085320.0
```

temp $=383 . \quad 523 . \quad 567 . \quad 564 . \quad 517 . \quad 517.548 . \quad \& \& \mathrm{k}$
529. 283.
eoi
\&\& source 4
\&\& air injection rates to cell 5
o2 $=3$
\&\& iflag $=2 \& \&$ linear interpolation is used between points
iflag $=1 \& \&$ stepfunction for mass rate
\&\& the following table refers to Tab. 7

$$
\begin{aligned}
& \mathrm{t}=0.0 \quad 82046.83424 . \\
& \text { mass }=0.0 \quad 0.02268 \quad 0.0 \\
& \text { temp }=383 . \quad 531.383 . \\
& \text { eoi }
\end{aligned}
$$

\&\& source 5
\&\& air injection rates to cell 5
$\mathrm{n} 2=3$
\&\& iflag $=2 \& \&$ linear interpolation is used between points
iflag $=1 \& \&$ stepfunction for mass rate
\&\& the following table refers to Tab. 7

```
    \(\mathrm{t}=0.0 \quad 82046.83424\).
mass \(=0.0 \quad 0.085320 .0\)
temp \(=383 . \quad\) 531. 383.
    eoi
```

\&\&
 \qquad

struc

\&\& structure $(5,1)$
\&\& upper middle cylinder
\&\& no. 21 of Tab. 3b
name $=$ struc 215 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=36.8 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\quad \begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}$
\&\& no. of cell connected to
bcouter icell $=9$
\&\& structure no. in this cell
strnum $=2,1 . \mathrm{e} 20$ eoi
eoi
$\& \&$ structure $(5,2)$
\&\& upper middle cylinder, mezzanine floor (sump not modelled)
\&\& no. 35 of Tab. 3b
name $=$ struc 355 type $=$ floor shape $=$ slab
tunif $=298.0 \quad$ slarea $=12.9 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.08 & 0.12 & 0.175\end{array}$
\&\& no. of cell connected to
bcouter icell $=6$
\&\& structure no. in this cell
strnum $=5,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(5,3)$
\&\& upper inner cylinder, vertical partition
\&\& no. 39 of Tab. 3b
name $=$ struc 395 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=4.0$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll} & 0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}$
\&\& no. of cell connected to
bcouter \quad icell $=7$
\&\& structure no. in this cell
strnum $=4$, 1.e20 eoi
eoi
\&\& structure $(5,4)$
\&\& upper, middle inner cylinder
\&\& no. 30 of Tab. 3b
name $=$ struc 305 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=5.9$ nslab $=6 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc
$\mathrm{x}=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.4\end{array}$
\&\& no. of cell connected to bcouter icell $=1$
\&\& structure no. in this cell
strnum $=5,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(5,5)$
\&\& upper inner cylinder
\&\& no. 32 of Tab. 3b
name $=$ struc 325 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=13.9 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll} & 0.0 & 0.01 & 0.04 & 0.08 & 0.13 & 0.185\end{array}$
\&\& no. of cell connected to
bcouter icell $=2$
\&\& structure no. in this cell
strnum $=2,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(5,6)$
\&\& upper roof
\&\& no. 37 of Tab. 3b
name $=$ struc375 type $=$ roof shape $=$ slab
tunif $=298.0 \quad$ slarea $=17.5 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll} & 0.0 & 0.01 & 0.04 & 0.08 & 0.13 & 0.185\end{array}$
\&\& no. of cell connected to
bcouter \quad icell $=11$
$\& \&$ structure no. in this cell
strnum $=2,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(5,7)$
\&\& vertical partition R5/R4
\&\& no. 41 of Tab. 3b
name $=$ struc415 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=4.4$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}$
\&\& no. of cell connected to
bcouter icell $=4$
$\& \&$ structure no. in this cell
strnum $=2,1 . \mathrm{e} 20 \quad$ eoi
eoi
condense
aerosol 1 h2ol 0.001
ht-tran on $\& \&$ atmosphere to structures
off $\& \&$ lower cell to substructure
off $\& \&$ interlayer in lower cell
off $\& \&$ lower cell to upper cell
off $\& \&$ pool-to-structure radiative transfer
\&\& no lower cell
overflow 6
\&\& \&
cell 6 \&\& with sump
control
nhtm $=8$ \&\& no of heat transfer structures
mxslab $=20$ \&\&" " nodes in any "
nsopl $=4 \& \& "$ " external sources to lower cell layers
nsppl $=10 \& \&$ max. no of entries in lower cell source tables
jint $=5 \& \&$ no of intermediate layers in lower cell
jpool $=1 \& \& 1$ if pool layer is used
numtbc $=4 \quad \& \&$ no of cell level tables
maxtbc $=8 \quad \& \&$ max. no of any cell level table eoi
title
--- below cell 5

```
geometry 41. \(2.95 \& \&\) free initial atmosphere volume; heightdiff.
    atmos \(=2 \quad \& \&\) no of materials
        \(\operatorname{tg} \mathrm{as}=298\).
        pgas \(=1.0130 \mathrm{e} 5\)
        molefrac \(\mathrm{n} 2=0.79 \mathrm{o} 2=0.21\)
    eoi
    \&\& source \(=\) nso \&\& no. of source tables to follow, s.S. 3-120ff
        \&\& eoi
```

\&\&
heat structures
struc
\&\& structure $(6,1)$
\&\& lower middle cylinder
$\& \&$ no. 18 of Tab. 3b
name $=$ struc 186 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=28.4$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll}x & 0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}$
\&\& no. of cell connected to
bcouter icell $=10$
\&\& structure no. in this cell
strnum $=2,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(6,2)$
\&\& vertical partition R6/R8
\&\& no. 40 of Tab. 3b

```
    name = struc406 type = wall shape = slab
    tunif=298.0 slarea = 4.1 nslab=5 chrlen=5.
    compound = conc conc conc conc conc
    x = 
    && no. of cell connected to
    bcouter icell = 8
    && structure no. in this cell
    strnum = 2,1.e20 eoi
    eoi
&& structure (6,3)
&& lower inner cylinder
&& no. 24 of Tab. 3b
    name = struc246 type = wall shape = slab
    tunif =298.0 slarea=17.8 nslab=5 chrlen = 5.
    compound = conc conc conc conc conc
    x =
    && no. of cell connected to
    bcouter icell = 3
    && structure no. in this cell
    strnum = 2, 1.e20 eoi
    eoi
&& structure (6,4)
&& lower, middle inner cylinder
&& no. }27\mathrm{ of Tab. 3b
    name = struc276 type = wall shape = slab
    tunif=298.0 slarea = 7.2 nslab = 6 chrlen = 5.
    compound = conc conc conc conc conc conc
    x =
    && no. of cell connected to
    bcouter icell = 1
    && structure no. in this cell
    strnum = 2, 1.e20 eoi
    eoi
&& structure (6,5)
&& upper middle cylinder, mezzanine floor (sump not modelled)
&& no. }35\mathrm{ of Tab. 3b
    name = struc356 type = roof shape = slab
    tunif}=298.0 slarea =12.9 nslab=5 chrlen = 5.
    compound = conc conc conc conc conc
    x =
    && no. of cell connected to
    bcouter icell = 5
    && structure no. in this cell
    strnum = 2,1.e20 eoi
    eoi
&& structure (6,6)
&& vertical partition R4/R6
&& no. }43\mathrm{ of Tab. 3b
    name = struc436 type = wall shape = slab
    tunif =298.0 slarea = 4.4 nslab = 5 chrlen = 5.
    compound = conc conc conc conc conc
    x=
    && no. of cell connected to
```

bcouter \quad icell $=4$
$\& \&$ structure no. in this cell
strnum $=4,1 . \mathrm{e} 20$ eoi
eoi
\&\& structure $(6,7)$
\&\& basemat, second ring
\&\& no. 11 of Tab. 3b
name $=$ str11-06 type $=$ floor shape $=$ slab
tunif $=295.0$ slarea $=18.8$ nslab $=13 \quad$ chrlen $=5$.
compound $=$ conc conc
$\mathrm{x}=\quad \begin{array}{llllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.20 & 0.35 & 0.5 & 0.7\end{array}$ $\begin{array}{llllll}0.8 & 1.1 & 1.5 & 2.0 & 2.7 & 3.55\end{array}$
eoi
\&\& structure $(6,8)$
\&\& basemat, third ring (sump region)
\&\& no. 14 of Tab. 3b
name $=$ str14-06 type $=$ floor shape $=$ slab
tunif $=295.0 \quad$ slarea $=7.7$ nslab $=12 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc conc
conc conc conc conc conc
$\mathrm{x}=\quad \begin{array}{llllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.20 & 0.35 & 0.5 & 0.7\end{array}$ $\begin{array}{lllll}0.8 & 1.1 & 1.5 & 2.0 & 2.55\end{array}$
eoi
condense
aerosol 1 h2ol 0.001
ht-tran on \&\& atmosphere to structures
off \&\& lower cell to substructure
on $\& \&$ interlayer in lower cell
on $\& \&$ lower cell to upper cell
on $\& \&$ pool-to-structure radiative transfer
low-cell
geometry $8 . \& \&$ floor area, between 250 cm and 3.5 m thick \&\& i modelled 3.1m
bc 283. \&\& basemat boundary condition temperature
interm lay-name $=$ conc5 temp $=283$.
compos $=1$ conc $=30720 . \quad \& \&$ ca. 1.6 m dick
eoi
interm lay-name $=$ conc4 temp $=283$.
compos $=1$ conc $=15360 . \quad \& \&$ ca. 0.8 m dick
eoi
interm lay-name $=$ conc3 temp $=283$. compos $=1$ conc $=7680 . \quad \& \&$ ca. 0.4 m dick
eoi
interm lay-name $=$ conc2 temp $=283$.
compos $=1$ conc $=\quad 3840 . \quad \& \&$ ca. 0.2 m dick
eoi
interm lay-name $=$ concl temp $=283$.

```
    &&
        compos =1 conc = 1920.&& mass in kg; ca. 0.1m dick
    eoi
    pool temp = 283.
    compos=1 h2ol = 0.1 && one material: compos = 1
                                && water, mass(kg) initially
    physics
            boil && activates pool boiling model
            && settle && allows direct aerosol settling onto pool
    eoi && end of physics
    eoi && end of pool
eoi && end of lower cell
&&
&& &&&&&&&&&&&&&&&&&&&&&&&&&
cell 7 && no sump
control
    nhtm = 7 && no of heat transfer structures
    mxslab = 20 &&" " nodes in any
    naensy = 1 && no of separate eng. systems
    numtbc = 4 && no of cell level tables
    maxtbc = & && max. no of any cell level table
eoi
title
--- cell between cells 8 and 11
geometry 41.2.45 && free initial atmosphere volume; height
    atmos = 2 && no of materials
        tgas =298.
        pgas = 1.0130e5
        molefrac n2 = 0.79 o2 = 0.21
    && satrat
    && massfrac
    && moles
    && masses
    eoi
    && source = nso && no. of source tables to follow, s.S. 3-120ff
        && eoi
```

\&\& -------------.- heat structures
struc
\&\& structure $(7,1)$
\&\& upper middle cylinder
\&\& no. 20 of Tab. 3b name $=$ struc 207 type $=$ wall shape $=$ slab tunif $=298.0 \quad$ slarea $=36.8$ nslab $=5 \quad$ chrlen $=5$. compound $=$ conc conc conc conc conc $\mathrm{x}=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}$
\&\& no. of cell connected to
bcouter icell $=9$
\&\& structure no. in this cell
strnum $=1,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(7,2)$
\&\& upper middle cylinder, mezzanine floor (sump not modelled)
\&\& no. 34 of Tab. 3b
name $=$ struc 347 type $=$ floor shape $=$ slab
tunif $=298.0 \quad$ slarea $=14.9$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.08 & 0.12 & 0.175\end{array}$
\&\& no. of cell connected to
bcouter icell $=8$
\&\& structure no. in this cell
strnum $=5,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(7,3)$
\&\& upper ceiling
\&\& no. 36 of Tab. 3b
name $=$ struc 367 type $=$ roof shape $=$ slab
tunif $=298.0$ slarea $=17.3$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\quad \begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.08 & 0.12 & 0.175\end{array}$
\&\& no. of cell connected to
bcouter icell = 11
\&\& structure no. in this cell
strnum $=1,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(7,4)$
\&\& upper inner cylinder, vertical partition R5/R7
\&\& no. 39 of Tab. 3b
name $=$ struc 397 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=4.0 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}$
\&\& no. of cell connected to
bcouter icell $=5$
\&\& structure no. in this cell
strnum $=3,1 . \mathrm{e} 20$ eoi
eoi
\&\& structure $(7,5)$
\&\& upper, middle inner cylinder
\&\& no. 29 of Tab. 3b
name $=$ struc297 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=5.9$ nslab $=6 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc
$\mathrm{x}=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.4\end{array}$
\&\& no. of cell connected to
bcouter icell $=1$
\&\& structure no. in this cell
strnum $=4,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(7,6)$
\&\& upper inner cylinder
\&\& no. 31 of Tab. 3b
name $=$ struc317 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=13.9 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll} & 0.0 & 0.01 & 0.04 & 0.08 & 0.13 & 0.185\end{array}$
\&\& no. of cell connected to
bcouter icell $=2$
\&\& structure no. in this cell
strnum $=1,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(7,7)$
\&\& vertical partition R4/R7
\&\& no. 42 of Tab. 3b

```
    name = struc427 type = wall shape = slab
    tunif=298.0 slarea = 4.4 nslab=5 chrlen = 5.
    compound = conc conc conc conc conc
    x = }\quad0.000.01 0.04 0.06 0.09 0.125
    && no. of cell connected to
    bcouter icell = 4
    && structure no. in this cell
    strnum = 3,1.e20 eoi
    eoi
```

condense

```
aerosol l h2ol 0.001
```

ht-tran on \&\& atmosphere to structures off \&\& lower cell to substructure off $\& \&$ interlayer in lower cell off $\& \&$ lower cell to upper cell off $\& \&$ pool-to-structure radiative transfer
\&\& no lower cell
\&\& assume overflow from cell 7 to 8
\&\& then the condensed water is collected in sump of R8
\&\& engineer overfl78 0000 .
\&\& overflow 780.01
\& \& eoi
overflow 8
\&\& \&
cell $8 \quad \& \&$ with sump
control
nhtm $=8 \& \&$ no of heat transfer structures
mxslab $=20$ \&\&" " nodes in any "
nsopl $=4 \& \& "$ external sources to lower cell layers
nsppl $=10$ \&\& max. no of entries in lower cell source tables
nspatm $=10 \& \&$ max. no of entries in atmosphere source tables
jint $=5 \& \&$ no of intermediate layers in lower cell
jpool $=1 \& \& 1$ if pool layer is used

```
numtbc = 4 && no of cell level tables
maxtbc = 8 && max. no of any cell level table
eoi
```

title
.-- below cell 7

```
geometry 41. \(2.95 \& \&\) free initial atmosphere volume; heightdiff.
    atmos \(=2 \quad \& \&\) no of materials
        \(\operatorname{tg} a s=298\).
        pgas \(=1.0130 \mathrm{e} 5\)
        molefrac \(\mathrm{n} 2=0.79 \mathrm{o} 2=0.21\)
    eoi
    \&\& source \(=\) nso \&\& no. of source tables to follow, s.S. 3-120ff
        \&\& eoi
```

$\& \&$
\qquad heat structures
struc
\&\& structure $(8,1)$
\&\& lower middle cylinder
\&\& no. 17 of Tab. 3b
name $=$ struc 178 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=28.4 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{llllll}x & 0.0 & 0.01 & 0.04 & 0.07 & 0.11\end{array} 0.15$
\&\& no. of cell connected to
bcouter icell $=10$
\&\& structure no. in this cell
strnum $=1,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(8,2)$
\&\& vertical partition R6/R8
\&\& no. 40 of Tab. 3b
name $=$ struc408 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=4.1 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}$
\& \& no. of cell connected to
bcouter icell $=6$
\&\& structure no. in this cell
strnum $=2,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(8,3)$
\&\& lower inner cylinder
\&\& no. 23 of Tab. 3b
name $=$ struc 238 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=17.8$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{llllll}x & 0.0 & 0.01 & 0.04 & 0.08 & 0.15\end{array} 0.28$
\&\& no. of cell connected to
bcouter icell $=3$
$\& \&$ structure no. in this cell
strnum $=1,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(8,4)$
\&\& lower, middle inner cylinder
\&\& no. 26 of Tab. 3b
name $=$ struc 268 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=7.2 \quad$ nslab $=6 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc
$x=\begin{array}{llllllll}x & 0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.4\end{array}$
\&\& no. of cell connected to
bcouter icell $=1$
$\& \&$ structure no. in this cell
strnum $=1,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(8,5)$
\&\& lower middle cylinder, mezzanine floor (sump not modelled)
\&\& no. 34 of Tab. 3b
name $=$ struc 348 type $=$ roof shape $=$ slab
tunif $=298.0 \quad$ slarea $=14.9 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{llllll} & 0.0 & 0.01 & 0.04 & 0.08 & 0.12\end{array} 0.175$
\&\& no. of cell connected to
bcouter icell $=7$
$\& \&$ structure no. in this cell
strnum $=2,1 . \mathrm{e} 20 \quad$ eoi
eoi
$\& \&$ structure $(8,6)$
\&\& vertical partition R4/R8
\&\& no. 44 of Tab. 3b
name $=$ struc 448 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=4.4 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll} \\ x & 0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}$
\&\& no. of cell connected to
bcouter icell $=4$
\&\& structure no. in this cell
strnum $=5,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(8,7)$
\&\& basemat, second ring
\&\& no. 10 of Tab. 3b
name $=$ str10-08 type $=$ floor shape $=$ slab
tunif $=295.0 \quad$ slarea $=18.8$ nslab $=13 \quad$ chrlen $=5$.
compound $=$ conc conc
$\mathrm{x}=\quad \begin{array}{llllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.20 & 0.35 & 0.5 & 0.7\end{array}$

$$
\begin{array}{llllll}
0.8 & 1.1 & 1.5 & 2.0 & 2.7 & 3.55
\end{array}
$$

eoi
\&\& structure $(8,8)$
\&\& basemat, third ring (sump region)
\&\& no. 13 of Tab. 3b
name $=$ str $13-08$ type $=$ floor shape $=$ slab
tunif $=295.0 \quad$ slarea $=7.7$ nslab $=12 \quad$ chrlen $=5$.

```
        compound = conc conc conc conc conc conc conc
                conc conc conc conc conc
        x=}\begin{array}{llllllllll}{0.0}&{0.01}&{0.04}&{0.10}&{0.20}&{0.35}&{0.5}&{0.7}
            0.8}1.111.1.5 2.0 2.5
        eoi
    condense
        aerosol 1 h2ol 0.001
    ht-tran on && atmosphere to structures
        off && lower cell to substructure
        on && interlayer in lower cell
        on && lower cell to upper cell
        on && pool-to-structure radiative transfer
    low-cell
    geometry 8.&& floor area, between 250cm and 3.5m thick
            && i modelled 3.1m
        bc 283. && basemat boundary condition temperature
    interm lay-name = conc5 temp = 283.
        compos =1 conc = 30720. && ca.1.6m dick
    eoi
    interm lay-name = conc4 temp =283.
        compos=1 conc = 15360. && ca. 0.8m dick
    eoi
    interm lay-name = conc3 temp \doteq283.
        compos =1 conc = 7680. && ca. 0.4m dick
    eoi
    interm lay-name = conc2 temp =283.
        compos =1 conc = 3840. && ca. 0.2m dick
    eoi
    interm lay-name = conc1 temp = 283.
    &&
        compos =1 conc = 1920.&& mass in kg; ca. 0.1m dick
    eoi
    pool temp = 283.
        compos=1 h2ol = 0.1 && one material: compos = 1
                                    && water, mass(kg) initially
        physics
            boil && activates pool boiling model
            && settle && allows direct aerosol settling onto pool
        eoi && end of physics
    eoi && end of pool
eoi && end of lower cell
&&
&& &&&&&&&&&&&&&&&&&&&&&&&&&
cell 9 && no sump
        && gets all condensed water of dome and puts it to
```

\&\& sump in cell 10 via overflow.

```
control
    nhtm = 5 && no of heat transfer structures
    mxslab = 20 &&" " nodes in any "
    nspatm = 10 && max. no of entries in atmosphere source tables
    naensy = 1 && no of separate eng. systems
    numtbc = 4 && no of cell level tables
    maxtbc = 8 && max. no of any cell level table
eoi
title
-a.- upper annular ring below dome = R9.3
geometry 93.2.9 && free initial atmosphere volume; height
    atmos = 2 && no of materials
        tgas =295.
        pgas = 1.0130e5
        molefrac n2 = 0.79 o2 = 0.21
    eoi
```

\&\& heat structures

struc

\&\& structure $(9,1)$
\&\& upper middle cylinder
\&\& no. 20 of Tab. 3b
name $=$ struc209 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=36.8$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$\mathrm{x}=\quad \begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}$
\&\& no. of cell connected to
bcouter icell $=7$
$\& \&$ structure no. in this cell
strnum $=1,1 . \mathrm{e} 20 \quad$ eoi
eoi
$\& \&$ structure $(9,2)$
\&\& upper middle cylinder
\&\& no. 21 of Tab. 3b
name $=$ struc 219 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=36.8 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$\mathrm{x}=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}$
\&\& no. of cell connected to
bcouter icell $=5$
$\& \&$ structure no. in this cell
strnum $=1,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(9,3)$
\&\& upper middle cylinder
\&\& no. 22 of Tab. 3b
name $=$ struc 229 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=6.2$ nslab $=5 \quad$ chrlen $=5$.

```
    compound = conc conc conc conc conc
    x = }\quad0.0.
    && no. of cell connected to
    bcouter icell = 4
    && structure no. in this cell
    strnum = 1,1.e20 eoi
    eoi
&& structure (9,4)
&& middle outer cylinder
&& no. 2 of Tab. 3b
&& i modell it by 188.4 cm of concrete
    name = str02-9 type = wall shape = slab
    tunif=295.0 slarea = 37.7 nslab = 12 chrlen = 5 .
    compound = conc conc conc conc conc conc conc
                conc conc conc conc conc
    x = 
        0.8}1.
    eoi
&& structure (9,5)
&& i modell it by }46.6\textrm{cm}\mathrm{ of concrete (with coating)
&& middle outer cylinder
&& no. }3\mathrm{ of Tab. 3b
    name = str03-9 type = wall shape = slab iouter = 12
    tunif}=295.0 slarea =66.6 nslab =6 chrlen = 5.
    compound = conc conc conc conc conc conc
    x = }\begin{array}{lllllllll}{0.0}&{0.01}&{0.04}&{0.10}&{0.20}&{0.3}&{0.466}
    eoi
condense
    aerosol 1 h2ol 0.001
ht-tran on && atmosphere to structures
        off && lower cell to substructure
        off && interlayer in lower cell
        off && lower cell to upper cell
        off && pool-to-structure radiative transfer
```

\&\& no lower cell
overflow 10
\&\& \&
cell 10 \&\& with sump
\&\& cell with air injection/removal
control
nhtm $=5 \& \&$ no of heat transfer structures
mxslab $=20$ \&\&" " nodes in any "
nsopl $=4 \& \& "$ " external sources to lower cell layers
nsppl $=10 \& \&$ max. no of entries in lower cell source tables
nspatm $=10$ \&\& max. no of entries in atmosphere source tables
nsoatm $=4$ \&\& no of external sources to upper cell atmosphere
jint $=5 \& \&$ no of intermediate layers in lower cell

```
jpool = 1 && 1 if pool layer is used
numtbc = 4 && no of cell level tables
maxtbc = 8 && max. no of any cell level table
eoi
title
--- lower annular ring below dome = R9.4
geometry 70.2.2 && free initial atmosphere volume; height
    atmos=2 && no of materials
        tgas =295.
        pgas = 1.0130e5
        molefrac n2 = 0.79 o2 = 0.21
    eoi
    source = 4
    && source 1: air removal and injection from/to cell 10
        o2 = 13 && and according temperatures
        iflag = 2&& linear interpolation is used between points
    && iflag = 1 && stepfunction for mass rate
    t=6280. 6300. 14580.15000. & & S
    52350. 52380. 53100. 54972. 55008.
        59472. 59508. 59760. 59800.
mass = 0.0 -5.25e-3 -5.25e-3 0.0 && kg/s
    0.0}00.0126 0.0168 0.0168 0.0 && kg/
    0.0
temp = 287. 287. 287. 287.
        287. 287. 287. 287. 287.
        287. 287. 287. 287.
    eoi
```

\&\& source 2: air removal and injection from/to cell 10
$\mathrm{n} 2=13 \quad \& \&$ and according temperatures
iflag $=2 \& \&$ linear interpolation is used between points
$\& \&$ iflag $=1 \& \&$ stepfunction for mass rate

```
t = 6280. 6300. 14580. 15000.
    52350. 52380. 53100. 54972. 55008.
```

 59472. 59508. 59760. 59800.
 mass $=0.0 \quad-1.975 \mathrm{e}-2-1.975 \mathrm{e}-20.0$
$0.0 \quad 0.0474 \quad 0.06320 .0632 \quad 0.0$
$\begin{array}{llll}0.0 & 0.04345 & 0.04345 & 0.0\end{array}$
temp $=287 . \quad 287 . \quad 287 . \quad 287$.
287. 287. 287. 287. 287.
287. 287. 287. 287.
eoi
\&\& source 3: air removal(leakage) from cell 10

$$
\mathrm{o} 2=6
$$

$\& \&$ iflag $=2 \& \&$ linear interpolation is used between points
iflag $=1 \& \&$ stepfunction for mass rate

$$
\mathrm{t}=4320 . \quad 9864 . \quad \text { 23029. 32508. 53100. } 108000.0 \& \& \mathrm{~s}
$$

mass $=-1.4608125 \mathrm{e}-3-1.441125 \mathrm{e}-3-8.82 \mathrm{e}-4-2.358563 \mathrm{e}-4-1.2068438 \mathrm{e}-3$
0.0
eoi
\&\& source 4: air removal(leakage) from cell 10

$$
\mathrm{n} 2=6
$$

$\& \&$ iflag $=2 \& \&$ linear interpolation is used between points iflag $=1 \& \&$ stepfunction for mass rate
$\mathrm{t}=$ 4320. 9864. 23029. 32508. 53100. $108000.0 \& \& \mathrm{~s}$
mass $=-5.4954375 \mathrm{e}-3-5.421375 \mathrm{e}-3-0.003318-8.872687 \mathrm{e}-4-4.5400312 \mathrm{e}-3$ 0.0
eoi
\&\& heat structures
struc
\&\& structure $(10,1)$
\&\& lower middle cylinder
\&\& no. 17 of Tab. 3b
name $=\operatorname{strc} 1710$ type $=$ wall shape $=$ slab
tunif $=295.0 \quad$ slarea $=28.4 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$\mathrm{x}=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}$
\&\& no. of cell connected to
bcouter icell $=8$
$\& \&$ structure no. in this cell
strnum $=1,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(10,2)$
\&\& lower middle cylinder
\&\& no. 18 of Tab. 3b
name $=\operatorname{strc} 1810$ type $=$ wall shape $=$ slab
tunif $=295.0 \quad$ slarea $=28.4 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$\mathrm{x}=\quad \begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}$
\&\& no. of cell connected to
bcouter icell $=6$
\&\& structure no. in this cell
strnum $=1,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(10,3)$
\&\& lower middle cylinder
\&\& no. 19 of Tab. 3b
name $=$ strc 1910 type $=$ wall shape $=$ slab
tunif $=295.0 \quad$ slarea $=4.8$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}$
\&\& no. of cell connected to
bcouter icell $=4$
\&\& structure no. in this cell
strnum $=8,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(10,4)$
$\& \&$ i modell it by 1.884 m of concrete
\&\& lower outer cylinder
\&\& no. 1 of Tab. 3b
name $=$ str01-10 type $=$ wall shape $=$ slab
tunif $=295.0 \quad$ slarea $=80.5$ nslab $=12 \quad$ chrlen $=5$.
compound $=$ conc conc
$\begin{array}{lllllllll}\mathrm{x}\end{array}=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.10 & 0.20 & 0.35\end{array} 0.5 \quad 0.7$ $\begin{array}{lllll}0.9 & 1.1 & 1.35 & 1.6 & 1.884\end{array}$
eoi
\&\& structure $(10,5)$
\&\& basemat, outer ring (sumpregion)
\&\& no. 9 of Tab. 3b
name $=$ str09-10 type $=$ floor shape $=$ slab
tunif $=295.0 \quad$ slarea $=32.3$ nslab $=13 \quad$ chrlen $=5$.
compound = conc conc
$\mathrm{x}=\quad \begin{array}{llllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.20 & 0.35 & 0.5 & 0.7\end{array}$ $\begin{array}{llllll}0.8 & 1.1 & 1.5 & 2.0 & 2.7 & 3.55\end{array}$
eoi
condense
aerosol 1 h2ol 0.001
ht-tran on \&\& atmosphere to structures off $\& \&$ lower cell to substructure
on $\& \&$ interlayer in lower cell
on $\& \&$ lower cell to upper cell
on $\& \&$ pool-to-structure radiative transfer

low-cell

geometry $27 . \& \&$ floor area, about 350 cm thick concrete \&\& i modelled 3.1m
bc 283. \&\& basemat boundary condition temperature
interm lay-name $=$ conc5 temp $=283$.
compos $=1$ conc $=103680 . \quad \& \&$ ca. 1.6 m dick
eoi
interm lay-name $=$ conc4 temp $=283$.
compos $=1$ conc $=51840 . \quad \& \&$ ca. 0.8 m dick
eoi

```
    interm lay-name \(=\) conc3 temp \(=283\).
    compos \(=1\) conc \(=25920 . \quad \& \&\) ca. 0.4 m dick
    eoi
    interm lay-name \(=\) conc2 temp \(=283\).
        compos \(=1\) conc \(=12960 . \quad \& \&\) ca. 0.2 m dick
    eoi
    interm lay-name \(=\) concl temp \(=283\).
        compos \(=1\) conc \(=6480 . \& \&\) mass in \(\mathrm{kg} ;\) ca. 0.1 m dick
    eoi
    pool temp \(=283\).
    compos \(=1 \quad \mathrm{~h} 2 \mathrm{ol}=0.1\) \&\& one material: compos \(=1\)
                                    \&\& water, mass(kg) initially
    physics
        boil \&\& activates pool boiling model
        \&\& settle \&\& allows direct aerosol settling onto pool
    eoi \&\& end of physics
    eoi \&\& end of pool
eoi \(\& \&\) end of lower cell
\&\&
```


\&\& \&

cell 11 \&\& no sump

```
control
    nhtm \(=9 \& \&\) no of heat transfer structures
    mxslab \(=20 \quad \& \& " "\) nodes in any
    nspatm \(=10 \quad \& \&\) max. no of entries in atmosphere source tables
    nsoatm \(=2 \& \&\) no of external sources to upper cell atmosphere
    naensy \(=1\) \&\& no of separate eng. systems
    numtbc \(=4 \& \&\) no of cell level tables
    maxtbc \(=8 \quad \& \&\) max. no of any cell level table
eoi
title
--- dome \(=\) R9.1 + R9.2
geometry 215. 3.4 \&\& free initial atmosphere volume; heightdiff.
    \(\operatorname{atmos}=2 \quad \& \&\) no of materials
        \(\operatorname{tg} a s=298\).
        pgas \(=1.0130 \mathrm{e} 5\)
        molefrac \(\mathrm{n} 2=0.79 \mathrm{o} 2=0.21\)
    eoi
    source \(=2\)
        \&\& source 1: air removal(leakage) from cell 11
        \(\mathrm{o} 2=6\)
    \&\& iflag \(=2\) \&\& linear interpolation is used between points
        iflag \(=1 \& \&\) stepfunction for mass rate
    \(\mathrm{t}=4320 . \quad 9864.23029 .32508 .53100 .108000 . \& \& \mathrm{~s}\)
```

```
mass =-7.791e-4 0.0 0.0 0.0 -6.4344e-4 0.0 && kg/s
```

eoi
\&\& source 2: air removal(leakage) from cell 11 $\mathrm{n} 2=6$
\&\& iflag $=2 \& \&$ linear interpolation is used between points iflag $=1 \& \&$ stepfunction for mass rate

```
    t = 4320. 9864. 23029. 32508. 53100. 108000. && s
mass =-0.0029309 0.0 0.0 0.0 0.0 -0.00242056 0.0 && kg/s
    eoi
```

\&\& heat structures
struc
\&\& structure $(11,1)$
\&\& upper floor of dome
\&\& no. 36 of Tab. 3b
name $=\operatorname{strc} 3611$ type $=$ floor shape $=$ slab
tunif $=298.0 \quad$ slarea $=17.3$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.08 & 0.13 & 0.185\end{array}$
\&\& no. of cell connected to
bcouter icell $=7$
\&\& structure no. in this cell
strnum $=3,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(11,2)$
\&\& upper floor of dome
\&\& no. 37 of Tab. 3b
name $=\operatorname{strc} 3711$ type $=$ floor shape $=$ slab
tunif $=298.0 \quad$ slarea $=17.5 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.08 & 0.13 & 0.185\end{array}$
\&\& no. of cell connected to
bcouter icell $=5$
$\& \&$ structure no. in this cell
strnum $=6,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(11,3)$
\&\& i modell it by 198.4 cm of concrete
\&\& upper outer cylinder
\&\& no. 4 of Tab. 3b
name $=$ str04-11 type $=$ wall shape $=$ slab
tunif $=295.0 \quad$ slarea $=16.5$ nslab $=12 \quad$ chrlen $=5$.
compound $=$ conc conc
$\mathrm{x}=\begin{array}{llllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.20 & 0.35 & 0.5 & 0.7\end{array}$

$\begin{array}{lllll}0.9 & 1.1 & 1.35 & 1.6 & 1.984\end{array}$

eoi
\&\& structure $(11,4)$
\&\& upper outer cylinder
$\& \&$ i modell it by 56.6 cm of concrete
\&\& no. 5 of Tab. 3b
name $=$ str05-11 type $=$ wall shape $=$ slab
tunif $=295.0 \quad$ slarea $=29.1$ nslab $=6 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc
$\mathrm{x}=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.20 & 0.35 & 0.566\end{array}$
eoi
\&\& structure $(11,5)$
\&\& upper cone
\&\& i modell it by 142 cm of concrete
\&\& no. 6 of Tab. 3b
name $=$ str06-11 type $=$ roof shape $=$ slab
tunif $=295.0 \quad$ slarea $=86.3$ nslab $=9 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc conc conc conc
$\mathrm{x}=\begin{array}{llllllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.20 & 0.35 & 0.55 & 0.9 & 1.2 & 1.436\end{array}$
eoi
\&\& structure $(11,6)$
\&\& lower cone
\&\& i modell it by 121.6 cm of concrete
\&\& no. 46 of Tab. 3b
name $=$ str46-11 type $=$ roof shape $=$ slab
tunif $=295.0 \quad$ slarea $=8.7$ nslab $=8 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc conc conc
$\mathrm{x}=\begin{array}{lllllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.20 & 0.35 & 0.55 & 0.9 & 1.216\end{array}$
eoi
\&\& structure $(11,7)$
\&\& top flange, top ring
\&\& i modell it by 141 cm of concrete
\&\& no. 7 of Tab. 3b
name $=$ str07-11 type $=$ roof shape $=$ slab
tunif $=295.0 \quad$ slarea $=7.8$ nslab $=10 \quad$ chrlen $=5$.
compound $=$ conc conc cone conc conc conc conc conc conc
$\mathrm{x}=0.00 .010 .040 .10 .20 .350 .50 .751 .01 .21 .41$
eoi
\&\& structure $(11,8)$
\&\& top cover
$\& \&$ i modell it by 103 cm of concrete
\&\& no. 8 of Tab. 3b
name $=$ str08-11 type $=$ roof shape $=$ slab
tunif $=295.0 \quad$ slarea $=19.0$ nslab $=8 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc conc conc
$\mathrm{x}=0.00 .010 .040 .1 \quad 0.2 \quad 0.350 .55 \quad 0.81 .03$
eoi
$\& \&$ structure $(11,9)$
\&\& top cover
$\& \&$ it is now connected to environment by tunif $=283.0$
name $=$ str47-11 type $=$ roof shape $=$ slab
$\& \&$ tunif $=295.0 \quad$ slarea $=4.2$ nslab $=4 \quad$ chrlen $=5$.
tunif $=283.0 \quad$ slarea $=4.2$ nslab $=4 \quad$ chrlen $=5$.

```
compound \(=\) SS \(\quad\) SS SS SS
\(\mathrm{x}=\quad 0.00 .0010 .0030 .0060 .01\)
eoi
```

condense
aerosol 1 h2ol 0.001
ht-tran on \&\& atmosphere to structures
off \&\& lower cell to substructure
off $\& \&$ interlayer in lower cell
off $\& \&$ lower cell to upper cell
off $\& \&$ pool-to-structure radiative transfer
\&\& no lower cell
\&\& assume overflow from cell 11 to 9
\& \& i dont know how to split condensed water into different cells
$\& \&$ as it is proposed by Fig. 6 . I take 100% flow to R9.3 $=$ cell 9.
\&\& i checked this approach with Mr. Schwarz (12.7.95)
\&\& engineer overf119 0000.
\&\& overflow $119 \quad 0.01$
\& \& eoi
overflow 10 \&\& from case 28 on
\&\& \&
\&\&
cell 12 environment
cell 12
control
eoi
title
------ environment ---..-
geometry $1 . e 15$ 1.el5
atmos $=2$ pgas $=1.0130 \mathrm{e} 5$ tgas $=283$.
molefrac $\mathrm{n} 2=0.79 \quad \mathrm{o} 2=0.21$
eoi
eoi
eof

Tab. 14 INPUT for case 46
\&\& 6.3.96: Now i add radiation according to siccams
\&\& input. But i use 0.94 for emsvt and no cess. This
\&\& gives case46x.
\&\&
\&\& 5.3.96: case45x was o.k. till aerosol injection at
\&\& 64000s. Then it stopped with the old error.
\&\& I made a restart with increased timinc $=2 \mathrm{sec}$ and this
\&\& helped. This was case45xr.
\&\&
\&\& 4.3.96: I add additionally NaOH to case44 and take cfc-
\&\& values of Tab. 2 b which are about 2 times larger and more
\&\& symetrical. They were used by the other ISP-CONTAIN users.
\&\& Aerosol input like siccama.
\&\& This gives case45.
\&\&
\&\& 1.3.96: After the ISP37 workshop I learned that my
\&\& simplification of the outer shell structure (its simulation
\&\& by only concrete) was too coarse and caused the 'good'
$\& \&$ low pressure. But the temperaures of these structures
\& \& have a very high impact on the condensation rates and
\&\& tsat, saturation rate etc. These are the dominat effects
\&\& for the aerosol behaviour.
\&\& Now I use userdef data for coating, gap, ytong and light
\&\& concrete. This is case44.
\&\&
\&\& I assume that structure thicknesses of int. structures which are
$\& \&$ connected to other cells (Tab. 3b) have to be halfed.
\&\&
\&\& Drain flow from dome (cell 11) could not be diverted in to
\&\& different cells. I model it by overflow to cell 9 after short
$\& \&$ discussion with Mr. Schwarz (GRS).
\&\&
\&\&
\&\&
\&\& cell 1: central cell
R1
\&\& cell 2: above cell 1 R2
\&\& cell 3: below cell 1 R3
\&\& cell 4: inner ringsegment below dome $\quad \mathrm{R} 4=\mathrm{R} 4.1+\mathrm{R} 4.2$
\&\& cell 5: below dome R5
\&\& cell 6: below cell 5 R6
\&\& cell 7: inner ringsegment below dome R7
\&\& cell 8: below cell 7 R8
\&\& cell 9: upper annular ring below dome R9.3
\&\& cell 10: lower annular ring below dome R9.4
\&\& cell 11: dome $\quad \mathrm{R} 9=\mathrm{R} 9.1+\mathrm{R} 9.2$
\&\& cell 12: environment
\&\&
\&\&
control
ncells $=12$
ntitl $=2$
ntzone $=11$
nac $\quad=2 \& \&$ no. of aerosol components <9
nsectn $=15 \& \& \quad$ particle sections
eoi
\& \& \qquad materials \qquad
material
compound n2 o2 h2ol h2ov
ss conc h2o
aernames naoh \&\& aerosol material
userdef coat gap ytong licon
userdat \&\& according to Klepac
coat solid
molew 70.
rho 2273.1 1500. 573.11500.
cond $2273.1 \quad 0.30 \quad 573.1 \quad 0.30 \& \&$ th. cond. W / mK sph 2273.1 1200. 573.1 1200. \&\& spec. heat J/kgK enth 2273.1 1.e5 $573.1 \quad 4.6 \mathrm{e} 5 \quad \& \& \mathrm{~J} / \mathrm{kg}$ from Klepac eoi
gap solid molew 28.
$\begin{array}{llllll}\text { rho } & 2 & 273.1 & 1.25 & 573.1 & 1.25\end{array}$
cond $2 \quad 273.1 \quad 0.125 \quad 573.1 \quad 0.125$
$\begin{array}{llllll}\mathrm{sph} & 2 & 273.1 & 1000 . & 573.1 & 1000 .\end{array}$
enth 2273.1 l.e5 573.14 .05 e 5 \&\& from Klepac eoi
ytong solid
molew 50 .
$\begin{array}{lllll}\text { rho } 2 & 273.1 & 1000 . & 573.1 & 1000 .\end{array}$
$\begin{array}{llllll}\text { cond } 2 & 273.1 & 0.55 & 573.1 & 0.55\end{array}$
$\begin{array}{llllll}\mathrm{sph} & 2 & 273.1 & 880 . & 573.1 & 880 .\end{array}$
enth 2273.1 1.e5 573.1 3.64e5 \&\& from Klepac eoi
licon solid
molew 50.
rho 2 273.1 2000. 573.1 2000.
cond $2 \quad 273.1 \quad 1.40 \quad 573.1 \quad 1.40$
$\begin{array}{llllll}\mathrm{sph} & 2 & 273.1 & 880 . & 573.1 & 880 .\end{array}$
enth 2273.1 1.e5 573.1 3.64e5 \&\& from Klepac
eoi
eoi
aerosol \&\& s.S. 3-31 ff.
diam1 $=1 . \mathrm{e}-7 \quad$ diam2 $=1 . \mathrm{e}-4 \quad$ densty $=1100$.
$\operatorname{tgas} 1=273$. $\operatorname{tgas} 2=500$.
pgas1 $=8 . e 4$ pgas2 $=5 . e 5 \quad \& \&$ siccama
solaer
solubl $=2.0 \quad \& \&$ Tab. 10
$\& \&$ surten $=73.0 \mathrm{e}-3$ commented according to siccama (4.3.96) molewt $=40.0$
eoi
\&\& mat., mass median diam., geom. standard dev.

naoh	$2 . \mathrm{e}-7$	0.642
h2ol	$1 . \mathrm{e}-7$	0.693

thermal
flows
\&\&
\&\&
\&\& contain def of $\mathrm{cfc}:$ delta $\mathrm{p}=\mathrm{cfc}$ rho $\mathrm{v}^{* *} 2$
\&\&
\&\& standard def of zeta: delta $\mathrm{p}=$ zeta rho/ $2 \mathrm{v}^{* *} 2$
\&\& (e.g. in siemens data) and for grs ??
\&\&
$\& \&$ follows $\quad \mathrm{cfc}=$ zeta $/ 2$
\&\&
\&\&
\&\& cross-section flow-loss coeff. average length
\&\& area of flowpath s.o. (A/l) \&\& cfc $(1,8)$??

$$
\begin{array}{lcl}
\text { area }(1,8)=0.04 & \operatorname{cfc}(1,8)=1.35 & \operatorname{avl}(1,8)=2.0 \\
\operatorname{area}(1,6)=0.06 & \operatorname{cfc}(1,6)=1.35 & \operatorname{avl}(1,6)=0.08 \\
\operatorname{area}(9,11)=29.1 & \operatorname{cfc}(9,11)=0.5 & \operatorname{avl}(9,11)=90.0 \\
\operatorname{area}(9,10)=32.0 & \operatorname{cfc}(9,10)=0.5 & \operatorname{avl}(9,10)=200.0 \\
\operatorname{area}(2,11)=16.33 & \operatorname{cfc}(2,11)=0.5 & \operatorname{avl}(2,11)=200.0 \\
\operatorname{area}(3,6)=1.13 & \operatorname{cfc}(3,6)=1.35 & \operatorname{avl}(3,6)=1.3 \\
\operatorname{area}(3,8)=1.30 & \operatorname{cfc}(3,8)=1.35 & \operatorname{avl}(3,8)=1.5 \\
\operatorname{area}(4,11)=2.31 & \operatorname{cfc}(4,11)=0.5 & \operatorname{avl}(4,11)=200.0 \\
\operatorname{area}(5,6)=1.68 & \operatorname{cfc}(5,6)=1.35 & \operatorname{avl}(5,6)=5.0 \\
\operatorname{area}(5,7)=1.40 & \operatorname{cfc}(5,7)=1.35 & \operatorname{avl}(5,7)=5.6 \\
\operatorname{area}(5,11)=1.82 & \operatorname{cfc}(5,11)=1.35 & \operatorname{avl}(5,11)=5.5 \\
\operatorname{area}(7,8)=1.68 & \operatorname{cfc}(7,8)=1.35 & \operatorname{avl}(7,8)=5.0 \\
\operatorname{area}(7,11)=2.25 & \operatorname{cfc}(7,11)=1.35 & \operatorname{avl}(7,11)=6.6
\end{array}
$$

\&\& flow $(\mathrm{i}, \mathrm{j})=$ flow: a constant or initial flow rate; def $=0.0$
\&\& cfrflag $(\mathrm{i}, \mathrm{j})=1$ means constant rate with kg / s
$\& \& \operatorname{cfrflag}(\mathrm{i}, \mathrm{j})=-1$ means constant rate with $\mathrm{m} 3 / \mathrm{s}$
$\& \&$ no cfrflag means: flow is interpreted as initial flow rate

$$
\text { implicit }=11 \quad \& \& \text { no. of cells to be solved implicitly }
$$

\&\& \qquad elevations of cells (positions of cell-centers)
$\operatorname{elevcl}(1)=2.3 \quad \operatorname{elevcl}(2)=4.4 \quad \operatorname{elevcl}(3)=-0.15$
$\operatorname{elevcl}(4)=2.0 \quad \operatorname{elevcl}(5)=3.5 \quad \operatorname{elevcl}(6)=0.5$
$\operatorname{elevcl}(7)=3.5 \quad \operatorname{elevcl}(8)=0.5 \quad \operatorname{elevcl}(9)=3.65$
$\operatorname{elevcl}(10)=1.1 \quad \operatorname{elevcl}(11)=6.8 \quad \operatorname{elevcl}(12)=0.0$
\&\&
elevations of flowpath ends
$\operatorname{elevfp}(1,8)=1.67 \quad \operatorname{elevfp}(8,1)=1.67$
$\operatorname{elevfp}(1,6)=1.70 \quad \operatorname{elevfp}(6,1)=1.70$

```
elevfp(11,9) = 5.20 elevfp(9,11) = 4.90
elevfp(9,10) = 2.2 elevfp(10,9) = 2.2
elevfp(11,2) = 5.15 elevfp(2,11) = 5.15
elevfp(3,6) =0.20 elevfp}(6,3)=0.2
elevfp(3,8) = 0.20 elevfp(8,3) =0.20
elevfp(11,4) = 5.1 elevfp(4,11) = 5.1
elevfp(5,6) =2.275 elevfp(6,5) = 1.925
elevfp(5,7) = 3.30 elevfp(7,5) = 3.30
elevfp}(11,5)=5.175 elevfp(5,11)=4.82
elevfp(7,8) = 2.275 elevfp(7,5) = 1.925
elevfp}(11,7)=5.175 elevfp(7,11)=4.82
```

$\& \&$ engvent $\& \&$ specifies the engineering vents
\& \& \qquad
times 99999. $4068.0 \quad \& \&$ max. cpu-limit ; start time (s)
\&\& timinc edtdto tstop
$1.0 \quad 50.0 \quad 14068$.
$1.0 \quad 50.0 \quad 24068$.
$1.0 \quad 50.0 \quad 34068$.
$1.0 \quad 50.0 \quad 44068$.
$2.0 \quad 50.0 \quad 54068$.
$2.0 \quad 50.0 \quad 64068$.
$1.0 \quad 50.0 \quad 74068$.
$1.0 \quad 50.0 \quad 84068$.
$1.0 \quad 50.0 \quad 94068$.
$1.0 \quad 50.0 \quad 100000$.
$1.0 \quad 50.0 \quad 108000$.
shortedt $500 \& \&$ no. of system timesteps between short edits
longedt 1000 \&\& " edit " " long
\&\&

prengsys praer prflow prheat prlow-cl \&\& praer2
$\& \&$ prfiss
title $\quad \& \&$ written over every long edit output
isp37-benchmark, only therm. hydr.

```
&&
```



```
&&
```

\&\& \&

```
cell 1
control
    nhtm = 10 && no of heat transfer structures
    mxslab = 20 &&" " nodes in any
    nspatm = 10 && max. no of entries in atmosphere source tables
    naensy = 1 && no of separate eng. systems
    numtbc = 4 && no of cell level tables
```

```
maxtbc = 8 && max. no of any cell level table
eoi
```

title
--- central cell --- $\quad \& \&$ only one line is allowed

```
geometry 16. 2.6 \& \& free initial atmosphere volume; height
    atmos \(=2 \quad \& \&\) no of materials
        \(\operatorname{tg} a s=298\).
        pgas \(=1.0130 \mathrm{e} 5\)
        molefrac \(\mathrm{n} 2=0.79 \quad \mathrm{o} 2=0.21\)
    eoi
```

\&\& heat structures \qquad
\&\& assume that average thickness means total thickness of structure \&\& i take in aech cell half the thickness and good connection to the \&\& neighbouring structure in other cell

struc

\&\& structure $(1,1)$
\&\& lower, middle inner cylinder
\&\& no. 26 of Tab. 3b

$$
\text { name }=\text { struc261 type }=\text { wall } \text { shape }=\text { slab }
$$

$$
\text { tunif }=298.0 \quad \text { slarea }=7.2 \text { nslab }=6 \quad \text { chrlen }=5 .
$$

compound $=$ conc conc conc conc conc conc
$\mathrm{x}=\begin{array}{llllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.4\end{array}$
\&\& no. of cell connected to
bcouter icell $=8$
\&\& structure no. in this cell
strnum $=4,1 . \mathrm{e} 20 \quad$ eoi
eoi
$\& \&$ structure $(1,2)$
\&\& lower, middle inner cylinder
\&\& no. 27 of Tab. 3b
name $=$ struc271 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=7.2$ nslab $=6 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc
$\mathrm{x}=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.4\end{array}$
\&\& no. of cell connected to
bcouter icell $=6$
\&\& structure no. in this cell
strnum $=4,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(1,3)$
\&\& middle of middle inner cylinder
\&\& no. 28 of Tab. 3b
name $=$ struc 281 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=2.2 \quad$ nslab $=6 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc
$x=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.4\end{array}$
\&\& no. of cell connected to
bcouter icell $=4$
\&\& structure no. in this cell
strnum $=7,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(1,4)$
\&\& upper, middle inner cylinder
\&\& no. 29 of Tab. 3b
name $=$ struc291 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=5.9$ nslab $=6 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc
$\mathrm{x}=\begin{array}{llllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.4\end{array}$
\&\& no. of cell connected to
bcouter \quad icell $=7$
$\& \&$ structure no. in this cell
strnum $=5,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(1,5)$
\&\& upper, middle inner cylinder
$\& \&$ no. 30 of Tab. 3b
name $=$ struc301 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=5.9$ nslab $=6 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc
$\mathrm{x}=\begin{array}{llllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.4\end{array}$
\&\& no. of cell connected to
bcouter icell $=5$
$\& \&$ structure no. in this cell
strnum $=4,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(1,6)$
\&\& upper, middle inner cylinder; mezzanine central floor
\&\& no. 48 of Tab. 3b
name $=$ struc481 type $=$ floor shape $=$ slab
tunif $=298.0 \quad$ slarea $=7.0 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}$
$\& \&$ no. of cell connected to
bcouter icell $=3$
\&\& structure no. in this cell
strnum $=4,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(1,7)$
\&\& upper, middle inner cylinder; mezzanine central floor
\&\& no. 49 of Tab. 3b
name $=$ struc491 type $=$ floor shape $=$ slab
tunif $=298.0 \quad$ slarea $=2.0 \quad$ nslab $=3 \quad$ chrlen $=5$.
compound $=$ ss ss ss
$x=\quad 0.0 \quad 0.0010 .0030 .005$
\&\& no. of cell connected to
bcouter icell $=3$
\&\& structure no. in this cell
strnum $=5,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(1,8)$
\&\& upper, middle inner cylinder; mezzanine central floor
\&\& no. 50 of Tab. 3b

```
name \(=\) struc501 type \(=\) floor shape \(=\) slab
```

tunif $=298.0 \quad$ slarea $=1.3 \quad$ nslab $=3 \quad$ chrlen $=5$.
compound $=$ ss ss ss
$x=0.0 \quad 0.0010 .003 \quad 0.005$
\&\& no. of cell connected to
bcouter icell $=3$
\& \& structure no. in this cell
strnum $=6$, l.e20 eoi
eoi
\&\& structure $(1,9)$
\&\& upper inner cylinder;central floor R1/R2
\&\& no. 38 of Tab. 3 b
name $=$ struc381 \quad type $=$ roof shape $=$ slab
tunif $=298.0 \quad$ slarea $=3.1 \quad$ nslab $=3 \quad$ chrlen $=5$.
compound $=$ ss ss ss
$x=\quad \begin{array}{lllll} & 0.0 & 0.001 & 0.003 & 0.005\end{array}$
\&\& no. of cell connected to
bcouter icell $=2$
\&\& structure no. in this cell
strnum $=4,1 . e 20 \quad$ eoi
eoi
$\& \&$ structure $(1,10)$
$\& \&$ upper, middle inner cylinder; outer ring of central floor
$\& \&$ no. 45 of Tab. 3b
name $=$ struc451 type $=$ roof shape $=$ slab
tunif $=298.0 \quad$ slarea $=14.3$ nslab $=6 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc conc
$\mathrm{x}=\begin{array}{llllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.46\end{array}$
\&\& no. of cell connected to
bcouter icell $=2$
\&\& structure no. in this cell
strnum $=5,1 . e 20$ eoi
eoi
condense
aerosol 1 h2ol 0.001
ht-tran on \&\& atmosphere to structures
off $\& \&$ lower cell to substructure
off $\& \&$ interlayer in lower cell
off $\& \&$ lower cell to upper cell
off $\& \&$ pool-to-structure radiative transfer
\&\& no lower cell
overflow 3
rad-heat
emsvt 0.940 .940 .940 .940 .940 .940 .940 .940 .940 .94
\&\& same no. as nhtm plus 1 if pool is specified
kmx 1.0
gaswal 2.5
eoi
\&\& \&
cell 2
control
nhtm $=5 \& \&$ no of heat transfer structures
mxslab $=20 \& \& "$ " nodes in any
nspatm $=10 \& \&$ max. no of entries in atmosphere source tables
naensy $=1 \& \&$ no of separate eng. systems
numtbc $=4 \quad \& \&$ no of cell level tables
maxtbc $=8 \quad \& \&$ max. no of any cell level table
eoi
title
-... room above cell 1 -...
geometry 26. $1.4 \& \&$ free initial atmosphere volume; height atmos $=2 \quad \& \&$ no of materials
$\operatorname{tgas}=298$.
pgas $=1.0130 \mathrm{e} 5$
molefrac $\mathrm{n} 2=0.79 \quad \mathrm{o} 2=0.21$
eoi
\&\& --.------.-.--- heat structures
struc
\&\& structure $(2,1)$
\&\& upper inner cylinder
$\& \&$ no. 31 of Tab. 3b
name $=$ struc 312 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=13.9$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$\mathrm{X}=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.08 & 0.13 & 0.185\end{array}$
\& \& no. of cell connected to
bcouter icell $=7$
\& \& structure no. in this cell
strnum $=6$, l.e20 eoi
eoi
\&\& structure $(2,2)$
\&\& upper inner cylinder
\&\& no. 32 of Tab. 3b
name $=$ struc 322 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=13.9 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$\mathrm{X}=\quad \begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.08 & 0.13 & 0.185\end{array}$
\&\& no. of cell connected to
bcouter icell $=5$
$\& \&$ structure no. in this cell
strnum $=5,1 . e 20 \quad$ eoi
eoi
\&\& structure $(2,3)$
\&\& upper inner cylinder
\&\& no. 33 of Tab. 3b
name $=$ struc 332 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=2.3$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll} & 0.0 & 0.01 & 0.04 & 0.08 & 0.13 & 0.185\end{array}$
\&\& no. of cell connected to
bcouter \quad icell $=4$
\&\& structure no. in this cell
strnum $=9,1 . \mathrm{e} 20$ eoi
eoi
\&\& structure $(2,4)$
\&\& upper inner cylinder; central floor R1/R2
\&\& no. 38 of Tab. 3b
name $=$ struc 382 type $=$ floor shape $=$ slab
tunif $=298.0 \quad$ slarea $=3.1 \quad$ nslab $=3 \quad$ chrlen $=5$.
compound $=$ ss \quad ss \quad ss
$x=0.00 .0010 .0030 .005$
\&\& no. of cell connected to
bcouter icell $=1$
\&\& structure no. in this cell
strnum $=5,1 . \mathrm{e} 20$ eoi
eoi
\&\& structure $(2,5)$
\&\& upper, middle inner cylinder;outer ring of central floor
\&\& no. 45 of Tab. 3b

```
    name= struc452 type = floor shape = slab
    tunif =298.0 slarea =14.3 nslab =6 chrlen = 5.
    compound = conc conc conc conc conc conc
    x = 
    && no. of cell connected to
    bcouter icell = 1
    && structure no. in this cell
    strnum = 10, 1.e20 eoi
    eoi
```


condense

$$
\text { aerosol } 1 \text { h2ol } 0.001
$$

ht-tran on \&\& atmosphere to structures off $\& \&$ lower cell to substructure
off $\& \&$ interlayer in lower cell
off $\& \&$ lower cell to upper cell
off $\& \&$ pool-to-structure radiative transfer
\& \& no lower cell
overflow 8
rad-heat
emsvt 0.940 .940 .940 .940 .94
\&\& same no. as nhtm plus 1 if pool is specified
kmx 1.0

```
gaswal 2.5
```

eoi
\&\& \&
cell $3 \quad \& \&$ with sump and with steam injection control

```
nhtm = 7 && no of heat transfer structures
```

mxslab $=20$ \&\&" " nodes in any "
nsopl $=4$ \&\&" " external sources to lower cell layers
nsppl $=10$ \&\& max. no of entries in lower cell source tables
nsoatm $=5 \& \&$ no of external sources to upper cell atmosphere
nspatm $=10 \& \&$ max. no of entries in atmosphere source tables
nsoaer $=1 \& \&$ no of external aerosol sources
nspaer $=10 \quad \& \&$ max. no of entries in aerosol source tables
jint $=5 \quad \& \&$ no of intermediate layers in lower cell
jpool $=1$ \&\& 1 if pool layer is used
numtbc $=4 \quad \& \&$ no of cell level tables
maxtbc $=8 \quad \& \&$ max. no of any cell level table
eoi
title
.-- room below cell 1 ---

```
geometry 28. \(2.3 \& \&\) free initial atmosphere volume; height
    \(\operatorname{atmos}=2 \quad \& \&\) no of materials
        tgas \(=298\).
        pgas \(=1.0130 \mathrm{e} 5\)
        molefrac \(\mathrm{n} 2=0.79 \mathrm{o} 2=0.21\)
    eoi
```

\&\& source $=$ nso \&\& no. of source tables to follow, s.S. 3-120ff
source $=5$
\&\& source 1: steam injection to cell 3
$\& \&$ vapour and enthalpy rates according to Tab. 6
$\mathrm{h} 2 \mathrm{ov}=6$
iflag $=2 \& \&$ linear interpolation is used between points
\&\& iflag $=1 \& \&$ stepfunction for mass rate
$\mathrm{t}=$ 84024. 84096. 87480. 88380. 90864. 91008. \&\&
mass $=0 . \begin{array}{lllllll}0.185 & 0.180 & 0.165 & 0.165 & 0.0 & \& \& \mathrm{~kg} / \mathrm{s}\end{array}$
enth $=2.734 \mathrm{e} 62.734 \mathrm{e} 62.746 \mathrm{e} 62.746 \mathrm{e} 62.746 \mathrm{e} 62.699 \mathrm{e} 6 \quad \& \& \mathrm{~J} / \mathrm{kg}$
eoi
\&\& source 2: air injection rates to cell 3
\&\& and temperatures
$\mathrm{o} 2=12$
iflag $=2 \& \&$ linear interpolation is used between points
\&\& iflag $=1 \& \&$ stepfunction for mass rate
$\mathrm{t}=51732.51840$. 52250. 52300. 54972. 55008. 55584. \&\& s 55620. 59148. 59220. 59472. 59508.

```
mass = 0. 0.01176 0.0126 0.0 0.0 0.0168 0.0168 && kg/s
    0. 0.0}00.01155 0.01155 0.0 
temp = 287. 287. 287. 287. 287. 287. 287. && k
    287. 287. 287. 287. 287.
    eoi
    && source 3: air injection rates to cell 3
            && and temperatures
    n2 = 12
    iflag = 2&& linear interpolation is used between points
    && iflag = 1 && stepfunction for mass rate
    t = 51732. 51840. 52250. 52300. 54972. 55008. 55584. && s
        55620. 59148. 59220. 59472. 59508.
mass = 0. 0.04424 0.0474 0.0 0.0 0.0632 0.0632 && kg/s
    0. }00.
temp = 287. 287. 287. 287. 287. 287. 287. && k
    287. 287. 287. 287. 287.
    eoi
    && source 4: air removal(leakage) from cell 3
    o2=6
&& iflag = 2&& linear interpolation is used between points
    iflag = 1&& stepfunction for mass rate
    t = 4320. 9864. 23029. 32508. 53100. 108000. && s
mass = -0.584325e-3 -5.7645e-4 -3.528e-4 -9.43425e-5 -4.827375e-4 0.0
eoi
```

\&\& source 5: air removal(leakage) from cell 3
$\mathrm{n} 2=6$
$\& \&$ iflag $=2 \& \&$ linear interpolation is used between points
iflag $=1 \& \&$ stepfunction for mass rate
$\mathrm{t}=$ 4320. 9864. 23029. 32508. 53100. 108000. \&\& s
mass $=-2.198175 \mathrm{e}-3-2.16855 \mathrm{e}-3-1.3272 \mathrm{e}-3-3.549075 \mathrm{e}-4-1.8160125 \mathrm{e}-3$
0.0
eoi
\&\& --------------- heat structures
struc
\&\& structure $(3,1)$
\&\& lower inner cylinder
\&\& no. 23 of Tab. 3b

```
name \(=\) struc233 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=17.8\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
```

$\mathrm{x}=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.08 & 0.15 & 0.28\end{array}$
\&\& no. of cell connected to
bcouter icell $=8$
\&\& structure no. in this cell
strnum $=3$, 1.e20 eoi
eoi
\&\& structure $(3,2)$
\&\& lower inner cylinder
\&\& no. 24 of Tab. 3b
name $=$ struc243 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=17.8$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\quad \begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.08 & 0.15 & 0.28\end{array}$
\& \& no. of cell connected to
bcouter icell $=6$
\&\& structure no. in this cell
strnum $=3$, 1.e20 eoi
eoi
\&\& structure $(3,3)$
\&\& lower inner cylinder
\&\& no. 25 of Tab. 3b
name $=$ struc 253 type $=$ wall shape $=$ slab
tunif $=298.0$ slarea $=3.2$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll} & 0.0 & 0.01 & 0.04 & 0.08 & 0.15 & 0.265\end{array}$
\&\& no. of cell connected to
bcouter icell $=4$
\&\& structure no. in this cell
strnum $=6,1 . \mathrm{e} 20$ eoi
eoi
\&\& structure $(3,4)$
\&\& lower, middle inner cylinder; mezzanine central floor
\&\& no. 48 of Tab. 3b
name $=$ struc 483 type $=$ roof shape $=$ slab
tunif $=298.0$ slarea $=7.0$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=0 \begin{array}{llllllll} & 0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}$
\&\& no. of cell connected to
bcouter icell = 1
\&\& structure no. in this cell
strnum $=6,1 . \mathrm{e} 20$ eoi
eoi
\&\& structure $(3,5)$
\&\& lower, middle inner cylinder; mezzanine central roof
\&\& no. 49 of Tab. 3b
name $=$ struc 493 type $=$ roof shape $=$ slab
tunif $=298.0 \quad$ slarea $=2.0$ nslab $=3 \quad$ chrlen $=5$.
compound $=$ ss ss ss
$x=0.0 \quad 0.0010 .0030 .005$
\&\& no. of cell connected to

```
    bcouter icell = 1
    && structure no. in this cell
    strnum = 7, 1.e20 eoi
    eoi
&& structure (3,6)
&& lower, middle inner cylinder; mezzanine central roof
&& no. 50 of Tab. 3b
    name = struc503 type = roof shape = slab
    tunif=298.0 slarea = 1.3 nslab = 3 chrlen = 5.
    compound = ss ss ss
    x = 0.0 0.001 0.003 0.005
    && no. of cell connected to
    bcouter icell = 1
    && structure no. in this cell
    strnum = 8,1.e20 eoi
    eoi
&& structure (3,7)
&& basemat, center (sump region)
&& no. 16 of Tab. 3b
    name = str16-03 type = floor shape = slab
    tunif =295.0 slarea =11.1 nslab = 12 chrlen = 5 .
    compound = conc conc conc conc conc conc conc
                conc conc conc conc conc
    x = }\begin{array}{llllllllll}{0.0}&{0.01}&{0.04}&{0.10}&{0.20}&{0.35}&{0.5}&{0.7}
        lllllll
    eoi
    condense
```

```
aerosol source \(=1 \quad \& \&\) siccamas input
```

aerosol source $=1 \quad \& \&$ siccamas input
$\mathrm{h} 2 \mathrm{ol}=2$
$\mathrm{h} 2 \mathrm{ol}=2$
iflag $=1 \quad \& \& \quad$ step function
iflag $=1 \quad \& \& \quad$ step function
$\mathrm{t}=0 . \quad 108000$.
$\mathrm{t}=0 . \quad 108000$.
mass $=1 . \mathrm{e}-6 \quad 1 . \mathrm{e}-6$
mass $=1 . \mathrm{e}-6 \quad 1 . \mathrm{e}-6$
ht-tran on \&\& atmosphere to structures
off \&\& lower cell to substructure
on \&\& interlayer in lower cell
on \&\& lower cell to upper cell
on \&\& pool-to-structure radiative transfer
rad-heat
emsvt 0.940.940.940.940.940.940.940.94
\&\& same no. as nhtm plus 1 if pool is specified
kmx 1.0
gaswal 2.5
eoi

```
\&\& with lower cell
low-cell
geometry 11. \&\& floor area, about 350 cm thick concrete \&\& i modelled 3.1m
bc 283. \&\& basemat boundary condition temperature
```

 interm lay-name = conc5 temp = 283.
 compos =1 conc = 42240. && ca.1.6m dick
 eoi
 interm lay-name = conc4 temp = 283.
 compos =1 conc = 21120. && ca.0.8m dick
 eoi
 interm lay-name = conc3 temp = 283.
 compos =1 conc = 10560. && ca. 0.4m dick
 eoi
 interm lay-name = conc2 temp = 283.
 compos =1 conc = 5280. && ca.0.2m dick
 eoi
 interm lay-name = concl temp = 283.
 &&
 compos = 1 conc = 2640.&& mass in kg; ca. 0.1m dick
 eoi
 pool temp = 283.
 compos=1 h2ol = 0.1 && one material: compos = 1
 && water, mass(kg) initially
 physics
 boil && activates pool boiling model
 && settle && allows direct aerosol settling onto pool
 eoi && end of physics
 eoi && end of pool
 eoi \&\& end of lower cell
\&\&
\&\& \&

```
```

cell 4 \&\& with sump

```
cell 4 && with sump
control
control
    nhtm = 11 && no of heat transfer structures
    nhtm = 11 && no of heat transfer structures
    mxslab = 20 &&" " nodes in any "
    mxslab = 20 &&" " nodes in any "
    nsopl = 4 &&" " external sources to lower cell layers
    nsopl = 4 &&" " external sources to lower cell layers
    nsppl = 10 && max. no of entries in lower cell source tables
    nsppl = 10 && max. no of entries in lower cell source tables
    nsoatm = 2 && no. of external sources to upper cell atmosphere
    nsoatm = 2 && no. of external sources to upper cell atmosphere
    nspatm = 10 && max. no of entries in atmosphere source tables
    nspatm = 10 && max. no of entries in atmosphere source tables
    jint = 5 && no of intermediate layers in lower cell
    jint = 5 && no of intermediate layers in lower cell
    jpool = 1 && 1 if pool layer is used
    jpool = 1 && 1 if pool layer is used
    numtbc = 4 && no of cell level tables
    numtbc = 4 && no of cell level tables
    maxtbc = 8 && max. no of any cell level table
    maxtbc = 8 && max. no of any cell level table
eoi
eoi
title
--- inner ring segment below dome R4 = R4.1 + R4.2
geometry 14. 6.1 && free initial atmosphere volume; heightdiff.
    atmos = 2 && no of materials
        tgas =298.
        pgas = 1.0130e5
        molefrac n2 = 0.79 o2 = 0.21
```

eoi
source $=2$
\&\& source 1: air removal(leakage) from cell 4 $02=6$
\&\& iflag $=2 \& \&$ linear interpolation is used between points iflag $=1 \& \&$ stepfunction for mass rate
$\mathrm{t}=4320 . \quad 9864.23029 .32508 .53100 .108000 . \& \& \mathrm{~s}$
mass $=-2.921625 \mathrm{e}-4-2.88225 \mathrm{e}-4-1.764 \mathrm{e}-4-4.717125 \mathrm{e}-5-2.4136875 \mathrm{e}-4$ 0.0
eoi
\&\& source 2: air removal(leakage) from cell 4
$\mathrm{n} 2=6$
$\& \&$ iflag $=2 \& \&$ linear interpolation is used between points iflag $=1 \& \&$ stepfunction for mass rate
$\mathrm{t}=4320 . \quad 9864 . \quad 23029.32508 . \quad 53100.108000 . \& \& \mathrm{~s}$
mass $=-1.0990875 \mathrm{e}-3-1.084275 \mathrm{e}-3-6.636 \mathrm{e}-4-1.7745375 \mathrm{e}-4-9.0800625 \mathrm{e}-4$ 0.0
eoi
\&\& heat structures
struc
\&\& structure $(4,1)$
\&\& upper middle cylinder
\&\& no. 22 of Tab. 3b
name $=$ struc224 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=6.2$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}$
\&\& no. of cell connected to bcouter icell $=9$
\&\& structure no. in this cell
strnum $=3,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(4,2)$
\&\& vertical partition R4/R5
\&\& no. 41 of Tab. 3b
name $=$ struc414 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slare $a=4.4$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}$
\&\& no. of cell connected to
bcouter icell $=5$
\&\& structure no. in this cell
strnum $=7,1 . \mathrm{e} 20$ eoi
eoi
\&\& structure $(4,3)$
\&\& vertical partition R4/R7
\&\& no. 42 of Tab. 3b
name $=$ struc424 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=4.4 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll} \\ x & 0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}$
\&\& no. of cell connected to
bcouter icell $=7$
\&\& structure no. in this cell
strnum $=7,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(4,4)$
\&\& vertical partition R4/R6
\&\& no. 43 of Tab. 3b
name $=$ struc 434 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=4.4$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}$
\&\& no. of cell connected to
bcouter icell $=6$
\&\& structure no. in this cell
strnum $=6,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(4,5)$
\&\& vertical partition R4/R8
\&\& no. 44 of Tab. 3b
name $=$ struc444 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=4.4 \quad$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}$
\&\& no. of cell connected to
bcouter icell $=8$
\&\& structure no. in this cell
strnum $=6,1 . \mathrm{e} 20 \quad$ eoi
eoi
\&\& structure $(4,6)$
\&\& lower inner cylinder
\&\& no. 25 of Tab. 3b
name $=$ struc 254 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=3.2$ nslab $=5 \quad$ chrlen $=5$.
compound $=$ conc conc conc conc conc
$x=\begin{array}{lllllll}x & 0.0 & 0.01 & 0.04 & 0.08 & 0.15 & 0.265\end{array}$
\&\& no. of cell connected to
bcouter icell $=3$
\&\& structure no. in this cell
strnum $=3,1 . e 20$ eoi
eoi
\&\& structure $(4,7)$
\&\& middle of middle inner cylinder
\&\& no. 28 of Tab. 3b
name $=$ struc 284 type $=$ wall shape $=$ slab
tunif $=298.0 \quad$ slarea $=2.2 \quad$ nslab $=6 \quad$ chrlen $=5$.

```
    compound = conc conc conc conc conc conc
    x =
    && no. of cell connected to
    bcouter icell = 1
    && structure no. in this cell
    strnum = 3,1.e20 eoi
    eoi
&& structure (4,8)
&& lower middle cylinder
&& no. }19\mathrm{ of Tab. 3b
    name = strc194 type = wall shape = slab
    tunif}=295.0 slarea = 4.8 nslab=5 chrlen = 5.
    compound = conc conc conc conc conc
    x = 0.0}00.010.0.04 0.07 0.11 0.15
    && no. of cell connected to
    bcouter icell = 10
    && structure no. in this cell
    strnum = 3,1.e20 eoi
    eoi
&& structure (4,9)
&& upper inner cylinder
&& no. }33\mathrm{ of Tab. 3b
    name = struc334 type = wall shape = slab
    tunif =298.0 slarea =2.3 nslab = 5 chrlen = 5 .
    compound = conc conc conc conc conc
    x = 
    && no. of cell connected to
    bcouter icell =2
    && structure no. in this cell
    strnum = 3,1.e20 eoi
    eoi
&& structure (4,10)
&& basemat, second ring
&& no. }12\mathrm{ of Tab. 3b
    name= str12-04 type = floor shape = slab
    tunif =295.0 slarea = 2.0 nslab = 13 chrlen = 5.
    compound = conc conc conc conc conc conc conc
        conc conc conc conc conc conc
    x = 0.0}00.0
        0.8
    eoi
&& structure (4,11)
&& basemat, third ring (sump region)
&& no. }15\mathrm{ of Tab. 3b
    name = str15-04 type = floor shape = slab
    tunif=295.0 slarea = 1.2 nslab = 12 chrlen = 5.
    compound = conc conc conc conc conc conc conc
        conc conc conc conc conc
    x = }\begin{array}{llllllllll}{0.0}&{0.01}&{0.04}&{0.10}&{0.20}&{0.35}&{0.5}&{0.7}
        0.8
    eoi
    condense
```

aerosol 1 h2ol 0.001
ht-tran on \&\& atmosphere to structures
off $\& \&$ lower cell to substructure
on $\& \&$ interlayer in lower cell
on $\& \&$ lower cell to upper cell
on $\& \&$ pool-to-structure radiative transfer

```
rad-heat
    emsvt 0.940.940.940.940.940.940.940.940.940.940.940.94
        && same no. as nhtm plus 1 if pool is specified
        kmx 1.0
        gaswal 2.5
    eoi
&& with lower cell
low-cell
    geometry 1.&& floor area, about 250cm thick concrete
        && i modelled 3.1m
            bc 283. && basemat boundary condition temperature
    interm lay-name = conc5 temp = 283.
        compos=1 conc = 3840. && ca.1.6m dick
    eoi
    interm lay-name = conc4 temp = 283.
        compos =1 conc = 1920. && ca.0.8m dick
    eoi
    interm lay-name = conc3 temp = 283.
        compos = 1 conc = 960. && ca.0.4m dick
    eoi
    interm lay-name = conc2 temp = 283.
        compos =1 conc = 480. && ca. 0.2m dick
    eoi
    interm lay-name = concl temp =283.
    &&
        compos =1 conc = 240.&& mass in kg; ca. 0.1m dick
    eoi
    pool temp = 283.
        compos=1 h2ol = 0.1 && one material: compos = 1
                        && water, mass(kg) initially
        physics
            boil && activates pool boiling model
            && settle && allows direct aerosol settling onto pool
        eoi && end of physics
    eoi && end of pool
eoi && end of lower cell
&&
cell \(5 \quad \& \&\) no sump
\&\& cell with steam injection
control
nhtm \(=7 \& \&\) no of heat transfer structures
mxslab \(=20\) \&\&" " nodes in any "
nspatm \(=35\) \&\& max. no of entries in atmosphere source tables
nsoatm \(=5 \& \&\) no of external sources to upper cell atmosphere
nsoaer \(=1\) \&\& no of external aerosol sources
nspaer \(=10 \& \&\) max. no of entries in aerosol source tables
naensy \(=1 \& \&\) no of separate eng. systems
numtbc \(=4 \& \&\) no of cell level tables
maxtbc \(=8 \& \&\) max. no of any cell level table
eoi
title
--- cell between cells 6 and \(11 \& \&\) only one line is allowed
geometry 41. 2.45 \&\& free initial atmosphere volume; height
atmos \(=2 \quad \& \&\) no of materials
\(\operatorname{tgas}=298\).
pgas \(=1.0130 \mathrm{e} 5\)
molefrac \(\mathrm{n} 2=0.79 \mathrm{o} 2=0.21\)
\&\& satrat
\&\& massfrac
\&\& moles
\&\& masses
eoi
\&\& source \(=\) nso \&\& no. of source tables to follow, s.S. 3-120ff
source \(=5\)
\&\& source 1
\(\mathrm{h} 2 \mathrm{ov}=35\)
iflag \(=2 \& \&\) linear interpolation is used between points
\&\& iflag \(=1 \& \&\) stepfunction for mass rate
\&\& vapour and enthalpy rates according to tab. 6
\[
\begin{aligned}
& \mathrm{t}=4068.4320 . \quad 5400 . \quad 5436.7200 .7920 .8712 . \quad \& \& \mathrm{~s} \\
& \text { 10296. 12420. 13104. 16092. 16848. 19440. } 20988 . \\
& \text { 23796. 30996. 31140. 38160. 52020. 52200. } 57780 . \\
& \text { 57960. 61560. 61920. 65520. 65628. 81720. } 81797 . \\
& \text { 83088. 83160. } 90864 \text { 91008. 92520. 108108. } 108180 . \\
& \text { mass }=0.00 .4 \quad 0.3750 .310 \quad 0.305 \quad 0.420 \quad 0.280 \quad \& \& \mathrm{~kg} / \mathrm{s} \\
& \begin{array}{lllllll}
0.362 & 0.367 & 0.423 & 0.423 & 0.369 & 0.380 & 0.358
\end{array} \\
& \begin{array}{lllllll}
0.358 & 0.279 & 0.262 & 0.205 & 0.145 & 0.0 & 0.0
\end{array} \\
& \begin{array}{lllllll}
0.033 & 0.033 & 0.124 & 0.120 & 0.0 & 0.0 & 0.122
\end{array} \\
& \begin{array}{lllllll}
0.122 & 0.0 & 0.0 & 0.130 & 0.135 & 0.135 & 0.0
\end{array} \\
& \text { enth }=2.680 \mathrm{e} 62.680 \mathrm{e} 62.703 \mathrm{e} 62.703 \mathrm{e} 62.696 \mathrm{e} 62.714 \mathrm{e} 62.714 \mathrm{e} 6 \& \& \mathrm{~J} / \mathrm{kg} \\
& 2.716 \mathrm{e} 62.720 \mathrm{e} 62.730 \mathrm{e} 62.730 \mathrm{e} 62.728 \mathrm{e} 62.728 \mathrm{e} 62.728 \mathrm{e} 6 \\
& 2.728 \mathrm{e} 62.728 \mathrm{e} 62.728 \mathrm{e} 62.728 \mathrm{e} 62.722 \mathrm{e} 6 \text { 2.722e6 2.686e6 } \\
& \text { 2.686e6 2.686e6 2.686e6 2.709e6 2.709e6 2.693e6 2.693e6 } \\
& 2.700 \mathrm{e} 62.700 \mathrm{e} 62.746 \mathrm{e} 62.699 \mathrm{e} 62.712 \mathrm{e} 62.715 \mathrm{e} 62.715 \mathrm{e} 6 \\
& \text { eoi }
\end{aligned}
\]
\& \& source 2
\&\& air injection rates to cell 5
\(o 2=9\)
iflag \(=2\) \&\& linear interpolation is used between points
\&\& iflag \(=1 \& \&\) stepfunction for mass rate
\&\& the following table refers to Tab. 7
\(\mathrm{t}=61920.62028 .62748 .63756\). 63864. 64296. \(64332 . \& \& \mathrm{~s}\) 65592. 65628.
mass \(=0.0 \quad 0.02268 \quad 0.022680 .022680 .022680 .022680 .02268\) 0.022680 .0
temp \(=383 . \quad 523 . \quad 567 . \quad 564 . \quad 517.517 .548 . \quad \& \& \mathrm{k}\) 529. 283.
eoi
\&\& source 3
\&\& air injection rates to cell 5
\(\mathrm{n} 2=9\)
iflag \(=2 \& \&\) linear interpolation is used between points \&\& iflag \(=1 \& \&\) stepfunction for mass rate
\&\& the following table refers to Tab. 7
\[
\mathrm{t}=61920.62028 .62748 .63756 .63864 .64296 .64332 . \& \& \mathrm{~s}
\] 65592. 65628.
```

mass = 0.0 0.08532 0.08532 0.08532 0.08532 0.085320.08532
0.085320.0
temp = 383. 523. 567. 564. 517. 517. 548. \&\& k
529. }283
eoi

```
        \&\& source 4
        \(\& \&\) air injection rates to cell 5
        o2 \(=3\)
\&\& iflag \(=2 \& \&\) linear interpolation is used between points
    iflag \(=1 \& \&\) stepfunction for mass rate
\&\& the following table refers to Tab. 7
```

 t=0.0 82046. 83424.
 mass = 0.0 0.02268 0.0
temp = 383. 531. 383.
eoi

```
\&\& source 5
\&\& air injection rates to cell 5
\(\mathrm{n} 2=3\)
\&\& iflag \(=2 \& \&\) linear interpolation is used between points
iflag \(=1 \& \&\) stepfunction for mass rate
\&\& the following table refers to Tab. 7
\(\mathrm{t}=0.0 \quad 82046.83424\).
mass \(=0.0 \quad 0.085320 .0\)
temp \(=383 . \quad 531.383\).
eoi
\&\& \(\qquad\) heat structures
struc
\&\& structure \((5,1)\)
\&\& upper middle cylinder
\&\& no. 21 of Tab. 3b
name \(=\) struc215 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=36.8\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\quad 0.0 \quad 0.01 \quad 0.04 \quad 0.07 \quad 0.11 \quad 0.15\)
\&\& no. of cell connected to
bcouter icell \(=9\)
\&\& structure no. in this cell
strnum \(=2,1 . \mathrm{e} 20\) eoi eoi
\&\& structure \((5,2)\)
\&\& upper middle cylinder, mezzanine floor (sump not modelled)
\&\& no. 35 of Tab. 3b
name \(=\) struc 355 type \(=\) floor shape \(=\) slab
tunif \(=298.0\) slarea \(=12.9\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\quad \begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.08 & 0.12 & 0.175\end{array}\)
\&\& no. of cell connected to bcouter icell \(=6\) \&\& structure no. in this cell strnum \(=5,1 . \mathrm{e} 20 \quad\) eoi eoi
\&\& structure \((5,3)\)
\&\& upper inner cylinder, vertical partition
\&\& no. 39 of Tab. 3b
name \(=\) struc395 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=4.0\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{lllllll} & 0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=7\)
\&\& structure no. in this cell
strnum \(=4,1 . \mathrm{e} 20 \quad\) eoi
eoi
\&\& structure \((5,4)\)
\&\& upper, middle inner cylinder
\&\& no. 30 of Tab. 3b
name \(=\) struc 305 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=5.9\) nslab \(=6 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc conc
\(x=\begin{array}{llllllll}x & 0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.4\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=1\)
\(\& \&\) structure no. in this cell
strnum \(=5,1 . \mathrm{e} 20 \quad\) eoi
eoi
\(\& \&\) structure \((5,5)\)
\&\& upper inner cylinder
\&\& no. 32 of Tab. 3b
name \(=\) struc 325 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=13.9\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.08 & 0.13 & 0.185\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=2\)
\&\& structure no. in this cell
strnum \(=2,1 . e 20\) eoi
eoi
\&\& structure \((5,6)\)
\&\& upper roof
\&\& no. 37 of Tab. 3b
name \(=\) struc375 type \(=\) roof shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=17.5\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=1 \begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.08 & 0.13 & 0.185\end{array}\)
\&\& no. of cell connected to
bcouter icell = 11
\&\& structure no. in this cell
strnum \(=2,1\). e20 eoi
eoi
\&\& structure \((5,7)\)
\&\& vertical partition R5/R4
\&\& no. 41 of Tab. 3b
name \(=\) struc415 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=4.4\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{lllllll}x & 0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=4\)
\(\& \&\) structure no. in this cell
strnum \(=2,1 . e 20 \quad\) eoi
eoi

\section*{condense}
aerosol
source \(=1\)
naoh \(=4\) iflag \(=1\) \& \& step function
\(\begin{array}{rllll}\mathrm{t}= & \begin{array}{cccc}63720 . & 65448 & 82512 . & 83088 . \\ \text { mass } & = & 1.28 \mathrm{e}-3 & 0.0\end{array} & 1.25 \mathrm{e}-3 & 0.0\end{array}\)
ht-tran on \&\& atmosphere to structures off \(\& \&\) lower cell to substructure
off \(\& \&\) interlayer in lower cell
off \(\& \&\) lower cell to upper cell
off \(\& \&\) pool-to-structure radiative transfer
\&\& no lower cell
overflow 6
rad-heat
emsvt 0.940 .940 .940 .940 .940 .940 .94
\&\& same no. as nhtm plus 1 if pool is specified kmx 1.0
gaswal 2.5
eoi
\&\& \&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&
cell 6 \&\& with sump
control
nhtm \(=8 \& \&\) no of heat transfer structures
mxslab \(=20 \quad \& \& "\) " nodes in any "
nsopl \(=4\) \&\&"" external sources to lower cell layers
nsppl \(=10\) \&\& max. no of entries in lower cell source tables
jint \(=5\) \&\& no of intermediate layers in lower cell
jpool \(=1\) \&\& 1 if pool layer is used
numtbc \(=4 \quad \& \&\) no of cell level tables
maxtbc \(=8\) \&\& max. no of any cell level table
eoi
title
--- below cell 5
geometry 41. 2.95 \& \& free initial atmosphere volume; heightdiff.
atmos \(=2 \quad \& \&\) no of materials
\(\operatorname{tg} a s=298\).
pgas \(=1.0130 \mathrm{e} 5\)
molefrac \(\mathrm{n} 2=0.79 \mathrm{o} 2=0.21\)
eoi
\&\& source \(=\) nso \&\& no. of source tables to follow, s.S. 3-120ff \&\& eoi
\&\& --------------- heat structures
struc
\&\& structure \((6,1)\)
\&\& lower middle cylinder
\&\& no. 18 of Tab. 3b
name \(=\) struc 186 type \(=\) wall shape \(=\) slab
```

tunif $=298.0$ slarea $=28.4$ nslab $=5 \quad$ chrlen $=5$.

```
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=10\)
\&\& structure no. in this cell
strnum \(=2,1 . \mathrm{e} 20 \quad\) eoi
eoi
\&\& structure \((6,2)\)
\&\& vertical partition R6/R8
\&\& no. 40 of Tab. 3b
name \(=\) struc406 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=4.1 \quad\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{lllllll}x & 0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=8\)
\&\& structure no. in this cell
strnum \(=2,1 . \mathrm{e} 20 \quad\) eoi
eoi
\&\& structure \((6,3)\)
\&\& lower inner cylinder
\&\& no. 24 of Tab. 3b
name \(=\) struc 246 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=17.8 \quad\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(\mathrm{x}=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.08 & 0.15 & 0.28\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=3\)
\&\& structure no. in this cell
strnum \(=2,1 . \mathrm{e} 20 \quad\) eoi
eoi
\&\& structure \((6,4)\)
\& \& lower, middle inner cylinder
\&\& no. 27 of Tab. 3b
name \(=\) struc 276 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=7.2\) nslab \(=6 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc conc
\(x=\begin{array}{lllllll}x & 0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3\end{array} 0.4\)
\&\& no. of cell connected to
bcouter icell \(=1\)
\&\& structure no. in this cell
strnum \(=2,1 . \mathrm{e} 20 \quad\) eoi
eoi
\&\& structure \((6,5)\)
\&\& upper middle cylinder, mezzanine floor (sump not modelled)
\&\& no. 35 of Tab. 3b
name \(=\) struc 356 type \(=\) roof shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=12.9\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{lllllll} & 0.0 & 0.01 & 0.04 & 0.08 & 0.12 & 0.175\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=5\)
\&\& structure no. in this cell
strnum \(=2,1 . \mathrm{e} 20\) eoi
eoi
\&\& structure \((6,6)\)
\&\& vertical partition R4/R6
\&\& no. 43 of Tab. 3b
name \(=\) struc436 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=4.4 \quad\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{lllllll}x & 0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=4\)
\(\& \&\) structure no. in this cell
strnum \(=4,1 . \mathrm{e} 20 \quad\) eoi
eoi
\&\& structure \((6,7)\)
\&\& basemat, second ring
\(\& \&\) no. 11 of Tab. 3b
name \(=\operatorname{str} 11-06\) type \(=\) floor shape \(=\) slab
tunif \(=295.0 \quad\) slarea \(=18.8\) nslab \(=13 \quad\) chrlen \(=5\).
compound \(=\) conc conc
\(\mathrm{x}=\begin{array}{llllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.20 & 0.35 & 0.5 & 0.7\end{array}\) \(\begin{array}{llllll}0.8 & 1.1 & 1.5 & 2.0 & 2.7 & 3.55\end{array}\)
eoi
\&\& structure \((6,8)\)
\(\& \&\) basemat, third ring (sump region)
\&\& no. 14 of Tab. 3b
name \(=\) str14-06 type \(=\) floor shape \(=\) slab
tunif \(=295.0 \quad\) slarea \(=7.7\) nslab \(=12 \quad\) chrlen \(=5\).
compound \(=\) conc conc
\(x=0.00 .010 .040 .10 \quad 0.20 \quad 0.35 \quad 0.5 \quad 0.7\) \(\begin{array}{lllll}0.8 & 1.1 & 1.5 & 2.0 & 2.55\end{array}\)
eoi
condense
\[
\text { aerosol } 1 \text { h2ol } 0.001
\]
ht-tran on \(\& \&\) atmosphere to structures off \(\& \&\) lower cell to substructure on \(\& \&\) interlayer in lower cell
on \(\& \&\) lower cell to upper cell
on \(\& \&\) pool-to-structure radiative transfer
rad-heat
emsvt 0.940 .940 .940 .940 .940 .940 .940 .940 .94
\&\& same no. as nhtm plus 1 if pool is specified
kmx 1.0
gaswal 2.5
eoi
```

\&\& with lower cell
low-cell
geometry 8. \&\& floor area, between 250cm and 3.5m thick
\&\& i modelled 3.1m
bc 283. \&\& basemat boundary condition temperature
interm lay-name = conc5 temp = 283.
compos = 1 conc = 30720. \&\& ca.1.6m dick
eoi
interm lay-name = conc4 temp = 283.
compos =1 conc = 15360. \&\& ca. 0.8m dick
eoi
interm lay-name = conc3 temp =283.
compos=1 conc = 7680. \&\& ca. 0.4m dick
eoi
interm lay-name = conc2 temp = 283.
compos =1 conc = 3840. \&\& ca.0.2m dick
eoi
interm lay-name = concl temp = 283.
\&\&
compos =1 conc = 1920.\&\& mass in kg; ca. 0.1m dick
eoi
pool temp = 283.
compos=1 h2ol = 0.1 \&\& one material: compos = 1
\&\& water, mass(kg) initially
physics
boil \&\& activates pool boiling model
\&\& settle \&\& allows direct aerosol settling onto pool
eoi \&\& end of physics
eoi \&\& end of pool
eoi \&\& end of lower cell
\&\&
\&\& \&
cell }7\mathrm{ \&\& no sump
control
nhtm = 7 \&\& no of heat transfer structures
mxslab = 20 \&\& " " nodes in any "
naensy = 1 \&\& no of separate eng. systems
numtbc = 4 \&\& no of cell level tables
maxtbc = 8 \&\& max. no of any cell level table
eoi
title
--- cell between cells 8 and 11
geometry 41.2.45 \&\& free initial atmosphere volume; height
atmos = 2 \&\& no of materials
tgas =298.
pgas = 1.0130e5

```
molefrac \(\mathrm{n} 2=0.79 \mathrm{o} 2=0.21\)
eoi
\&\& source \(=\) nso \&\& no. of source tables to follow, s.S. 3-120ff \&\& eoi
\&\& \(\qquad\) heat structures \(\qquad\)
struc
\&\& structure \((7,1)\)
\&\& upper middle cylinder
\&\& no. 20 of Tab. 3b
name \(=\) struc207 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=36.8 \quad\) nslab \(=5 \quad\) chrien \(=5\).
compound \(=\) conc conc conc conc conc
\(\begin{array}{lllllll}\mathrm{x}= & 0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=9\)
\&\& structure no. in this cell
strnum \(=1,1 . \mathrm{e} 20\) eoi
eoi
\&\& structure \((7,2)\)
\&\& upper middle cylinder, mezzanine floor (sump not modelled)
\&\& no. 34 of Tab. 3b
name \(=\) struc 347 type \(=\) floor shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=14.9 \quad\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{lllllll} & 0.0 & 0.01 & 0.04 & 0.08 & 0.12 & 0.175\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=8\)
\&\& structure no. in this cell
strnum \(=5,1 . \mathrm{e} 20\) eoi
eoi
\&\& structure \((7,3)\)
\&\& upper ceiling
\&\& no. 36 of Tab. 3b
name \(=\) struc 367 type \(=\) roof shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=17.3\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{lllllll} & 0.0 & 0.01 & 0.04 & 0.08 & 0.12 & 0.175\end{array}\)
\&\& no. of cell connected to
bcouter icell = 11
\(\& \&\) structure no. in this cell
strnum \(=1\), l.e20 eoi
eoi
\& \& structure \((7,4)\)
\&\& upper inner cylinder, vertical partition R5/R7
\&\& no. 39 of Tab. 3b
name \(=\) struc 397 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=4.0 \quad\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=5\)
\&\& structure no. in this cell
strnum \(=3,1 . e 20 \quad\) eoi
eoi
\&\& structure \((7,5)\)
\&\& upper, middle inner cylinder
\&\& no. 29 of Tab. 3b
name \(=\) struc297 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=5.9\) nslab \(=6 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc conc
\(\mathrm{x}=\begin{array}{llllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.4\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=1\)
\&\& structure no. in this cell
strnum \(=4,1 . \mathrm{e} 20 \quad\) eoi
eoi
\&\& structure \((7,6)\)
\&\& upper inner cylinder
\&\& no. 31 of Tab. 3b
name \(=\) struc317 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=13.9\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{lllllll}x & 0.0 & 0.01 & 0.04 & 0.08 & 0.13 & 0.185\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=2\)
\&\& structure no. in this cell
strnum \(=1\), 1.e20 eoi
eoi
\&\& structure \((7,7)\)
\&\& vertical partition R4/R7
\&\& no. 42 of Tab. 3b
name \(=\) struc427 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=4.4\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{lllllll} & 0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=4\)
\&\& structure no. in this cell
strnum \(=3\), 1.e20 eoi
eoi
condense
aerosol 1 h2ol 0.001
ht-tran on \&\& atmosphere to structures off \(\& \&\) lower cell to substructure
off \(\& \&\) interlayer in lower cell
off \(\& \&\) lower cell to upper cell
off \(\& \&\) pool-to-structure radiative transfer
\& \& no lower cell
```

rad-heat
emsvt 0.940.940.940.940.940.940.94
\&\& same no. as nhtm plus 1 if pool is specified
kmx }1.
gaswal 2.5
eoi

```
\&\& \&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&
```

cell 8 \&\& with sump
control
nhtm = 8 \&\& no of heat transfer structures
mxslab = 20 \&\&" " nodes in any "
nsopl = 4 \&\&" " external sources to lower cell layers
nsppl = 10 \&\& max. no of entries in lower cell source tables
nspatm = 10 \&\& max. no of entries in atmosphere source tables
jint = 5 \&\& no of intermediate layers in lower cell
jpool = 1 \&\& 1 if pool layer is used
numtbc = 4 \&\& no of cell level tables
maxtbc = 8 \&\& max. no of any cell level table
eoi

```
title
--- below cell 7
geometry 41. 2.95 \& \& free initial atmosphere volume; heightdiff.
    atmos \(=2 \quad \& \&\) no of materials
        \(\operatorname{tg} a s=298\).
        pgas \(=1.0130 \mathrm{e} 5\)
        molefrac \(\mathrm{n} 2=0.79 \mathrm{o} 2=0.21\)
    eoi
\&\& ----...-.-.-.-.-- heat structures
struc
\&\& structure \((8,1)\)
\&\& lower middle cylinder
\&\& no. 17 of Tab. 3b
name \(=\) struc 178 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=28.4 \quad\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=10\)
\&\& structure no. in this cell
strnum \(=1,1 . e 20 \quad\) eoi
eoi
\&\& structure \((8,2)\)
\&\& vertical partition R6/R8
\&\& no. 40 of Tab. 3b
name \(=\) struc 408 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=4.1 \quad\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{lllllll} & 0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=6\)
\(\& \&\) structure no. in this cell
strnum \(=2,1 . \mathrm{e} 20 \quad\) eoi
eoi
\&\& structure \((8,3)\)
\&\& lower inner cylinder
\&\& no. 23 of Tab. 3b
name \(=\) struc238 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=17.8 \quad\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{llllll}x & 0.0 & 0.01 & 0.04 & 0.08 & 0.15\end{array} 0.28\)
\&\& no. of cell connected to
bcouter icell \(=3\)
\&\& structure no. in this cell
strnum \(=1,1 . \mathrm{e} 20 \quad\) eoi
eoi
\(\& \&\) structure \((8,4)\)
\&\& lower, middle inner cylinder
\&\& no. 26 of Tab. 3b
name \(=\) struc 268 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=7.2\) nslab \(=6 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc conc
\(x=\begin{array}{llllllll}x & 0.0 & 0.01 & 0.04 & 0.10 & 0.2 & 0.3 & 0.4\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=1\)
\&\& structure no. in this cell
strnum \(=1,1 . \mathrm{e} 20 \quad\) eoi
eoi
\&\& structure \((8,5)\)
\&\& lower middle cylinder, mezzanine floor (sump not modelled)
\(\& \&\) no. 34 of Tab. 3b
name \(=\) struc 348 type \(=\) roof shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=14.9 \quad\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.08 & 0.12 & 0.175\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=7\)
\&\& structure no. in this cell
strnum \(=2,1 . e 20\) eoi
eoi
\&\& structure \((8,6)\)
\&\& vertical partition R4/R8
\&\& no. 44 of Tab. 3b
name \(=\) struc 448 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=4.4\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{lllllll} & 0.0 & 0.01 & 0.04 & 0.06 & 0.09 & 0.125\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=4\)
\&\& structure no. in this cell
strnum \(=5,1 . \mathrm{e} 20 \quad\) eoi
eoi
\&\& structure \((8,7)\)
\&\& basemat, second ring
\&\& no. 10 of Tab. 3b
name \(=\) str 10-08 type \(=\) floor shape \(=\) slab
tunif \(=295.0 \quad\) slarea \(=18.8\) nslab \(=13 \quad\) chrlen \(=5\).
compound \(=\) conc conc
\(\mathrm{x}=\quad 0.0 \quad 0.01 \quad 0.04 \quad 0.10 \quad 0.20 \quad 0.35 \quad 0.5\)
0.7
\(\begin{array}{llllll}0.8 & 1.1 & 1.5 & 2.0 & 2.7 & 3.55\end{array}\)
eoi
\&\& structure \((8,8)\)
\&\& basemat, third ring (sump region)
\&\& no. 13 of Tab. 3b
name \(=\) str13-08 type \(=\) floor shape \(=\) slab
tunif \(=295.0 \quad\) slarea \(=7.7\) nslab \(=12 \quad\) chrlen \(=5\).
compound \(=\) conc conc
\(\mathrm{x}=\quad \begin{array}{llllllll}0.0 & 0.01 & 0.04 & 0.10 & 0.20 & 0.35 & 0.5 & 0.7\end{array}\)
\(\begin{array}{lllll}0.8 & 1.1 & 1.5 & 2.0 & 2.55\end{array}\)
eoi
condense
aerosol 1 h2ol 0.001
ht-tran on \&\& atmosphere to structures
off \(\& \&\) lower cell to substructure
on \(\& \&\) interlayer in lower cell
on \(\& \&\) lower cell to upper cell
on \(\& \&\) pool-to-structure radiative transfer
```

rad-heat
emsvt 0.940.940.940.940.940.940.940.940.94
\&\& same no. as nhtm plus 1 if pool is specified
kmx }1.
gaswal 2.5
eoi
\&\& with lower cell
low-cell
geometry 8.\&\& floor area, between 250cm and 3.5m}\mathrm{ thick
\&\& i modelled 3.1m
bc 283. \&\& basemat boundary condition temperature
interm lay-name = conc5 temp = 283.
compos = 1 conc = 30720. \&\& ca.1.6m dick
eoi
interm lay-name = conc4 temp = 283.
compos =1 conc = 15360. \&\& ca. 0.8m dick
eoi

```
```

 interm lay-name = conc3 temp = 283.
 compos=1 conc = 7680. && ca.0.4m dick
 eoi
 interm lay-name = conc2 temp = 283.
 compos =1 conc = 3840. && ca.0.2m dick
 eoi
 interm lay-name = concl temp = 283.
 &&
 compos = 1 conc = 1920.&& mass in kg; ca. 0.1m dick
 eoi
 pool temp = 283.
 compos=1 h2ol = 0.1 && one material: compos = 1
 && water, mass(kg) initially
 physics
 boil && activates pool boiling model
 && settle && allows direct aerosol settling onto pool
 eoi && end of physics
 eoi && end of pool
 eoi \&\& end of lower cell
\&\&

```
\&\& \&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&
cell \(9 \quad \& \&\) no sump
    \&\& gets all condensed water of dome and puts it to
    \&\& sump in cell 10 via overflow.
control
    nhtm \(=5\) \&\& no of heat transfer structures
    mxslab = 25 \&\&" " nodes in any "
    nspatm \(=10 \& \&\) max. no of entries in atmosphere source tables
    naensy \(=1 \& \&\) no of separate eng. systems
    numtbc \(=4 \quad \& \&\) no of cell level tables
    maxtbc \(=8 \quad \& \&\) max. no of any cell level table
eoi
title
--- upper annular ring below dome \(=\) R9.3
geometry 93.2.9 \&\& free initial atmosphere volume; height
    atmos \(=2 \quad \& \&\) no of materials
        \(\operatorname{tgas}=295\).
        pgas \(=1.0130 \mathrm{e} 5\)
        molefrac \(\mathrm{n} 2=0.79 \mathrm{o} 2=0.21\)
    eoi
\&\&
struc
\&\& structure \((9,1)\)
\&\& upper middle cylinder
\&\& no. 20 of Tab. 3b
name \(=\) struc209 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=36.8 \quad\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(x=\begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=7\)
\&\& structure no. in this cell
strnum \(=1,1 . \mathrm{e} 20\) eoi
eoi
\&\& structure \((9,2)\)
\&\& upper middle cylinder
\&\& no. 21 of Tab. 3b
name \(=\) struc 219 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=36.8\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(\mathrm{x}=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=5\)
\&\& structure no. in this cell
strnum \(=1,1 . \mathrm{e} 20\) eoi
eoi
\&\& structure \((9,3)\)
\&\& upper middle cylinder
\&\& no. 22 of Tab. 3b
name \(=\) struc 229 type \(=\) wall shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=6.2\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc

\&\& no. of cell connected to
bcouter icell \(=4\)
\&\& structure no. in this cell
strnum \(=1,1 . \mathrm{e} 20 \quad\) eoi
eoi
\&\& structure \((9,4)\)
\&\& middle outer cylinder
\&\& no. 2 of Tab. 3b
\&\& correct modelling by userdef data (1.3.96)
name \(=\) str02-9 type \(=\) wall shape \(=\) slab
tunif \(=295.0 \quad\) slarea \(=37.7\) nslab \(=21 \quad\) chrlen \(=5\).
compound = coat coat coat conc conc conc conc conc conc conc conc conc gap gap gap ytong ytong ytong ytong ytong ytong
\(\mathrm{x}=\quad 0.000 .00040 .0010 .0020 .0050 .0150 .040 .080 .16\) \(\begin{array}{lllllllll}0.24 & 0.34 & 0.44 & 0.452 & 0.455 & 0.46 & 0.4722 & 0.48 & 0.5\end{array}\) \(\begin{array}{llll}0.54 & 0.60 & 0.65 & 0.7122\end{array}\)
eoi
\&\& and take it as connected to environment
\&\& structure \((9,5)\)
\&\& i modell it correctly by using userdef (1.3.96)
\&\& middle outer cylinder
\&\& no. 3 of Tab. 3b
name \(=\) str03-9 type \(=\) wall shape \(=\) slab iouter \(=12\)
tunif \(=295.0 \quad\) slarea \(=66.6\) nslab \(=12 \quad\) chrlen \(=5\).
```

 compound \(=\) coat coat coat conc conc conc conc conc
 conc conc conc conc
 \(\mathrm{x}=\quad 0.000 .00040 .0010 .0020 .0050 .0150 .040 .08 \quad 0.16\)
 \(\begin{array}{llll}0.24 & 0.34 & 0.44 & 0.452\end{array}\)
 eoi
    ```
    condense
        aerosol 1 h2ol 0.001
    ht-tran on \(\& \&\) atmosphere to structures
        off \(\& \&\) lower cell to substructure
        off \(\& \&\) interlayer in lower cell
        off \(\& \&\) lower cell to upper cell
        off \(\& \&\) pool-to-structure radiative transfer
\&\& no lower cell
        overflow 10
rad-heat
emsvt 0.940 .940 .940 .940 .94
    \&\& same no. as nhtm plus 1 if pool is specified
    kmx 1.0
    gaswal 2.5
    eoi
\&\& \&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&
cell \(10 \quad \& \&\) with sump
\&\& cell with air injection/removal
control
nhtm \(=5 \& \&\) no of heat transfer structures
mxslab \(=25\) \&\&"" nodes in any
nsopl \(=4\) \&\&" " external sources to lower cell layers
nsppl \(=10 \& \&\) max. no of entries in lower cell source tables
nspatm \(=10 \quad \& \&\) max. no of entries in atmosphere source tables
nsoatm \(=4 \& \&\) no of external sources to upper cell atmosphere
jint \(=5 \& \&\) no of intermediate layers in lower cell
jpool \(=1 \& \& 1\) if pool layer is used
numtbc \(=4 \quad \& \&\) no of cell level tables
maxtbc \(=8 \quad \& \&\) max. no of any cell level table
eoi
title
--- lower annular ring below dome \(=\) R9.4
```

geometry 70.2.2 \&\& free initial atmosphere volume; height
atmos $=2 \quad \& \&$ no of materials
tgas $=295$.
pgas $=1.0130 \mathrm{e} 5$
molefrac $\mathrm{n} 2=0.79 \mathrm{o} 2=0.21$
eoi

```
source \(=4\)
\&\& source slightly modified from case 19 on
\&\& source 1: air removal and injection from/to cell 10 \(\mathrm{o} 2=13 \quad \& \&\) and according temperatures
iflag \(=2 \& \&\) linear interpolation is used between points
\&\& iflag \(=1 \& \&\) stepfunction for mass rate
\(\mathrm{t}=6280.6300 .14580 .15000 . \quad \& \& \mathrm{~s}\)
52350. 52380. 53100. 54972. 55008. 59472. 59508. 59760. 59800.
\&\& s
\&\& s
mass \(=0.0 \quad-5.25 \mathrm{e}-3-5.25 \mathrm{e}-30.0 \quad\) \&\& kg/s
\(\begin{array}{lllll}0.0 & 0.0126 & 0.0168 & 0.0168 & 0.0\end{array}\)
\(\begin{array}{llll}0.0 & 0.01155 & 0.01155 & 0.0\end{array}\)
\&\& kg/s
\&\& kg/s
temp \(=287 . \quad 287 . \quad 287 . \quad 287\). 287. 287. 287. 287. 287.
\&\& k 287. 287. 287. 287.
\&\& k
\&\& k
eoi
\&\& source 2: air removal and injection from/to cell 10
\(\mathrm{n} 2=13 \quad \& \&\) and according temperatures
iflag \(=2 \& \&\) linear interpolation is used between points
\&\& iflag \(=1 \& \&\) stepfunction for mass rate
\(\mathrm{t}=6280.6300 .14580 .15000 . \quad \& \& \mathrm{~s}\) 52350. 52380. 53100. 54972. 55008. 59472. 59508. 59760. 59800.
\&\& s
\&\& s
mass \(=0.0 \quad-1.975 \mathrm{e}-2-1.975 \mathrm{e}-20.0\)
\(\begin{array}{lllll}0.0 & 0.0474 & 0.0632 & 0.0632 & 0.0\end{array}\)
\(\begin{array}{llll}0.0 & 0.04345 & 0.04345 & 0.0\end{array}\)
\&\& kg/s
\&\& kg/s
\&\& kg/s
temp \(=287 . \quad 287 . \quad 287 . \quad 287\).
287. 287. 287. 287. 287. 287. 287. 287. 287.
\&\& k
\&\& k
\&\& k
eoi
\&\& source 3: air removal(leakage) from cell 10
\(o 2=6\)
\&\& iflag \(=2 \& \&\) linear interpolation is used between points iflag \(=1 \& \&\) stepfunction for mass rate
\(\mathrm{t}=4320.9864 . \quad\) 23029. 32508. 53100. 108000.0 \&\& s
mass \(=-1.4608125 \mathrm{e}-3-1.441125 \mathrm{e}-3-8.82 \mathrm{e}-4-2.358563 \mathrm{e}-4-1.2068438 \mathrm{e}-3\)
\[
0.0
\]
eoi
\&\& source 4: air removal(leakage) from cell 10
\(\mathrm{n} 2=6\)
\(\& \&\) iflag \(=2 \& \&\) linear interpolation is used between points iflag \(=1 \& \&\) stepfunction for mass rate
\(\mathrm{t}=4320.9864 . \quad\) 23029. 32508. 53100. \(108000.0 \& \& \mathrm{~s}\)
mass \(=-5.4954375 \mathrm{e}-3-5.421375 \mathrm{e}-3-0.003318-8.872687 \mathrm{e}-4-4.5400312 \mathrm{e}-3\)
\[
0.0
\]
eoi
\&\& heat structures
struc
\&\& structure \((10,1)\)
\&\& lower middle cylinder
\&\& no. 17 of Tab. 3b
name \(=\operatorname{strc} 1710\) type \(=\) wall shape \(=\) slab
tunif \(=295.0\) slarea \(=28.4\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(\mathrm{x}=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}\)
\&\& no. of cell connected to
bcouter \(\quad\) icell \(=8\)
\(\& \&\) structure no. in this cell
strnum \(=1,1 . \mathrm{e} 20 \quad\) eoi
eoi
\&\& structure ( 10,2 )
\&\& lower middle cylinder
\&\& no. 18 of Tab. 3b
name \(=\) strcl 1810 type \(=\) wall shape \(=\) slab
tunif \(=295.0 \quad\) slarea \(=28.4 \quad\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(\mathrm{x}=\quad \begin{array}{llllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=6\)
\&\& structure no. in this cell
strnum \(=1,1 . \mathrm{e} 20 \quad\) eoi
eoi
\&\& structure \((10,3)\)
\&\& lower middle cylinder
\&\& no. 19 of Tab. 3b
name \(=\operatorname{strc} 1910\) type \(=\) wall shape \(=\) slab
tunif \(=295.0 \quad\) slarea \(=4.8\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(\mathrm{x}=\quad \begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.07 & 0.11 & 0.15\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=4\)
\&\& structure no. in this cell
strnum \(=8,1 . \mathrm{e} 20 \quad\) eoi
eoi
\&\& structure \((10,4)\)
\& \& correct modelling by userdef data (1.3.96)
\&\& lower outer cylinder
```

\&\& no. 1 of Tab. 3b
name = str01-10 type = wall shape = slab
tunif}=295.0 slarea = 80.5 nslab =21 chrlen = 5 .
compound = coat coat coat conc conc conc conc conc
conc conc conc conc gap gap gap ytong ytong
ytong ytong ytong ytong
x = 0.00 0.0004 0.001 0.002 0.005 0.0150.04 0.08 0.16

```

```

 0.54}00.6
 eoi
 \&\& structure (10,5)
\&\& basemat, outer ring (sumpregion)
\&\& no. }9\mathrm{ of Tab. 3b
name = str09-10 type = floor shape = slab
tunif =295.0 slarea = 32.3 nslab = 13 chrlen = 5 .
compound = conc conc conc conc conc conc conc
conc conc conc conc conc conc
x = }$$
\begin{array}{llllllllll}{0.0}&{0.01}&{0.04}&{0.10}&{0.20}&{0.35}&{0.5}&{0.7}
 lllllll
 eoi
 condense
 aerosol 1 h2ol 0.001
 ht-tran on && atmosphere to structures
 off && lower cell to substructure
 on && interlayer in lower cell
 on && lower cell to upper cell
 on && pool-to-structure radiative transfer
rad-heat
 emsvt 0.940.940.940.940.940.94
 && same no. as nhtm plus 1 if pool is specified
 kmx }1.
 gaswal 2.5
 eoi
```
\&\& lower cell input
low-cell
    geometry 27. \&\& floor area, about 350 cm thick concrete
        \&\& i modelled 3.1m
        bc 283. \&\& basemat boundary condition temperature
    interm lay-name \(=\) conc5 temp \(=283\).
    compos \(=1\) conc \(=103680 . \quad \& \&\) ca. 1.6 m dick
    eoi
    interm lay-name \(=\) conc4 temp \(=283\).
        compos \(=1\) conc \(=51840 . \quad \& \&\) ca. 0.8 m dick
    eoi
    interm lay-name \(=\) conc3 temp \(=283\).
        compos \(=1\) conc \(=25920 . \quad \& \&\) ca. 0.4 m dick
```
 eoi
 interm lay-name = conc2 temp = 283.
 compos =1 conc = 12960. && ca. 0.2m dick
 eoi
 interm lay-name = concl temp = 283.
 &&
 compos =1 conc = 6480.&& mass in kg; ca.0.1m dick
 eoi
 pool temp =283.
 compos=1 h2ol = 0.1 && one material: compos = 1
 && water, mass(kg) initially
 physics
 boil && activates pool boiling model
 && settle && allows direct aerosol settling onto pool
 eoi && end of physics
 eoi && end of pool
eoi && end of lower cell
&&
```
\&\& \&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&
cell 11 \& \& no sump
```
control
 nhtm = 9 && no of heat transfer structures
 mxslab = 25 &&" " nodes in any "
 nspatm = 10 && max. no of entries in atmosphere source tables
 nsoatm = 2 && no of external sources to upper cell atmosphere
 naensy = 1 && no of separate eng. systems
 numtbc = 4 && no of cell level tables
 maxtbc = 8 && max. no of any cell level table
eoi
title
--- dome = R9.1 + R9.2
```
geometry 215. \(3.4 \& \&\) free initial atmosphere volume; heightdiff.
    atmos \(=2 \quad \& \&\) no of materials
        \(\operatorname{tgas}=298\).
        pgas \(=1.0130 \mathrm{e} 5\)
        molefrac \(\mathrm{n} 2=0.79 \mathrm{o} 2=0.21\)
    eoi
    source \(=2\)
        \&\& source 1: air removal(leakage) from cell 11
        \(o 2=6\)
    \(\& \&\) iflag \(=2 \& \&\) linear interpolation is used between points
        iflag \(=1 \& \&\) stepfunction for mass rate
    \(\mathrm{t}=\) 4320. \(\quad\) 9864. 23029. 32508. 53100. 108000. \&\& s
```
mass =-7.791e-4 0.0 0.0 0.0 -6.4344e-4 0.0 && kg/s
eoi
```
\&\& source 2: air removal(leakage) from cell 11 \(\mathrm{n} 2=6\)
\&\& iflag \(=2 \& \&\) linear interpolation is used between points iflag \(=1 \& \&\) stepfunction for mass rate
\(\mathrm{t}=4320 . \quad 9864 . \quad\) 23029. 32508. 53100. 108000. \&\& s
mass \(=-0.0029309 \quad 0.0 \quad 0.0 \quad 0.0 \quad-0.00242056 \quad 0.0 \quad \& \& \mathrm{~kg} / \mathrm{s}\)
eoi
\& \& \(\qquad\) heat structures
struc
\&\& structure \((11,1)\)
\&\& upper floor of dome
\&\& no. 36 of Tab. 3b
name \(=\operatorname{strc} 3611\) type \(=\) floor shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=17.3\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(\mathrm{x}=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.08 & 0.13 & 0.185\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=7\)
\&\& structure no. in this cell
strnum \(=3,1 . \mathrm{e} 20 \quad\) eoi
eoi
\&\& structure \((11,2)\)
\&\& upper floor of dome
\&\& no. 37 of Tab. 3b
name \(=\operatorname{strc} 3711\) type \(=\) floor shape \(=\) slab
tunif \(=298.0 \quad\) slarea \(=17.5\) nslab \(=5 \quad\) chrlen \(=5\).
compound \(=\) conc conc conc conc conc
\(\mathrm{x}=\begin{array}{lllllll}0.0 & 0.01 & 0.04 & 0.08 & 0.13 & 0.185\end{array}\)
\&\& no. of cell connected to
bcouter icell \(=5\)
\&\& structure no. in this cell
strnum \(=6,1 . \mathrm{e} 20 \quad\) eoi
eoi
\&\& structure \((11,3)\)
\&\& i modell it correctly (1.3.96)
\&\& upper outer cylinder
\&\& no. 4 of Tab. 3b
name \(=\) str04-11 type \(=\) wall shape \(=\) slab
tunif \(=295.0 \quad\) slarea \(=16.5\) nslab \(=21 \quad\) chrlen \(=5\).
compound \(=\) coat coat coat conc conc conc conc conc conc conc conc conc gap gap gap ytong ytong ytong ytong ytong ytong
```
x = 0.000.0004 0.001 0.002 0.005 0.0150.040.08 0.16
 0.24}00.340.44 0.552 0.555 0.56 0.5722 0.59 0.61
 0.65}00.7
eoi
```
\&\& structure \((11,4)\)
\&\& upper outer cylinder
\&\& i modell it correctly
\&\& no. 5 of Tab. 3b
name \(=\) str05-11 type \(=\) wall shape \(=\) slab
tunif \(=295.0 \quad\) slarea \(=29.1\) nslab \(=12 \quad\) chrlen \(=5\).
compound = coat coat coat conc conc conc conc conc conc conc conc conc
\(\mathrm{x}=\quad 0.000 .00040 .0010 .0020 .0050 .0150 .040 .080 .16\) \(\begin{array}{llll}0.24 & 0.34 & 0.44 & 0.552\end{array}\)
eoi
\&\& structure \((11,5)\)
\&\& upper cone
\&\& i modell it correctly (1.3.96)
\&\& no. 6 of Tab. 3b
name \(=\) str06-11 type \(=\) roof shape \(=\) slab
tunif \(=295.0 \quad\) slarea \(=86.3\) nslab \(=17 \quad\) chrlen \(=5\).
compound \(=\) coat coat coat conc conc
\(\mathrm{x}=\quad 0.000 .00040 .0010 .0020 .0050 .0150 .040 .080 .16\) \(\begin{array}{llllllllll}0.24 & 0.34 & 0.44 & 0.54 & 0.66 & 0.80 & 1.0 & 1.21 & 1.422\end{array}\)
eoi
\&\& structure \((11,6)\)
\(\& \&\) lower cone
\(\& \&\) i modell it correctly (1.3.96)
\&\& no. 46 of Tab. 3b
name \(=\) str46-11 type \(=\) roof shape \(=\) slab
tunif \(=295.0 \quad\) slarea \(=8.7\) nslab \(=16 \quad\) chrlen \(=5\).
compound \(=\) coat coat coat conc conc
\(\mathrm{x}=\quad 0.000 .00040 .0010 .0020 .0050 .0150 .040 .080 .16\) \(\begin{array}{llllllllllll}0.24 & 0.34 & 0.44 & 0.54 & 0.66 & 0.80 & 1.0 & 1.202\end{array}\)
eoi
\&\& structure \((11,7)\)
\&\& top flange, top ring
\&\& i modell it correctly (1.3.96)
\&\& no. 7 of Tab. 3b
name \(=\) str07-11 type \(=\) roof shape \(=\) slab
tunif \(=295.0 \quad\) slarea \(=7.8\) nslab \(=17 \quad\) chrlen \(=5\).
compound \(=\) ss ss ss conc conc conc conc conc
conc conc conc conc licon licon licon licon licon
\(\mathrm{x}=\quad 0.000 .00040 .0010 .0020 .0050 .0150 .040 .080 .16\)
\(\begin{array}{llllllll}0.24 & 0.34 & 0.44 & 0.522 & 0.54 & 0.60 & 0.75 & 0.9 \\ 1.042\end{array}\)
eoi
\(\& \&\) structure \((11,8)\)
\&\& top cover
\&\& i modell it correctly (1.3.96)
\&\& no. 8 of Tab. 3b
name \(=\) str08-11 type \(=\) roof shape \(=\) slab
```
tunif \(=295.0 \quad\) slarea \(=19.0\) nslab \(=13 \quad\) chrlen \(=5\).
```
compound \(=\) ss ss ss licon licon licon licon licon
    licon licon licon licon licon
\(\mathrm{x}=\quad 0.000 .00040 .0010 .0020 .0050 .015 \quad 0.04 \quad 0.08 \quad 0.16\)
        \(\begin{array}{lllll}0.24 & 0.32 & 0.40 & 0.50 & 0.602\end{array}
$$\)
eoi
\&\& structure $(11,9)$
\&\& top cover
\&\& i modell it correctly as steel and correct temp.
\&\& no. 47 of Tab. 3b
name $=$ str47-11 type $=$ roof shape $=$ slab
tunif $=283.0 \quad$ slarea $=4.2$ nslab $=4 \quad$ chrlen $=5$.
compound $=$ ss ss ss ss
$\mathrm{x}=\quad 0.00 .0010 .0030 .0060 .01$
eoi
condense
aerosol 1 h2ol 0.001
ht-tran on \&\& atmosphere to structures
off $\& \&$ lower cell to substructure
off $\& \&$ interlayer in lower cell
off $\& \&$ lower cell to upper cell
off \&\& pool-to-structure radiative transfer
\&\& no lower cell
overflow $10 \& \&$ from case 28 on
rad-heat
emsvt 0.940 .940 .940 .940 .940 .940 .940 .940 .94
\&\& same no. as nhtm plus 1 if pool is specified
kmx 1.0
gaswal 2.5
eoi
\&\& \&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&\&
\&\& ----------------------- cell 12 environment
cell 12
control
eoi
title
------ environment ------
geometry 1.e15 l.e15
atmos $=2$ pgas $=1.0130 \mathrm{e} 5$ tgas $=283$.
molefrac n2 $=0.79 \quad \mathrm{o} 2=0.21$
eoi
eoi
eof

## 11. Figures

Fig. 1 Battelle model containment, 3d-view
Fig. 2 Arrangements of the compartments and the openings connecting the compartments in the test VANAM M3
Fig. 3 Structures of the model containment
Fig. 4 Measured pressure in the model containment
Fig. 5 Measured atmospheric flow patterns
Fig. 6 Measured atmospheric temperatures in rooms 9
Fig. 7 Thermocouple locations in rooms 9.3, 9.4 and dome
Fig. 8 Measured histories of NaOH aerosol concentrations in different rooms
Fig. 9 Nodalisation and atmospheric flow paths
Fig. 10 Condensate drain flow paths
Fig. 11 Calculated pressure evolution for case 40 and 42
Fig. 12 Calculated pressure evolution for case 42 and 44
Fig. 13 Pressure evolution for case 44 and 45 and exp. data
Fig. 14a Calculated temperature profiles in structure 2(case $42+44$ )
Fig. 14b Calculated temperature profiles in structure 2(case $42+44$ )
Fig. 15 Calculated temperature profiles in structure 18(case $40+42$ )
Fig. 16 Calculated and measured temperatures in cells $2,5,9,11$ (case 45)
Fig. 17 Calculated and measured temperatures in cells 1,3,6,8
Fig. 18 Calculated and measured temperatures in cells $4,9,10$ "
Fig. 19 Calculated and measured flow velocities $5-->11$ (case 42)
Fig. 20 Calculated and measured flow velocities $7-->11$ "
Fig. 21 Calculated and measured flow velocities 7--> 8 "
Fig. 22 Calculated total air and vapor mass for case 42
Fig. 23 Total air mass deduced from experiment
Fig. 24 Calculated and measured sump temperatures (case 45)
Fig. 25 Calculated saturation ratios in cells 5,8,9 and 11 (case 44)
Fig. 26 Calculated and measured aerosol concentrations in cell 11
Fig. 27 Calculated and measured aerosol concentrations in cell 9
Fig. 28 Calculated and measured aerosol concentrations in cell 3
Fig. 29 Influence of radiation heat transfer on aerosol concentrations
Fig. 30 Influence of radiation heat transfer on mass median diameters


Fig. 1


- steam, aerosol or air release sites

Fig. $2 \quad$ VANAM test M3: Subdivision of the model containment into 13 nodes


Fig. 3 , Cross section of the Battelle model containment (VANAM tests) The numbers in circles refer to a subdivision of the structures according to the ISP-37 specification

## VANAM M3

measured pressure in dome


Fig. 4

Beginning of the heat up phase $t=1.2-4 h$


Middle of the heat up phase. $t=5-10.5 h$


First aerosol injection phase, pressure rise $t=17.4-18.2 \mathrm{~h}$


Figure 5: Atmospheric flow patterns observed in the test VANAM M3 (copied from /1/)

Beginning of mixing phase
$t=23.3-23.7 \mathrm{~h}$
R9á


Main period of mixing phase
$\mathrm{t}=23.7-25.3 \mathrm{~h}$


Figure : (continued)


VANAM-Versuch M3, Aufheizphase ( $\mathrm{t}=1,13-17,20 \mathrm{~h}$ ):
Temperaturen in R9-Ringraum bei 90 und $270^{\circ}$ in verschiedenen Höhen


Fig. 7 : Thermocouple locations
VANAM-Versuche M2*, M3, M4: MeBstellenplan für R9 (0-180 $)$


Figy 7 (continued): Thermocouple locations
VANAM-Versuche M2*, M3, M4: Meßstellenplan für R9 (180-360 ${ }^{\circ}$ )



Figure 9: Proposed nodalisation for the ISP37 on VANAM M3
Atmospheric flow paths


Figure 10: Condensate drain flow paths

ISP37 with CONTAIN
case40: O2 case42: air


## ISP37 with CONTAIN

case42 and case44


Fig.12

ISP37 with CONTAIN
case44 and case45


Fig. 13

## Temperature in structure 2

in cell 9.3 (9) for case42 and case44


## Temperature in structure 2

in cell 9.3 (9) for case42 and case44


## Temperature in structure 18

in cells 6 and 9.4 (10) for case42 and 40


## ISP37 with CONTAIN

 comparison of case45 and exp.

Fig. 16

## ISP37 with CONTAIN

comparison of case45 and exp.


## ISP37 with CONTAIN

comparison of case45 and exp.


Fig. 18

ISP37 with CONTAIN
case42x: air


Fig

ISP37 with CONTAIN


ISP37 with CONTAIN
case42x: air


Fig. 2.1

## ISP 37 with CONTAIN

case42: N2 + O2



## ISP37 with CONTAIN

comparison of case 45 and exp.



## ISP37

calculated aerosol concentrations and exp.


Fig. 26

ISP37
calculated aerosol concentrations and exp.


Fig. 27

ISP37
calculated aerosol concentrations and exp.


Fig. 28

## ISP37 with CONTAIN

radiation effect on aerosol concentrations


Fig. 29

## ISP37

radiation effect on aerosol diameter



[^0]:    ${ }^{1}$ Injection times differ sometimes slightly from Tab. 7 in /1/.

    * All mass flow rates are splitted in tables for N2 (79\%) and O2 (21\%).
    **Should be at 295 K according to Table 7 in $/ 1 /$.

[^1]:    ${ }^{1}$ Injection times differ sometimes slightly from Tab. 8 in /1/.

    * All mass flow rates are splitted in tables for N 2 ( $79 \%$ ) and O2 ( $21 \%$ ).

