Forschungszentrum Karlsruhe Technik und Umwelt

Wissenschaftliche Berichte FZKA 5778

Beryllium Irradiation Embrittlement Test Programme Material and Specimen Specification, Manufacture and Qualification

D. R. Harries, M. Dalle Donne

Institut für Neutronenphysik und Reaktortechnik Projekt Kernfusion

Juni 1996

.

Forschungszentrum Karlsruhe

Technik und Umwelt Wissenschaftliche Berichte

FZKA 5778

Beryllium Irradiation Embrittlement Test Programme Material and Specimen Specification, Manufacture and Qualification

D.R. Harries* and M. Dalle Donne Institut für Neutronenphysik und Reaktortechnik Projekt Kernfusion

*PKF consultant

Forschungszentrum Karlsruhe GmbH, Karlsruhe 1996

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

> Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

> > ISSN 0947-8620

Abstract

The report presents the specification, manufacture and qualification of the beryllium specimens to be irradiated in the BR2 reactor in Mol to investigate the effect of the neutron irradiation on the embrittlement as a function of temperature and beryllium oxide content.

This work was been performed in the framework of the Nuclear Fusion Project of the Forschungszentrum Karlsruhe and is supported by the European Union within the Europen Fusion Technology Program.

Versuchsprogramm Beryllium Versprödung unter Bestrahlung Material und Proben Spezifikation, Fabrikation und Qualifizierung

Zusammenfassung

Der Bericht dokumentiert die Spezifizierung, Fabrikation und Qualifizierung der Berylliumproben, die im BR2 Reaktor Mol bestrahlt werden sollen, um die Wirkung einer Neutronenbestrahlung auf die Versprödung in Abhängigkeit von Temperatur und Berylliumoxidgehalt zu untersuchen.

Die vorliegende Arbeit wurde im Rahmen des Projekts Kernfusion des Forschungszentrums Karlsruhe durchgeführt und ist ein von der Europäischen Union geförderter Beitrag im Rahmen des Fusionstechnologieprogramms.

Contents

1.	Introduction									
2.	Material Manufacture									
3.	Specimen Manufacture and Qualification									
4.	Refere	ences	4							
Anne	ex A:	Preparatory Meetings/ Discussions	13							
Anne	ex B:	Technical Specifications of a Programme on the Irradiation-Induced Embrittlement in Beryllium	14							
Anne	ex C:	Brush Wellman Material Test Certificates	17							
Anne	ex D:	Layout of Machined Specimen Blanks in S-200F VHP Billet-Lot No. 4787	26							
Anne	ex E:	Layout of Machined Specimen Blanks in S-200 HIP Billet-Lot No. H0685	29							
Anne	ex F:	Layout of Machined Speciments Blanks in S-65 VHP Billet-Lot No. 4784	38							
Anne	ex G:	Layout of Machined Specimens Blanks in S-65-H HIP Billet-Lot No. H0349	42							
Anne	ex H:	Southwest Research Institute Report (SWRI Project No. 06-4522-161) "Fracture Toughness Testing of KfK (Round) Specimen"	49							

1. Introduction

An investigation of the irradiation embrittlement characteristics of the more ductile and isotropic grades of beryllium currently manufactured by Brush Wellman using modern powder production and consolidation techniques is being undertaken as part of the European Long Term Fusion Technology Programme. This study is made in support of the development and evaluation of beryllium as a neutron multiplier for the solid breeder blanket design concepts proposed for a DEMO fusion power reactor [1][2].

Several meetings and discussions to plan and agree the beryllium irradiation embrittlement/ test programme were held in the period December 1989 to December 1991and are listed in Annex A; the background and technical specification of the programme, together with the number of specimens required, are summarised in Annex B. A Task Sheet (BSBE) [3] was prepared and agreed in principle by the FTSC(I) at its meeting held in Garching on January 30th. 1991. The programme was finally approved by the FTSC(I) in Brussels on July 3rd. 1991, subject to resolution and agreement on the responsibilities and costs of the various parts of the programme; the latter were subsequently resolved as follows:

Detailed specification and coordination of the programme by KfK, Germany:	0.13 MECU
Irradiations in the BR-2 reactor and testing and examinations of the specimens at the SCK/CEN Laboratory, Mol, Belgium (and including the cost of 0.080 MECU for the KfK Resident Engineer at Mol):	1.26 MECU
The following costs for the supply of the materials and specimens and for pre- Brush Wellman were borne by KfK:	liminary tests by
Manufacture and qualification of materials and machining of specimens: [KfK Order No. 722/03755800/0104, 13:02:92; Brush Wellman Ref. EMC 957 and 958].	94,480 \$
Supply of material, machining and preliminary fracture toughness tests on 2 Compact Tension (C-T) specimens (Material 2 000 \$). Tests 3 000 \$).	5 000 \$

on 2 Compact Tension (C-T) specimens (Material 2,000 \$; Tests 3,000 \$): 5,000 \$ [KfK Order No. 722/03757110/0104, 20:02:92; Brush Wellman Ref. EMC 959-001].

It was originally anticipated that the irradiation and testing programme could be completed in 3.25 years after receipt of the specimens from Brush Wellman.

The manufacture, qualification and certification of the beryllium and specimens supplied for the programme are described in this report.

2. Material Manufacture

The compositions and properties of the various grades of beryllium produced by Brush Wellman have been publicised [4[. The specifications of the axial vacuum hot pressed (VHP) S-220-F and S-65 and direct hot isostatic pressed (HIP) S-200-FH and S-65-H structural grades selected for the present programme have also been documented [5 - 8] and are summarised in Table I.

The beryllium was manufactured by the following powder production and consolidation processes [9][10]:

(i) Powder Production

The production of high quality beryllium powder entails the machining of chips from a vacuum melted and cast ingot followed by impact grinding. The chips and oversize powder particles are blasted by a high velocity stream of air onto a solid beryllium target; the chips break up on impact into small particles which are removed from the blast chamber by vacuum conveying and then screened. The blocky particles produced in this way have a less textured microstructure and more uniform properties in all directions than powder made by other techniques such as attrition grinding.

(ii) Powder Consolidation

The defect free impact ground beryllium powders were blended and consolidated as follows:

(a) <u>VHP</u>

The powder is poured into a vertical cylindrical graphite or metal die and the powder column and the surrounding furnace interior thoroughly outgassed by gradually increasing the vacuum. Pressure is then applied axially from top and bottom rams and the temperature increased until the sintering temperature (typically, ~ 1030 C) is reached and a final density of > 99% of theoretical achieved. The beryllium powder is thus converted into cylindrical billets which are machined to remove the surface layers which have a high content of carbon or iron picked up from the dies.

The product has a dense, fine - grained microstructure, thereby promoting high strength, and good machineability. However, the mechanical properties are generally anisotropic with those measured parallel to the pressing direction (longitudinal) being slightly inferior to those measured perpendicular to the pressing direction (transverse).

(b) <u>HIP</u>

The loose powder is vibratory loaded to a tap density of approximately 50 % of theoretical in a mild steel can and degassed under vacuum at a maximum temperature of 650 C. The container is sealed by welding and then simultaneously heated up to the sintering temperature of 1000 C and isostatically pressed using argon gas at a pressure of 103 MPa (15,000 psi) for about 3 hours in a pressure vessel; the mild steel can is finally removed in dilute nitric acid. Simple, fully sintered compact shapes made by this technique are almost 100 % uniformly dense and have minimal anisotropy in mechanical properties.

(iii) Material Qualification and Certification

The billets are machined and any surface defects revealed by dye penetrant tests are also skimmed off. The final dimensions of the beryllium billets supplied for the this programme are

given in Table II. These materials were qualified by chemical analysis, immersion density determination, tensile testing and X-ray radiography according to the specifications in Table I; the Brush Wellman test certificates are reproduced in Annex C whilst the analyses and densities, grain sizes and ambient temperature tensile properties of the four beryllium grades are summarised in Tables III and IV respectively.

The materials met the quoted specifications except for the S-200-FH beryllium whose BeO content of 0.9% was not in accord with the 1% min. originally specified. However, this material was accepted for the programme in view of the long lead time required for its replacement.

3. Specimen Manufacture and Qualification

The SCK/CEN, Mol drawings of the tensile (F 1670B) and compact tension (C-T) fracture toughness (F 1669G) specimens finally adopted for this study are shown in Figs. 1 and 2 respectively; the tensile specimen is a slightly shorter version of that advocated by Brush Wellman for testing of beryllium whilst the disc C-T specimen is based on the ASTM standard for plane strain fracture toughness testing [11]. The samples for electron microcopy were in the form of 3 mm (0.118 \pm 0.001 in.) diameter and 0.15 mm (0.0059 \pm 0.0011 in.) thick discs.

The blanks from which the specimens were subsequently machined were extracted from the billets by first sawing and then machining. The identifications of the individual tensile and C-T samples were maintained by vibro - etching a letter/number code (3 mm high for the tensile and 4 mm high for the C-T) on the flat ends of the machined blanks. The numbers and identification of the tensile and C-T specimens are recorded in Table V; the EM discs were not individually identified but were designated as indicated in this table. The locations and orientations of the specimen blanks in the respective billets are shown in the Brush Wellman drawings reproduced in Annexes D, E, F and G.*

The tensile specimens were machined from the VHP cylindrical bars in the L orientation; it was also stipulated that the C-T specimens were to be machined in the L-R orientation [that is, with the diameter (D = 21.6 mm) parallel to the axial direction of pressing (L) and the crack propagation in the radial (R) direction] from the VHP billets as previous work by Brush Wellman had shown that this represented the worst case [12]. It was considered that the orientation of the specimens was not critical in the case of the more isotropic HIP billets. Nevertheless, for reproducibility, it was recommended that the tensile specimens should be machined with their lengths parallel to the long directions of the billets (L) and the C-T samples in the L(D)-T orientation [where T is the thickness (minor dimension)] from the HIP rectangular billets; however, it is not clear if this procedure was adhered to in all cases.

The Brush Wellman recommended procedure for machining the beryllium tensile specimens has been documented [13]; the EM disc samples were produced by electrical discharge machining. The tensile and C-T specimens were etched by immersion in an agitated solution of

* The rods designated PR0 and PR1 in the drawings were supplied for a companion programme to investigate the swelling of beryllium following irradiation in the PHENIX reactor and were provided at no extra charge by Brush Wellman.

(by volume) 2% nitric acid, 2% sulphuric acid, 2% hydrofluoric acid and 94% deionised water at 25 - 38 C [14]; this resulted in the removal of, typically, 0.2 mm (0.008 in.) from the surface and, thereby, eliminated any damage and residual stresses resulting from the machining.

The minimum thickness (B) of a plain sided specimen required to satisfy plane strain conditions is given by:

$$B = 2.5 [K_{1c}/\sigma_y]^2$$

where K_{1c} is the fracture toughness and σ_y is the tensile yield (0.2 % proof) stress.

Taking $K_{1c} = 11$ MPa \sqrt{m} (10 ksi \sqrt{in}) and $\sigma_y = 207$ MPa (30 ksi) for vacuum hot pressed beryllium [15] gives B = 7 mm.

This result led to the original choice of 8 mm thick C-T specimens for this programme. Nevertheless, a minimum specimen thickness of 13 mm has been stipulated to avoid excessive non linearity in the elastic portion of the load - displacement curve and for valid Linear Elastic Fracture Mechanics (LEFM) testing of VHP beryllium [16]. However, disc C-T specimens with thicknesses in excess of 8 mm could not be irradiated in the numbers required in the BR-2 reactor without significant reductions in the neutron fluence of the samples located at the ends of the rig.

The final machining of the disc C-T samples was consequently delayed pending the completion of preliminary tests aimed at demonstrating that valid fracture mechanics data could be obtained with the 8 mm thick beryllium specimens. Two, plain sided 8 mm thick disc C-T specimens (SCK/CEN Drawing F 1669F) of unirradiated beryllium (S-200-FH. HIP, Lot No. H0685, Specimens SN-1 and SN-2) were machined and tested. The tests were performed at the Materials & Mechanics Department, Southwest Research Institute (SwRI), San Antonio, Texas under sub - contract from Brush Wellman. The SwRI Report entitled: "Fracture Toughness Testing - KfK (Round) Specimens", (SwRI Project No. 06-4522-161; KfK Order No. 722/03757110/ 0104; Brush Wellman Ref. EMC 959-001) is reproduced in Annex H. The fracture toughness K_{1c} results from specimens SN-1 and SN-2 [9.90 and 9.89 MPa \sqrt{m} (9.00 and 8.99 ksi \sqrt{in}) respectively were very consistent and the tests met the ASTM validity requirements [16].

The results of the X-ray examinations, carried out to ensure that the machined blanks, bars and/or specimens were free from internal cracks and defects, showed that all the components complied fully with the respective radiographic specifications (Table I).

The tensile, C-T and EM specimens were despatched from Brush Wellman to SCK/CEN, Mol on 30:10:92.

- 4. <u>References</u>
- 1. M. Dalle Donne et al, J. Nucl. Mater., 212-215 (1994) 69.
- 2. M. Dalle Donne et al, "European DEMO BOT Solid Breeder Blanket", KfK Report 5429, November 1994.

- 3. H. Sebening, "Beryllium Embrittlement Irradiation Test Program", Task Action Sheet No: BSBE, Association KfK, August 7, 1990.
- 4. "Designing With Beryllium", Brush Wellman Engineered Materials Brochure.
- 5. "S-200-F Standard Grade Beryllium Block, Revision A", April 1, 1987, Brush Wellman Engineered Materials.
- 6. "S-65 Structural Grade Beryllium Block, Revision C", July 1, 1987, Brush Wellman Engineered Materials.
- 7. "S-200-FH Grade Beryllium, Revision B", December 12, 1990, Brush Wellman Engineered Materials.
- 8. "Preliminary Material Specification for S-65-H Structural Grade Beryllium Block", May 22, 1992, Brush Wellman Engineered Materials.
- 9. "Producing Defect Free Beryllium and Beryllium Oxide", Brush Wellman Engineered Materials Brochure, May 1985.
- 10. D.H. Hashiguchi, T.P. Clement and J.M. Marder, Modern Developments in Powder Metallurgy, 18-21 (1988) 627.
- 11. ASTM E399 91, Appendix A6 "Special Requirements for the Testing of the Disc Shaped Compact Specimen".
- 12. Private Communication from Brush Wellman, October 1991.
- "1/8 in. Diameter Microbar Tensile Specimen Preparation", Brush Wellman Engineered Materials, Procedure BW/E - 0161 - MA, August 20, 1987.
- 14. "Etching of Beryllium Test Specimens", Brush Wellman Engineered Materials, Procedure BW/E 0155 MT, January 8, 1988.
- 15. M.H. Jones, R.T. Bubsey and W.F. Brown, J. Testing and Evaluation, 1 (1973) 100.
- 16. ASTM E399 91, Appendix A8 "Special Requirements for Testing of Beryllium".

<u>Table I</u>

Material	S-200-F (Rev.A)	S-200-FH (Rev.B)	S-65 (Rev.C)	S-65 - H
	VHP	HIP	VHP	HIP
Composition (wt.%)				
Be $(\min.)$ (1)	98.5	98.5	99.0	99.0
BeO (max.) (2)	1.5	1.5	1.0	1.0
Fe (3)	0.13	0.13	0.08	0.08
C (4)	0.15	0.15	0.10	0.10
Al (3)	0.10	0.10	0.06	0.06
Mg (3)	0.08	0.08	0.06	0.06
Si (3)	0.06	0.06	0.06	0.06
Other metallic elements				
(max.) (3)	0.04	0.04	0.04	0.04
Bulk Density (5)(6)				
% Theoretical (min.)	99.0	99.7	99.0	99.7
Average Grain Size (7)				
(L(m)	< 20	< 12	< 20	< 15
Ambient Temp. Tensile				
Properties (8)				
Yield Stress (min.) (MPa)	241	297	207	207
U.T.S	324	414	290	345
Elongation (%)	2.0	3.0	3.0	2.0
Penetrant Inspection (9)				
Cracks not permissable.	/	/	/	/
Pores:				
Individual pore on			. 1 7	(1.07
surface (mm).	< 1.27	< 1.27	< 1.27	< 1.27
Max. number of pores				
0.08-1.27 mm per 650	2	2	2	2
mm of surface	3	3	3	3
Radiographic Inspect-				
<u>ion</u> (10)				
Voids and/or inclusions				
shall conform to the				
following requirements:				
Max. dimension (mm)	A A	1.07	076	076
Type 1.	0.76	1.27	0.70	0.70
1 ype 2.	U.76	U, /O		
Iviax. av. dimension (mm)	0.51	0.76	0.51	0.51
Type 1.	0.51	0.70	0.91	0.01
Total combined yet /mm	0.31	0.21		
Total combined vol./min.				
- splicie ulameter (mill) Type 1	1 27	1 27	1.27	1.27
Type 1.	0.81	0.81	~ . = /	
1 ypc 2.	V. V X	~ · ~ A		

Specifications of Beryllium Grades

Table I (continued)

Material	S-200-F (Rev.A)	S-200-FH (Rev.B)	S-65 (Rev. C)	S-65-H
	VHP	HIP	VHP	HIP
Standard Machined				
Surface Finish (11)				
(m rms) (max.)	3.175	3.175	3.175	3.175
Thermal Induced				
Porosity (TIP)				
Resistance (12)				
Max. reduction in				
density in TIP	-	0.20	-	0.20
resistance test (%)				

(1) Difference (i.e. 100% - all other elements).

(2) Leco Inert Gas Fusion.

- (3) DC Plasma Emission Spectrometry.
- (4) Leco Combustion.
- (5) Density determined using the water displacement method.
- (6) Theoretical density (TD) calculated using the formula:

$$TD (g.cm^{-3}) = \frac{100}{[100 - \% BeO] + \% BeO]}$$

$$\frac{[100 - \% BeO]}{1.8477 3.009}$$

- (7) Determined in accordance with ASTM E-112 using the intercept method at a magnification of 500x.
- (8) Determined as per ASTM E-8 and MAB 205M.
- (9) Penetrant inspection performed as per MIL STD 6866 Type 1, Method B using penetrants and dry developer conforming to MIL I 25135 Type 1, Level 2, Method B, Form A.
- (10) Radiographic inspection to a penetrameter sensitivity of 2 % performed in accordance with MIL STD 453. [Sensitivity of the inspection method decreases with increasing material thickness].
- (11) Employing ANSI / ASME B 46.1.
- (12) TIP test involves a heat treatment in a predominantly inert atmosphere at 788 C.

<u>Table II</u>

Material	Lot No.	Diameter	Width	Thickness	Length
		mm. (in.)	mm. (in.)	mm. (in.)	mm. (in.)
S-200-F. VHP	4787	916 (36.063)	-	-	1,117.6 (44.0)
S-200-FH. HIP	H0685	-	504.8 (19.875)	266.7 (10.5)	528.6 (20.813)
S-65. VHP	4784	927.1 (36.5)	-	-	1,152.5 (45.375)
S-65-H. HIP	H0349	-	279.4 (11.0)	266.7 (10.5)	368.3 (14.5)

Billet Sizes

<u>Table III</u>

Material	Items	Lot No.	Be	BeO	Fe	C	Al	Mg	Si	Other Metallic Elements
S-200-F. VHP	1&5	4787	98.9	1.2	0.10	0.12	0.05	0.02	0.03	<0.04 each
S-200-FH. HIP	2&6	H0685	99.1	0.9	0.10	0.08	0.04	0.02	0.03	11
S-65. VHP	3 & 7	4784	99.4	0.6	0.06	0.03	0.02	<0.01	0.03	Н
S-65-H, HIP	4 & 8	H0349	99.5	0.5	0.06	0.03	0.02	<0.01	0.02	H

Material Certification - Analyses of Beryllium (wt.%)

<u>Table IV</u>

Material Certification - Density, Grain Size and Tensile Properties

Material	Items	Lot No.	Density % Theoretical	Average Grain Size m	Direction	Yield Stress MPa	U.T.S. MPa	Total Elong. %
S-200-F. VHP	1&5	4787	99.9	8.2	Long. Trans.	261.3 258.6	377.1 407.5	2.1 4.4
S-200-FH. HIP	2&6	H0685	99.9	7.1	Z	351.6	441.3	5.0
S-65. VHP	3&7	4784	99.9	8.4	Long. Trans.	242.0 242.0	377.1 398.5	3.7 5.9
S-65-H HIP	4 & 8	H0349	99.8	6.6	X Z	342.0 339.9	509.5 492.3	4.8 3.6

<u>Table V</u>

Specimen Details

Material	Brush Wellman Order No.	Item	Lot No.	Specimen Type	Number of Specimens	Specimen Identification
S-200-F. VHP	EMC 958	1	4787	EM disc (1)	16	00 - 09; R0 - R5
		5		Rod (2)	2	PR0; PR1
	EMC 957	1		Tensile (3)	40	00-09; R0-R9; S0-S9; T0-T9
		5		Compact tension (4)	40	00-09; R0-R9; S0-S9; T0-T9
S-200-FH. HIP	EMC 958	2	H0685	EM disc (1)	16	U0-U9; W0-W5
		6		Rod (2)	2	PR0; PR1
	EMC 957	2	• .	Tensile (3)	40	U0-U9; W0-W9; Y0-Y9; Z0-Z9
		6		Compact tension (4)	40	U0-U9; W0-W9; Y0-Y9; Z0-Z9
S-65. VHP	EMC 958	3	4784	EM disc (1)	16	A0-A9; B0-B5
		7	.,	Rod (2)	2	PR0; PR1
	EMC 957	3		Tensile (3)	40	A0-A9; B0-B9; E0-E9; H0-H9
		7		Compact tension (4)	40	A0-A9; B0-B9; E0-E9; H0-H9
S-65-H. HIP	EMC 958	4	H0349	EM disc (1)	16	I0-I9; K0-K5
		8	••	Rod (2)	2	PR0; PR1
	EMC 957	4	• •	Tensile (3)	40	10-19; K0-K9; L0-L9; M0-M9
		8		Compact tension (4)	40	I0-I9; K0-K9; L0-L9; M0-M9

(1) 3 mm diameter by 0.15 mm thick.
 (2) Supplied for PHENIX irradiation - swelling programme.
 (3) see Fig. 1.
 (4) see Fig. 2.

BERYLLIUM TENSILE SPECIMEN FIG.1

Annex A

Preparatory Meetings / Discussions

Number	Date	Location	Notes Issued*
1	06:12:89	Brush Wellman Ltd., Reading, U.K.	December 1989
2	24:04:90		April 1990
3	14:05:90	Kernforschungszentrum Karlsruhe, Germany	May 1990
4	25:05:90	Brush Wellman Ltd., Reading, U.K.	May 1990
5	13:12:90	The NET Team, Garching, Germany	December 1990
6	14:03:91	Kernforschungszentrum Karlsruhe, Germany	April 1991
7	27:03:91	SCK/CEN, Mol, Belgium	April 1991
8	23:04:91	SBBEG, ENEA, Frascati, Italy	May 1991
9	10:09:91	SCK/CEN, Mol, Belgium	September 1991
10	09:10:91	Kernforschungszentrum Karlsruhe, Germany	October 1991
11	22:10:91	Telephone Link with Dr J.M. Marder, Brush Wellman Engineered Materials, U.S.A.	October 1991
12	20:11:91	Clearwater, Florida, U.S.A.	November 1991
13	05:12:91	Kernforschungszentrum Karlsruhe, Germany	January 1992

* The Notes of the Meetings are archived at the Forschungszentrum Karlsruhe.

Annex B

<u>Technical Specification of a Programme on the Irradiation - Induced Embrittlement</u> of Beryllium

1. Background

Beryllium will be required as a neutron multiplier in the solid ceramic tritium breeding blanket designs being developed for a DEMO fusion power reactor if a breeding ratio in excess of unity is to be attained [B1][B2]. During service, the beryllium will be exposed to energetic neutron bombardment resulting in the production of displacement damage (\geq 70 dpa) and the formation of helium (~ 1.6 x 10⁴ appm) and tritium (~ 200 appm) by (n,2n) and secondary reactions respectively at temperatures up to about 600 C.

In addition to being compatible with the breeding and structural materials in the blanket sectors, the beryllium will also have to be dimensionally stable (that is, resistant to irradiation - induced helium gas driven and, possibly, void swelling), to retain the required degree of mechanical integrity and not suffer significant reduction in its initially high thermal conductivity under the stresses imposed during normal operation and transients if the target fluence is to be achieved in DEMO. Furthermore, cracking may occur if the embrittlement induced by irradiation is excessive, producing a dramatic decrease in the thermal conductivity and resulting in enhanced helium gas swelling and, possibly, disintegration of the material.

A fairly extensive data base on the irradiation - induced swelling and embrittlement of beryllium was generated during the 1950s and subsequent years; the data were obtained in programmes carried out in support of its use as a reflector and moderator in material test reactors operating at temperatures of around 100 C and to evaluate its potential for application as fuel element cladding in high temperature gas cooled nuclear power reactors. Most of the experiments were made on hot pressed blocks of relatively impure beryllium which had low ductility and anisotropic properties; furthermore, the data were mainly obtained following irradiation at reactor ambient temperature and annealing or testing at higher temperatures and showed variable and extensive embrittlement and swelling.

In the interim, significant improvements in the ductility and isotropy of beryllium have been made as a result of the development of new powder production and consolidation processes and metal refining techniques. It is essential to determine the pre- and post-irradiation properties and behaviour of the various grades of beryllium now produced so as to isolate the effects of the BeO content and other impurities, porosity, degree of anisotropy and processing parameters on the embrittlement and thereby enable the choice of beryllium grade for the DEMO breeding blanket sectors to be optimised. In addition, it is necessary to perform the irradiations and tests at high temperatures as the dimensional stability, mechanical properties and fracture behaviour are likely to be significantly different to those produced by annealing or testing at higher temperatures after exposure at (lower) reactor ambient temperatures.

Studies of the swelling of beryllium following irradiation in the SILOE and PHENIX reactors have been implemented or are planned. This task description provides the technical specification for a programme aimed primarily at investigating the high temperature irradiation - induced embrittlement of various grades of beryllium currently produced and marketed.

<u>References</u>

- B1. M. Dalle Donne et al, J. Nucl. Mater., 212 215 (1994) 69.
- B2. M. Dalle Donne et al, "European DEMO BOT Solid Breeder Blanket", KfK Report 5429, November 1994.

2. Irradiation Embrittlement / Test Programme Specification

The investigation of the irradiation hardening and embrittlement of beryllium will cover the items and conditions listed in Table B1.

Table B1

Proposed Material, Irradiation and Test Programme Specification

Materials	Brush Wellman Structural Grades: S-65 (BeO = 0.7% max.) S-200-F (BeO = 1.5% max.)				
Powder Production	Impact grinding.				
Powder Consolidation	(i) Axial vacuum hot pressing (VHP).(ii) Direct hot isostatic pressing (HIP).				
Irradiation	In a mixed spectrum MTR at temperatures of 200, 400 and 600 C to a target neutron fluence of $1.5 \times 10^{\circ}$ n. m (> 1 MeV).				
Testing	Pre - irradiation, thermal control and post - irradiation immersion density at ambient temperature, tensile and fracture toughness tests at the irradiation and "stand-by" (coolant) temperatures; helium and tritium analyses of irradiated samples.				
Examinations	Optical and electron microscopy (SEM and TEM) of the initial and post - test structures, deformation and fracture characteristics of the unirradiated, thermal control and irradiated samples.				

3. Specimens

The numbers of tensile, fracture toughness (compact tension) and electron microscope (TEM) disc specimens of each grade of beryllium required for the unirradiated, thermal control and irradiated tests are given in Table B2.

Table B2

Numbers of Specimens

Specimens		S-200-F.	S-200-FH.	S-65.	S-65-H.
		VHP	HIP	VHP	HIP
Tensile	Unirradiated	8	8	8	8
	Thermal Control	12	12	12	12
	Irradiation	12	12	12	12
	Spares	8	8	8	8
		9 -			
	<u>Total</u>	<u>40</u>	<u>40</u>	<u>40</u>	<u>40</u>
Fracture Toughness	Unirradiated	8	8	8	8
	Thermal Control	12	12	12	12
	Irradiated	12	12	12	12
	Spares	8	8	8	8
	Total	 40	 40	 40	 40
	<u>10(a)</u>	<u>40</u>	10	10	
TEM	Unirradiated	4	4	4	4
	Thermal Control	6	6	6	6
	Irradiated	6	6	6	6
	<u>Total</u>	 <u>16</u>	 <u>16</u>	<u>16</u>	 <u>16</u>

<u>Annex C</u>

Brush Wellman Material Test Certificates

ng nde a			. 81					M	~	n Service Service Alternation	e or a the state of the state o
				M		RTIFICAT				AMERICA	dime Li
÷								Data		1000	
Justomer:	Actinica Postfa N-7500 German scription:	orschung Ich 3640 I Karlsr IV	szentrum uhe 1	I, Kari:	srune Gribh			Date: 0000 S.O.#: EMC9 P.O.#: 722/ Specification: Rev. A	58 0375580 S-200-	1992 Ю/0104 F	
Item 1 .118 ±. Item 5 .222 0	- Lot h .001" di - Lot h dia. x E	lo. 4787 a. x .0 lo. 4787 5.512" 1	, Sixtee 059 +.00 , Two (2 ong, S/N	n (16) 11" lor) pcs. PRU, J	pcs. Bery ng, S/N 00 Beryllium PR1.	111um Roc -09, R0-1 1 Rod	d, R5.			0	
CHEN	ICAL CO	MPOSITIC	N: (WT	. %)			MECHANICA		ES .	، د ویژه نود. ایندو به دوری د د روی ویشند .	14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -
Element	4787				DIR.	FTU (Ksi)	FTY (Ksi)	% EL		1996 - 1997 1997 - 1997 1997 - 1997	
Be Be0 Fe	93.9			· · · · · ·	Long. Trans.	54.7 59.1 _.	G279 32.5	2.1 4.4			• • <u>•</u>
Al Mg Si	.05 .02 .03						P ,				
					1	Â.					
					- A						
				, ,	DENSITY gm/cc:		·····	AVG GRAIN SIZE:	(Microns)		-11
		\$ }		, • X	99.95 Th	» eoretica	1		8.2		
	÷		<u>×</u>		RADIOGRAPHICI	NSP. PER		PENETRANT INSP	. PER		
Batch					ADDITIONAL INF	ORMATION:	· · · · · · · · · · · · · · · · · · ·	<u> 16-31</u>	<u>0-0000</u>		
No. (Metallic)					-						
Others Total	<u> </u>				X-ray N	0. H-5/10	J, H-5/16.	·		المجمع می در م اور محمد می از م اور محمد می از می	
<u> </u>										a anti- anti-a constanti anti-a constanti	2
his is to cer Prawing	tify that the sce ab	ne above n I ove	naterial sati Purchase (sfies the Order	requirements	of Specifica	ation was removed	see ab	оүе g No	1 artist 47	87
							-R	alar	N/L		
W-115 1/91				CC '			QUALITY	CONTROL	C. R.	- P: Gar	ner
				Shi	pping (3) Sa	les (1) File	(1)	м.	بنده		

.

<i>u</i>	птер врем на	11974 (C.197			-	• • • •	· · · · · ·	
	<u>.</u>	B		~ELL	MAR	J.		
			MATERIAL		ON			
Customer: Material De	 Kernforsc Postfach H-7500 Ka Gernany scription: 	hungszentrum 3540 rlsrune l	, Karlsruhe Gł	1BH	Di S. P. Sr	Date: October 30, 1992 S.O.#: EMC957 P.O.#: 722/03755800/0104 Specification: S+200-F Rey. A, Type I.		
per dr ltem 5 per un	- Lot No. wwing F1670 - Lot No. wwing F1669	4787, Forty B, S/N 00-09 4787, Forty F, S/N 00-09	(40) pcs. Bery , RO-R9, SO-SS (40) pcs. Bery , RO-R9, SO-SS	vilium Finis), TO-TO. vilium Finis), TO-TO.	H-Machined H-Hachined	Blank Blank		
CHEN	AICAL COMPOS	SITION: (WT.	%)	N	ECHANICAL	PROFERENCES		
Element	4787		DIR.	FTU (Ksi)	FTY (Ksi)	% EL		
Be	98.9				6			
Be0	1.2		Long.	54.7	1 ser	2.1		
Fe	10		Trans.	59.1~	32-5	4.4		
A:	12						·	
Mg	03					A A A A		
Si	131						1	
	100			T T				
							4	
~			ì					
	ļ							·
					Υ			
•••••••••••••••••••••••••••••••••••••••							I	
							:	
			A CONTRACT				;	
			DENSITY	:	A	VE GRAIN SIZE.	Microns;	
				N				
				Theoretical			8.2	
		· · · · · · · · · · · · · · · · · · ·	ROOKOGRAPHI	CINSP PER	P	ENETRANT INSP.	PER	
		▶					COC.C.	
			ADDITIONAL	VFORMATION:		RIL-SID	-0600	
Batch No.	T WE							
(Metallic) Other Elem, ea.	6.04		Y. Pav	No. H_5897	, H-5900, H	H-5720		
Others Total					,, .			

This is to certify that the above material satisfies the requirements of Specification _______ 5ee above _____, Drawing _____see above ____ Purchase Order _____see above ____ and was removed from Pressing No. ______4737___

BRUSH WELLMAN INC. R. P. Siamen

3W-115 1/91

QUALITY CONTROL cc: Shipping (3) Sales (1) File (1)

R. P. Harner

		B	RUSH Enginee Materia	WELL FRED MATERIA	MAN		ب خر می
Customer:	Kernfors Postfach Germany	chungszentrum 3640, W-7500	, Karlsruhe (Karlsruhe 1	Ъмвн	Date S.O. P.O. Spec	: Uctober 1 #: EAC958 #: 722/03755 sification: S-20 Rev. B. Typ	30, 1992 5800/0104 50-F H 90-F H
Item 2 .118 ±. Item 6 .222" c	- Lot No. .001" dia. - Lot No. dia. x 5.5	H0585, Sixte x .0059 +.00 H0685, Two (12" long, S/N	en (16) pcs. 11" long, S/M 2) pcs. Beryl PRO, PR1.	Beryllium Ho UO-U9, WO-W lium Hot Iso	t Isostatic (5. static Presse	Pressed Rod	
CHEN	ICAL COMP	OSITION: (WT	. %)	M		ONERTHES	
Element	10685		DIR	FTU (Ksi)	FTY (Ksi)	% EL	
Be Be0 Fe	99.1 .9 .10		Z	64.0	3	5.0	
Al Mg Sl	.04 .02 .03			A			
· · · · · · · · · · · · · · · · · · ·			X	5	\mathbf{r}		
		R	09.9	Theoretical	AVG	GRAIN SIZE: (Micron 7.1	
			MIL-S	PHIC INSP. PER TD-453 LINFORMATION:	PENE	HIL-STD-686	б
Batch No. (Metallic) Other Elem. ea. Others Total	\$.04		X-ray	No. H-5704,	H-5709.		

This is to certify that the above material satisfies the requirements of Specification see above Drawing ______ See above _____ Purchase Order _____see above _____ and was removed from Pressing No. H0685 ______.

BRUSH WELLMAN INC. R. P. Janner

QUALITY CONTROL

·

IW-115 1/91

cc: Shipping (3) Sales (1) File (1)

1:0:	09-1993	11:55	FROM	BRUSH WE	ELLMAN INC	, т Слатани	0 рада	Pat Murphy	, P.09
•				KU	SH V Ngineere				
				M	ATERIAL C	ERTIFICATI	DN		
Material De Item 2 per dr Item 6 per dr	Kernf Postf German - Lot I - Lot I - Lot I awing F	orschun ach 364 hy No. H06 16708, No. H06 1669F,	gszentr 0, ₩-75 85, For S/N ZU 85, For S/N UO-	ue, Karl GO Karls ty (40) Z9, Y0-) ty (40) U9, W0-b	sruhe GM sruhe 1 pcs. Ber 9, WO-W9 pcs. Ber 19, YO-Y9	3H ylliuma HIP , UO-US. yllium HIP , ZO-Z9.	l F D Finish D Finish	Date: October S.O.#: EMC957 D.O.#: 722/037 Specification: S- Rev. B, T Machined Bla Machined Bla	30, 1992 55800/0104 200-F H Sype I. nk,
CHEN	IICAL CON	APOSITIC	DN: (W	T. %)		N	IECHANICAL	PROMERTIES	
Element	H0685				DIR.	FTU (Ksi)	FTY (Ksi)	% EL	
Be	99.1								
840	.9			ļ	Z	64.0	5	5.0	
Fe	.10			<u> </u>	4	C			
AI	.04		 	<u> </u>	†			×	
Mg	.02					N.			
<u></u>	.03		<u> </u>	+	-		C		
		······		t	1			\mathbf{U}	
			<u> </u>	<u></u>	1				
					N.			1	
	┝━───╁	·······	<u> </u>						
			<u> </u>				D		
				N		N			
					1				
					DENSITY			AVG GRAIN SIZE: (Micro	orm)
				f		Correctical		7.	1
					n ····				-
		N.		`	IR DIOGRAPHIC	INCO DED		DEMATRANT INSP PER	·····
••									DC/
					MIL-ST	-453		MIT-210-0	000
	{−} +								
Batch No.	S	, *							
(Metallic) Other Elem. ea.	<.04				X-ray b	ю. н-5898,	H-5707,	H-5942.	
Others Total									

This is to certify that the above material satisfies the requirements of Specification _____

Drawing _____ see above ____ Purchase Order _____ see above _____ and was removed from Pressing No. 10085

BRUSH WELLMAN INC. R. P. Garner

QUALITY CONTROL

IW-115 1/91

cc: Shipping

File (1)

		_				· · -		· - · · ·	- (- 2)	•
-			-, 1	R	SHM			۶I	نينه ۲۰۰ کېد ا	
						D MATERIAL	2 1000-20			
					ATERIAL C	ERTIFICATIO	N			
					AILING V					
Customer.	* Kernf Postf µ-75∪ Ger⊓a scription:	orschu ach 36 U Karl ny	ngszenti 40 sruhe	rum, Karl	srune GHB	ii	D S P S	ate: Ucto .O.#: EMC9 .O.#: 722/ pecification: 	ober 30, 1 958 (03755300) S-65 C.	.992 10104
1.em 3	- Lot	llo. 47	34, Six	ceen (16)	pcs. Ber	yllium Rod			-0.	
.118 ± Item 7 .222"	1001" d - Lot dia. x	1a. x No. 47 5.512*	.0059 +. 34, Two long, S	.UU11" To (2) pcs. S/N PRO,	ng, S/N A Berylliu PR1.	0-A9, 80-85 a Kod			Carlos Carlos	
CHEN	AICAL CO	MPOSIT	ION: (\	WT. %)	T	ME	CHANICAL	PROFEREN	ş	
Element	4734				DIR.	FTU (Ksi)	FTY (Ksi)	% EL		
Be	99.4								1	1
Be0	.5] Long.	54.7	136-1	3.7		
Fe	.06] Trans.	57.8	35	5.9		
<u> </u>	.03						8			
<u></u> AI	.02				4		1	at the		
Mg	<.01				1	A A A A A A A A A A A A A A A A A A A				
Si	.03				4	- the	y Frank			
	<u></u>				4	Т. Ч	1	3		
	ļ				4 1		1. No.	and the second s		
			<u> </u>			-:	<u>+ -</u> +	ļ		+
. <u></u>							$\mathbf{\nabla}$		1	
<u> </u>					\$ }					
						And I		1		
				-	je i	print the				
· ·				-		Strate				
<u>-</u>			-	<u> </u>	DENSITY			VG GRAIN SIZE	(Micross)	<u></u>
·····							ſ	Grown Size.	(Microna)	
					-09 X TI	fariteres)		8.4	
				1 2						
		A.	A	1	DIOGRAPHIC	NEO DED		ENETDANT INCO	050	
	73	a sea			in a contraction	NGF. FEN	ľ	ENCIONAL INSE.		
		· ····································			HIL-STD-	453		HIL-ST	<u>0-6866</u>	
		· · · · · · · · · · · · · · · · · · ·	<u></u>		ADDITIONAL INFO	DRMATION:				
Batch No.										
(Metallic) Other Elem. ea.	<.04	<u> </u>			X-ray No	. H-5699, H	-5711.			
Others Total						<u></u>				

see above

4/04 above and was removed from Pressing No. Drawing_ ___ Purchase Order __ Larner R.2. BRUSH WELLMAN INC. QUALITY CONTROL BW--115 1/91 cc: Shipping (3) Sales (1) File (1)

e				MATERIAL C	ERTIFICATIO	N
aterial De item 3 per dr item 7 per dr	 Kernfor Postfaci N-7500 i Germany Germany Lot Ho. awing Fish Awing Fish 	schungszer 1 3640 Karlsruhe 1 4704, Fo 2 98, S/N A 99F, S/N A	атлин, К Ю-лу (40 Ю-лу, Ел Ю-А9, Вл Ю-А9, Вл	arlsrune GHB) pcs. Beryl u-Ey, B0-By,) pcs. Beryl u-B9, E0-E9,	ll Tium Finist Ad-A9. Irum Finist Hd-H9.	Date: October 30, 1992 S.O.#: EHC957 P.O.#: 722/0375530070104 Specification: S-65 Rev. C. n-Machined Blank
CHEM		OSITION:	(WT. %)		M	ECHANICAL PROPERTIES
Element	4784			DIR.	FTU (Ksi)	FTY to be EL
Be Be0 Fe C	99.4 .6 .05 .03			Long. Trans.	54.7 57.8	(15) 3.7 35, 5.9
Al Mg Si	.02 <.01 .03					
					eoretical	AVG GRAIN SIZE: (Microns) 8.4
				MIL-STD-	NSP. PER 453 DRMATION:	PENETRANT INSP. PER MIL-STD-6866
Batch No. (Metallic)	1				1.5003	U 5000 U 5607
Others	<.04			X-ray No	. n-5901,	n-2763, r200/.

elies <u>........</u> K . 7

BRUSH WELLMAN INC. QUALITY CONTROL

3W-115 1/91

cc: Shipping (3) Sales (1) File (1)

1.10_1	-62-4358	11.70	reu B					нат (10 10	rpny r La Chie	. US- SE
Material De Item (.118 Item (.222*	• Xernfo Postfa U-7500 Germar scription: 4 - Lot H ±.001" di 5 - Lot N dia, x 5	nrschun ich 364 Karls Karls iv io. du. a. x. k io. HU3 512	gszentr 3 ruhe 1 349, Si 349, Si 39, Two long, S	M um, Kar xteen (1 0011" 10 (20) pc /N PRO	ATERIAL C Isruhe (24) Dong, S/N CS. Beryl) , PR1.	ERTIFICATIO BH Geryllium H 10-19, KO-K lium Hot Is	DN S P S Ot Isosta 5. ostatic Pi	nate: Octob .O.#: EMC95 .O.#:722/03 pecification: (S-05-н ща tic Pressed ressed Rod	per 30, 1 83 8755800/0 5-65, Ru terial) d Rod	992 104 ev. C
CHEN	ICAL COM	POSITIO	N: (W	T.%)		м	ECHANICAL	PROPERTIES	S	
Element	110349			<u> </u>	DIR.	FTU (Ksi)	FTY (Ksi)	% EL		
Be Be0 Fe C Ai Mg Si	• 99.5 • 99.5 • .06 • .03 • .02 g <.01					73.9 71.4		4.8 3.6		
					DENSITY OF CO	heoretical		NG GRAIN SIZE. 6.6	(Microne)	
Baich No.	A CONTRACT OF A	3			MIL-STD ADDITIONAL INF	-453 ORMATION:		MIL-ST	-6866	
(Metallic) Other Elem, sa, Others Total	<.04				X-ray N	o. H-5708,	H-5705.			

This is to certify that the above material satisfies the requirements of Specification <u>see above</u> Drawing <u>See above</u> Purchase Order <u>See above</u> and was removed from Pressing No. <u>10349</u>

-

rence

BRUSH WELLMAN INC. K. P. Garner QUALITY CONTROL

IW-115 1/91

cc: Shipping (3) Sales (1) File (1)

	1				MAI	Ŋ		
	. 🛥		MATERNAL CE	RTIFICATI	ÓN			
istomer.	▼Kernforsc Postfach ¥=7500 Ka	hungszentrum, Kan 3640 rlsruhe l	risruhe GMBH	I	t S F	Date: 0ctok 5.0.#: EHC95 2.0.#:722/03	per 30, 19 57 5755800/01 5-65. Re	92 04 7. C
terial De Item 4 per dr	scription: - Lot Ho. awing F1670	H0349, Forty (40 B, S/N 10-19, KO-) pcs. Bery K9, L0-L9,	111um HIP HO-M9.	'D Finish	(S-65-H Ma ed Machine	iterial) d Blank,	
per dr	- Lot NO. awing F1 669	HU349, Forty (40, F, S/N 10-19, Ki)-K9, L0-L9,	MO 149.	D LIBIDAG	I Macintano)
CHEN	AICAL COMPOS	SITION: (WT. %)		N	ECHANICAL	PROPERTY	S	
ilement.	HD349		DNR.	FTU (Kei)	FTY (Kal)	% EL		
le 	99.5			72 8	Gias			
4	.06			71.4	G	3.6		
	.03			C	h	+~		4
¢	<.01			· K				
~								
				•		Ý		
· · · · · · · · · · · · · · · · · · ·	}				$\mathbf{\cdot}$	<u></u>		<u>+</u>
				\sim				
·			N)	•		1
	ļ			\bigcap				
			CONSTRUCTION OF			ANG GRAIN BIZE	(lacrons)	
						6.6		
·					under der der der der der der der der der	· · · · ·		
·					kontre i la contre de la contre d La contre de la contre	PERSTRANT PROP	PHERI	
		The second second				NUL-51	D-6866	
Batch	()					*-		
No.				ينيني المراجع المراجع من مراجع		1		
letalfic) Elem. ea.	(.04		I-ret Ba	H-5802	1-1-1-1-1-	-5712.		
Others Total	· · · · ·							
			4					
is to cer	tily that the also	wo m alista addice #	e requirements	of Specifical	1911	ette		
wing	See above	Purchase Order _	Set chore	and w	es removed	hom Pressing	1 No	49
					1 -	sl.		,
		-			-PA	Mar	mer	/
					QUALITY	ELLMAN IN	C. R. P.	Garner
15 1/91			c: hipping (3) - Seu	RSI(1) File /1				
		-			•			

Annex D

Layout of Machined Specimen Blanks in S-200-F VHP Billet - Lot No. 4787

Fig. No.	Brush Wellman Drawing No.	Date	Brush Wellman Ref. No.	Item	Specimens and Identification	Comments
D1	194787W	20:04:92	EMC 958	1	EM Discs (A) 00-09, R0-R5	
				5	PR0; PR1	
			EMC 957	1	Tensile 00-09; R0-R9; S0-S9; T0-T9	Discarded
				5	C-T O0-O9; R0-R9; S0-S9; T0-T9	
D2	194787A	06:07:92	EMC 957	1	Tensile 00-09, R0-R9, S0-S9, T0-T9	Replacements

Annex E

Layout of Machined Specimen Blanks in S-200-FH HIP Billet - Lot No. H0685

Fig. No.	Brush Wellman Drawing No.	Date	Brush Wellman Ref. No.	Item	Specimens and Identification	Comments
E1	19H06856(1/4)	16:04:92	EMC 957	2	Tensile U0-U9;W0-W9; Y0-Y9; Z0-Z9	Discarded
	19H06856(2/4)	16:04:92	EMC 957	6	C-T U0-U9;W0-W9; Y0-Y9; Z0-Z9	
	19H06856(3/4)	16:04:92	EMC 958	6	PR0, PR1	
	19H06856(4/4)	16:04:92	EMC 958	2	EM Discs (A) U0-U9; W0-W5	
			EMC 959-001		C-T SN-1; SN-2	Preliminary Fracture Toughness Tests
E2	19H06857	15:05:92	EMC 957	2	Tensile U9; Y3, Y5, Y6, Y9	Discarded
E3	19H06858	20:05:92	EMC 957	2	Tensile Y5	Discarded
E4	19H06859	06:07:92	EMC 957	2	Tensile U0-U9;W0-W9; Y0-Y9; Z0-Z9	Replacements
E5	19H0685A	01:10:92	EMC 957	6	C-T	Partial Replacements

<u>ω</u>

ω

Annex F

Layout of Machined Specimen Blanks in S-65 VHP Billet - Lot No. 4784

Fig. No.	Brush Wellman Drawing No.	Date	Brush Wellman Ref. No.	Item	Specimens and Identification	Comments
Fl	1947842	22:04:92	EMC 958	3	EM Discs (A) A0-A9; B0-B5	
	-			7	PR0; PR1	
			EMC 957	3	Tensile A0-A9; B0-B9; E0-E9; H0-H9	Discarded
				7	C-T A0-A9; B0-B9; E0-E9; H0-H9	
F2	1947848	06:07:92	EMC 957	3 ·	Tensile A0-A9; B0-B9; E0-E9; H0-H9	Replacements. E6 and H8 Discarded
F3	1947 84C	24:09:92	EMC 957	3	Tensile E6;H8	Replacements

Annex G

Layout of Machined Specimen Blanks in S-65-H HIP Billet - Lot No. H0349

Fig. No.	Brush Wellman Drawing No.	Date	Brush Wellman Ref. No.	Item	Specimens and Identification	Comments
Gl	19H0349A(1/2)	21:04:92	EMC 958	4	EM Discs (A) 10-19; K0-K5	
			EMC 957	4	Tensile 10-19; K0-K9; L0-L9; M0-M9	Discarded
G2	19H0349A(2/2)	21:04:92	EMC 958	8	PR0; PR1	
			EMC 957	8	C-T I0-I9; K0-K9; L0-L9; M0-M9	
G3	19H0349C	13:05:92	EMC 957	4	Tensile L8	Replacement. Discarded
G4	19H0349D	06:07:92	EMC 957	4	Tensile 10-19; K0-K9; L0-L9; M0-M9	Replacements. I3 and M3 Discarded
G5	19H0349E	10:09:92	EMC 957	4	Tensile I3	Replacement
G6	19H0349F	22:09:92	EMC 957	4	Tensile M3	Replacement

Annex H

.

Southwest Research Institute Report (SwRI Project No. 06-4522-161)

"Fracture Toughness Testing of KfK (Round) Specimens".

BRUSHWELLMAN

ENGINEERED MATERIALS

MATERIAL CERTIFICATION

Customer: Kernforschungszentrum Karlsruhe GMBH Postfach 3640 W-7500 Karlsruhe 1, Germany Material Description: Item 1: Lot No. H0685, Two (2) pcs. per DWG: F1669E, S/N 1-2. Date: 8/3/92 S.O.#: EMC959 P.O.#: 722/03757110/0104 Specification:

CHEN	ICAL COM	IPOSITIO	N: (W	'T.%)		М	ECHANICAL	_ PROPERTIE	S	
Element					DIR.	FTU (Ksi)	FTY (Ksi)	% EL		
e										
e0د						6			!	
Fe									1	
						l				· · · · ·
Al									-	
Mg					_	4				
Si										
				+						
					-					
	+				+					
				+	_					
<u> </u>			· · · · ·							
	-			1	1				1	
				1	-				1	1
				1	-					
		_			DENSITY gm/cc.			AVG GRAIN SIZE	(Microns:	· .
					1					
]					
					RADICGRAPHIC	NSP PER		PENETRANT INSP	PER	
					_					
			·····		ADDITIONAL INFO	ORMATION:				
Batch No.					Fracture	Toughness	Test Res	sults:		
(Metallic) Otner Elem. ea.					$\frac{S/N}{1} \qquad \frac{k s i \sqrt{in}}{9.00}$					
Others Total					2	8.99				

This is to certify that the above material satisfies the requirements of Specification _____

Drawing see above Purchase Order see above and was removed from Pressing No. H0685

Mll

BRUSH WELLMAN INC. R.P. Garner QUALITY CONTROL

BW-115 1/91

cc: Shipping (3) Sales (1) File (1)

TO RECEIPTING THAT ME 14 MILLI

1.71

.*.:

44

FRACTURE TOUGHNESS TEST REPORT

.

GENERAL TEST INFORMATION							
MATERIAL	·B	e (Brush	Wellman)	PROGRAM	06-4522	2-161	
TEMP(-F)	76 78	48 R.H.(7) 46	510-2 510-1	71.71 DATE 7121	92 192	BY	DH. JF JH. JF
NOTES:	P/4	F1669E	146.#	170685	Dich -	SIJAPED	Comi Act

SUMMARY OF TEST REPORT									
SPEC. I.D. NO.	5N-1	5N-2							
ORIENTATION CODE									
KQ (KSIVIN)	9.00	8.99							
K _{IC} (KCIVIN)	9.00	. 8.99		, ,					
Rsc (IF REQ'D)	_								
COMMENTS									

page 1 of 4

#,

	FAT	IGUE PRE-CRACK	SUMMARY	From Ise	otch]
		MAX LOAD	CYCLES	CRACK L	ENGTHS	7
STAGE	SPECIMEN I.D.	(KIPS)		SIDE 1	SIDE 2	
	5N 1	+.1224	100,000	0	0]
		.153	2 50,000	1.013	.002 R.	- verses
<u> </u>		15 - 375	89211	1,017	,007]
		117375	200000	,032	,013]、
		7.2 -,40	59362	.043	.022] fe v
		+.2 +.02	180,000	1.043	.023]
		+.22 +.022	200.000	,043	,023]
\overline{T}		1.235 7,024	200000	.0-2	1023	
11-	SN-2	T.250	218,000	1.07a	.061	1
						4
	5N-1	1+,25	30749	1.052	, 035]
Contraction of the local division of the loc	(eprt-)		142000	,052	,055	
Ш.			183.000	1.054	.067	
			236,832	.070	.075]
			[J
						1

	FINAL CRACK LENGTH MEASUREMENTS								
SPECIMEN I.D.	SN-1	SN-2							
SIDE 1 (S-1)	. 3 0 2	-305							
SIDE 2 (S-2)	2165	. 295							
a-QP-1	1.04	.3026							
A_CENTER	.305	.3025							
aQP-2	.3122	.302							
AVG FROM		2-24							
$\frac{QP - 1 + OTQP - 2}{3}$. 3023	. 70 07							

٠

1171	GΖ
------	----

KIC TEST INFORMATION								
SPECIMEN I.D.	511-1	5- 42						
AVG a/w	,4856	.480						
f(a/w)	9.7164	9.5466						
PQ (kips)	, 23.2	.235						
Pmax (kips)	232	.235						
>) R J	38.779	38.244			·			

Page 2 of 4

	K VALIDITY CHECK LIST								
ITEM	SPECIMEN I.D.	5N-1	512-2						
	Kmax FAT. < 0.6 RQ _	Not	17PPLIC	ABLE T	≥ Bei	×11,5m			
A	Kmax FATIGUE		ASTI	h E 399	1-90 .14	nnex on	Be		
	0.6 KO								
	VALID ?					·			
10	Kmax FAT/E <.002 in. ¹								
D	Kmax FAT/E	1.00018	.00017						
-	VALID ?	Y.	Υ_						
	AVG a/w BETWEEN								
٢	0.45 & 0.55								
	AVG. a/w	.486	.480						
	VALID ?	Y					an a		
	s-1 & s-2>0.85 a AVG								
	a SIDE l	.302	.305						
ן ע	a SIDE 2	, 317	.295		-		www.contract.com		
	85% of a AVG	. 261	.257				atta da gang manifestati ang san		
	VALID ?	Y					••		
	MAX DIFF. OF ANY 2 OF QP-1, CENTER OR $OP-2$ MEAS ≤ 0.10 a AVG								
と	MAXIMUM DIFFERANCE	.007	.001						
	10% OF a AVG	.026	.026	n gymerigen an generation fan state					
	VALID ?	\checkmark	Y	- and a state of the second state of the secon			norzawania szere kenegy a ferrettetetetetetetetetetetetetetetetete		
	LOAD RATE BETWEEN	1-54-	5200-	70 Hone	x on t	Be			
F	30 & 150 KSI IN/MIN	451 M	x+s ~10	IcalVin	/min	-			
•	LOAD RATE (KSI VIN/MIN)	9.7	9.6				the contrast of the second		
	WATTD 2	Y							

•	1		The second diversion of the se					
	K _{IC} VALIDITY CHECK LIST (CONT.)							
	ITEM	SPECIMEN I.D.	5N-1	5N-2				
		• $\Delta B > 2.5 (KQ/Y.S.)^2$						
		a AVG	٢٥٦.	.302				
	G	<u>B</u>	.315	,315				
		YIELD STRESS (KSI)	51.5	51.5			•	
		2.5 (KQ/Y.S.) ²	.076	۵۲۵،				
		VALID ?	Y	Y				
		Pmax/PQ < 1.1						
ŧŋP	H	Pmax/PQ	1.00	1.00				
1199		VALID ?	Y	\checkmark				
		Kmax FAT _{F1} ∠0.6	i					
	I	(Y.S _{T1} /Y.S. _{T2}) KQ _{T2}	NA	NА				
		VALTD ?						
	CALC	VALUE OF NO. (KSIV IN)	200	8,99				
	DOES K	$Q = K_{TC}$?	Y	Y				nangan til af gyr pogygydau i Maarini gygen
	TE NO	- WHAT ITEM(S) ARE						
	CAUSE	LF NU - WHAT ITEM(S) ARE		-				
배박,	CAUSE FOR INVALID KIC							
:Q11	GENERA	GENERAL COMMENTS						
				•			* *	
ł		`						

,

name 4 of 4

.

۰.

