Forschungszentrum Karlsruhe Technik und Umwelt

Wissenschaftliche Berichte FZKA 5820

Wärmetransport-Modelle zur Bestimmung der Temperaturleitfähigkeit von Werkstoffen mit der instationären Laser-Flash Methode

L. Dusza Institut für Materialforschung

August 1996

Forschungszentrum Karlsruhe

Technik und Umwelt Wissenschaftliche Berichte FZKA 5820

WÄRMETRANSPORT- MODELLE ZUR BESTIMMUNG DER TEMPERATURLEITFÄHIGKEIT VON WERKSTOFFEN MIT DER INSTATIONÄREN LASER-FLASH METHODE

L. Dusza

Institut für Materialforschung

von der Fakultät für Chemieingenieurwesen der Universität Karlsruhe (Technische Hochschule) genehmigte Dissertation

Forschungszentrum Karlsruhe GmbH, Karlsruhe 1996

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

> Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

> > ISSN 0947-8620

Zusammenfassung

Eine neue Methode für die Auswertung homogener Proben mit dem Laserflash-Verfahren wird in dieser Arbeit präsentiert. Der Effekt der endlichen Pulsbreite wird durch das Faltungsintegral mit der Modellösung für Wärmeverluste in die allgemeingültige Temperaturanstiegsfunktion einbezogen. Die dreieck-, trapezförmigen , exponentiellen und linear-exponentiellen Pulsformen werden mathematisch gesehen als Pulskoeffizienten formuliert, die zu beliebigen Modellösungen mit der Dirac-Quellenfunktion anschließbar sind. Bei einer Messung werden die unbekannte Temperaturleitfähigkeit und die zwei Biotzahlen durch simultane nichtlineare Parameterschätzung ermittelt. Durch Darstellung des theoretischen Temperaturanstiegs kann der ermittelte Temperaturleitfähigkeitswert überprüft werden. Mit dieser neuen Lösung entfällt die Notwendigkeit, zwischen den Korrekturarten wählen zu müssen. Die Auswertung ist auch bei extrem kleinen Anstiegszeiten oder bei hohen Wärmeverlusten möglich. Zur Bestimmung des thermischen Kontaktwiderstandes mit der Laserflash-Methode wurde ein neues Wärmetransportmodell entwickelt. Die neue theoretische Temperaturanstiegsfunktion für Zweischichtsysteme mit integriertem Wärmeverlust und mit den Pulskoeffizienten wurde durch den Green schen Satz hergeleitet und gilt als die allgemeingültige Lösung. Die Anwendung erfolgt durch nichtlineare Parameterschätzung.

Summary

Heat transport models for determining thermal diffusivity using the laser flash method

A new method for the evaluation of homogeneous samples using the laser flash technics is presented in this work. The analytical solution integrates the finite pulse correction and the heat loss effect as a convolution of the pulse intensity function with the temperature rise under heat losses. Mathematically seen, the triangular, exponential, linear-exponential and trapeziodal pulse shapes are formulated as pulse coefficients that can be adapted to any model solution of Dirac-source type. The unknown thermal diffusivity and the Biot numbers as best fit parameters to the measurement are determined through simultaneous nonlinear parameter estimation. The fit can be checked by plotting the theoretical temperature rise. Thus, laser flash evaluation can be carried out using this generally valid function even at very short rise times or at high heat losses - without necessity of selecting the correction type. For determining the thermal contact resistance between two layers a new heat transfer model has been developed by means of the Green function. The new temperature rise function includes the heat loss and finite pulse corrections can be adapted to a laser flash measurement by nonlinear parameter estimation.

INHALTSVERZEICHNIS

 Einleitung und Zielsetzung	.9 .12
 Allgemeine Beschreibung der Laserflash-Methode	.12
1.1 Messprinzip	
 Allgemeines physikalisches Modell Kenntnisstand. Adiabatischer Fall : Das Parker-Modell. 1.1 Bestimmung der Temperaturleitfähigkeit mit der Anwendung des Parker-Modells 2.2 Korrektur für die endliche Pulsdauer 2.1 Larson-Koyama-Modell 2.2 Xumi-Methode. 3.1 Cape-Lehman-Lösung. 3.2 Zazumi-Methode. 3.3 Cowan-Verfahren 2.3.5 Cosung von Watt. 2.3.6 Balageas-Ratiomethode. 2.3.7 Moment-Methode (Ratio Methode). 2.3.6 Balageas-Ratiomethode. 2.3.7 Moment-Methode von Degiovanni 2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen 2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten 2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3.4 Aufbau der LFA427 4. Neues iteratives Verfahren für den adiabatischen Fall 5. Die Berücksichtigung der endlichen Dauer des Laserpulses 5.1 Pulsfunktionen 5.2 Dreieckförmiger Puls 5.3 Neue Korrektur für die endliche Pulsfaruer 5.3 Neue Korrektur für die Pulsfaru 	.12
 Kenntnisstand. 2.1 Adiabatischer Fall : Das Parker-Modell. 2.1.1 Bestimmung der Temperaturleitfähigkeit mit der Anwendung des Parker-Modells 2.2 Korrektur für die endliche Pulsdauer 2.2.1 Larson-Koyama-Modell 2.2.2 Azumi-Methode. 2.3 Wärmeverfust-Modelle 2.3.1 Cape-Lehman-Lösung. 2.3.2 Lösung von Watt 2.3.3 Cowan-Verfahren 2.3.4 Taylor-Methode (Ratio Methode). 2.3.5 Degiovanni-Verfahren (Ratio Methode). 2.3.6 Balageas-Ratiomethode. 2.3.7 Moment-Methode von Degiovanni 2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen 2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten 2.5.2 Temperaturanstieg mit thermischem Kontaktwiderstand 2.5.3 Bestimmung des Temperaturenturentsies bei Materialien aus drei Schichten 3.1 Aufbau der LFA427 4. Neues iteratives Verfahren für den adiabatischen Fall. 5. Die Berücksichtigung der endlichen Dauer des Laserpulses 5.1 Pulsfunktionen 5.2.1 Exponentielle Pulsform 5.2.2 Dreieckförmiger Puls 5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung 	.13
 Kenntnisstand. 2.1 Adiabatischer Fall : Das Parker-Modell. 2.1.1 Bestimmung der Temperaturleitfähigkeit mit der Anwendung des Parker-Modells. 2.2 Korrektur für die endliche Pulsdauer 2.2 Korrektur für die endliche Pulsdauer 2.2 Azumi-Methode. 2.3 Wärmeverlust-Modelle 2.3.1 Cape-Lehman-Lösung. 2.3.2 Lösung von Watt. 2.3.3 Cowan-Verfahren 2.3.4 Taylor-Methode (Ratio Methode). 2.3.5 Degiovanni-Verfahren (Ratio Methode). 2.3.6 Balageas-Ratiomethode. 2.3.7 Moment-Methode von Degiovanni 2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen. 2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten 2.5.2 Temperaturanstieg mit thermischem Kontaktwiderstand 2.5.3 Bestimmung des Temperaturentiefis bei Materialien aus drei Schichten 3.4 Aufbau der LFA427 4. Neues iteratives Verfahren für den adiabatischen Fall. 5. Die Berücksichtigung der endlichen Dauer des Laserpulses 5.1 Pulsfunktionen 5.2 Neue analytische Lösungen für die endliche Pulsdauer. 5.2 Tempoentielle Pulsform 5.2 Dreieckförmiger Puls 5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung 	
 2.1 Adiabatischer Fall : Das Parker-Modell. 2.1.1 Bestimmung der Temperaturleitfähigkeit mit der Anwendung des Parker-Modells 2.2 Korrektur für die endliche Pulsdauer 2.2.1 Larson-Koyama-Modell 2.2.2 Azumi-Methode. 2.3 Wärmeverlust-Modelle 2.3.1 Cape-Lehman-Lösung. 2.3.2 Lösung von Watt 2.3.3 Cowan-Verfahren 2.3.4 Taylor-Methode (Ratio Methode). 2.3.5 Degiovanni-Verfahren (Ratio Methode). 2.3.6 Balageas-Ratiomethode 2.3.7 Morment-Methode von Degiovanni 2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen 2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten 2.5.2 Temperaturanstieg mit thermischem Kontaktwiderstand 2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3. Moderne Ausführung von Laserflash-Apparaturen 3.1 Aufbau der LFA427 4. Neues iteratives Verfahren für den adiabatischen Fall 5.2 Die Berücksichtigung der endlichen Dauer des Laserpulses 5.1 Pulsfunktionen 5.2 Dreieckförmiger Puls 5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Trapezförmiger Puls 5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung 	.19
 2.1.1 Bestimmung der Temperaturleitfähigkeit mit der Anwendung des Parker-Modells	.19
Parker-Modells. 2.2 Korrektur für die endliche Pulsdauer 2.2.1 Larson-Koyama-Modell 2.2.2 Azumi-Methode. 2.3.1 Cape-Lehman-Lösung. 2.3.2 Lösung von Watt 2.3.3 Cowan-Verfahren 2.3.4 Taylor-Methode (Ratio Methode). 2.3.5 Degiovanni-Verfahren 2.3.6 Balageas-Ratiomethode 2.3.7 Moment-Methode von Degiovanni 2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen 2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten 2.5.2 Temperaturanstieg mit thermischem Kontaktwiderstand 2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3.1 Aufbau der LFA427 4. Neues iteratives Verfahren für den adiabatischen Fall. 5. Die Berücksichtigung der endlichen Dauer des Laserpulses 5.1 Pulsfunktionen 5.2.1 Exponentielle Pulsform 5.2.2 Dreieckförmiger Puls 5.2.3 Linear-exponentielle Pulsform 5.2.4 Trapezförmiger Puls 5.3 Neue Korrektu	
 2.2 Korrektur für die endliche Pulsdauer. 2.2.1 Larson-Koyama-Modell. 2.2.2 Azumi-Methode. 2.3 Wärmeverlust-Modelle. 2.3 Cape-Lehman-Lösung. 2.3.1 Cape-Lehman-Lösung. 2.3.2 Lösung von Watt. 2.3.3 Cowan-Verfahren 2.3.4 Taylor-Methode (Ratio Methode). 2.3.5 Degiovanni-Verfahren (Ratio Methode). 2.3.6 Balageas-Ratiomethode. 2.3.7 Moment-Methode von Degiovanni 2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen 2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten 2.5.2 Temperaturanstieg mit thermischem Kontaktwiderstand 2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3. Moderne Ausführung von Laserflash-Apparaturen. 3.1 Aufbau der LFA427 4. Neues iteratives Verfahren für den adiabatischen Fall. 5. Die Berücksichtigung der endlichen Dauer des Laserpulses 5.1 Pulsfunktionen 5.2 Neue analytische Lösungen für die endliche Pulsdauer. 5.2.1 Exponentielle Pulsform. 5.2.2 Dreieckförmiger Puls 5.3 Neue Korrektur für die Pulsdouer mit gemessener Pulsform 5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung 	.20
 2.2.1 Larson-Koyama-Modell 2.2.2 Azumi-Methode. 2.3 Wärmeverlust-Modelle 2.3.1 Cape-Lehman-Lösung. 2.3.2 Lösung von Watt. 2.3.3 Cowan-Verfahren. 2.3.4 Taylor-Methode (Ratio Methode). 2.3.5 Degiovanni-Verfahren (Ratio Methode). 2.3.6 Balageas-Ratiomethode. 2.3.7 Moment-Methode von Degiovanni. 2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen. 2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten 2.5.2 Temperaturanstieg mit thermischem Kontaktwiderstand 2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3. Moderne Ausführung von Laserflash-Apparaturen. 3.1 Aufbau der LFA427 4. Neues iteratives Verfahren für den adiabatischen Fall. 5. Die Berücksichtigung der endlichen Dauer des Laserpulses 5.1 Pulsfunktionen 5.2.1 Exponentielle Pulsform. 5.2.2 Dreieckförmiger Puls 5.2 Neue analytische Lösungen für die endliche Pulsdauer. 5.2.4 Trapezförmiger Puls 5.3 Neue Korrektur für die Pulsform. 5.2.4 Trapezförmiger Puls 5.3 Neue Korrektur für die Pulsform. 5.4 Ermittlung der Temperaturelitfähigkeit bei einer Messung 	.21
 2.2.2 Azumi-Methode. 2.3 Wärmeverlust-Modelle. 2.3.1 Cape-Lehman-Lösung. 2.3.2 Lösung von Watt. 2.3.3 Cowan-Verfahren 2.3.4 Taylor-Methode (Ratio Methode). 2.3.5 Degiovanni-Verfahren (Ratio Methode). 2.3.6 Balageas-Ratiomethode. 2.3.7 Moment-Methode von Degiovanni 2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen 2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten 2.5.2 Temperaturanstieg mit thermischem Kontaktwiderstand 2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3. Moderne Ausführung von Laserflash-Apparaturen 3.1 Aufbau der LFA427 4. Neues iteratives Verfahren für den adiabatischen Fall 5. Die Berücksichtigung der endlichen Dauer des Laserpulses 5.1 Pulsfunktionen 5.2.1 Exponentielle Pulsform 5.2.3 Linear-exponentielle Pulsform 5.2.3 Linear-exponentielle Pulsform 5.2.4 Trapezförmiger Puls 5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Ermittlung der Temperaturelitfähigkeit bei einer Messung 	.21
 2.3 Wärmeverlust-Modelle. 2.3.1 Cape-Lehman-Lösung. 2.3.2 Lösung von Watt. 2.3.3 Cowan-Verfahren. 2.3.4 Taylor-Methode (Ratio Methode). 2.3.5 Degiovanni-Verfahren (Ratio Methode). 2.3.6 Balageas-Ratiomethode. 2.3.7 Moment-Methode von Degiovanni 2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen 2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten 2.5.2 Temperaturanstieg mit thermischem Kontaktwiderstand 2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3. Moderne Ausführung von Laserflash-Apparaturen 3.1 Aufbau der LFA427 4. Neues iteratives Verfahren für den adiabatischen Fall 5. Die Berücksichtigung der endlichen Dauer des Laserpulses 5.1 Pulsfunktionen 5.2.3 Linear-exponentielle Pulsform 5.2.4 Trapezförmiger Puls 5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung 	.22
 2.3.1 Cape-Lehman-Lösung. 2.3.2 Lösung von Watt. 2.3.3 Cowan-Verfahren 2.3.4 Taylor-Methode (Ratio Methode). 2.3.5 Degiovanni-Verfahren (Ratio Methode). 2.3.6 Balageas-Ratiomethode. 2.3.7 Moment-Methode von Degiovanni 2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen 2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten 2.5.2 Temperaturanstieg mit thermischem Kontaktwiderstand 2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3.4 Korten 3.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3.4 Korten 3.5 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3.5 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3.4 Korten 3.5 Bestimmung des Temperaturen 3.1 Aufbau der LFA427 4. Neues iteratives Verfahren für den adiabatischen Fall 5.1 Pulsfunktionen 5.2.1 Exponentielle Pulsform 5.2.3 Linear-exponentielle Pulsform 5.2.4 Trapezförmiger Puls 5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung 	.23
 2.3.2 Lösung von Watt. 2.3.3 Cowan-Verfahren 2.3.4 Taylor-Methode (Ratio Methode). 2.3.5 Degiovanni-Verfahren (Ratio Methode). 2.3.6 Balageas-Ratiomethode. 2.3.7 Moment-Methode von Degiovanni 2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen 2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten 2.5.2 Temperaturanstieg mit thermischem Kontaktwiderstand 2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3.1 Aufbau der LFA427 4. Neues iteratives Verfahren für den adiabatischen Fall 5. Die Berücksichtigung der endlichen Dauer des Laserpulses 5.1 Pulsfunktionen 5.2.2 Dreieckförmiger Puls 5.2.3 Linear-exponentielle Pulsform 5.2.4 Trapezförmiger Puls 5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Ermittlung der Temperatureitfähigkeit bei einer Messung 	.23
 2.3.3 Cowan-Verfahren 2.3.4 Taylor-Methode (Ratio Methode). 2.3.5 Degiovanni-Verfahren (Ratio Methode). 2.3.6 Balageas-Ratiomethode. 2.3.7 Moment-Methode von Degiovanni 2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen 2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten 2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3. Moderne Ausführung von Laserflash-Apparaturen 3.1 Aufbau der LFA427 4. Neues iteratives Verfahren für den adiabatischen Fall 5. Die Berücksichtigung der endlichen Dauer des Laserpulses 5.1 Pulsfunktionen 5.2.1 Exponentielle Pulsform 5.2.2 Dreieckförmiger Puls 5.2.3 Linear-exponentielle Pulsform 5.2.4 Trapezförmiger Puls 5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung 	.24
 2.3.4 Taylor-Methode (Ratio Methode). 2.3.5 Degiovanni-Verfahren (Ratio Methode). 2.3.6 Balageas-Ratiomethode 2.3.7 Moment-Methode von Degiovanni. 2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen 2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten 2.5.2 Temperaturanstieg mit thermischem Kontaktwiderstand 2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3.1 Aufbau der LFA427 4. Neues iteratives Verfahren für den adiabatischen Fall 5. Die Berücksichtigung der endlichen Dauer des Laserpulses 5.1 Pulsfunktionen 5.2.1 Exponentielle Pulsform 5.2.3 Linear-exponentielle Pulsform 5.2.4 Trapezförmiger Puls 5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung 	.25
 2.3.5 Degiovanni-Verfahren (Ratio Methode). 2.3.6 Balageas-Ratiomethode. 2.3.7 Moment-Methode von Degiovanni. 2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen. 2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten	.26
 2.3.6 Balageas-Ratiomethode 2.3.7 Moment-Methode von Degiovanni 2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen 2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten 2.5.2 Temperaturanstieg mit thermischem Kontaktwiderstand 2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3.1 Aufbau der LFA427 4. Neues iteratives Verfahren für den adiabatischen Fall 5. Die Berücksichtigung der endlichen Dauer des Laserpulses 5.1 Pulsfunktionen 5.2.2 Dreieckförmiger Puls 5.2.3 Linear-exponentielle Pulsform 5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung 	.26
 2.3.7 Moment-Methode von Degiovanni 2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen 2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten 2.5.2 Temperaturanstieg mit thermischem Kontaktwiderstand 2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten 3. Moderne Ausführung von Laserflash-Apparaturen 3.1 Aufbau der LFA427 4. Neues iteratives Verfahren für den adiabatischen Fall 5. Die Berücksichtigung der endlichen Dauer des Laserpulses 5.1 Pulsfunktionen 5.2.1 Exponentielle Pulsform 5.2.2 Dreieckförmiger Puls 5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung 	.26
 2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen	.27
 2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten	.28
 Schichten	
 2.5.2 Temperaturanstieg mit thermischem Kontaktwiderstand	.28
 2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten	.30
 Schichten Moderne Ausführung von Laserflash-Apparaturen 3.1 Aufbau der LFA427 Neues iteratives Verfahren für den adiabatischen Fall Die Berücksichtigung der endlichen Dauer des Laserpulses 5.1 Pulsfunktionen 5.2 Neue analytische Lösungen für die endliche Pulsdauer 5.2.1 Exponentielle Pulsform 5.2.2 Dreieckförmiger Puls 5.2.3 Linear-exponentielle Pulsform 5.2.4 Trapezförmiger Puls 5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung 	
 Moderne Ausführung von Laserflash-Apparaturen	.32
 3.1 Aufbau der LFA427 4. Neues iteratives Verfahren für den adiabatischen Fall 5. Die Berücksichtigung der endlichen Dauer des Laserpulses 5.1 Pulsfunktionen 5.2 Neue analytische Lösungen für die endliche Pulsdauer 5.2.1 Exponentielle Pulsform 5.2.2 Dreieckförmiger Puls 5.2.3 Linear-exponentielle Pulsform 5.2.4 Trapezförmiger Puls 5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung 	34
 4. Neues iteratives Verfahren für den adiabatischen Fall	34
 4. Neues iteratives Verfahren für den adiabatischen Fall. 5. Die Berücksichtigung der endlichen Dauer des Laserpulses	••
 5. Die Berücksichtigung der endlichen Dauer des Laserpulses	.36
 5. Die Berücksichtigung der endlichen Dauer des Laserpulses	
 5.1 Pulsfunktionen	.37
 5.2 Neue analytische Lösungen für die endliche Pulsdauer	.38
 5.2.1 Exponentielle Pulsform	.43
 5.2.2 Dreieckförmiger Puls 5.2.3 Linear-exponentielle Pulsform 5.2.4 Trapezförmiger Puls 5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung 	.43
 5.2.3 Linear-exponentielle Pulsform 5.2.4 Trapezförmiger Puls 5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung 	.43
5.2.4 Trapezförmiger Puls 5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung	.44
5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform 5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung	.44
5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung	
	45
6. Wärmeverlustoffekt	45 46
6 1 Nouge Verfahren: nightlingere Deremsterschötzung mit der Cong Lohmen	45 46
o, i meues venamen, monumeare r'arametersonatzuny mit der Cape-Lehmäll-	45 46 47
6 2 Die Methode der nichtlinearen Parameterschätzung	45 46 47
יאב שום אופנווטעם עבו חוטונוווזכמוכוו רמומווזכנפוגטוומנצעווע	45 46 47 49
7. Neues Verfahren mit dem kombinierten Modell	45 46 47 49 50
7.1 Die kombinierte Funktion	45 46 47 49 50 51
7.2 Das numerische Verfahren zur Anwendung der kombinierten Funktion	45 46 47 49 50 51 51
7.3 Neue Wärmeverlustkorrektur mit gemessener Pulsform (Konvolution)	.45 .46 .47 .49 .50 .51 .51 .51 .52

8. Zweischichtmodell mit Wärmeverlust	53
 9. Thermischer Kontaktwiderstand mit Wärmeverlust 9.1 Thermischer Kontaktwiderstand mit der endlichen Pulsdauer 	56 58
10. Dreischichtmodell mit Wärmeverlust	59
11. Experimenteller Teil	62
11.1 Versuchsablaur	0Z
11.1.2 Restimmung der Pulsform	02
11,1.2 Desummung der Fulsionn	03
11.2 Beschreihung der Proben	03
11.3 Auswertungen von Materialien im adiabatischen Zustand ohne Pulseffekt	66
11.4 Auswertungen mit der Korrektur der endlichen Pulsdauer	70
11.5 Auswertungen mit Wärmeverlust	74
11.6 Bestimmung des thermischen Kontaktwiderstands	78
······································	
12. Diskussion	82
12.1 Die neue Korrektur für endliche Pulsdauer	82
12.2 Analyse der Wärmeverlust-Korrekturen	86
12.2.1 Ratiomethoden von Taylor, Degiovanni und Balageas	86
12.2.2 Cowan- und Moment-Methode	88
12.2.3 Das neue Iterationsverfahren für die Wärmeverlustkorrektur	89
12.3 Analyse des kombinierten Modells	90
12.3.1 Analyse des kombinierten Modells mit Korrektur für endliche	
Pulsdauer	90
12.3.2 Analyse des kombinierten Modells mit Wärmeverlustkorrektur	91
12.3.3 Analyse des kombinierten Modells unter adiabatischen Umständen	92
12. 4 Zweischichtmodell	93
12.4.1 Fehleranalyse beim Wärmeverlust	93
12.4.2 Fehleranalyse beim Effekt der endlichen Pulsdauer	94
12.4.3 Vergleich mit der Funktion von Indune et al (1980).	95
13. Anwendbarkeit der Laserflash-Methode	96
Zusammenfassung	97
	100
	100
Anhang 1 Temperaturanstiegsfunktion mit dem Effekt von exponentiellen Pulsen	100
Anhang 2. Temperaturanstiegsfunktion mit dem Effekt von Oreieckpulsen	101
Anhang 3. Temperaturfunktion mit dem Effekt von linear-exponentiellen Pulsen	
Anhang 4. Endliche Pulsbreite Korrektur für trapezförmige Pulse	
Anhang 5. Nichtlineare Parameterschätzung	111
Anhang 6. Neue Wärmeverlustkorrektur mit der exponentiellen Pulsform	114
Anhang 7. Zweischichtmodell mit Wärmeverlust	115
Anhang 8. Thermischer Kontaktwiderstand-Modell mit Wärmeverlust	120
Anhang 9. Dreischichtmodell mit Wärmeverlust	124
Die fehlenden Ableitungen in der Literatur	130
Anhang 10. Die adiabatische Temperaturanstiegsfunktion	130
Anhang 11. Herleitung der Azumi-Korrektur	132
Anhang 12. Die exponentielle und linear-exponentielle Pulsfunktion	134
Anhang 13. Cape-Lehman Modell für Wärmeverluste	135
Anhang 14. Modell von Watt für Wärmeverluste	140
Anhang 15. Unabhängigkeit der Momentfunktion von der Temperaturleitfähigkeit	143
Literatur	145

Mathematische Zeichen

А	Oberfläche der Stirnfläche des zylindrischen Probekörpers	(m²)
A(i)	Polynomkoeffizient von Degiovanni (Gl.2.3.12)	
A _i	Koeffizient für die i-te Schicht (Gl.8.4, Gl.9.4, Gl.10.4)	
B _i	Koeffizient für die i-te Schicht (Gl.8.4, 9.4, 10.4)	
Cp	spezifische Wärmekapazität	(J/kg K)
C _m	<i>m</i> -ter Koeffizient des Wärmeverlustes an der Stirnfläche (Gl.2.3.2)	
C _k	Glied des thermischen Kontaktwiderstandes (GI.2.5.8)	
D _i	i-ter Koeffizient des Wärmeverlustes am Umfang (Gl.2.3.2, 2.5.12))	
f(t)	Pulsfunktion	(W/m²)
g	Absorptionstiefe	(m)
h	Wärmeübergangskoeffizient	(W/m ² K)
hլ	Wärmeübergangskoeffizient der Stirnflächen	(W/m ² K)
h _{LF}	Wärmeübergangskoeffizient der vorderen Stirnflächen	(W/m ² K)
h _{LB}	Wärmeübergangskoeffizient der hinteren Stirnflächen	(W/m ² K)
h _R	Wärmeübergangskoeffizient der Mantelfläche	(W/m ² K)
H ₁	Biotzahl (am Mantel) (Gl.2.3.2)	
H ₂	Biotzahl (an der Stirnfläche) (Gl.2.3.2)	
H _{2F}	Biotzahl an der vorderen Stirnfläche	
H _{2B}	Biotzahl an der hinteren Stirnfläche	
Нj	Wärmekapazität der <i>i-</i> ten Schicht bezogen auf Längeneinheit (Gl.2.5.4)	(J/m ² K)
J _o	Bessel-Funktion nullten Grades	
J ₁	Bessel-Funktion ersten Grades	
k	Wärmeleitfähigkeit	(W/mK)

К	Verhältnis der thermophysikalischen Größen der Schichten (Gl.8.4, 9.4, 10.	4)
L	Probenlänge	(m)
L*	Verhältnis der Längen der Schichten	(m)
М	Moment der Anstiegsfunktion	
N()	Normfunktion (Gl.8.4, 9.4, 10.4)	(J/m ² K)
N	Anzahl der Meßpunkte	
p ₁ , p ₂ , p ₃	Koeffizienten zur Beschreibung des Laserpulses	
P ₀	Pulskoeffizient unabhängig von der Diffusionszeit	
Pn	Pulskoeffizient abhängig von der Diffusionszeit	
q ₀	Laserenergiedichte	(J/m ²)
q(t)	Laserenergiedichtefunktion	(J/m ²)
Q	Volumetrische Energieproduktion	(W/m ³)
r	radiale Koordinate	(m)
R	thermischer Kontaktwiderstand	(m²K/W)
R*	normierter thermischer Kontaktwiderstand	
R _s	Radius der Probe	(m)
t	Zeit	(s)
ť	normierte Zeit	
t _c	Diffusionszeit	(s)
t _g	Moment der Pulsfunktion (Gl.2.2.8)	
t _p	Zeit bis zum Erreichen des Laserpulsmaximums	(s)
t _{0.5}	Halbanstiegszeit	(s)
T(x,t)	Temperaturanstiegsfunktion	(K)
T* (x,t)	normierte Temperaturfunktion	
T _{max}	Gleichgewichtstemperatur oder maximale Temperatur	(K)

To	Temperatur der Umgebung	(K)
$T^{AD}(x,t)$	Temperaturanstiegsfunktion im adiabatischen Fall	(K)
T ^{FP} (x,t)	Temperaturanstiegsfunktion mit 'finite pulse' Effekt	(K)
$T^{HL}(x,t)$	Temperaturanstiegsfunktion mit Wärmeverlust	(K)
T ^{HL-FP} (x,t)	Temperaturanstiegsfunktion mit Wärmeverlust und Pulseffekt	(K)
V	Volumen der Probe	(m ³)
x	Koordinatenachse parallel zur Hauptachse der zylindrischen Probe	(m)
X _i	<i>i</i> -ter relative Schichtkoeffizient (Gl.2.5.4)	
У _і	gemessener, <i>i-</i> ter Temperaturanstiegswert	(Volt)

Griechische Symbole :

α	Temperaturleitfähigkeit	(m ² /s)
α^{AD}	Temperaturleitfähigkeit berechnet für adiabatischen Zustand	(m ² /s)
$\alpha^{\sf FP}$	Temperaturleitfähigkeit berechnet mit der Korrektur für endliche Pulsdauer	(m ² /s)
α^{HL}	Temperaturleitfähigkeit berechnet mit Wärmeverlustkorrektur	(m ² /s)
δ(t)	Dirac-Delta Funktion	(1/s)
δ	Parameter in GI.10.4	
σ	Stefan-Boltzmann'sche Konstante (5.669 10 ⁻⁶	³ W m ⁻² K ⁻⁴)
3	Emissivität	
γ	L/ ($\sqrt{\alpha}\sqrt{t_p}$) in GI.2.2.5	
γ	$\beta_n L_1 / L_3$ in Gl.10.4	
γ*	Verhältnis der Temperaturleitfähigkeiten der Schichten (Gl.2.5.8)	
η	L/(√α) in GI.2.2.5, 2.5.4, 2.5.12	
λ	Lösung der transzendenten Gleichung für den Wärmeverlust an der Mantelfi	äche
ρ	Dichte des Probenkörpers	(kg/m ³)
$(\rho C_p)^*$	Verhältnis der volumetrischen Wärmekapazitäten der Schichten (GI.2.5.8)	
ξ	Lösung der transzendenten Gleichung für den Wärmeverlust an der Stirnfläc	he
τ	Pulslänge	(s)
ω	Dimensionsloser Koeffizient der Temperaturanstiegsfunktion (GI.2.3.2)	
ω	Kreisfrequenz der Temperaturanstiegsfunktion (Gl.5.4)	(1/s)
ω _i	relative Diffusionszeit für Schichte (Gl.2.5.4, 2.5.12)	

Einleitung und Zielsetzung

Die Laserflash-Methode gilt seit der Einführung von Parker (Parker et.al., 1961) als eines der besten Verfahren zur Bestimmung der Temperaturleitfähigkeit. Ein Wärmeimpuls wird dem zylindrischen Probekörper in kurzer Zeit, gleichmäßig über die Stirnfläche zugeführt. Die Temperatur der Rückseite steigt, und ein Temperaturmaximum wird erreicht.

Die Zeit des Wärmetransports durch die Probe hängt normalerweise von der Temperaturleitfähigkeit und von der Länge der Probe ab. Diese Grundidee hat große Vorteile: die Meßgrößen, wie die Probenlänge, die Temperaturänderung und die Zeit können einfach und sehr genau bestimmt werden. Kenntnisse über absorbierte Energie und über absolute Temperaturänderungen sind nicht nötig.

Die technische Realisierung von Parker et. al wurde mit einer Halogenlampe als Wärmequelle und einem Thermoelement als Signaldetektor gelöst . Ein großer Fortschritt war später die Anwendung der Hochleistungslaser mit definierbaren und kurzen Pulslängen. An Stelle des Thermoelementes wird ein IR-Sensor eingesetzt, womit viele technische Probleme beseitigt sind, wie Anbringung des Thermoelements an der Probe mit guter thermischen Haftung, etc.

Zur Auswertung einer Messung bei adiabatischer Aufheizung der Probe wird die Zeit herangezogen, die nötig ist, um 50% der maximalen Temperaturänderung zu erhalten. Diese sogenannte Halbanstiegszeit ($t_{0.5}$) wurde am Anfang grafisch, d.h. manuell aus der Temperatur-Zeit Grafik ermittelt (Abb.1).

Abbildung 1. Adiabatischer Temperaturanstieg und Halbanstiegszeit

Die Temperaturleitfähigkeit ergibt sich aus:

 $\alpha = 0.138785 L^2 / t_{0.5}$,

wobei α die Temperaturleitfähigkeit, L die Probenlänge und t_{0.5} die Halbanstiegszeit ist.

Diese Lösung stammt aus der analytischen Temperaturanstiegsfunktion, die keinen Wärmeverlust der Probe und eine unendlich kurze Zeit des Wärmepulses voraussetzt.

In der Realität wird ein Teil der zugeführten Wärme durch Strahlung, Konvektion oder durch Wärmeableitung in die Umgebung der Probe abgeleitet. Dieser Effekt kann die gemessene Temperatur-Zeit Kurve sichtbar verzerren: nach dem Erreichen eines Maximums sinkt die Temperatur an der Rückseite der Probe. Zur Korrektur dieses Effekts sind aufgrund der analytischen Lösung (Cape und Lehman 1963, Watt 1966) mehrere Verfahren, vor allem Näherungslösungen, entwickelt worden (Cowan 1963, Clark-Taylor 1975, Degiovanni 1977 und 1985, Balageas 1982, etc.). Die Ergebnisse dieser Auswertemodelle können jedoch bei höheren oder geringen Wärmeverlusten ungenau sein. Ein Ziel dieser Arbeit ist es, eine neue allgemein gültige Methode für Wärmeverlusteffekte zu erarbeiten, die korrekte Ergebnisse auch unter extremen Umständen liefert. Durch Vergleich des gemessenen Temperaturverlaufes mit der theoretisch berechneten Temperaturanstiegskurve soll das Ergebnis kontrollierbar sein.

Bei den Messungen mit kurzen Anstiegszeiten wird der Temperaturanstieg vom zeitlichen Verlauf der Laserpulsintensität beeinflußt. Zur Ermittlung dieses Effekts wurde die Korrektur für die endliche Pulsdauer von mehreren Autoren in Form von Näherungslösungen erarbeitet (Larson-Koyama 1967, Taylor-Clark 1974, Azumi 1981, etc.). Die Form des Pulsintensitätsverlaufes wurde mit Schrittfunktion, exponentieller und dreieckförmiger Funktion modelliert.

Ein weiteres Ziel dieser Arbeit ist die Ermöglichung der Auswertung bei sehr kleinen Halbanstiegszeiten, wenn die Näherungslösungen nicht mehr anwendbar sind. Diese Lösung soll auch neue Pulsformen beschreiben können. Die Ergebnisse sollen mit der neuen Methode durch Darstellung des theoretischen Temperaturanstiegs kontrolliert werden. Zwei Probleme blieben noch offen. Erstens, das gleichzeitige Auftreten von Wärmeverlust und vom "Kurzzeiteffekt ". Zweitens, die Entscheidung, wann welche Korrektur anzuwenden ist.

Zum Hauptziel wird in dieser Arbeit die Erarbeitung einer neuen analytischen kombinierten Lösung gesetzt, die gleichzeitig über die Korrektur der endlichen Pulsdauer und des Wärmeverlustes verfügt. Diese Methode soll generell gültig sein und die Ergebnisse müssen durch Darstellung kontrolliert werden können.

Ein weiteres Thema dieser Arbeit ist die Anwendung der Laserflash-Methode für Mehrschichtwerkstoffe. Lee (1975) hat Modelle für die Bestimmung der Temperaturleitfähigkeit einer Schicht in Zwei- oder Drei-Schichtproben entwickelt. Inoune et al. (1986) haben sich mit dem thermischen Kontaktwiderstand zwischen zwei Schichten befaßt. In diesen Lösungen wurden jedoch die Wärmeverlusteffekte nicht berücksichtigt.

Die allgemein gültige Lösung für Zweischichtmaterialien ist das letzte Ziel dieser Arbeit. Mit integrierten Korrekturen für Wärmeverluste und für die endliche Pulsdauer soll die unbekannte Temperaturleitfähigkeit einer Schicht oder der thermische Kontaktwiderstand bei Sandwichproben bestimmt werden können.

1. Allgemeine Beschreibung der Laserflash-Methode

1.1 Messprinzip

In der Laser-Flash Methode wird ein zylinderförmiger Probenkörper an der vorderen Seite kurzzeitig und gleichmäßig über die Fläche vom Laser aufgeheizt und die Temperatur an der Rückseite gemessen. Aus diesem experimentell ermittelten Temperaturverlauf über die Zeit kann die Temperaturleitfähigkeit der Probe bestimmt werden (Parker et al., 1961) (Abb. 1).

Der Durchmesser der Probe beträgt 8-13 mm, die Dicke 1-5 mm. Eine Laserenergie zwischen 10J und 20J wird zur Aufheizung der Probe während der Messung um einige Grad benötigt. Die Pulsdauer beträgt im Allgemeinen 0.4-1 ms. Die Messung der Temperaturänderung erfolgt durch IR-Sensor (InSb, Si, Ge) oder durch Thermoelement (NiCr-Ni).

Eine zu hohe Erwärmung der Probe führt nicht nur zu einer nicht definierbaren Meßtemperatur, sondern sie kann eine Änderung in der Temperaturleitfähigkeit hervorrufen. Die allgemein verwendeten Sensortypen haben eine lineare Übertragungscharakteristik nur im Bereich kleiner

Temperaturänderungen (einige Grad).

Die Bestimmung der Temperaturleitfähigkeit kann bei verschiedenen Temperaturen durchgeführt werden (Abb.1.1).

Abbildung 1.1 Meßprinzip der Laserflash-Methode (Bräuer, Dusza, Schulz, 1992)

1.2 Allgemeines physikalisches Modell

Der an der vorderen Stirnfläche der zylindrischen Probe ankommende nicht fokussierte Laserstrahl wird bei nicht transparenten Körpern in einer dünnen Schicht absorbiert. Der zeitliche Verlauf der Temperatur innerhalb der Probe hängt danach von der Temperaturleitfähigkeit des Materials und von den eventuell aufgetretenen Wärmeableitungen, Strahlungs- und Konvektionswärmeverlust ab.

In erster Annäherung wird das Problem als Wärmetransport in einer ebenen Platte beschrieben. Die Temperaturfunktion T(x,t) beschriebt die Temperaturdifferenz zur Ausgangstemperatur. Ein isothermer Zustand des homogenen Mediums wird als Anfangsbedingung vorausgesetzt :

$$T(x,t) \equiv 0$$
 $t=0, 0 \le x \le L,$ (1.2.1)

wobei L die Dicke der Platte ist.

Die Absorption des Laserstrahls wird in einer vernachlässigbar kurzen Zeit und in einer dünnen Schicht, deren Dicke gegenüber L vernachlässigbar ist, beschrieben. Mathematisch gesehen kann dies als Randbedingung beschrieben werden :

$$-k \frac{\partial T}{\partial x} = f(t) = q_0 \delta (t=0) \qquad x=0 \qquad (1.2.2a)$$

wobei δ die Dirac-Funktion, k die Wärmeleitfähigkeit und q₀ die Laserleistungsdichte ist.

Eine andere Möglichkeit bietet die Anfangstemperaturverteilung in Form einer Sprungfunktion an :

$$T(x,t=0) = \begin{cases} q_0 / (c_p \rho g) & 0 < x < g \\ 0 & g \le x \le L \end{cases}$$
 (1.2.2b)

wobei g die Absorptionstiefe (g<<L), cp die spezifische Wärmekapazität, p die Dichte des Mediums ist.

Die Fourier'sche Gleichung folgender Form beschreibt den Wärmetransport in Richtung x beim eindimensionalen Fall :

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}.$$
(1.2.3)

wobei die Temperaturleitfähigkeit der Probe α definiert ist als

$$\alpha = \mathbf{k}/(\rho \mathbf{c}_{p}), \tag{1.2.4}$$

und k die Wärmeleitfähigkeit, ρ die Dichte und c_p die spezifische Wärmekapazität sind.

Bei der Lösung der Fourier'schen Gleichung für homogene und nichttransparente Proben werden grundsätzlich drei Spezialfälle unterschieden :

a. Im adiabatischen Zustand gibt es keinen Wärmeaustausch mit der Umgebung :

$$k \frac{\partial T}{\partial x} = 0$$
 x=0, L. (1.2.5)

 b. Wenn die Transportzeit (L²/α) vergleichbar mit der Pulsdauer ist, spielt der konkrete Pulsintensitätsverlauf eine Rolle in der Temperatur-Zeit Historie der Probe.
 Bei diesem Effekt der endlichen Pulsdauer wird die Dirac-Delta-Funktion in Gl.1.2.2a durch die aktuelle Pulsintenitätsfunktion f(t) ersetzt :

$$-k \frac{\partial T}{\partial x} = f(t)$$
 x=0 (1.2.6)

c. Bei Wärmeverlusten sind die Randbedingungen :

$$k \frac{\partial T}{\partial x} = h T$$
 x=0
- $k \frac{\partial T}{\partial x} = h T$ x=L (1.2.7)

wobei h der Wärmeübergangskoeffizient ist.

Die zylindrische Form der Probe wird in der Fourier-Gleichung berücksichtigt :

$$\frac{\partial T(\mathbf{x},\mathbf{r},\mathbf{t})}{\partial \mathbf{t}} = \alpha \left(\frac{\partial^2 T(\mathbf{x},\mathbf{r},\mathbf{t})}{\partial \mathbf{x}^2} + \frac{\partial^2 T(\mathbf{x},\mathbf{r},\mathbf{t})}{\partial \mathbf{r}^2} + \frac{\partial T(\mathbf{x},\mathbf{r},\mathbf{t})}{\mathbf{r} \partial \mathbf{r}} \right) , \qquad (1.2.8)$$

wobei r die radiale Koordinate ist und die x-Richtung parallel zur Hauptachse des Zylinders liegt. Der Wärmeverlust am Umfang (der Radius der Probe ist R_s) wird wie folgt beschrieben :

$$-k \frac{\partial T}{\partial r} = h T$$
 r=R_s (1.2.7)

Die wichtigsten Spezialfälle werden nun zusammengefaßt.

a. Adiabatischer Fall

Falls

- die Pulsdauer des Laserstrahls gegenüber der Halbanstiegszeit vernachlässigbar kurz
 - ist ($\tau < 0.02 t_{0.5}$),
- die Temperaturverteilung innerhalb der Probe am Anfang homogen ist,
- der Laserpuls gleichmäßig an der ganzen Vorderseite der Probe absorbiert wird,
- die Probe homogen ist,
- es keinen Wärmeaustausch mit der Umgebung gibt,

handelt es sich um einen adiabatischen Wärmetransport in der Probe, der mathematisch eindimensional anzusehen ist.

Abbildung 1.2.1 Schematischer Temperaturanstieg bei adiabatischer Aufheizung

Nach dem Erreichen des Temperaturgleichgewichts bleibt die Temperatur an der Rückseite der Probe konstant (Abb.1.2.1).

b. Fall der endlichen Pulsdauer

Ist die Halbanstiegszeit kleiner als das 50-fache der Pulsdauer, ist der Einfluß der Pulsform auf den Temperaturverlauf nicht vernachlässigbar (Abb.1.2.2). Die Korrektur der endlichen Pulsdauer ermittelt den Temperaturanstieg unter adiabatischen Umständen mit gegebener Pulsform und -Dauer.

Abbildung 1.2.2 Temperaturanstieg beim Einfluß der endlichen Pulsdauer

c. Wärmeaustausch mit der Umgebung

Die zugeführte Energie erhöht die Temperatur der Probe. Durch Strahlung, Gaskonvektion oder Wärmeableitung kann ein nicht vernachlässigbarer Teil dieser Wärme über die Oberfläche abgeleitet werden, d.h. ein Kühlungsprozeß tritt gleichzeitig auf. In solchen Fällen wird die Temperatur der Rückseite nach dem Erreichen des Maximums sinken (Abb.1.2.3).

Das eindimensionale Wärmetransportmodell ist nicht mehr gültig, da die Mantelfläche der Probe als Kontaktfläche zur Umgebung in Betracht gezogen werden muß.

Abbildung 1.2.3 Temperaturanstieg bei Wärmeverlust

d. Transparente, teiltransparente Proben

Der Laserstrahl wird nicht oder nur teilweise absorbiert. Die Wärmestrahlung an der Rückseite der Probe stammt teilweise aus dem Inneren der Probe, d.h. die Weglänge des konduktiven Wärmetransports ist nicht definiert.

Durch Beschichtung der vorderen und der hinteren Seite der Probe mit gut absorbierendem Material, wie Graphit, wird gewährleistet, daß der Laserstrahl absorbiert wird und die Wärmestrahlung nur von der Rückseite stammt.

e. "Non-uniform heating" (ungleichmäßige Energiezufuhr)

Die nicht gleichmäßige Aufheizung der Vorderseite der Probe führt zu einem nicht definierbaren dreidimensionalen Wärmetransport. Das kann durch falsch justierten Laser, durch eine inhomogen reflektierende Oberfläche, durch örtlich schlecht haftende Beschichtung oder durch Inhomogenitäten in der Probe hervorgerufen wird. Die Art des Meßsignals ändert sich durch die Verlangsamung des Temperaturanstieges. Das Signal driftet oft kontinuierlich, d.h. kein Maximum kann bestimmt werden. Die Temperaturleitfähigkeit kann in solchen Fällen nicht bestimmt werden.

2. Kenntnisstand

In diesem Kapitel werden die wichtigsten mathematisch-physikalischen Modelle aus der Literatur -mit möglichst unveränderten mathematischen Symbolen,- zusammengefaßt.

2.1 Adiabatischer Fall : Das Parker-Modell

Im Parker-Modell wird die Wärmequelle als Sprungfunktion in der Anfangstemperaturverteilung beschrieben.

Die Fourier-Gleichung gilt für den eindimensionalen Wärmetransport:

$$\frac{\partial T}{\partial t} = \alpha \ \frac{\partial^2 T}{\partial x^2}, \qquad \qquad 0 \le x \le L \qquad (2.1.1)$$

wobei L die Dicke der Platte ist.

Die Randbedingungen sind :

$$k \frac{\partial T}{\partial x} = 0,$$
 x=0, x=L (2.1.2)

Die Anfangstemperatur wird durch eine Sprungfunktion der Temperaturverteilung wie folgt beschrieben:

$$T (x,t=0) = \begin{cases} q_0 / (\rho c_p g) & 0 < x < g \\ 0 & g < x \le L, \end{cases}$$
(2.1.3)

wobei q_0 die Laserenergiedichte ist, c_p die spezifische Wärmekapazität, ρ die Dichte der Probe ist und g die Absorptionstiefe des Laserstrahls ist (g<<L).

Die Temperaturanstiegsfunktion an der Rückseite lautet (Parker et al., 1961) (Anhang 10) :

$$T^{AD}(x=L,t) = q_0 / (\rho c_p L) \left(1 + 2 \sum_{n=1}^{\infty} (-1)^n \exp(-\frac{n^2 \pi^2 \alpha t}{L^2}) \right).$$
(2.1.4a)

Die Gleichgewichtstemperatur läßt sich wie folgt ausdrücken :

$$T_{max} = q_0 A/(\rho c_p V) = q_0 /(\rho c_p L),$$

wobei A die Oberfläche der vorderen Seite der Probe, V das Volumen ist,

Durch Normierung mit der Gleichgewichtstemperatur entfallen die thermische Kapazität der Probe und die zugeführte Energie :

$$T^{*}(x=L,t) = T^{AD}(x=L,t)/T_{max} = 1 + 2\sum_{n=1}^{\infty} (-1)^{n} \exp(-\frac{n^{2} \pi^{2} \alpha t}{L^{2}}), \qquad (2.1.4)$$

und dies ermöglicht die Verwendung der relativen Temperaturänderung als Funktion der Zeit.

Wenn die Temperatur die Hälfte der maximalen Temperaturänderung erreicht (Abb. 1.2.1), läßt sich die Gleichung 2.1.4b wie folgt vereinfachen :

$$T^{AD}(x=L, t=t_{0.5})/T_{max} = 0.5 = 0.36503 \pi^2 \alpha t_{0.5} / L^2,$$
 (2.1.5a)

wenn t_{0.5} die Halbanstiegszeit ist.

Für die Temperaturleitfähigkeit gilt :

$$\alpha = \frac{L^2 / t_{0.5}}{2 * 0.36503 \pi^2} = 0.138785 L^2 / t_{0.5}.$$
 (2.1.5b)

Allgemein kann die Temperaturleitfähigkeit auch bei 10%, 20%..90% Temperaturanstiegen berechnet werden :

$$\alpha_{\beta} = \text{KONST}_{\beta} L^2 / t_{\beta}$$
(2.1.6)

wobei β =10%..90% (Temperaturanstieg), t_{β} die entsprechende Anstiegszeit ist und die Konstanten in Tabelle 2.1 zusammengefasst sind.

β	10%	20%	30%	40%	50%	60%	70%	80%	90%
(Anstieg in %)									
KONST	0.06611	0.08425	0.10121	0.11896	0.13878	0.16223	0.19187	0.23319	0.30352

Tabelle 2.1

Konstanten zur Berechnung der Temperaturleitfähigkeit im adiabatischen Zustand (siehe GI.2.1.6)

Systematisch fallende α-Werte mit den Anstiegszeiten werden durch "non-uniform heating" hervorgerufen (B.Schulz, pers.Mitteilung). Durch dreidimensionale Wärmeströme innerhalb der Probe wird der Temperaturanstieg bei größeren Anstiegszeiten wahrscheinlich stärker -im Vergleich zum adiabatischen Fall,- verlangsamt.

Steigen die α -Werte mit den Anstiegszeiten systematisch und fällt die Temperatur nach dem Maximum, weist das auf das Auftreten von Wärmeverlusten hin (siehe Kap.2.3 und Abb.6.1).

2.1.1 Bestimmung der Temperaturleitfähigkeit mit der Anwendung des Parker-Modells

Als erstes wird der maximale Wert des Temperaturanstiegs gesucht, um den gesamten

Temperaturverlauf damit auf 100% normieren zu können. Die vor dem Laserschuß gemessene

Temperatur wird als 0% Anstieg definiert. Die 10%..90% Anstiegswerte zwischen dem Signalmaximum und Signalminimum werden berechnet.

Jene Zeit wird als Anstiegszeit t_p ermittelt, bei der das Meßsignal den Temperaturanstieg T_p erreicht. Häufig wird ein angepaßtes Polynom in der Umgebung von t_p -statt der gemessenen Werte - verwendet.

2.2 Korrektur für die endliche Pulsdauer

Zur Berechnung und Korrektur des Effekts der endlichen Pulsdauer werden Kenntnisse über Pulsdauer und Pulsform benötigt. Der zeitliche Verlauf der Pulsintensität wird als Pulsfunktion definiert.

Cowan (1963) rechnete mit der Sprungfunktion, Larson und Koyama (1967) leiteten eine theoretische Temperaturanstiegsfunktion für exponentielle Pulsform ab, Clark und Taylor (1975) gaben eine Näherungslösung für dreieckförmige Pulsfunktion an. Ein allgemein nützliches Näherungsverfahren für beliebige Pulsformen wurde von Azumi-Takahashi (1981) entwickelt.

2.2.1 Larson-Koyama-Modell

Larson und Koyama (1967) lösten die Fourier-Gleichung mit der Randbedingung, die den Laserpuls als einen Wärmefluß an der vorderen Seite beschreibt. Die Pulsfunktion ist:

$$f(t)=t/t_p^2 \exp(-t/t_p),$$
 (2.2.1)

wobei tp die Zeit des Pulsmaximums und q0 die Laserenergiedichte ist.

Die Fourier-Gleichung und die Randbedingungen sind :

$$\frac{\partial T}{\partial t} = \alpha \quad \frac{\partial^2 T}{\partial x^2}, \qquad (2.2.2)$$

$$-k\frac{\partial T}{\partial x} = t/t_p^2 \exp(-t/t_p) \qquad x=0. \qquad (2.2.3)$$

$$-k \frac{\partial T}{\partial x} = 0 \qquad x = L \qquad (2.2.4)$$

Die Lösung wurde mit Hilfe der Laplace-Transformation und mit der Anwendung des Residuen-Satzes gefunden :

$$T^{*}(x=L,t) = 1 + 2 \gamma^{4} \sum_{\substack{n=1 \\ \gamma \neq \gamma}}^{\infty} (-1)^{n} \frac{\left(-e^{-n \frac{2}{\pi^{2}}t/\eta^{2}}\right)}{(-n^{2}\pi^{2}+\gamma^{2})^{2}} - \gamma e^{-t/t_{p}} / \sin(\gamma) (1 + \gamma \cot(\gamma) + 2 t/t_{p}), \qquad (2.2.5)$$

wobei $\eta = L/(\sqrt{\alpha})$ und $\gamma = \eta/\sqrt{t_p}$.

2.2.2 Azumi-Methode

Eine der besten Näherungsmethoden für die Pulskorrektur stammt von Azumi und Takahashi,1981. Der Effekt des Pulses läßt sich als Faltung der adiabatischen Anstiegsfunktion und der Pulsfunktion ausdrücken :

$$T^{FP}(t) = \int_{t'=0}^{t} f(t') T^{AD}(t-t') dt', \qquad (2.2.6)$$

wobei f(t) die Pulsfunktion, T^{AD}(t) die adiabatische Temperaturanstiegsfunktion ist (GI.2.1.4) . Nach der Linearisierung des zeitabhängigen Gliedes in GI.2.1.4 (exp(x) ≈1+x) ergibt sich, daß der 'finite pulse' Effekt sich als Anstiegszeitreduktion beschreiben läßt und sonst die adiabatischen Zusammenhänge gelten (Anhang 11) :

$$\alpha = 0.138785 \ L^2 / (t_{0.5} - t_g), \qquad (2.2.7)$$

wobei tg die Reduktion der Anstiegszeiten mit dem Moment der Laserpulsfunktion ist:

$$t_g = \frac{\int_{\tau}^{\tau} f(t) t dt}{\int_{\tau}^{\tau} f(t) dt},$$
(2.2.8)
$$\int_{\tau}^{\tau} f(t) dt$$

f(t) die Laserpulsfunktion (von beliebiger Form) ist, und τ die Pulsdauer ist .

Auf diese Art kann die Temperaturleitfähigkeit zu jeder Anstiegszeit berechnet werden; die Zeitverschiebung bleibt unverändert.

Die Methode ist allgemein anwendbar und ist bis zu kleinen Halbanstiegszeiten ($t_{0.5} \ge 5 \tau$) genau.

2.3 Wärmeverlust-Modelle

Cape und Lehman (1963) lösten die Differentialgleichung im Zylinderkoordinatensystem, mit Wärmeverlust an beiden Stirnflächen und am Umfang. Watt (1966) erweiterte dieses Modell für eine ebene Platte, mit unterschiedlichen Wärmeübergangskoeffizienten an beiden Endflächen.

Cowan (1963) fand eine Näherungsformel aus dieser Lösung für die Kühlphase der Temperaturfunktion, während Clark und Taylor (1975), sowie Degiovanni (1976) die Anstiegsphase untersuchten. Degiovanni (1984) gab eine Lösung unter Einbeziehung der Momente des Temperaturanstiegs an.

2.3.1 Cape-Lehman-Lösung

Cape und Lehman (1963) entwickelten eine zweidimensionale Lösung im zylindrischen Koordinatensystem. In dieser Modellierung sind x (parallel mit der Zylinderachse) und r (radial) die Koordinaten.

Die Fourier-Gleichung und die Randbedingungen sind :

$$\frac{\partial T(x,r,t)}{\partial t} = \alpha \left(\frac{\partial^2 T(x,r,t)}{\partial x^2} + \frac{\partial^2 T(x,r,t)}{\partial r^2} + \frac{\partial T(x,r,t)}{r \partial r} \right) + (\alpha / k) Q(x,r,t) \delta(t=0), \quad (2.3.1a)$$

$$k \frac{\partial T(x,r,t)}{\partial x} = h_L T(x,r,t) \qquad x = 0 \qquad (2.3.1b)$$

$$-k \frac{\partial T(x,r,t)}{\partial x} = h_{L} T(x,r,t) \qquad x = L \qquad (2.3.1c)$$

$$-k \frac{\partial T(x,r,t)}{\partial r} = h_R T(x,r,t) \qquad r=R_s. \qquad (2.3.1d)$$

Die Lösung lautet (Anhang 13) :

$$T^{HL}(x=L,r=0,t) = \sum_{m=1}^{\infty} C_m \xi_m \sum_{i=1}^{\infty} D_i (H_1) \exp(\omega_{im} t/t_c), \qquad (2.3.2)$$

wobei

Q(x,r,t) die Energieproduktion in einer Volumeneinheit und in einer Zeiteinheit,

$$\begin{split} &\delta(t) \text{ die Dirac-Delta-Funktion ist,} \\ &C_m = (-1)^m 2\xi_m (\xi_m^2 + 2H_2 + H_2^2)^{-1}, \\ & \xi_m \text{ die Lösung von } (\xi_m^2 - H_2^2) \tan \xi_m = 2 \xi_m H_2 \text{ ist,} \\ &D_i(H_1) = [2 H_1 / (H_1^2 + \lambda_i^2)] 1 / J_0(\lambda_i), \\ &\omega_{im} = -(L/\pi)^2 (\xi_m^2 / L^2 + \lambda_i^2 / R_s^2), \\ &H_1 \text{ die Biotzahl am Umfang und } \\ &H_1 = h_R R_s / k, \\ &R_s \text{ der Radius der Probe, } \\ &L \text{ die Länge der Probe,} \\ &H_2 \text{ die Biotzahl an den Stirnflächen und } \\ &H_2 = h_L L / k, \\ &\lambda_i \text{ die Lösung der transzendenten Gleichung von } H_1 J_0(\lambda_i) = \lambda_i J_1(\lambda_i), \\ &J_0 \text{ und } J_1 \text{ die Bessel'schen Funktionen nullten bzw.ersten Grades sind.} \end{split}$$

2.3.2 Lösung von Watt

Watt (1966) entwickelte die Lösung von Cape und Lehman mit unterschiedlichen Wärmeübergangskoeffizienten an den Stirnflächen weiter.

$$\frac{\partial T(x,t)}{\partial t} = \alpha \left(\frac{\partial^2 T(x,t)}{\partial x^2} + \frac{\partial^2 T(x,r,t)}{\partial r^2} + \frac{\partial T(x,r,t)}{r \ \partial r} \right) + (\alpha / k) Q(x,r,t) \, \delta(t=0), \qquad (2.3.3a)$$

$$k \frac{\partial T(x,t)}{\partial x} = h_{LF}T(x,r,t) \qquad x = 0$$
(2.3.3b)

$$-k \frac{\partial T(x,t)}{\partial x} = h_{LB}T(x,r,t) \qquad x = L \qquad (2.3.3c)$$

$$-k \frac{\partial T(x,t)}{\partial r} = h_R T(x,r,t) \qquad r = R_s. \qquad (2.3.3d)$$

(2.3.4)

Die Lösung lautet (Anhang 14) :

$$T^{HL} (x=L,r=0,t) = \sum_{n=1}^{\infty} \frac{(H_{1}^{2} + \xi_{n}^{2})2\xi_{n} (H_{2F} \sin (\xi_{n}) + \xi_{n} \cos (\xi_{n}))}{L \left[(\xi_{n}^{2} + H_{2F}^{2}) ((H_{2B}^{2} + \xi_{n}^{2}) + H_{2B} + H_{2F} (H_{2B}^{2} + \xi_{n}^{2})) \right]} x$$

$$x \sum_{m=1}^{\infty} \frac{2H_{1}}{J_{0}(\lambda_{m}) (H_{1}^{2} + \lambda_{m}^{2})} e^{-\alpha t \left[(\xi_{n}/L)^{2} + (\lambda_{m}/R_{s})^{2} \right]},$$

wobei H_1 (= $h_R R_s / k$) die Biotzahl am Umfang,

H_{2F} (=h_{LF} L / k) an der vorderen Seite,

H_{2B} (=h_{LB} L / k) an der Rückseite der Probe ist, und

 ξ_m die Lösung von $~({\xi_m}^2$ - $H_{2F}H_{2B}$) tan ξ_m = $~\xi_m(H_{2B}$ + H_{2F}) ist,

 λ_i die Lösung der transzendenten Gleichung von $H_1 J_0(\lambda_i) = \lambda_i J_1(\lambda_i)$ ist.

2.3.3 Cowan-Verfahren

Cowan (1963) verwendete die Lösung von Cape und Lehman (1963). Der Temperaturverlauf nach dem Maximum wurde untersucht. Das Verhältnis der normierten Temperatur bei der fünffachen (bzw. bei der zehnfachen) Halbanstiegszeit und der Temperatur bei der Halbanstiegszeit hängt nur von den Biotzahlen ab und ist von der Temperaturleitfähigkeit der Probe unabhängig (Anhang 15).

Das folgende Polynom beschreibt die Änderung der Temperaturleitfähigkeit gegenüber dem adiabatischen Wert als Funktion des Anstiegszeitverhältnisses (d.h. der Biotzahlen indirekt):

$$0.1388 \frac{\alpha^{HL}}{\alpha^{AD}} = t_{0.5} \frac{\alpha^{HL}}{L^2} = \sum_{i=0}^{7} A(i) y^i$$
(2.3.5)

wobei y der Temperaturanstieg bei der fünffachen bzw. zehnfachen Halbanstiegszeit dividiert durch ½ (d.h. durch den Temperaturanstieg bei t_{0.5}) ist. A (i) sind Konstanten (Tab. 2.3.1).

Fünffache Halbanstiegszeit	Zehnfache Halbanstiegszeit
A[0] = -0.1037162	A[0] =0.054825246
A[1] =1.23904	A[1] =0.16697761
A[2] =-3.974433	A[2] =-0.28603437
A[3] =6.888738	A[3] =0.28356337
A[4] =-6.804883	A[4] =-0.13403286
A[5] =3.856663	A[5] =0.024077586
A[6] =-1.167799	A[6] =0
A[7] =0.1465332	A[7] =0.

Tabelle 2.3.1 Die Konstanten der Cowan-Lösung

Bei der Festlegung des Polynoms wurde die Biotzahl zwischen 0 und 10 geändert. Dies ermöglicht die Auswertung auch bei sehr hohen Wärmeverlusten (d.h. Biotzahl \geq 1).

2.3.4 Taylor-Methode (Ratio Methode)

Clark und Taylor (1975) haben erkannt, daß das Verhältnis zweier Anstiegszeiten unabhängig von der Temperaturleitfähigkeit ist und nur von den Wärmeverlustparametern abhängt (Anhang 15). Mit Hilfe der Lösung von Cape und Lehman (Gl.2.3.2) wurde jeweils eine polynomiale Funktion für verschiedene Anstiegszeitverhältnisse (80% zu 20%, 70% zu 30% und 80% zu 40%) bei geänderten Biotzahlen zwischen 0 und 1 berechnet. Die Temperaturleitfähigkeit wird aus der adiabatischen Temperaturleitfähigkeit und aus diesem Polynom bestimmt :

$$\alpha_{0.80-0.20} = L^{2} / t_{0.5} [-0.263682723 + 0.2512261271 (\frac{t_{0.8}}{t_{0.2}}) - (2.3.6)$$

$$0.1387255191 (\frac{t_{0.8}}{t_{0.2}})^{2}]$$

$$\alpha_{0.70-0.30} = L^{2} / t_{0.5} [-0.6960500478 + 0.7885785102 \frac{t_{0.7}}{t_{0.3}} - (0.1838365197 (\frac{t_{0.7}}{t_{0.3}})^{2}]$$

$$\alpha_{0.80-0.40} = L^{2} / t_{0.5} [-0.530753851 + 0.6134767532 (\frac{t_{0.8}}{t_{0.4}}) - (0.1387255191 (\frac{t_{0.8}}{t_{0.4}})^{2}]$$

2.3.5 Degiovanni-Verfahren (Ratio Methode)

Degiovanni (1977) bestimmte durch ein ähnliches Verfahren wie von Clark und Taylor eine Regression für die Anstiegszeiten bei 33%, 50%, 66% Anstieg.

$$\alpha_{0.33-0.83} = L^2 / t_{5/6} \left[1.0315 \left(\frac{t_{1/3}}{t_{5/6}} \right)^2 - 1.8451 \left(\frac{t_{1/3}}{t_{5/6}} \right) + 0.8498 \right]$$

$$\alpha_{0.50-0.83} = L^2 / t_{5/6} \left[0.6148 \left(\frac{t_{1/2}}{t_{5/6}} \right)^2 - 1.6382 \left(\frac{t_{1/2}}{t_{5/6}} \right) + 0.968 \right]$$

$$\alpha_{0.66-0.83} = L^2 / t_{5/6} \left[7.1793 \left(\frac{t_{2/3}}{t_{5/6}} \right)^2 - 11.9554 \left(\frac{t_{2/3}}{t_{5/6}} \right) + 3.1365 \right]$$

$$(2.3.9)$$

2.3.6 Balageas-Ratiomethode

Balageas (1982) modifizierte das Polynom von Degiovanni (Gl.2.3.10).

(2.3.10)

$$\begin{aligned} \alpha_{0.33 \cdot 0.83} &= L^2 / t_{5/6} \left[\begin{array}{c} 0.885 \\ 0.50 \cdot 0.83 \end{array} \right]^2 - 1.708 \left[\frac{t_{1/3}}{t_{5/6}} \right]^2 + 0.818 \left] \\ \alpha_{0.50 \cdot 0.83} &= L^2 / t_{5/6} \left[\begin{array}{c} 0.558 \\ 0.558 \end{array} \right] \left[\frac{t_{1/2}}{t_{5/6}} \right]^2 - 1.581 \left[\frac{t_{1/2}}{t_{5/6}} \right] + 0.954 \right] \\ \alpha_{0.66 \cdot 0.83} &= L^2 / t_{5/6} \left[\begin{array}{c} -1.222 \\ \frac{t_{2/3}}{t_{5/6}} \right] + 1.131 \right] \end{aligned}$$

2.3.7 Moment-Methode von Degiovanni

Degiovanni (1985) untersuchte das Verhältnis zweier Momente der Temperaturanstiegsfunktion (vom -1 und 0-ten Grad). In Anhang 15 wird kurz darauf hingewiesen, daß die -1-te Momentfunktion auch nur von den Wärmeverlustparametern abhängt.

Folgender Zusammenhang wurde für die Temperaturleitfähigkeit gefunden:

$$\alpha^{HL} = L^{2} \frac{\begin{array}{c} 0.8 \\ P\left[\int \frac{T(t)}{t} dt\right]}{0.8} = L^{2} \frac{P\left[M_{-1}\right]}{M_{0}}, \quad (2.3.11)$$

$$\int T(t) dt$$

$$t=0.1$$

wobei T(t) die Temperaturanstiegsfunktion ist.

P ist ein Polynom mit folgenden Konstanten:

$$P[M_{-1}] = \sum_{i=0}^{4} A(i) (M_{-1} - 0.5486)^{i}$$
(2.3.12)

und A[0] = 0.08548

A[1] = 0.3144 A[2] = -0.001467 A[3] = -1.4388 A[4] = -2.3038.

2.5 Bestimmung der Temperaturleitfähigkeit von Schichtverbundwerkstoffen

Die Laser-Flash-Methode ist grundsätzlich für homogene Werkstoffe geeignet. Analytische Lösungen wurden jedoch auch für Verbundwerkstoffe entwickelt, die aus parallel liegenden Schichten bestehen und die Schichten senkrecht auf den Laserstrahl angeordnet sind .

Hier werden die analytischen Lösungen für Zwei- und Dreischichtsysteme kurz beschrieben.

2.5.1 Bestimmung des Temperaturanstiegs bei Materialien aus zwei Schichten

Lee (1975) entwickelte ein Zweischichtmodell mit der Korrektur für die endliche Pulsdauer . Die Fourier-Gleichung für die zwei Schichten ist :

$$\frac{\partial T_1}{\partial t} = \alpha_1 \frac{\partial^2 T_1}{\partial x^2}, \qquad (2.5.1a)$$

$$\frac{\partial T_2}{\partial t} = \alpha_2 \ \frac{\partial^2 T_2}{\partial x^2} . \tag{2.5.1b}$$

Ist die Pulsform exponentiell, gelten folgende Randbedingungen:

$$-k_1 \frac{\partial T_1}{\partial x} = (1 / t_p^2) t \exp(-t/t_p) \qquad x = -L_1, \qquad (2.5.2a)$$

$$k_1 \frac{\partial T_1}{\partial x} = k_2 \frac{\partial T_2}{\partial x}$$
 x=0, (2.5.2b)

$$T_1 = T_2$$
 x=0, (2.5.2c)

$$-k_2 \frac{\partial T_2}{\partial x} = 0 \qquad x = L_2 , \qquad (2.5.2d)$$

Die Anfangsbedingungen sind :

$$T_1 = T_2 = 0$$
 t=0. (2.5.3)

Die Lösung lautet:

$$T_{2} (x=L_{2}, t)/T_{max} = 1 + 2 \sum_{k=1}^{\infty} \frac{(\omega_{1} X_{1} + \omega_{2} X_{2}) P(\gamma_{k}, \eta_{2}, t)}{(\omega_{1} X_{1} \cos(\omega_{1} \gamma_{k}) + \omega_{2} X_{2} \cos(\omega_{2} \gamma_{k}))}, \qquad (2.5.4)$$

wobei

$$P(\gamma,\eta,t) = \frac{e^{-\frac{\gamma^{2} t}{\eta^{2}}} - e^{-\frac{t}{t_{p}}} [1 + \frac{t}{t_{p}} [1 - \frac{t}{t_{p}} (1 - \frac{\gamma^{2} t_{p}}{\eta^{2}})}{(\frac{\gamma^{2} t_{p}}{\eta^{2}} - 1)^{2}},$$

und γ_k die Eigenwerte von

$$X_1 \sin(\omega_1 \gamma_k) + X_2 \sin(\omega_2 \gamma_k) = 0$$

sind.

Lee gab außer der exponentiellen Pulsform noch Lösungen für die Sprungfunktion und für den dreieckförmigen Puls an.

Die Temperaturleitfähigkeit einer Schicht kann z.B. mit Hilfe der "Regula falsi"-Methode bestimmt werden.

2.5.2 Temperaturanstieg mit thermischem Kontaktwiderstand

Inoune et al. (1985) entwickelten ein Zweischichtmodell mit thermischem Kontaktwiderstand zwischen den Schichten.

$$\frac{\partial T_1}{\partial t} = \alpha_1 \, \frac{\partial^2 T_1}{\partial x^2} \,, \tag{2.5.5a}$$

$$\frac{\partial T_2}{\partial t} = \alpha_2 \quad \frac{\partial^2 T_2}{\partial x^2} \,. \tag{2.5.5b}$$

Die Randbedingungen sind:

$$-k_1 \frac{\partial T_1}{\partial x} = q_0 \ \delta(t=0) \qquad \qquad x=-L_1 , \qquad (2.5.6a)$$

$$k_1 \frac{\partial T_1}{\partial x} = 1/R (T_1 - T_2)$$
 x=0, (2.5.6b)

$$k_1 \frac{\partial T_1}{\partial x} = k_2 \frac{\partial T_2}{\partial x}$$
 (2.5.6c)

$$-k_2 \frac{\partial T_2}{\partial x} = 0 \qquad x = L_2. \qquad (2.5.6d)$$

Die Anfangsbediengungen sind:

$$T_1 = T_2 = 0$$
 t=0. (2.5.7)

Die Lösung ergibt sich zu:

$$T_{2}(x=L, t)/T_{max} = 1 + 4 \gamma * [(\rho Cp)^{*} L^{*} + 1] \sum_{k=1}^{\infty} \frac{exp(-\beta_{k}^{2} \gamma *^{2} t^{*})}{C_{k}}, \qquad (2.5.8)$$

wobei

$$\gamma^{*}{}^{2} = \alpha_{2} / \alpha_{1} , \qquad \qquad L^{*} = L_{2} / L_{1} ,$$

$$t^{*} = \alpha_{2} t / L_{2}{}^{2} , \qquad \qquad (\rho C_{p})^{*} = \rho_{1} c_{p1} / (\rho_{2} c_{p2}) ,$$

R der thermische Kontaktwiderstand ist, R*= ρ_2 c_{p2} $\alpha_2\,$ R / L_2 ,

$$\begin{split} \mathbf{C}_{k} &= (L^{*} + \gamma) \left[(\rho \, \mathbf{C}_{p})^{*} \, \gamma + 1 \right] \cos(\beta_{k} \, (L^{*} + \gamma)) + (L^{*} - \gamma) \\ &= \left[(\rho \, \mathbf{C}_{p})^{*} \, \gamma - 1 \right] \cos(\beta_{k} \, (L^{*} - \gamma)) - (\rho \, \mathbf{C}_{p})^{*} \, \gamma^{2} \, \mathbf{R}^{*} \left\{ \beta_{k} \left[(L^{*} + \gamma) \sin(\beta_{k} \, (L^{*} + \gamma)) - (L^{*} - \gamma) \sin(\beta_{k} \, (L^{*} - \gamma)) \right] - \left[\cos(\beta_{k} \, (L^{*} + \gamma)) - \cos(\beta_{k} \, (L^{*} - \gamma)) \right] \right\}, \end{split}$$

$$T_{max} = q_0 / (\rho_1 c_{p_1} L_1 + \rho_2 c_{p_2} L_2),$$

und β_k Eigenwerte von

$$[(\rho C_{\rho})^{*} \gamma + 1] \sin (\beta_{k} (L^{*} + \gamma)) + [(\rho C_{\rho})^{*} \gamma - 1] \sin(\beta_{k} (L^{*} - \gamma)) + \beta_{k} (\rho C_{\rho})^{*} \gamma^{2} R^{*} [\cos (\beta_{k} (L^{*} + \gamma)) \cos(\beta_{k} (L^{*} - \gamma))] = 0$$

sind.

Der thermische Kontaktwiderstand kann z.B. mit Hilfe der "Regula falsi"-Methode bei einer Messung bestimmt werden.

2.5.3 Bestimmung des Temperaturanstiegs bei Materialien aus drei Schichten

Im Dreischichtenmodell (Lee, 1967) gilt die Fourier-Gleichung für alle drei Schichten:

$$\frac{\partial T_1}{\partial t} = \alpha_1 \frac{\partial^2 T_1}{\partial x^2}, \qquad (2.5.9a)$$

$$\frac{\partial T_2}{\partial t} = \alpha_2 \ \frac{\partial^2 T_2}{\partial x^2} . \tag{2.5.9b}$$

$$\frac{\partial T_3}{\partial t} = \alpha_3 \ \frac{\partial^2 T_3}{\partial x^2}$$
(2.5.9c)

Ist die Pulsform exponentiell, gelten folgende Randbedingungen:

$$-k_1 \frac{\partial T_1}{\partial x} = (1/t_p^2) t \exp(-t/t_p)$$
 x=-L₁, (2.5.10a)

$$k_1 \frac{\partial T_1}{\partial x} = k_2 \frac{\partial T_2}{\partial x}$$
 x=0, (2.5.10b)

$$T_1 = T_2$$
 x=0, (2.5.10c)

$$k_2 \frac{\partial T_2}{\partial x} = k_3 \frac{\partial T_3}{\partial x} \qquad \qquad x = L_2 , \qquad (2.5.10d)$$

$$T_2 = T_3$$
 $x=L_2$, (2.5.10e)

$$-k_3 \frac{\partial T_3}{\partial x} = 0$$
 x=L₃. (2.5.10f)

Die Anfangsbedingungen sind :

$$T_1 = T_2 = T_3 = 0$$
 t=0. (2.5.11)

Die Lösung lautet:

k=1

$$T_{3}(x=L,t)/T_{max} = 1+$$

$$2\sum_{w_{1}}^{\infty} \frac{(\omega_{1} X_{1}+\omega_{2} X_{2}+\omega_{3} X_{3}+\omega_{4} X_{4})P(\gamma_{k}, \eta_{3}, t)}{(\omega_{1} X_{1} \cos(\omega_{1} \gamma_{k})+\omega_{2} X_{2} \cos(\omega_{2} \gamma_{k})+\omega_{3} X_{3} \cos(\omega_{3} \gamma_{k})+\omega_{4} X_{4} \cos(\omega_{4} \gamma_{k})},$$
(2.5.12)

 $\begin{aligned} \text{wobei} \quad P(\gamma,\eta,t) &= \frac{e^{-\frac{\gamma^2 t}{\eta^2}} - e^{\frac{t}{t_p}} \left[1 + \frac{t}{t_p} \left[1 - \frac{t}{t_p} \left(1 - \frac{\gamma^2 t_p}{\eta^2}\right)\right]}{\left(\frac{\gamma^2 t_p}{\eta^2} - 1\right)^2} \right], \\ \eta_1^2 &= L_1^{-2} / \alpha_1, \qquad j = 1,2,3 \\ H_1 &= \rho_1 c_{\rho_1} L_1, \qquad J_{1/2} = H_1 / H_1, \\ \eta_{1/2} &= \eta_1 / \eta_1, \\ \chi_1 &= H_{1/3} \eta_{3/1} + H_{1/2} \eta_{2/1} + H_{2/3} \eta_{3/2} + 1, \\ \chi_2 &= H_{1/3} \eta_{3/1} - H_{1/2} \eta_{2/1} + H_{2/3} \eta_{3/2} - 1, \\ \chi_3 &= H_{1/3} \eta_{3/1} - H_{1/2} \eta_{2/1} + H_{2/3} \eta_{3/2} - 1, \\ \chi_4 &= H_{1/3} \eta_{3/1} + H_{1/2} \eta_{2/1} + H_{2/3} \eta_{3/2} - 1, \\ \omega_1 &= \eta_{3/1} + \eta_{3/2} + 1, \qquad \omega_2 = \eta_{3/1} + \eta_{3/2} - 1, \\ \omega_3 &= \eta_{3/1} - \eta_{3/2} + 1, \qquad \omega_4 = \eta_{3/1} - \eta_{3/2} - 1, \end{aligned}$

und γ_k die Lösung von:

 $X_1 \cos(\omega_1 \gamma_k) + X_2 \cos(\omega_2 \gamma_k) + X_3 \cos(\omega_3 \gamma_k) + X_4 \cos(\omega_4 \gamma_k) = 0$

ist.
3. Moderne Ausführung von Laserflash-Apparaturen

Prinzipiell wird bei Laserflash-Apparaturen zwischen horizontalen (z.B. Fa.Theta/USA) und vertikalen Anordnungen der optischen Achse unterschieden.

Im Rahmen eines gemeinsamen Projektes des Kernforschungszentrums Karlsruhe und der Netzsch-Gerätebau GmbH wurde zwischen 1990 und 1993 die Meßeinrichtung-LFA427- mit der vertikalen Anordnung - entwickelt und gebaut (Bräuer, Dusza, Schulz 1992). Nachfolgend werden die wesentlichen Merkmale am Beispiel der LFA427 (LFA=Laser Flash Apparatus) aufgezeigt.

3.1 Aufbau der LFA427

Die Aufbauschema ist in Abb.3.1 zu sehen.

Abb.3.1 Aufbau der LFA427 (Bräuer, Dusza, Schulz, 1992)

Die vertikale Ausrichtung der Konstruktion ermöglicht ein einfaches Einlegen der Probe.

Der geschlossene Raum für den Laserstrahl garantiert die Lasersicherheitsklasse 1 (Tragen einer Sicherheitsbrille ist nicht erforderlich).

Die wichtigsten Teile der LFA427 sind:

a. Laser

Typ : Nd-GGG (Gallium-Gadolinium-Neodymium)

Wellenlänge : 1064 nm (IR)

Leistung : 20 KW

Pulslänge (einstellbar zwischen 0.2 und 2 ms): 0.8 ms

b. Probenhalterung

Grafit/Al₂O₃-Rohr mit drei Auflagespitzen (zur Reduzierung der Wärmeabfuhr)

c. Ofen

Temperatur : zwischen RT und 2000 °C

Atmosphäre : Luft (bis 1600°C), Vakuum, Inertgas

d. Sensor

Sensormaterial : InSb (Kühlung mit Flüssigstickstoff)

Schutzlinse : Ge (gegen Laserstrahl)

Verstärker, Irisblende zur Einstellung des optimalen Signals

e. Computer

Meßkarte : DAP1200/6 für Datenerfassung, Hardwaresteuerung

Software : Automatische/Manuelle Meßsteuerung und Auswertung.

Die Apparatur wurde erfolgreich in der Praxis eingesetzt. Vergleichmessungen an POCO-Graphit (NBS-Standard), Bio-Al₂O₃ (Abb.3.2) und an Electrolyt Eisen wurden durchgeführt (Bräuer, Dusza, Schulz, 1992)

Messung an Bio- Al₂O₃ mit der LFA427.

Die Vergleichdaten stammen aus dem Thermophysikalischen Labor, IMF I, KfK

4. Neues iteratives Verfahren für den adiabatischen Fall

Die unbekannte Temperaturleitfähigkeit kann direkt, mit Hilfe eines Parameterschätzungsverfahrens berechnet werden, ohne die Anstiegszeiten bestimmen zu müssen. Das Signalmaximum und das Signalminimum müssen jedoch bekannt sein.

Der Temperaturleitfähigkeitswert α wird gesucht, bei dem die Abweichung zwischen dem berechneten

Wert des theoretischen adiabatischen Modells T(t_i)=1+2 $\sum_{n=1}^{\infty}$ (-1)ⁿexp(- $\frac{n^2\pi^2 \alpha t_i}{L^2}$)

und dem Meßwert (ti, yi*) am kleinsten ist:

$$\sum_{i=N_0}^{N} \left[y^*_{i} - (1+2\sum_{n=1}^{\infty} (-1)^n \exp(-\frac{n^2 \pi^2 \alpha t_i}{L^2})) \right]^2 = \min , \qquad (4.1)$$

wobei die yi* die normierten Messwerte:

 $y_i^* = (y_i - y_{min})/(y_{max} - y_{min}),$

yi die gemessenen Temperaturanstiegswerte bei ti Messzeiten sind und

y_{min} =Minimumwert

y_{max} =Maximumwert,

und N die Anzahl der Meßdaten ist.

Da der Laserstrahl bei den Messungen als Anfangspeak oft detektiert wird, ist es praktisch, die Iteration bei höheren Datenindex ($N_0>1$) anzufangen, wobei der zum Index N_0 gehörige Anstieg ca.10% des maximalen Anstieges erreichen soll ($y_{N_0}^* \cong 0.1$). Als Startwert für die Temperaturleitfähigkeit wird das Ergebnis des Parker-Modells (GI.2.1.5b) empfohlen.

Bei der Verwendung dieses Iterationsverfahrens steht eine größere Anzahl von Daten zur Verfügung, als bei der Berechnung der Anstiegszeiten .

5. Die Berücksichtigung der endlichen Dauer des Laserpulses

Unter einer Pulsfunktion f(t) versteht man den Intensitätsverlauf des Laserstrahls. Für das Integral der Pulsfunktion gilt :

$$\int_{0}^{\infty} f(t)dt = q_0, \tag{5.1}$$

wobei q₀ die Energiedichte des Laserstrahls ist.

Die Messung kann z.B. mit Hilfe einer Laserdiode durchgeführt werden. Eine gemessene Pulsfunktion ist in Abb.5.1 dargestellt (a.u.=beliebige Einheit).

Abbildung 5.1 Gemessener Laserpulsintensitätsverlauf

Die zwei wichtigsten Parameter sind:

die Pulsdauer die Zeit des Maximums.

5.1 Pulsfunktionen

Mehrere mathematische Modelle stehen für die Beschreibung der Pulsform zur Verfügung. Die Pulsfunktion wird in dieser Arbeit durch zwei (Pulsdauer und die Zeit des Maximums), oder durch maximal drei Parameter charakterisiert.

a. Sägezahnfunktion (Abb.5.2)

Diese Funktion kann nur für eine grobe Modellierung verwendet werden.

b. Dreieckfunktion (Abb.5.3)

$$f(t) = \begin{cases} p_1 t & 0 < t \le \tau b \\ p_2 t + p_3 & \tau b < t \le \tau \\ 0 & \tau < t \end{cases}$$
(5.2b)

wobei 0 < b < 1, d.h. b τ die zum Pulsmaximum gehörige Zeit ist,

$$p_1 = 2/(\tau^2 b),$$
 $p_2 = -2/(\tau^2 (1-b)),$ $p_3 = 2/(\tau(1-b)).$

Abbildung 5.3 Dreieckpulsfunktion

c. Exponentielle Funktion (Abb.5.4a und Abb.5.4b)

$$f(t) = \frac{t}{t_p^2} \exp(-t/t_p)$$
 (5.2c)

wobei t_p die zum Pulsmaximum gehörige Zeit ist (Anhang 12).

Abbildung 5.4a Exponentielle Pulsfunktion

Zur Beschreibung der Pulsfunktion gibt es nur einen Parameter: t_p . Die Pulsdauer für die exponentielle Funktion beträgt dann ca. $8.33t_p$, oder umgekehrt, die Position des Maximums ist auf $t_p \approx 0.12 \tau$. vorgeschrieben. Wenn man zum Beispiel eine exponentielle Pulsform mit der Position des Intensitätsmaximums um 30% der Gesamtpulsdauer benützen möchte, wäre GI.5.2.c völlig ungeeignet dafür, denn die exponentielle Funktion würde bei der Pulsdauer noch einen hochen Wert betragen (f(τ) $\geq 0.3 f(t_p)$ - statt f(τ) ≈ 0) (Abb 5.4b) !

Exponentielle Pulsfunktionen zu verschiedenen Pulsmaximumspositionen bei der gleichen Pulsdauer

d. Linear-exponentielle Funktion (Abb.5.5)

Die linear-exponentielle Funktion fällt nach dem linearen Anstieg exponentiell ab, so daß sie bei t=τ nur 1% des maximalen Intensitätswertes beträgt.

$$f(t) = \begin{cases} p_1 t & 0 < t \le \tau b \\ p_2 \exp(p_3 t) & \tau b < t \le \tau \\ 0 & \tau < t \end{cases}$$
(5.2d)

wobei
$$p_3 = LN (0.01)/(\tau - \tau b)$$

 $p_1 = p_3/(p_3 \tau^2 b^2/2 + \tau b [exp(\tau (1-b)p_3) - 1])$
 $p_2 = p_1 \tau b exp(-\tau bp_3)$

Abbildung 5.5 Linear-exponentielle Pulsfunktion

e. Trapezfunktion (Abb.5.6)

wobei t_1 , t_2 die Anfangs-, bzw. Endzeit der konstanten Phase der Trapezfunktion sind, $p_1 = 2/((\tau + t_2 - t_1)t_1),$ $p_2 = -p_1 t_1 / (\tau - t_2).$

 $p_1 = 2r_1(\tau + \tau_2 - \tau_1)r_1,$ $p_2 = p_1(\tau)r_1(\tau + \tau_2)$ $p_3 = -p_2 \tau,$ $\tau = Pulsdauer.$

Abbildung 5.6 Trapez-Pulsfunktion

5.2 Neue analytische Lösungen für die endliche Pulsdauer

Ein Temperaturanstieg, der von der Pulsform beeinflußt wird, kann als Faltung der Laserpulsfunktion und der Temperaturanstiegsfunktion ohne Pulseffekt beschrieben werden:

$$T^{FP}(t) = \int f(t') T^{AD}(t-t') dt' , \qquad (5.3)$$

wobei f die Pulsfunktion, T^{AD} der Temperaturanstieg (adiabatisch, bei unendlich kleiner Pulsdauer) ist. Das Integral wurde mit verschiedenen Pulsfunktionen (GI.5.2) durchgeführt. (Anhang1-4).

Diese Lösungen haben die allgemeine Form von

$$T^{FP}(x=L,t) = P_0(t) + 2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega t) P(\omega,t).$$
(5.4)

wobei $\omega = -\frac{n^2 \pi^2 \alpha}{L^2}$, P₀(t) und P(ω ,t) Pulskoeffizienten sind.

Im Einzelnen gilt für die $P_0(t)$ und $P(\omega,t)$ Pulskoeffizienten:

5.2.1 Exponentielle Pulsform

(Anhang 1)

$$P_{0}(t) = 1 - \exp(-t/t_{p})(1 + t/t_{p})$$

$$P(\omega, t) = (1 + t_{p} \omega)^{-2} \left[1 - \exp(-(\omega + 1/t_{p})t) \left[(\omega + 1/t_{p})t + 1 \right] \right]$$
(5.5)

Numerische Prüfungen ergaben, daß die Funktion von Larson und Koyama (1967) (S.21) von abweichender mathematischer Form mit der jetztiger Lösung übereinstimmenden Temperaturanstieg zu den gleichen Fourierzahlen ($F_0 = \frac{\alpha}{L^2}^t$) und zum gleichen Pulsparameter liefert.

5.2.2 Dreieckförmiger Puls

(Anhang 2) $P_0(t) = p_1/2 t^2$ t< τb $P(\omega,t) = p_1/\omega^2 [1 - exp(-\omega t)(\omega t + 1)]$ (5.6a) $P_0(t) = p_1/2 (\tau b)^2 + p_2 t^2/2 + p_3 t - p_2 (\tau b)^2/2 - p_3 \tau b$ $\tau b \leq t \leq \tau$ $P(\omega,t) = p_1 / \omega^2 [1 - exp(-\omega \tau b)(\omega \tau b + 1)] +$ (5.6b) $(p_2/\omega^2)[exp(-\omega \tau b)(\omega \tau b+1)-exp(-\omega t)(\omega t+1)]$ $p_3 / \omega [exp(-\omega t) - exp(-\omega \tau b)]$ $P_0(t) = p_1/2(\tau b)^2 + p_2 \tau^2/2 + p_3 \tau - p_2(\tau b)^2/2 - p_3 \tau b$ t> τ $P(\omega,t) = p_1 / \omega^2 [1 - exp(-\omega \tau b)(\omega \tau b + 1)] +$ (5.6c) $(p_2/\omega^2) [exp(-\omega \tau b)(\omega \tau b+1)-exp(-\omega \tau)(\omega \tau+1)]$ $p_3 / \omega [exp(-\omega \tau) - exp(-\omega \tau b)]$

5.2.3 Linear-exponentielle Pulsform

(Anhang 3)

0< t< τb	$P_0(t) = p_1/2 t^2$	
	$P(\omega,t) = p_1 / \omega^2 [1 - \exp(-\omega t)(\omega t + 1)]$	(5.7a)
$\tau b \leq t \leq \tau$	$P_0(t) = p_1/2 (\tau b)^2 + p_2/p_3 [exp(p_3 t) - exp(p_3 \tau b)]$	
	$P(\omega,t) = p_1 / \omega^2 [1 - exp(-\omega \tau b) (\omega \tau b + 1)] +$	(5.7b)
	$p_2/(-\omega + p_3) [exp((-\omega + p_3)t) - exp((-\omega + p_3)\tau b)]$	
t> τ	$P_0(t) = p_1/2 (\tau b)^2 + p_2/p_3 [exp(p_3\tau) - exp(p_3\tau b)]$	
	$P(ω,t) = p_1 / ω^2 [1 - exp(-ωτb) (ωτb+1)] +$	(5.7c)
	$p_2/(-\omega+p_3) [exp((-\omega+p_3)\tau) - exp((-\omega+p_3)\tau b)]$	
5.2.4 T	rapezförmiger Puls	
(Anhang 4)		
t< t ₁	$P_0(t) = p_1/2 t^2$	(5.8a)
	$P(\omega,t) = p_1 / \omega^2 \ [1 - \exp(-\omega t)(\omega \ t + 1)]$	
$t_1 \leq t \leq t_2$	$P_0(t) = p_1 t_1^2/2 + p_1 t_1(t-t_1)$	
	$P(\omega,t) = p_1 / \omega^2 [1 - exp(-\omega t_1)(\omega t_1 + 1)] +$	(5.8b)
	t ₁ p ₁ /ω [exp(-ω t ₁) -exp(-ω t)]	
t₂ < t≤ τ	$P_0(t) = p_1 t_1^2/2 + p_1 t_1 (t_2 - t_1) + p_2/2 (t^2 - t_2^2) + p_3 (t - t_2)$	
	$P(\omega,t) = p_1 / \omega^2 [1 - exp(-\omega t_1)(\omega t_1 + 1)] +$	(5.8c)
	t ₁ p ₁ /ω [exp(-ω t ₁) -exp(-ω t ₂)]+	
	$p_2/\omega^2 [exp(-\omega t_2)(\omega t_2+1) - exp(-\omega t)(\omega t+1)]+$	
	p ₃ /ω [exp(-ω t ₂) -exp(-ω t)]	
t> τ	$P_0(t) = p_1 t_1^2/2 + p_1 t_1 (t_2 - t_1) + p_2/2 (\tau^2 - t_2^2) + p_3 (\tau - t_2)$	
	$P(\omega,t) = p_1 / \omega^2 [1 - exp(-\omega t_1)(\omega t_1 + 1)] +$	(5.8d)
	$t_1 p_1 / \omega [exp(-\omega t_1) - exp(-\omega t_2)] +$	
	p ₂ /ω ² [exp(-ω t ₂)(ω t ₂ +1) - exp(-ω τ)(ω τ+1)] +	
	p ₃ /ω [exp(-ω t ₂) -exp(-ω τ)]	

5.3 Neue Korrektur für die Pulsdauer mit gemessener Pulsform

Wenn die Form des verwendeten Laserpulses von der in dieser Arbeit beschriebenen mathematischen Pulsfunktionen stark abweicht oder wenn die Halbanstiegszeit kleiner ist als die Pulsdauer, kann die konkret gemessene Laserpulsintensitätsverteilung zur Ermittlung der Temperaturleitfähigkeit verwendet werden.

Die Laserpulsintensitätswerte $f_i(t_i)$ müssen normiert sein, so daß das Integral der Intensitätsverteilung gleich 1 ist :

$$t(f_N/2 + \sum_{j=2}^{N-1} f_i) = 1,$$
 (5.9)

falls $t = t_i - t_{i-1}$, i=1..N, und f_1 (t=0)=0.

Der theoretische Temperaturanstieg mit der gemessenen Pulsform lautet:

Die unbekannte Temperaturleitfähigkeit kann bei den Messungen nach dem Prinzip der kleinsten Quadrate ermittelt werden.

5.4 Ermittlung der Temperaturleitfähigkeit bei einer Messung

Die Aufgabe ist, die Temperaturleitfähigkeit zu finden, bei der der theoretische Temperaturanstieg (GI.5.5, 5.6, 5.7, 5.8 und GI.5.10) die kleinste Abweichung zu den gemessenen Wertepaaren aufweist. Diese Parameterbestimmung erfolgt mit den Methoden "Regula falsi", Simplex oder mit der nichtlinearen Parameterschätzung (Anhang 5).

Bei der nichtlinearen Parameterschätzung wird als Ausgangswert zur Iteration z.B. der adiabatische Temperaturleitfähigkeitswert genommen.

Es genügt, daß die Iteration nur auf einige Punkte der Anstiegsphase eingeschränkt wird.

Es ist leicht einzusehen, daß die theoretischen Funktionen T^{FP} (t) für die Temperaturleitfähigkeit streng monoton wachsend sind. Damit ist die Eindeutigkeit der Parameterschätzung bewiesen.

Die neuen theoretischen Anstiegsmodelle können als Funktion der Zeit dargestellt werden . Durch die Anpassung der Modellkurve zu den Meßdaten kann das Ergebnis numerisch oder optisch kontrolliert werden.

6. Wärmeverlusteffekt

Konvektion, Wärmeleitung oder Wärmestrahlung können ein Teil der zugeführten Energie ableiten. Die Temperatur an der Rückseite der Probe sinkt nach dem Erreichen des Maximums. Die Wärmeabfuhr erfolgt an den Stirnflächen und am Umfang der Probe.

Mathematisch gesehen gelten als Randbedingungen:

$$k \frac{\partial T(x,r)}{\partial x} = h T(x,r) + \sigma \varepsilon \left(\left(T_0 + T(x,r) \right)^4 - T_0^4 \right) \qquad x = 0 , \qquad (6.1a)$$

$$-k \frac{\partial T(x,r)}{\partial x} = h T(x,r) + \sigma \varepsilon \left(\left(T_0 + T(x,r) \right)^4 - T_0^4 \right) \qquad x = L \quad , \tag{6.1b}$$

$$-k \frac{\partial T(x,r)}{\partial r} = h T(x,r) + \sigma \varepsilon \left(\left(T_0 + (T(x,r))^4 - T_0^4 \right) - r = R_s \right), \quad (6.2)$$

wobei σ die Stefan-Boltzmann sche Konstante, ϵ die Emissivität "T₀ die Umgebungstemperatur "R_s der Radius, r radiale Koordinate und h der konvektive Wärmeübergangskoeffizient ist.

Falls die Temperatur(änderung) T(x,r) klein gegenüber der Umgebungstemperatur T₀ ist, gilt:

$$\sigma \varepsilon ((T_0 + T(x,r))^4 - T_0^4) \approx 4 \sigma \varepsilon ((T_0 + T(x,r))^3 T(x,r)$$

$$\approx 4 \sigma \varepsilon T_0^3 T(x,r) = h T(x,r)$$
(6.3)

Die Biotzahl ist definiert als dimensionsloser Parameter des Wärmeverlustes:

$$Bi = Lh / k$$
, (6.4)

wobei L die Länge der Probe, h der Wärmeübergangskoeffizient und k die Wärmeleitfähigkeit ist. Aus Gl.6.4 und Gl.6.3 ergibt sich, daß die Biotzahl bei Strahlungsverlust nur bei schlecht leitenden Proben den Wert 1 überschreiten kann:

$$Bi = L 4 \sigma \varepsilon T_0^3 / k, \qquad (6.5)$$

z.B L=1 10⁻³ m, σ = 5.67 10⁻⁸ W/m²K⁴, k =0.17..0.03 W/mK (Isolatoren (Özisik(1980)) und ϵ =0.4..0.9 hat die Biotzahl bei 1000 K Werte zwischen 0.5 und 3 .

In Abb.6.1 wird die Abweichung der Anstiegszeiten bei zunehmenden Biotzahlen gegenüber dem adiabatischen Wert dargestellt. Die charakteristischen Anstiegszeiten reduzieren sich stark mit steigendem Wärmeverlust.

6.1 Neues Verfahren: nichtlineare Parameterschätzung mit der Cape-Lehman-Lösung

Das Modell von Cape und Lehman (GI.2.3.2) enthält drei unbekannte Parameter: die Temperaturleitfähigkeit, die Biotzahl an der Stirnfläche und die Biotzahl am Umfang. Durch das Verfahren der nichtlinearen Parameterschätzung werden die optimalen Parameter gefunden, bei denen die Abweichung zwischen der theoretischen Funktion und der Messung am kleinsten ist. Als Ausgangswert für die Temperaturleitfähigkeit kann das adiabatische Ergebnis eingesetzt werden, während die Biotzahlen zunächst 0 betragen. Zur Iteration werden Punkte aus der Anstiegsphase und aus der Kühlphase der Messung verwendet.

Die theoretische Modellfunktion mit den 'best fit' Parametern kann dargestellt werden (Beispiel Abb.6.2).

Abbildung 6.2 Wärmeverlustmodellkurve bei einer Messung an POCO-Graphit

6.2 Die Methode der nichtlinearen Parameterschätzung

Es sind Modellparameter zu ermitteln, mit denen ein theoretisches Modell zu den Meßdaten nach Prinzip der kleinsten Fehlerquadrate passt. In diesem Kapitel wird die Methode der nichtlinearen Parameterschätzung mit drei unbekannten Parametern erläutert.

Der s-te Parameter β (s=1,2,3) hat den Anfangswert β_s^0 und wird im *k*-ten Schritt (auf Basis von Beck and Arnold, 1977):

$$\beta_{\mathbf{S}}^{\mathbf{k}} = \beta_{\mathbf{S}}^{\mathbf{k}-1} + \frac{\mathsf{DET}\,\mathbf{A}_{\mathbf{S}}}{\mathsf{DET}\,\mathbf{X}}$$
(6.18)

wobei $X_{i,j} = X_i X_{j}$

$$x_{i} = \sum_{n=1}^{N} \frac{\partial T(\beta_{i}, t_{n})}{\partial \beta_{i}},$$

N die Anzahl der Messpunkte,

T (β_i , t_n) der Wert der theoretischen Funktion mit dem Parameter β_i ist (Zeit ist t_n).

$$\frac{\partial T(\beta_i, t_n)}{\partial \beta_i} \approx \frac{T(1.01\beta_i, t_n) - T(\beta_j, t_n)}{0.01 \beta_i})$$

der *s*-te Spalte der Matrix *A*_S Matrix lautet:

$$A[s,i] = \sum_{n=1}^{N} (y(t_n) - T(\beta_s, t_n))X_j)$$

und die anderen Spalten von A identisch mit den Spalten der Matrix X sind,

 $y(t_n)$ der gemessene Temperaturanstieg ist (Zeit : t_n).

Die theoretische Kurve (T (β_i , t)) und die Meßdaten müssen auf das Maximum normiert sein. In dieser Arbeit werden 31 Messpunkte aus der Anstiegs- und aus der Kühlphase genommen. Die Anfangswerte für die Biotzahlen sind 0 und der Ausgangwert für die Temperaturleitfähigkeit ist das Ergebnis der Cowan-Methode. Bei jedem Iterationsschritt ist die maximal erlaubte Parameteränderung auf 20% des aktuellen Wertes begrenzt.

Dieses numerische Verfahren unterscheidet sich von der Methode von Cezairliyan et al. (1994), weil es hier keine Begrenzung der Biotzahlen gibt und bei Cezairliyan die Parameterschätzung in zwei Schritten erfolgt: erst wird die Kühlphase und dann die Anstiegsphase in den Fittingprozess einbezogen.

7. Neues Verfahren mit dem kombinierten Modell

Das Ziel ist, eine analytische Lösung zu finden, die gleichzeitig die Korrektur der endlichen Pulsdauer und den Wärmeverlusteffekt enthält. Diese sogenannte kombinierte Funktion muß auch unter adiabatischen Umständen korrekte Ergebnisse liefern.

7.1 Die kombinierte Funktion

Das kombinierte Modell wurde aus der Cape-Lehmann-Lösung für Wärmeverluste durch Implementation der Pulsfunktionen entwickelt :

$$T^{HL-FP}(x=L,r=0,t) = \int_{t}^{t} f(t') T^{HL}(t-t') dt' .$$
(7.1a)

$$T^{HL-FP}(x=L,r=0,t) = \int_{t'=0}^{t} f(t') \sum_{m=1}^{\infty} C_m \xi_m \sum_{i=1}^{\infty} D_i (r,H_1) \exp(\omega_{im} (t-t')/t_c) dt')$$
(7.1b)

wobei f(t) die Pulsfunktion (GI.5.1) ist.

۷

Die gemeinsame Form des kombinierten Modells lautet:

$$T^{HL}(x=L,r=0,t) = \sum_{m=1}^{\infty} C_m \xi_m \sum_{i=1}^{\infty} D_i (H_1) exp(\omega_{im} t/t_c) P(\omega_{im}/t_c,t),$$
(7.2)
vobei $C_m = (-1)^m 2\xi_m (\xi_m^2 + 2H_2 + H_2^2)^{-1},$

 ξ_{m} die Lösung von $(\xi_{m}^{2} - H_{2}^{2})$ tan $\xi_{m} = 2 \xi_{m} H_{2}$ ist, $D_{i}(H_{1}) = [2 H_{1} / (H_{1}^{2} + \lambda_{i}^{2})] 1 / J_{0}(\lambda_{i}),$ $t_{c} = L^{2} / (\pi^{2} \alpha),$

 $\omega_{\rm im} = -(L/\pi)^2 (\xi_{\rm m}^2/L^2 + \lambda_{\rm i}^2/R_{\rm s}^2),$

 H_1 die Biotzahl am Umfang (= $h_R R_s / k$), R_s der Radius der Probe ist,

 H_2 die Biotzahl an den Stirnflächen (=h_L L / k) L die Länge,

k die Wärmeleitfähigkeit, α die Temperaturleitfähigkeit der Probe

 λ_i die Lösung der transzendenten Gleichung $H_1 \; J_0(\lambda_i) = \lambda_i \; J_1(\lambda_i)$,

 J_0 und J_1 die Bessel'schen Funktionen nullten bzw. ersten Grades sind.

Die $P_0(t)$ und $P(\omega,t)$ Pulskoeffizienten wurden bereits für den adiabatischen Fall (in Anhang 1..4) hergeleitet, die Zusammenfassung ist aus GI.5.5-5.8 zu entnehmen.

7.2 Das numerische Verfahren zur Anwendung der kombinierten Funktion

Die unbekannte Temperaturleitfähigkeit und die zwei Biotzahlen können aus der analytischen Funktion mit Hilfe der nichtlinearen Parameterschätzung bestimmt werden.

Bei diesem neuen Verfahren muß der Operator keine Entscheidung treffen, welche Korrektur durchzuführen ist. Ein anderer Vorteil der Methode besteht darin, daß die Lösung auch bei gleichzeitigem Auftreten von Wärmeverlusten und 'Finite Pulse' Effekten korrekt ermittelt werden kann.

7.3 Neue Wärmeverlustkorrektur mit gemessener Pulsform (Konvolution)

Wurde die Pulsfunktion gemessen, kann die Konvolution mit den diskreten Pulswerten (fj) durchgeführt werden :

$$T^{HL-FP}_{i} = \sum_{j=0}^{\infty} f_{j}^{*} \sum_{m=1}^{\infty} C_{m} \xi_{m} \sum_{n=1}^{\infty} D_{n} (H_{1}) \exp(\omega_{nm} t_{i,j} / t_{c}).$$
(7.3)

wobei

$$\begin{split} &C_m = (-1)^m \ 2\xi_m (\xi_m^2 + 2H_2 + H_2^2)^{-1} \ , \\ &\xi_m \ die \ Lösung \ von \ (\xi_m^2 - H_2^2) \ tan \ \xi_m = 2 \ \xi_m H_2 \ ist, \\ &D_n (H_1) = [2 \ H_1 / (H_1^2 + \lambda_n^2) \] \ 1 \ / \ J_0(\lambda_n), \\ &t_c = L^2 / (\pi^2 \ \alpha), \\ &\omega_{nm} = -(L/\pi)^2 \ (\xi_m^2 / L^2 + \lambda_n^2 / R_s^2) \ , \\ &H_1 \ die \ Biotzahl \ am \ Umfang \ (=h_R \ R_s \ / \ k), \\ &H_2 \ die \ Biotzahl \ am \ den \ Stirnflächen \ (=h_L \ L \ / \ k) \ und \\ &\lambda_n \ die \ Lösung \ der \ transzendenten \ Gleichung \ H_1 \ J_0(\lambda_n) = \lambda_n \ J_1(\lambda_n \) \ ist. \end{split}$$

Die Pulsmeßwerte müssen normiert werden :

$$t(f_N/2 + \sum_{j=2}^{N-1} f_j) = 1,$$
 (7.4)

wobei t die Zeit zwischen den Messwerten ist, N ist die Anzahl der Messpunkte und f₁(t=0)=0. Die unbekannte Temperaturleitfähigkeit und die zwei Biotzahlen werden durch die nichtlineare Parameterschätzung berechnet. Die angepaßte Modellösung kann grafisch dargestellt werden.

8. Zweischichtmodell mit Wärmeverlust

Die neue analytische Lösung für die Bestimmung der Temperaturleitfähigkeit einer Schicht in einer Sandwichprobe wird mit Wärmeverlustkorrektur hergeleitet.

Die wichtigsten Parameter und die geometrische Konfiguration des Modells sind Abb.8.1 zu entnehmen.

Abbildung 8.1 Aufbauschema des Zweischichtmodells

Die Fourier-Gleichung gilt für beide Schichte:

$$\frac{\partial T_1}{\partial t} = \alpha_1 \ \frac{\partial^2 T_1}{\partial x^2}, \qquad 0 < x < L_1 \qquad (8.1)$$

$$\frac{\partial T_2}{\partial t} = \alpha_2 \ \frac{\partial^2 T_2}{\partial x^2} \qquad L_1 < x < L_2.$$

Die Randbedingungen sind:

$$k_1 \frac{\partial T_1}{\partial x} = hT_1$$
 x=0, (8.2a)

$$k_1 \frac{\partial T_1}{\partial x} = k_2 \frac{\partial T_2}{\partial x} \qquad x = L_1, \qquad (8.2c)$$

$$-k_2 \frac{\partial T_2}{\partial x} = hT_2 \qquad x=L_2. \qquad (8.2d)$$

Die Anfangstemperatur ist:

$$T_1(x,t=0) = q_0/(\rho c_p g)$$
 0

wobei g<<L₁ und

$$T_1(x) = T_2(x) = 0$$
 $L_2 > x > g.$

Die Temperaturfunktion an der Rückseite lautet (Anhang 7):

$$T_{2} (L_{2}, t) = \left[\rho_{1}c_{p1}L_{1} + \rho_{2}c_{p2}(L_{2}-L_{1})\right]\sum_{n=1}^{\infty} \exp(-\alpha_{1}(\beta_{n}/L_{2})^{2}t)\left(A_{2n}\sin(\eta) + B_{2n}\cos(\eta)\right)\frac{1}{N(\beta_{n})} B_{1n},$$

wobei

c _p =spezifische Wärmeka	apazität	α =Temperaturleitfähigkeit
ρ =Dichte ,		L ₁ = Länge der ersten Schicht,
L ₂ -L ₁ die Länge der zwei	iten Schicht ist,	h = Wärmeübergangskoeffizient
$\eta = \frac{\beta_n \sqrt{\alpha_1}}{\sqrt{\alpha_2}},$	$\gamma = \frac{\beta_n}{L_2} L_1,$	
$K = \frac{k_1}{k_2} \frac{\sqrt{\alpha_2}}{\sqrt{\alpha_1}}$		
$H_1 = \frac{h_L}{k_1} L_2 ,$	$H_2 = \frac{h}{k_2} L_2 .$	
$A_{1n} = H_1$	$B_{1n} = \beta_n$	

 $\begin{array}{l} A_{2n}=\sin \left(L_{1}/L_{2} \eta\right) (\sin(\gamma) A_{1n}+\cos(\gamma) B_{1n} \right) & -\cos(L_{1}/L_{2} \eta) \left(-K\cos(\gamma) A_{1n}+K\sin(\gamma) B_{1n} \right) \\ B_{2n}=\sin \left(L_{1}/L_{2} \eta\right) (-K\cos(\gamma) A_{1n}+K\sin(\gamma) B_{1n} \right) + \cos(L_{1}/L_{2} \eta) (\sin(\gamma) A_{1n}+\cos(\gamma) B_{1n}) \\ \end{array}$

(8.3)

(8.4)

$$\begin{split} \mathsf{N}(\beta_{n}) = & \frac{\mathsf{k}_{1}}{\alpha_{1}} \Big[1/2 \ \mathsf{L}_{1}(\mathsf{A}_{1n}^{2} + \mathsf{B}_{1n}^{2}) + \frac{\mathsf{L}_{2}}{4 \beta_{n}} \sin(2\gamma) \left(-\mathsf{A}_{1n}^{2} + \mathsf{B}_{1n}^{2} \right) + \frac{\mathsf{L}_{2}}{\beta_{n}} \sin^{2}(\gamma) \ \mathsf{B}_{1n} \ \mathsf{A}_{1n} \Big] + \\ & \frac{\mathsf{k}_{2}}{\alpha_{2}} \Big[1/2 \ (\mathsf{L}_{2} - \mathsf{L}_{1}) \ [\mathsf{A}_{2n}^{2} + \mathsf{B}_{2n}^{2}] - \mathsf{A}_{2n}^{2} \frac{\mathsf{L}_{2}}{4 \beta_{n}} \sqrt{\alpha_{1}} \left(\sin(2\eta) - \sin(2\eta \ \mathsf{L}_{1}/\mathsf{L}_{2}) \right) \\ & + \mathsf{B}_{2n}^{2} \frac{\mathsf{L}_{2}}{4 \beta_{n}} \sqrt{\alpha_{1}} \left(\sin(2\eta) - \sin(2\eta \ \mathsf{L}_{1}/\mathsf{L}_{2}) \right) + \mathsf{A}_{2n} \ \mathsf{B}_{2n} \ \mathsf{L}_{2} \frac{\sqrt{\alpha_{2}}}{\beta_{n}} \sqrt{\alpha_{1}} \left(\sin^{2}(\eta) - \sin^{2}(\eta \ \mathsf{L}_{1}/\mathsf{L}_{2}) \right) \Big] \end{split}$$

und die Eigenwerte $\beta_{\textbf{n}}$ die Lösungen sind von:

 $\begin{aligned} & \sin \left(L_1 / L_2 \eta \right) \left[-\cos(\eta) \cos(\gamma) + K \sin(\gamma) \sin(\eta) \right] + \\ & \cos(L_1 / L_2 \eta) \left[\sin(\eta) \cos(\gamma) + K \sin(\gamma) \cos(\eta) \right] = 0. \end{aligned}$

Dieses Zweischichtmodell kann zur Bestimmung der Temperaturleitfähigkeit einer Schicht verwendet werden, wenn die sonstigen thermophysikalischen Daten beider Schichten zur Verfügung stehen. Die Modellanpassung erfolgt mit der nichtlinearen Parameterschätzung, wobei auch die zwei Biotzahlen bestimmt werden.

9. Thermischer Kontaktwiderstand mit Wärmeverlust

Die wichtigsten Parameter und die geometrische Konfiguration des Modells sind Abb.9.1 zu entnehmen.

Abbildung 9.1

Aufbauschema des Zweischichtmodells mit thermischem Kontaktwiderstand

Die Fourier-Gleichung gilt in beiden Schichten:

$$\frac{\partial T_1}{\partial t} = \alpha_1 \frac{\partial^2 T_1}{\partial x^2}, \qquad 0 < x < L_1 \qquad (9.1)$$

$$\frac{\partial T_2}{\partial t} = \alpha_2 \frac{\partial^2 T_2}{\partial x^2} \qquad L_1 < x < L_2 .$$

Die Randbedingungen sind:

$$k_1 \frac{\partial T_1}{\partial x} = hT_1$$
 (9.2a)

$$k_1 \frac{\partial T_1}{\partial x} = k_2 \frac{\partial T_2}{\partial x} \qquad \qquad x = L_1 , \qquad (9.2b)$$

$$k_1 \frac{\partial T_1}{\partial x} = 1/R (T_1 - T_2)$$
 x=L₁, (9.2c)

$$-k_2 \frac{\partial T_2}{\partial x} = h T_2 \qquad x=L_2. \qquad (9.2d)$$

Die Anfangstemperatur ist:

 $T_1(x) = q_0/(\rho c_p g)$ 0<x < g, (9.3)

wobei $g << L_1$ und

$$T_1(x) = T_2(x) = 0$$
 $L_2 > x > g.$

Die Temperaturfunktion an der Rückseite ist :

$$T_{2}(L_{2}, t) = 1 + \left[\rho_{1} c_{p1} L_{1} + \rho_{2} c_{p2} (L_{2} - L_{1}) \right] \sum_{n=1}^{\infty} \exp(-\alpha_{1} (\beta_{n}/L_{2})^{2} t) \left(A_{2n} \sin(\eta) + B_{2n} \cos(\eta) \right) \frac{1}{N(\beta_{n})} B_{1n}$$

(9.4)

wobei

c_p = spezifische Wärmekapazität α = die Temperaturleitfähigkeit, k = Wärmeleitfähigkeit, $\rho = \text{Dichte}$, L_1 = Länge der ersten Schicht, L_2 - L_1 = Länge der zweiten Schicht ist, h = Wärmeübergangskoeffizient, $H_1 = \frac{h}{k_1} L_2$ $H_2 = \frac{h}{k_2} L_2$ $X = \frac{\sqrt{\alpha_1}}{\sqrt{\alpha_2}},$ $RR = R k_1 / L_2$ $\gamma = \beta_n \frac{L_1}{L_2}$, $\eta = X \beta_n$ $K = \frac{k_1}{k_2} \frac{\sqrt{\alpha_2}}{\sqrt{\alpha_1}}$ R der thermische Kontaktwiderstand, $B_{1n} = \beta_n$ $A_{in} = H_1$ $A_{2n} = ((\cos(\gamma) \operatorname{RR} \beta_n + \sin(\gamma)) A_{1n} + (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n) B_{1n}) \sin(L_1/L_2 \eta) - (\cos(\gamma) - \sin(\gamma) - (\cos(\gamma) - \sin(\gamma) - (\cos(\gamma) - (\cos$ (-K $cos(\gamma) A_{1n}$ +K $sin(\gamma) B_{1n}) cos(L_1/L_2 \eta)$ $B_{2n} = \sin (L_1/L_2 \eta) (-K \cos(\gamma) A_{1n} + K \sin(\gamma) B_{1n}) +$ $\cos (L_1/L_2 \eta) ((\cos(\gamma) \operatorname{RR} \beta_n + \sin(\gamma))A_{1n} + (\cos(\gamma) - \sin(\gamma) \operatorname{RR} \beta_n)B_{1n})$ k. r

$$N (\beta_{n}) = \frac{K_{1}}{\alpha_{1}} \left[\frac{1}{2} L_{1} (A_{1n}^{2} + B_{1n}^{2}) + \frac{L_{2}}{4\beta_{n}} \sin(2\gamma) (-A_{1n}^{2} + B_{1n}^{2}) + \frac{L_{2}}{\beta_{n}} \sin^{2}(\gamma) B_{1n} A_{1n} \right] + \frac{K_{2}}{\alpha_{2}} \left[\frac{1}{2} (L_{2} - L_{1}) [A_{2n}^{2} + B_{2n}^{2}] - A_{2n}^{2} \frac{L_{2} \sqrt{\alpha_{2}}}{4\beta_{n} \sqrt{\alpha_{1}}} (\sin(2\eta) - \sin(2\eta L_{1} / L_{2})) + B_{2n}^{2} \frac{L_{2} \sqrt{\alpha_{2}}}{4\beta_{n} \sqrt{\alpha_{1}}} (\sin(2\eta) - \sin(2\eta L_{1} / L_{2})) + A_{2n} B_{2n} L_{2} \frac{\sqrt{\alpha_{2}}}{\beta_{n} \sqrt{\alpha_{1}}} (\sin^{2}(\eta) - \sin^{2}(\eta L_{1} / L_{2})) \right]$$

und die Eigenwerte β_n sind die Lösungen von:

sin (L₁ / L₂ η) ((cos(η) + sin(η) H₂/η)(-H₁ / β_n (-cos(γ) RR β_n - sin(γ))–(sin(γ) RR β_n - cos(γ))) +(-sin (η) + cos(η) H₂ /η) (-H₁ / β_n K cos(γ) + K sin (γ)) +

 $\begin{aligned} \cos\left(L_{1}/L_{2}\eta\right)\left(\left(-\sin\left(\eta\right) + \cos(\eta) H_{2}/\eta\right)\left(-H_{1}/\beta_{n}\left(-\cos(\gamma) RR \beta_{n} - \sin(\gamma)\right) - (\sin(\gamma)RR \beta_{n} - \cos(\gamma))\right) \\ + \left(\cos(\eta) + \sin(\eta) H_{2}/\eta\right)\left(H_{1}/\beta_{n} K \cos(\gamma) - K \sin(\gamma)\right) = 0. \end{aligned}$

9.1 Thermischer Kontaktwiderstand mit der endlichen Pulsdauer

Der Effekt der endlichen Pulsdauer wird als Faltung formuliert :

$$T_{2}^{HL-FP}(x=L_{2},t) = \int_{t'=0}^{t} f(t') T_{2}^{HL}(t-t') dt', \qquad (9.5)$$

wobei f die Pulsfunktion ist. T_2^{HL} ist die Lösung für den Temperaturanstieg einer Zweischichtprobe mit thermischem Kontaktwiderstand und Wärmeverlust, bei "unendlich" kurzer Pulsdauer (GI.9.4).

Nach der Analogie in Kapitel 5.2 wird der Pulskoeffizient P_n eingeführt (GI.5.5-GI.5-8). Die allgemeine Lösung von Zweischichtsystemen mit Wärmeverlust und Pulseffekt lautet:

$$T_{2}^{HL-FP}(L_{2}, t) =$$

$$P_{0}(t) + \left[\rho_{1} c_{p1} L_{1} + \rho_{2} c_{p2} (L_{2} - L_{1}) \right] \sum_{n=1}^{\infty} \exp(-\alpha_{1} (\beta_{n}/L_{2})^{2} t) P_{n}(-\alpha_{1} (\beta_{n}/L_{2})^{2}, t) \left(A_{2n} \sin(\eta) + B_{2n} \cos(\eta)\right) \frac{1}{N(\beta_{n})} B_{1n}$$
(9.6)

10. Dreischichtmodell mit Wärmeverlust

Die Modellkonfiguration ist aus Abbildung 10.1 zu ersichtigen.

Abbildung 10.1 Konfiguration des Dreischichtmodells

Die Differentialgleichung lautet:

$$\frac{\partial T_1}{\partial t} = \alpha_1 \frac{\partial^2 T_1}{\partial x^2}, \qquad 0 < x < L_1 \qquad (10.1)$$

$$\frac{\partial T_2}{\partial t} = \alpha_2 \frac{\partial^2 T_2}{\partial x^2}, \qquad L_1 < x < L_2 .$$

$$\frac{\partial T_3}{\partial t} = \alpha_3 \frac{\partial^2 T_3}{\partial x^2}, \qquad L_2 < x < L_3 .$$

Die Randbedingungen sind:

$$k_1 \frac{\partial I_1}{\partial x} = hT_1 \qquad x=0, \qquad (10.2a)$$

$$T_1 = T_2$$
 $x = L_1$, (10.2b)

$$k_1 \frac{\partial T_1}{\partial x} = k_2 \frac{\partial T_2}{\partial x} \qquad x=L_1, \qquad (10.2c)$$

$$T_2 = T_3$$
 $x = L_2$, (10.2d)

$$k_2 \frac{\partial T_2}{\partial x} = k_3 \frac{\partial T_3}{\partial x} \qquad x=L_2, \qquad (10.2e)$$

$$-k_3 \frac{\partial T_3}{\partial x} = h T_3 \qquad x=L_3. \qquad (10.2f)$$

Die Anfangstemperatur ist:

$$T_1(x) = q_0 / (\rho c_p g)$$
 0

(10.4)

wobei g<<L1 und

$$\Gamma_1(x) = T_2(x) = T_3(x) = 0$$
 $L_3 > x > g.$

Die Temperaturfunktion an der Rückseite lautet :

 $T_3(L_3, t) =$

$$\left[\rho_{1}c_{p1}L_{1}+\rho_{2}c_{p2}(L_{2}-L_{1})+\rho_{2}c_{p2}(L_{3}-L_{2})\right]\sum_{n=1}^{\infty}\exp(-\alpha_{1}(\beta_{n}/L_{3})^{2}t)\left(A_{3n}\sin(\delta)+B_{3n}\cos(\delta)\right)\frac{1}{N(\beta_{n})}B_{1n}$$

wobei

 $A_{3n} = (A_{2n} \sin(\eta) + B_{2n} \cos(\eta)) \sin (L_2/L_3 \delta) - (-A_{2n} K_2 \cos(\eta) + B_{2n} K_2 \sin(\eta)) \cos (L_2/L_3 \delta)$ $B_{3n} = (-A_{2n} K_2 \cos(\eta) + B_{2n} K_2 \sin(\eta)) \sin(L_2/L_3 \delta) + (A_{2n} \sin(\eta) + B_{2n} \cos(\eta)) \cos(L_2/L_3 \delta)$ $A_{2n} = (\sin(\gamma)A_{1n} + \cos(\gamma)B_{1n}) \sin(L_1/L_2 \eta) - (-A_{1n} K \cos(\gamma) + B_{1n} K \sin(\gamma)) \cos(L_1/L_2 \eta)$ $B_{2n} = (-A_{1n} K \cos(\gamma) + B_{1n} K \sin(\gamma)) \sin(L_1/L_2 \eta) + (\sin(\gamma)A_{1n} + \cos(\gamma)B_{1n}) \cos(L_1/L_2 \eta)$ $B_{1n} = \beta_n,$ $\delta = \frac{\beta_n \sqrt{\alpha_1}}{\sqrt{\alpha_3}}$ $K_1 = \frac{k_1}{k_2} \frac{\sqrt{\alpha_2}}{\sqrt{\alpha_1}}$ $A_{1n} = H_1$ $\gamma = \beta_n L_1 / L_3,$ $\eta = \frac{\beta_n \sqrt{\alpha_1}}{\sqrt{\alpha_2}} L_2/L_3,$ $\mathbf{K}_2 = \frac{\mathbf{k}_2}{\mathbf{k}_3} \frac{\sqrt{\alpha_3}}{\sqrt{\alpha_2}}$ $H_2 = h L_3/k_3$, $H_1 = h L_3/k_1$ h = Wärmeübergangskoeffizient, c_p = spezifische Wärmekapazität α = Temperaturleitfähigkeit, ρ = die Dichte , k = Wärmeleitfähigkeit, L_1 = Länge der ersten Schicht, L_2-L_1 = Länge der zweiten Schicht ist, L_3-L_2 = Länge der dritten Schicht ist,

und die Eigenwerte β sind die Lösungen folgender transzendenten Gleichung:

$$\begin{split} &-\sin(L_2/L_3 \,\delta) \, \Big(\\ &(\sin(\eta) \, (\cos(\delta) + \sin(\delta) \, H_2/\delta) + K_2 \, \cos(\eta) \, (-\sin(\delta) + \cos(\delta) \, H_2/\delta) \,) \, x \\ &(-\cos(L_1/L_2 \, \eta) \, K_1 \, \sin(\gamma) - H_1/\beta_{\Pi} - \sin(\gamma) \, \sin(L_1/L_2 \, \eta \,) \,) \, + \\ &(-\cos(\eta) \, (\cos(\delta) + \sin(\delta) \, H_2/\delta) + K_2 \, \sin(\eta) \, (-\sin(\delta) + \cos(\delta) H_2/\delta) \,) \, x \\ &(-\cos(\gamma) \, \cos(L_1/L_2 \, \eta) + H_1/\beta_n \, \sin(\gamma) \, \cos(L_1/L_2 \, \eta) \,) \, + \\ &(\sin(\eta) \, (\cos(\delta) + \sin(\delta) \, H_2/\delta) + K_2 \, \cos(\eta) \, (-\sin(\delta) + \cos(\delta) \, H_2/\delta) \,) \, x \\ &(-\cos(\gamma) \, \sin(L_1/L_2 \, \eta \,) - H_1/\beta_n \, \cos(L_1/L_2 \, \eta) \, K_1 \, \cos(\gamma))) + \\ &(\cos(\eta) \, (\cos(\delta) + \sin(\delta) \, H_2/\delta) - K_2 \, \sin(\eta) \, (-\sin(\delta) + \cos(\delta) \, H_2/\delta) \,) \, x \\ &(-\sin(L_1/L_2 \, \eta \,) \, K_1 \, \sin(\gamma) - H_1/\beta_n \, \sin(L_1/L_2 \, \eta \,) \, K_1 \, \cos(\gamma))) \Big) + \\ &+ \\ &- \cos(L_2/L_3 \, \delta) \, \Big(\\ &(\sin(\eta) \, (\, -\sin(\delta) + \cos(\delta) \, H_2/\delta) - K_2 \, \cos(\eta) \, (\cos(\delta) + \sin(\delta) \, H_2/\delta)) \, x \\ &(-\cos(L_1/L_2 \, \eta) \, K_1 \, \sin(\gamma) + H_1/\beta_n \, \sin(\gamma) \, \sin(L_1/L_2 \, \eta \,)) + \\ &(+\cos(\eta) \, (-\sin(\delta) + \cos(\delta) H_2/\delta) + K_2 \, \sin(\eta) \, (\cos(\delta) + \sin(\delta) \, H_2/\delta)) \, x \\ &(-\cos(\gamma) \, \cos(L_1/L_2 \, \eta) - H_1/\beta_n \, \sin(\gamma) \, \cos(L_1/L_2 \, \eta)) + \\ &(\sin(\eta) \, (-\sin(\delta) + \cos(\delta) \, H_2/\delta) - K_2 \, \cos(\eta) \, (\cos(\delta) + \sin(\delta) \, H_2/\delta) \,) \, x \\ &(-\cos(\gamma) \, \cos(L_1/L_2 \, \eta) - H_1/\beta_n \, \sin(\gamma) \, \cos(L_1/L_2 \, \eta)) + \\ &(\sin(\eta) \, (-\sin(\delta) + \cos(\delta) \, H_2/\delta) - K_2 \, \cos(\eta) \, (\cos(\delta) + \sin(\delta) \, H_2/\delta) \,) \, x \\ &(-\cos(\gamma) \, \sin(L_1/L_2 \, \eta) - H_1/\beta_n \, \cos(L_1/L_2 \, \eta) \, K_1 \, \cos(\gamma)) \, + \\ &(\cos(\eta) \, (-\sin(\delta) + \cos(\delta) \, H_2/\delta) \, + K_2 \, \sin(\eta) \, (\cos(\delta) + \sin(\delta) \, H_2/\delta) \,) \, x \\ &(-\cos(\gamma) \, \sin(L_1/L_2 \, \eta) - H_1/\beta_n \, \sin(L_1/L_2 \, \eta) \, K_1 \, \cos(\gamma)) \, + \\ &(\cos(\eta) \, (-\sin(\delta) + \cos(\delta) \, H_2/\delta) \, + K_2 \, \sin(\eta) \, (\cos(\delta) + \sin(\delta) \, H_2/\delta)) x \\ &(-\sin(L_1/L_2 \, \eta) \, K_1 \, \sin(\gamma) - H_1/\beta_n \, \sin(L_1/L_2 \, \eta) \, K_1 \, \cos(\gamma)) \Big) = \, 0. \end{split}$$

Die Normfunktion lautet:

$$\begin{split} \mathsf{N}\left(\beta_{n}\right) &= \frac{\mathsf{k}_{1}}{\alpha_{1}} \left[1/2 \left(\mathsf{L}_{1}\right) \left[\mathsf{A}_{1n}^{2} + \mathsf{B}_{1n}^{2}\right] + \frac{\mathsf{L}_{3}}{4 \beta_{n}} \sin\left(\frac{2 \beta_{n}}{\mathsf{L}_{3}} \mathsf{L}_{1}\right) \left(-\mathsf{A}_{1n}^{2} + \mathsf{B}_{1n}^{2}\right) + \frac{\mathsf{L}_{3}}{\beta_{n}} \sin^{2}\left(\frac{\beta_{n}}{\mathsf{L}_{3}} \mathsf{L}_{1}\right) \left(\mathsf{A}_{1n} \mathsf{B}_{1n}\right) \right] + \\ & \frac{\mathsf{k}_{2}}{\alpha_{2}} \left[1/2 \left(\mathsf{L}_{2} - \mathsf{L}_{1}\right) \left[\mathsf{A}_{2n}^{2} + \mathsf{B}_{2n}^{2}\right] + \frac{\sqrt{\alpha_{2}} \mathsf{L}_{3}}{\sqrt{\alpha_{1}} 4 \beta_{n}} \left(\sin\left(\frac{2 \beta_{n} \sqrt{\alpha_{1}}}{\mathsf{L}_{3} \sqrt{\alpha_{2}}} \mathsf{L}_{2}\right) - \sin\left(\frac{2 \beta_{n} \sqrt{\alpha_{1}}}{\mathsf{L}_{3} \sqrt{\alpha_{2}}} \mathsf{L}_{1}\right) \right) \left(-\mathsf{A}_{2n}^{2} + \mathsf{B}_{2n}^{2}\right) + \\ & \frac{\sqrt{\alpha_{2}} \mathsf{L}_{3}}{\sqrt{\alpha_{1}} \beta_{n}} \left(\sin^{2}\left(\frac{\beta_{n} \sqrt{\alpha_{1}}}{\mathsf{L}_{3} \sqrt{\alpha_{2}}} \mathsf{L}_{2}\right) - \sin^{2}\left(\frac{\beta_{n} \sqrt{\alpha_{1}}}{\mathsf{L}_{3} \sqrt{\alpha_{2}}} \mathsf{L}_{1}\right) \right) \left(\mathsf{A}_{2n} \mathsf{B}_{2n}\right) \right] + \\ & \frac{\mathsf{k}_{3}}{\alpha_{3}} \left[1/2 \left(\mathsf{L}_{3} - \mathsf{L}_{2}\right) \left[\mathsf{A}_{3n}^{2} + \mathsf{B}_{3n}^{2}\right] + \frac{\sqrt{\alpha_{3}} \mathsf{L}_{3}}{\sqrt{\alpha_{1}} 4 \beta_{n}} \left(\sin\left(\frac{2 \beta_{n} \sqrt{\alpha_{1}}}{\mathsf{L}_{3} \sqrt{\alpha_{3}}} \mathsf{L}_{3}\right) - \sin\left(\frac{\beta_{n} \sqrt{\alpha_{1}}}{\mathsf{L}_{3} \sqrt{\alpha_{3}}} \mathsf{L}_{2}\right) \right) \left(-\mathsf{A}_{3n}^{2} + \mathsf{B}_{3n}^{2}\right) + \\ & \frac{\sqrt{\alpha_{3}} \mathsf{L}_{3}}{\sqrt{\alpha_{1}} \beta_{n}} \left(\sin^{2}\left(\frac{2 \beta_{n} \sqrt{\alpha_{1}}}{\mathsf{L}_{3} \sqrt{\alpha_{3}}} \mathsf{L}_{3}\right) - \sin^{2}\left(\frac{\beta_{n} \sqrt{\alpha_{1}}}{\mathsf{L}_{3} \sqrt{\alpha_{3}}} \mathsf{L}_{2}\right) \right) \left(\mathsf{A}_{3n} \mathsf{B}_{3n}\right) \right]. \end{split}$$

<u>11. Experimenteller Teil</u>

11.1 Versuchsablauf

In dieser Arbeit werden Messungen an POCO-Graphit, SiC, Plexiglas und an Sandwichproben bei Raumtemperatur diskutiert.

Die Versuche mit den Mehrschichtproben wurden mit der Laserflash-Apparatur LFA427 (siehe Kapitel 3) durchgeführt. Da die Meßzeiten mit diesen Proben weit länger waren als das fünfzigfache der Pulsdauer, wird die Pulsform des Lasers von LFA427 außer acht gelassen.

Für die Messungen mit homogenen Proben wurde die Laserflash-Anlage im Institut für Materialforschung (IMFI)/Forschungszentrum Karlsruhe benutzt.

11.1.1 Kurze Beschreibung der verwendeten Laserflash-Apparatur

Die Anlage ist horizontal angeordnet, d.h. Laser, Probe und Sensor liegen auf einer horizontalen optischen Achse. Der Laser (Typ : Nd-Glass, Fabrikat Korad (USA), Wellenlänge: 1096 nm) kann einen Puls bis zu 20J/Puls Energie emittieren. Die typische Pulslänge ist 1.2 ms.

Die Probenhalterung befestigt die Probe zwischen zwei Teflonplatten mit Hilfe von Federn. Ein Probenraum mit einem Durchmesser von 12.7 mm ist in die Platten eingefräst.

Unmittelbar vor und nach der Probe liegen in der optischen Achse zwei Führungsrohre aus Graphit, deren Innendurchmesser genau mit dem Durchmesser der Probe übereinstimmt. Auf diese Weise wird vermieden, daß der Laserstrahl am Rand der Probe vorbeischießt und eventuell das Sensormaterial beschädigt.

Als Sensormaterial wird N₂-gekühltes InSb verwendet. Bei höheren Temperaturen werden Ge (ab 800 °C) und Si (ab 1200 °C) eingesetzt. Der Verstärker verfügt über fünf Verstärkungsstufen.Die Zeitkonstante des Verstärkers (5 mikrosec) ist kurz genug, um keine zeitliche Deformation des Signals hervorzurufen.

Der Graphitofen kann unter Vakuum bis zu 2000 °C geheizt werden.

Die Meßdaten werden durch ein digitales Oszilloskop aufgenommen. Das Triggersignal wird bei der Entladung der Kondensatorbank ausgelöst.

11.1.2 Bestimmung der Pulsform

Ein Leistungsmeßgerät für Laserstrahlen (Fabrikat :Fa.Sciente, USA) wurde unmittelbar neben den Strahlengang gesetzt. Nach der Auslösung des Laserschußes wurde der Intensitätsablauf mit einem digitalen Oszilloskop aufgenommen. Das Ergebnis ist in Abbildung 5.1 dargestellt. Dem kombierten Modell wurde die Dreieckpulsform zugrundegelegt, mit der Pulslänge von 1.2 ms und mit einem Pulsmaximum bei 7.5 % der Pulsdauer

11.1.3 Versuchsdurchführung

Die Länge und der Durchmesser der Probe werden zunächst gemessen. Falls der Probenkörper transparent gegenüber dem Laserstrahl ist, wird die vordere und hintere Seite mit Graphit gleichmäßig beschichtet. Die Probe wird nach Lockerung der Federn in die Probehalterung geschoben. Die Position der Probehalterung wird mit einem Laserschuß auf ein Photopapier kontrolliert, das auf das vordere Führungsrohr (unmittelbar vor der Probe) geklebt worden ist. Sollte die Probe nicht vollständig beleuchtet sein, wird die Position der Probenhalterung durch Justierschrauben geändert. Zur Kontrolle der Position des Sensors wird eine punktförmige Lichtquelle an den Sensor angeschlossen. Das ausgetretene Licht zeigt die optische Achse und muß in der Mitte der Rückseite der Probe enden.

Vor der Messung wird noch einmal überprüft, ob die Stickstoffkühlung des Sensors und die Einstellungen des Oszilloskops in Ordnung sind. Nach dem Laserschuß können die Meßdaten per Diskette auf den Computer zur Auswertung übertragen werden.

11.2 Beschreibung der Proben

Die Eigenschaften der untersuchten homogenen Proben, die in dieser Arbeit präsentiert werden, sind in Tabelle 11.1 zusammengefaßt.

Bezeichnung/Material	Hersteller	α (bei RT) cm²/s	Bemerkung		
POCO-Graphit /Isotroper Graphit	NBS [*] (Nr. 8425)	0.740	Taylor, Grooth (1980) ρ =1.730 g/cm ³ k =91.3 W/mK Gemessen von B.Schulz (KFZ)		
SiC	IMF I /FZK** CVD (chemical vapor deposit)	0.437	Gemessen von B.Schulz (KFZ)		
Plexiglas	Hoechst Labor	0.00108	Gemessen von Hoechst Labor ρ =1.180 g/cm ³		
 * National Bureau of Standards (heute : Institute of Standards and Technology) ** Institut für Materialforschung, Forschungszentrum Karlsruhe 					

Tabelle 11.1

Die mit der Laserflash-Methode gemessenen Materialien

Die ausgewählten Messungen zeigen Beispiele über die Korrekturarten für Wärmeverluste und endliche Pulsdauer. Die allgemeine Gültigkeit der kombinierten Lösung (Kap.7.1) wird neben den anderen neuen Methoden (Kap.4, 5.2, 6.1) geprüft. Zum Vergleich werden die jeweiligen besten Auswertungsmethoden angegeben : zur adiabatischen Situation das Modell von Parker (Kap.2.1), beim Effekt der endlichen Pulsdauer die Azumi-Methode (Kap.2.2.2) und zum Wärmeverlust die Cowan-Methode (Kap.2.3.3) Als erstes wird immer die adiabatische Modellkurve dargestellt. Nach der kombinierten Modellkurve wird der Temperaturverlauf mit um 5% erhöhter Temperaturleitfähigkeit gezeigt.

Bei den Messungen erscheint oft ein Peak vor dem Temperaturanstieg, wenn der Laserstrahl durch Reflexionen an den Sensor gelangen kann. Dieses Störsignal wird bei der Auswertung ignoriert.

Bei der Darstellung der Messungen wird der Temperaturanstieg in Einheiten des elektronischen Signals (in Volt) angegeben. Dies weist nicht auf die absolute Temperaturänderung der Probe hin! Der thermische Kontaktwiderstand wird zwischen zwei Schichten mit Hilfe der neuen Methode bei Raumtemperatur bestimmt.

Die Eigenschaften der in dieser Arbeit untersuchten Sandwichproben sind in Tabelle 11.2 zusammengefaßt.

Bezeichnung/Material	Hersteller	α cm²/s	Bemerkung		
Cu/Elektrolyt Kupfer	kommerziell	1.04	Gemessen von L.Dusza und L.Hagemann mit LFA427 ρ** = 8.30 g/cm ³ c _p ** = 0.419 J/gK		
Zinn	kommerziell	0.195	Gemessen von L.Dusza und L.Hagemann mit LFA427 $\rho^{**} = 7.96 \text{ g/cm}^3$ $c_{\rho}^{**} = 0.221 \text{ J/gK}$		
Endmaß [*] -Stahl	Fa.Mitutoyo	0.0518	Gemessen von L.Dusza und L.Hagemann mit LFA427 ρ^{***} = 7.67 g/cm ³ c_p^{***} = 0.445 J/gK		
Endmaß [*] -Keramik	Fa.Mitutoyo	0.0108	Gemessen von L.Dusza und L.Hagemann mit LFA427 ρ*** = 5.97 g/cm ³ c _p *** = 0.461 J/gK		
* Endmaß : Material mit hochfein polierten Oberflächen. Durch die van der-Waal sche Kräfte können zwei aufeinandergelegte Scheiben mit freier Hand, ohne Scherkraft nicht von einander weggezogen werden.					
**Grigull U., Sandner H.:Wärmeleitung, Springer-Verlag, 1979.					
*** Angaben des Herstellers					
			·		

Tabelle 11.2

Die Materialien der mit der Laserflash-Methode gemessenen Verbundwerkstoffe

11.3 Auswertungen von Materialien im adiabatischen Zustand ohne Pulseffekt

Messungen an SiC und POCO-Graphit wurden durchgeführt (Tab.11.3).

Beide Messungen sind als adiabatisch einzustufen, weil der Effekt der Pulsdauer kleiner als 2% und des Wärmeverlustes kleiner als 1% ist.

11.3.1

Material	Länge Halbanstiegszeit		α _{AD-50%} Adiabatisches	α _{AD-DUSZA} AD-Iteration	α _{combi} Kombiniertes
	cm	ms	cm ² s ⁻¹	cm ² s ⁻¹	cm ² s ⁻¹
POCO-Graphit bei 69°C	0.2943	17.1	0.703	0.707	0.706

Tabelle 11.3 Messungen im adiabatischen Zustand

Abbildung 11.1a Messung an POCO-Graphit. Adiabatische Modellkurve

Das adiabatische Ergebnis wurde bei 50% Temperaturanstieg berechnet. Die Abbildung 11.1b zeigt eine sichtbar bessere Anpassung des kombinerten Modells zur Messung als die Adiabatik (Abb.11.1a), trotz der geringfügigen Abweichung zwischen den zwei Ergebnissen (Tab.11.3).

Der iterative adiabatische Wert ($\alpha_{AD-DUSZA}$) stimmt mit dem Ergebnis bei 50% Anstieg gut überein. Eine Erhöhung des kombinierten Ergebnisses um 5% zeigt einen schnelleren Temperaturanstieg in Abb.11.1c.

Abbildung 11.1b Messung an POCO-Graphit. Kombinierte Modellkurve

Messung an POCO-Graphit. Modellkurve mit 5% veränderter Temperaturleitfähigkeit Das adiabatische Ergebnis von SiC wurde ebenfalls bei 50% Temperaturanstieg berechnet.

11.3 Auswertungen von Materialien im adiabatischen Zustand ohne Pulseffekt

Material	Länge H	Halbanstiegszeit	α _{AD-50%} Adiabatisches	α _{AD-DUSZA} AD-Iteration	α _{сомв} Kombiniertes	
	cm	ms	cm ² s ⁻¹	cm ² s ⁻¹	cm ² s ⁻¹	
SiC bei RT	0.2355	17.73	0.434	0.437	0.429	

11.3.2

Die Abbildung 11.2b zeigt eine bessere Anpassung des kombinierten Modells zur Messung als die Adiabatik (Abb.11.2a).

Der iterative adiabatische Wert stimmt mit dem Ergebnis bei 50% Anstieg gut überein.

Die Erhöhung des kombinierten Ergebnisses um 5% wird einen erkennbaren schnelleren

Temperaturanstieg bei dem Modellverlauf in Abb.11.2c.

Abbildung 11.2a Messung an SiC. Adiabatische Modellkurve

Abbildung 11.2b Messung an SiC. Kombinierte Modellkurve

Abbildung 11.2c Messung an SiC. Modellkurve mit 5% veränderter Temperaturleitfähigkeit
11.4 Auswertungen mit der Korrektur der endlichen Pulsdauer

11.4.1

Material	Länge	Halbanstiegszeit	a _{AD,50%} Adiabat.	α _{FP} ,DREIECK FP-Iteration	α _{FP ,} azumi FP-Azumi	а _{сомві} Komb.
	cm	ms	cm ² s ⁻¹	cm ² s ⁻¹	cm ² s ⁻¹	cm ² s ⁻¹
POCO-Graphit bei RT	0.0994	2.298	0.597	0.753	0.734	0.731

Tabelle 11.2 Messung mit kurzer Meßzeit

Eine dünne POCO-Graphit-Probe wurde genommen (vgl.Kap.11.3). Die Halbanstiegszeit ist klein (die Pulsdauer beträgt 1.2 ms), was einen starken Pulseffekt erwarten läßt.

Abbildung 11.3a Messung an POCO-Graphit. Endliche Pulsdauer - Modellkurve

Das 'finite pulse' Ergebnis wurde mit dem Dreieckmodell berechnet (GI.5.4 und GI.5.6). Das kombinierte Modell (Abb.11.3b) zeigt eine etwas bessere Anpassung als die Funktion mit endlicher Pulsdauer (Abb.11.3a). Der Wert der Korrektur für die endliche Pulsdauer liegt mit 2.5% Abweichung vom kombinierten bzw. Azumi-Wert im Toleranzbereich . Die Pulsdauermodellkurve zeigt eine einwandfreie Anpassung (Abb.11.3a).

Eine Erhöhung des kombinierten Ergebnisses um 5% zeigt einen deutlich schnelleren Temperaturanstieg in Abb.11.3c.

Abbildung 11.3b Messung an POCO-Graphit. Kombinierte Modellkurve

Abbildung 11.3c Messung an POCO-Graphit. Modellkurve mit 5% veränderter Temperaturleitfähigkeit

Material	Länge	Halbanstiegszeit	α _{AD,50%} Adiabat.	α _{FP} , DREIECK FP-Iteration	α _{FP} ,αzυмι FP-Azumi	α _{сомві} Komb.
	cm	ms	cm ² s ⁻¹	cm ² s ⁻¹	cm ² s ⁻¹	m ² s ⁻¹
SiC bei RT	0.1108	4.37	0.390	0.437	0.432	0.424

Das 'Finite Pulse' Ergebnis wurde bei SiC ebenfalls mit dem Dreieckmodell berechnet.

Das kombinierte Modell (Abb.11.4b) zeigt den etwas besseren Fit als das Modell der endlichen Pulsdauer (Abb.11.4a). Die Erhöhung des kombinierten Ergebnisses um 5% zeigt einen schnelleren Temperaturanstieg in Abb.11.4c.

Abbildung 11.4a Messung an SiC. Endliche Pulsdauer- Modellkurve

Abbildung 11.4b Messung an SiC. Kombinierte Modellkurve

Abbildung 11.4c Messung an SiC. Modellkurve mit 5% veränderter Temperaturleitfähigkeit

11.5 Auswertungen mit Wärmeverlust

Die Länge der POCO-Graphitprobe ist wesentlich größer als bei der adiabatischen Messung in Kap.11.3. Die sinkende Temperatur nach dem Maximum weist auf Wärmeverluste hin.

Material	Länge	Halbanstiegszeit	α _{AD} Adiabat.	α _{COWAN5} HL-Cowan	а _{сомві} Komb.	
	cm	ms	cm ² s ⁻¹	cm ² s ⁻¹	cm ² s ⁻¹	
POCO-Graphit bei RT	0.469	39.15	0.775	0.733	0.714	
Andere Wärmeverlust	-Korrektur	ren				
Cowan 10	: -					
Taylor Ratio	: 0.735					
Degiovanni Ratio	: 0.745					
Degiovanni Moment	: 0.718					

Tabelle 11.3 Messungen mit Wärmeverlust

Die Abweichung zwischen dem adiabatischen (Abb.11.5a) und kombinierten Ergebnissen (Abb.11.5b) ist groß.

Eine Erhöhung des kombinierten Ergebnisses um 5% (auf α =0.721 cm²/s) zeigt einen deutlich schnelleren Temperaturanstieg in Abb.11.5c.

Die Ergebnisse der Methoden von Taylor, Degiovanni und Cowan sind viel zu hoch. Die Momentmethode gibt das einzige zufriedenstellende Ergebnis neben dem kombinierten Verfahren an.

Abbildung 11.5a Messung an POCO-Graphit. Adiabatische Modellkurve

Abbildung 11.5b Messung an POCO-Graphit. Kombinierte Modellkurve

Abbildung 11.5c Messung an POCO-Graphit. Modellkurve mit 5% veränderter Temperaturleitfähigkeit

Material	Länge	Halbanstiegszeit	a _{AD} Adiabat.	α _{cowan5} HL-Cowan	α _{сомві} Komb.
	cm	ms	cm ² s ⁻¹	cm ² s ⁻¹	cm ² s ⁻¹
Plexiglas bei RT	0.1005	1218.75	0.00115	0.00107	0.00106
Andere Wärmeverlust-	Korrektu	en			
Cowan 10	: 0.0010	9			
Taylor Ratio	: 0.0010	7			
Degiovanni Ratio	: 0.0010	7			
Degiovanni Moment	: 0.0011	1			

Die Messung an Plexiglas mit langer Halbanstiegszeit zeigt Wärmeverluste (Abb.11.6a).

Die Erhöhung der Temperaturleitfähigkeit um 5% (auf α=0.00111 cm²/s) verschiebt den

Temperaturanstieg deutlich. (Abb.11.6b gegenüber Abb.11.6c). Die Momentmethode liefert ein etwas zu hohes Ergebnis.

Abbildung 11.6a Messung an Plexiglas. Adiabatische Modellkurve

Abbildung 11.6b Messung an Plexiglas. Kombinierte Modellkurve

Abbildung 11.6c Messung an Plexiglas. Modellkurve mit 5% veränderter Temperaturleitfähigkeit

11.6 Bestimmung des thermischen Kontaktwiderstands

11.6.1

Eine Sandwichprobe wurde aus Endmaß-Stahl und Endmaß-Keramik gefertigt.

Die zwischen den aufeinanderliegenden Schichten wirkenden van der Waal'sche Kräfte verhindern praktisch die manuelle Trennung der Schichten. Die thermophysikalischen Daten der beiden Schichten sind:

L ₁	= 0.1999 cm,	$L_2 = 0.1035 \text{ cm},$
P1	= 7.67 g/cm ³ ,	$\rho_2 = 5.97 \text{ g/cm}^3$,
C _{p1}	= 0.445 J/gK,	c _{p2} = 0.461 J/gK,
α1	= 0.0518 cm²/s,	α_2 = 0.0108 cm ² /s .

Der berechnete thermische Kontaktwiderstand ist 3.03 10^{-4} m²K/W, während das Inoune-Modell (GI.2.5.8) den Wert von 3.72 10^{-4} m²K/W ergab.

Die Modell- und Meßkurve ist in Abbildung 11.8 zu sehen.

Abbildung 11.8a Messung an Keramik-Stahl (Endmaß). Temperaturanstieg und Modellkurve mit thermischem Kontaktwiderstand und Wärmeverlust.

In Abbildung 11.8b ist die adiabatische Modellkurve zum Vergleich dargestellt. Die Erhöhung des thermischen Kontaktwiderstandes um 20% in Abbildung 11.8c zeigt einen langsameren Verlauf des Temperaturanstiegs.

Abbildung 11.8b Messung an Keramik-Stahl (Endmaß)-Sandwichprobe. Adiabatische Modellkurve

Abbildung 11.8c Messung an Keramik-Stahl (Endmaß)-Sandwichprobe. Modellkurve mit einem um 20% erhöhten thermischen Kontaktwiderstand

11.6.2

Eine Sandwichprobe wurde aus Kupfer und Zinn gefertigt. Die beiden Schichten wurden sehr fein poliert und aufeinander gelegt. Die thermophysikalischen Daten der Schichten sind:

L ₁	= 0.101 cm,	$L_2 = 0.104 \text{ cm},$
Ρ1	= 8.30 g/cm ³ ,	$\rho_2 = 7.96 \text{ g/cm}^3$,
с _{р1}	= 0.419 J/gK,	c _{p2} = 0.221 J/gK,
α1	= 1.04 cm ² /s,	$\alpha_2^{}$ = 0.195 cm ² /s .

Mit dem berechneten thermischen Kontaktwiderstand (R= 6.67 10^{-4} m²K/W) ergibt sich eine gute Anpassung des theoretischen Modells an die Meßdaten (Abb.11.9).

Abbildung 11.9a Messung an Kupfer-Zinn Sandwichprobe. Temperaturanstieg und Modellkurve mit thermischem Kontaktwiderstand und Wärmeverlust

In Abbildung 11.9b ist die adiabatische Modellkurve zum Vergleich dargestellt. Die Erhöhung des thermischen Kontaktwiderstandes um 20% in Abbildung 11.9c zeigt eine zeitliche Verzögerung des Temperaturanstiegs.

Abbildung 11.9b Messung an Kupfer-Zinn Sandwichprobe. Adiabatische Modellkurve

Abbildung 11.9c Messung an Kupfer-Zinn Sandwichprobe. Modellkurve mit einem um 20% erhöhten thermischen Kontaktwiderstand

12. Diskussion

12.1 Die neue Korrektur für endliche Pulsdauer

Die endliche Pulsdauer beeinflußt den Temperaturanstieg, wenn die Transportzeiten klein sind im Vergleich zur Pulslänge ($t_{0.5} \leq \approx 50 \tau$).

In Abb.12.1.1 wurde der Temperaturanstieg mit dem Modell für Dreieckpulse (GI.5.6) zu steigenden Halbanstiegszeiten berechnet. Die Probenlänge ist 0.2 cm, die Pulsdauer beträgt 1 ms und das Pulsmaximum befindet sich bei 0.1, 0.3, 0.5, 0.7 und 0.9 ms. Die adiabatischen Ergebnisse wurden aus diesen Temperaturanstiegsdaten berechnet. Die Temperaturleitfähigkeit wurde mit Hilfe der nichtlinearen Parameterschätzung aus der Gleichung 5.6 berechnet (Dusza-Verfahren).

Abbildung 12.1.1

Der Effekt der endlichen Pulsdauer

Der Temperaturanstieg wurde mit der Dreieckform und mit einer Position des Pulsmaximums von 10%,30%,50%,70% und 90% der Pulsdauer berechnet.

Die Temperatureitfähigkeit berechnet nach der Korrektur für die endliche Pulsdauer zeigt eine zunehmende Abweichung gegenüber dem adiabatischen Wert zu kleiner werdenden Halbanstiegszeiten.

In Abb.12.1.2 wurden Temperaturanstiege mit den exponentiellen (GI.5.5, $t_p=0.12$ ms), dreieckförmigen (GI.5.6, b=0.12, $\tau = 1$ ms), linear-exponentiellen (GI.5.7, b=0.12, $\tau = 1$ ms) und trapezförmigen Pulsmodellen (GI.5.8, $\tau = 1$ ms, $t_1=0.08$ ms, $t_2=0.16$ ms) berechnet. Die Probenlänge beträgt 0.2 cm. Die Abweichung der Azumi-Ergebnisse gegenüber dem Sollwert wurde in Abhängigkeit von der normierten Halbanstiegszeit aufgetragen.

Abbildung 12.1.2 Die Abweichung der Azumi-Methode von der analytischen Lösung Zur Berechnung des Temperaturanstiegs wurde die Pulsform der exponentiellen, dreieckförmigen, linear-exponentiellen und trapezförmigen Funktion angewandt.

Die Abbildung weist eine gute Übereinstimmung der Azumi- und Dusza-Methode auf, wenn die Halbanstiegszeit größer ist als das zweifache der Pulslänge.

Die Anwendung einer falsch ermittelten Position des Pulsmaximums kann bei kürzeren Meßzeiten erhebliche Fehler hervorrufen. In Abb.12.1.3 wurde der Temperaturanstieg mit einer Position des Pulsmaximums von 50% berechnet. (Länge der Probe: 0.2 cm, Pulsdauer: 1 ms). Das eigene Verfahren (GI.5.6) wurde mit Hilfe der nichtlinearen Parameterschätzung angewandt, jedoch mit 10, 30, 50, 70, 90% Pulsmaximumspositionen.

Abbildung 12.1.3

 $\begin{array}{l} \mbox{Einfluß der Position des Pulsmaximums auf die ermittelte Temperaturleitfähigkeit} \\ \mbox{Der Temperaturanstieg wurde mit einer Position des Pulsmaximums von 50% der Pulsdauer berechnet.} \\ \mbox{Die Abweichung der Temperaturleitfähigkeit nach einer Anwendung von 30% Pulsmaximum beträgt 5% bei $t_{0.5} \approx 2 \ τ und die Anwendung von 10% (statt 50%) verursacht den gleichen 5%-igen Fehler schon bei $t_{0.5} \approx 5 \ τ.} \end{array}$

Der Sollwert wurde, wie erwartet, als Ergebnis bei 50% Maximumposition berechnet. Bei 10% und 90% Positionen kann der Fehler bei extrem kurzen Halbanstiegszeiten 10% überschreiten.

Die korrekte Wahl der Pulsform ist ebenfalls wichtig . In Abb.12.1.4 wurde der Temperaturanstieg mit einer Position des Pulsmaximums von 40% berechnet. (Länge der Probe 0.2 cm, Pulsdauer ist 1 ms). Das eigene Verfahren für linear-exponentielle Pulse (GI.5.7, b=0.4), für Trapezpulse (GI.5.8, t₁=0.38 ms, t₂=0.42 ms) und für dreieckförmige Pulse wurde mit Hilfe der nichtlinearen Parameterschätzung angewandt. Die exponentielle Pulsfunktion kann bei einer Position des Maximums von 40% nicht angewandt werden (s.Kap.5.1c).

Einfluß der Pulsform des Pulses auf die ermittelte Temperaturleitfähigkeit Der Temperaturanstieg wurde mit der Dreieckform und mit einer Position des Pulsmaximums von 40% der Pulsdauer berechnet.

Die Anwendung der linear-exponentiellen Pulsfunktion verursacht eine Abweichung in der Temperaturleitfähigkeit von 5% bei $t_{0.5} \approx 2 \tau$. Die Lösung für die Trapezform ergab das gleiche Ergebnis (praktisch den Sollwert) wie die für Dreieckpulse. Die linear-exponentielle Lösung liefert kleinere Temperaturleitfähigkeitswerte.

12.2 Analyse der Wärmeverlust-Korrekturen

12.2.1 Ratiomethoden von Taylor, Degiovanni und Balageas

In den Ratiomethoden müssen die Anstiegszeitverhältnisse genauer als 2,5% bekannt sein. Der Fehler der Temperaturleitfähigkeit läßt sich wie folgt definieren:

$$\frac{d\alpha}{\alpha} = (1 + \frac{Ay^2 - C}{Ay^2 + By + C}) \frac{dy}{y}, \qquad (12.2.1)$$

wobei y das Anstiegszeitverhältnis ist. A, B sind die Koeffizienten der quadratischen, bzw. linearen Glieder. C ist eine Konstante ($\alpha = Ay^2+By+C$), und es gilt

$$1 > \frac{Ay^2 - C}{Ay^2 + By + C} > 0,$$
 (12.2.2)

d.h. der Fehler des Anstiegszeitsverhältnisses erscheint in der Bestimmung der Temperaturleitfähigkeit mit einem Faktor zwischen 1 und 2.

In Abbildung 12.2.1, 12.2.2 und 12.2.3 wurde der Temperaturanstieg mit der Cape-Lehman-Funktion (GI.2.3.2) mit vorgegeben Parametern (Länge =0.2 cm, Temperaturleitfähigkeit (Sollwert)=0.01 cm²/s) berechnet. Die Biotzahlen am Umfang und an den Stirnflächen sind gleich.

Die Abweichung vom Sollwert der Modelle von Taylor und Degiovanni kann 5% erreichen.

Abbildung 12.2.1 Temperaturleitfähigkeit der Taylor-Ratiomethode in Abhängigkeit von der Biotzahl bezogen auf die vorgegebene Temperaturleitfähigkeit (=100%)

Abbildung 12.2.2 Temperaturleitfähigkeit der Degiovanni-Ratiomethode in Abhängigkeit von der Biotzahl bezogen auf die vorgegebene Temperaturleitfähigkeit (=100%)

Abbildung 12.2.3 Temperaturleitfähigkeit der Balageas-Ratiomethode in Abhängigkeit von der Biotzahl bezogen auf die vorgegebene Temperaturleitfähigkeit (=100%)

12.2.2 Cowan- und Moment-Methode

In den folgenden zwei Abbildungen wurde der Temperaturanstieg ebenfalls mit der Cape-Lehman-Funktion (GI.2.3.2) mit vorgegeben Parametern (Länge =0.2 cm, Temperaturleitfähigkeit (Sollwert)=0.01 cm²/s) berechnet. Die Biotzahlen am Umfang und an den Stirnflächen sind gleich.

Die Moment-Methode weist eine systematisch steigende Abweichung auf (Abb.12.2.4), während das Cowan-Verfahren eine große Stabilität auch bei größeren Biotzahlen zeigt (Abb.12.2.5).

Abbildung 12.2.4 Temperaturleitfähigkeit der Degiovanni-Momentmethode in Abhängigkeit von der Biotzahl

bezogen auf die vorgegebene Temperaturleitfähigkeit (=100%)

Abbildung 12.2.5 Temperaturleitfähigkeit der Cowan-Methode in Abhängigkeit von der Biotzahl bezogen auf die vorgegebene Temperaturleitfähigkeit (≡100%)

12.2.3 Das neue Iterationsverfahren für die Wärmeverlustkorrektur

Die neue Iterationslösung (Kap.6.1) liefert sehr gute Ergebnisse sowohl unter starkem Wärmeverlust als auch für adiabatische Verhältnisse. Der Modellfehler liegt unterhalb von 0.5% (Abb.12.2.6).

Abbildung 12.2.6 Temperaturleitfähigkeit nach der neuen Iterationsmethode in Abhängigkeit von der Biotzahl bezogen auf die vorgegebene Temperaturleitfähigkeit (≡100%)

12.3 Analyse des kombinierten Modells

Mit der Einführung der kombinierten Methode ist es möglich geworden, alle Korrekturen in eine einzige Funktion zu integrieren. Es wird hiermit bewiesen, daß korrekte Ergebnisse auch unter starken Wärmeverlusten oder bei sehr kurzen Halbanstiegszeiten erzielt werden können.

Damit entfällt die Möglichkeit einer Fehlinterpretation durch nicht geeignete Korrektur. Das gleichzeitige Auftreten von Wärmeverlusten und Pulseffekten wird korrekt behandelt.

12.3.1 Analyse des kombinierten Modells mit Korrektur für endliche Pulsdauer

Zu steigenden Halbanstiegszeiten wurden die Temperaturleitfähigkeitswerte (Soll) und damit die Temperaturanstiegsdaten mit Pulseffekt berechnet (GI.5.6). Die vordefinierten Parameter sind: Länge= $0.2 \text{ cm}, \tau = 1 \text{ ms}, b = 0.5$ (d.h. das Pulsmaximum befindet sich bei 0.5 ms). Dieser Anstieg wurde zugrundegelegt, um das kombinierte Modell auf Abweichung zu testen.

Die unbekannte Temperaturleitfähigkeit und die zwei Biotzahlen wurden durch Anwendung der kombinierten Funktion (GI.7.2) mit den gegebenen Pulsparametern mit Hilfe der nichtlinearen Parameterschätzung bestimmt. Die Abweichung vom Sollwert in Abhängigkeit von der Halbanstiegszeit ist in Abbildung 12.3.1 dargestellt.

Der Fehler der Methode ist kleiner als 0.5 %.

Temperaturleitfähigkeit des kombinierten Modells bezogen auf die vorgegebene Temperaturleitfähigkeit (=100%) als Funktion der auf die Pulslänge normierten Halbanstiegszeit Der Temperaturanstieg wurde mit der adiabatischen Funktion für Dreieckpulse berechnet.

12.3.2 Analyse des kombinierten Modells mit Wärmeverlustkorrektur

Mit Hilfe eines vorgegebenen Temperaturleitfähigkeitswertes (Soll = 0.01 cm²/s) wurde der Temperaturanstieg aus der theoretischen Temperaturanstiegsfunktion (Cape-Lehman-Lösung, Gl.2.3.2) mit einer Länge von 0.2 cm berechnet. Diese Anstiegsfunktion bei zunehmenden Biotzahlen wurde zugrundegelegt, um das kombinierte Modell auf Abweichung zu testen.

Die optimale Temperaturleitfähigkeit und die zwei Biotzahlen wurden mit der nichtlinearen Parameterschätzung berechnet.

In Abbildung 12.3.2 ist die Abweichung der Temperaturleitfähigkeit vom Sollwert (100%) in Abhängigkeit von der Biotzahl dargestellt. Der Fehler ist kleiner als 1.5%. Es gibt keine theoretische Erklärung über die Schwankung im Intervall der Biotzahl bis 1.

12.3.3 Analyse des kombinierten Modells unter adiabatischen Umständen

Mit Hilfe der vorgegebenen Länge (L=0.2 cm) wurde die Temperaturleitfähigkeit als Sollwert zu steigenden Halbanstiegszeiten berechnet:

 $\alpha = 0.138785 L^2 / t_{0.5}$

wobei $t_{0.5} \geq 100 \ \tau$ und τ die Pulslänge ist.

Mit diesem Sollwert wurde der Temperaturanstieg aus der adiabatischen Temperaturanstiegfunktion (GI.2.1.5) berechnet.

Die nichtlineare Parameterschätzung wurde angewandt, um die Temperaturleitfähigkeit zu bestimmen. Die Berechnungen ergaben für die zwei Biotzahlen erwartungsgemäß vernachlässigbar kleine Werte.

In Abbildung 12.3.3 ist die Abweichung der Temperaturleitfähigkeit vom Sollwert (100%) in Abhängigkeit von der Halbanstiegszeit dargestellt. Der Fehler ist kleiner als 2%.

Ermittelte Temperaturleitfähigkeit des kombinierten Modells bezogen auf eine vorgegebene Temperaturleitfähigkeit (=100%) als Funktion der normierten Halbanstiegszeit. Der Temperaturanstieg wurde mit der adiabatischen Funktion berechnet.

12. 4 Zweischichtmodell

Bei der Anwendung der Laserflash-Methode für die Mehrschichtwerkstoffe fehlte bis jetzt die analytische Lösung für Wärmeverluste. Die Temperaturleitfähigkeit einer Schicht oder der thermische Kontaktwiderstand kann gleichzeitig mit Korrekturen für Wärmeverluste und endliche Pulsdauer bestimmt werden.

12.4.1 Fehleranalyse beim Wärmeverlust

Das Zweischichtmodell (GI.9.4) wurde ohne thermischen Kontaktwiderstand und mit identischen Schichtparametern angewandt. Ein Sollwert für die Temperaturleitfähigkeit (0.01 cm²/s) wurde festgelegt.

Der Temperaturanstieg wurde mit Hilfe der Cape-Lehman-Funktion (GI.2.3.2) mit steigenden Biotzahlen und mit dem Sollwert berechnet. Die Temperaturleitfähigkeit der zweiten Schicht ist gleich Sollwert. Aus diesen simulierten Meßdaten wurden die Biotzahlen und die Temperaturleitfähigkeit der ersten Schicht mit der Methode der nichtlinearen Parameterschätzung berechnet.

Die Abweichung der Temperaturleitfähigkeit vom Sollwert ist in Abbildung 12.4.1 dargestellt.

Abbildung 12.4.1 Abweichung der Temperaturleitfähigkeit des Zweischichtmodells vom Sollwert in Abhängigkeit von der Biotzahl. Der theoretische Temperaturanstieg wurde mit Hilfe der Cape-Lehmann-Funktion mit dem Sollwert berechnet.

12.4.2 Fehleranalyse beim Effekt der endlichen Pulsdauer

Das Zweischichtmodell (GI.9.6) wurde ohne thermischen Kontaktwiderstand und mit identischen Schichtparametern, ergänzt um den Pulskoeffizienten, angewandt.

Zu steigenden Halbanstiegszeiten wurde die Temperaturleitfähigkeit (Soll), sowie der Temperaturanstieg mit vorgegebenen Pulsparametern und Länge (GI.5.6) berechnet (Länge=0.2cm, τ =1 ms, b=0.5). Die Temperaturleitfähigkeit der zweiten Schicht ist gleich Sollwert.

Aus diesen simulierten Meßdaten wurden die Biotzahlen und die Temperaturleitfähigkeit der ersten Schicht mit der Methode der nichtlinearen Parameterschätzung berechnet.

Die Abweichung der Temperaturleitfähigkeit ist in Abbildung 12.4.2 dargestellt.

Abbildung 12.4.2 Abweichung der Temperaturleitfähigkeit des Zweischichtmodells vom Sollwert in Abhängigkeit von auf die Pulsdauer normierter Halbanstiegszeit. Der Temperaturanstieg wurde mit Hilfe der theoretischen endlichen Pulsdauer-Funktion für Dreieckpulse (GI.5.4.) mit dem Sollwert berechnet.

12.4.3 Vergleich mit der Funktion von Inoune et al (1980).

Der Temperaturanstieg wurde mit dem Inoune-Kontaktwiderstandmodell mit steigendem Kontaktwiderstand (Sollwert) berechnet.

Das Zweichichtenmodell hatte die gleichen Schichtparameter (L₁=0.1999 cm, ρ_1 = 7.67 g/cm³, c_{p1}=0.445 J/gK, α_1 =0.0518 cm²/s, L₂=0.105 cm, ρ_2 = 5.97 g/cm³, c_{p2}=0.461 J/gK, α_2 =0.0108 cm²/s).

Aus diesen simulierten Meßdaten wurden die Biotzahlen und der thermische Kontaktwiderstand mit der Methode der nichtlinearen Parameterschätzung berechnet.

Die Abweichung des thermischen Kontaktwiderstandes vom Sollwert ist in Abbildung 12.4.3 dargestellt.

Abbildung 12.4.3

Abweichung des thermischen Kontaktwiderstandes des Zweischichtmodells vom Sollwert in Abhängigkeit vom normierten thermischen Kontaktwiderstand *. Der theoretische Temperaturanstieg wurde mit Hilfe der Inoune-Funktion mit dem Sollwert berechnet.

* RR= R k / L , wobei RR der normierte thermische Kontaktwiderstand , R der thermische Kontaktwiderstand , L die Probenlänge und k die Wärmeleitfähigkeit der Probe ist.

12.5 Anwendbarkeit der Laserflash-Methode

Die Laserflash-Methode wurde für nichttransparente, homogene Materialien sowie für Schichtverbunde entwickelt.

Für homogene Werkstoffe und Schichtverbunde wurde die Methode mit den neuen Lösungen bis $t_{0.5} = \tau$ für den Pulseffekt und Biotzahl=10 auf Wärmeverluste geprüft. Die Genauigkeit der Methode bleibt innerhalb der Fehlergrenze von 5%.

Bei transparenten Proben werden die Endflächen beschichtet, so daß der Ort der Absorption des Wärmepulses und der Temperaturänderung an der Rückseite definiert ist. Innerhalb des Mediums wird die Wärmestrahlung kontinuierlich emittiert, absorbiert und reemittiert. Die Untersuchung dieses Mechanismus ist nicht Bestandteil dieser Arbeit. Nach vieljähriger experimenteller Erfahrung im Kernforschungszentrum Karlsruhe wird angenommen, daß die Korrektur für den Energieverlust bei transparenten Proben ähnlich behandelt werden kann, wie die "normalen Wärmeverluste" für die Flash-Methode (Fr.Dr.Schulz, pers. Mitteilung). Der Kühlprozess der Probe, der durch die radial fallende Strahlungsdichte verursacht wird, verläuft ähnlich, wie bei der Kühlung mit Konvektion oder Wärmeleitung durch die Probehalterung.

Die Laserflash-Methode ist strenggenommen nicht geeignet für disperse oder faserverstärkte Werkstoffe, da die Transporteigenschaften bei inhomogenen Proben ortsabhängig sind. Aufgrund der Berechnungen für Wärmeleitfähigkeitswerte disperser Werkstoffe (z.B. Maxwell (1872), Rayleigh(1892) oder Bruggeman(1935)) und mit Hilfe der Anwendung der Mischungsregel für die Dichte und für die spezifische Wärmekapazität kann die Temperaturleitfähigkeit eines dispersen Werkstoffes unter bestimmten Umständen berechnet werden. Kerrisk (1971, 1972), Lee und Taylor (1976) und Taylor (1983) haben gute Übereinstimmung zwischen den gemessenen und den auf diese Art berechneten Temperaturleitfähigkeitswerten bei vielen Proben gefunden.

Insbesonders bei größeren Inhomogenitäten wird jedoch empfohlen, die 'finite elemente' Methode mit der konkreten Materialstruktur und mit den Randbedingungen des Laserflash-Verfahrens zu benützen.

Zusammenfassung

Bei der Anwendung des Laserflash-Verfahrens an homogenen Proben werden grundsätzlich drei Fälle unterschieden: adiabatischer Fall, Messungen mit dem Effekt der endlichen Pulsdauer und Auftreten von Wärmeverlusten.

Für den adiabatischen Fall gilt das Parker-Modell (1961). Die Temperaturleitfähigkeit wird diskreten Anstiegszeiten zugeordnet (Gl.2.1.6c). Die in dieser Arbeit vorgeschlagene Methode (Kap.4.) kann durch die beste Anpassung auf ein Intervall, z.B. auf die Punkte *zwischen* den Anstiegswerten von 40% und 60% angewandt werden. Der Unterschied zwischen den zwei Methoden bleibt naturgemäß klein (Kap.11.3). Die Halbanstiegszeit bleibt weiterhin ein sehr wichtiger Parameter, nicht nur für die Berechnung der adiabatischen Temperaturleitfähigkeit.

Für die Bestimmung des Effekts der endlichen Pulsdauer wurden in dieser Arbeit vier analytische Lösungen für verschiedenen Pulsformen hergeleitet (Kap.5.2). Die Temperaturleitfähigkeit kann aus diesen theoretischen Funktionen mit Parameteroptimierung ermittelt werden. Die Azumi-Methode ist ein geeignetes Verfahren zur Bestimmung der Temperaturleitfähigkeit bei kürzeren Transportzeiten (A.Degiovanni, R.Taylor, J.Henderson per.Mitteilung). Die neuen analytischen Methoden sind bei extrem kurzen Halbanstiegszeiten ($t_{0.5} > \approx \tau$) um ca.2 % genauer (Abb.12.1.2). Sehr nützlich kann die Darstellung der theoretischen Temperaturanstiegswerte mit der neuen Methode sein. Bei noch kürzeren Halbanstiegszeiten ($t_{0.5} < \approx \tau$) wird die Konvolutionsmethode (Kap.5.3) empfohlen, weil dann die Kenntnisse über den genauen Verlauf der Pulsintensität in die Berechnung einbezogen werden müssen.

Für die Bestimmung der Temperaturleitfähigkeit unter Wärmeverlusten ist die Cowan-Methode sehr geeignet (B.Schulz, J.Henderson, R.Taylor, Abb. 12.2.5). Probleme können hier jedoch aufgrund der eventuellen Temperaturschwankungen der Umgebung der Probe oder bei nicht ausreichender Stabilität der Elektronik bei sehr langen Meßzeiten auftreten. Die Moment- und die Ratiomethoden weisen oft einen relativen hohen Fehler auf (Abb.12.2.1-3 ; praktische Erfahrung der Autoren, s.oben). Die neu vorgeschlagene Methode (Kap.6.1) ist auch bei hohen Wärmeverlusten stabil (Abb.12.2.6). Die Lösung läßt sich durch die Darstellung der theoretischen Anstiegskurve leicht kontrollieren.

Bei der Anpassung der theoretischen Funktion an eine Messung müssen drei Parameter nach dem Prinzip der kleinsten Quadrate ermittelt werden: die Temperaturleitfähigkeit und zwei Biotzahlen. In Kapitel 6.2 wird die Methode der nichtlinearen Parameterschätzung beschrieben. Bei der Anwendung des Laserflash-Verfahrens mußte bisher immer die Entscheidung getroffen werden, wann und welche Korrektur zu verwenden ist. Mit der Einführung einer analytischen Funktion (Kap.7.1) entstand die allgemeine Lösung. Dieses Modell liefert unter adiabatischen Umständen, bei kurzen Meßzeiten und bei Wärmeverlusten sehr gute Ergebnisse (Abb.12.3.1-3).

Die Methode verwendet ebenfalls die nichtlineare Parameterschätzung zur Bestimmung der Temperaturleitfähigkeit und der Biotzahlen. Die Darstellung des theoretischen Anstiegs hilft bei der Kontrolle des Ergebnisses.

Lee (1974) entwickelte ein Modell für Zweischichtproben und Inoune et al.(1986) beschrieben ein Modell mit thermischem Kontaktwiderstand; beide Lösungen gelten für den adiabatischen Zustand. Eine neue, allgemeingültige Lösung für Zweischichtproben wurde in Kapitel 9 beschrieben. Dieses Modell verfügt über die Korrektur der endlichen Pulsdauer und der Wärmeverlusteffekte. Durch nichtlineare Parameterschätzung kann entweder die Temperaturleitfähigkeit einer Schicht oder der thermische Kontaktwiderstand zwischen den Schichten ermittelt werden. Die Modellkurve kann dargestellt werden.

Das neue Modell wurde für den Fall der endlichen Pulsdauer und der Wärmeverluste mit identischen Schichten in Abb.12.4.1-2 verifiziert, sowie mit der Inoune-Funktion unter adiabatischen Umständen verglichen (Abb.12.4.3).

Zum Schluß dieser Dissertation wurde die Temperaturfunktion eines Dreischichtsystems hergeleitet und beschrieben; jedoch ohne Verifikation und Applikation,.

ANHANG

Anhang 1. Temperaturanstiegsfunktion mit dem Effekt von exponentiellen Pulsen

Der Temperaturanstieg kann als Faltung der adiabatischen Temperaturfunktion und der Pulsfunktion dargestellt werden:

$$T(t) = \int_{t'=0}^{t} f(t') T^{AD}(t-t') dt'$$
(A1.1)

Der Faltungssatz wird Laplace-transformiert:

$$T^{FP}(s) = \pounds(f(t)) * \pounds(T(t)),$$
 (A1.2)

wobei s die Variable der Laplace-Transformation ist.

$$\ell(f(t)) = \ell(\frac{t}{t_p^2} \exp(-t/t_p)) = \frac{1}{t_p^2} \frac{1}{(s+1/t_p)^2}$$
(A1.3)

$$\mathcal{L}(T^{AD}(t)) = \mathcal{L}(1 + 2\sum_{n=1}^{\infty} (-1)^n \exp(-\omega_n t)) =$$
(A1.4)

$$1/s+ 2 \sum_{n=1}^{\infty} (-1)^n 1/(s - \omega_n))$$

Die Faltung resultiert :

$$\ell(f(t)) * \ell(T(t)) = \frac{1}{t_p^2} \frac{1}{s(s+1/t_p)^2} + \frac{1}{t_p^2} 2 \sum_{n=1}^{\infty} (-1)^n \frac{1}{(s-\omega_n)(s+1/t_p)^2}$$
(A1.5)

Die Rücktransformation des ersten Gliedes ergibt :

$$\frac{1}{t_p}^2 t_p^2 (1-\exp(-\frac{t}{t_p})-\frac{t}{t_p}\exp(-\frac{t}{t_p})).$$

Die Rücktransformation resultiert :

$$T^{FP}(x,t) = 1 - \exp(-t/t_p) - t/t_p \exp(-t/t_p) +$$

$$2/t_p^2 \sum_{n=1}^{\infty} \frac{(-1)^n}{(\frac{1}{t_p} + \omega_n)^2} (\exp(\omega_n t) - \exp(-\frac{t}{t_p}) - (\frac{1}{t_p} + \omega_n t) \exp(-\frac{t}{t_p}))$$

$$= 1 - \exp(-t/t_p) (1 + t/t_p) + 2/t_p^2 \sum_{n=1}^{\infty} \frac{(-1)^n}{(\frac{1}{t_p} + \omega_n)^2} (\exp(\omega_n t) - \exp(-\frac{t}{t_p}) - (\frac{1}{t_p} + \omega_n) t \exp(-\frac{t}{t_p})),$$
(A1.6)

$$\omega_n = - \frac{\pi^2 n^2 \alpha}{L^2}$$

Anhang 2. Temperaturanstiegsfunktion mit dem Effekt von Dreieckpulsen

Konvolution mit dreieckförmiger Pulsfunktion Die Pulsfunktion lautet:

$$f(t) = \begin{cases} p_1 t, & t \le \tau b \\ p_2 t + p_3 & \tau b < t < \tau \\ 0, & t \ge \tau, \end{cases}$$
(A2.1)

wobei

 $p_1 = 2/(\tau^2 b),$ $p_2 = -2/(\tau^2 (1-b)).$ $p_3 = 2/(\tau(1-b)),$ $\tau \text{ die Pulsdauer ist,}$ und die Zeit des Pulsmaximums τb ist.

Die Konvolution zwischen der Pulsfunktion und der adiabatischen Temperaturfunktion lautet:

$$T^{FP}(t) = \int_{t'=0}^{t} f(t') \left[1 + 2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n(t-t')) \right] dt'$$
(A2.2)

wobei

 $\omega_n = -\frac{n^2 \pi^2 \alpha}{L^2} \quad . \tag{A2.3}$

Fall 1: t < tb, $T^{FP}(t) = \int_{t'=0}^{t} p_{1} t' [1 + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} (t-t'))] dt') \qquad (A2.4)$ $T^{FP}(t) = p_{1} t^{2} + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \int_{t'=0}^{t} p_{1} t' \exp(-\omega_{n} t') dt'$ bzw. $T^{FP}(t) = p_{1}/2 t^{2} + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \frac{p_{1}}{(\omega_{n})^{2}} (\exp(-\omega_{n} t)(-\omega_{n} t - 1) + 1), \qquad (A2.5)$

Fall 2:
$$\tau \mathbf{b} < t < \tau$$
 (A2.6)

$$T^{FP}(t) = \int_{t'=0}^{\tau b} p_{1} t' \Big[1 + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} (t-t')) \Big] dt' + \int_{t'=\tau b}^{t} (p_{2} t' + p_{3}) \Big[1 + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} (t-t')) \Big] dt',$$
bzw. $T^{FP}(t) = p_{1} (\tau b)^{2} + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \int_{t'=0}^{\tau b} p_{1} t' \exp(-\omega_{n} t') dt' +$

$$p_{2} (t^{2} - (\tau b)^{2})/2 + p_{3} (t-\tau b) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \int_{t'=\tau b}^{t} (p_{2} t' + p_{3}) \exp(-\omega_{n} t') dt',$$
oder $T^{FP}(t) = p_{1} 2 (\tau b)^{2} + p_{2} t^{2}/2 + p_{3} t \cdot p_{2} (\tau b)^{2}/2 - p_{3} (\tau b) +$

$$2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \Big[\frac{p_{1}}{\omega_{n}^{2}} (\exp(-\omega_{n} \tau b)(-\omega_{n} \tau b - 1) + 1) + \frac{p_{2}}{(\omega_{n})^{2}} (\exp(-\omega_{n} t) - \exp(-\omega_{n} \tau b) (-\omega_{n} \tau b - 1)) + \frac{p_{3}}{(-\omega_{n})} (\exp(-\omega_{n} t) - \exp(-\omega_{n} \tau b)) \Big]$$
(A2.7)

Fall 3: τ<t

$$T^{FP}(t) = p_{1}(\tau b)^{2} + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(-\omega_{n} t) \int_{t'=0}^{\tau b} p_{1} t' \exp(-\omega_{n} t') dt' + p_{2}(\tau^{2} - (\tau b)^{2})/2 + p_{3}(\tau - \tau b) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \int_{t'=\tau b}^{\tau} (p_{2} t' + p_{3}) \exp(-\omega_{n} t') dt', \quad (A2.8)$$
bzw.
$$T^{FP}(t) = p_{1}/2 (\tau b)^{2} + p_{2} \tau^{2}/2 + p_{3} \tau - p_{2} (\tau b)^{2}/2 - p_{3} (\tau b) \quad (A2.9)$$

$$+ 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[\frac{p_{1}}{\omega_{n}^{2}} (\exp(-\omega_{n} \tau b)(-\omega_{n} \tau b - 1) + 1) + \frac{p_{3}}{(-\omega_{n})^{2}} (\exp(-\omega_{n} \tau) - \exp(-\omega_{n} \tau b))) \right]$$

Anhang 3. Temperaturfunktion mit dem Effekt von linear-exponentiellen Pulsen

Die Pulsfunktion lautet:

$$f(t) = \begin{cases} p_1 t, & t \le \tau b \\ p_2 e^{t p_3} & \tau b < t < \tau \\ 0, & t \ge \tau, \end{cases}$$
(A3.1)

wobei

$$p_{3} = LN (0.01)/(\tau - \tau b)$$

$$p_{1} = p_{3}/(p_{3}\tau^{2}b^{2}/2 + \tau be^{-\tau bp_{3}} (e^{\tau p_{3}} - e^{\tau b p_{3}}))$$

$$p_{2} = p_{1}\tau b e^{-\tau b p_{3}}$$

 $\tau~$ die Pulslänge ist und τb die Zeit des Pulsmaximums ist.

Fall 1 : $t \le \tau b$. siehe Anhang 1.

Die Konvolution wird durchgeführt: t

$$T^{FP}(t) = \int_{t=0}^{\infty} f(t') \left[1 + 2 \sum_{n=1}^{\infty} (-1)^n \exp(-\omega_n (t-t')) \right] dt'$$

$$T^{FP}(t) = p_1/2 t^2 + 2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \frac{p_1}{(\omega_n)^2} \left(\exp(-\omega_n t)(-\omega_n t - 1) + 1 \right), \qquad (A3.2)$$

wobei

$$\omega_n = -\frac{n^2 \pi^2 \alpha}{L^2}$$

Fall 2:
$$\tau b < t < \tau$$

$$T^{FP}(t) = \int_{t=0}^{\tau b} p_{1} t' [1+2\sum_{n=1}^{\infty} (-1)^{n} exp(\omega_{n}(t-t'))] dt' + \int_{t=\tau b}^{t} (p_{2} exp(t' p_{3})) [1+2\sum_{n=1}^{\infty} (-1)^{n} exp(\omega_{n}(t-t'))] dt',$$

$$T^{FP}(t) = p_{1}(\tau b)^{2} + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \int_{t'=0}^{\tau b} p_{1} t' \exp(-\omega_{n} t') dt' + p_{2}/p_{3} (\exp(p_{3} t) - \exp(p_{3} \tau b))$$

$$+ 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \int_{t'=\tau b}^{t} (p_{2} \exp(t' p_{3})) \exp(-\omega_{n} t') dt',$$

bzw.

$$T^{FP}(t) = p_{1}/2 (\tau b)^{2} + p_{2}/p_{3} (\exp(p_{3} t) - \exp(p_{3} \tau b)) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[\frac{p_{1}}{(\omega_{n})^{2}} (\exp(-\omega_{n} \tau b) (-\omega_{n} \tau b - 1) + 1)) + \frac{p_{2}}{(-\omega_{n} + p_{3})} (\exp((-\omega_{n} + p_{3})t) - \exp((-\omega_{n} + p_{3})\tau b) \right]$$
(A3.3)

und Fall 3 : t> τ

$$T^{FP}(t) = \int_{t'=0}^{\tau b} p_{1} t' [1+2\sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} (t-t'))] dt' + \int_{t'=0}^{\tau} (p_{2} \exp(t' p_{3}) [1+2\sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} (t-t')))] dt'$$
$$\begin{array}{ll} \text{oder} & T^{\text{FP}}(t) = p_{1}\left(\tau b\right)^{2} + 2\sum_{n=1}^{\infty}\left(-1\right)^{n}\exp(\omega_{n} t)\int_{t^{*}=0}^{\tau b}p_{1} t^{*}\exp(-\omega_{n} t^{*})dt^{*} + \\ & p_{2}/p_{3}\left(\exp(p_{3} \tau) - \exp(p_{3} \tau b)\right) + \\ & \infty \\ & 2\sum_{n=1}^{\infty}\left(-1\right)^{n}\exp(\omega_{n} t)\int_{t^{*}=\tau b}^{\tau}(p_{2}\exp(t^{*} p_{3}))\exp(-\omega_{n} t^{*})dt^{*}, \\ & \text{bzw.} \quad T^{\text{FP}}(t) = p_{1}/2 \left(\tau b\right)^{2} + p_{2}/p_{3} \left(\exp(p_{3} \tau) - \exp(p_{3} \tau b)\right) \\ & + 2\sum_{n=1}^{\infty}\left(-1\right)^{n}\exp(\omega_{n} t)\left[\frac{p_{1}}{\left(\omega_{n}\right)^{2}} - \left(\exp(-\omega_{n} \tau b)\left(-\omega_{n} \tau b - 1\right) + 1\right)\right) \\ & + \frac{p_{2}}{\left(-\omega_{n} + p_{3}\right)}\left(\exp(\left(-\omega_{n} + p_{3}\right)\tau\right) - \exp(\left(-\omega_{n} + p_{3}\right)\tau b)\right] \end{array}$$
(A3.4)

Anhang 4. Die Korrektur für die endliche Pulsdauer mit trapezförmigen Pulsen

Die Pulsfunktion ist:

$$f(t) = \begin{cases} p_1 t, & t \le t_1 \\ p_1 t_1 & t_1 \le t \le t_2 \\ p_2 t + p_3, & t_2 < t < \tau \\ 0, & t \ge \tau, \end{cases}$$
(A4.1)

wobei

t₁, t₂ die Anfangs-, bzw.Endzeit der konstanten Phase der Trapezfunktion sind, $p_1 = 2/((\tau+t_2 - t_1)t_1),$ $p_2 = -p_1 t_1/(\tau-t_2).$ $p_3 = -p_2 \tau,$ τ die Pulsdauer ist.

Die Konvolution zwischen der Pulsfunktion und der adiabatischen Temperaturfunktion hat die Form :

$$T^{FP}(t) = \int_{t'=0}^{t} f(t') \left[1 + 2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n (t-t')) \right] dt'$$
(A4.2)

wobei

$$\omega_{n} = -n^{2} \pi^{2} \alpha / L^{2}$$

$$T^{FP}(t) = \int_{t'=0}^{t} f(t') 1 dt' + 2 \int_{t'=0}^{t} f(t') \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} (t-t')) dt' =$$

$$\int_{t'=0}^{\infty} f(t') dt' + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \int_{t'=0}^{t} f(t') \exp(-\omega_{n} t') dt')$$
(A4.3)

Fall 1: t < t₁

$$T^{FP}(t) = \int_{t'=0}^{t} p_{1} t' dt' + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \int_{t'=0}^{t} p_{1} t' \exp(-\omega_{n} t') dt' =$$

$$p_{1} t^{2}/2 + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{1}/\omega_{n}^{2} (1 - \exp(-\omega_{n} t)(\omega_{n} t + 1)) \right]$$
(A4.4)

Fall 2 : $t_1 < t < t_2$:

$$T^{FP}(t) = \int_{t=0}^{t_{1}} p_{1} t' dt' + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n}) \int_{t'=0}^{t_{1}} p_{1} t' \exp(-\omega_{n} t') dt' + \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \int_{t'=t_{1}}^{t} p_{1} t_{1} \exp(-\omega_{n} t') dt' = \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) [p_{1}/\omega_{n}^{2} (1-\exp(-\omega_{n} t_{1})(\omega_{n} t_{1}+1))] + p_{1} t_{1}^{2}/2 + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) [p_{1}/\omega_{n}^{2} (1-\exp(-\omega_{n} t_{1})(\omega_{n} t_{1}+1))] + (A4.5)$$

Fall 3 : $t_2 < t < \tau$

$$T^{FP}(t) = \int_{t'=0}^{t_1} p_1 t' dt' + 2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=0}^{t_1} p_1 t' \exp(-\omega_n t') dt' + 2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=t_1}^{t_2} \exp(-\omega_n t') dt' + 2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=t_1}^{t} \exp(-\omega_n t') dt' + 2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=t_2}^{t} (p_2 t' + p_3) exp(-\omega_n t') dt'$$

oder:

$$T^{FP}(t) = p_{1} t_{1}^{2}/2 + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{1}/\omega_{n}^{2} (1-\exp(-\omega_{n} t_{1})(\omega_{n} t_{1}+1)) \right] + p_{1} t_{1} (t_{2} - t_{1}) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[t_{1} p_{1}/\omega_{n} (-\exp(-\omega_{n} t_{2}) + \exp(-\omega_{n} t_{1})) \right] + p_{2} (t^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} t)(\omega_{n} t+1) + \exp(-\omega_{n} t_{2})(\omega_{n} t_{2}+1)) \right] + p_{2} (t^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} t)(\omega_{n} t+1) + \exp(-\omega_{n} t_{2})(\omega_{n} t_{2}+1)) \right] + p_{2} (t^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} t)(\omega_{n} t+1) + \exp(-\omega_{n} t_{2})(\omega_{n} t_{2}+1)) \right] + p_{2} (t^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} t)(\omega_{n} t+1) + \exp(-\omega_{n} t_{2})(\omega_{n} t_{2}+1)) \right] + p_{2} (t^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} t)(\omega_{n} t+1) + \exp(-\omega_{n} t_{2})(\omega_{n} t_{2}+1) \right] + p_{2} (t^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} t)(\omega_{n} t+1) + \exp(-\omega_{n} t_{2})(\omega_{n} t_{2}+1) \right] + p_{2} (t^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} t)(\omega_{n} t+1) + \exp(-\omega_{n} t_{2})(\omega_{n} t_{2}+1) \right] + p_{2} (t^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} t)(\omega_{n} t+1) + \exp(-\omega_{n} t_{2})(\omega_{n} t+1) \right] + p_{2} (t^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} t)(\omega_{n} t+1) + \exp(-\omega_{n} t+1) \right] + p_{2} (t^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} t)(\omega_{n} t+1) + \exp(-\omega_{n} t+1) \right] + p_{2} (t^{2}/2 - t^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} t)(\omega_{n} t+1) + \exp(-\omega_{n} t+1) \right] + p_{2} (t^{2}/2 - t^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} (t^{2}/2 - t^{2}/2 - t^{2}/2) + 2$$

$$p_{3}(t - t_{2}) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{3}/\omega_{n} (-\exp(-\omega_{n} t) + \exp(-\omega_{n} t_{2})) \right]$$
(A4.6)

Fall 4 : *τ*<t

$$T^{FP}(t) = \int_{t'=0}^{t_1} p_1 t' dt' + 2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=0}^{t_1} p_1 t' \exp(-\omega_n t') dt' + p_1 t_1 \int_{t'=t_1}^{t_2} dt' + 2 p_1 t_2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=t_1}^{t_2} \exp(-\omega_n t') dt' + p_1 t_2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=t_1}^{t_2} \exp(-\omega_n t') dt' + p_1 t_2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=t_1}^{t_2} \exp(-\omega_n t') dt' + p_1 t_2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=t_1}^{t_2} \exp(-\omega_n t') dt' + p_1 t_2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=t_1}^{t_2} \exp(-\omega_n t') dt' + p_1 t_2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=t_1}^{t_2} \exp(-\omega_n t') dt' + p_1 t_2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=t_1}^{t_2} \exp(-\omega_n t') dt' + p_1 t_2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=t_1}^{t_2} \exp(-\omega_n t') dt' + p_1 t_2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=t_1}^{t_2} \exp(-\omega_n t') dt' + p_1 t_2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=t_1}^{t_2} \exp(-\omega_n t') dt' + p_1 t_2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=t_1}^{t_2} \exp(-\omega_n t') dt' + p_1 t_2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=t_1}^{t_2} \exp(-\omega_n t') dt' + p_1 t_2 \sum_{n=1}^{\infty} (-1)^n \exp(-\omega_n t) \int_{t'=t_1}^{t_2} \exp(-\omega_n t') dt' + p_1 t_2 \sum_{n=1}^{\infty} (-1)^n \exp(-\omega_n t') dt' + p_1 \sum_{n=1}^{\infty} (-1)^n \exp(-\omega_n t') dt' + p_1$$

$$\sum_{t'=t_1}^{\tau} (p_2 t' + p_3) dt') + 2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega_n t) \int_{t'=t_2}^{\tau} (p_2 t' + p_3) \exp(-\omega_n t') dt')$$

n=1

oder

$$T^{FP}(t) = p_{1} t_{1}^{2}/2 + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{1}/\omega_{n}^{2} (1 - \exp(-\omega_{n} t_{1})(\omega_{n} t_{1} + 1)) \right] + p_{1} t_{1} (t_{2} - t_{1}) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[t_{1} p_{1}/\omega_{n} (-\exp(-\omega_{n} t_{2}) + \exp(-\omega_{n} t_{1})) \right] + p_{2} (\tau^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} \tau)(\omega_{n} \tau + 1) + \exp(-\omega_{n} t_{2})(\omega_{n} t_{2} + 1)) \right] + p_{2} (\tau^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} \tau)(\omega_{n} \tau + 1) + \exp(-\omega_{n} t_{2})(\omega_{n} t_{2} + 1)) \right] + p_{2} (\tau^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} \tau)(\omega_{n} \tau + 1) + \exp(-\omega_{n} t_{2})(\omega_{n} t_{2} + 1)) \right] + p_{2} (\tau^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} \tau)(\omega_{n} \tau + 1) + \exp(-\omega_{n} t_{2})(\omega_{n} t_{2} + 1)) \right] + p_{2} (\tau^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} \tau)(\omega_{n} \tau + 1) + \exp(-\omega_{n} t_{2})(\omega_{n} t_{2} + 1) \right] + p_{2} (\tau^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} \tau)(\omega_{n} \tau + 1) + \exp(-\omega_{n} t_{2})(\omega_{n} t_{2} + 1) \right] + p_{2} (\tau^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} \tau)(\omega_{n} \tau + 1) + \exp(-\omega_{n} t_{2})(\omega_{n} t_{2} + 1) \right] + p_{2} (\tau^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} \tau + 1) + \exp(-\omega_{n} t_{2})(\omega_{n} t_{2} + 1) \right] + p_{2} (\tau^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} \tau + 1) + \exp(-\omega_{n} t_{2})(\omega_{n} t_{2} + 1) \right] + p_{2} (\tau^{2}/2 - t_{2}^{2}/2) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{2}/\omega_{n}^{2} (-\exp(-\omega_{n} \tau + 1) + \exp(-\omega_{n} t_{2})(\omega_{n} t_{2} + 1) \right]$$

$$p_{3}(\tau - t_{2}) + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp(\omega_{n} t) \left[p_{3} (-\exp(-\omega_{n} \tau) + \exp(-\omega_{n} t_{2})) \right]$$
(A4.7)

.

Anhang 5. Nichtlineare Parameterschätzung

(Nach Beck und Arnold, 1977).

Der Parameter β wird gesucht, bei dem die Abweichung zwischen den Meßdaten (Yi) und der Funktion T minimal ist :

$$s = \sum_{i=1}^{N} (Y_i - T(\beta)_i)^2 = \min.$$
 (A5.1)

Für das Minimum gilt:

$$\frac{\partial S}{\partial \beta} = \sum_{i=1}^{N} (Y_i - T(\beta)_i) (-\frac{\partial T}{\partial \beta}) = 0$$
(A5.2)

Die Funktion T wird um den β Wert in Taylor'sche Reihe entwickelt:

$$T_{i}^{k+1} = T_{i}^{k} + X_{i} (\beta^{k+1} - \beta^{k}),$$
(A5.3)

wobei

 $X_i = \frac{\partial T_i}{\partial \beta}$, und *k* Iterationsindex ist.

GI.A5.3 wird in GI.A5.2 eingeschrieben und folgender Zusammenhang ergibt sich:

$$\sum_{i=1}^{N} (Y_{i} - T^{k}(\beta)_{i} - X_{i} (\beta^{k+1} - \beta^{k})(X_{i})) = 0, \qquad (A5.4)$$

d.h.

$$\sum_{i=1}^{N} (Y_{i} - T^{k}(\beta)_{i}) X_{i} = \sum_{i=1}^{N} (X_{i} X_{i} (\beta^{k+1} - \beta^{k})))$$

Der Schätzwert β in der k+1-ten Iteration ist:

$$\beta^{k+1} = \beta^{k} + \frac{\sum_{j=1}^{N} (Y_{i} - T^{k}(\beta)_{j}) X_{j}}{\sum_{j=1}^{N} (X_{j} X_{j})},$$
(A5.5)

Für die drei Parameter $\beta_1, \beta_2, \beta_3$ gilt

$$s = \sum_{i=1}^{N} (Y_i - T(\beta_{1, i} \beta_{2, i} \beta_{3, i})^2) = min.$$
 (A5.6)

Für das Minimum gilt :

$$\frac{\partial S}{\partial \beta_{1}} = \sum_{i=1}^{N} (Y_{i} - T(\beta_{1}))_{i} \left(-\frac{\partial T}{\partial \beta_{1}}\right) = 0$$

$$\frac{\partial S}{\partial \beta_{2}} = \sum_{i=1}^{N} (Y_{i} - T(\beta_{2}))_{i} \left(-\frac{\partial T}{\partial \beta_{2}}\right) = 0$$

$$\frac{\partial S}{\partial \beta_{3}} = \sum_{i=1}^{N} (Y_{i} - T(\beta_{3}))_{i} \left(-\frac{\partial T}{\partial \beta_{3}}\right) = 0$$
(A5.7)

Die Funktion T wird um den Wert β in Taylor'sche Reihe entwickelt:

$$T_{i}^{k+1} = T_{i}^{k} + X_{1,i} (\beta_{1}^{k} - \beta_{1}^{k}) + X_{2,i} (\beta_{2}^{k+1} - \beta_{2}^{k}) + X_{3,i} (\beta_{3}^{k+1} - \beta_{3}^{k}),$$

wobei

$$X_{s,i} = \frac{\partial T_i}{\partial \beta_s}$$
, und *k* der Iterationsindex ist und *s*=1,2,3.

GI.A5.8 wird in GI.A5.7 eingeschrieben und folgende Gleichungen ergeben sich:

$$\sum_{i=1}^{N} [(Y_{i} - T^{k}(\beta_{1}) - X_{1,i}(\beta_{1}^{k+1} - \beta_{1}^{k}) - X_{2,i}(\beta_{2}^{k+1} - \beta_{2}^{k}) - X_{3,i}(\beta_{3}^{k+1} - \beta_{3}^{k})](X_{1,i})) = 0$$

$$\sum_{i=1}^{N} [(Y_{i} - T^{k}(\beta_{2}) - X_{1,i}(\beta_{1}^{k+1} - \beta_{1}^{k}) - X_{2,i}(\beta_{2}^{k+1} - \beta_{2}^{k}) - X_{3,i}(\beta_{3}^{k+1} - \beta_{3}^{k})](X_{2,i})) = 0$$

$$\sum_{i=1}^{N} [(Y_{i} - T^{k}(\beta_{3}) - X_{1,i}(\beta_{1}^{k+1} - \beta_{1}^{k}) - X_{2,i}(\beta_{2}^{k+1} - \beta_{2}^{k}) - X_{3,i}(\beta_{3}^{k+1} - \beta_{3}^{k})](X_{3,i})) = 0$$

d.h.

$$\sum_{i=1}^{N} (Y_{i} - T^{k}(\beta_{1})_{i}) X_{1,i} = \sum_{i=1}^{N} (X_{1,i} X_{1,i} (\beta_{1}^{k+1} - \beta_{1}^{k}) + X_{1,i} X_{2,i} (\beta_{2}^{k+1} - \beta_{2}^{k}) + X_{1,i} X_{3,i} (\beta_{3}^{k+1} - \beta_{3}^{k}))),$$

 $\sum_{i=1}^{N} (Y_{i} - T^{k}(\beta_{2})_{i}) X_{2,i} = \sum_{i=1}^{N} (X_{2,i} X_{1,i} (\beta_{1}^{k+1} - \beta_{1}^{k}) + X_{2,i} X_{2,i} (\beta_{2}^{k+1} - \beta_{2}^{k}) + X_{2,i} X_{3,i} (\beta_{3}^{k+1} - \beta_{3}^{k}))).$

(A5.8)

(A5.10)

$$\sum_{i=1}^{N} (Y_{i} - T^{k}(\beta_{3})_{i}) X_{1,i} = \sum_{i=1}^{N} (X_{3,i} X_{1,i} (\beta_{1}^{k+1} - \beta_{1}^{k}) + X_{3,i} X_{2,i} (\beta_{2}^{k+1} - \beta_{2}^{k}) + X_{3,i} X_{3,i} (\beta_{3}^{k+1} - \beta_{3}^{k})))$$

Für den Schätzwert β in der k+1-ten Iteration gilt:

$$\beta_s^{k+1} = \beta_s^k + \frac{\text{DET A(s)}}{\text{DET X}},$$
(A5.11)

wobei

 $x_{i,k} = x_i x_k$

und in der s-ten Spalte von Matrix A(s) steht:

$$A[s,k] = \sum_{i=1}^{N} (Y_i - T^k(\beta_s)_i) X_{k,i})$$

Anhang 6. Neue Wärmeverlustkorrektur mit der exponentiellen Pulsform

Die Pulsfunktion ist:

$$f(t) = t/t_p^2 \exp(-t/t_p)$$
(A6.1)

Die Faltung mit der Cape-Lehman-Funktion wird geschrieben :

$$T^{HL-FP}(x=L,r=0,t) = = \int_{t'=0}^{t} f(t') \sum_{m=1}^{\infty} C_m \xi_m \sum_{i=1}^{\infty} D_i (H_1) exp(\omega_{im} (t-t')/t_c) dt'.$$
(A6.2)

wobei

$$\begin{split} & C_{m} = (-1)^{m} 2\xi_{m}(\xi_{m}^{2}+2H_{2}+H_{2}^{2})^{-1}, \\ & \xi_{m} \text{ die Lösung von } (\xi_{m}^{2}-H_{2}^{2}) \tan \xi_{m} = 2 \xi_{m}H_{2} \text{ ist,} \\ & D_{i}(H_{1}) = [2 H_{1} / (H_{1}^{2}+\lambda_{i}^{2})] 1 / J_{0}(\lambda_{i}), \\ & t_{c} = L^{2} / (\pi^{2} \alpha), \\ & \omega_{im} = -(L/\pi)^{2} (\xi_{m}^{2}/L^{2} + \lambda_{i}^{2}/R_{s}^{2}), \\ & H_{1} \text{ Biotzahl am Umfang } (= h_{R} R_{s} / k), \\ & H_{2} \text{ Biotzahl an den Stirnflächen } (=h_{L} L / k) \text{ und} \\ & \lambda_{i} \text{ Lösung der transzendentalen Gleichung von } H_{1} J_{0}(\lambda_{i}) = \lambda_{i} J_{1}(\lambda_{i}) \text{ ist.} \end{split}$$

Die weitere Untersuchung befasst sich nur mit dem zeitabhängigen Glied und

Anhang 7. Zweischichtmodell mit Wärmeverlust

Abbildung A7.1 Schichtmodell

Die geltende Differentialgleichung lautet:

$$\frac{\partial T_1}{\partial t} = \alpha_1 \frac{\partial^2 T_1}{\partial x^2}, \qquad 0 < x < L_1 \qquad (A7.1)$$

$$\frac{\partial T_2}{\partial t} = \alpha_2 \frac{\partial^2 T_2}{\partial x^2} \qquad L_1 < x < L_2.$$

Die Randbedingungen sind:

$$k_1 \frac{\partial T_1}{\partial x} = h_L T_1$$
 (A7.2a)

$$-k_2 \frac{\partial T_2}{\partial x} = h_L T_2 \qquad x = L_2. \qquad (A7.2d)$$

Die Anfangstemperatur ist:

$$T_1(x,t=0) = q_0/(\rho c_p g)$$
 0

wobei g<<L 1 und $T_1(x) = T_2(x) = 0$ L₂>x > g. Die Lösung wird nach der Separation der Variablen in folgender Form gesucht:

$$T_{i}(x, t) = \sum_{n=0}^{\infty} \exp(-\alpha_{1}(\beta_{n}/L_{2})^{2}t) \left[A_{in} \sin\left(\frac{\beta_{n}\sqrt{\alpha_{1}}}{\sqrt{\alpha_{i}}}x/L_{2}\right) + B_{in} \cos\left(\frac{\beta_{n}\sqrt{\alpha_{1}}}{\sqrt{\alpha_{i}}}x/L_{2}\right)\right]$$

i = 1,2.

Die Randbedingungen sind:

$$\begin{aligned} & k_{1} A_{1n} \frac{\beta_{n}}{L_{2}} = h B_{1n} \\ & A_{1n} \sin(\frac{\beta_{n}}{L_{2}} L_{1}) + B_{1n} \cos(\frac{\beta_{n}}{L_{2}} L_{1}) = A_{2n} \sin(\frac{\beta_{n} \sqrt{\alpha_{1}}}{L_{2} \sqrt{\alpha_{2}}} L_{1}) + B_{2n} \cos(\frac{\beta_{n} \sqrt{\alpha_{1}}}{L_{2} \sqrt{\alpha_{2}}} L_{1}) \\ & \frac{k_{1}}{k_{2}} \frac{\beta_{n}}{\sqrt{\alpha_{1}}} \frac{\sqrt{\alpha_{2}}}{\beta_{n}} \left[A_{1n} \cos(\frac{\beta_{n}}{L_{2}} L_{1}) - B_{1n} \sin(\frac{\beta_{n}}{L_{2}} L_{1}) \right] = A_{2n} \cos(\frac{\beta_{n} \sqrt{\alpha_{1}}}{\sqrt{\alpha_{2}}} L_{1}) - B_{2n} \sin(\frac{\beta_{n} \sqrt{\alpha_{1}}}{\sqrt{\alpha_{2}}} L_{1}) \\ & k_{2} \frac{\beta_{n} \sqrt{\alpha_{1}}}{L_{2} \sqrt{\alpha_{2}}} \left[A_{2n} \cos(\frac{\beta_{n} \sqrt{\alpha_{1}}}{\sqrt{\alpha_{2}}}) - B_{2n} \sin(\frac{\beta_{n} \sqrt{\alpha_{1}}}{\sqrt{\alpha_{2}}}) \right] = -h_{L} \left[A_{2n} \sin(\frac{\beta_{n} \sqrt{\alpha_{1}}}{\sqrt{\alpha_{2}}}) + B_{2n} \cos(\frac{\beta_{n} \sqrt{\alpha_{1}}}{\sqrt{\alpha_{2}}}) \right] \end{aligned}$$

(A7.4)

-116-

Die GI.A7.4 umgeschrieben in Matrixform lautet:

wobei

$$\eta = \frac{\beta_n \sqrt{\alpha_1}}{\sqrt{\alpha_2}}, \qquad \gamma = \frac{\beta_n}{L_2} L_1,$$

$$\kappa = \frac{k_1}{k_2} \frac{\sqrt{\alpha_2}}{\sqrt{\alpha_1}} \qquad H_1 = \frac{h_L}{k_1} L_2$$

$$H_2 = \frac{h}{k_2} L_2.$$

Die Eigenwerte β_{1} bekommt man aus dem Determinant von GI.A7.5:

 $\begin{array}{l} \text{Det} = \\ \left[\cos{(\gamma)} \left[-\cos{(L_1/L_2 \eta)} (-\sin{(\eta)} + \cos{(\eta)} H_2/\eta) - \\ & \sin{(L_1/L_2 \eta)} (\cos{(\eta)} + \sin{(\eta)} H_2/\eta) \right] \\ + \sin{(L_1/L_2 \eta)} \left[-K \sin{(\gamma)} (-\sin{(\eta)} + \cos{(\eta)} H_2/\eta) \right] \\ - \cos{(L_1/L_2 \eta)} \left[-K \sin{(\gamma)} (\cos{(\eta)} + \sin{(\eta)} H_2/\eta) \right] \\ + H_1/\beta_n \sin{(\gamma)} \left[-\cos{(L_1/L_2 \eta)} (-\sin{(\eta)} + \cos{(\eta)} H_2/\eta) - \\ & \sin{(L_1/L_2 \eta)} (\cos{(\eta)} + \sin{(\eta)} H_2/\eta) \right] \\ + \sin{(L_1/L_2 \eta)} \left[K \cos{(\gamma)} (-\sin{(\eta)} + \cos{(\eta)} H_2/\eta) \right] \\ - \cos{(L_1/L_2 \eta)} \left[K \cos{(\gamma)} (-\sin{(\eta)} + \sin{(\eta)} H_2/\eta) \right] \\ \end{array} \right] = 0$

(A7.5)

oder

Aus Gl.A7.4 a können die Koeffizienten A_{1n} und B_{1n} bestimmt werden:

$$A_{1n} = H_1$$
 (A7.7)
 $B_{1n} = \beta_n$ (A7.8)

(A7.6)

Die unbekannten Koeffizienten sind aus der GI.A7.4b und GI.A7.4c zu bestimmen:

$$\begin{array}{ll} \sin \left(L_{1} / L_{2} \eta \right) & \cos (L_{1} / L_{2} \eta) & A_{2n} & \sin (\gamma) A_{1n} + \cos (\gamma) B_{1n} & \gamma \\ -\cos \left(L_{1} / L_{2} \eta \right) & \sin (L_{1} / L_{2} \eta) & B_{2n} & -K \cos (\gamma) A_{1n} + K \sin (\gamma) B_{1n} & \gamma \\ \end{array}$$

$$A_{2n} = (A7.9)$$

$$sin(L_1/L_2 \eta) (sin(\gamma)A_{1n} + cos (\gamma) B_{1n}) - cos(L_1/L_2 \eta) (-K cos(\gamma) A_{1n} + K sin (\gamma) B_{1n})$$

$$B_{2n} = (A7.10)$$

$$sin(L_1/L_2 \eta) (-K \cos(\gamma)A_{1n} + K \sin(\gamma) B_{1n}) + \cos(L_1/L_2 \eta) (sin(\gamma)A_{1n} + \cos(\gamma) B_{1n})$$

Die Temperaturfunktion an der Rückseite der Probe lautet:

$$T_{2}(L, t) = \sum_{n=1}^{\infty} \exp(-\alpha_{1}(\beta_{n}/L_{2})^{2}t) \frac{1}{N(\beta_{n})} (A_{2n} \sin(\eta) + B_{2n} \cos(\eta)) \mathbf{X}$$
$$\mathbf{X} \int_{0}^{\mathbf{g}} \frac{k_{1}}{\alpha_{1}} \frac{q_{0}}{g \rho_{1} C_{p1}} (A_{1n} \sin(\frac{\beta_{n}}{L_{2}}x) + B_{1n} \cos(\frac{\beta_{n}}{L_{2}}x)) dx$$
(A7.11)

wobei

$$N (\beta_{n}) = \frac{k_{1}}{\alpha_{1}} \int_{-1}^{L_{1}} \left(A_{1n} \sin(\frac{\beta_{n}}{L_{2}} x) \, dx + B_{1n} \cos(\frac{\beta_{n}}{L_{2}} x) \right)^{2} dx + 0$$

$$\frac{k_{2}}{L_{2}} \int_{-1}^{L_{2}} \left(A_{2n} \sin(\frac{\beta_{n} \sqrt{\alpha_{1}}}{\sqrt{\alpha_{2}L_{2}}} x) \, dx + B_{2n} \cos(\frac{\beta_{n} \sqrt{\alpha_{1}}}{\sqrt{\alpha_{2}L_{2}}} x) \right)^{2} dx$$

$$N (\beta_{n}) = \frac{k_{1}}{\alpha_{1}} \left[1/2 L_{1} (A_{1n}^{2} + B_{1n}^{2}) + \frac{L_{2}}{4 \beta_{n}} \sin(2\gamma) (-A_{1n}^{2} + B_{1n}^{2}) + \frac{L_{2}}{\beta_{n}} \sin^{2}(\gamma) B_{1n} A_{1n} \right] + (A7.12)$$

$$\frac{k_{2}}{\alpha_{2}} \left[1/2 (L_{2} - L_{1}) [A_{2n}^{2} + B_{2n}^{2}] - A_{2n}^{2} \frac{L_{2} \sqrt{\alpha_{2}}}{4 \beta_{n} \sqrt{\alpha_{1}}} (\sin(2\eta) - \sin(2\eta L_{1}/L_{2})) + B_{2n}^{2} \frac{L_{2} \sqrt{\alpha_{2}}}{4 \beta_{n} \sqrt{\alpha_{1}}} (\sin(2\eta) - \sin^{2}(\eta L_{1}/L_{2})) \right]$$

und

$$\int_{\alpha_{1}}^{g} \frac{q_{0}}{g_{\rho_{1}} C_{p_{1}}} \left(A_{1n} \sin\left(\frac{\beta_{n}}{L_{2}} x\right) + B_{1n} \cos\left(\frac{\beta_{n}}{L_{2}} x\right)\right) dx = 0$$

$$\frac{k_1}{\alpha_1} \frac{q_0}{g \rho_1 C_{p1}} \frac{L_2}{\beta_n} \left(B_{1n} \sin \left(\frac{\beta_n}{L_2} x \right) \right)_{x=0}^g \approx \frac{\beta_n}{L_2} \frac{k_1}{\alpha_1} \frac{q_0}{g \rho_1 C_{p1}} \frac{L_2}{\beta_n} B_{1n} g = B_{1n} q_0$$

Die normierte Temperaturfunktion ist:

$$T_{2} (L, t) / T_{max} = (A7.13)$$

$$\left[\rho_{1} C_{p1} L_{1} + \rho_{2} C_{p2} (L_{2} - L_{1}) \right] \sum_{n=0}^{\infty} exp(-\alpha_{1}(\beta_{n}/L_{2})^{2}t) \left[A_{2n} \sin(\eta) + B_{2n} \cos(\eta) \right] \frac{1}{N(\beta_{n})} B_{1n}$$

Anhang 8. Thermischer Kontaktwiderstand-Modell mit Wärmeverlust

Abbildung A8.1 Zweischichtmodell mit thermischem Kontaktwiderstand

Die Fourier-Gleichung gilt für beide Schichte:

$$\frac{\partial T_1}{\partial t} = \alpha_1 \frac{\partial^2 T_1}{\partial x^2}, \qquad 0 < x < L_1 \qquad (A8.1)$$

$$\frac{\partial T_2}{\partial t} = \alpha_2 \frac{\partial^2 T_2}{\partial x^2} \qquad L_1 < x < L_2.$$

Die Randbedingungen sind:

$$k_1 \frac{\partial T_1}{\partial x} = hT_1$$
 (A8.2a)

$$k_1 \frac{\partial T_1}{\partial x} = 1/R (T_1 - T_2) \qquad x = L_1$$
, (A8.2c)

$$-k_2 \frac{\partial T_2}{\partial x} = h T_2 \qquad x=L_2.$$
 (A8.2d)

Die Anfangstemperatur ist:

$$T_1(x) = q_0/(\rho c_p g)$$
 0

wobei g<<L1 und

$$T_1(x) = T_2(x) = 0$$
 $L_2 > x > g.$

Die Lösung wird nach der Separation der Variablen in folgender Form gesucht:

$$T_{i}(x, t) = \sum_{n=0}^{\infty} \exp(-\alpha_{1} (\beta_{n}/L_{2})^{2} t) \left[A_{in} \sin \left(\frac{\beta_{n} \sqrt{\alpha_{1}}}{\sqrt{\alpha_{i}}} x/L_{2} \right) + B_{in} \cos \left(\frac{\beta_{n} \sqrt{\alpha_{1}}}{\sqrt{\alpha_{i}}} x/L_{2} \right) \right]$$

$$i = 1, 2. \qquad (A8.5)$$

(A8.6)

Die Randbedingungen sind:

$$k_{1} A_{1n} \frac{p_{n}}{\sqrt{\alpha_{1}}} \sqrt{\alpha_{1}} / L_{2} = h B_{1n}$$

$$-k_{1} \frac{\beta_{n}}{\sqrt{\alpha_{1}}} \sqrt{\alpha_{1}} / L_{2} (A_{1n} \cos(\frac{\beta_{n}}{L_{2}} L_{1}) - B_{1n} \sin(\frac{\beta_{n}}{L_{2}} L_{1})) =$$

$$1/R (A_{1n} \sin(\frac{\beta_{n}}{L_{2}} L_{1}) + B_{1n} \cos(\frac{\beta_{n}}{L_{2}} L_{1}) - A_{2n} \sin(\frac{\beta_{n}}{L_{2}} \sqrt{\alpha_{2}} L_{1}) - B_{2n} \cos(\frac{\beta_{n}}{\sqrt{\alpha_{2}} L_{2}} L_{1})$$

$$\frac{k_1}{k_2} \frac{\beta_n}{\sqrt{\alpha_1}} \frac{\sqrt{\alpha_2}}{\beta_n} \left[A_{1n} \cos(\frac{\beta_n}{L_2} L_1) - B_{1n} \sin(\frac{\beta_n}{L_2} L_1) \right] = A_{2n} \cos(\frac{\beta_n}{\sqrt{\alpha_2}} \frac{\sqrt{\alpha_1}}{L_2} L_1) - B_{2n} \sin(\frac{\beta_n}{\sqrt{\alpha_2}} \frac{\sqrt{\alpha_1}}{\sqrt{\alpha_2}} L_1)$$

$$k_{2} \frac{\beta_{n}}{\sqrt{\alpha_{2}}} \sqrt{\alpha_{1}} / L_{2} \left[A_{2n} \cos(\frac{\beta_{n} \sqrt{\alpha_{1}}}{\sqrt{\alpha_{2}}}) - B_{2n} \sin(\frac{\beta_{n} \sqrt{\alpha_{1n}}}{\sqrt{\alpha_{2}}}) \right] = - h_{L} \left[A_{2n} \sin(\frac{\beta_{n} \sqrt{\alpha_{1}}}{\sqrt{\alpha_{2}}}) + B_{2n} \cos(\frac{\beta_{n} \sqrt{\alpha_{1}}}{\sqrt{\alpha_{2}}}) \right]$$

Die GI.A8.6 umgeschrieben in Matrixform:

1 -H₁/βn 0 0 A_{1n} 0 -cos(γ) RR β_n sin(γ)RR β_n $\sin (-1/L_2 \eta) \cos(-1/-2 \eta)$ 0 B_{1n} -cos(γ) - sin (γ) Kcos(γ) -K sin (γ) $-\cos(L_1/L_2 \eta) \sin(L_1/L_2 \eta)$ 0 A_{2n} = 0 0 +sin(η) H₂/ η +cos(η) H₂/ η 0 B_{2n} cos(η) -sin (ŋ)

wobei

$$X = \frac{\sqrt{\alpha_1}}{\sqrt{\alpha_2}}, \qquad \eta = X \beta_n,$$

$$\gamma = \beta_n \frac{L_1}{L_2}, \qquad K = \frac{k_1}{k_2} \frac{\sqrt{\alpha_2}}{\sqrt{\alpha_1}},$$

$$H_1 = \frac{h_L}{k_1} L_2, \qquad H_2 = \frac{h_L}{k_2} L_2,$$

$$RR = R k_1 / L_2$$

Die Eigenwerte β_n bekommt man aus dem Determinant von GI.8.6: Det = $[(\sin(\gamma) RR\beta_n - \cos(\gamma)) [-\cos(L_1/L_2 \eta) ((-\sin(\eta) + \cos(\eta) H_2/\eta) -$ - sin $(L_1/L_2 \eta) (\cos(\eta) + \sin(\eta) H_2/\eta)$] - sin ($L_1/L_2 \eta$) [-K sin (γ) (-sin (η)+cos(η) H₂/ η)] + $\cos(L_1/L_2 \eta)$ [-K $\sin(\gamma) (\cos(\eta) + \sin(\eta) H_2/\eta)$] + $H_1/\beta_n \left[(-\cos(\gamma) RR\beta_n - \sin(\gamma)) [-\cos(L_1/L_2 \eta) (-\sin(\eta) + \cos(\eta) H_2/\eta) - \right]$ $\sin (L_1/L_2 \eta) (\cos(\eta) + \sin(\eta) H_2/\eta)$ - sin (L₁/L₂ η) [K cos (γ) (-sin (η) + cos(η) H₂/ η)] + $\cos(L_1/L_2 \eta) [K \cos(\gamma) (\cos(\eta) + \sin(\eta) H_2/\eta)] = 0$

(A8.7)

$$\begin{array}{ll} \sin\left(L_{1}/L_{2}\eta\right) & \left[\left(\cos(\eta) + \sin(\eta)H_{2}/\eta\right)\left(-H_{1}/\beta_{n}\left(-\cos(\gamma)RR\beta_{n} - \sin(\gamma)\right) - \left(\sin(\gamma)RR\beta_{n} - \cos(\gamma)\right)\right) \\ & + \left(-\sin(\eta) + \cos(\eta)H_{2}/\eta\right)\left(-H_{1}\beta_{n}\cos(\gamma) + K\sin(\gamma)\right] + \\ \cos\left(L_{1}/L_{2}\eta\right) & \left[\left(-\sin(\eta) + \cos(\eta)H_{2}/\eta\right)\left(-H_{1}\beta_{n}\left(-\cos(\gamma)RR\beta_{n} - \sin(\gamma)\right) - \left(\sin(\gamma)RR\beta_{n} - \cos(\gamma)\right)\right) \\ & + \left(\cos(\eta) + \sin(\eta)H_{2}/\eta\right)\left(-H_{1}/\beta_{n}K\cos(\gamma) - K\sin(\gamma)\right] = 0 \end{array}$$

Die Koeffizienten B_{1n}, A_{1n} sind aus Gl.A8.3a:

$$B_{1n} = \beta_n$$
 (A8.8)
 $A_{1n} = H_1$ (A8.9)

Die unbekannten Koeffizienten sind aus der GI.A8.3b und GI.8.3c zu bestimmen:

$$\begin{array}{ll} sin \ (L_1 / L_2 \ \eta \) \ cos(L_1 / L_2 \ \eta) \ A_{2n} & (cos(\gamma) RR \beta_n \ +sin(\gamma)) \ A_{1n} \\ & +(cos(\gamma) RR \beta_n - sin(\gamma)) \ B_{1n} \\ -cos \ (L_1 / L_2 \ \eta) \ sin \ (L_1 / L_2 \ \eta) \ B_{2n} & -K \ cos(\gamma) A_{1n} + K \ sin \ (\gamma) \ B_{1n} \\ \end{array}$$

$$A_{2n} = \left[\left(\cos(\gamma) RR\beta_n + \sin(\gamma) \right) A_{1n} + \left(\cos(\gamma) - \sin(\gamma) RR\beta_n \right) B_{1n} \right] \sin(L_1/L_2 \eta) - \left(-K \cos(\gamma) A_{1n} + K \sin(\gamma) B_{1n} \right) \cos(L_1/L_2 \eta)$$
(A8.10)

$$B_{2n} = \sin \left(L_1/L_2 \eta\right) \left(-K \cos(\gamma) A_{1n} + K \sin(\gamma) B_{1n}\right) + \cos \left(L_1/L_2 \eta\right) \left[\left(\cos(\gamma) RR \beta_n + \sin(\gamma)\right)A_{1n} + \left(\cos(\gamma) - \sin(\gamma) RR \beta_n\right)B_{1n}\right]$$
(A8.11)

Die Temperaturfunktion an der Rückseite der Probe lautet:

$$T_{2} (L, t) = \sum_{m=1}^{\infty} \exp(-\alpha_{1} (\beta_{n}/L_{2})^{2} t) \frac{1}{N(\beta_{n})} (A_{2n} \sin (\eta) + B_{2n} \cos(\eta)) X$$

$$g \int_{\alpha_{1}}^{\beta_{1}} \frac{q_{0}}{g \rho_{1} C_{\rho_{1}}} (A_{1n} \sin (\frac{\beta_{n}}{L_{2}} x) + B_{1n} \cos (\frac{\beta_{n}}{L_{2}} x)) dx$$

Die Normfunktion ist: L1

$$N (\beta_n) = \frac{k_1}{\alpha_1} \int_{L_2}^{L_1} \left(A_{1n} \sin\left(\frac{\beta_n}{L_2} x\right) dx + B_{1n} \cos\left(\frac{\beta_n}{L_2} x\right) \right)^2 dx + \frac{0}{L_2} \frac{k_2}{\alpha_2} \int_{L_1}^{L_2} \left(A_{2n} \sin\left(\frac{\beta_n \sqrt{\alpha_1}}{\sqrt{\alpha_2} L_2} x\right) dx + B_{2n} \cos\left(\frac{\beta_n \sqrt{\alpha_1n}}{\sqrt{\alpha_2} L_2} x\right) \right)^2 dx$$

$$\begin{split} N(\beta_{n}) &= (A8.13) \\ \frac{k_{1}}{\alpha_{1}} \Big[1/2 L_{1}(A_{1n}^{2} + B_{1n}^{2}) + \frac{L_{2}}{4 \beta_{n}} \sin(2\gamma) (-A_{1n}^{2} + B_{1n}^{2}) + \frac{L_{2}}{\beta_{n}} \sin^{2}(\gamma) B_{1n} A_{1n} \Big] + \\ \frac{k_{2}}{\alpha_{2}} \Big[1/2 (L_{2} - L_{1}) [A_{2n}^{2} + B_{2n}^{2}] - A_{2n}^{2} \frac{L_{2} \sqrt{\alpha_{2}}}{4 \beta_{n} \sqrt{\alpha_{1}}} (\sin(2\eta) - \sin(2\eta L_{1}/L_{2})) \\ &+ B_{2n}^{2} \frac{L_{2} \sqrt{\alpha_{2}}}{4 \beta_{n} \sqrt{\alpha_{1}}} (\sin(2\eta) - \sin(2\eta L_{1}/L_{2})) \\ &+ A_{2n} B_{2n} L_{2} \frac{\sqrt{\alpha_{2}}}{\beta_{n} \sqrt{\alpha_{1}}} (\sin^{2}(\eta) - \sin^{2}(\eta L_{1}/L_{2})) \Big] . \end{split}$$

(A8.12)

Die normierte Temperaturfunktion lautet:

$$T_{2}(L, t) / T_{max} =$$

$$q_{0} \sum_{n=0}^{\infty} \exp(-\alpha_{1} (\beta_{n}/L_{2})^{2} t) (A_{2n} \sin (\eta) + B_{2n} \cos(\eta)) \frac{1}{N(\beta_{n})} / \frac{q_{0}}{\rho_{1} c_{p1} L_{1} + \rho_{2} c_{p2} (L_{2} - L_{1})} B_{1n}$$
(A8.14)

oder

$$T_{2} (L, t) / T_{max} = \left[\rho_{1} c_{p1} L_{1} + \rho_{2} c_{p2} (L_{2} - L_{1}) \right] \sum_{n=1}^{\infty} \exp(-\alpha_{1} (\beta_{n} / L_{2})^{2} t) \left(A_{2n} \sin(\eta) + B_{2n} \cos(\eta) \right) \frac{1}{N(\beta_{n})} B_{1n}$$

Anhang 9. Dreischichtmodell mit Wärmeverlust

Die Differentialgleichung lautet:

$$\frac{\partial T_1}{\partial t} = \alpha_1 \frac{\partial^2 T_1}{\partial x^2}, \qquad 0 < x < L_1 \qquad (A9.1)$$

$$\frac{\partial T_2}{\partial t} = \alpha_2 \frac{\partial^2 T_2}{\partial x^2}, \qquad L_1 < x < L_2 .$$

$$\frac{\partial T_3}{\partial t} = \alpha_3 \frac{\partial^2 T_3}{\partial x^2}, \qquad L_2 < x < L_3 .$$

Die Randbedingungen sind:

$$k_1 \frac{\partial T_1}{\partial x} = hT_1$$
 (A9.2a)

$$k_1 \frac{\partial T_1}{\partial x} = k_2 \frac{\partial T_2}{\partial x}$$
 x=L₁, (A9.2c)

$$-k_3 \frac{\partial T_3}{\partial x} = h T_3 \qquad x=L_3.$$
 (A9.2f)

Die Anfangstemperatur ist:

$$T_1(x) = q_0 / (\rho c_p g)$$
 0

(A9.3)

(A9.5)

wobei g<<L1 und

$$T_1(x) = T_2(x) = T_3(x) = 0$$
 $L_3 > x > g.$

Die Lösung wird nach der Separation der Variablen in folgender Form gesucht:

$$T_{i}(x, t) = \sum_{n=0}^{\infty} \exp(-\alpha_{1} (\beta_{n}/L_{3})^{2} t) \left(A_{in} \sin(\frac{\beta_{n}\sqrt{\alpha_{1}}}{L_{3}\sqrt{\alpha_{i}}}x) + B_{in} \cos(\frac{\beta_{n}\sqrt{\alpha_{1}}}{L_{3}\sqrt{\alpha_{j}}}x)\right)$$
(A9.4)

Die Randbedingungen sind :

$$k_1 A_{1n} \frac{\beta_n \sqrt{\alpha_1}}{L_3 \sqrt{\alpha_1}} = h_L B_{1n}$$

$$A_{1n}\sin(\frac{\beta_n\sqrt{\alpha_1}}{L_3\sqrt{\alpha_1}}L_1) + B_{1n}\cos(\frac{\beta_n\sqrt{\alpha_1}}{L_3\sqrt{\alpha_1}}L_1) = A_{2n}\sin(\frac{\beta_n\sqrt{\alpha_1}}{L_3\sqrt{\alpha_2}}L_1) + B_{2n}\cos(\frac{\beta_n\sqrt{\alpha_1}}{L_3\sqrt{\alpha_2}}L_1)$$

$$\frac{\mathbf{k}_{1}}{\mathbf{k}_{2}} \frac{\beta_{n}}{\sqrt{\alpha_{1}}} \frac{\sqrt{\alpha_{2}}}{\beta_{n}} \left[\mathbf{A}_{1n} \cos(\frac{\beta_{n}\sqrt{\alpha_{1}}}{L_{3}\sqrt{\alpha_{1}}} \mathbf{L}_{1}) - \mathbf{B}_{1n} \sin(\frac{\beta_{n}\sqrt{\alpha_{1}}}{L_{3}\sqrt{\alpha_{1}}} \mathbf{L}_{1}) \right] = \mathbf{A}_{2n} \cos(\frac{\beta_{n}\sqrt{\alpha_{1}}}{L_{3}\sqrt{\alpha_{2}}} \mathbf{L}_{1}) - \mathbf{B}_{2n} \sin(\frac{\beta_{n}\sqrt{\alpha_{1}}}{L_{3}\sqrt{\alpha_{2}}} \mathbf{L}_{1})$$

$$A_{2n}\sin(\frac{\beta_n\sqrt{\alpha_1}}{L_3\sqrt{\alpha_2}}L_2) + B_n\cos(\frac{\beta_n\sqrt{\alpha_1}}{L_3\sqrt{\alpha_2}}L_2) = A_{3n}\sin(\frac{\beta_n\sqrt{\alpha_1}}{L_3\sqrt{\alpha_3}}L_2) + B_{3n}\cos(\frac{\beta_n\sqrt{\alpha_1}}{L_3\sqrt{\alpha_3}}L_2)$$

$$\frac{\mathbf{k}_{2}}{\mathbf{k}_{3}} \frac{\beta_{n}}{\sqrt{\alpha_{2}}} \frac{\sqrt{\alpha_{3}}}{\beta_{n}} \left[\mathbf{A}_{2n} \cos(\frac{\beta_{n}\sqrt{\alpha_{1}}}{L_{3}\sqrt{\alpha_{2}}}L_{2}) - \mathbf{B}_{2n} \sin(\frac{\beta_{n}\sqrt{\alpha_{1}}}{L_{3}\sqrt{\alpha_{2}}}L_{2}) \right] = \mathbf{A}_{3n} \cos(\frac{\beta_{n}\sqrt{\alpha_{1}}}{L_{3}\sqrt{\alpha_{3}}}L_{2}) - \mathbf{B}_{3n} \sin(\frac{\beta_{n}\sqrt{\alpha_{1}}}{L_{3}\sqrt{\alpha_{3}}}L_{2})$$

$$\begin{array}{l} k_{3} \ \frac{\beta_{n}\sqrt{\alpha_{1}}}{L_{3}\sqrt{\alpha_{3}}} \quad \left[A_{3n} \cos(\frac{\beta_{n}\sqrt{\alpha_{1}}}{L_{3}\sqrt{\alpha_{3}}}L_{3}) - B_{3n} \sin(\frac{\beta_{n}\sqrt{\alpha_{1}}}{L_{3}\sqrt{\alpha_{3}}}L_{3}) \right] = \\ - h_{L} \left[A_{3n} \sin(\frac{\beta_{n}\sqrt{\alpha_{1}}}{L_{3}\sqrt{\alpha_{3}}}L_{3}) + B_{3n} \cos(\frac{\beta_{n}\sqrt{\alpha_{1}}}{L_{3}\sqrt{\alpha_{3}}}L_{3}) \right] \end{array}$$

Die GI.A9.4 in Matrixform:

1	-Η1 /βn	0	0	0	0
-sin(γ)	-cos(γ)	sin (L ₁ /L ₂ η)	cos(L ₁ /L ₂ η)	0	0
K ₁ cos(γ)	-K1 sin (γ)	-cos (L ₁ /L ₂ η)	sin (L ₁ /L ₂ η)	0	0
0	0	sin(η)	cos(η)	-sin (L ₂ /L ₃ δ)	-cos(L ₂ /L ₃ δ)
		K ₂ cos(η)	–K ₂ sin(η)	-cos (L ₂ /L ₃ δ)	sin(L ₂ /L ₃ δ)
0	0	0	0	cos(δ)	-sin (δ)
				+sin(δ) H ₂ /δ	+ cos(δ) H ₂ /δ

wobei

$$\gamma = \beta_n L_1 / L_3, \qquad \delta = \frac{\beta_n \sqrt{\alpha_1}}{\sqrt{\alpha_2}}$$
$$\eta = \frac{\beta_n \sqrt{\alpha_1}}{\sqrt{\alpha_2}} L_2 / L_3, \qquad K_1 = \frac{k_1}{k_2} \frac{\sqrt{\alpha_2}}{\sqrt{\alpha_1}}$$
$$K_2 = \frac{k_2}{k_3} \frac{\sqrt{\alpha_3}}{\sqrt{\alpha_2}} \qquad .$$
$$H_1 = h L_3 / k_1 \qquad H_2 = h L_3 / k_3$$

Die Matrix A9.6 wird abgekürzt:

a ₁₁	a ₁₂	0	0	0	0	A _{1n}	0
b ₂₁	b ₂₂	b ₂₃	b ₂₄	0	0	B _{1n}	0
C ₃₁	C ₃₂	-b ₂₄	b ₂₃	0	0	A _{2n}	0
0	0	d ₄₃	d ₄₄	d 45	d 46	B _{2n}	0
0	0	K_2d_{44}	$-K_2d_{43}$	-d ₄₆	-d ₄₅	A _{3n}	0
0	0	0	0	f ₆₅	f ₆₆	B _{3n}	0

Der Determinant lautet:

 $(d_{45} ((d_{43} f_{65} + K_2 d_{44} f_{66}) (a_{11} b_{24} c_{32} + a_{12} b_{21} b_{23}) +$ $(- d_{44} f_{65} + K_2 d_{43} f_{66}) (a_{11} b_{22} b_{24} + a_{12} b_{21} b_{24}) +$ $(d_{43} f_{65} + K_2 d_{44} f_{66}) (a_{11} b_{22} b_{23} + a_{12} b_{24} c_{31}) +$ $d_{44} f_{65} - K_2 d_{43} f_{66}) (a_{11} b_{23} c_{32} - a_{12} b_{23} c_{31})) +$ +

 (A9.7)

Die Eigenwerte β können wie folgt bestimmt werden: -sin $(L_2/L_3 \delta)$ ($(\sin(\eta) (\cos(\delta) + \sin(\delta) H_2/\delta) + K_2 \cos(\eta) (-\sin(\delta) + \cos(\delta) H_2/\delta)) x$ $(-\cos(L_1/L_2 \eta) K_1 \sin(\gamma) + -H_1/\beta_n - \sin(\gamma) \sin(L_1/L_2 \eta)) +$ $(-\cos(\eta)\cos(\delta) + \sin(\delta)H_2/\delta)/\delta) + K_2\sin(\eta)(-\sin(\delta) + \cos(\delta)H_2/\delta)) \times$ $(-\cos(\gamma) \cos(L_1/L_2 \eta) + H_1/\beta_n \sin(\gamma) \cos(L_1/L_2 \eta)) +$ $(\sin(\eta) (\cos(\delta) + \sin(\delta) H_2/\delta) + K_2 \cos(\eta) (-\sin(\delta) + \cos(\delta) H_2/\delta)) \times$ $(-\cos(\gamma) \sin (L_1/L_2 \eta) + -H_1/\beta_n \cos(L_1/L_2 \eta) K_1 \cos(\gamma)) +$ $(\cos(\eta)(\cos(\delta) + \sin(\delta)H_2/\delta))-K_2\sin(\eta)(-\sin(\delta) + \cos(\delta)H_2/\delta)) \times$ $(-\sin (L_1/L_2 \eta) K_1 \sin (\gamma) + -H_1/\beta_n \sin (L_1/L_2 \eta) K_1 \cos(\gamma)))$ + + $-\cos(L_2/L_3 \delta)$ ($(\sin(\eta) (-\sin(\delta) + \cos(\delta)H_2/\delta) - K_2 \cos(\eta) (\cos(\delta) + \sin(\delta) H_2/\delta)) x$ $(-\cos(L_1/L_2 \eta) K_1 \sin(\gamma) + H_1/\beta_n \sin(\gamma) \sin(L_1/L_2 \eta)) +$ $(+\cos(\eta) (-\sin(\delta) + \cos(\delta)H_2/\delta) + K_2 \sin(\eta) (\cos(\delta) + \sin(\delta) H_2/\delta)) \times$ $(-\cos(\gamma) \cos(L_1/L_2 \eta) - H_1/\beta_n \sin(\gamma) \cos(L_1/L_2 \eta)) +$ $(\sin(\eta) (-\sin(\delta) + \cos(\delta)H_2/\delta) - K_2 \cos(\eta) (\cos(\delta) + \sin(\delta) H_2/\delta)) \times$ $(-\cos(\gamma) \sin (L_1/L_2 \eta) + -H_1/\beta_n \cos(L_1/L_2 \eta) K_1 \cos(\gamma)) +$ $(\cos(\eta)(-\sin(\delta) + \cos(\delta)H_2/\delta) + K_2 \sin(\eta) (\cos(\delta) + \sin(\delta)H_2/\delta))x$ (- sin $(L_1/L_2 \eta) K_1 sin (\gamma) + - H_1/\beta_n sin (L_1/L_2 \eta) K_1 cos(\gamma))$;

Die Koeffizienten sind:

$\sin (L_2/L_3 \delta)$	cos(L ₂ /L ₃ δ)	A _{3n}	$A_{2n} \sin(\eta) + B_{2n} \cos(\eta)$	(A9.9)
-cos (L ₂ /L ₃ δ)	sin(L ₂ /L ₃ δ)	B _{3n}	$-A_{2n} K_2 \cos(\eta) + B_{2n} K_2 \sin(\eta)$	(A9.10)

$$\begin{array}{l} A_{3n} = (A_{2n} \sin(\eta) + B_{2n} \cos(\eta)) \sin(L_2/L_3 \delta) - \\ & (-A_{2n} K_2 \cos(\eta) + B_{2n} K_2 \sin(\eta)) \cos(L_2/L_3 \delta) \\ B_{3n} = (-A_{2n} K_2 \cos(\eta) + B_{2n} K_2 \sin(\eta)) \sin(L_2/L_3 \delta) + \end{array}$$
(A9.11)

$$(A_{2n} \sin(\eta) + B_{2n} \cos(\eta)) \cos(L_2/L_3 \delta)$$
 (A9.12)

(A9.8)

Die unbekannten Koeffizienten A_{2n} und B_{2n} sind aus der Gl.A9.5 zu bestimmen:

$$\begin{array}{ll} \sin (L_1/L_2 \eta) & \cos(L_1/L_2 \eta) & A_{2n} & \sin (\gamma)A_{1n} + \cos (\gamma)B_{1n} & (A9.13) \\ -\cos (L_1/L_2 \eta) & \sin (L_1/L_2 \eta) & B_{2n} & -A_{1n} K_2 \cos(\gamma) + B_{1n} K_2 \sin (\gamma) & (A9.14) \end{array}$$

$$\begin{aligned} A_{2n} &= (\sin (\gamma)A_{1n} + \cos (\gamma)B_{1n}) \sin (L_1/L_2 \eta) - \\ &\quad (-A_{1n} K_2 \cos(\gamma) + B_{1n} K_2 \sin (\gamma)) \cos(L_1/L_2 \eta) \\ B_{2n} &= (-A_{1n} K_2 \cos(\gamma) + B_{1n} K_2 \sin (\gamma)) \sin(L_1/L_2 \eta) + \\ &\quad (\sin (\gamma)A_{1n} + \cos (\gamma)B_{1n}) \cos (L_1/L_2 \eta) \end{aligned}$$

und
$$A_{1n} = H_1$$
 (A9.15)
 $B_{1n} = \beta_n$. (A9.16)

Die Temperaturfunktion an der Rückseite der Probe lautet:

$$T_{3} (L_{3}, t) = \sum_{n=1}^{\infty} \exp(-\alpha_{1} (\beta_{n}/L_{3})^{2} t) \frac{1}{N(\beta_{n})} (A_{3n} \sin (\delta) + B_{3n} \cos(\delta))$$

$$X \int_{0}^{g} \frac{k_{1}}{\alpha_{1}} \frac{q_{0}}{g \rho_{1} C_{\rho_{1}}} (A_{1n} \sin (\frac{\beta_{n}}{L_{3}} x) + B_{1n} \cos (\frac{\beta_{n}}{L_{3}} x)) dx$$
(A9.17)

wobei

$$N (\beta_n) = \frac{k_1}{\alpha_1} \int_{0}^{L_1} \left(A_{1n} \sin(\frac{\beta_n}{L_3} + B_{1n} \cos(\frac{\beta_n}{L_3} x)) \right)^2 dx + \frac{k_2}{\alpha_2} \int_{0}^{L_2} \left(A_{2n} \sin(\frac{\beta_n \sqrt{\alpha_1}}{L_3 \sqrt{\alpha_2}} x) dx + B_{2n} \cos(\frac{\beta_n \sqrt{\alpha_1}}{L_3 \sqrt{\alpha_2}} x) \right)^2 dx .$$

$$L_1$$

$$L_3$$

$$\frac{k_3}{\alpha_3} \int_{-L_2}^{L_3} \left(A_{3n} \sin(\frac{\beta_n \sqrt{\alpha_1}}{L_3 \sqrt{\alpha_3}} x) dx + B_{3n} \cos(\frac{\beta_n \sqrt{\alpha_1}}{L_3 \sqrt{\alpha_3}} x) \right)^2 dx .$$

Die Normfunktion ist:

$$N (\beta_{n}) = \frac{k_{1}}{\alpha_{1}} \int \left(A_{1n} \sin\left(\frac{\beta_{n}}{\sqrt{\alpha_{1}}}x\right) dx + B_{1n} \cos\left(\frac{\beta_{n}}{\sqrt{\alpha_{1}}}x\right) \right)^{2} dx + 0$$

$$L_{2}$$

$$\frac{k_{2}}{\alpha_{2}} \int \left(A_{2n} \sin\left(\frac{\beta_{n}}{\sqrt{\alpha_{2}}}x\right) dx + B_{2n} \cos\left(\frac{\beta_{n}}{\sqrt{\alpha_{2}}}x\right) \right)^{2} dx = L_{1}$$

$$L_{3}$$

$$\frac{k_{3}}{\alpha_{3}} \int \left(A_{3n} \sin\left(\frac{\beta_{n}}{\sqrt{\alpha_{3}}}x\right) dx + B_{3n} \cos\left(\frac{\beta_{n}}{\sqrt{\alpha_{3}}}x\right) \right)^{2} dx = L_{2}$$

$$N (\beta_{n}) = \frac{k_{1}}{\alpha_{1}} \left[1/2 (L_{1}) [A_{1n}^{2} + B_{1n}^{2}] + \frac{L_{3}}{4 \beta_{n}} \sin \left(\frac{2 \beta_{n}}{L_{3}} L_{1}\right) (-A_{1n}^{2} + B_{1n}^{2}) + (A9.19) \right] \\ = \frac{L_{3}}{\beta_{n}} \sin^{2} \left(\frac{\beta_{n}}{L_{3}} L_{1}\right) (A_{1n} B_{1n}) + \frac{k_{2}}{\alpha_{2}} \left[1/2 (L_{2}-L_{1}) [A_{2n}^{2} + B_{2n}^{2}] + \frac{\sqrt{\alpha_{2}} L_{2}}{\sqrt{\alpha_{1}} 4 \beta_{n}} \left(\sin \left(\frac{2 \beta_{n} \sqrt{\alpha_{1}}}{L_{3} \sqrt{\alpha_{2}}} L_{2}\right) - \sin \left(\frac{2 \beta_{n} \sqrt{\alpha_{1}}}{L_{3} \sqrt{\alpha_{2}}} L_{1}\right) \right) (-A_{2n}^{2} + B_{2n}^{2}) + \frac{\sqrt{\alpha_{2}} L_{2}}{\sqrt{\alpha_{1}} \beta_{n}} \left(\sin^{2} \left(\frac{\beta_{n} \sqrt{\alpha_{1}}}{L_{3} \sqrt{\alpha_{2}}} L_{2} \right) - \sin^{2} \left(\frac{\beta_{n} \sqrt{\alpha_{1}}}{L_{3} \sqrt{\alpha_{2}}} L_{1}\right) \right) (A_{2n} B_{2n}) \right] + \frac{\frac{\kappa_{3}}{\alpha_{3}}}{\frac{1}{\sqrt{\alpha_{1}} \beta_{n}} \left(\sin^{2} \left(\frac{\beta_{n} \sqrt{\alpha_{1}}}{L_{3} \sqrt{\alpha_{2}}} L_{2} \right) - \sin^{2} \left(\frac{\beta_{n} \sqrt{\alpha_{1}}}{L_{3} \sqrt{\alpha_{2}}} L_{1}\right) \right) (A_{2n} B_{2n}) \right] + \frac{\frac{\kappa_{3}}{\alpha_{3}}}{\frac{\kappa_{3}}{\sqrt{\alpha_{1}} \beta_{n}} \left(\sin \left(\frac{2 \beta_{n} \sqrt{\alpha_{1}}}{L_{3} \sqrt{\alpha_{2}}} L_{3} \right) - \sin^{2} \left(\frac{\beta_{n} \sqrt{\alpha_{1}}}{L_{3} \sqrt{\alpha_{2}}} L_{2} \right) \right) \left(-A_{3n}^{2} + B_{3n}^{2} \right) + \frac{\sqrt{\alpha_{3}} L_{3}}{\sqrt{\alpha_{1}} 4 \beta_{n}} \left(\sin \left(\frac{2 \beta_{n} \sqrt{\alpha_{1}}}{L_{3} \sqrt{\alpha_{3}}} L_{3} \right) - \sin^{2} \left(\frac{\beta_{n} \sqrt{\alpha_{1}}}{L_{3} \sqrt{\alpha_{3}}} L_{2} \right) \right) \left(-A_{3n}^{2} + B_{3n}^{2} \right) + \frac{\sqrt{\alpha_{3}} L_{3}}{\sqrt{\alpha_{1}} \beta_{n}} \left(\sin^{2} \left(\frac{2 \beta_{n} \sqrt{\alpha_{1}}}{L_{3} \sqrt{\alpha_{1}}} L_{3} \right) - \sin^{2} \left(\frac{\beta_{n} \sqrt{\alpha_{1}}}{L_{3} \sqrt{\alpha_{1}}} L_{2} \right) \right) \left(A_{3n} B_{3n} \right) \right].$$

Die normierte Temperaturfunktion läßt sich wie folgt schreiben :

(A9.20)

$$T_{3} (L, t) / T_{max} = \left[Cp_{1} \rho_{1} L_{1} + Cp_{2} \rho_{2} (L_{2} - L_{1}) + Cp_{3} \rho_{3} (L_{3} - L_{2}) \right] X$$

$$\sum_{n=1}^{\infty} \exp(-\alpha_{1} (\beta_{n}/L_{3})^{2} t) \left(A_{3n} \sin(\delta) + B_{3n} \cos(\delta) \right) \frac{1}{N(\beta_{n})} B_{1n}$$

.

(A9.18)

Die fehlenden Ableitungen in der Literatur

Anhang 10. Die adiabatische Temperaturanstiegsfunktion

Die Fourier-Gleichung gilt:

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}, \qquad (A10.1)$$

wobei x Ortskoordinate parallel zur Rotationsachse der zylindrischen Probe ist.

Die Randbedingungen sind:

$$k \frac{\partial T}{\partial x} = 0 \qquad x = L, 0.$$
 (A10.2)

Die Anfangsbedingungen sind:

$$T(x, 0) = \frac{q_0}{\rho C_p g} \qquad 0 < x < g \qquad (A10.3a)$$

$$T(x,0) = 0$$
 $g < x < L$, (A10.3b)

und g (<< L) die Schichtdicke bedeutet, in der die Energie absorbiert wird.

Das Gleichungssystem kann mit der Separation der Variablen gelöst werden.

$$T(x,t) = X(x) Z(t).$$
 (A10.4)

Für die Funktion X(x) gilt:

$$X(x) = \sum_{n=0}^{\infty} a_n \cos(n \pi x/L),$$
 (A10.5)

wobei a_n zu bestimmen ist.

$$Z(t) = \exp(-n^2 \pi^2 / L^2 \alpha t).$$

Die Fourier-Koeffizienten an können im Allgemeinen wie folgt bestimmt werden:

$$a_{n} = 2/L \int_{0}^{L} T(x,0) \cos(n\pi x/L) dx ,$$

$$a_{0} = 1/L \int_{0}^{L} T(x,0) dx \qquad (A10.6)$$

und

wobei T(x,0) die Anfangstemperaturverteilung ist.

Für das Integral gilt:

$$L L$$

$$2/L \int T(x,0)\cos(n\pi x/L)dx = 2/L \int q_0/(\rho C_p g)\cos(n\pi x/L)dx) = 0$$

$$0 \qquad 0$$

$$2q_0/(\rho C_p L)\sin(n\pi g/L)/(n\pi g/L)$$

Die Lösung für die Temperatur-Zeit-Funktion an der Rückseite der Probe ist:

$$T(x,t) = \frac{q_0}{\rho C_p L} \left[1 + 2 \sum_{n=1}^{\infty} \cos(n\pi x/L) \frac{\sin(n\pi g/L)}{n\pi g/L} \exp(-\frac{n^2 \pi^2 \alpha t}{L^2}) \right].$$
(A10.7)

Mit der Annahme von

 $sin(n\pi g/L)/(n\pi g/L) \approx 1$, weil g<<L,

œ

ist der Temperaturanstieg an der Rückseite:

$$T(L,t) = \frac{q_0}{\rho C_p L} \left[1 + 2 \sum_{n=1}^{\infty} (-1)^n \exp(-\frac{n^2 \pi^2 \alpha t}{L^2}) \right]$$
(A10.8)

Die maximal erreichbare Temperatur (Gleichgewichtstemperatur) ergibt sich wie folgt:

$$T_{max} = \frac{q_0}{\rho C_p L'}$$
(A10.9)

GI.A10.3 auf T_{max} normiert, so wird (Parker et al., 1961):

$$T^* (x=L,t) = T(x=L,t)/T_{max} = 1 + 2\sum_{n=1}^{\infty} (-1)^n \exp(-\frac{n^2 \pi^2 \alpha t}{L^2})$$

Anhang 11. Herleitung der Azumi-Korrektur

Der Effekt der Laserpulsdauer läßt sich mit Hilfe der Faltung schreiben:

$$T^{FP}(L,t) = \frac{\int_{n=1}^{\tau} f(t') \left[1+2 \sum_{n=1}^{\infty} (-1)^n \exp(\omega(t-t')) \right] dt'}{\int_{t=0}^{\tau} f(t) dt},$$
(A11.1)

wobei $\omega = -\frac{\pi^2 n^2 \alpha}{L^2}$.

Der Zähler wird in Taylor'sche Reihe entwickelt. Nach dem Erhalt nur des linearen Gliedes ergibt sich:

$$T^{FP}(L,t) = \frac{t^{2}=0}{\int_{t=0}^{\infty} (-1)^{n} (1 + \omega(t-t)) dt'} = (A11.2)$$

$$T^{FP}(L,t) = 1+2 \frac{\sum_{t=0}^{\infty} (-1)^{n} (\int_{t'=0}^{\tau} f(t) dt - \int_{t'=0}^{\tau} f(t) \omega(t-t') dt')}{\int_{t=0}^{\tau} f(t) dt}$$

$$T^{FP}(L,t) = 1+2 \frac{\sum_{t=0}^{\infty} (-1)^{n} (\int_{t'=0}^{\tau} f(t) dt + \int_{t'=0}^{\tau} f(t) dt + \int_{t=0}^{\tau} f(t) dt +$$

Das Ergebnis der letzten Transformationen weist auf einen quasi-adiabatischen Temperaturverlauf, jedoch mit einer Zeitverschiebung von:

$$t_{g} = \frac{\int_{\tau}^{\tau} f(t) t dt}{\int_{\tau}^{\tau} f(t) dt}$$
(A11.5)

Anhang 12. Die exponentielle und linear-exponentielle Pulsfunktion

a. Exponentielle Pulsfunktion

Die Pulsfunktion wird in exponentieller Form gesucht:

$$f(t) = A t exp(t B),$$

wobei B und A unbekannte Konstanten sind.

Falls die Zeit des Pulsmaximums t_p ist, gilt:

$$\frac{d f(t=t_p)}{dt} = 0 , \qquad (A12.1)$$

d.h.

A t_p B exp(t_p B)+ A exp (t_p B)= 0,

und

Da das Integral der Pulsfunktion normiert ist ($\int_{0}^{t} f(t) dt = 1$), wird "A" wie folgt bestimmt:

 $B = -1/t_{p}$.

wird "A" wie folgt bestimmt:

$$\int_{0}^{\infty} f(t)dt = A \int_{0}^{\infty} t \exp\left(-\frac{t}{t_p}\right) dt = 1, \qquad (A12.2)$$

$$At_{p^2} \left[-\exp(-\frac{t}{t_p}) \left(-\frac{t}{t_p} + 1\right) \right]_0^{\circ} = 1,$$
 (A12.3)

$$A=1/t_p^2$$
. (A12.4)

b. Linear-exponentielle Funktion

	p ₁ t,	t≤τb
f(t) =	p ₂ exp (p ₃ t)	τb <t <="" td="" τ<=""></t>
	0,	t≥τ,

Die Bestimmung der Konstanten lautet:

$$p_1 \tau b = p_2 \exp(p_3 \tau b),$$
 (A12.5)

p1 =
$$p_2/\tau b \exp(p_3 \tau b)$$
, (A12.6)

$$p_2 \exp(p_3 \tau) = 0.01 p_2 \exp(p_3 \tau b),$$
 (A12.7)

$$p_3 = LN(0.01)/(\tau - \tau b)$$
 (A12.8)

und

$$\int_{0}^{\infty} f(t)dt = p_2/(\tau b) \exp(p_3\tau b)/2 t_p^2 + p_2/p_3 (\exp(p_3\tau) - \exp(p_3\tau b)) = 0$$

$$p_2 (\tau b \exp(p_3\tau b)/2 + 1/p_3 (\exp(p_3\tau) - \exp(p_3\tau b)) = 1$$

$$p_2 = \exp(-p_3\tau b)/(\tau b/2 + 1/p_3 (\exp(p_3(\tau - \tau b)) - 1))$$
(A12.10)

Anhang 13. Cape-Lehman Modell für Wärmeverluste

Die Fourier-Gleichung in zylindrischem Koordinatensystem lautet, mit den Randbedingungen:

$$\frac{\partial T(x,r,t)}{\partial t} = \alpha \left(\frac{\partial^2 T(x,r,t)}{\partial x^2} + \frac{\partial^2 T(x,r,t)}{\partial r^2} + \frac{\partial T(x,r,t)}{r \partial r} \right) + \alpha / k Q(x,r,t) \delta(t=0), \quad (A13.1a)$$

$$k \frac{\partial T(x,r,t)}{\partial x} = h_{L} T(x,r,t) \qquad x = 0 \qquad (A13.1b)$$

$$-k \frac{\partial T(x,r,t)}{\partial x} = h_{L} T(x,r,t) \qquad x = L \qquad (A13.1c)$$

$$-k \frac{\partial T(x,r,t)}{\partial r} = h_R T(x,r,t) \qquad r = R.$$
 (A13.1d)

wobei Q die Energieproduktion in einer Zeiteinheit und Volumeneinheit, k Wärmeleitfähigkeit und δ die Dirac-Funktion ist.

Die Separation der Variablen wird angewandt:

$$T(x,r,t) = X(x) U(r) P(t)$$

und wenn ξ_n /Ldie Separationskonstante von X(x), λ_m /R vom U(r) ist , dann gilt

$$P(t) = T_0 e^{-((\xi_n/L)^2 - (\lambda_m/R)^2) \alpha t}$$
(A13. 2a)

$$U(r) = \sum_{m=1}^{\infty} a_m J_0(\lambda_m r/R)$$
(A13. 2b)

$$X(x) = \sum_{n=1}^{\infty} C_1 \sin (\xi_n x/L) + C_2 \cos (\xi_n x/L), \qquad (A13.2c)$$

wobei a_m, C₁, C₂ unbekannte Konstanten sind.

GI.A13.2b wird in GI.A13.1d eingeschrieben und für λ_m ergibt sich:

$$\lambda_{\rm m}$$
 k/ R_s a_m J₀($\lambda_{\rm m}$ R_s/R_s) = h_R a_m J₀($\lambda_{\rm m}$ R_s / R_s), (A13. 3)

d.h λ_m ist die Lösung von

$$\lambda_{\rm m} J_0(\lambda_{\rm m}) = H_1 J_0(\lambda_{\rm m}), \qquad (A13.4)$$

wobei

 $H_1 = h_R R_s / k.$

Für die a_m Konstante gilt:

$$a_{m} = \begin{array}{c} R_{s} \\ \int r f(r) J_{0}(\lambda_{m} r/R_{s}) dr \\ 0 \\ \int R \\ \int r J_{0}^{2} (\lambda_{m} r/R_{s}) dr \\ 0 \end{array}$$
(A13.5)

wobei f(r) die Anfangstemperaturverteilung ist (f(r) = 1)

$$a_{m} = \frac{R_{s}^{2}/\lambda_{m} J_{1}(\lambda_{m})}{1/2R_{s}^{2} (J_{0}^{2} (\lambda_{m}) + J_{1}^{2} (\lambda_{m}))} = \frac{2/\lambda_{m} H_{1}/\lambda_{m} J_{0} (\lambda_{m})}{(J_{0}^{2} (\lambda_{m}) + (H_{1}/\lambda_{m})^{2} J_{0}^{2} (\lambda_{m}))}$$

$$= \frac{2 H_{1}}{J_{0} (\lambda_{m}) (H_{1}^{2} + \lambda_{m}^{2})}$$
(A13.6)

GI.A13.2c wird in GI.A13.1b-c eingeschrieben für x=0:

 $k\xi_n/L ((C_1\cos{(\xi_n 0/L)} - C_2\sin{(\xi_n 0/L)}) = h_L (C_1\sin{(\xi_n 0/L)} + C_2\cos{(\xi_n 0/L)})$ (A13.7)

und für x=L:

$$k\xi_n/L((C_1\cos(\xi_n L/L) - C_2 \sin(\xi_n L/L)) = -h_L (C_1\sin(\xi_n L/L) + C_2 \cos(\xi_n L/L))$$

d.h.

$$k\xi_n/L C_1 = h_L C_2$$
 , => $C_1=H_2 C_2 = \xi_n$

und

$$k\xi_n/L((C_1 \tan(\xi_n) - C_2) = -h_L (C_1 + C_2 \tan(\xi_n)).$$
(A13.8)

Für ξ_n gilt:

$$\xi_{n}C_{1} + C_{2}H_{2} = (-H_{2}C_{1} + C_{2}\xi_{n}) \tan(\xi_{n}),$$

$$2 \xi_{n}H_{2} = (-H_{2}^{2} + \xi_{n}^{2}) \tan(\xi_{n}),$$
(A13.9)

Die Funktion X wird in folgender Form gesucht:

$$X(x) = \sum_{n=1}^{\infty} C_n(H_2 \sin (\xi_n x/L) + \xi_n \cos (\xi_n x/L)),$$

wobei

$$C_{n} = \frac{0}{\frac{L}{\int f(x) (H_{2}sin (\xi_{n} x/L) + \xi_{n} cos (\xi_{n} x/L)) dx}}{\int (H_{2}sin (\xi_{n} x/L) + \xi_{n} cos (\xi_{n} x/L))^{2} dx},$$
(A13.10)

und f(x) die Anfangstemperaturverteilung ist.

Zur Normierung von X(x) wird das Integral berechnet (Özisik, 1980):

$$N(x) = \int_{0}^{L} X^{2}(x) dx = \int_{0}^{L} (H_{2} \sin (\xi_{n} x/L) + \xi_{n} \cos (\xi_{n} x/L))^{2} dx$$
(A13.11)

Für X(x) gilt:

$$(\xi_n/L)^2 X(x) + \frac{\partial^2 X(x)}{\partial^2 x} = 0,$$
 (A13.12)

$$d.h \qquad \int_{0}^{L} X^{2}(x) dx = -\left(\frac{L}{\xi_{n}}\right)^{2} \int_{0}^{L} X(x) \frac{\partial^{2} X(x)}{\partial^{2} x} dx =$$

$$-\left(\frac{L}{\xi_{n}}\right)^{2} \left[X(x) \frac{\partial X(x)}{\partial x} \right]_{0}^{L} + \left(\frac{L}{\xi_{n}}\right)^{2} \int_{0}^{L} \left(\frac{\partial X(x)}{\partial x}\right)^{2} dx .$$
(A13.13)

Die erste Ableitung der X(x) Funktion ist nach Multiplikation mit $(\frac{L}{\xi_n})$:

$$\left(\frac{L}{\xi_{n}}\right) \quad \left(\xi_{n}/L \ H_{2}\cos\left(\xi_{n} \ x/L\right) - \xi_{n} \ \xi_{n}/L \ \sin\left(\xi_{n} \ x/L\right)\right)^{=} \left(H_{2} \ \cos\left(\xi_{n} \ x/L\right) - \xi_{n} \ \sin\left(\xi_{n} \ x/L\right)\right).$$

Nach Addieren des Quadrats dieses Glieds zum Quadrat der Funktion X(x) ergibt sich:

$$\begin{pmatrix} H_2 \sin (\xi_n x/L) + \xi_n \cos (\xi_n x/L) \end{pmatrix}^2 + (H_2 \cos (\xi_n x/L) - \xi_n \sin (\xi_n x/L))^2 = \xi_n^2 + (H_2)^2,$$
(A13.14)

$$X^{2}(x) = (\xi_{n}^{2} + H_{2}^{2}) - (\frac{L}{\xi_{n}})^{2} \left(\frac{\partial X(x)}{\partial x}\right)^{2} dx =$$
(A13. 15)

Das Integral des Quadrats der Funktion X(x) ist danach:

$$\int_{0}^{L} X^{2} (x) dx = (\xi_{n}^{2} + H_{2}^{2})L - (\frac{L}{\xi_{n}})^{2} \int_{0}^{\infty} \left(\frac{\partial X(x)}{\partial x}\right)^{2} dx .$$
 (A13.16)

Nach Addieren der GI.A13.16 mit GI.A13.13 ergibt sich:

$$\sum_{0}^{L} X^{2}(x) dx = (\xi_{n}^{2} + H_{2}^{2})L - (\frac{L}{\xi_{n}})^{2} \left[X(x) \frac{\partial X(x)}{\partial x} \right]_{0}^{L}$$
 (A13.17)

Die Randbedingungen sind: a.

$$\left[X(x)\frac{\partial X(x)}{\partial x}\right]_{x=0} = H_2 \xi_n / L \xi_n .$$
(A13.18)

b. Randbedingung bei x= L: ist

$$-H_2/L X(x) = \frac{\partial X(x)}{\partial x},$$

d.h.

 $X(x) \frac{\partial X(x)}{\partial x} = -H_2 / L X^2 (x) \qquad x = L,$ (A13.19)

GI.A13.18 wird verwendet in GI.A13.17 eingeschrieben :

$$X^{2}(x) = (\xi_{n}^{2} + H_{2}^{2}) - (\frac{L}{\xi_{n}})^{2} \left(\frac{\partial X(x)}{\partial x}\right)^{2} = (\xi_{n}^{2} + H_{2}^{2}) + (\frac{L}{\xi_{n}})^{2} \left(H_{2}/LX(x)\right)^{2} , \qquad (A13.20a)$$

d.h .:

$$X^{2}(x) = (\xi_{n}^{2} + H_{2}^{2}) / (1 + (H_{2} / \xi_{n})^{2}).$$
 (A13.20b)

GI.A13.20a wird in GI.A13.19 eingeschrieben:

$$\begin{bmatrix} X(x) \frac{\partial X(x)}{\partial x} \end{bmatrix}_{x=L} = -H_2 / L (\xi_n^2 + H_2^2) / (1 + (H_2/\xi_n)^2) = -H_2 \xi_n^2 / L (\xi_n^2 + H_2^2) / (H_2^2 + \xi_n^2) = -H_2 \xi_n^2 / L.$$

Die Norm ist:

$$L = 2\int X^{2} (x) dx = (L / \xi_{n})^{2} [(H_{2} \xi_{n}^{2}/L (\xi_{n}^{2} + H_{2}^{2})/(H_{2}^{2} + \xi_{n}^{2}) + H_{2} \xi_{n}/L \xi_{n})] = 0$$

$$+ (\xi_{n}^{2} + H_{2}^{2}) L = L (\xi_{n}^{2} + H_{2}^{2} + 2H_{2}). \qquad (A13.21a)$$

Die Norm ist, falls der Index für die vordere Seite mit F und für die hintere Seite mit B gekennzeichnet ist:

$$L = 2\int_{0}^{L} X^{2} (x) dx = L \left[(\xi_{n}^{2} + H_{2F}^{2}) (1 + H_{2B} / (H_{2B}^{2} + \xi_{n}^{2}) + H_{2F} \right].$$
(A13.21b)

$$X(x=L) = \sum_{\infty}^{\infty} \frac{2 (H_2 \sin (\xi_n x/L) + \xi_n \cos (\xi_n x/L)) \int_{0}^{L} (H_2 \sin (\xi_n x/L) + \xi_n \cos (\xi_n x/L)) dx}{L(H_2^2 + \xi_n^2 + 2H_2)}$$

n=1

(A13.22)

$$= \sum_{n=1}^{\infty} \frac{2 (H_2 \sin (\xi_n) + \xi_n \cos (\xi_n)) (-H_2 L/\xi_n \cos (\xi_n) + \xi_n L/\xi_n \sin (\xi_n) + H_2 L/\xi_n)}{L(H_2^2 + \xi_n^2 + 2H_2)}$$

(A13.23)

Wenn $\xi_n >> H_2$, $\xi n \approx n \; \pi$, d.h.

$$X(x=L) = \sum_{n=1}^{\infty} \frac{2(-1)^n \xi_n^2}{H_2^2 + \xi_n^2 + 2H_2}).$$
(A13.24)

$$U(r) = \sum_{m=1}^{\infty} \frac{2 H_1}{J_0(\lambda_m) (H_1^2 + \lambda_m^2)} J_0(\lambda_m r/R_s)$$
(A13.25)

$$P(t) = q_0 \alpha / (k L) e^{-((\xi_n/L)^2 - (\lambda_m/R_s)^2) \alpha t} = q_0 / (\rho c_p L) e^{-((\xi_n/L)^2 - (\lambda_m/R_s)^2) \alpha t}$$
(A13.26)

Die Lösung lautet:

$$T^{HL}(x=L,r=0,t) = \sum_{m=1}^{\infty} C_m \xi_m \sum_{i=1}^{\infty} D_i (H_1) \exp(\omega_{im} t/t_c)$$
(A13.27)

wobei

$$\begin{split} \mathbf{C}_{m} &= (-1)^{m} 2\xi_{m}(\xi_{m}^{-2} + 2H_{2} + H_{2}^{-2})^{-1}, \\ \xi_{m} \text{ die Lösung von } (\xi_{m}^{-2} - H_{2}^{-2}) \tan \xi_{m} &= 2 \xi_{m}H_{2} \text{ ist}, \\ \mathbf{D}_{i}(H_{1}) &= [2 H_{1} / (H_{1}^{-2} + \lambda_{i}^{-2})] 1 / J_{0}(\lambda_{i}), \\ t_{c} &= L^{2} / (\pi^{2} \alpha), \\ \omega_{im} &= -(L/\pi)^{2} (\xi_{m}^{-2}/L^{2} + \lambda_{i}^{-2}/R_{s}^{-2}), \\ H_{1} \text{ die Biotzahl am Umfang } (= h_{R} R_{s} / k), \\ H_{2} \text{ die Biotzahl an den Stirnflächen } (=h_{L} L / k) \text{ und} \\ \lambda_{i} \text{ die Lösung der transzendenten Gleichung von } H_{1} J_{0}(\lambda_{i}) = \lambda_{i} J_{1}(\lambda_{i}) \text{ ist.} \end{split}$$

Anhang 14. Modell von Watt für Wärmeverluste

Die Fourier-Gleichung lautet in einer ebenen Platte mit folgenden Randbedingungen:

1. Ohne Wärmeverlust am Umfang.

$$\frac{\partial T(x,r,t)}{\partial t} = \alpha \frac{\partial^2 T(x,r,t)}{\partial x} + \alpha / k Q(x,r,t) \delta(t=0), \qquad (A14.1a)$$

$$-k \frac{\partial T(x,r,t)}{\partial x} = h_{LB} T(x,r,t) \qquad x = L \qquad (A14.1b)$$

$$k \frac{\partial T(x,r,t)}{\partial x} = h_{LF} T(x,r,t) \qquad x = 0 \qquad (A14.1c)$$

wobei Q die Energieproduktion per Volumeneineheit per Zeiteinheit, k Wärmeleitfähigkeit und δ die Dirac-Funktion ist.

Die Separation der Variablen wird angewandt:

$$T(x,r,t) = X(x) P(t)$$

und wenn ξ_n /_ die Separationskonstante von X(x) ist , dann

$$P(t) = T_0 e^{-(\xi_n/L)^2 \alpha t}$$
(A14.2a)
$$X(x) = \sum_{l=0}^{\infty} C_1 \sin(\xi_n x/L) + C_2 \cos(\xi_n x/L),$$
(A14.2b)

wobei C1, C2 unbekannte Konstanten sind.

n=1

GI.A14.2c wird in GI.A14.1b-c eingeschrieben:

$$k\xi_n/L ((C_1 \cos (\xi_n \ 0/L) - C_2 \sin (\xi_n \ 0/L)) = h_{2F}(C_1 \sin (\xi_n \ 0/L) + C_2 \cos (\xi_n \ 0/L))$$

$$k\xi_n/L((C_1\cos (\xi_n L/L) - C_2 \sin (\xi_n L/L)) = -h_{2B} (C_1\sin (\xi_n L/L) + C_2 \cos (\xi_n L/L))$$

d.h.

und

und

$$k\xi_n/L C_1 = h_{LF} C_2 , \implies C_1 = H_{2F} C_2 = \xi_n$$

$$k\xi_n/L((C_1 \tan(\xi_n) - C_2) = -h_{LB} (C_1 + C_2 \tan(\xi_n)). \qquad (A14.3)$$

Für ξ_n gilt:

$$\xi_{n}C_{1} + C_{2}H_{2B} = (-H_{2F}C_{1} + C_{2}\xi_{n}) \tan(\xi_{n}),$$

$$\xi_{n}(H_{2F} + H_{2B}) = (-H_{2F}H_{2B} + \xi_{n}^{2}) \tan(\xi_{n}),$$
(A14.4)

Die Funktion X wird in folgender Form gesucht:

$$X(x) = \sum_{n=1}^{\infty} C_n (H_2 \sin (\xi_n x/L) + \xi_n \cos (\xi_n x/L)),$$
(A14.5)

wobei

$$C_{n} = \frac{0}{\frac{L}{\int f(x) (H_{2}sin (\xi_{n} x/L) + \xi_{n} cos (\xi_{n} x/L)) dx}}{\int (H_{2}sin (\xi_{n} x/L) + \xi_{n} cos (\xi_{n} x/L))^{2} dx},$$
(A14.6)

und f(x) die Anfangstemperaturverteilung ist.
Zur Normierung von X(x) wird das Integral berechnet:

$$N(x) = \int_{0}^{L} X^{2}(x) dx = \int_{0}^{L} (H_{2} \sin (\xi_{n} x/L) + \xi_{n} \cos (\xi_{n} x/L))^{2} dx$$
(A14.7)

Die Norm ist (siehe Anhang 14, GI.A13.21)

$$\int_{0}^{L} X^{2}(x) dx = L \left[(\xi_{n}^{2} + H_{2F}^{2}) (1 + H_{2B} / (H_{2B}^{2} + \xi_{n}^{2}) + H_{2F} \right].$$
(A14.8)

(A14.9)

X(x=L) =

00

$$= \sum_{n=1}^{2} \frac{2 (H_{2F} \sin (\xi_n x/L) + \xi_n \cos (\xi_n x/L)) \int_{0}^{L} (H_{2F} \sin (\xi_n x/L) + \xi_n \cos (\xi_n x/L)) dx}{L \left[(\xi_n^2 + H_{2F}^2) (1 + H_{2B} / (H_{2B}^2 + \xi_n^2) + H_{2F}) \right]}$$

$$= \sum_{n=1}^{\infty} \frac{(H_{2B}^{2} + \xi_{n}^{2}) 2\xi_{n} (H_{2F} \sin (\xi_{n}) + \xi_{n} \cos (\xi_{n}))}{L \left[(\xi_{n}^{2} + H_{2F}^{2}) ((H_{2B}^{2} + \xi_{n}^{2}) + H_{2B} + H_{2} F(H_{2B}^{2} + \xi_{n}^{2})) \right]}$$

$$P(t) = q_0 \alpha / (kL) e^{-(\xi_n/L)^2 \alpha t} = q_0 / (\rho c_p L) e^{-(\xi_n/L)^2 \alpha t}$$

Die Lösung lautet:

$$T^{HL}(t) = \sum_{n=1}^{\infty} X_n \exp(-(\xi_n/L)^2 \alpha t),$$
 (A14.10)

wobei X_n die Funktion von Gl.A14.5 ist.

b. Mit Wärmeverlust auch am Umfang.

$$T^{HL}(x=L,r,t) = \sum_{n=1}^{\infty} \frac{(H_{2B}^{2} + \xi_{n}^{2}) 2\xi_{n} (H_{2F} \sin (\xi_{n}) + \xi_{n} \cos (\xi_{n}))}{L \left[(\xi_{n}^{2} + H_{2F}^{2}) ((H_{2B}^{2} + \xi_{n}^{2}) + H_{2B} + H_{2F} (H_{2B}^{2} + \xi_{n}^{2})) \right]}$$
$$\sum_{m=1}^{\infty} \frac{2H_{1}}{J_{0}(\lambda_{m}) (H_{1}^{2} + \lambda_{m}^{2})} J_{0}(\lambda_{m} r/R_{s}) e^{-((\xi_{n}/L)^{2} + (\lambda_{m}/R_{s})^{2}) \alpha t},$$

wobei ξ_n die Lösung von $\xi_n (H_{2F} + H_{2B} = (-H_{2F}H_{2B} + \xi_n^2) \tan(\xi_n) \text{ ist,}$ λ_m die Lösung von $\lambda_m J_1 (\lambda_m) = H_1 J_0(\lambda_m) \text{ ist,}$

 H_{2F} die Biotzahl der vorderen Stirnfläche und H_{2B} die Biotzahl der Rückstirnfläche ist.

Anhang 15. Unabhängigkeit der Momentfunktion von der Temperaturleitfähigkeit

Ableitung der Unabhängigkeit des Verhältnisses zweier normierter Temperaturanstiege von der Temperaturleitfähigkeit.

In der Lösung von Cape und Lehman oder von Watt ist der Temperaturanstieg in der Form:

$$T^{HL}(t) = \sum_{n=1}^{\infty} X_n \exp(-(\xi_n/L)^2 \alpha t),$$
 (A15.1)

wobei X_n eine Funktion der Raumkoordinaten und ξ_n Ergebnis der transzendenten Gleichung ist (siehe Anhang 13).

Nehmen wir an, die wahre Temperaturleitfähigkeit ist $\zeta \alpha^{AD}$, wobei ζ eine Konstante, α^{AD} die adiabatische Temperaturleitfähigkeit ist.

Für die adiabatische Temperaturleitfähigkeit zu den Temperaturanstiegszeiten t1 und t2 gilt:

$$\alpha^{AD} = K_1 L^2 / t_1 = K_2 L^2 / t_2, \qquad (A15.2)$$

wobei K1 und K2 Konstanten sind.

Wenn man in das Verhältnis von GI.A15.1 zu t₁ und t₂ Zeiten GI.A15.2 einschreibt, ergibt sich:

$$\frac{\sum_{n=1}^{\infty} X_{n} \exp(-(\xi_{n})^{2} \zeta \kappa_{1})}{\sum_{n=1}^{\infty} X_{n} \exp(-(\xi_{n})^{2} \zeta \kappa_{2})} = T_{1} / T_{2},$$
(A15.3)

wobei T_1 und T_2 die Temperaturanstiegen bei t_1 und t_2 sind.

Ähnlicherweise kann man beweisen, daß die Momentfunktion von der Temperaturleitfähigkeit unabhängig ist.

$$\begin{array}{l}
0.8 & 0.8 \\
\int \frac{T(t)}{t} dt = \int \frac{X_n \exp(-(\xi_n/L)^2 \alpha t)}{t} dt \approx \int \frac{X_n (1 - (\xi_n/L)^2 \alpha t)}{t} dt \\
= 0.1 & t=0.1 \\
= \int X_n (1/t - (\xi_n/L)^2 \alpha) dt = X_n (LN(t_{0.8}) - LN(t_{0.1}) - (\xi_n/L)^2 \alpha (t_{0.8} - t_{0.1})) \quad (A15.4) \\
= t=0.1$$

 $= X_{n} (LN(K_{0.8}/K_{0.1}) - \xi_{n}^{2} (K_{0.8} - K_{0.1})),$

d.h die Momentfunktion hängt nur vom Wärmeverlust (ξ_n , X_n , siehe Anhang 13) ab.

<u>Literatur</u>

Azumi T., Takahaski Y.:	Novel Finite Pulse-Width Correction in Flash Thermal Diffusivity
	Measurement. Rev.Sci.Instr. 52 (9), pp :1411-1412, 1981.
Balageas D.L.:	Nouvelle méthode d'interpretation des thermogrammes pour la
	détermination de la diffusivité thermique par la méthode impulsionelle.
	Rev.Phys.Appl. , 17, pp : 227-237, 1982.
Beck J.V., Arnold K.J.:	Parameter Estimation in Engineering and Science. Wiley New York,
	1977.
Bräuer G., Dusza L., Schu	z B.:
	The New Laser Flash Equipment LFA-427. Interceram 41 7/8, 1992.
Bräuer G., Dusza L., Hage	mann L., Schulz B.:
	The New Netzsch Laser Flash Apparatus LFA-427 for the
	Determination of Thermal Diffusivity. Paper presented at 13.ETPC, Lisbon ,
	1993.
Bruggeman D.A.G.:	Berechnung verschiedener physikalischer Konstanten von heterogenen
	Substanzen, I. Dielektrizitätskonstanten und Leitfähigkeiten der
	Mischkörper aus isotropen Substanzen.
	Annalen der Physik, 24, 5.Folge, pp : 636-664, 1935.
Cape I.A.,Lehman G.W.:	Temperature and Finite-Pulse Time Effects in the Flash Method for
	Measuring Thermal Diffusivity . J.Appl.Phys., 34 (7), pp: 1909-1914, 1963.
Cezairlyan A., Baba T., Ta	ylor R.:
	A High-Temperature Laser-Pulse Thermal Diffusivity Apparatus.
	Int.Journal of Thermophysics 15 (2), pp: 317-341, 1994
Clark L.M., Taylor R.E. :	Radiation Heat Loss in the Flash Method for Thermal Diffusivity.
	J.Appl.Phys., Vol.46 (2), pp : 714-717, 1975.
Cowan R.D.:	Pulse Method of Measuring Thermal Diffusivity. J.Appl.Phys., 34, pp :
	924-927, 1963.
Degiovanni A.:	Diffusivité et méthode flash. Revue Générale de Thermique, 34, pp : 420,
	1977
Degiovanni A. :	Identification de la diffusivité thermique par l'utilisation des moment
	temporels partials. High TempHigh Press., 17, pp : 683-689, 1985.
Dusza L.:	Introduction of a Combined Solution of the Simultaneous Heat loss and
	Finite Pulse Corrections in the Flash Method.High TempHigh Press.
	(Erscheint 1996)
Dusza L.:	Determination of Thermal Contact Resistance
	with Heat Loss Correction Using the Flash Method.High TempHigh
	Press. (Erscheint 1996)

Inoune K., Ohmura E.:	Determination of Thermal Contact Resistance in Two-Layer
	Composites by Flash Method. Transactions of Weiding Research Institute
	of Osaka University, 15 (2), pp : 21-26, 1986.
Kerrisk J.F.:	Inermal Diffusivity of Heterogeneous Materials. J.Appl.Phys., 42 (1),
14 14 4 44	pp :267-271, 1971.
Kerrisk J.F.:	Thermal Diffusivity of Heterogeneous Materials II. Limits of the Steady-
	State Approximation. J.Appl.Phys., 43 (1), pp : 112-117, 1972.
Larson K.B, Koyama K. :	Correction for Finite-Pulse-Time Effects in Very Thin Samples Using the
	Flash Method of Measuring Thermal Diffusivity. J.Appl.Phys., 38 (2),
	pp:465-474, 1967.
Lee H.J.:	Ph.D.Thesis (Purdue University, USA), 1975.
Lee D.W., Kingery W.D.:	Radiation Energy Transfer and Thermal Conductivity of Ceramic Oxides.
	J.Am.Soc., 43 (11), pp : 594-697, 1960.
Lee T.Y.R., Taylor R.E.:	Thermal Diffusivity of Dispersed Materials. J.Heat Transfer , 100,
	pp :720-724, 1978.
Maxwell J.C.:	A Treatise on Electricity and Magnetism, Clarendon Press, Oxford,
	England, 1873.
Özisik M.N.:	Heat Conduction. John Wiley&Sons (New York), pp : 80-82, 1980.
Parker W.J., Jenkins R.J.,	
Butler C.P., Abbott G.L. :	Flash Method of Determining Thermal Diffusivity ,Heat Capacity and
	Thermal Conductivity. J.Appl.Phys., 32 (9), pp : 1679-1687, 1961.
Rayleigh L.:	On the Influences of Obstacles Arranged in Rectangular Order Upon the
	Properties of a Medium, Philosophical Magazine, 34 (6),
	pp : 481-502, 1892.
Taylor R.E.:	Thermal Diffusivity of Composites. High Temp High Press., 15,
	pp : 299-309, 1983.
Taylor R.E.,Clark L.M :	Finite Pulse Time Effects in Flash Diffusivity Method. High TempHigh
	Press., 6, pp : 65-72, 1974.
Taylor R.E., Grooth H.:	Thermophysical Properties of POCO Graphite. High TempHigh Press.,
	12,pp : 147-160, 1980.
Watt D.A.:	Theory of Thermal Diffusivity by Pulse Technique. Brit.J.Appl.Phys., 17,
	pp :231-240, 1966.

.