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Abstract

This report deals with the determination of stress intensity factors, T-stress, and weight
function for the double-edge-cracked plate by application of the Boundary Collocation
procedure.

In the first part the fracture mechanical parameters are computed for several relative
crack depths and different ratios of plate length to plate width and compiled in the form
of tables. The second part deals with the first derivative of the weight function at the
crack mouth which is used in the literature for application of the Petroski-Achenbach
procedure.

Spannungsintensitédtsfaktoren, T-Spannung
und Gewichtsfunktion
fiir die Platte mit beidseitigem AuBenriB

Zusammenfassung

Es werden die Spannungsintensitdtsfaktoren, Gewichtsfunktionen und der T-Spannungs-
term fOr rechteckige Platten mit beidseitigem AuBenriB mittels der “Boundary Colloca-
tion”-Prozedur ermittelt.

Im ersten Teil wird der EinfluB der relativen RiBldnge und des Verhédltnisses von
Probenhthe zu Probenbreite untersucht. Der zweite Teil befaBt sich mit der ersten
Ableitung der Gewichtsfunktion, die in der neueren Literatur zur Anwendung der ap-
proximativen Methode nach Petroski und Achenbach herangezogen wird.
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1. Introduction

The fracture behaviour of cracked structures is dominated by the near-tip stress field.
Sufficient information about the stresses is available if the stress intensity factor and the
constant stress term, the T-stress, are known,

Stress intensity factors and T-stress are reported in handbooks for simple loading cases
only, for instance pure tension and bending. In case of arbitrary stresses the weight
function proposed by Bueckner [1] enables the related stress intensity factors to be
computed. In a similar way, one can define a weight function (or Green’s function) for
T-stresses [2]-[4].

Handbook solutions for stress intensity factors and weight functions are restricted to
ideal specimens, e.g. infinitely long plates. The aim of this report is to provide stress
intensity factors, T-stress solutions, and weight functions for plates of various
height/width ratios. In an earlier report the single-edge-cracked plate was investigated
with respect to the stress intensity factor and T-stress [5]. In this report the double-
edge-cracked plate is considered using the Boundary Collocation Method (BCM).

The condition of disappearing first derivative of the weight function at the crack mouth,
being a point of special interest, is discussed in detail. The infinitely long double-edge-
cracked plate is treated analytically and the finite plate is treated numerically.
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2. General relations

2.1 Airy stress function, stresses and displacements

The total stress state in a cracked body is known if the Airy stress function @ is avail-
able. The stress function can be obtained by solving the equation of compatibility

AAD =0 (1)

For a cracked body a series representation for ® was given by Williams [6]. Its sym-
metric part can be written

@ = o* W? Z(r/W)n+3/2An|: cos(n + 3/2)p — —Z—t—-?—g— cos(n — 1/2)(p]
n=0
_ @
+o*w? Z(r/W)"HA,T[ cos(n + 2)¢ — cos ne ]
n=0

with the characteristic stress * which may be the remote tensile stress in tensile tests
or the outer fibre tensile stress in bending. The geometrical data are explained in fig.1.
From the stress function the stress components can be computed by

_190 1 &0
=T T 2 00
ke
%= or? ®)

where r and ¢ are polar coordinates with the pole in the crack tip. One obtains
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Figure 1. . Crack in a component; definition of polar coordinates.
> n- 2 _opn_
% = ZOA,,< #) 1/2(n + 3/2)[ n—rf?-”—;/i cos(n —1/2)¢ — (n + 1/2) cos(n + 3/2)(/)]
00 (4)
Z -V%— n2 —n — 2) cos np —(n+2)(n + 1) cos(n + 2)(/)]
c > n—1/2
—‘;%— = nZ()A,,( #) (n+3/2)(n + 1/2)[ cos(n+ 3/2)¢ — %% cos(n — 1/2)(/)]
- * o
+ ZA,T(#) (n +2)(n + V| cos(n +2)¢ — cos ne |
n=0
:;f Z (# >n—1 2(n + 3/2)(n + 1/2)[ sin(n + 3/2)p — sin(n — 1/2)¢ ]
50 (6)
+ ZA,T(W) (n+ DL+ 2)sin(n+ 2)¢p — nsinng ]
n=0

The displacements v and v (v=radial component and v=angular component) can be
calculated from the radial strains ¢, and tangential strains ¢,. The following relations
hold:
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g, =24 (7)

u 1 Ov
£ =— 4 (8)
r r 103

From the Hooke’s law in plane strain

1 v
— — 9
&r="gr o E(1—v) o, 9)

1 v
T % T E ) 1o

(E' = E/(1 — v?)) and the stress components given by eq.(3) we obtain the following sys-
tem of equations describing the displacements

du 100 1 0 y 0D
you _ 1 _ 1
E or r or + r? 8(p2 1—v 52 (1)
f U 1 0v )\ _ oD v 1 00 R
E<,+, a(p>_ o2 1—v<f ar+,2 6q}2> (12)

After introducing the stress function, the integration of this system of differential
equations leads to

1+ N n n +3/2
G*UW = — ZAn(r/W) +1/2*-———,,_1/2 ’
o [(n+ 4v —5/2) cos(n — 1/2)¢ — (n — 1/2) cos(n + 3/2)¢ ] (13)

00

Xriw)" [ (n + 4v — 2) cos ng — (n + 2) cos(n + 2)¢ ]

v 1+ n+1/z n 3/2
= Ap(r/W)
o*w Z okt 1/2

*[(n—1/2) sin(n + 3/2)p — (n — 4v +7/2) sin(n — 1/2)¢ ] (14)

1+v ZA (r/W)"+1[(n+2)sm(n+2) —(n—4v+4)sinne]

n=~0

The Cartesian components of the displacements are
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(15)

u,=using + vcosg

The crack opening displacement field results for ¢ ==
_ _4_i X112 n+3/2 g 16
v(p—n' - FE - 1/2 ( 1) ( )

The unknown coefficients A, and A* have to be determined for the special
specimen/crack geometry and the chosen loading mode.

2.2 Stress intensity factor and T-stress

Especially for the stress component g, ahead of the crack (¢ = 0), eq.(4) reads

N n-— 3\ 2 +1
o, Jo* = _nZozA,,(r/W) 1/2(n+?) n Z4A (r/W)" (n — 1) (17)

In fracture mechanics most interest is focussed on the stress intensity factor character-
ising the singular stress field ahead of a crack tip. The related stress singularity is
responsible mainly for the failure of cracked components. The stress intensity factor K,
is related to coefficient A, by

K=c*F /na , F=./18/a A, , a=a/W (18)

with the geometric function F. As Larsson and Carlsson [7] showed very early, there is
experimental evidence that also the constant stress contributions acting over a longer
distance from the crack tip may affect fracture mechanics properties. The related coeffi-
cient Af leads to the constant stress term. If no x-stress component is present in the
uncracked structure, the total x-stress is given by the so-called T-stress T

=T = —4c* Al (19)

Following a suggestion by Leevers and Radon [8], the T-stress can be dimensionless
expressed by the “stress biaxiality ratio” f

B = K (20)

f = = — o 21
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2.3 Computation of the weight function

The weight function method developed by Bueckner [1] simplifies the determination of
stress intensity factors. If this function is known, the stress intensity factor can be ob-
tained by simply multiplying this function by the stress distribution and integrating it
along the crack length

K = J a(x)h(x,a) dx (22)
0

The weight function h(x,a) depends only on the geometry of the component. The re-
lation of Rice [9]provides the weight function from the crack opening displacement
v(x,a) of any arbitrarily chosen loading and the corresponding stress intensity factor
K{(a) according to

EI

h(x,a) = E—a—)_ 36;; v(x,a) (23)

The components of the weight function result as

_E 0y _E 9y
P = K, 0a hy = K, 0a (24)

The derivatives in €q.(24) can be evaluated by

du, du, gr Ou, do  du, dA, du, dAY

da _ or da @ dp da Jrc’iA,, da +6A,’f da

(25)
duy _ ouy gy N duy de N du, dA, N ou, dA;
da dr da  0dp da = 0A, da oA} da
with
dr do  sing
da — oS, o =T (26)

2.4 Determination of the coefficients A, and A{

A simple possibility of determination of the coefficients A, and A# is the application of
the Boundary Collocation Method (BCM). For practical application of eq.(2), which is
used to determine A, and A%, the infinite series must be truncated after the Nth term for
which an adequate value must be chosen. The still unknown coefficients are deter-
mined by fitting the stresses and displacements to the specified boundary conditions. In
case of the double-edge-cracked rectangular plate of half-width W and length 2L (fig.3)
the conditions are

2. General relations 7




f— 2W —f n-—W—-J<]°

Figure 2. Geometry. a) Double-edge-cracked strip, b) half-specimen with symmetry boundary

conditions.
0,=0, 1,=0 for x=0 (27)
o, =0 , 1,=0 for y=1L (28)
A
a—|

X

— \\ ——»

L 2 2 2K 2 2

Figure 3. Boundary Collocation points. Left half of a double-edge-cracked plate with colloca-
tion points.
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=0 ’t'xy=0 for x=W (29)

About 100-120 coefficients for eq.(2) were determined from 800 stress equations given at
400 nodes along the outer contour (symbolised by the circles in fig.3). For a selected
number of (N+ 1) edge points the related stress components are computed, and we ob-
tain a system of 2(N-+1) equations with 2(N+1) unknowns whose solutions allow all
2(N + 1) coefficlents of eq.(2) to be determined.

The expenditure in terms of computation can be reduced by selection of a rather large
number of edge points and by solving subsequently the then overdetermined system of
equations using the least squares of deviations so that a set of "best” coefficients is
obtained. The Harwell subroutine VO2AD is used here to determine the best fit.
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3. Results

3.1 Crack opening displacements

Figure 4 shows the crack opening displacements’for a plate of relative height L/W=1.7
and several relative crack lengths. Near the free surface the curves are strongly paral-

lel.

L/W=1.7

Q% 20 40 0

x /W

Figure 4. Crack opening displacements. Displacements under constant tractions o, at the ends
of the plate.

Figure 5 represents crack opening displacements for a constant crack length but differ-
ent relative plate heights. From this diagram one can conclude that the shape of the
crack opening displacement field depends significantly on the specimen height.
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Figure 5. Crack opening displacements. Displacements under constant tractions a, for
a/W=0.6 and several relative plate lengths L/W. Normalisation: §' = 5E'/(acW).

3.2 Influence of plate length on stress intensity factor and
T-stress

Double-edge-cracked rectangular plates were investigated under constant tensile
stress. BCM-computations provided the coefficients A, and Af. In Table 1 the geometric
function F, computed from A, by €q.(18), is entered (see also fig.6). Table 2 gives the
coefficient A¢. The biaxiality ratio is shown in Table 3.

o LIW=15 1.25 1.00 0.75 0.50 0.25

0 1.1215 1.1215 1.1215 1.12156 1.1215 1.1215
0.3 0.94 0.96 1.029 1.180 1.496 2.468
0.4 0.8891 0.9171 0.9946 1.1926 1.646 2.970
0.5 0.8389 0.8659 0.9427 1.1637 1.7190 3.22
0.6 0.7900 0.8135 0.8760 1.0597 1.6529 3.25
0.7 0.7420 0.7492 0.8029 0.9297 1.4142 3.1544
1.0 0.6366 0.6366 0.6366 0.6366 0.6366 0.6366

Table 1. . Geometric function F' = F./1— « .
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.00 .20 .40 .60 .80 1.00
X
Figure 6. Stress intensity factor. Geometric function F' =F./1 — «a .
o Liw=1.5 1.25 1.00 0.75 0.50 0.25
0 0.1315 0.1315 0.1315 0.1315 0.1315 0.1315
0.3 0.133 0.130 0.1279 0.1183 0.0642 -0.456
0.4 0.1321 0.1259 0.1101 0.0705 -0.064 -1.060
0.5 0.1304 0.1160 0.0791 -0.0112 -0.2645 -1.7817
0.6 0.1275 0.1023 0.0382 -0.1208 -0.5504 -2.425
0.7 0.1232 0.08 -0.0058 -0.2423 -0.9195 -3.2672
Table 2. . Coefficient A¢
o LIW=1.5 1.25 1.00 0.76 0.50 0.25
0 -0.469 -0.469 -0.469 -0.469 -0.469 -0.469
0.3 -0.472 -0.453 -0.416 -0.336 -0.144 0.618
0.4 -0.460 -0.425 -0.343 -0.183 0.120 1.106
0.5 -0.440 -0.379 -0.237 0.028 0.435 1.528
0.6 -0.408 -0.318 -0.110 0.288 0.842 1.862
0.7 -0.364 -0.228 0.016 0.571 1.424 2.269
Table 3. . Biaxiality ratio 8, eq.(20).
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Figure 7. Weight function. Normalised representation h’ = h /W

3.3 Weight function

From the crack opening displacements the weight function was computed using eq.(24).
Figure 7 shows the weight function for several relative plate heights L/W. Single data in
a normalised representation are entered in Tables 4-7.

xla L/W=0.25 0.50 0.75 1.00 1.50
0 15.4 7.21 4.27 3.04 2.35
0.1 13.6 6.49 3.92 2.84 2.24
0.2 11.9 5.80 3.58 2.64 2.13
0.3 10.2 5.12 3.24 2.44 2.01
0.4 8.67 4.47 2.91 2.24 1.90
0.5 7.7 3.84 2.60 2.06 1.79
0.6 5.76 3.25 2.29 1.88 1.68
0.7 4.45 2.69 2.01 1.71 1.57
0.8 3.256 2.16 1.73 1.54 1.47
0.9 2.16 1.68 1.49 1.40 1.37
1.0 1.262 1.262 1.262 1.262 1.262

Table 4. Weight function. Normalised representation h/W /1 —x/a , alW=0.4
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x/a L/W=0.25 0.50 0.75 1.00 1.50
0 16.8 7.84 4.20 2.89 2.30
0.1 14.8 7.01 3.85 2.70 2.18
0.2 12.9 6.20 3.49 2.51 2.06
0.3 11.1 5.43 3.14 2.31 1.93
0.4 9.4 4.68 2.80 2.12 1.81
0.5 7.73 3.97 2.48 1.93 1.69
0.6 6.15 3.30 2.17 1.75 1.56
0.7 4.68 2.68 1.87 1.58 1.45
0.8 3.33 2.10 1.60 1.41 1.33
0.9 2.13 1.56 1.35 1.26 1.22
1.0 1.128 1.128 1.128 1.128 1.128

Table 5. Weight function.

Normalised representation hyW \/1 -~ xla , alW=0.5

x/a L/w=0.25 0.50 0.75 1.00 1.50
0 19.4 7.91 4.00 2.79 2.17
0.1 17.1 7.04 3.66 2.61 2.06
0.2 14.8 6.21 3.31 2.42 1.95
0.3 12.6 5.40 2.98 2.23 1.84
0.4 10.6 4.63 2.65 2.04 1.72
0.5 8.66 3.90 2.33 1.86 1.60
0.6 6.83 3.21 2.03 1.68 1.49
0.7 5.11 2.57 1.75 1.51 1.26
0.8 3.55 1.99 1.48 1.34 1.25
0.9 2.16 1.45 1.24 1.18 1.14
1.0 1.030 1.030 1.030 1.030 1.030

Table 6. Weight function.

Normalised representation h./W /1 — x/a , a/lW=0.6

x/a L/W=0.25 0.50 0.75 1.00 1.50

0 25.6 7.47 3.69 2.77 1.95
0.1 22.3 6.65 3.39 2.59 1.86
0.2 19.1 5.85 3.09 2.41 1.77
0.3 16.1 5.09 2.78 2.23 1.68
0.4 13.3 4.35 2.49 2.05 1.58
0.5 10.7 3.65 2.20 1.86 1.48

3. Results

15




0.6 g2z . o0 1.93 1.68 1.38
0.7 5.98 2.39 1.66 1.50 1.27
0.8 3.99 1.84 1.41 120 147
0.9 2.29 1.36 118 1.13 1.06
1.0 0.954 0.954 0.954 0.954 0.954

Table 7. Weight function. Normalised representation h,/W ﬁ— xja , alW=0.7

3.4 The first derivative of the weight function

The numerical results of fig.7 suggest for L/W>1 that dh/0x~0 holds at the crack mouth.
This condition has been used in the literature [10] for the application of the Petroski-A-
chenbach procedure [11]. One can prove this condition analytically.

3.4.1 The infinitely long strip

In order to compute the first derivative of the weight function for a double-edge-cracked
plate (see fig.8) we consider this specimen under pairs of forces acting directly at the
crack faces. The specimen is assumed to be cut out of an infinite array of collinear
cracks in an infinite body (see fig.9) which are also loaded with concentrated forces at
the crack faces. The cutting lines are the dash-dotted lines of fig.9. The total stress
state in such a structure can be derived from the Westergaard stress function (see e.g.

[12])

® - .35 cos(nb/W)\/sinQ(na/W) — sin’(nb/W) (30)
[ sin®(nz/W) — sinQ(nb/W)]\ﬂ — sin’(na/W)/ sin®(rz/W)

with the geometric data a, b, and W as illustrated in fig.9. The complex variable z is
given by z = x + iy with the origin of x,y in the crack centre.
The a,~stresses are given by

o, (xy,b) = Re® —yIm d;dz () (31)

Therefore, the tractions which have to be applied at the surface x =0 of the double-
edge-cracked plate to satisfy the displacement conditions accurring in the case of the
internal crack are

Gappi — — Ox (O.y,b) : (32)

These surface tractions (illustrated schematically in fig.8 by the shaded areas) are re-
sponsible for the stress intensity factor AK, which can be expressed by the weight func-
tion formulation [1]
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Figure 8. . a) Double-edge-cracked plate, b) symmetry conditions. Shaded areas: surface trac-
tions which reproduce the stress state of the internal cracks for the same loads, see

fig.9.
AK, = I o, (0,y,b) hy pe (a,y) dy (33)
0

where hpe is the weight function for tractions acting in x-direction. The subscript DE
stands for “Double Edge” and subscript INT denotes the internal crack. On the other
hand, the change in stress intensity factor caused by the free surface condition is given

by
) a
AK; = Kipg — Kynr = J [hype(@.x) = hywr(@x) 1o, _ o dx (34)
0

with the crack surface tractions ¢, acting normal to the crack. The crack-face weight
functions are hy e for the double-edge crack and A,y for the internal crack.

The stress distribution of a pair of forces £P acting on the crack surface at x=05 is
expressed in terms of the Dirac é function as

o, (x)=P é(x—b) (35)

(assuming the plate thickness B = 1). Introducing this in eq.(34) gives

AK, = Phy,DE (a,b) - Phy,INT (a,b) (36)

and, finally,
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Figure 9. . Array of collinear internal cracks loaded with point forces.

(e o]

1
hype(@b) = hywr+ P f o, (0,y,b) hy pe (a,y) dy (37)
0

We are now interested in the first derivative of the weight function directly at the free
surface. Since the weight function for the internal crack is symmetric at the crack cen-
tre, oh, wr/db(a,b = 0) = 0, we find

Oh,, pela,b) 0 9o
¥,DE 1 app!
ob |b=0 B P fo hX’DE (a,y) ab lb=0 dy (38)

From eq.{30) we can see that the Westergaard stress function is symmetric with respect
to the real variable b. This is the case because b only occurs in the terms

cos(nb/W), sin’(nb/W)

which are symmetric with respect to b= 0. Consequently, it holds d®/db =0 and we
obtain for the derivatives

00y D d oD
3 oo ~ R o™V MGz o o = O (39)

From eq.(38) it results
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ahy’DE
ab b=0 0 (40)

3.4.2 The double-edge-cracked plate of finite height

Now we consider plates of finite height. The first derivative of the weight function is
given by

o B0 v _ 1 0 (FE v > (41)
ox lx=o0 K 0da 0x 'x=o0 vJa 0a \ % dx lx=o0

The slope of the crack opening displacement at x =0 - a measure of the first derivative
of the weight function (see eq.(41)) - is plotted in fig.10 for several values of L/W and
a/W. In case of L/W=1.5 the data are nearly independent of the relative crack length. In
this case we may conclude:

v L on | .
%o ox X=O_const. = E» x=0_0 (42)

If the data points of fig.10 are fitted by straight lines, we find a common limit value of
about 1.58 for a/W — 0. This extrapolated data point may be determined also directly.
For relative crack depths a/W — 0 the limit behaviour of a double-edge-cracked plate is
identical with that of an edge-cracked half-space. In this case, the weight function can
be obtained from a highly accurate asymptotic expansion for the crack opening dis-
placement field under remote tension loading o,. Wigglesworth [13] determined the
v-displacements as

12

o n+1/2
v=.8/r a Yo? ZC"<1 — p) , p=xla (43)

v=0
with the coefficients
C, = 1.000000 C, = —0.143719 C, = 0.019965
C; = 0.019665 C,=0.011856 Cs = 0.006254
Cg = 0.002993 C, = 0.001256 Cg = 0.000390 (44)
Cy = — 0.00001 Cyo = —0.000172 C,; = — 0.000213

Cyp = — 0.000212

Based on these displacements, one can compute a highly accurate weight function ac-
cording to eq.(24)

13
hxa) = /55 ) 01— )P (49
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1.25
1.9
80

Figure 10. Derivative of displacements. First derivative of the crack opening displacement at
the crack mouth,

with the coefficients

DO = 1
D, = —(2v-3)C,_, + (v +1)C,, for 0<vy<12 (46)
Dy = —23Cy,

Wigglesworth’s analysis was repeated in [14] and extended up to N =20 with the fol-
lowing coefficients

C, = 1.00000 C,=—0.1437181  C, = 0.0199656
C, = 0.0196651 C, = 0.0118558 Cs = 0.0062537
Cg = 0.0029935 C,=0.0012562  C, = 0.0003899
Co = — 0.0000097 C,,= —0.0001718  C,, = — 0.0002189 (47)

C,, = — 0.0002149 C,, = —0.0001909  C,, = — 0.0001618

Cys = —0.0001338 C,s=—0.0001095 C,, = — 0.0000893

Cys = — 0.0000728 C,o=—0.0000595 C,,= — 0.0000487
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BCM

1.40K

Figure 11. Derivative of displacements. First derivative of the crack opening displacement at
the crack mouth for the edge-cracked half-space.

The derivative of the displacements with respect to x were computed and entered in
fig.11 for an increased number of terms used in eq.(43). From the asymptotic behaviour
we find the limit value of ~1.57 in agreement with the BCM-results.

From the numerical data we conclude that the disappearing first derivative of the weight
function is sufficiently correct for L/W > 1.5.
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