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Impact of absorber rod material on bundle degradation seen in CORA experi­

ments

In the CORA program 16 out of 19 tests were performed with absorber rods.

Nine tests with (Ag, In, Cd) absorber material should investigate the damage behav­

iour in PWR-type reactors. For investigation of BWR-type behaviour, seven tests with

B4C/ss absorber were performed. The WER B4C/ss absorber arrangement was

used in one test.

The absorber materials strongly influence the bundle degradation. In all three

reactor types macroscopic degradation starts at about 1200°C (1470 K) byeutectic

interactions. For PWR's the (Ag, In, Cd) absorber, molten at about 800°C (1070 K),

is released from the absorber rod after failure of the stainless steelabsorber clad­

ding, caused by eutectic interaction with the Zry-guide tube. The failure may be influ­

enced by the high vapour pressure of the cadmium. The release normally happens

after reaching 1200°C (1470 K). The liquid absorber fills up the space inside the

guide tube freezing in the gap at the lower end. The Ag/Zry eutectic interaction dis­

solves the guide tube and releases the absorber material into the bundle. In conse-.

quence, the Zry of the cladding starts to be Iiquefied by the Ag/Zry interaction. The

Iiquefied Zry begins the dissolution of U02far below the melting point of U02.

In the BWR absorber blade the boron carbide in contact with stainless steel re­

sults in eutectic Iiquefaction of the blade starting again at about 1200°C (1470 K).

The resulting melt destroys the Zry channel box wall by eutectic ss/Zry interactions.

After distribution in the bundle the stainless steel melt starts to liquefy the Zry of the

c1adding. Analogue to the PWR case, also here the liquefied Zry results in th~ onset

of U02 dissolution.

For the WER reactor bundle with similar geometrical arrangement of the ab­

sorber rods as in PWR reactors, but with B4C absorber and stainless steel guide

tubes, a similar behaviour was found. The B4C/ss reaction results in the liquefaction

of the absorber rods and guide tubes, starting the Iiquefaction of the Zr1 %Nb fuel rod

cladding with the following dissolution of U02.

The described behaviour is shown in examples from different tests. The direct

comparison of test CORA-W1 without absorber and CORA-W2 with absorber dem­

onstrates the strong influence of the absorber material on the melt formation, melt

relocation, temperature escalatIon behaviour and axial temperature distribution.
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Einfluß des Absorbermaterials auf die Schadensentwicklung im Reaktor-·

bündel: Ergebnisse der CORA-Experimente.

Im CORA-Programm wurden 16 der 19 Versuche mit Absorbermaterial durch­

geführt. Neun Experimente mit (Ag,ln,Cd)-Absorber sollten das Schadensverhalten

in druckwasserreaktor-typischen Bündeln untersuchen. Für die Untersuchung des

siedewasserreaktor-typischen Verhaltens wurden sieben Versuche mit B4C/Edeistahi

Absorber durchgeführt. Ein Test wurde mit der WER-B4C/Edelstahl Anordnung

durchgeführt.

Das Absorbermaterial hat einen starken Einfluß auf die Schadensentwicklung

im Bündel. In allen drei Bündelanordnungen beginnt die Bündelzerstörung oberhalb

1200°C (1470 K) durch eutektische Wechselwirkungen. Im Druckwasserbündel geht

das (Ag,ln,Cd)-Absorbermaterial bei 800°C (1070 K) in den flüssigen Zustand über.

Sein Edelstahlhüllrohr versagt bei gut 1200°C (1470 K) durch eutektische Wechsel­

wirkungen mit dem Zry-Führungsrohr. Das Versagen kann auch durch den sich auf­

bauenden Cd-Dampfdruck beeinflußt werden. Das geschmolzene Absorbermaterial

füllt den Spalt innerhalb des Führungsrohres indem die Schmelze am unteren Ende

erstarrt. Die Ag/Zr eutektische Wechselwirkung löst das Hüllrohr auf und entläßt

weitere Absorberschmelze ins Bündel. Die sich ausbreitende Absorberschmelze be­

ginnt die Zry-Hülle der Brennstabsimulatoren zu verflüssigen. Das verflüssigte Zry

wiederum hat die Auflösung von UOz weit unterhalb seiner Schmelztemperatur zur

Folge.

Auch beim Siedewasserabsorber beginnt die makroskopische Verflüssigung·

des B4C in Kontakt zum Edelstahl bei ca. 1200°C (1470 K). Die resultierende

Schmelze zerstört die Zry-Kanalwand durch die eutektische Edelstahl/Zry­

Wechselwirkung. Nach Ausbreitung im Bündel beginnt die Edelstahlschmelze das

Zry der Brennstabhülle zu verflüssigen, das wiederum mit der chemischen Auflösung

des UOz beginnt. Für den WER-Reaktor mit ähnlicher Anordnung der Absorberstä­

be wie im Druckwasserreaktor, aber mit B4C-Absorber und Edelstahl-Führungsrohr,

ergab sich ein ähnliches Verhalten. Die Borkarbid/Edelstahl-Wechselwirkung resul­

tiert in der Verflüssigung des Absorberstabs und des Führungsrohrs. Die im Bündel

verbreitete Schmelze beginnt die Verflüssigung des Zr1 %Nb, das daraufhin die Auf­

lösung des UOzstartet.

Für das oben beschriebene Verhalten werden Beispiele aus verschiedenen

Tests angeführt. Der direkte Vergleich des CORA-W1 Versuchs ohne und des

CORA-W2 Versuchs mit Absorbermaterial demonstriert deutlich den starken Einfluß

der Absorbermaterialien auf die Schmelzenerzeugung, die Schmelzenverlagerung,

dasTemperatur-Eskalationsverhalten und die axiale Temperaturverteilung
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1 Introduction

From the early tests in the NIELS facility it is known, that the damage behaviour of

the PWR fuel element in loss-of-coolant ;conditions is strongly influenced by the

chemical interactions of the bundle components with each other. Absorber and

spacer materials are not thermo-dynamically stable with the Zr of the fuel rod clad­

ding. Also, the Zr interacts with U02 at high temperatures. Therefore, in the CORA-.

program most of the experiments were performed with absorber materials. Nine tests

with (Ag, In, Cd) absorber should investigate the damage behaviour of PWR-type

bundles. For investigation of the damage behaviour in BWR-type bundles seven

tests with B4C/ss absorber and Zry channel box walls were performed. The WER

B4C/ss arrangement was used in one test (Table 1).

The arrangement of fuel rods and absorber assemblies of the three considered re­

actor types is given in Figures 1 to 3. The PWR fuel rod bundle (Figure 1) allows the

absorber rods to be lowered inside the Zry-guide tubes. The (Ag,ln,Cd) absorber has

a stainless steel cladding. About 2,3 t of AglnCd are used in 1000 MWe reactors.

The bundle arrangement in a BWR reactor is shown in Figure 2. The absorber blade

is placed between 4 bundles and has the shape of a cross. The bundles are sur­

rounded bya Zry channel box wall. Inside the stainless steel cross the boron carbide

powder is contained in stainless steel tubes. The region of absorber, channel box

walls and bundles, simulated in the CORA bundle, is shown in lett lower half of Fig­

ure 2. The geometrical arrangement of the WER-1000 absorber inside the bundle

can be seen in Figure 3. The boron carbide is contained in stainless steel tubes

which can be moved inside stainless steel guide tubes.

In this paper the strong influence of the absorber material on damage initiation and

propagation are discussed and typical examples for the behaviour of the three types·

of absorber material (PWR, BWR, WER-1000) are given.

2 Description of the CORA test facility

The CORA out-of-pile facility was designed to investigate the behaviour of LWR fuel

elements under severe fuel damage accident conditions. In the experiments the de-
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cay heat of the fission products was simulated by electrical heating. Great emphasis

was given to the fact that the test bundles contain all materials used in Iight-water"

reactor fuel elements to investigate the different material interactions with increasing

temperature. Pellets, claddings, grid spacers, absorber rods and the pertinent guide

tubes were typical to those of commercial LWRs with respect to their compositions

and radial dimensions.

Figure 4 gives a sketch of the facility. The central part of the facility was the fuel rod

bundle. The bundle was enclosed in a Zry-shroud with Zr02 fibre insulation. A high

temperature radiation shield surrounded the bundle, leaving an annular space for

moving up the water filled quench cylinder. The bundle was connected to the power

supply system at the upper and lower end of the test bundle.

Below the bundle was the quench unit with a water-filled quench cylinder, which

could be raised around the bundle with a controlled speed. The cylinder was guided

by three rods, which also connected the electric power to the bundle lower end. At

the beginning of the test the water level was 220 mm below the "zero elevation" of

the bundle. The "zero elevation" corresponded to the lower end of the pellet stack in

the heated rods.

The bundle upper end was fixed in the bundle head plate. The plate was connected

to the surge condenser by a funnel shaped tube. The surge condenser was double­

walled, leaving access to the bundle end fittings above the bundle head funnel.

The steam was produced in the steam generator, superheated and led to the lower

end of the bundle, entering at "zero elevation". The steam not consumed within the

bundle was condensed in two parallel condensers and the hydrogen produced was

given to the off-gas system after dilution to a low H2concentration by air.

The arrangements of the fuel rod bundles to study the influence of the different ab­

sorber materials are shown in Figures 4 and 4a. In all bundles heated and unheated

fuel rods were used. Both types of rods were sheathed with the standard c1adding.

For the PWR- and BWR-bundles we used Zircaloy-4 (10.75 mm outer diameter) and"

for the WER bundles Zr1 %Nb (8.2 mm outer diameter). The central part of the
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heated fuel rod consisted of a tungsten heater rod (PWR, BWR: 6mm; WER: 4 mm)

and was surrounded by U02 annular pellets. The tungsten heater had an effective

length of 1024 mm. At top and bottom the tungsten heater was screwed into Mo­

electrodes of 300 mm length which fit directly into the Zry cladding. The molybdenum

electrodes were connected to copper electrodes by a brazing technique ~nd both

were insulated from the Zircaloy cladding by a flame-sprayed Zr02 layer. The un­

heated fuel rod contained solid U02 pellets.

The standard PWR bundle consisted of 16 heated,seven unheated and two ab­

sorber rods. Test CORA-12 contained only one absorber rod. The absorber rods

were composed of original components. The (Ag80,ln15,Cd5) absorber material was

sheathed in stainless steel, and this rod was surrounded by a Zry-guide tube. Three

original spacers were used in the bundle to maintain its geometry. The material of

the control spacer was Inconel 718 and the upper and lower ones were made of Zry­

4.

The BWR bundle simulated the arrangement of the absorber-cross placed between'

bundles which are surrounded by a channel box. The original B4C powderlstainless

steel rods inside the stainless steel blade were separated to the fuel rod simulators

by the Zry channel box walls.

Two tests were performed with larger bundles. The cross sections of the PWR test

CORA-7 and the BWR-test CORA-18 are shown in Figure 4a. No influence of the

bundle size on the damage behaviour was found.

The WER 1000 bundle behaviour (Figure3) was studied by a 19-rod bundle with

hexagonal arrangement of 13 heated and 6 unheated rods. Three original stainless

steel spacers were used to maintain the geometry. For the absorber test CORA-W2

one unheated rod was replaced by an original absorber rod inside the stainless steel

guidetube.

The bundles were surrounded by a Zry-4 shroud of 1.2 mm thickness. The shroud

conducted the steam through the bundle. The steam entered the lower end (0 mm

elevation) at 180°C. To minimise the heat losses from the shroud, the test bundle
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was surrounded by an insulating layer of Zr02 fibre of 19 mm (0.75 inch) thickness.·

Since the Zr02 fibre layer had a low heat conductivity and heat capacity, the shroud

temperatures could follow the bundle temperature c1osely. Since the Zry shroud par­

ticipated in the interaction with steam, the resulting oxidation energy contributed

substantially to the bundle heatup.

To keep the heat losses as low as possible, the bundle was surrounded by an addi­

tional high temperature shield. This shield consisted mainly of eeramic fibre plates

(inner plates Zr02; outer plates AI203).

The power input was controlled by measuring the currents of the single rods and set-.

ting the common voltage necessary to obtain the desired power history. The electric

heating was done by direct current to avoid eddy currents in the containment struc­

tures.

3 Test conduct

Generally the tests were performedfollowing the same procedure. Three phases

(Figure 5) could be recognised:

1. gas preheat phase 0 - 3000 s

2. transient phase 3000 - 4900s (CIRA.7: 4200 s; CORA-W2: 4500 s)

3. quench or eooling phase.

For the normal bundle in the gas preheat phase there was a flow of 89/s preheated

argon (CORA 7 and 18: 16 gIs; CORA W1 and W2: 6g/s). In addition, a low constant

electric power input of about 0.65 kW was used. During this period the temperature

in the insulation reached a level which was high enough to avoid steam condensa­

tion. To keep the videoscope windows clear an additional flowof 1 g/sargon was

directed to the front of the windows of the videoscopes. The system pressure in the

facility was controlled to 0.22 MPa.

During the transient phase the temperature increase of initially 1 Kls was produced·

by rising the electric power input from 6 to 27 kW in the PWR tests and from 6 to 26

kW in the BWR tests (CORA 7 and 18: max. 39 kW; CORA W1 and W2: max. 14
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kW). At 3300 s an additional steam f10w of 6 gIs for the PWR tests and of 2 gIs for

the BWR tests was added to the system (CORA-7: 12 gIs; CORA-18: 4 gIs; CORA­

W2: 4 gIs). The electric power input was finished at about 4900 s.

In the non-quench tests the bundles were allowed to cool down by the normal heat

losses. In contrast for the quench tests 1111 the water-filled quench cylinder was

moved up over the bundle with 1 cm/s. The initiation of quench movement started

30 s before electric energy shutdown (CORA-13) or about 150 s later (CORA-12 and

CORA-17).

4 Influence of the chemical interactions between the fuel element components

on melt formation

Fuelelements of a reactor are designed to be used at operational temperatures

« 400°C). At the temperatures which are reached under loss of coolant conditions

most of the materials are chemically not stable to each other. Preferential eutectic

reactions lower the liquefaction temperature of the materials which are in contact.

The interactions start in regions where the materials are in local contact. As soon as

the eutectic temperature is reached, some material will be liquefied. The molten

material general increases the contact and with this the further chemical interactions.

At a given critical temperature a fast Iiquefaction of the components take place.

In Figure 6 the melting temperatures of the reactor components are compared to the

temperature regions in which the components in contact to each other are liquefied.

For all three reactor types change of the geometry as a result of liquefaction starts at

about 1200°C. In the PWR type bundle the stainless steel/Zircaloy and the sil­

ver/Zircaloy reaction are responsible for the damage initiation. The (Ag,ln,Cd) alloy is

already molten at 800°C, but as it is stable against stainless steel, it is kept inside the

c1adding, as long as the stainless steellZircaloy interaction does not chemically fail

the c1adding. For the BWR- and WER-type bundle the B4C/ss reaction starts the

Iiquefaction process. Also here at about 1200°C the liquefied stainless steel attacks

the Zircaloy or Zr1 %Nb.
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The same behaviour as in the integral CORA-tests is also found in the separate ef­

fects tests for the interaction between the relevant components. The results of these

kinetic studies allow the quantitative description of the reaction rates. In all cases a

complete Iiquefaction of the materials takes place clearly below the melting points of

the components.

4. 1 Influence of the absorber material in PWR reactors.
In most of the PWR reactors the (Ag,ln,Cd) absorber· material is contained in stain-

less steel cladding (Figure 1). The absorber rod is placed inside the Zircaloy guide

tube. The guide tubes are positioned by spacers (axial distance of about 50 cm). The"

spacer material has changed in recent years from Inconel to Zircaloy. But there are

still stainless steelsprings left inside the Zircaloy spacer.

A schematic presentation of the damage initiation and progression process in the

PWR bundle is given in Figure 8. The (Ag,ln,Cd) absorber liquefies at about 800°C.

As this alloy is stable in contact to stainless steel the melt is kept as long as the

cladding is intact. Failure of the cladding below the melting temperature can be pro­

duced, if the original central positioned absorber rod is touching the Zircaloy guide

tube. The cross sections of the bundle after the test confirm this possibility. The de­

formation of the absorber rod mayaiso be influenced by the increasing vapour pres­

sure of cadmium.

In all tests it was found that the failure develops after surpassing 1200°C, that means

about 200°C below the melting point of the stainless steel. The released absorber

melt is filling the gap between absorber rod and guide tube, after forming a blockage

at the lower end by "freezing" due to the axial temperature profile. This can be seen

for test CORA-5 in Figures 9 to 12. Above 90 mm elevation the gap is completely

filled (Figure 9 to 10). Partial filling of the gap by frozen material can be seen down to

o mm elevation (Figure 11). Theabsorber melt dissolves the Zry wall of the guide

tube, so that further absorber material can spread into the bundle. In the upper part

of Figure 12 one can recognise the increasing atlack on the Zry wall toward the UP-"

per end. Figure 10 shows that in test CORA-5 the Zircaloy wall is destroyed above

250 mm. But partial remnants of the oxidised part of the guide tube have survived.
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Figure 10 to 14 clearly show the strong chemical attack of the absorber material on

the Zry cladding of the surrounding rods. The detail photograph in Figure 13 shows

the strong dissolution on the right side of the rod and intact parts of the cladding at

the same elevation. In the upper part of the cladding on the left side, one can recog­

nise partial attack inside the cladding. Also from other tests we have learned that the"

absorber melt attacks the remaining metallic layer inside the Zr02-layer on the oxi­

dised cladding tube.

The cross sections (Figure 10 to 11) show clearly the increasing dissolution of U02

pellets by the liquid Zircaloy. This is confirmed by the high content of uranium in the

refrozen melt.

Figure 15 to 18 show the influence of the absorber material in test CORA-7. CORA-7

used a large bundle (57 rods including 5 absorber rods). This test was already termi­

nated earlier (4200 s instead at 4900 s; immediately after the escalation) to concen-.

trate on the initial damage of the bundle.

Figure 15 shows the preferred melt formation on theleft side at the position of the

absorber rod. This absorber melt solidified at the outside of the bundle, would attack

in the case of a large core the surrounding Zry fuel rod c1adding. The picture (Figure

15) also clearly shows the typical deformation of the partially oxidised cladding

(lf1owering"). The flowering also can be recognised from the cross sections in the

upper half of the bundle (Figure 16).

The cross sections between 622 and 1005 mm also show in the inner bundle region

the attack of the absorber melt on the Zry c1adding. The damage process starts af

the absorber positions. In the upper half between 480 mm and 1147 mm all absorber

rods have disappeared. The absorber melt has dissolved most of the surrounding

Zry cladding. First attack on U02pellets can be recognised.

The molten and dissolved material has relocated down to the central spacer. The

r spacer is no barrier for the molten material. The horizontal cross section at 465 mm

and 426 mm together with the vertical cross section (Figure 18) show, that the melt

penetrates through the spacer and freezes according to the axial temperature profile.
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The blockage is influenced by the spacer, but the main influence is given by the axial

temperature profile. The cross section at -30 mm shows that only a small fraction of

the melt fall down as droplets.

In Figures19 to 21 information about the failure of the absorber rods in test CORA­

10 is given. In Figure19 the failure time determined from the pressure loss of the

absorber rods is compared to the first movement of absorber melt as seen by video

records. The failure of absorber rod 4.6 and the first melt movement took place

within two secondsafter 3980 s test time. This means that within 2 s after failure of

the absorber c1adding, the absorber melt has also penetrated the Zry guide tube and

distributes within the bundle. In agreement with the axial temperature distribution the

first melt movement is seen at 800 mm elevation.

Absorber rod 6.2 failed at 3990 s. In Figure 20 are shown temperatures measured in

the absorber rods and at the guide tubes. One can recognisedeviations from the

smooth temperature increase again at 3980 s for absorber rod 4.6 andat 3990 s for

absorber rod 6.2. We assurne that these irregularities are caused by the failure of the

absorber rod cladding. According to the temperature profile the absorber is already

molten over the corresponding length. After failure of the cladding this melt leaves

the absorber tube. The temperature of the absorber rod in the upper part at the time'

of failure is about 1230°C (1500 K).

The failure time and temperature of heated and unheated rods is shown in Figure 21.

In three unheated rods and one heated rod the internal pressure was registered.

They failed at about 2.5 bar at the time marked in Figure 21 by the verticallines. As

can be seen form the temperature graphs this corresponds to temperatures between

1280°C to 1450°C.

4.2 Influence of the absorber material in BWR reactors

As is shown in Figure 2 in most BWR reactors the absorber material is arranged in

form of.a cross between four neighbouring fuel bundles, which are contained in a
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Zircaloy box. The B4C powder is kept in the absorber cross blade inside stainless

steel tubes as seen in Figure 4.

The schematical presentation of Figure 22 iIIustrates the B4C inside the stainless

steel tube and stainless steel blade, surrounded by the Zry channel box wall. The

B4C incontact to the stainless steel tube starts the eutectic interactions. With the

melt formation the contact between the materials increases and accelerates the liq­

uefaction process through tube and blade wall. This process starts in the upper part

of the bundle at the axial temperature maximum. The liquefied material flows into the

gap between absorber blade and channel box wall. The stainless steel melt starts to

attack the Zircaloy channel box wall by eutectic interaction. The melt running down

within the gap solidifies due to the axial temperature profile. On top of the crust thus

formed the melt can pile up within the gap. The eutectic interaction withthe Zircaloy.

liquefies the channel box wall in contact with the melt and releases the melt into the

bundle region. In the upper part the absorberblade and the channel box walls disap­

pear completely.

Figure23 provides the view thraugh the bundle in the direction of the absorber blade.

Between 850 and 970 mm elevation one can recognise the background behind the

bundla That means that at these elevations the absorber blade has completely

dissappeared.

In Figure 24 the photograph is taken as shown in the schematic view of the cross

sectionsof the bundle. The melt down of absorber blade and channel box wall and

strong attack on the fuel rods can be seen. The Zry c1adding is Iiquefied by eutectic

interaction to an extent that the pellets can be recognised.

The destruction of the absorber blade and channel box walls in the upper part of the

bundle can even better be seen in the horizontal cross sections of Figure 25. At

1145 mm elevation one recognises the intact absorber blade, channel box walls and

fuel rod simulators. Due to the low maximum temperature of (1200 °C) at this eleva­

tion the interactions between the materials have not yet started. About 100 mm lower

below (1052 mm elevation) the B4C/ss interaction has destroyed the absorber rads

and the resulting melt has strongly attacked the Zry channel box walls. At 836 mm
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elevation the absorber blade and the channel box walls have practically disappeared

and the attack has spread into the bundle onto the fuel rod simulators. At 612 mm

elevation one can recognise the increasing attack onto the U02 pellets by the Iique­

fied Zry.

In the lower half of the bundle the sintered remnants of the absorber rods can be

seen. Below 112 mmthe refrozen melt within the gap between the channel box walls.

andbetween the rodsof the simulator bundleis visible. The vertical cross section in

Figure 26 shows that the refrozen melt has piled up to an elevation of about 190 mm.

In Figure 27 the two upper cross sections of the large BWR type bundle CORA-18

are given. They clearly demonstrate the attack of the absorber material on the Zir­

caloy. At the 1158 mm elevation with a maximum temperature of 11 OO°C no attack

on absorber blade and channel box wall can be recognised. About 140 mm lower,

with a maximum temperature of 1530°C the absorber blade is liquefied and the

neighbouring part of the channel box v"alls is nearly dissolved. The other half of the

channel box wall, though practically at the same temperature, is fully intact. In the

region of the dissolved channel box walls the melt hastouched two of the fuel rod"

simulators and started the attack on the Zry c1adding.

Figure 28 gives the temperature measured between the rods of the absorber blade

for BWR test CORA-28. In addition the pressure drop of the fuel rod simulator at fail­

ure of the c1addingis given. The deviation from the smooth regular temperature in­

crease starts at about 4270 s. This corresponds to an absorber temperature of about

1230°C. The fuel rod simulator adjacent to theabsorber blade failed between4340 s

and 4490 s.

We assume that the failure of the fuel rod cladding is caused by the interaction with

the absorber melt. This means that the time between·the beginning of melt formation.

in the absorber rod and failure of the simulator cladding takes about 70 s.

4.3 Influence of the absorber material in WER-1000 reactors
As shown in Figure 3 in WER-1000 reactors the absorber rod (B4C powder in stain-

less steel c1addings) is placed inside stainless steel guide tubes. A similar behaviour
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as in the BWR reactors is therefore expected. The schematical presentation of the

attack by the B4C/stainiess steel absorber material on the Zr1 %Nb of the fuel rod

cladding is given in Figure 29. It is determined by the B4C/ss eutectic reactions.

As for the influence of the absorber material we can compare the two tests CORA­

W2 and CORA-W1, because of almost identical test procedures in CORA-W2 one

fuel rod simulator was replaced by an absorber rod (Figure 30). The absorber rod

(Figure 31) was made of original components. The comparison of the test conditions

is given in Figure 32. Power input, argon flow and steam input was chosen to give

the same temperature increase as in the earlier PWR and BWR tests. In test CORA­

W2 the power input was stopped earlier at 4500 s.

In Figure 33 the temperatures in the bundle are compared for the two tests. Up to

4200s the temperature behaviour is the same. The escalation starts in both tests in

the upper part of the bundle, at 950 mm elevation. Then, in CORA-W2, the escala­

tion moves much faster to lower elevations. In less than 300 s the escalation has

reached the 350 mm elevation. In contrast, in CORA-W1 at the 350 mm elevation no

escalation develops at all and the 450 mm elevation was reached bythe escalation

front only after about 500 s.

The difference in the behaviour of the two tests can be found in the absorber mate­

rial. The earlier liquefaction of a larger amount of material results in an earlier reloca­

tion of molten material. By the heat capacityof the melt the temperature level at the

lower elevations is increased which again results in an earlier initiation of the exo­

thermic Zrlsteam escalation process.

This strong influence of the melt production by the absorber material against can be

seen in Figure 34. There, the non-absorber test CORA-W1 is compared to the ab­

sorber tests CORA-29 (PWR) and CORA-28 (BWR). Again we find the much faster

progression of the escalation front for the two tests with absorber material. For the

BWR test the larger absorber channel favours the movement of the liquefied mate­

rial.
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The much larger melt formation and relocation in the absorber test CORA-W2 ­

though we· had a smaller electric energy input - in comparison to the non-absorber

test CORA-W1 is demonstrated in Figures 35a to 35c: The horizontal cross sections

of the two tests are directly compared. While in CORA-W1 melt formation and relo­

cation is restricted to above about 400 mm in CORA-W2 the maximum of relocated

material is found down to an elevation at about 200 mm elevation.

The axial mass distribution of the two tests is compared in Figure 36. These mea­

surements confirm what we have seen in the cross sections: The relocation of the

melts to much lower elevations.

Finally in Figure 37 we have compared for the two tests the axial distribution of the

mass to the axial temperature distribution. One can recognise a strong correlation

between the axial temperature profile and the melt relocation: The melt relocation to

lower elevations in CORA-W2 corresponds to the expansion of high temperatures to

the low elevation. We have seen in all our tests that melt relocation and axial tem­

perature distribution are coupled to each other. The melt relocation is determined by·

the axial temperature distribution, but the axial temperature distribution on the other

side is influenced by the melt relocation and the exothermic steam/Zircaloy-reaction

triggered by the heat transported with the melt.

The strong influence of the absorber material on the damage initiation and propaga­

tion is·also confirmed by the post-test analysis ofthe cross sections. In Figures 39 to

42 some examples of these investigations are given. From different positions of the

cross section at the 206 mm elevation the material composition was determined

(Figure 39). In position 3 the situation within the cladding of a fuel rod simulator was

investigated, which had an intact outer oxide shell, with some missing internal mate­

rial. Figure 40 shows, that between the outer oxidised cladding and the. U02 pellet a

layer has formed, which contains in addition to the Zr also Fe, Cr, Ni and U. We as­

sume that Fe, er, Ni which have liquefied the Zr1 %Nb at higher elevations has relo­

cated between outer oxidised skin and pellet. The liquefied Zr1%Nb has dissolved U

from the U02 pellets. The point measurements show values of about 15 wt% U, 6

wt% Fe, 1.4 wt% Cr, 13 wt% Ni. At some spots even boron is found inside the clad­

ding. A similar layer structure and composition is found on the opposite side of the
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bundle (Figure 41 ). This demonstrates that the absorber material is distributed

throughout the whole bundle.

The liquefied ZrNb starts to dissolve the U02 of the pellet. Figure 42 shows the attack

of the Zr on the U02. The enlarged views show the penetration of the Zr melt into the

pellet dissolving the U02 grains. The view of position 3 shows that there is infiltration

of the molten Zr across larger regions of the pellet.

4.4 Summary and conclusions

The results of all CORA experiments show that the degradation of LWR bundles is

strongly influenced by interactions of the absorber materials with the other compo­

nents ofthe fuel element. With increasing temperatures under loss-of-coolant condi­

tions the materials in contact are no longer chemically stable, with each other.

In PWR reactors the (Ag, In, Cd) absorber, the stainless steel of the absorber clad­

ding and the Inconel of the spacer grids react eutectically with Zircaloy. In BWR and

WER reactors the B4C powder of the absorber forms eutectic alloys with the stain­

less steel of its cladding. The Iiquefied stainless steel reacts with the Zircaloy. In all

three reactor types the liquefaction of macroscopic regions of the bundle starts at

about 1200°C. The eutectic temperatures of the different reactions are partially be-·

low 1000°C, but it takes some time till the diffusion of the initially separated materi­

als start the process on a macroscopic scale. The Zircaloy Iiquefied by the absorber

materials starts the dissolution of the U02 pellets over 1000 K below the melting

temperature of U02.

The comparison of tests with and without absorber rods have shown, that the earlier

and stronger melt development and relocation also influences the time behaviour of

the escalation of temperature within the bundle. The relocated melt transports also

heat, which increases the temperature in the regions of relocated melts, so that the

escalation of temperature can start earlier. The changed axial temperature distribu­

tion again influences the further relocation. This means, that a strong correlation ex­

ists between the axial temperature profile and the melt relocation, which is strongly

influenced by the absorber material.

Another aspect of the absorber material relocation is connected with criticality con­

siderations. The early "separation" of absorber material from the fuel to the lower
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part of the bundle requires the use of sufficiently borated water for reflooding of the

core to avoid recriticality.

For BWR core material behaviour in severe accidents, the use of other material.

combinations (B4C/Zircaloy) instead of the present ones (B4C/stainless steel) would

result in greater flexibiJity for accident management measures. Meltdown would be

delayed in time and shifted to higher temperatures.
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CORA Test Matrix

Max.
Test Cladding Absorber OtherTest Date ofTestNo. Tempera- Material Conditions

tures

2 ,." 2000°C - U02 refer., inconel spacer Aug. 6,1987

3 ,." 2400°C - U02 refer., high temperature Dec. 3,1987

5 ,." 2000°C Ag, In, Cd PWR-absor:ber Febr. 26, 1988

12 ,." 2000°C Ag, In, Cd quenching June 9, 1988

16 ,." 2000°C B4C BWR-absorber Nov. 24, 1988

15 ,." 2000°C Ag, In, Cd rods with internal pressure March 2, 1989

17 ,." 2000°C B4C quenching June 29, 1989

9 ,." 2000°C Ag, In, Cd 10 bar system pressure Nov. 9, 1989

7 < 2000°C Ag, In ,Cd 57-rod bundle, slow cooling Febr. 22, 1990

18 < 2000°C B4C 59-rod bundle, slow cooling June 21, 1990

13 ,." 2200°C Ag, In, Cd
OECD/ISP; quench initiation

Nov. 15, 1990
at higher temperature

29* ,." 2000°C Ag, In, Cd pre-oxidized, April 11, 1991

31* = 2000°C B4C slow initial heat-up (,." 0.3 K/s) July25,1991

30* = 2000°C Ag, In, Cd slow initial heat-up (= 0.2 K/s) Oct. 30, 1991

28* = 2000°C B4C pre-oxidized Febr. 25, 1992

"'" 2000°C Ag, In, Cd
cold lower end

July 16, 199210
2 gis steam flow rate

33 ,." 2000°C B4C
dry core conditions,

Oct. 1, 1992
no extra steam input

W1 ,." 2000°C - WWER-test Febr. 18, 1993

W2 ,." 2000°C B4C WWER-test with absorber April 21, 1993

Initial heat-up rate: ,." 1,0 K/s; Steam flow rate, PWR: 6 gis, BWR: 2 gis; quench rate
(from the bo~tom) = 1 cm/s
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Tab. 2: Design characteristics of the PWR bundle

Bundle type: PWR

Bundle size: 25 rods

Number of heated rods: 16

Number of unheated rods: 7

Pitch: 14.3mm

Rod outside diameter: 10.75 mm

Cladding material: Zircaloy-4

Cladding thickness: 0.725 mm

Rodlength: - heated rods: 1960 mm
(elevation -489to 1471 mm)

- unheated rods 1672 mm
(elevation - 201 to 1471 mm)

Heated pellet stack: 1000 mm

Heater material: Tungsten (W)

Heater -Iength

-diameter

Fuel pellets - heated rods: U02 annular pellets

- unheated rods: U02 full pellets

Pellet stack - heated rods: Oto 1000 mm
- unheated rods: -199to 1295mm

U-235 enrichment 0.2%

Pellet outer diameter (nominal) 9.1 mm

Grid spacer - material: Zircaloy -4, Inconel 718

-length: Zry42 mm
Inc38mm

-Iocation: lower (Zry) -5 mm
center (lnc) + 496 mm
top (Zry) + 880 mm

Shroud - material Zircaloy-4

- wall thickness 1.2mm

- outside dimensions 89.4 x 90.4 mm

- elevation 36 mm to 1231 mm

Shroud insulation Zr02 fibre

- insulation thickness 19mm

- elevation 36 mm to 1036 mm
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Mo electrode -Iength 300mm

-diameter 8,6mm

Cu electrode -Iength 189 mm (Iower end)

-Iength 669 mm (upperend)

-diameter 8,6mm

Absorber rod - number of rods 2

- material and composition 80Ag, 151n,SCd (wt. %)

- c1adding StainJess steel

-c1adding OD 11,2 mm

- c1adding ID 10,2 mm

-Iength 1660 mm

- absorber material -189 mm to + 1300 mm

Absorber rod guide tube - material Zircaloy-4

-OD 13,8 mm

- wall thickness of tube O,8mm

Plenum Volume - heated rods 12"10-6 m3

- unheated rods 87 "10-6 m3
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Tab. 3: Design characteristics of the BWR bundle

--- --- -- _._- - -- - -- -----

Bundle type BWR

Bundle size 18 rads

Number of heated rads 12

Number of unheated rads 6

Pitch 14.3 mm

Rod outside diameter 10.75 mm

Cladding material Zircaloy-4

Cladding thickness 0.725 mm

Rod length - heated rads 1840 mm

elevation - 369 to 1471 mm

- unheated rads 1672 mm

elevation - 201to 1471 mm

Heated pellet stack oto 1000 mm

Heater material Tungsten (W)

Heater - length 1000 mm

- diameter 6mm

Fuel pellets - heated rads U02 annular pellets

- unheated rods U02 full pellets

Pellet stack - heated rads o to 1000 mm

- unheated rads: - 200 to 1300 mm

U-235 enrichment 0.2%

Pellet outer diameter (nominal) 9.1 mm

Grid spacer - material Zircaloy -4

-Iength 42mm

- location (upper end) lower-33 mm

center 578 mm

top 1167 mm

Shroud - material Zircaloy -4

- wall thickness 1.2mm

- outside dimensions 94.4 x 116 mm

- elevation 40 -1235 mm
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Shroud insulation - material ZrOz fibre

- insulation thickness 19mm

- elevation 40 mm to 1070 mm

Mo electrode -Iength 300mm (upper and lower

end, respectively)

- diameter 8.6mm

Cu electrode -Iength 189 mm (Iower end)

-Iength 669 mm (upper end)

- diameter 8.6mm

Absorber rod - number of rods 11

- material B4C powder

- cladding Stainless steel

- cladding 00 5.8mm

- cladding 10 4.6mm

-Iength 1600 mm

- absorber material -270 mm to +1300 rnm

Absorber blade - material stainless steel

- dimensions inside 76 x6mm

- wall thickness 1 mm

Channel box wall - material Zircaloy -4

- dimensions inside 13 x 92 mm

- wall thickness 1.2 mm

19.8" 10-6 m3 -
Plenum Volume - heated rods

- unheated rods 39.0 10-6 m3
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- material

- diameter _

Tab. 4: Design characteristics of the VVER bundle
WER

19

13

5

12.75 mm

9.13 mm

7.72 mm

Zr-1%Nb

Tungsten (W)

4mm

Bundle type:

Bundle size:

Number of heated-röds:

Number of unheated rods:

Pitch:

Cladding outside diameter

Cladding inside diameter:

Cladding material:

Heater:

Fuel pellets: - heated rods

- outer diameter (nominal)

- diameter of central void

- unheated rods

- diameter of central void

U02 annular pellets

7.57 mm

4.2 mrn

U02 annular pellets

2.4mrn

Pellets stack: - heated rods

- unheated rods

Oto 1000 mm

-142/-192 to 1400 mm

U-235 enrichment 0.3 %

Grid spacer - material

- height

- number

-Iocation by elevation of upper

edges (from level 0 mm)

Stainiesssteel: 1.4541

(06Ch18N10T and

08Ch 18N1OT)

20mm

3

-5; 210; 610 mm

Shroud - material

- wall thickness

- outer dimension

-Iength

Zr-1%Nb

1.0mm

68mm

1195 mm

Absorber rod - material

- c1adding

- c1adding OD

-c1adding ID

B4C

Stainless steel

8.2mm

7.0mm

Absorber rod guide tube - material

-OD

-ID

Stainless steel

12.6 mm

11.0 mm
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Fig. 1: PWR - fuel element with absorber rods (Ieft)
and its supporting structure (right)
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- B4C is thermodynamically
unstable in contact to
stainless steel and Zircaloy

- stainless steel is unstable
in contact to Zry

- Zry is unstable in contact
to U02

zircaloy channel box wall

fuel rod
absorber rod

Fig. 2: Absorber arrangement of the BWR fuel elements
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Fig. 3: VVER-1000 fuel bundle

B4C-absorber
in SS-cladding
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Zircaloy shroud

Insulation:
Zr02 - Fiber

~f'7i':f=l~~----AG /IN I CD ­
Absorber with
Zry guide tub~

Heated

Unheated

~ Zircaloy shroud

Insulation:
~~--

ZrOZ - Fiber

SS-blade

Heated

Unheated

Fig.4a: Cross sections of the large bundles CORA-7
and CORA-18
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Fig. 5: CORA-7; sytem pressure, argon flow, steam input
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Liquefaction regimes

Melting of met. Zry and a-Zr(O)
results in fast liquefaction of

32
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Temperature, oe
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Fig.7: Comparsion of the total reaction zone growth
rates of various reaction couples for PWR and
BWR bundles.



Interaction:
ss-absorber cladding
Zry-guide tube

Interaction:
liquid (Ag, In, Cd)
Zry-guide tube

Interaction:
liquid (Ag, In, Cd)
Zry-fuel rod cladding

absorber
cladding

w
.J:::,

. I
tii~

Zry

Fig.8: Steps of (Ag, In, Cd) attack on Zry cladding (PWR)
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95mm

Fig.9: Cross section of bundle CORA-5. The re-solidified
material has filled the gap inside the guide tube.
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49

Fig.10: Verticalcross section of bundleCORA-5
showing the absorber rod destruction.
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1000mm

Fig.11 :Horizontal cross sections of bundle CORA-5 with the
absorber rod and its four neighbours,
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175mm

120mm

Fig.12: Dissolution of the guide tube byabsorber
material (CORA-5)
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285mm

Fig. 13: Attack on the Zry-cladding by the absorber material



40

290mm

Fig. 14: Attack on the fuel rod claddings surrounding the
missing absorber rod (CORA-5)
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Fig.15: Melt formation in the neighbourhood of the
absorber rod (CORA-?)
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Fig.16: Melt distribution in the upper half of bundle CORA-7
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3000

ig.17: Mett distribution in the tower half of bundle CORA·7
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Fig.18:Vertical distribution of re-solidified mett in
bundle CORA-7
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Pressure Loss Measurement Video Analysis

Failure of rods Start of Melt Movement

Absorber rod 4.6 3980 s

3982 s 800mm

3982 s 600mm

Absorber rod 6.2 3990 s

Fig. 19: Failure time of absorber rods determined by
video recordings (CORA-10)
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Fig.20 : Determination of failure time and temperature
by irregularities in the temperature measurement
(CORA-10)
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Failure temperatures:
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Fig. 21: Failure temperatures of heated (H) and unheated (U)
fuel rads, determined by rod internal pressure
measurement (CORA-10)



Interaction:
boron carbide
stainless steel blade

Interaction:
B4C/SS - melt
Zry channel box wall

Interaction:
B4C/ 5S - melt
Zry fuel cladding

Zry
channel
box wall

58
absorber
blade

.j::o
co

Fig.22: Step5 of (Bote - 55) attack on Zry-channel box wall and Zry cladding (BWR)
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t.
View

mm.

900

800

I

Absorber blade missing

Fig. 23: Posttest appearance of bundle CORA-16
showing the missing absorber blade
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301)
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Fig.24: The posttest appearance of bundle CORA-16
shows the disappearance of absorber blade
and channel box wall
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bottom view

Fig.25: Horizontal cross section of test bundle CORA-16
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195mm

112

95

Fig.26: Vertical cross section of test bundle CORA-16
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1158mm

1016mm

Fig.27: The cross sections at the upper end of bundle CORA-18
show the initiation of damage of the channel box wall
that occurs by contact to the absorber blade.
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Fig.28: Irregularities in the temperatures of the absorber
blade in comparison to failure of fuel rod simulator
claddings used for estimation of absorber failure
time (CORA-28).



Interaction:
B4C boron carbide
stainless steel
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Interaction:
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Interaction:
84C/ss - melt
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Fig. 29: Steps of (B4C • ss) attack on Zr1°kNb cladding(VVER)
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13 heated rads

5 unheated rads

1 absorber rod

Fig. 30: Test rod arrangement for bundles CORA-W1
andCORA-W2
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Fig. 31: Absorber rod of CORA-W2 experiment
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Fig. 33: Test CORA-W2 (with absorber material) shows a
faster vertical propagation of the temperature escalation
in comparison to testCORA-W1 (without absorber)
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W1 W2
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W1 W2

Fig. 35a: Comparison of cross sections CORA-W1 I CORA-W2



W1 W2
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W1 W2

Fig. 35b: Comparison of cross sections CORA-W1 I CORA-W2
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W1 W2 W1 W2
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Fig. 35c: Comparison of cross sections CORA-W1 I CORA-W2
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® 0 0

o Ci) Ci) 2:1

Fig. 39: Cross section of test CORA-W2 at 206 mm with
positions of analysis.
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Zr Zr: 85 w-%
U B: 15 ..
Fe
er
Ni

Fig. 40: Internalliquefaction of cladding in the neighbourhood
of absorber CORA-W2, 206 mm, pos. 3
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Zr: 76 w-%
u: 14 11

Fe: 7 11

Cr: 1.4 11

Fig. 41: Internat liquefaction of cladding (CORA-W2,
206 mm, pos. 3)
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/

Fig. 42: Dissolution of a U02 pellet (CORA-W2, 206 mm)




