

Wissenschaftliche Berichte FZKA 5894

FE-Analysen und Vergleich mit den Testergebnissen der verstärkten LCT-Spule

A. Grünhagen, B. Kneifel

Hauptabteilung Ingenieurtechnik Projekt Kernfusion

April 1997

Forschungszentrum Karlsruhe Technik und Umwelt Wissenschaftliche Berichte FZKA 5894

> FE-Analysen und Vergleich mit den Testergebnissen der verstärkten LCT-Spule

> > A. Grünhagen, B. Kneifel

Hauptabteilung Ingenieurtechnik

Projekt Kernfusion

Forschungszentrum Karlsruhe GmbH, Karlsruhe 1997

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

> Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

> > ISSN 0947-8620

FE-Analysen und Vergleich mit den Testergebnissen der verstärkten LCT-Spule

Zusammenfassung

Die verstärkte LCT-Spule wurde bis zu einem Betriebsstrom I=19.6 kA bei 11 Tesla belastet. Das Experiment sollte nachweisen, daß große supraleitende Magnetspulen aus NbTi bis 11 Tesla sicher betrieben werden können. Der Vergleich der experimentellen Verformungsdaten mit denen der FE-Analysen, die das Experiment begleiteten, zeigten recht gute Übereinstimmung. Die Vorhersagen der maximalen Spannungen für das Gehäuse und für die Wicklung konnten somit bestätigt werden.

FE-analysis and comparison with the experimental results of the reinforced LCT-coil

Abstract

The reinforced LCT-coil was loaded up to a current of I=19.6 kA corresponding to a magnetic field of 11 Tesla. The experiment was to demonstrate that large superconducting NbTi coils are capable for reliable operation at levels up to 11 Tesla. All the measured values like strains and displacements are in very good agreement with the FE-analysis. The prediction of the maximum stresses at the coil case and at the winding could be confirmed.

1.	EINLEITUNG	3
2.	BERECHNUNGEN UND VERGLEICH FÜR DIE VERSTÄRKTE LCT-SPULE	5
	2.1 Einleitung	5
	2.2 Spannungen auf der Seitenfläche des LCT-Gehäuses	13
	2.3 Dehnungen an den Verstärkungsbändern	16
	2.4 Horizontale und vertikale Verformung am Innenflansch des LCT-Gehäuses	33
	2.5 Spalt zwischen Wicklung und Gehäuse	38
	2.6 Verformung des Gehäusequerschnittes	44
3.	SCHLUßbemerkungen	53
4.	LITERATURVERZEICHNIS	55

1. Einleitung

Für das LCT-Projekt (Large Coil Task) in Oak Ridge wurde die LCT-Spule für einen Betriebsnennstrom von 11.4 kA bei einer Temperatur von 3.8 K entwickelt und gebaut /1/. Für zukünftige Fusionsmagnete (z.B. NET/ITER) werden höhere Magnetfelder gefordert. Die LCT-Spule sollte hierzu mit einem Betriebsstrom bis 19.6 kA mit einem Magnetfeld von ca. 11 Tesla erregt werden. Wegen der zu erwartenden höheren Belastung wurde die LCT-Spule in ihrer mechanischen Struktur (Abb. 1) verstärkt. Für die Festigkeitsberechnungen nach der FE-Methode wurden Modelle entwickelt und mit dem FE-Programmsystem ABAQUS /2/ berechnet. Im Primärbericht /3/ sind die FE-Analysen zusammengefaßt.

Der Test der verstärkten LCT-Spule soll nachweisen, daß große supraleitende Magnetspulen aus NbTi bis 11 Tesla sicher betrieben werden können. Außerdem soll erstmals eine sichere Zwangskühlung mit Helium II von 1.8 K bei überkritischen Druck erprobt werden.

Abb. 1 - LCT-Spule mit Verstärkungsstruktur

2. Berechnungen und Vergleich für die verstärkte LCT-Spule

2.1 Einleitung

Für die FE-Berechnungen, die den Test der verstärkten LCT-Spule begleiteten, wurde das vollständige FZK-Modell (Abb. 2) ausgewählt. Die Randbedingungen wurden durch die Anordnung der Spule, die für sich allein in der TOSKA-Anlage steht, gegeben. Mit I=10.0, 11.4 , 16.0 kA und 21.0 kA wurden die Betriebsströme für die FE-Analysen variiert. Infolge der linearen Abhängigkeit zwischen den elektromagnetischen Kräfte in der Wicklung und dem Quadrat des Betriebsstromes I² werden die Dehnungen und Verformungen als Funktion von I² dargestellt. Der Hochstromlastfall ist ab dem Betriebsstrom I=16 kA definiert, so daß der radiale E-Modul im Spulenrücken der Wicklung (Abb. 3) von 2.7 GPa auf 4.6 GPa modifiziert wird. Diese Variation des E-Moduls basiert auf Messungen mit dem Wicklungspaket /4/.

Eine umfangreiche Bestückung mit Sensoren lieferte Verformungsdaten der LCT-Spule während des gesamten Meßprogrammes an folgenden Positionen:

- Meßrosetten (2-dimensionale Anordnung: 0, 45 u. 90 Grad) auf der Seitenfläche des LCT-Gehäuses (s. Abb. 4)
- Dehnungsmeßstreifen auf den Ober- und Unterseiten der Verstärkungsbänder (s. Abb. 5)
- Wegaufnehmer für die horizontale und vertikale Verformung am Innenflansch des LCT-Gehäuses (Positionen A - B uns C - D in Abb. 6)
- 5. Wegaufnehmer für den Spalt zwischen Wicklung und Gehäuse (Positionen A und B in Abb. 6)
- 6. Wegaufnehmer für die Verformung des Gehäusesquerschnittes(s. Abb. 7 und Abb. 8) an der Position A (s. Abb. 6)

Abb. 2 - FE-Modell der LCT-Spule

Abb. 3 - Darstellung der drei radialen E-Modulbereiche in der Wicklung

Abb. 4 - Ortslage der Meßrosetten (VGH)

auf

9

...

Abb. 6 - Ortslage der Wegaufnehmer

З

P

Abb. 7 - Ortslage der Meßpositionen am Spulenquerschnitt mit Meßrahmen

Abb. 8 - Ortslage der Meßpositionen am FE-Spulenquerschnitt

2.2 Spannungen auf der Seitenfläche des LCT-Gehäuses

Die Positionen und Koordinaten der Meßrosetten 602, 603, 605, 606, 607, 608 und 609 (Abb. 4) sind in den folgenden Tabellen 1 und 2 zusammengefaßt.

Тур	La	ge		Maße	zu den F	lächen	
				(Bezeic)	hnungen s.	Abb. 4)	2007
ROS			A	E	С	T	R
602	VGH	IR	730			100	
603	VGH	IR	1242			105	
605	HGH	SW	3081	175			
606	HGH	SW	470	401			
607	HGH	SW	1490				87
608	HGH	IR	1365			102	
609	HGH	IR	1055			102	

Tabelle 1

ROS	FE-Koordinaten der LCT-Spule				
·		[mm]			
	x	У	Z		
602	730.0	-251.5	-1282.8/-1376.6		
603	1242.0	-246.5	-1668.3		
605	3081.0	+326.5	+2089.0		
606	470.0	+326.5	+1872.0		
607	1490.0	+326.5	+1773.0		
608	1365.0	+249.5	+1668.3		
609	1055.0	+249.5	+1575.3/+1625.5		

In der Tabelle 3 und in der Abb. 9 sind die experimentellen und die rechnerischen Ergebnisse der von Mises Vergleichsspannung σ_v der Rosetten bei einem Betriebsstrom I=19.6 kA (I²=384.16 kA²) zusammengetragen.

Spannungen auf der Seitenfläche des LCT-Gehäuses Betriebsstrom I=19.6 kA						
ROS	Experiment	FE-Rechnung	Fehler bezogen auf			
	Vergleichsspannung o_v	Vergleichsspannung σ_v	FE-Rechnung [100%]			
	[MPa]	[MPa]	[%]			
602	167.0	156.0	7.05			
603	155.0	140.0	10.71			
605	60.0	50.3	19.28			
606	70.0	61.8	13.27			
607	182.0	159.4	14.18			
608	140.0	128.1	9.29			
609	188.0	167.3	12.37			

Tabelle 3

Die rechnerischen Ergebnisse mußten für jede Rosetten-Position, die jeweils in einer Elementfläche liegt, von den Knotenpunktspannungen aus interpoliert werden. Der mittlere Fehler zwischen den experimentellen und rechnerischen Werten liegt bei 12.3 %. Der größte Unterschied zwischen experimenteller und rechnerischer Spannung tritt an der Rosette 605 auf und kann mit der recht groben Element-Diskretisierung der dortigen Seitenfläche begründet werden. Bei Ausklammerung dieses Wertes liegt die mittlere Abweichung bei 11 %.

Abb. 9 - Vergleichspannungen an den Rosettenpositionen

2.3 Dehnungen an den Verstärkungsbändern

In der FE-Analyse sind jeweils 2 Verstärkungsbänder zu einem Band vereinigt worden. Im folgenden werden die Doppelbänder als Band 1 bis 12 gekennzeichnet. Zu den Betriebsstömen I=10.0, 11.4, 16.0 und 19.6 kA (I^2 =100.00, 134.56, 256.00 und 384.16 kA²) sind die Dehnungen der Bänder 2 bis 7 aus den FE-Analysen und den Experimenten in den Tabellen 4 bis 14 zusammengefaßt und anschließend in den Abb. 11 bis Abb. 17 graphisch dargestellt. Die Angabe von Positionen "u" bzw. "o" an den Bändern bedeutet die untere bzw. die obere Kante eines Verstärkungsbandes (siehe Abb. 10) in bezug auf die z-Koordinate.

Abb. 10 - Positionsangabe "o" und "u" an den Verstärkungsbändern

Dehnung - Band 2 Position: unten						
Strom	Mittelwert der exp. Werte					
I ² [kA ²]	ε [μm]	ε [μm]	ε [µm]	ε [μm]		
100.00	57.7	39.8	43.5	41.6		
134.56	77.6	54.4	60.5	57.5		
256.00	143.8	105.9	120.4	113.1		
384.16	215.8	160.1	183.6	171.9		

(*) exp. Daten mit ϵ =-2.5725 + 0.4236*1 2 gefittet

(#) exp. Daten mit $\varepsilon = -5.7979 + 0.4930 \times I^2$ gefittet

Dehnung - Band 3 Position: oben						
Strom	Mittelwert der exp. Werte					
I ² [kA ²]	ε [μm]	ε [μm]	ε [μm]	ε [μm]		
100.00	64.5	58.8	49.4	54.1		
134.56	86.7	78.1	67.3	72.7		
256.00	162.2	146.0	130.0	138.0		
384.16	243.4	217.7	196.3	207.0		

(*) exp. Daten mit \mathcal{E} =+2.8157 + 0.5594*I² gefittet

(#) exp. Daten mit ε =-2.2116 + 0.5166*I² gefittet

Tabelle 5

Dehnung - Band 3 Position: unten						
Strom	om FE-Analyse Exp. Wert [*] Exp. Wert [#] GRI 563 GRI 575					
I ² [kA ²]	ε [μm]	ε [μm]	ε [μm]	ε [μm]		
100.00	66.4	57.1	60.2	58.6		
134.56	89.4	80.8	79.4	80.1		
256.00	167.8	164.1	146.7	155.4		
384.16	251.8	252.0	217.7	234.8		

(*) exp. Daten mit ε =-11.4978 + 0.6858*I² gefittet (#) exp. Daten mit ε = +4.7732 + 0.5543*I² gefittet

Dehnung - Band 4 Position: oben						
Strom	FE-Analyse	Exp. Wert [*] GRI 564	Exp. Wert [#] GRI 576	Mittelwert der exp. Werte		
I ² [kA ²]	ε [μm]	ε [μm]	ε [µm]	ε [µm]		
100.00	74.4	71.1	72.4	71.8		
134.56	100.1	99.2	101.4	100.3		
256.00	190.9	197.8	203.2	200.5		
384.16	286.5	302.0	310.5	306.2		

(*) exp. Daten mit ϵ =-10.1720 + 0.8125*I² gefittet

(#) exp. Daten mit $\varepsilon = -11.3468 + 0.8379*I^2$ gefittet

Tabelle 7

Dehnung - Band 4 Position: unten						
Strom	FE-Analyse	Exp. Wert [*] GRI 565	Exp. Wert [#] GRI 577	Mittelwert der exp. Werte		
I ² [kA ²]	ε [μm]	ε [μm]	ε [μm]	ε [µm]		
100.00	76.2	57.1	69.2	63.2		
134.56	102.5	84.8	99.5	92.2		
256.00	196.2	182.0	206.0	194.0		
384.16	294.5	284.6	318.4	301.5		

(*) exp. Daten mit ϵ =-22.9316 + 0.8006*I² gefittet

(#) exp. Daten mit ε =-18.5115 + 0.8771*I² gefittet

Dehnung - Band 5 Position: oben						
Strom	FE-Analyse	Exp. Wert [*] GRI 566	Exp. Wert [#] GRI 578	Mittelwert der exp. Werte		
I ² [kA ²]	ε [μm]	ε [μm]	ε [μm]	ε [μm]		
100.00	84.7	87.5	90.8	89.1		
134.56	114.0	122.5	127.0	124.8		
256.00	220.4	245.7	254.3	250.0		
384.16	330.8	375.7	388.7	382.2		

(*) exp. Daten mit ε =-13.9663 + 1.0143*I² gefittet

(#) exp. Daten mit ε =-14.0420 + 1.0483*I² gefittet

Tabelle 9

Dehnung - Band 5 Position: unten						
Strom	Mittelwert der exp. Werte					
I ² [kA ²]	ε [μm]	ε [μm]	ε [μm]	ε [μm]		
100.00	86.0	84.5	111.1	97.8		
134.56	115.7	120.3	151.5	135.9		
256.00	224.2	246.1	293.5	269.8		
384.16	336.4	378.8	443.5	411.1		

(*) exp. Daten mit ε =-19.1277 + 1.0359*I² gefittet (#) exp. Daten mit ε = -5.9298 + 1.1698*I² gefittet

Dehnung - Band 6 Position: oben						
Strom	Mittelwert der exp. Werte					
I ² [kA ²]	ε [μm]	ε [μm]	ε [µm]	ε [μm]		
100.00	85.7	38.2	62.7	50.5		
134.56	115.3	74.3	99.6	86.9		
256.00	224.2	200.9	229.1	215.0		
384.16	336.4	334.6	365.8	350.2		

(*) exp. Daten mit ε =-66.0908 + 1.0431*I² gefittet

(#) exp. Daten mit $\varepsilon = -43.8958 + 1.0665*1^2$ gefittet

Tabelle 11

Dehnung - Band 6 Position: unten					
Strom	FE-Analyse	Mittelwert der exp. Werte			
I ² [kA ²]	ε [μm]	ε [μm]	ε [μm]	ε [μm]	
100.00	86.2	70.4	71.0	70.7	
134.56	116.0	105.8	105.9	105.9	
256.00	225.8	230.2	228.4	229.3	
384.16	338.9	361.5	357.7	359.6	

(*) exp. Daten mit ε =-66.0908 + 1.0431*I² gefittet

(#) exp. Daten mit $\varepsilon = -43.8958 + 1.0665*I^2$ gefittet

Dehnung - Band 7 Position: oben					
Strom	FE-Analyse	Mittelwert der exp. Werte			
I ² [kA ²]	ε [μm]	ε [μm]	ε [μm]	ε [μm]	
100.00	86.1	89.5	111.1	100.3	
134.56	115.9	126.6	151.6	139.1	
256.00	225.6	256.8	293.7	275.2	
384.16	338.5	394.2	443.7	419.0	

(*) exp. Daten mit ϵ =-17.7521 + 1.0725*I² gefittet

(#) exp. Daten mit $\epsilon\text{=}$ -5.8815 + 1.1702*1 2 gefittet

Tabelle 13

Dehnung - Band 7 Position: unten						
Strom	FE-Analyse	Mittelwert der exp. Werte				
I ² [kA ²]	ε [μm]	ε [μm]	ε [μm]	ε [μm]		
100.00	85.4	107.8	93.9	100.5		
134.56	114.9	144.9	130.7	137.8		
256.00	223.5	275.2	260.0	267.6		
384.16	335.5	412.8	396.5	404.6		

(*) exp. Daten mit $\varepsilon = +0.4252 + 1.0735*I^2$ gefittet (#) exp. Daten mit $\varepsilon = -12.5877 + 1.0648*I^2$ gefittet

Abb. 11 - Dehnungen der Bänder 2 bis 7 der LCT-Spule als Funktion des Stromes I²

Die Dehnungen aus der FE-Analyse der Bänder 2 bis 7, die graphisch in der Abb. 11 dargestellt sind, nehmen von oben (Band 2) bis zur Mitte (Band 6 bzw. Band 7, die symmetrisch in bezug auf die z-Koordinate liegen) zu. Die maximalen Dehnungen treten erwartungsgemäß in den Bändern 6 und 7 auf. Das Band 5 wird nur geringfügig schwächer als die beiden zentralen Bänder 6 und 7 gedehnt. Die FE-Analyse zeigt auch im Detail, daß die Oberseite eines Bandes immer geringer als die Unterseite belastet wird (gekennzeichnet mit "o" und "u" in der Abbildung). Der maximale Unterschied der Dehnungen zwischen Oberseite und Unterseite liegt z.B. beim Band 3 bei ungefähr 3%. Ebenso wird die Oberseite eines Bandes stärker als die Unterseite des folgenden Bandes (in positiver z-Richtung gesehen) gedehnt.

Strom 1**2 [kA**2]

Abb. 13 - Dehnung des Bandes 3 als Funktion des Stromes I²

Abb. 15 - Dehnung des Bandes 5 als Funktion des Stromes I^2

Abb. 16 - Dehnung des Bandes 6 als Funktion des Stromes I^2

Abb. 17 - Dehnung des Bandes 7 als Funktion des Stromes I^2

In den Abb. 12 bis Abb. 17 sind die experimentellen Daten der Dehnungen denen der FE-Analyse für jedes Band getrennt gegenübergestellt. Die theoretischen und experimentellen Ergebnisse stimmen bei den Bänder 3, 4 und 6 gut überein. Bei den übrigen Bändern treten jedoch beträchtliche Unterschiede auf. Insbesondere beim Band 7 weichen die experimentellen Daten von den theoretischen bis zu 33% ab. Außerdem ist zu beachten, daß bei den experimentellen Daten bis zu 15% Abweichungen beim Band 5 (unten) bzw. Band 7 (oben) zwischen gegenüberliegenden Positionen (Norden und Süden) auftreten.

In den beiden folgenden Abb. 18 und Abb. 19 sind die experimentellen Ergebnisse der Dehnungen der Bänder 2 bis 7 entsprechend ihrer Anordnung (Norden bzw. Süden) an der LCT-Spule zusammen abgebildet.

Die experimentellen Werte zeigen Abweichungen (s. Abb. 18) von den FE-Analysen. Die Bänder 5 und 7 werden stärker als das Band 6 gedehnt. Die höchsten Dehnungen erhalten somit die Bänder 5 und 7 und sind fast identisch miteinander. Entsprechend den FE-Analysen sind die Dehnungen der oberen Kante "o" immer kleiner als die der unteren Kante "u" der Bänder. Dieses Verhalten der Dehnungen der Kanten kehrt sich beim Band 7 wegen der Symmetrie zur x-y-Ebene um. Beim Band 6 sind die Dehnungen der oberen und unteren Kante gleich.

Die Dehnungen der Bänder 2 bis 7 auf der Südseite der LCT-Spule (Abb. 19) zeigen allgemein ähnliches Gesamtverhalten. Das unterschiedliche Verhalten der Dehnungen der oberen zur unteren Kante bei den Bändern 4, 5 und 7 wird nicht eingehalten. Entsprechend müßten die Dehnungen der unteren und oberen Kante des Bandes 6 identisch sein.

Eine mögliche Erklärung besteht in der Annahme, daß durch die Störung der Modellsymmetrie infolge des Turmaufbaus (die obere Hälfte der LCT-Spule verliert etwas an Steifigkeit gegenüber der unteren Hälfte) die Symmetrieachse bei Belastung in positive Z-Richtung bis etwa zum Band 6 verschoben wird. Die geringere Dehnung des Bandes 6 gegenüber den Bändern 5 und 7 könnte auf sehr unterschiedliche Vorspannungen zurückgeführt werden.

27

Abb. 18 - Dehnungen der Bänder 2 bis 7 auf der Nordseite der LCT-Spule als Funktion des Stromes I²

Abb. 19 - Dehnungen der Bänder 2 bis 7 auf der Südseite der LCT-Spule als Funktion des Stromes I²

Abschließend sind alle FE- und experimentellen Ergebnisse der jeweiligen Bänder, die integral über den Querschnitt gemittelt wurden, in den Tabellen 15 bis 17 zusammengefaßt. Die gemittelten Daten (siehe Abb. 20) geben das eben beschriebene Gesamtverhalten nochmals wieder.

Dehnung (gemittelt) Band 2			Dehnu	ng (gemit Band 3	telt)
Strom I ² [kA ²]	FE- Analyse E [µm]	Εxp. Wert ε [μm]	Strom I ² [kA ²]	FE- Analyse E [µm]	Εχρ. Wert ε [μm]
100.00	56.6	41.6	100.00	65.4	56.4
134.56	76.2	57.5	134.56	88.1	76.4
256.00	141.2	113.1	256.00	165.0	146.7
384.16	211.5	171.9	384.16	247.6	220.9

Dehnung (gemittelt) Band 4			Dehnu	ng (gemit Band 5	telt)
Strom I ² [kA ²]	FE- Analyse E [µm]	Εχρ. Wert ε [μm]	Strom I ² [kA ²]	FE- Analyse E [µm]	Exp. Wert ε [μm]
100.00	75.3	67.5	100.00	85.4	93.5
134.56	101.3	96.3	134.56	114.9	130.4
256.00	193.6	197.3	256.00	222.3	259.9
384.16	290.5	303.9	384.16	333.6	396.7

Tabelle 16

Dehnung (gemittelt) Band 6			Dehnu	ng (gemit Band 7	telt)
$\frac{\texttt{Strom}}{\texttt{I}^2}$ $[\texttt{kA}^2]$	FE- Analyse E [µm]	Εχρ. Wert ε [μm]	Strom I ² [kA ²]	FE- Analyse E [µm]	Εχρ. Wert ε [μm]
100.00	85.9	60.6	100.00	85.8	100.4
134.56	115.6	96.4	134.56	115.4	138.5
256.00	225.0	222.2	256.00	224.6	271.4
384.16	337.7	354.9	384.16	337.0	411.8

Abb. 20 - Gemittelte Dehnungen der Bänder 2 bis 7 als Funktion des Stromes I²

2.4 Horizontale und vertikale Verformung am Innenflansch des LCT-Gehäuses

Die Abb. 21 zeigt mit einem Überhöhungsfaktor F=100 die Verformung der LCT-Spule in seitlicher Darstellung.

Abb. 21 - Verformungsbild der LCT-Spule in seitlicher Darstellung (Überhöhungsfaktor F=100)

Die FE-Ergebnisse mit dem radialen E-Modul=2.7 GPa bis I=16.0 kA (I²=256 kA²) sowie dann anschließend mit dem E-Modul=4.6 GPa bis I=19.6 kA (I²=384.16 kA²) im Bereich der Spulenvorderseite zeigen zu den gefitteten, experimentellen Werten (Tabelle 18 und Abb. 22) der horizontale Verformung (A - B) sehr gute Übereinstimmung. Ab I=16.0 kA laufen die beiden Geraden parallel zueinander. Der Fehler bei I=19.6 kA (I²=384.16 kA²) (bezogen auf exp. Daten=100%) liegt bei nur 2.0%.

Horizontale Verformung am Innenflansch des LCT-Gehäuses					
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					
100.00	0.60	0.56			
256.00	1.38	1.43	1.43		

(*) exp. Daten mit $d=0.0952 + 0.0050*I^2$ gefittet

Abb. 22 - Horizontalen Verformung an der Position (A - B)

Die experimentellen Werte der Bereiche von I²=189.93 bis 203.98 kA^2 und von I^2 =299.62 bis 384.16 kA^2 wurden wegen Meßfehler für den Least-Squares-Fit nicht berücksichtigt. Die so gefitteten, experimentellen Werte und die FE-Ergebnisse mit dem radialen E-Modul=2.7 GPa bis I=16.0 kA $(I^2=256 kA^2)$ sowie dann dem E-Modul=4.6 GPa anschließend mit bis I=19.6 kA $(I^2=384.16 kA^2)$ im Bereich der Spulenvorderseite (Tabelle 19 und Abb. 23) der vertikalen Verformung (C - D) zeigen ebenfalls recht gute Übereinstimmung. Bis I=16.0 kA laufen die beiden Geraden parallel zueinander. Ab I=16.0 kA weist die Gerade der FE-Rechnung eine geringere Steigung auf als die der gefitteten und sie schneiden sich bei ungefähr I=18.0 kA Daten $(I^2=324 \text{ kA}^2)$. Der Fehler bei I=19.6 kA $(I^2=384.16 \text{ kA}^2)$ (bezogen auf exp. Daten=100%) liegt bei nur 5.0%.

Vertikale Verformung am Innenflansch des LCT-Gehäuses				
Experiment(*)FE-RechnungFE-RechnungStrom $E_r=2.7$ GPa $E_r=4.6$ GPaVerformungVerformungVerformungI ² [kA ²]d [mm]d [mm]				
100.00	-0.08	-0.11		
256.00	-0.25	-0.28	-0.28	
384.16	-0.40	-0.43	-0.38	

(*) exp. Daten mit d=0.0332 - 0.0011*1² gefittet

Tabelle 19

Die Meßgenauigkeit der horizontalen und vertikalen Verformungen beträgt ± 0.01 mm. Die Differenz der experimentellen und rechnerischen Werte z.B. bei einem Stromlastfall von I²=100 kA² beträgt nur drei hundertstel Millimeter (0.03 mm) auf einer Distanz von 5272 mm oder bei I=19.6 kA (I²=384.16 kA²) sind es sogar nur 2 hundertstel Millimeter (0.02 mm).

2.5 Spalt zwischen Wicklung und Gehäuse

Mit den Wegaufnehmern GDI 609 und GDI 611 wurde jeweils der Spalt zwischen Gehäuse und Wicklung an den Positionen A und B (Abb. 6) gemessen. Die folgenden Abb. 24 und Abb. 25 zeigen mit einem Überhöhungsfaktor F=50 die Verformung von Wicklung und Gehäuse des Spulenquerschnittes an den betreffenden Positionen.

Abb. 24 - Verformung des LCT-Spulenquerschnittes an der Position A (Überhöhungsfaktor F=50)

Abb. 25 - Verformung des LCT-Spulenquerschnittes an der Position B (Überhöhungsfaktor F=50)

Spaltbreite zwischen Wicklung und Gehäuse an der Position A					
	Experiment [*]	FE-Rechnung	FE-Rechnung		
Strom		E _r =2.7 GPa	E _r =4.6 GPa		
	Spalt	Spalt	Spalt		
$I^2 [kA^2]$	d [mm]	d [mm]	d [mm]		
100.00	1.09	0.87			
134.56	1.36	1.17			
256.00	2.08	2.23	2.23		
384.16	2.65	3.35	3.01		

(*) exp. Daten mit d=-0.8403 + 0.2548* $(I^2)^{0.4399}$ gefittet

Tabelle 20

Spaltbreite zwischen Wicklung und Gehäuse an der Position B					
	Experiment [#]	FE-Rechnung	FE-Rechnung		
Strom		E _r =2.7 GPa	E _r =4.6 GPa		
	Spalt	Spalt	Spalt		
$I^2 [kA^2]$	d [mm]	d [mm]	d [mm]		
100.00	0.64	0.58			
134.56	0.82	0.78			
256.00	1.41	1.48	1.48		
384.16	2.05	2.22	2.23		

(#) exp. Daten mit d=0.1495 + $0.0049 \times I^2$ gefittet

Spaltbreite zwischen Gehäuse und Wicklung

Abb. 26 - Spaltbreite zwischen Wicklung und Gehäuse an der Position A als Funktion des Stromes I²

Abb. 27 - Spaltbreite zwischen Wicklung und Gehäuse an der Position B als Funktion des Stromes I²

Die Kurve der experimentellen Werte der Spaltbreite zwischen Wicklung und Gehäuse an der Position A zeigt einen leicht nichtlinearen Verlauf. Im Vergleich zu den rechnerischen Kurven (s. Tabelle 20 und Abb. 26), die linear verlaufen, weist sie eine geringere Steigung auf. Bei einem Betriebsstrom I=14.7 kA $(I^2=215 \text{ kA}^2)$ schneidet sie die rechnerische Kurve, die mit einem radialen E-Modul=2.7 GPa im Bereich der Spulenvorderseite ermittelt wurde. Danach laufen die experimentelle und rechnerische Kurve weiter auseinander. Der Fehler bei I=19.6 kA $(I^2=384.16 \text{ kA}^2)$ zwischen rechnerischem und experimentellem Wert liegt bei 14%.

Dagegen beeinflußt der radiale E-Modul im Bereich der Spulenvorderseite die Spaltbreite zwischen Wicklung und Gehäuse an der Position B fast überhaupt nicht (s. Tabelle 21 und Abb. 27). Die experimentellen und rechnerischen Werte dieses Spaltes stimmen gut überein. Die experimentelle Kurve verläuft etwas flacher als die rechnerischen. Der maximale Fehler bei I=19.6 kA ($I^2=384.16$ kA²) liegt unter 10%.

2.6 Verformung des Gehäusequerschnittes

Mittels eines Meßrahmens (s. Abb. 7), der an der Position A am LCT-Gehäuse angebracht worden ist, sind die Verformungen des Gehäuses an den Seitenflächen und an der Innenringfläche gemessen worden. Die Positionen der Wegaufnehmer GDI562 bis GDI565 und GDI568 bis GDI571 auf den Seitenflächen sowie GDI560, GDI561, GDI566 und GDI567 auf der Innenringfläche entsprechen den Knotenpunktpositionen des FE-Modells (s. Abb. 8 u. Abb. 28).

Abb. 28 - Ortslage der Meßpositionen am FE-Spulenquerschnitt

Die Abb. 29 zeigt mit einem Überhöhungsfaktor F=50 die Verformung des Querschnittes vom Gehäuse und von der Wicklung.

Abb. 29 - Verformung des LCT-Spulenquerschnittes an der Position A (Überhöhungsfaktor F=50)

Die experimentellen Daten der Verformungen der Innenringfläche (s. Abb. 30) und der Seitenflächen (s. Abb. 31) des Gehäuses an der Position A, die mittels des Meßrahmens ermittelt wurden, konnten nicht gedeutet werden, da der Meßrahmen sich aus seiner Einbauposition vermutlich verschoben und verdreht hat.

Die Verformungen der Gehäuseinnenringfläche aus der FE-Analyse an den Positionen GDI560 zu GDI561 und GDI567 zu GDI566 sind in der Tabelle 20 zusammengetragen und in der Abb. 32 graphisch als Funktion des Stromes I² dargestellt. Da die FE-Analyse die Verformungen des Gehäuses in Bezug zu den definierten Randbedingungen berechnet, ist es nur möglich, die Differenz der Verformungen der Positionen GDI560 zu GDI561 und GDI567 zu GDI566 aufzuführen.

Verformung der Innenringfläche Wegaufnehmer GDI560 zu GDI561 und GDI567 zu GDI566						
Strom	Strom FE-Analyse FE-Analyse E _r =2.7 GPa E _r =4.6 GPa					
I^2 [KA ²]	dx [mm]	dx [mm]				
100.00	0.12					
134.56	0.16					
256.00	0.31	0.31				
384.16	0.46	0.40				

Verformung der Gehäuseinnenringfläche

Die Verformungen der Gehäuseseitenfläche (siehe Tabelle 21 und 22) an den Positionen GDI565 u. GDI568, GDI564 u. GDI569, GDI563 u. GDI570 sowie GDI562 u. GDI571 sind in der

Abb. 33 als Funktion des Stromes I^2 abgebildet. Die FE-Analyse liefert die maximale Verformung in der Mitte der Gehäuseseitenbreite an den Positionen GDI563 u. GDI570.

Verformung der Gehäuseseitenfläche Position: GDI565 u. GDI568		der Gel Positio	Verformung häuseseite n: GDI564 v	J enfläche 1. GDI569	
Strom	FE- Analyse E _r =2.7 GPa	FE- Analyse E _r =4.6 GPa	Strom	FE- Analyse E _r =2.7 GPa	FE- Analyse E _r =4.6 GPa
1 ² [kA ²]	dy [mm]	dy [mm]	I ² [kA ²]	dy [mm]	dy [mm]
100.00	-0.0010		100.00	-0.1120	
134.56	-0.0014		134.56	-0.1507	
256.00	-0.0027	-0.0027	256.00	-0.2866	-0.2866
384.16	-0.0041	-0.0027	384.16	-0.4302	-0.3752

Verformung der Gehäuseseitenfläche Position: GDI563 u. GDI570			Verformung der Gehäuseseitenfläche Position: GDI562 u. GDI571		
Strom	FE- Analyse E _r =2.7 GPa	FE- Analyse E _r =4.6 GPa	Strom	FE- Analyse E _r =2.7 GPa	FE- Analyse E _r =4.6 GPa
1 ² [kA ²]	dy [mm]	dy [mm]	1^2 [kA ²]	dy [mm]	dy [mm]
100.00	-0.1626		100.00	-0.1392	
134.56	-0.2188		134.56	-0.1873	
256.00	-0.4162	-0.4162	256.00	-0.3564	-0.3564
384.16	-0.6246	-0.5444	384.16	-0.5348	-0.4641

3. Schlußbemerkungen

Der Vergleich der Ergebnisse eines umfangreichen Experiments mit den Daten der FE-Analysen zeigt, daß das entwickelte FE-Modell ein recht gutes Abbild der LCT-Spule gibt. Da die LCT-Spule die Experimente bis zum höchsten Strom I=19.6 kA ohne Schaden überstanden hat, kann angenommen werden, daß die kritische Scherspannung in der Wicklung $\tau = 50$ MPa nicht überschritten wurde. Die FE-Analyse liefert eine maximale Scherspannung $\tau_{r\phi}$ =-42.38 MPa (s. Anhang A). In Abb. 34 ist die Verteilung der Scherspannung σ_v =280.6 MPa für das Gehäuse liegt um den Faktor 2.5 niedriger als die max. zulässige Vergleichsspannung σ_v =700 MPa.

Abb. 34 - Scherspannungen $\tau_{r\phi}$ der Wicklung

Anhang: A

en nen verde en nen nen en en en en en en en en en	······	Normalspannu	ng
Wicklung		[MPa]	
	σr	σ_{z}	$\sigma_{m{\phi}}$
Maximum Minimum	- 4. 788 -46.99	+2.806 -57.81	+298.0 -25.68

LCT-Wicklung

Wicklung		Scherspannung [MPa]			
	τ _{rz}	τ _{φz}	$\tau_{r\phi}$		
Maximum	+16.53	+11.26	+22.83		
Minimum	-16.53	-11.26	-42.38		

LCT-Wicklung

kritische Scherspannung τ = 50 MPa

4. Literaturverzeichnis

/1/	_	R. W. Conn, ISSN 0920-3796 Fusion Engineering	
		and Design, The IEA Large Coil Task, Vol. 7	
		(1988) 95	2
/2/	-	Hibbitt, Karlson & Sorensen,Inc., ABAQUS USER	
		MANUAL, Version 4.8	2
/3/		A. Grünhagen, unveröffentlichter Bericht,	
		Kernforschungszentrum Karlsruhe, Oktober 1992 .:	2
/4/	—	B. Rzezonka, Spannungs- und Verformungsanalyse	
		für Hochstromlastfall, Technischer Bericht	
		Ident-Nr. 68.10464.1, Interatom 1987	4